Author preprint of:

Barthel, J., Beunardeau, M., Rosie, R., Sahu, R.A. (2021). Partitioned Searchable Encryption. In Qiong Huang and
Yu Yu, editors, Provable and Practical Security - ProvSec 2021, pages 63-79. Lecture Notes in Computer Science, vol

13059. Springer, Cham. https://doi.org/10.1007/978-3-030-90402-9_4

Partitioned Searchable Encryption

Jim Barthel', Marc Beunardeau?, Rizvan Rosie?, and Rajeev Anand Sahu'

1 University of Luxembourg, Luxembourg
{jim.barthel, rajeev.sahu}Quni.lu
2 Nomadic Labs, Paris, France
Marc.beaunardeau@nomadic-labs.com
3 JAO Luxembourg, Luxembourg
rosie@jao.eu

Abstract. Symmetric searchable encryption (SSE) allows to outsource
encrypted data to an untrusted server and retain searching capabilities.
This is done without impacting the privacy of both the data and the
search /update queries. In this work we put forth a new flavour of sym-
metric searchable encryption (SSE):Partitioned SSE is meant to capture
the cases where the search rights must be partitioned among multiple
individuals. We motivate through compelling examples the practical need
for such a notion and discuss instantiations based on functional encryption
and trapdoor permutations.

— First we leverage the power of functional encryption (FE). Our

construction follows the general technique of encrypting the set of
keywords and the presumably larger datafiles separately, a keyword
acting as a “pointer” to datafiles it belongs to. To improve on the
constraint factors (large ciphertext, slow encryption/decryption pro-
cedures) that are inherent in FE schemes, the keyword check is done
with the help of a Bloom filter — one per datafile: the crux idea is to
split the filter into buckets, and encrypt each bucket separately under
an FE scheme. Functional keys are given for binary masks checking
if relevant positions are set to 1 inside the underlying bit-vector of
the Bloom filter.

The second construction we present achieves forward security and
stems from the scheme by Bost in CCS’16. We show that a simple
tweak of the original construction gives rise to a scheme supporting
updates in the partitioned setting. Moreover, the constructions take
into account the possibility that some specific users are malicious
while declaring their search results.

Keywords: SSE, functional encryption, partitioned search, Bloom filter

1 Introduction

Searchable encryption [20] is a cryptographic protocol thought to enable its user(s)
to perform search queries on encrypted data?. In the protocol a set of keywords is

4 For example a doctor wanting to consult all the medical records of patients having
diabetes without having to download the entire database.

https://doi.org/10.1007/978-3-030-90402-9_4

encrypted and deployed on an untrusted (storage) server. Each keyword originates
in some structured datafile, which is encrypted separately under a semantic secure
symmetric encryption scheme. Ideally, the search operation executed by the client
shall work without compromising the privacy of the remaining encrypted data,
given that the server has access to the entire history of queries. Speaking about
functionality, a client must store some secret information (key) that allows to
create search tokens corresponding to specific keywords. Tokens are sent to the
storage server together with the operation that needs to be executed: searches
for static schemes, but also updates for dynamic schemes. The server uses the
tokens to retrieve the index(es) of the encrypted datafile(s) matching the desired
keyword(s), but without being able to decrypt the datafile(s) and without learning
those keywords. The initial proposals of SSE were designed in a static setting
where the client cannot perform any update on the deployed encrypted data. To
address this issue Kamara et al. [16] introduced dynamic SSE which enables
both searches and updates over the encrypted database. However, update may
cause leakage during addition of new (keyword, datafile index) pairs or during
the search of a keyword while all the files containing the keyword are deleted.
Security against the first case is called forward privacy — introduced by Chang
and Mitzenmacher [7] and against the second case is referred as backward privacy
— formalized by Bost et al. [5]. One common issue with the earlier proposals
was the search time which was linear in the size of the database. It was until
the work of Curtmola et al. [9] who put forth the SSE scheme with sublinear
search time, in a static setting. The index-based dynamic SSE with sublinear
search time was introduced by Kamara et al. [16,15]. The current approaches
of searchable encryption [6,4,5] suggest avoiding constructions following from
primitives such as fully-homomorphic encryption [10], multi-party computation
[23] or oblivious RAM [12]. These are considered non-viable, given their poor
practical performance. However, in many settings such techniques can be proven
safe as they leak no information on the encrypted data. Consider the case of
functional encryption (FE) [3]. A naive but straightforward implementation of
searchable encryption consists in issuing functional keys for circuits searching a
specific keywords. In the recent years several schemes of SSE have been proposed
[17,19] based on different assumptions and targeting advance properties. Our
construction addresses a completely different flavour and unlike the existing
schemes has been built using the Bloom filters.

In the existing literature of SSEs, a relevant contribution for our approach is
the paper by Goh [11], who proposes a construction — associating an index to
each document in a collection — based simply on Bloom filters and pseudorandom
functions. Another construction in connection to our results is Xogos by Bost [4]
which is a scheme supporting sublinear search time and achieving forward privacy
with improved security guarantees. In essence, the construction avoids the heavy
ORAM model while relying solely on the existence of trapdoor permutations.
The later Diana and Janus schemes [5] are improvements on this approach.

1.1 Owur Results

We introduce a new flavour of symmetric searchable encryption- partitioned
searchable encryption. More particularly, we propose two constructions of parti-
tioned SSE using the functionalities of a Bloom filter (BF), one from the functional
encryption (FE) and one from trapdoor permutations as used in Yogos .

Partitioned Symmetric Searchable Encryption (PSSE). Imagine a well
known governmental agency intercepts the conversation between the president of
its country and a foreign leader. Legally, the transcripts of such recordings must
be stored on a secure server and access rights must be given to some investigative
authority, after which the role of the security agency ends. Following the law, those
recordings may only be accessed by some selected committee of the Senate in its
plenitude. That is, no single member of the Senate’s committee may access the
data independently. To address such a problem, the notion of PSSE may be useful.
Such protocol consists of three entities: (1) a trusted authority that encrypts data
and subsequently deploys them to a storage server’; (2) the server that stores
the data; (3) the clients that can gain access to data if and only if all agree to do
so. We also emphasise that in connection to our partitioned SSE a recent work
[1] by Ananth et al. is much more relevant as it presents a multi-key FHE with
one-round decryption. The process of recovering the plaintext(s), taking place in
the final step of their construction, is similar to step (3) above. The multi-client in
[22], which presents a searchable encryption supporting Boolean queries, refers to
a group of clients satisfying certain attributes, and not associated to any partition
among them. Each client possessing a search-authorized private key issued by
the data owner can individually perform search where the keyword database is
encrypted using a CP-ABE. A related problem would consider malicious users:
that is, users that misbehave either when inserting or searching for documents.
Relative to our previous example, any senator, independent of his/her political
opinion must be able to prove that his/her part of the encrypted database DB
and search tokens are correctly generated.

We propose multiple instantiations for such a partitioned searching protocol.
The first one exploits the power of functional encryption. A naive approach
would encrypt the set of keywords, and then issue search tokens for the search
function. However, we introduce a novel and more efficient approach for building
searchable encryption from FE. Our key insight is the following: given a document
D, we store its set of keywords (w) in a Bloom filter, which is built on top of
a bitvector b. We split b into buckets and encrypt each bucket independently
under a functional encryption scheme. Then, we issue functional keys for circuits
that check if the desired set of bits corresponding to a search query is set to
1. This is illustrated in Figure 1. The second class of proposed constructions
stems from the Yogos scheme introduced by Bost in [4]. Yogos uses classical
primitives, such as simple as trapdoor permutations. Whenever a new keyword
is inserted, the index of the keyword is masked with a pseudorandom value the
client is aware of. We achieve a PSSE scheme by distributing such a masked value

5 The governmental agency in our case.

1 2 3 45 6 7 8 9 10111213

2 3 4 5 6 7 8 91011

[T[] T 1 1111

hi(w)
(1,1,1,0) (0,1,0,0) (0,1,0,0)

1 2 3 4 5 7 8 9 10 11 12

6 l
o

02(3) 03(3)

Fig. 1. Each Bloom Filter BF®” is associated to a datafile D) (not represented) and
consists of a bitvector 5 of size B;. As seen at the lower right, 5@ is split in 3 buckets
of size 4, which are encrypted independently under a functional encryption scheme.
Thus, the message space supported by the FE scheme consists of 4 bits. Functional
keys are issued to check if the j-th bit is set to 1, in order to simulate the membership
testing in the Bloom filter specification, as seen in the upper part of the picture.

amongst the participants into the protocol. Concretely, we employ the usage of a
Bloom filter to store the index. Then, we split the Bloom filter into buckets, and
each party will independently mask a bucket of the Bloom filter. Pictorially, this
would correspond to a parallel execution of Bost’s protocol. Finally, during the
combine (Comb) step, the results of the searches are gathered and the question
of a keyword belonging to a document can be settled.

Organization of the paper. Section 2 introduces the common notations and
the definitions we work with in the following parts. Section 3 defines partitioned
SSE. In Section 4 we introduce the main results of this work: by devising simple
PSSE protocols starting from FE and trapdoor permutations, static or supporting
updates. Section 5 concludes the contributions.

2 Preliminaries

Mathematical and Algorithmic conventions. In this work, A € N* stands
for the security parameter. We assume A is implicitly given to all algorithms
in the unary representation 1*. We consider an algorithm to be equivalent to
a Turing machine, and unless stated, we assume that algorithms are random-
ized. PPT stands for “probabilistic polynomial-time” in the security parameter
(rather than the total length of its inputs). Given a randomized algorithm A we
denote the action of running A on input(s) (1*,1,...) with coins r (sampled
uniformly at random) and assigning the output(s) to (yi,...) by the expression
(y1,. ..)s A(1* z1,... ;7). We write A® for the case that A is given oracle
access to some procedure O. We denote the cardinality of a finite set S by |S|

and the action of sampling a uniformly at random element x from X by z<+s X.
[k] stands for the set {1,...,k}. A real-valued function is called negligible if
it belong to O(A~“()). We denote the set of all negligible functions by NEGL.
Throughout the paper L stands for a special error symbol. We use || to denote
concatenation.

2.1 Searchable Encryption

To structure the discussion, we assume a classical client-server model, with a
client wishing to deploy its data on some untrusted third party; at the same time,
the client wants to retain its ability of searching over the encrypted, deployed
data. In the first part — the Setup phase — the client proceeds as follows with
its datafiles {D®M,... D@ }: (1) extracts all the keywords for each D (let this
set of keywords be written in a structure denoted DB); (2) encrypts each D) to
ED(i), using a semantic-secure symmetric encryption scheme; (3) encrypts the
keywords under a scheme that supports searches (let this resulting database of
encrypted keywords be denoted as EDB); (4) uploads EDB and the encrypted
datafiles on some untrusted storage cloud server.

In the Search phase, whenever looking for a datafile corresponding to a specific
keyword w the client should have the ability to identify the datafile(s) D)
containing w. Then, it will retrieve the encrypted file ED® corresponding to D(*)
and decrypt it. Our protocols do not explicitly mention the last phase consisting
of simply downloading and decrypting the datafiles identified as containing the
keywords. A rigorous formulation capturing the aforementioned intuition is given
below.

Definition 1 (Multi-Keyword SSE). Let D; C {0,1}* denote a datafile,
for any i € [d]. Let DB == {(i’w(i))}ie[d] denote the set of pairs containing a

datafile index i and a set of keywords w?). A static searchable encryption scheme
XY = (E.Setup, Z.Search) consists of a PPT algorithm X .Setup and a protocol
X .Search between a client and server, such that:

— (EDB, K, 0)<sSetup(DB): takes as input the DB, encrypts it to obtain EDB,
and deploys the resulting ciphertext to a server. It returns the key K and a
state o to the client.

— i ¢ Search(EDB, o, K, w,|): is a protocol between the client and the server.
The client inputs its key K, its state o, a search query w which can consist
of a single or multiple keywords and an index set |, consisting of file indices
that should be searched through. In case | is absent, we consider it as | = {1}
meaning the system stores only a single datafile. The server’s input is EDB.
It then returns the index(es) in | that correspond to datafile(s) containing the
queried keyword(s).

In addition, we call a symmetric searchable encryption scheme dynamic if there
exists a third algorithm:

— EDB’ < Update(EDB, 0, K, w,|,0p): the client encrypts a keyword w and
sends an update query for a specific index set | of datafiles. In case | is absent,
we consider it as | = {1} meaning the system stores only a single datafile.
The operation op can either be a delete or insert request. Update then returns
the updated encrypted database.

We require an SSE scheme to satisfy correctness, meaning that the search protocol
must return correct results for every query, except with negligible probability.

Security of SSE. Security of an SSE scheme corresponds to the amount of
information a server can gather about the database (file) and the keywords
queried. More concretely, it is parametrized by the stateful leakage functions
incorporating the leakage of the Setup, Search, Update algorithms. We denote this
by a leakage function £ = (L5etup, LSearch, L£UPdate)6 - Security requires that the
adversary should not learn more than the outputs of the corresponding leakage
function L after triggering the Setup, Search or Update operations. Of particular
interest is the notion of forward privacy [21], which ensures that an update query
does not leak information on the updated keyword, the server being unable to
tell if a particular document leaks the updated keywords.

Forward Privacy: informally, it states that newly updated documents do not
leak information about newly added files that match the query. Alternatively,
the Update queries do not leak the keyword/file being updated.

Definition 2 (Forward Privacy for SSE). We say an L-adaptive-secure
multi-keyword SSE is forward private if the update leakage function is defined
as LYPYe(op in) = L/VPdte(op (' W), for operation op with input in where
L' is stateless and the set (f',w') denotes all updated documents for which the
keyword w' is modified in file f’.

Security requires that the adversary does not learn more than the outputs of
the corresponding leakage function £ after triggering the Setup, Search or Update
operations. The corresponding security game is described in Figure 2.

Definition 3 (Adaptive Security for SSE). We say a multi-keyword SSE
scheme achieves L-adaptive-security if the advantage of any PPT adversary

A in winning the FS — SSE experiment defined in Figure 2 is megligible. i.e:
| Pr[FS — SSEZe(\) = 1] — 1| € NEGL(N).

Definition 4 (Functional Encryption - Public Key Setting). A functional
encryption scheme FE in the public-key setting consists of a quadruple of PPT
algorithms (FE.Setup, FE.KDer, FE.Enc, FE.Dec) such that:

— (msk, mpk)<—s FE.Setup(1*) : given the unary representation of the security
parameter X\, the setup procedure outputs a pair of master secret/public keys.

— sky<—s FE.KDer(msk, f): given the master secret key msk and a function f, the
(potentially randomized) key-derivation procedure generates a corresponding
functional key sky.

6 For a static scheme £UP%t := ().

FS — SSEZSe(N): PSSEfsse (A, N):
b+s{0,1} b<s{0,1}
DB «+s.A(1%) DB¢s A(1%)
if b=0: if b=0:
(EDB, o) +sSSE.Setup(1)| (pp, DBy, ..., DBy)<sPSSE.Setup(1*, N, DB)
else: for j < 1, N:
(EDB, 0) <5 S(Lsetup) (pk;, sk;)<—s SSE.ClientSetup(DBj, 5)
for g+ 1,Q: else:
if b=0: (pp7 DBy, ..., DBN)<_$S(£SHUP)
(op, w)<—s A(EDB, o) for j < 1, N:
if op ="Update": (pk;, sk;)<=s S(Lcrentsetup)
Ry<+s Update(o,EDB,w)| for ¢ «+ 1,Q:
if op ="Search": (op, w)<—s A(pp, pk;, EDB;),Vj € [N]
Ry4s Search(c,EDB,w)| ifb=0:
ifb=1: if op ="Update":
(op, w)+s A(EDB, o) R,.;<—s Update(o,sk;, j, EDB;, w),Vj € [N]
if op ="Update": if op ="Search":
RysS(0, Lupdate(W)) Ry, ;s Search(o,sk;,j, EDB;,w),Vj € [N]
if op ="Search": ifb=1:
Ry4+38(0, Lsearch(W)) if op ="Update":
b'<s A({Rq}qee(q)) Ry,j4=58(0,], Lupdate(W)), Vj € [N]
return b = b’ if op ="Search":
Rq,j¢38(0, , Lsearcn(W)), Vij € [N]
b'<s A({Rq.j}q.5)
return b = b’

Fig.2. The FS — SSE-security defined for a symmetric searchable encryption scheme
(left). Simulation-security for a PSSE scheme.

— C+«sFE.Enc(mpk, M): the randomized encryption procedure encrypts, using
the master public key mpk, the plaintext M into a ciphertext C'.

— FE.Dec(C,sky): decrypts the ciphertext C using the functional key sky in
order to either learn a valid message f(M) or, in case the decryption procedure
fails, a special error symbol L.

We say a scheme FE achieves correctness if Vf € Fy, for any M € M, the
following quantity is negligibly close to 1 :

(msk, mpk)<—s FE.Setup(1*) A sk s<—s FE.KDer(msk, f)A

Pr C«—s FE.Enc(mpk, M) A y + FE.Dec(C, sky)

y = f(M)

2.2 Bloom Filters

Bloom filters (BF), introduced in [2] are probabilistic abstract data structures
allowing for constant time searches, insertions and deletions. Thus, they improve
over both running time and memory space over the existing approaches using

hash-tables or different flavours of tree-based structures. The core idea behind
Bloom filters is to store a representation of a keyword w instead of storing w
itself. To do so, one can imagine an underlying data structure consisting of a
bitvector b of B bits, that is populated by hashing the inserted strings w € W
as depicted in Figure 3:

— given w, compute i < Hash(w), where Hash : {0,1}* — {0,...,B — 1}
denotes a hash function. .
— for each hash function outputting an index i, set b; + 1.

False positives are possible, since b; can be set to 1 by multiple strings. Still,
by controlling the number of hash functions to be used, one can bound the
probability of false positives when inserting n elements through v hash functions:

- 1\7n
Pr | 3w ¢ W A [W]| > 1 A BF Search(b, w) = 1] ~ (1 - (1 - E))

Therefore, the optimal number of hash functions is simply: v & In(2)- %. Moreover,
a technique to reduce the false positive rate in a Bloom filter is discussed in [8]
specially with the view of its use in searchable encryption.

{a, b}

(OTOTITITITOTITITOTOTITOTITOTOTO]

\/

w

Fig. 3. A depiction of a Bloom filter BF storing elements a, b. Deciding if w belongs to
BF implies a check over the corresponding positions. In this example w is in the set

{a,b}.

Data Representation. Let DV, ... D@ be d datafiles, represented in binary.

For each D(®) we instantiate the vector w(® = (w'!” ... w'?) | as the vector of

keywords, where wgi) denotes the t*™ keyword belonging to the i*" document
D@ For each D), we instantiate a Bloom filter BF(Z), whose bit-vector ¥ can

be split into () buckets of equal size %, where B; denotes the length of b,

3 Partitioned Symmetric Searchable Encryption

Partitioned symmetric searchable encryption (PSSE) extends the standard def-
inition of SSE in a natural way: the Search algorithm must be post-processed
jointly by a group of N users instead of a single one, in order to identify the
document(s) with the corresponding keyword(s) by confirming whether a (set

of) keyword(s) belongs to some document or not, with sufficient probability”.
The protocol works by pre-sharing public parameters between the users and then
combining the outcome of their results in a similar way to a distributed PRF [18].
As motivated in Section 1, certain scenarios benefit from such a setting.

In its simplest setting, a partitioned protocol requires all users to be honest
while declaring their outcome, which jointly validates if a keyword belongs or not
to some document. We emphasize that a cheater in the group that deliberately
changes the result of his/her finding is tantamount to changing the truthfulness
of the global outcome. We proceed with a definition and a security notion for the
honest model. Our definition encompasses both static and dynamic SSE schemes.

Definition 5 (Partitioned SSE - Honest Setting). Let N stand for the
number of users. Let D; C {0,1}* denote a datafile, for any i € [d]. Let
DB = {(i,w(i))}ie[d] denote the set of pairs containing a datafile index i and

a set of keywords w¥). An N-party PSSE consists of a tuple of algorithms
(PSSE.Setup, PSSE.ClientSetup, PSSE.Search, PSSE.Comb) such that:

— (pp,DBy,...,DBy)+sPSSE.Setup(1*,DB, N): is a PPT algorithm that takes
as input a database of keywords DB and a number N of users; it extracts the
keywords based on which it generates N individual databases denoted DB;
and sends then database DB; to user j; further auxiliary information may be
computed and added to pp (taken as input by all other algorithms).

— (skj, pk;)<—s PSSE.ClientSetup(DBy, j): party j samples a private/public key
pair (skj, pkj). When omitted, the public key is set to (). At this stage, party
J encrypts DB; under pk;, obtains EDB; and sends it to the server.

— b; < PSSE.Search(EDB, sk;, w,1): is a protocol between client j with input
its secret key sk;, and the server with input EDB = UéVZIEDBg. Using sk;,
party j can query for a keyword w in the datafiles with index in 1. A search
query can support one or multiple (conjunctions of) keywords. The Server
returns to client j a bit b; indicating if the partial search found w in any
datafile with index in | or not.

— b« Comb(by,...,by): after running the Search procedure, the parties com-
bine their individual outcomes locally without interaction with the server and
generate the final outcome of the search query.

In addition, we say a partitionable symmetric searchable encryption scheme is
dynamic if there exists a fifth algorithm:

- (EDB;,(J’/) + Update(EDB;j, 0, sk;, |, w,op): client j encrypts a keyword w
and sends an update query for a specific datafile index set |. The operation
op can be either a delete or insert.

" Some of the constructions we propose admit false positives, and therefore we re-
quire that correctness holds with a good enough probability, rather than having
overwhelming/perfect correctness.

We require any PSSE scheme to satisfy correctness, in the sense that for any
w e {wh ... wD}, the following quantity is negligibly close to 1:

pp<—s PSSE.Setup(1*, DB, N)A
Pr | b < Comb({b;}) | {(skj,pk;)«sPSSE.ClientSetup(DB;, j)}je[nj/A
{b; <— PSSE.Search(EDB, sk;, w,1)};c[n

A PSSE scheme is adaptive secure if the advantage of any PPT adversary in
winning the game in Figure 2 is negligibly close to 1/2.

We emphasise that a secret sharing scheme would be an option for combining
the individual shares of the parties but it does not allow searching over the
encrypted database for which a SSE is required. PSSE naturally combines both
functionalities.

3.1 Dealing with Malicious Users

Real scenarios are more complex to describe, and often contain entities that are
able to actively cheat, in the sense that they may want to change the outcome of
a search result. To deal with malicious users we modify Definition 5 by giving the
server the possibility to access some verification methods. For example, in our
PSSE using FE, the server checks the ciphertexts, and the keys. Let this methods
be denoted by VerCT, VerKey, and we assume they are globally accessible. In
such a setting, we enforce ClientSetup to return a public key pk; for each user.
Formally, correctness can then be described by requiring the following quantity
to be negligibly close to 1:

pp+s PSSE.Setup(1*, DB, N)A

{(sk;, pk;)<—s PSSE.ClientSetup(pp, j) } je [N/
{b; <— PSSE.Search(pp,EDB, K, j, W)} je[n]/A
VerCT (pk;, EDB;) = 1 A VerKey(pk;, K) = 1

Pr |1 <+ Comb({b;})

4 PSSE Instantiations from FE and Trapdoor Permutation
using BF

In this section we present our PSSE constructions from FE and trapdoor permu-
tation using the functionality of Bloom filters.

4.1 A PSSE Scheme from FE

This part introduces a PSSE protocol based on FE and Bloom filters. The scheme
discussed stems from the one by Goh [11]. It differs significantly from the new
generation of SSE schemes in the sense that a data structure indexed by datafiles
is used, as opposed to recent works that use structures indexed by keywords
[4,5]. This is somehow natural, in the sense that Bloom filters are meant to store
massive datafiles associated to particular documents. It works in two phases: an

10

offline setup phase is responsible for generating the required parameters for each
Bloom filter and for inserting all document/keyword sets; and an online search
protocol partitioned between IV clients allowing them to recover the indices of the
searched elements and to get, through a combine step (Comb), the final result.

The SSE.Setup algorithm instantiates a symmetric encryption scheme SE with
key Kse to be used to encrypt the (structured) datafiles. A sufficiently large set
of hash functions are also sampled at this stage in order to instantiate the Bloom

filters to be used. The Setup, given the database of keywords DB = {(z, W(i))}ie[d]

and the number of users N, proceeds as follows: (1) a set of Bloom filters

BF(i), each consisting in a bit-vector b*), is instantiated. For simplicity, we
(@)

assume the length of each Bloom filter to be B; (2) each keyword w,’ € DB

is inserted into BF¥. Next, the clients proceed as follows: (3) for each Bloom
filter BF(i), the underlying bit-vector b is split into [buckets. For simplicity
we assume® that [= N; (4) each bucket j in BF(® is encrypted independently
using the mpk; of some party j. Again, for simplicity we assume a canonical
association: bucket j corresponds to party j. During the SSE.ClientSetup phase,
each user independently samples a public-key functional encryption scheme
supporting inner products: (msk, mpk)<—s FE.Setup. We note that for the purpose
of searching, a linear functional encryption scheme suffices. However, more
convoluted constructions [13] may support re-encryption queries and thus they
may allow insertions. Each user stores its own secret msk; and publishes its mpk;.
As the scheme is static, each party encrypts its associated chunk of the Bloom
filters and sends the resulting ciphertext to the server, which stores them.

On the client side, the Search protocol is given a set of query keywords W. For
every queried keyword w € W, the client j proceeds as follows: first, it determines
the places in some bitvector b that must be set to 1 by the hash functions. Then,
each client looks into its allocated chunk: say user j is allocated chunk j. Finally,
the client j derives a functional key for the circuit Cy that checks if all required
corresponding bits to W are set to 1 in chunk j. This is done by the functionality
CircuitCheckBitsAreOne: for each bucket in some Bloom filter, if some bits are
set to 1, then a single circuit-value checker is built. The output of this circuit
consists of a single bit. The server is expected to run FE.Dec under these circuits
(i.e. apply the functional key) for each bucket: FE.Dec(sky ;, Cj(l)) =1.

On the server side, the Search protocol will simply evaluate the circuit com-
puting f on the encrypted buckets corresponding to each datafile D(¥) and returns
D if all decryptions succeed in returning 1 for the buckets corresponding to BF(.
As discussed in section 2.2, false positives are possible hence the identification of
datafile(s) corresponding to specific keyword(s) is considered with a reasonable
probability. Also, if even a single bit in any chunk is not 1 at the desired place
then the queried keyword does not correspond to the datafile searched, hence
false negative is not possible. Intuitively, the semantic security of FE should
guarantee that nothing is leaked on the message apart from f(M).

Our PSSE Construction from FE

8 One can also consider [as a multiple of the number of participants N.

11

Definition 6 (Basic Construction). Assuming the existence of sub-exponentially
semantic-secure FE scheme in the public-key setting, the construction in Figure 4
is a PSSE scheme for multiple keywords.

PSSE.Search():

A . _
PSSE.Setup(1*, DB, N): CliontSide(j, W):

for i < 1,d: BF’.Setup(1™)
BF (") <5 BF.Setup(1*) foreach w € W:
for 5 € 1, N: BF’.Insert(w)
BF() Insert(w'") x; + BF’.getChunk(j)
LD« BF® Split(5®), N) f; < CircuitCheckBitsAreOne(x)

sk s, <=8 FE.KDer(msk;, f;)

assert(L is a list) SendServer(sks.)
J

foreach xﬁl) er®:. xﬁl) is a bucket

: . (1)
SendClient (3, le) ServerSide(j, mpk;, sk I):

) (@) b 0
PSSE.ClientSetup(j, DB; = {’I‘J e X }): foreach i € I:
§ (4) (4)
(msk;, mpk ;) <$ FE.Setup(1*) Parse (C1",..., Cy ()7,)
for i < 1,d: bj (FE.Dec(skfj7 C;7)=1) Vv b;
C].(l)<—$ FE.Enc(mpk , wg_l)) SendClient(b;)
(1) (d)y
SendServer(Cj e G) PSSE.Comb(by, . .., bn):

Store(msk;, mpk;)

return by A ... Abn

Fig. 4. A PSSE scheme using a functional encryption schemes as an underlying primitive.

Correctness. Assuming a query set W is to be checked, for each index i (corre-
sponding to the datafile D(i)), the client computes the positions of 1s as pointed
by some pseudorandom function . Each position will be part of some bucket.
The client builds the appropriate circuits to check if the required bits in bucket
z are set to 1.

The server uses the functional decryption procedure'® for each bucket and
then for each document. If the FE decryption returns 1 for all positions pointed
by the hash functions, then D) contains the searched key with high probability.

Lemma 1. If the static PSSE in Figure 4 is built on a semantic secure functional

encryption scheme FE supporting a bounded number of functional keys, then it is
PSSEpcse-secure (Figure 2).

Proof (Lemma 1). We construct the simulator Spssg described in De finition 5
using the simulator of the underlying FE scheme. Namely, during the PSSE.Setup
procedure, the pp are computed, consisting of the hash functions used to instan-
tiate the Bloom filters, which are then handed to Spssg, which outputs them.
For the ClientSetup case, N Sgg simulators are instantiated, and Spssg simply
returns as EDB the ciphertexts it receives from the N simulators. During the

9 In some sense we want to preserve the idea behind the Bloom filter construction, and
work with hash functions having pseudorandom outputs.
10 Note however that this step is highly parallelizable.

12

Search procedure, the leakage function obtained from the functional keys (and
the ciphertexts) that are exchanged between the clients and the server, consists
only in the FE.Dec(skys, C'), which is also leaked by the real experiment. Thus,
the two settings are indistinguishable. a

We observe that an inner-product FE scheme is sufficient for our purpose. For
instance, if a bucket in some bitvector contains m positions set to 1, we issue a
functional key for exactly the same bucket and check if its output is m (assuming
m is small).

4.2 PSSE from Trapdoor Permutation: PSSE from Yog¢og

This section proposes a forward secure SSE scheme supporting a partitioned
search amongst N honest users.

Yogos . The starting point of our proposal is Yogos [4]. The construction is
keyword-indexed and easy to follow. It uses a master secret key, denoted as Kg
to derive a keyword key K, for each keyword w of interest using a PRF:

Kw < PRF(Kg,w) ,

where Ky, is used in conjunction with some randomly sampled search token STy
from the space of admissible tokens M in order to attain the first insertion of w
in the encrypted database corresponding to some document with index in I Then,
additional queries will generate new search tokens ST,.. Concretely, the server
maintains a table T with lines corresponding to users and rows corresponding to
hash value Hash; (Ky||ST,) containing the hidden value (Hashy(Ky||ST.) & 1),
while the client maintains a table T() saving the relation between search tokens
ST, and w. To insert w in any new document with index 4., a new search token
ST, is derived from STy. This happens by the means of a trapdoor permutation
II.:
ST. + II;'(STy)

obtained through the repeated application of a pseudorandom permutation PRP.

On the server side, things are remarkably simple. Once the client sends K, and
some search token ST, the server recomputes the hash values Hashy (K ||ST),
Hasha(Kw||ST.) and obtains the index. If more than one index has been inserted
per keyword w, then all search tokens can be recovered, simply by taking:

STO — HC(STC)

and the previous step is applied. Intuitively, Y'ogos enjoys forward security for
the following reason: whenever a new (keyword, index) pair is inserted via the
hash function, the server is not able to derive the search token that is used. Thus
it can’t say which keyword has been inserted, or to which document it belongs
to.

A Forward Secure Partitioned SSE Scheme. We aim at having a scheme
handling update queries while reaching forward security. The gist of the modifi-
cations we make on Yogogs is to replace the index that identifies the document,

13

with a more convenient data structure — a Bloom filter. Then, we allocate to each
party a chunk over the bitvector associated to BF. That is, whenever a keyword
is to be inserted at some location, a new Bloom filter is instantiated. Party 7 will
compute independently its search tokens and will XOR the 5" chunk of BF. The
server will store all these chunks in a 2-dimensional array with rows corresponding
to the IV possible parties and columns to hashes. Whenever queried by a client
for some keyword w, it will identify and return the value of the BF chunk. In
the Comb protocol, the parties would be able to recreate the entire BF and check
if the words are included or not. For technical reasons, we employ the usage of
several hash functions (impersonating random oracles) in order to obtain a joint
computation corresponding to the value during the insert and the search phases.
An algorithmic description of our scheme can be found in Figure 5.

N PSSE.Search():
PSSE.Setup(1*,DB, N): PSSE.Update(w, j, op): _))
X - 5 ClientSide(j, K9, sk, pk) w):

Hashl.Setup(IA) ClientSide(j, K7 ,skj ,pkY) w): K « PRF.EVal(KD, w)
Hash; .Setup(17) BF.InitAndInsert(wl||l))
Teb | (STe,¢) + TV [w]
for j € [N] Ky + PRF.Eval(KY), w) if (STe,c) = L:

N A (STe, ¢) + TW [w] return 0

Hash’ .Setup(1™) N =
ServerStore(T) if (STe,c) = L: else:
STo+s M SendServer (j, Kw, ST, ¢)
return)
T [w] « (STo,0)
else: ServerSide(j, Kw, ST, ¢):
; Y STey1 + PRPTY(ST,) while ¢ > 0:
PSSE.ClientSetup(3j, 0): ctl e =
0 G.0) w[w] ¢ (STeq1,c+1) h1 + Hashy (Kw||ST.)

T 0 hy < Hash; (Kuw||STey1) ha < Hashy (Kw|[STe)
K9 s PRF.Setup(1*) ho < Hashg (Kw||STcy1) SendClient(j, h2 @ T[j][h1])
(:;k(j)7 pk()) SendServer (3, (h1, STe—1 + PRP(STc)jc+c—1

+$ PRP.Setup(1*) h2 & BF .getChunk[3]))
ClientStore(j, K7, sk(¥) S Side(j,) PSSE.Comb(v™®), ..., v("):

G)) erverSide(j, v):

pk?), T) AT oy BF.Init(v™, ... v

return T(j][h1] (h2 © BF.getChunk[]]) return BF.Search(w,
Hash®!, ..., Hash™) 2

Fig.5. A construction of forward-private PSSE based on trapdoor permutations.

Forward Security of PSSE. We show the partitioned Yo¢og achieves forward
security. To this end, we mainly adapt the proof given by Bost in his paper to
our partitioned version in Figure 5.

Lemma 2 (Forward Security). Let Sg denote the simulator used in the
forward-security of [4]. The partitioned SSE scheme in Figure 5 achieves parti-
tioned forward security against any PPT adversary A, as defined in Definition 2
under the advantage Advg%(/\) <N- Advg‘g‘/ng(A).

Proof (Proof Sketch). Observe that scheme X in Figure 5 can be viewed as N
parallel executions of Yogos . A key difference consists in the indices that are
passed by each of the users whenever a keyword is inserted. Naturally, we would
like to re-use the already proven forward security in order to attain the same

14

property for our partitioned scheme. In doing so, we proceed using a hybrid
argument. A new hybrid game corresponds to simulating the output of the 7*h
client using the simulator put forward by Bost in [4].
Gamey: corresponds to the real experiment in the security game PSSE’S‘SSE.
Game;: we use the simulator in [4] to generate the transcript. The distance

to the previous game is bounded by the forward security of the scheme in [4].

Gamey: is identical to the simulated experiment in Definition 6.

PSSE.Setup(1*, DB, N):

Hash; .Setup(1*)
Hashs.Setup(1™)
T+« 0
for j € [N]

Hash? .Setup(1*)
ServerStore(T)

PSSE.ClientSetup(3j, 0):

T ¢

(KD vk9)) 5 VRF.Setup(1*)

(sk@), pk(@)) <3 PRP.Setup(1)
ClientStore(j, KW s Sk(j)7 Pku) > T(j))

PSSE.Update(w, j, op):

ClientSide(j, K sk, pk(j) , W)
BF .Insert(w][1)
(Kw, Tw) + VRF.Eval(KD vk | w)
(STe,¢) + TW[w]
if (ST, c) = L:
STo +— M
else:
STeq1 < PRPTH(ST,)
T [w] + (STeq1,¢4 1)
hl — HaShl(lelsTC+1)
ho < Hasha(Kw||STct1)
SendServer (h1, ha @ BF.getChunk[j])

ServerSide(j, v):

T[j][h1] < (h2 ® BF.getChunk(j])

PSSE.Search():
ClientSide(j, K9, sk, pk() w):
(K, mw) < VRF.Eval(K@ pk() w)
(STe, ¢) + TW[w]
if (STe,c) = L:

return 0

else:
SendServer (j, Kw, Tw,STec, ¢)

PSSE.Comb(v(l), Cey ’U(N)):
BF.Init (v, ..., v("))
return BF.Search(w, Hash®, ..., HashN)]

ServerSide(j, Kw, Tw,STe¢, ¢):
while ¢ > 0:
if VRF.Ver(vk), Ky, Tu, w) % 1:
abort
h1 < Hashy (Kw||ST.)
hg + Hasha(Kw, [|ST.)
SendClient(j, h2 & T[j][h1])
c+c—1

Fig. 6. A candidate construction of forward-private PSSE based on trapdoor permuta-
tions and verifiable random functions (VRFs) for handling malicious users.

4.3 Dealing with Malicious Users

Far more challenging is the scenario that deals with malicious users. A general-
ization of the preceding scheme may also deal with this additional problem by
replacing pseudorandom functions in Figure 5 by verifiable random functions

15

(VRF). A VRF consists of a setup phase — generating the public parameters, an
evaluation algorithm — returning an evaluation and a proof for a given input, and
a verification algorithm — validating the outcome of the evaluation process. We
refer to [14] for the formal definition of VRFs. The verifiability property allows
the server to check if a keyword key K., has been correctly generated by the
client and to abort the search otherwise. We present a candidate construction of
forward-private PSSE based on trapdoor permutations in Figure 6.

5 Conclusion

In this work, we proposed a new variant of searchable encryption schemes (SSE).
We call it partitioned SSE (PSSE) where datafiles can only be found whenever
all search parties give a collective search request. This combines the best parts of
searchable encryption and secret sharing. We accompany this new variant with
two pragmatic schemes, one based on functional encryption and one on Xogog .
Additionally, we showed how the latter scheme can be used in the presence of
malicious users.

Acknowledgements. Jim Barthel was supported in part by the Luxembourg
National Research Fund through grant PRIDE15/10621687/SPsquared. The last
two authors were supported by ERC Advanced grant CLOUDMAP 787390.

References

1. Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-
key fully-homomorphic encryption in the plain model. In Theory of Cryptography
Conference, pages 28-57. Springer, 2020.

2. Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

3. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253—273.
Springer, Heidelberg, March 2011.

4. Raphael Bost. Yo¢os: Forward secure searchable encryption. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 16, pages 1143-1154. ACM Press, October 2016.

5. Raphaél Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private
searchable encryption from constrained cryptographic primitives. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17,
pages 1465-1482. ACM Press, October / November 2017.

6. David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementation. In NDSS 201. The
Internet Society, February 2014.

7. Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In John Ioannidis, Angelos Keromytis, and Moti Yung,
editors, ACNS 05, volume 3531 of LNCS, pages 442—-455. Springer, Heidelberg,
June 2005.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Chi Sing Chum and Xiaowen Zhang. A new bloom filter structure for searchable
encryption schemes. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pages 143-145, 2017.

Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 06,
pages 79-88. ACM Press, October / November 2006.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169—-178. ACM Press, May / June
20009.

Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216.

Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. Journal of the ACM (JACM), 43(3):431-473, 1996.

Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 555-564. ACM Press, June 2013.

Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard
assumptions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 336-362. Springer, Heidelberg, January 2016.

Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable
symmetric encryption. In Ahmad-Reza Sadeghi, editor, FC' 2013, volume 7859 of
LNCS, pages 258-274. Springer, Heidelberg, April 2013.

Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable
symmetric encryption. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12, pages 965-976. ACM Press, October 2012.

Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. Oblix: An efficient oblivious search index. In 2018 IEEE Symposium on
Security and Privacy, pages 279-296. IEEE Computer Society Press, May 2018.
Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random func-
tions and KDCs. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 327-346. Springer, Heidelberg, May 1999.

Sikhar Patranabis and Debdeep Mukhopadhyay. Forward and backward private
conjunctive searchable symmetric encryption. In NDSS Symposium 2021, 2021.
Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy,
pages 44-55. IEEE Computer Society Press, May 2000.

Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic
searchable encryption with small leakage. In NDSS 2014. The Internet Society,
February 2014.

Shifeng Sun, Joseph K. Liu, Amin Sakzad, Ron Steinfeld, and Tsz Hon Yuen. An
efficient non-interactive multi-client searchable encryption with support for boolean
queries. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas, and
Catherine A. Meadows, editors, ESORICS 2016, Part I, volume 9878 of LNCS,
pages 154-172. Springer, Heidelberg, September 2016.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160-164. IEEE Computer Society Press, November 1982.

17

http://eprint.iacr.org/2003/216

	Partitioned Searchable Encryption

