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Do not let the day end without having grown a little, without being happy,
without having risen your dreams. Do not let yourself be overcome by disap-
pointment. Do not let anyone take away the right to express yourself, which
is almost a duty. Do not forsake the yearning to make your life something
extraordinary. Do not stop believing that words and poetry can change the
world. Whatever happens, our essence is intact. We are passion-full beings.
Life is a desert and an oasis. It knocks us down, it hurts us, it teaches us, it
makes us protagonists of our own history. Although the wind blows against,
The powerful work continues: You can make a stanza. Never stop dreaming,
because in dreams you are free.

Walt Whitman – Leaves of Grass
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Abstract

Autonomous aerial robots are expected to revolutionize many industries, such
as construction, transportation or even space exploration. However, to tar-
get an industry where different robots and humans are meant to share the
same space our algorithms need to provide safety and efficiency guarantees.
Navigating autonomously in these kind of environments poses a great chal-
lenge. We may face a significant number of obstacles, and we can only
estimate where they are and where they are expected to be, but not exactly.
Dealing with these uncertainties is a challenging problem in most robotics
applications, including motion planning and control. During the last decade,
major contributions have established the theoretical basis upon which op-
timal motion planning and control with safety guarantees can be achieved.
However, they involve a high computational cost that scales exponentially
with the number of obstacles, rendering a limited domain of robotic applica-
tions. The main contribution of this thesis provides an efficient, scalable and
safe approximation to this problem, allowing its application to embedded
systems with fast dynamics such as aerial robots. This thesis also includes
an additional contribution that allow these methods to plan longer trajec-
tories with a minimal computational footprint, allowing to better anticipate
evasive maneuvers. These contributions have been validated mathematically,
in simulation and in real-time operation on aerial robots, handling uncertain
dynamic obstacles such as pedestrians.
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Chapter 1
Introduction

This thesis presents different contributions to the field of optimal motion
planning and control for aerial robots that allows a higher degree of auton-
omy and safety in navigation tasks. This chapter introduces the problem of
autonomous navigation in Section 1.1, and the role optimal motion planning
and control plays in such a problem. Then, Section 1.2 contextualizes and
introduces the motivation of this study, outlining the significance of our study
and an overview of our contributions in Section 1.3. Finally the outline of
the thesis is presented in Section 1.4.

1.1 Autonomous Navigation

Walking is one of the first skills that we develop in our early lives, giving
us the ability to navigate autonomously and efficiently from one location
to another. This involves complex cognitive processes that, as adults, we
are able to perform effortlessly without even being aware of their existence.
To enable such behaviors in robots we need to account for these cognitive
processes explicitly, casting them into algorithms so they can be processed by
computers. In this introduction, we overview these concepts from a pseudo-
human perspective, connecting these ideas to their respective field in robotics
research.

The process starts with perception. The light emitted or reflected by
different objects is captured by our eyes, projecting images in our retinas,
encoding them as electric signals which are sent to the brain. Then, the brain
decodes these signals into information about colors and depth, constructing
our visual perception. In robotics we recreate such a skill using stereo cam-
eras, which encode color and depth into a matrix called pointcloud, as shown

1



1.1. Autonomous Navigation

in Fig. 1.1. With this information, we are able to perceive the space that

Figure 1.1: Zed stereo camera and generated pointcloud.

surround us, partitioning the space into objects with different attributes and
functionalities. Then, we are able to build a three-dimensional map of where
these objects are, inferring our own location in such a map. Reproducing
such a skill computationally in robotic systems is the task of Simultaneous
Localization and Mapping (SLAM), visualized in Fig. 1.2, a thriving research
topic that represents one of the biggest challenges in robotics research [Davi-
son, 2018].

Once the model of the environment is built, the next challenge is to control
our body to reach a different location in the map. To that aim, the brain must
generate a sequence of electric signals over time that actuate our muscles to
reach a desired posture without running into collision. To efficiently plan
and execute such a motion, the brain must have a model of how these signals
translate into motion. When other people are in the scene, their intentions
and their future location need to be estimated to anticipate collision and
efficiently re-plan our trajectory. Reproducing such a skill computationally
in robotics systems is the task of optimal motion planning and control. Its
real-time application on aerial robots with safety guarantees is the focus of
this thesis, as visualized in Fig. 1.3.

Finally, autonomous navigation is achieved by a suitable combination
of localization, mapping, optimal motion planning and control. However,
it is still hard to achieve real-time performance in a resource constrained
platform such as aerial robots. The robotics research community is making
outstanding contributions to each of these fields at an alarming pace thanks
to a combination of specialization and collaboration. In this thesis, we nar-
row our focus in real-time optimal motion planning and control with safety
guarantees, which is a challenge on its own and a key to achieving trust in
autonomous robotic applications.

2



1. Introduction

Figure 1.2: SLAM: From images to object detection, localization and map-
ping [Salas-Moreno et al., 2013].
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1.1. Autonomous Navigation

Figure 1.3: Optimal motion planning and control in dynamic environments
[Castillo-Lopez et al., 2020].
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1.2 Motivation and Objectives

Aerial robots, commonly known as drones or Unmanned Aerial Vehicle (UAV),
are becoming more important in our society every day. What started as
a recreational device for photography is now playing an important role in
sensitive tasks such as high-altitude operations [Watson et al., 2020], air-
plane inspections [Zhu et al., 2021] or search-and-rescue operations [Dang
et al., 2020]. Although human operators can be effective, they quickly be-
come stressed and fatigued when addressing time-sensitive tasks with a lim-
ited field-of-view. This problem aggravates significantly in multi-robot and
human-robot operations. As a result, increasing autonomy has become the
key to fully exploit aerial robots in current and future applications, being the
focus of active research [Chung et al., 2018].

From the user perspective, increasing the level of autonomy translates into
higher level control commands such as “search for survivors in this area” or
“transport a medical kit to this location”. To enable such a technological
leap, these robots need to be able to plan and execute trajectories among
humans and other robots while pursuing high-level objectives such as safety
[Hentzen et al., 2018] or energy consumption [Cabreira et al., 2018]. In such a
setting, Model Predictive Control (MPC) is emerging as a suitable technology
to address optimal motion planning and control in a unified manner, being
able to generate feasible trajectories that optimize a given objective while
naturally incorporating restrictions such as actuation limitations or safety
constraints. However, its application to aerial robots is still the subject of
active research, mainly due to the impact of the following challenges:

1. The high mass/power ratio of electric batteries places efficiency as a
primary requisite for autonomy [Mulgaonkar et al., 2014].

2. Energy-efficient computers have limited computational resources, bound-
ing the maximum complexity that can be tackled in real-time.

3. Safe navigation in dynamic environments require real-time algorithms
that are able to make navigation decisions in the milisecond range.

4. Accurate motion planning involves complex models that are numeri-
cally expensive to simulate.

5. The fast dynamics and real-time requirements of aerial robots impose
strong limits on the number of planning steps, limiting the prediction
horizon and leading to reactive behaviors that are prone to local min-
ima.

5
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6. Uncertainty is present in the whole system, from measurements to pre-
dictions. Accounting for uncertainty in optimal motion planning is
highly intractable. Therefore, strong assumptions need to be made
for real-time applications and even then, it is hard to provide safety
guarantees.

7. Uncertain dynamic obstacles such as pedestrians are difficult to pre-
dict and pose a major challenge to current map representations, which
widely focus on static environments.

Thus, our objective in this thesis is to develop a real-time optimal motion
planning and control approach that addresses these challenges and present
different contributions on performance, autonomy and safety.

1.3 Significance of the study

This study encompasses different contributions to the field of optimal mo-
tion planning and control applied to aerial robots. An overview of these
contributions follows:

1. Design and development of a model predictive control approach for
real-time optimal motion planning and control in the presence of static
obstacles.

2. Parametric software architecture for online re-parametrization of the
model predictive control approach to different platforms and obstacle
configurations.

3. Extension of the model predictive control algorithm that is able to ac-
count for obstacle dynamics and a wider variety of obstacle shapes,
demonstrating its collision avoidance capabilities with multiple dy-
namic obstacles.

4. Mathematical proof of a novel differentiable bound for disjunctive linear-
Gaussian chance-constraints, reducing conservatism and computation
time when evaluating the risk of collision with dynamic obstacles.

5. A novel approach for real-time optimal motion planning and control
under uncertainty. Our approach is able to provide sub-optimal trajec-
tories with safety guarantees in environments populated with multiple
dynamic obstacles such as pedestrians.

6



1. Introduction

6. An infinite-horizon model predictive control approach that prioritizes
near-future events while relaxing the pursuit of long-term objectives,
showing considerable improvements on tracking performance and con-
straint satisfaction. As a result, our approach is able to generate safer
trajectories that anticipate better the avoidance maneuvers on static
and dynamic environments under uncertainty.

1.4 Outline of the thesis

The outline of this thesis is structured as follows: Chapter 2 provides the nec-
essary background on optimal motion planning and control. It provides the
problem statement and different alternatives to attack it, justifying the cho-
sen one. Chapter 3 introduces the fundamental of quadrotors, its mathemat-
ical model, flying principle and a suitable architecture to perform real-time
optimal motion planning and control. Chapter 4 presents our first contri-
bution on optimal motion planning and control in static environments. It
includes a real-time application on an aerial robot, describing the methodol-
ogy, implementation, software architecture and experimental validation. In
Chapter 5, we extend our previous work to dynamic obstacles, incorporating
their prediction into the optimal control problem and different experiments
demonstrating its suitability on crowded scenarios. In Chapter 6, we consider
the problem of optimal motion planning and control with non-cooperative
moving obstacles with uncertain localization, model and disturbances in the
form of additive Gaussian noise. Here, we develop a nonlinear differentiable
bound on the probability of collision with multiple obstacles to design and
implement a real-time optimal motion planning and control approach with
safety guarantees. The results are validated through mathematical proof,
simulations and real experiments with pedestrians. In Chapter 7 we develop
an infinite-horizon optimal motion planning and control to further extend
the prediction horizon and improve the performance and safety of avoidance
maneuvers. The results are validated through simulations and real experi-
ments with pedestrians. Finally, in Chapter 8 we outline the conclusions of
this work and promising lines of research to be addressed in the future.

7
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Chapter 2
Optimal Motion Planning and Control

Optimal motion planning and control of autonomous robots deals with the
problem of planning and executing a sequence of actions that steers the robot
from its initial state to a goal state. To be optimal, these actions must be
chosen by minimizing a given cost function, which usually represents energy,
time or path length. This chapter provides the necessary background to for-
mulate this problem and the main strategies that can be employed to solve
it.

2.1 Problem Statement

The motion of material bodies has been widely studied and accurately pre-
dicted by the field of classical mechanics [Goldstein et al., 2002]. In such a
setting, the instantaneous configuration of a robotic system is described by
a set of generalized coordinates q = [q1 . . . qnq ]. Each state corresponds to
a particular point in a differentiable manifold Q known as the configuration
space, which spans all the possible configurations that the system can as-
sume. Then, a path is defined as a geometric curve φ in the configuration
space rendering a continuous sequence of configurations as follows:

φ : [s0, sf ] ⊂ R → Q
s 7→ q := φ(s)

(2.1)

When such a curve has a time domain, the path is called trajectory θ,
mathematically defined as follows:

θ : [t0, tf ] ⊂ R>0 → Q
t 7→ q := θ(t)

(2.2)

11



2.1. Problem Statement

For convenience, we will employ the common abuse of notation q(s) and
q(t) to refer to the path and the trajectory respectively. In general, the
trajectory of any deterministic physical system is given by Hamilton’s equa-
tions, which are equivalent to a set of 2nq first-order ordinary differential
equations [Goldstein et al., 2002]. In robotics, we explicitly separate the co-
ordinates describing its state x(t) ∈ X and the ones representing its control
inputs u(t) ∈ U to define the system dynamics as follows:

ẋ(t) :=
d

dt
x(t) = f(x(t), u(t)) (2.3)

Most robotic systems are expected to perform tasks in a workspace that
is populated by physical objects, which represent obstacles to their motion.
Therefore, it is convenient to define the free space F(t) ⊆ X as the subspace
of the state space for which the robot is collision-free, which is subject to
change over time in the presence of moving obstacles. Thus, optimal motion
planning involves finding the control trajectory u∗(t) that safely drives the
robot from an initial state xI to a terminal set XT while minimizing a cost
functional J(x(t), u(t)) such as time or energy consumption. Mathematically,
this problem can be encoded as an Optimal Control Problem (OCP) of the
form:

min.
x(·),u(·)

J(x(t), u(t)) = gT (x(T )) +

∫ T

0

g(x(t), u(t))dt (2.4a)

subject to:

x(0) = xI (2.4b)

ẋ(t) = f(x(t), u(t)) (2.4c)

x(t) ∈ F(t) (2.4d)

u(t) ∈ U (2.4e)

x(T ) ∈ XT (2.4f)

In general, an analytical solution of (2.4) doesn’t exist, and the OCP
needs to be approximated numerically. There exist a variety of methods
to numerically solve continuous time OCPs. What all approaches have in
common is that at one point, the infinite-dimensional problem needs to be
discretized. One family of methods first formulates what is known as the
Hamilton-Jacobi-Bellman (HJB) equation, a partial differential equation for
the value function, which depends on both state space and time, and then
discretizes and solves it. Unfortunately, due to the “curse of dimensionality”,
this approach is only applicable in practice to systems with small state dimen-
sions, or to the special case of unconstrained linear systems with quadratic
costs [Rawlings and Mayne, 2009].

12



2. Optimal Motion Planning and Control

A second family of methods, the indirect methods, first derive optimality
conditions in continuous time by algebraic manipulations that use similar
expressions as the HJB equation; they typically result in the formulation
of a boundary-value problem (BVP), and only discretize the resulting con-
tinuous time BVP at the very end of the procedure. One characterizes the
indirect methods often as “first optimize, then discretize”. A third class
of methods, the direct methods, first discretizes the continuous time OCP,
to convert it into a finite-dimensional optimization problem, which can be
solved by tailored algorithms from the field of numerical optimization. The
direct methods are often characterized as “first discretize, then optimize”.
In this thesis, we employ direct methods due to their ability to naturally
generate the discrete-time approximation to the OCP, maintaining a closer
correspondence to its real-time implementation on embedded computers.

2.2 Direct Optimal Control

In general, Direct optimal control parametrizes the continuous-time OCP
(2.6) into a finite-dimensional nonlinear program (NLP), which can then be
solved by tailored algorithms from the field of numerical optimization [No-
cedal and Wright, 2006]. To that aim, the control trajectory u(t) needs to
be parametrized by a finite set of decision variables. Even though an ample
range of polynomials and basis functions can be employed, we consider a
piecewise constant control parametrization due to its simplicity and better
correspondence to the discrete-time implementation of optimal control algo-
rithms [Rawlings and Mayne, 2009]. To formalize it, let us divide the time
horizon [0, T ] into N subintervals [tk, tk+1] with 0 = t0 < t1 < · · · < tN = T
and set:

u(t) := u(tk) = uk t ∈ [tk, tk+1] (2.5)

Therefore, the discrete-time control trajectory can be described by a finite
set of parameters UN := {u0, . . . , uN−1}. Analogously, by defining xk :=
x(tk), the discrete-time trajectory can be described by the finite set XN :=

13



2.2. Direct Optimal Control

{x0, . . . , xN}. As a result, the discrete-time OCP follows:

min
XN ,UN

gN(xN)+
N−1∑
k=0

gk(xk, uk) (2.6a)

subject to:

x0 = xI (2.6b)

xk+1 = fk(xk, uk) (2.6c)

xk ∈ Fk (2.6d)

uk ∈ U (2.6e)

xN ∈ XT (2.6f)

where fk(xk, uk) and gk(xk, uk) are numerical approximations to the system
dynamics and the cost at each stage. The interplay between the numerical
simulation of the dynamics and the optimization of the optimal control prob-
lem lead to two main families of methods: Shooting and direct transcription
methods.

All shooting methods employ an embedded integration algorithm to com-
pute the discrete-time dynamics fk(xk, uk) for k = 0, . . . , N − 1. In direct
multiple shooting, the integration procedure is executed in parallel to obtain
fk(xk, uk) with initial conditions given by XN and UN . Then, the continuity
of the trajectory is ensured by the numerical optimization algorithm with the
constraint (2.6c). Alternatively, the single-shooting method embeds the con-
straints (2.6b) and (2.6c) into the cost function, leading to an optimization
problem that solely depends on x0 and UN . This approach highly reduces
the number of variables at the expense of a sequential application of the
numerical integration algorithm. Even though multiple-shooting algorithms
involve a higher number of decision variables, they offer higher convergence
rates at similar computation time when the sparsity structure of the problem
is exploited [Albersmeyer and Diehl, 2010]. Therefore, multiple shooting re-
mains dominant with respect to single shooting for real-time optimal control
applications [Zhu and Alonso-Mora, 2019,Torrente et al., 2021].

Direct transcription methods follow the same discretization structure as
multiple shooting: i.e. the state variables are kept for parallel integration.
The main difference is that, instead of outsourcing the numerical simulation,
the integration scheme is encoded as equality constraints of the optimization
problem. Therefore they require a much finer grid with additional decision
variables that store the state derivatives through intermediate steps of the in-
tegration process. Direct transcription methods often use implicit integration
rules, since they offer higher orders of accuracy for the same number of state
discretization variables, and come with better stability properties for stiff
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systems. Probably, the most popular class of direct transcription methods
are direct collocation methods. Even though they require a higher computa-
tional cost, recent efforts have significantly reduced the computational gap
between multiple shooting and direct collocation methods [Quirynen et al.,
2015a].

Regardless of the method employed to discretize the OCP (2.6) in time, a
determinant factor is the explicit representation of the free space Fk. Essen-
tially there are two broad categories: discrete and continuous spaces. This
choice determines the nature of the optimization problem, leading to benefits
and shortcomings that are essential for a given application. Therefore, we
will briefly discuss this topic to justify our choice taken in this thesis.

2.3 Planning in Discrete State Spaces

There are many situations where the state and control are naturally discrete
and take a finite number of values. Such problems are often conveniently
described as an acyclic graph specifying for each state xk the possible tran-
sitions to the next states xk+1, as shown in Fig. 2.3. The nodes of the
graph correspond to states xk and the arcs correspond to state-control pairs
(xk, uk). Each arc with start node xk correspond to a choice of a single control
uk ∈ Uk(xk) and has as an end node the next state xk+1 = fk(xk, uk). The
cost of an arc is defined as gk(xk, uk). To handle the final stage, an artificial
terminal node t is added. Each state xN is connected to the terminal node
t with an arc of cost gN(xN). Note that control sequences {u0, . . . , uN−1}
correspond to paths originating at the initial state x0 and terminating at one
of the nodes corresponding to the final stage N . If we view the cost of an arc
as its length, we see that the problem is equivalent to finding the shortest
path from the initial node s to the terminal node t.

These problems often arise in robotics when a discrete representation of
the free space is employed, such as an occupancy grid or a roadmap, as
illustrated in Fig. 2.3. Generally, they can be solved to a global optimum
trough dynamic programming algorithms such as A∗. However, they need to
precompute the optimal cost-to-go J∗k (xk) for all xk and k, defined as follows:

J∗k (xk) = min
uk∈U(xk)

[
gk(x

∗
k, uk) + J∗k+1(fk(xk, uk))

]
(2.7)

where J∗N(xN) = gN(xN). As a result, this problem becomes rapidly un-
tractable for high-dimensional state spaces [Bertsekas, 2019], known as the
curse of dimensionality. Therefore, most practical approaches reduce the di-
mensionality of the problem by considering a small subset of the state space.
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Figure 2.1: Transition graph for a deterministic finite-state system. Nodes
correspond to states xk. Arcs correspond to state-control pairs (xk, uk). An
arc (xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively.
We view the cost gk(xk, uk) of the transition as the length of this arc. The
problem is equivalent to finding a shortest path from initial node x0 to ter-
minal node t.

For instance, [Oleynikova et al., 2018] construct a Generalized Vornoi Dia-
gram that only consider a one-voxel thin skeleton of the free space, which
allow them to perform discrete planning on cluttered spaces in the milisecond
range. In [Strub and Gammell, 2020] random samples of the configuration
space are employed to build a connectivity graph that reaches a specific goal.

Even though there exist real-time approaches leveraging discrete optimal
planning, these map representations do not, in general, have explicit facilities
for identifying and distinguishing between permanent obstacles (e.g., walls,
doorways, etc.) and transient obstacles (e.g., humans, shipping packages,
etc.), which remains an open challenge in robotics research [Siegwart et al.,
2011].

2.4 Planning in Continuous State Spaces

The configuration space of mobile robots are naturally described in continu-
ous spaces such as Rn. Generally, the space occupied by obstacles is repre-
sented as a set of constraints on the free space which, in general, disrupts its
convexity. The choice on the type of constraints determines the nature of the
resulting optimization problem and therefore, its performance. There are two
main strategies in the literature to encapsulate an obstacle’s space: Using a
convex polyhedron (e.g. a cuboid) [Blackmore et al., 2011, Lefkopoulos and
Kamgarpour, 2019], or a smooth surface (e.g. an ellipsoid) [Castillo-Lopez
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Figure 2.2: Discrete free space representations [Oleynikova et al., 2017]
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et al., 2018,Kamel et al., 2017a,Zhu and Alonso-Mora, 2019].

2.4.1 Polyhedral obstacles

A polyhedral obstacle is encoded as a disjunction of linear inequality con-
straints. This represents logical or relations between the infinite planes that
define each face of the polyhedron. Thus, an obstacle Ok at stage k with Nf

faces can be encoded as follows:

Ok ⇐⇒
Nf∨
i=1

aTi,kxk ≤ bi (2.8)

where ai, bi ∈ Rnx . Thus, for No obstacles, the free space follows:

Fk :=

xk ∈ X :
No∧
i=1

Nf∨
j=1

aTi,j,kxk ≥ bi

 (2.9)

Figure 2.3: Polyhedral obstacle O encoded as a disjunction of linear inequal-
ity constraints [Blackmore et al., 2011].

The resulting disjunctive optimization problem can be solved to global
optimality using existing branch-and-bound techniques [Balas, 2018]. This
problem has a relatively high computational cost that grows exponentially
with the number of obstacles and faces [Balas, 2018,Ono et al., 2013]. Even
though recent efforts show promising improvements on computational ef-
ficiency, over-conservatism and probabilistic guarantees [Blackmore et al.,
2011,Ono, 2012,Ono et al., 2013,Lefkopoulos and Kamgarpour, 2019], their
computational cost is still too elevated to achieve real-time performance with
multiple obstacles.
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2.4.2 Smooth obstacles

Alternatively, an obstacle can be bounded by a single smooth surface (sphere,
cylinder, ellipsoid, etc.), which can be expressed algebraically as a p-norm
with metric M as follows

Ok ⇐⇒ ‖xk − ak‖pM ≤ 1 (2.10)

where p ∈ N>0 and M is a positive definite diagonal matrix. Thus, the free
space can be encoded as follows:

Fk :=

{
xk ∈ Rnx :

No∧
i=1

‖xk − ai,k‖pMi
≥ 1

}
(2.11)

This results in a comparatively low-dimension NLP, which can be solved
efficiently by gradient-based solvers [Houska et al., 2011]. Even though this
solution cannot guarantee global optimality, its reduced computational cost
makes this strategy to be widely adopted in most time-critical motion plan-
ning tasks, such as model predictive control for aerial robots [Zhu and Alonso-
Mora, 2019,Castillo-Lopez et al., 2018,Kamel et al., 2017a].

2.5 Planning under Uncertainty

In practice, the behavior of real systems deviate from their mathematical
model due to different sources of uncertainty [Grüne and Pannek, 2017]. For
instance, the state of a robot is estimated from noisy and biased data coming
from different sensors such as GPS, gyroscopes and accelerometers [Sanchez-
Lopez et al., 2016]. In addition, accurately perceiving and predicting the
location of dynamic obstacles like pedestrians is still the subject of active
research [Rudenko et al., 2020]. Thus, enabling uncertainty awareness in
optimal motion planning and control algorithms in an essential task to ensure
safe operations of autonomous robots, which is the subject of active research
[Quan et al., 2020].

There are two main strategies to model uncertainty in optimal motion
planning and control algorithms: set-bounded models and probabilistic mod-
els. Optimal planning under set-bounded uncertainty has received a great
deal of attention during the last decades due to its simplicity and computa-
tional efficiency [Jalali and Nadimi, 2006]. However, it relies on deterministic
worst-case realizations of these uncertainties, leading to over-conservatism
and a dramatic reduction of the free space [Blackmore et al., 2011]. In con-
trast, modeling uncertainty through a probabilistic framework, has shown
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to adequately characterize real-world systems while overcoming the inherent
over-conservatism of set-bounded uncertainty models [Mesbah, 2016].

To cast our optimal motion planning problem (2.6) into a stochastic form,
additional parameters wk ∈ Rnw and vk ∈ Rnv need to be injected into the
problem formulation to capture uncertainties about the system dynamics
and the free space respectively. These parameters are unknown at current
and future time instants, but have been suitably characterized by a known
probability distribution Pw,k and Pv,k respectively. As a result, the expected
value of the cost is minimized, while enforcing the robot to stay within the
free configuration space in a probabilistic sense with confidence level 1 − α
as follows:

min
XN ,UN

E

[
gN(xN , wN) +

N−1∑
k=0

gk(xk, uk, wk)

]
(2.12a)

subject to:

x0 ∼ PxI (2.12b)

xk+1 = fk(xk, uk, wk) (2.12c)

uk ∈ U (2.12d)

P

(∧
k

xk ∈ Fk(vk)

)
≥ 1− α (2.12e)

P (xN ∈ XT ) ≥ 1− αT (2.12f)

wk ∼ Pw,k vk ∼ Pv,k (2.12g)

Depending on the application, different challenges can be drawn around
the OCP (2.12):

• The definition of the cost function (2.12a) that encodes the correct task
can be challenging in practice [Finn et al., 2016].

• High model fidelity may render complex dynamics [Todorov et al.,
2012], or require online model learning [Hewing et al., 2018].

• In general, the evaluation of chance constraints is untractable, es-
pecially for problems with multiple non-convex obstacles [Blackmore
et al., 2011].

In this thesis we limit our scope to the real-time evaluation of chance
constraints to provide a unified framework for optimal motion planning and
control with safety guarantees. This problem has been the subject of active
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research during the last decade [Blackmore et al., 2011,Lefkopoulos and Kam-
garpour, 2021], providing numerous theoretical results validated mathemat-
ically and in simulations. However, they employ polyhedral representation
of obstacles which zeroes its applicability to fast real-time applications with
multiple obstacles, as discussed in the previous section. Therefore, most ap-
proaches solve a relaxed version of the problem [Kamel et al., 2017a,Zhu and
Alonso-Mora, 2019,Lew et al., 2020], being robust to disturbances but failing
to provide safety guarantees. The main contribution of this thesis attacks
this problem by providing an efficient and scalable approximation of [Black-
more et al., 2011] that presents an adequate balance between tractability
and performance for real-time optimal motion planning and control of aerial
robots with multiple obstacles.
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Chapter 3
Fundamentals of Quadrotors

3.1 Motor model

A quadrotor is an aerial robot driven by four identical propellers. When the
aerial robot is flying, each rotor has an angular speed ωi and produces an
upwise vertical force Fi and a reactive moment Mi that can be modeled as
follows [Valavanis and Vachtsevanos, 2014]:

Fi = kFω
2
i Mi = kMω

2
i (3.1)

where kF and kM are positive real constants. The angular moment can also
be expressed as Mi = γFi, where γ = kM/kF . To compensate the reactive
moment produced by each propeller, they rotate in alternate directions as
shown in figure 3.1.

1

2

3

4

X

Y

Figure 3.1: Scheme of a quadrotor propeller configuration
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3.2. Flying principle

3.2 Flying principle

Consider a quadrotor keeping a stable position suspended in the air (hovering
state). Such a state can be described by Newton’s equations of motion as
follows: ∑

Fz = F1 + F2 + F3 + F4 −mg = 0∑
Mx = L(F2 − F4) = 0∑
My = L(F3 − F1) = 0∑
Mz = γF1 − γF2 + γF3 − γF4 = 0

(3.2)

Therefore, a hovering state implies that every rotor has the same angular
velocity and produces an up-wise force given by Fi = mg/4. To produce
a forward movement in the x axis My has to be positive. To that aim, F3

is incremented and F1 decremented in the same proportion to maintain the
same height with My > 0. The opposite modifications are needed to produce
a backward movement. To produce a sidewards movement in the y axis Mx

has to be positive. Then, F2 is incremented and F4 decremented in the same
proportion to maintain the height with Mx > 0. The opposite modifications
are needed to produce a left-sidewards movement. To change the orientation,
an angular acceleration through the z axis is needed. To make a counter-
clock-wise rotation, Mz has to be positive. To that aim, M1 and M3 need
to be incremented while reducing M2 and M4 in the same proportion to
maintain the same height with Mz > 0. The opposite modifications are
needed to produce a clock-wise turn.

3.3 Quadrotor Kinematics

The kinematics of an aerial robot can be obtained by using four right-handed
reference frames, as described in equation 3.3. The inertial frame A is settled
as the canonical reference frame. E and F are intermediate frames while the
body frame B is attached to the center of mass (C) of the quadrotor and
aligned to its principal axes of inertia as shown in figure 3.2.

{A} = {a1, a2, a3}
{E} = {e1, e2, e3}
{F} = {f1, f2, f3}
{B} = {b1, b2, b3}

(3.3)

As defined in equation 3.4, orientation of the body frame B is obtained
through the rotation of the inertial frame A using the ZXY Euler convention.
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3. Fundamentals of Quadrotors

Figure 3.2: The body-fixed frame and the inertial frame provided by [Powers
et al., 2015].

The three rotations are applied with yaw (ψ), roll (φ) and pitch (θ) angles
over the axis a3, e1 and f2 respectively, as shown in Fig. 3.3.

{A}
ARE−−−→
Rz(ψ)

{E}
ERF−−−→
Rx(φ)

{F}
FRB−−−→
Ry(θ)

{B} (3.4)

a1 a2

a3 e3

e1

e2
ψ a1 a2

a3 e3

e1 f1

e2
ψ

f2

f3

φ a1 a2

a3 e3

e1 f1

e2
ψ

f3

φ

b1

b2 f2
b3 θ

Figure 3.3: The different frames involved in the quadrotor model.

As a result, the rotation of the body frame with respect to the inertial
frame ARB is given by:

ARB = ARE
ERF

FRB =

cθcψ − sφsθsψ −cφsψ sθcψ + sφcθsψ
cθsψ + sφsθcψ cφcψ sθsψ − sφcθcψ
−cφsθ sφ cφcθ


(3.5)
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p

q

r

b1 b2

b3

ω

Figure 3.4: Angular velocity and its components in the body frame B

Let p, q and r be the components of the angular velocity in the body
frame as shown in figure 3.4 and equation 3.6.

Bω = pb̂1 + qb̂2 + rb̂3 (3.6)

As roll pitch and yaw angles are defined in different frames, its derivatives
are related to Bω as follows:pq

r

 = BRE

φ̇0
0

+

0

θ̇
0

+ BRA

0
0

ψ̇

 =

cθ 0 −cφsθ
0 1 sφ
sθ 0 cφcθ

φ̇θ̇
ψ̇

 (3.7)

which is invertible for −π/2 < φ < π/2 as follows:φ̇θ̇
ψ̇

 =

 cθ 0 sθ
sθtφ 1 −cθtφ

−sθ(cφ)−1 0 cθ(cφ)−1

pq
r

 (3.8)

3.4 Quadrotor Dynamics

Let the position of the center of mass of a quadrotor be denoted by r ∈ R3.
Then, its translational motion is determined by Newton’s equations of motion
as follows:

26
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ṙ = v (3.9a)

v̇ =

 0
0
−g

+
1

m
ARB

 0
0

F1 + F2 + F3 + F4

 (3.9b)

Assuming that B is rigidly attached to the quadrotor’s center of mass
and is aligned to its the principal axes of inertia, its inertial tensor can be
represented by the diagonal matrix Ic = diag(I1, I2, I3). Then, its rotational
motion is determined by Euler’s rotation equations as follows:

Mext = Ic
Bω̇ + Bω × (Ic

Bω) (3.10)

which leads to:ṗq̇
ṙ

 = I−1c

 L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

−
pq
r

× Ic
pq
r

 (3.11)

From equations (3.9) (3.8) (3.11), the state space model of the system
ẋ = f(x, u) is trivially obtained by defining the state x ∈ R12 and controls
u ∈ R4 as follows:

x = [r v φ θ ψ p q r]T (3.12)

u =


F1 + F2 + F3 + F4

L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

 (3.13)

3.5 Quadrotor Control Architecture

Optimal motion planning and control with the full quadrotor dynamics has
been shown to outperform traditional trajectory tracking methods [Bicego
et al., 2020]. However, the fast real-time requirements of aerial robots leads to
high-frequency sampling and short prediction horizons (T = 1s). As we show
in Chapter 7, short prediction horizons constrains the algorithm’s ability to
anticipate avoidance maneuvers, leading reactive maneuvers that are prone
to local minima. To target longer planning horizons, we employ a hierarchical
optimal motion planning and control architecture where low-level regulation
is outsourced to a commercial autopilot such as [Meier et al., 2015] that
receives linear and angular velocity commands, as shown in Fig. 3.5. In this
setting, the optimal motion planner is able to address higher-level optimal
motion planning and control, with real-time requirements in the order of tens
of miliseconds instead of few microseconds [Meier et al., 2015].
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Optimal Motion 
Planner

Linear and angular 
velocities Autopilot

Propellers Trust

State State 
Estimator

Measurements

Figure 3.5: Hierarchical optimal motion planning and control architecture.
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Chapter 4
Optimal Motion Planning and Control
in Static Environments.

Planning and executing collision-free trajectories in a high-dimensional work-
space populated by obstacles is one of the main challenges in the quest of
autonomy for aerial robots. While most approaches are able to provide fea-
sible solutions, the energetic and computational constraints of aerial robots
place a great importance to the optimality of such behaviors. To address this
problem, this chapter presents a Model Predictive Control algorithm that is
able to perform optimal motion planning and control in a unified manner.
To that aim, obstacles are bounded by ellipsoidal surfaces that are encoded as
constraints to the optimal control problem. The key benefit of our approach
lies in its ability to achieve real-time performance in optimal motion plan-
ning and control in three-dimensional workspaces populated with obstacles.
The key to its tractability lies in the combination of a lightweight experimen-
tal model with an state-of-the-art algorithm for embedded optimization and a
parametric software architecture that minimizes its computational footprint.
Experimental results in simulation and in a commercial robot show its per-
formance in the microsecond range, demonstrating its suitability for decen-
tralized autonomous navigation. The contributions shown in this chapter are
published in our conference paper [Castillo-Lopez et al., 2017].

4.1 Introduction

Aerial Robots, also known as Unmanned Aerial Vehicles (UAVs), are now
a subject of active research due to its multiple applications such as traffic
monitoring, load transportation and manipulation or search-and-rescue oper-
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ations [Valavanis and Vachtsevanos, 2014]. These applications often demand
precise trajectories in a workspace populated by obstacles, increasing the im-
portance of safety in autonomous navigation. Traditionally, this problem has
been addressed by a hierarchical combination of planning and control, where
a path planner obtains a sequence of waypoints that the control algorithm
follows blindly. The mismatch between planning and control has shown to
generate suboptimal and even dangerous behaviors [Shim et al., 2003]. A
survey of different motion planning techniques applied to aerial robots can
be found in [Goerzen et al., 2010,Hoy et al., 2015].

Unlike traditional approaches, Model Predictive Control (MPC) is able
to merge motion planning and control in a single optimal control problem. It
makes explicit use of the system dynamics to predict feasible state and con-
trol trajectories that drive the robot from its initial state to a given target
while minimizing a cost functional such as time or energy consumption over
a prediction horizon [Maciejowski, 2002]. Since the horizon is shifted forward
in time at each iteration, MPC is also known as Receding Horizon Control
(RHC). Its ability to naturally consider safety restrictions and actuator sat-
urations has made MPC an attractive field of research for high-performance
control of complex systems. However, it involves a high computational cost
that grows exponentially with the number of prediction steps [Stellato et al.,
2018].

The great domain of potential applications of aerial robots, combined
with its limited energetic autonomy, places optimal trajectory generation as
a main challenge and the focus of active research. Due to recent advances
on computational hardware and embeded optimization algorithms [Quiry-
nen et al., 2014], model predictive control approaches on aerial robots have
emerged during the last decade. In [Abdolhosseini et al., 2013] an efficient
MPC control scheme for quadrotors is presented to perform 3D path track-
ing. In [Alexis et al., 2016] a robust predictive flight controller with obstacle
avoidance capabilities is implemented. In [Andersson et al., 2016] a Bayesian
Policy Optimization with MPC is developed to provide stochastic collision
avoidance for quadrotors. In [Darivianakis et al., 2014] an Hybrid Predic-
tive Controller is designed to interact phisically in inspection operations.
Nonlinear Partial Enumeration with MPC is used in [Desaraju and Michael,
2016] to develop a fast MPC controller, tested in simulations. MPC is used
in [Garimella and Kobilarov, 2015] for an aerial pick-and-place application
with a manipulator attached to a quadrotor. Autonomous landing on a
moving platform is developed in [Vlantis et al., 2015]. To avoid its computa-
tional cost in obstacle avoidance tasks, [Zhang et al., 2016] employs a deep
neural network to approximate the closed-loop policy of an MPC algorithm.
In [Dentler et al., 2016] a real-time model predictive position control is imple-
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4. Optimal Motion Planning and Control in Static Environments.

mented using soft distance functions to model obstacles. Finally, in [Bouffard
et al., 2012] Learning Based MPC is used to catch balls in the air and correct
the ground effect.

Previous MPC approaches encapsulate obstacle space with infinite planes
or spheres, which consume a large amount of safe space, making it difficult to
operate in complex environments. Instead, we propose the use of ellipsoids
to find optimal trajectories when the workspace is populated by obstacles
with different shapes. We develop a software architecture that is able to
add, remove, translate and reshape obstacles dynamically. The use of a
lightweight dynamical model, coupled with active-set methods for handling
multiple obstacle constraints allow us to deploy an MPC approach that is
able to safely avoid multiple obstacles with a control delay in the microsec-
ond range. Our MPC algorithm is developed and empirically validated using
a Motion Capture System and a low-cost quadrotor helicopter tele-operated
by a laptop computer. The resulting approach drives the aerial robot au-
tonomously through collision-free trajectories to reach a given pose or follow
a waypoint path without the need of a local re-planner. Different experiments
on a commercial quadrotor validate its effectiveness in trajectory tracking and
sense-and-avoid tasks.

4.2 Methodology and Equipment

In this work, we employ the commercial quadrotor Parrot® AR.Drone 2.0,
which is designed to be controlled remotely through WiFi. As shown in
Figure 4.2, the aerial robot operates in a flight area of [4 3 3] m limited by
nets. Reflecting balls attached to the quadrotor are used to determine its
position and orientation using the OptiTrack® Motion Capture System.

A taylored solver for embedded execution of our MPC algorithm is de-
veloped in C++11 with ACADO Toolkit [Houska et al., 2013]. This solver is
then wrapped and interfaced to the ROS Indigo middleware [Quigley et al.,
2009], running the MPC process on a Lenovo Y50-70 laptop with Intel® i7-
4710HQ CPU at 2.50 GHz and 8 GiB of DDR3 1600 MHz RAM with Ubuntu
14.04. Asynchronous inter-process communications with the robot and the
motion capture system are implemented through a publisher/subscriber mes-
saging pattern. The control architecture is implemented as shown in Fig. 4.2.
The laptop computer running our MPC algorithm is connected to the Mo-
tion Capture System and the robot through Ethernet and WiFi respectively.
The Motion Capture System publishes the position and orientation (pose)
of the robot, to which the MPC process is subscribed. Then, for each pose
received, our MPC algorithm obtains and publishes the optimal control input
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4.2. Methodology and Equipment

Figure 4.1: Experimental testbed composed by a flight area of [4 3 3] m lim-
ited by nets with two static obstacles and the commercial quadrotor Parrot®

AR.Drone 2.0.
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to the robot through the snt ardrone driver [Olivares-Mendez et al., 2014].
The MPC process is subscribed to an additional topic to which the desired
pose can be published manually, or in an automated way to track a given
path.

Figure 4.2: Control architecture. The Model Predictive Controller runs on
a laptop connected to the Motion Capture System and the robot through
Ethernet and WiFi respectively. The inter-process communications are im-
plemented through a publisher/subscriber messaging pattern using the ROS
Indigo middleware [Quigley et al., 2009]

4.3 Robot model and identification

The AR.Drone 2.0 quadrotor is equipped with an autopilot that ensures its
stability while tracking the control input u = [uf us uu uh]

T , corresponding
to forward, sideward, upward and heading velocity commands with respect
to the robot’s hovering frame. The hovering frame is a body-fixed frame
with zero roll and pitch angles, and a right-handed yaw angle ψ as shown in
Fig. 4.3.

Since the autopilot control specifications of the UAV are unknown, an
experimental First Order with Delay (FOD) model is proposed in equation
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Figure 4.3: Hovering frame of the UAV

4.1 to relate each component of the input vector u to the corresponding
velocity of the robot v = [vf vs vu vh]

T in the hovering frame, where ki and
di and τi are the gain, the delay and the time constant respectively for each
velocity/control pair (vi, ui).

v̇i(t) = (−vi(t) + kiui(t− di))/τi i = f, s, u, h (4.1)

We consider the robot’s state vector x(t) = [p(t) ψ(t) v(t)] to be composed
by its position p(t) ∈ R3 in a Cartesian world frame, the orientation of its
hovering frame ψ(t) with respect to the world frame, and the its velocity
vector v(t) in the hovering frame. Then, we render a first-order with delay
state space model of the system by assuming ψ(t) = ψ0 := ψ(0) as follows:

ẋ(t) = Ax(t) +Bu(t− d) (4.2)

where

A =


08×4

cos(ψ0) −sin(ψ0) 0 0
sin(ψ0) cos(ψ0) 0 0

0 0 1 0
0 0 0 1
−τ−1f 0 0 0

0 −τ−1s 0 0
0 0 −τ−1u 0
0 0 0 −τ−1h


(4.3)
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B =


¯̄04×4

kf/τf 0 0 0
0 ks/τs 0 0
0 0 ku/τu 0
0 0 0 kh/τh

 (4.4)

Then, we perform model identification by a classical step response tangent
method ((4.6)). To that aim, a step signal is generated for each control input
of our robot, while the motion capture system, is employed to record its
corresponding velocity, as shown in Fig. 4.4. The gain ki, time constant τi
and delay di are obtain from the step response as follows:

ki =
vi(∞)

ui(∞)
τi =

3

2
(t63i − t28i ) di = t63i − τi (4.5)

where vi(t
63
i ) = 0.63vi(∞) and vi(t

28
i ) = 0.28vi(∞). Thus, we provided an

experimental model that is able to fairly reproduce the system dynamics at
a higher level of abstraction and lower complexity, as shown in Fig. 4.4. As
shown later, the reduced complexity of the model, allows our algorithm to
perform real-time motion planning and control in the microsecond range.

k =
v(∞)

u(∞)
τ =

3

2
(t63 − t28) d = t63 − τ (4.6)

k τ (s) d (s)
vf/uf 2.7000 0.7889 0.4164
vs/us 2.7000 0.7889 0.2600
vu/uu 0.7110 0.1815 0.1148
vh/uh 1.7200 0.0912 0.0483

Table 4.1: Parameters of the first-order with delay model for AR.Drone 2.0

4.4 MPC Controller Design

Making use of the state space model (4.1), an Optimal Control Problem
(OCP) is defined in (4.7). The equation (4.7a) defines the objective func-
tion, where a quadratic penalty weighted by the P,Q matrices is applied to
minimize the control inputs and the difference of the state with respect to
a given goal xg. The evolution of the trajectory is restricted to the system
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Figure 4.4: UAV step response (real vs modelled)
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dynamics (4.7c), the actuator saturations (4.7d) and the obstacles in (4.7e),
bounded by ellipsoids with center (pox, p

o
y, p

o
z) and radius (rx, ry, rz).

min.
x(·),u(·)

‖x(T )− xg‖2P +

∫ T

0

(
‖x(t)− xg‖2P + ‖u(t)‖2Q

)
dt (4.7a)

subject to:

x(0) = xI (4.7b)

ẋ(t) = Ax(t) +Bu(t− d) (4.7c)

umin ≤ u(t) ≤ umax (4.7d)

1 ≤ (px(t)− pox)2

r2x
+

(py(t)− poy)2

r2y
+

(pz(t)− poz)2

r2z
(4.7e)

Then, ACADO Toolkit for C++ [Quirynen et al., 2014] is used to ad-
dress the OCP numerically. First, a multiple shooting discretization with
piecewise constant control parametrization is employed to obtain a nonlinear
program (NLP). To that aim, an explicit 4th-order Runge-Kutta integration
scheme obtains the discrete-time dynamics while a Riemman sum approx-
imates the integral cost. The resulting NLP is then addressed through a
Gauss-Newton Sequential Quadratic Programming (SQP) algorithm as de-
scribed in [Quirynen et al., 2014]. This algorithm approximates the NLP as
a sequence of quadratic programs (QP) that can be solved to global optimum
by QPOASES [Ferreau et al., 2014]. The inequality constraints are handled
by active-set methods, which minimizes the computational overhead when
multiple obstacle constraints are included in the OCP.

Our Model Predictive Control algorithm results when solving the OCP
at each sampling time using the real-time iteration scheme (RTI) proposed
by [Diehl et al., 2005]. As shown in Algorithm 1, our algorithm operates
asynchronously, freeing computational resources until a message is received.
When the feedback state is available the NLP is solved, applying the first
control to the platform and preparing the NLP for the next step. The commu-
nication protocol is implemented in C++ with ROS Indigo in a decentralized
manner using the publisher/subscriber messaging pattern. We exploited this
feature to build a software architecture that allows most parameters of the
OCP to be changed online. As shown in Fig. 4.5, we implemented different
subscribers that allow other processes to change the weighting costs, obsta-
cles, model parameters and control saturations, as shown in Fig. 4.5. In
addition, the planned state and control trajectories are published for better
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visualization and monitoring.

Initialization;
while true do

Sleep until message arrives;
if message == feedback state then

Update initial state x0 = xI ;
Solve NLP; Apply first control u0;
Prepare NLP for next step;

Numerical simulation;
Cost function evaluation;

else
Update corresponding parameters;

end

end
Algorithm 1: MPC Algorithm

MPC

Feedback State

Goal State

Obstacles

Model Parameters

Weights

Control Trajectory

Control Delay

State Trajectory

Max Controls

Figure 4.5: MPC’s parametric implementation. Yellow boxes represent in-
put data where red boxes correspond to the outputs provided by the MPC
algorithm.

4.5 Experiments and Results

In this section we validate our approach in real experiments using the ex-
perimental testbed described in Section 4.2. We set up our MPC algorithm
with the specific configuration shown in Table 4.2.

To validate the position control capabilities, step responses in (px, py, pz, ψ)
are generated as shown in Fig. 4.6. Initially, the UAV stands in (px, py, pz, ψ) =
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Prediction horizon 4 s
Control intervals 4
Simulation intervals 32
Integrator type Runge-Kutta 4
Max controls (umin/umax) ±1 m/s
MPC sample time 10 ms
MPC control delay 0.46 ms
Weighting matrix P diag(200 200 100 300 100 100 100 100)
Weighting matrix Q diag(600 600 50 200)

Table 4.2: MPC controller configuration

(0, 0, 1, 0) (S.I.). Then the goal state is changed alternatively for each input,
showing rapid convergence and stable behavior of the MPC algorithm. The
median control delay has been observed to be 0.46 ms, which validates its
real-time capabilities, leaving room for increasing complexity.

To test the path tracking and obstacle avoidance capabilities of our MPC
algorithm, we define a squared waypoint path to be followed at 0.5 m/s with
two ellipsoidal obstacles with the parameters shown in table 4.3. In Figure
4.8 the trajectory of the UAV and the modelled obstacles are represented
precisely using the raw data from the experiment during 3 laps. For a better
visualization of the experiment, the video recorded during the experiment is
processed to obtain the UAV trajectory represented by its centroid in the
image plane, as shown in Figure 4.7.

Obstacle 1 Obstacle 2

(x, y, z) (0,−2, 1) (0, 2, 2)
(rx, ry, rz) (1, 2, 2) (1, 1, 104)

Table 4.3: Position and shape of the ellipsoidal model of the obstacles in
meters

4.6 Conclusions

In this chapter, we have developed a model predictive control algorithm able
to perform real-time optimal motion planning and control in the presence of
obstacles. Additionally, we developed a parametric software architecture that
enables online reparametrization of the optimal control problem, allowing to
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Figure 4.6: Reference steps response of the UAV driven by the MPC Con-
troller

Figure 4.7: UAV trajectory when performing the path tracking with obstacles
experiment
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adapt the presented algorithm to different platforms and obstacle configura-
tions. With an average control delay of 0.46 ms, our approach is suitable for
tele-operated systems as well as embedded applications.
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Chapter 5
Optimal Motion Planning and Control
in Dynamic Environments.

Autonomous robot navigation in environments populated by humans and
other robots is still a main challenge. In this chapter, we present a nonlinear
model predictive control approach for safe navigation in workspaces populated
by static and/or moving obstacles. The uniqueness of our approach lies in
its ability to anticipate avoidance maneuvers by including the prediction of
obstacle locations into the optimal control problem. Exploiting active-set op-
timization algorithms, only the obstacles that affect to the UAV’s planned
trajectory are accounted during optimization, which allows its application for
aerial robot with multiple obstacles. We also introduce orientable ellipsoids
as a more convenient encapsulation of the obstacles, which can be exploited
to provide a tighter bound of the obstacle space or induce desired avoidance
behaviors to avoid local minima. Finally, we present two real-time imple-
mentations based on simulation. The former demonstrates that our approach
outperforms its analog formulation (without accounting for obstacles’ predic-
tion) in terms of safety and efficiency. The latter shows its capability to
handle multiple dynamic obstacles. The contributions shown in this chapter
are published in our conference paper [Castillo-Lopez et al., 2018].

5.1 Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are now pop-
ulating natural and industrial environments due to their multiple applica-
tions such as package delivery, traffic-surveillance or search-and-rescue oper-

45



5.1. Introduction

Figure 5.1: UAV crossing the street avoiding multiple dynamic obstacles.
See video in https://rebrand.ly/castillo2018mpc

ations [Valavanis and Vachtsevanos, 2015]. These applications often demand
the use of mobile robots in presence of humans and other robots, making au-
tonomous navigation one of the most active topics in robotics research [Hoy
et al., 2015]. This problem is usually addressed by a hierarchical combina-
tion of planning and control but, the lack of proper coordination between
these agents, often leads to inefficient or dangerous situations [Shim et al.,
2003]. In this chapter, we use Nonlinear Model Predictive Control (NMPC)
to integrate motion planning and control in scenarios with multiple dynamic
obstacles as shown in Fig. 5.1.

Most prior work on moving obstacles are based on the concept of velocity
obstacles (VOs) [Fiorini and Shiller, 1998] to compute the set of velocities
of the robot that will cause a collision. This technique has been used and
enhanced by many authors, taking into account nonlinear dynamics [Shiller
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et al., 2001], uncertainty [Fulgenzi et al., 2007], reciprocal behavior [Snape
et al., 2011] or its use for computing control objectives in convex optimization
[Van Den Berg et al., 2012].

Unlike these methods, NMPC is able to natively consider non-convex
constraints such as obstacles to generate feasible trajectories, being safer and
less prone to local minima than other hierarchical approaches [Shim et al.,
2003]. Even though NMPC is known to be computationally expensive, recent
advances on nonlinear optimization solvers [Domahidi et al., 2012,Quirynen
et al., 2015b] has triggered its use in fast real-time applications such as
collision avoidance for small UAVs.

Although great effort has been done in this area, dealing with multiple
three-dimensional obstacles remains difficult. Recent work using NMPC of-
ten simplifies this problem by considering only the closest obstacle [Kamel
et al., 2017a] or reducing the obstacles as bi-dimensional static [Garimella
et al., 2017, Zhang et al., 2016] or dynamic [Andersson et al., 2016] con-
straints.

To provide safe navigation in cluttered dynamic scenarios we exploit ac-
tive set algorithms to consider only the constraints that affect to our problem
at each sample time. In this chapter, we extend our previous work [Castillo-
Lopez et al., 2017] by including the dynamics of ellipsoidal obstacles without
additional cost. We use parametrized soft constraints to specify the sensi-
tiveness of the avoidance maneuvers with the guarantee of finding a locally-
optimal solution even in highly constrained scenarios as shown in Fig. 5.1.
Successful experiments in real-time validates our approach in scenarios with
multiple dynamic obstacles, outperforming its analog formulation in terms
of safety and efficiency.

This chapter is organized as follows: In section 5.2 we develop the model
for a multi-rotor UAV, including the experimental identification of a real
platform. Section 5.3 formulates the NMPC control policy regarding trajec-
tory tracking and collision avoidance. Finally, we validate our approach in
two realistic scenarios in section 5.4, drawing the conclusions in section 5.5.

5.2 UAV Model

A multi-rotor UAV is usually modeled using the Newton-Euler equations of
a rigid body to stabilize and control the platform [Mellinger and Kumar,
2011]. However, the typical configuration of an UAV includes an autopilot
that controls its stability while following velocity commands given by an
external pilot (automated or human). The control input u = [ux uy uz uψ]T

is divided in forward, sidewards, upward, and heading velocity references.
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This commands are specified in a pitch/roll invariant body frame named as
the hovering frame H (see Fig. 5.2). The world frame W , is defined as a
standard North-East-Up fixed reference frame.

Recent work on quadrotor modeling describe it as a differentially flat
system [Mellinger and Kumar, 2011], meaning that its full state can be rep-
resented by a combination of its flat outputs and their derivatives. In this
work we choose the cartesian coordinates of the center of mass r = [x y z]
and the yaw angle ψ to build the reduced state vector:

x = [x y z ψ vx vy vz vψ]T (5.1)

being v = [vx vy vz] the UAV linear velocity in the hovering frame and the
heading angular velocity vψ. Then, we propose a nonlinear model ẋ = f(x,u)
defined by the set of equations:

ẋ = vxcos(ψ)− vysin(ψ) (5.2a)

ẏ = vxsin(ψ) + vycos(ψ) (5.2b)

ż = vz (5.2c)

ψ̇ = vψ (5.2d)

v̇i = (−vi + kiui)/τi, i ∈ {x, y, z, ψ} (5.2e)

where (6.28c) models the velocity response of the UAV as a first order model
of gain ki and constant time τi.

In this work, we use a motion capture system1 to perform the model
identification of a DJI-M1002 quadrotor (see Fig. 5.2). The model parameters
are obtained by a classical step response tangent method [Castillo-Lopez
et al., 2017] defined by:

ki =
vi(∞)

ui(∞)
τi =

3

2
(t63 − t28) (5.3)

where t63 and t28 are the times, from the start of the step, when the velocity
reaches the 63% and the 28% of its final value respectively. The resulting
parameters are shown in Table 5.1.

This lightweight formulation allow us to solve the UAV dynamics faster
without the knowledge of its physical design, being applicable on any multi-
rotor platform. Besides, placing the controller outside the inner control loop
relaxes its real-time requirements, allowing us to increase the prediction hori-
zon of the NMPC approach to target high-level control policies.

1Optitrack Motion Capture System: http://optitrack.com/
2DJI Matrice 100: https://www.dji.com/matrice100
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Figure 5.2: Hovering frame of the DJI-M100 platform.

Table 5.1: First order model parameters of the DJI-M100

ki τi (s)

x 1.0000 0.8355
y 1.0000 0.7701
z 1.0000 0.5013
ψ π/180 0.5142

5.3 Controller Design

Model predictive control obtains the control input of the system by solving
an Optimal Control Problem (OCP) each sample time. That involves min-
imizing a given cost function over a defined prediction horizon subjected to
states and input constraints. In this work, the OCP is designed to minimize
the effort required for an UAV to track a desired state or trajectory while
avoiding dynamic obstacles.

5.3.1 Trajectory tracking

Trajectory tracking is formulated as the cost term J t defined in (5.4). The
difference between the predicted state xi and its reference x∗i at each step i
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is penalized over the prediction horizon N as follows:

J t =
1

2

N−1∑
i=0

‖xi − x∗i ‖2P + ‖xN − x∗N‖2Q (5.4)

where P andQ are weighting matrices of each quadratic penalty. For stability
and energy efficiency, an analog cost J c is defined for the control inputs as:

J c =
1

2

N−1∑
i=0

‖ui‖2R (5.5)

5.3.2 Obstacle avoidance

The use of three-dimensional constraints to model obstacles in a 3D environ-
ment is often a good practice. However, the use of hard constraints to guar-
antee the generation of safe trajectories leads to non-feasible problems and
unpredictable results, making its viable use only with few obstacles [Kamel
et al., 2017a]. In this work, we propose to use parametrized soft constraints
to model each ellipsoidal obstacles as follows:

ξ2(ri, r
o
i ) + θξsξi ≥ 1 (5.6)

where sξi is an extra control input, known as slack variable, that relaxes the
constraint with sensitivity θξ to guarantee feasible solutions in tight situa-
tions. The ellipsoidal term ξ2(ri, r

o
i ) is based on the distance function:

ξ(ri, r
o
i ) =

√
(ri − roi )

TQi(ri − roi ) (5.7)

where roi is the center position of the ellipsoid in world frame at time step i.
Qi is the metric induced by the ellipsoid dimensions M = diag(r−2x , r−2y , r−2z )
rotated by ORW to the world frame as:

Qi = ORT
W Mi

ORW (5.8)

This formulation generalizes the euclidean obstacle model present in the
literature, allowing to move, orientate and resize the obstacles along the
prediction horizon at each sample time. Thus, these parameters can be
manipulated to include the dynamics of every obstacle without the need of
additional variables and extra computation. In this work, we propagate the
position of the obstacle at constant velocity as:

roi = roi−1 + ṙoi−1 ·∆t (5.9)
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Soft constraints has the main drawback of increasing the computational
cost because of the slack variables. To mitigate this effect when dealing with
multiple obstacles, we define a shared slack variable sξi for all the ellipsoidal
obstacles, with the cost:

Jξ =
1

2

N−1∑
i=0

‖sξi‖2S (5.10)

Boundary obstacles, such as walls or the floor, are also considered analo-
gously as soft planar constraints based on its position roi and normal vector
ni as shown in (5.11) and (5.12).

π(ri) + θπsπi ≥ 0 (5.11)

Jπ =
1

2

N−1∑
i=0

‖sπi ‖2T (5.12)

where π(ri) = ni · (ri − roi )

5.3.3 Optimal Control Problem

Integrating the previous definitions, the optimal control problem is formu-
lated in the set of equations (5.13), taking the form of a discrete non-linear
program (NLP).

minimize
X,U

J = J t + J c + Jξ + Jπ (5.13a)

subject to: x0 = x̄0 (5.13b)

xi+1 = Φi(xi,ui) i = 0, . . . , N − 1 (5.13c)

ξ(xi) + θξsξi ≥ 1 i = 0, . . . , N − 1 (5.13d)

π(xi) + θπsπi ≥ 0 i = 0, . . . , N − 1 (5.13e)

|ui| ≤ umax i = 0, . . . , N − 1 (5.13f)

In (5.13a) all the cost terms are merged in a single objective function to
find the best trade-off between trajectory tracking, efficiency and collision
avoidance. In (5.13b) the feedback state x̄0 is set as the initial state in
the prediction horizon. The (5.13c) introduces the discretized form of the
UAV model ẋ = f(x,u) as an equality constraint, including obstacles and
maximum control inputs in (5.13d)-(5.13e) and (5.13f) respectively.
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5.4 Experiments

The aim of our approach is to provide safe navigation for UAVs in complex
dynamic environments. To validate it, we set a simple scenario in subsection
5.4.3 to show its performance compared with its analog approach, which uses
a static obstacle formulation. Then, we set a challenging scenario in section
5.4.4 to analyze its capability to deal with multiple moving obstacles.

5.4.1 Risk evaluation

In this work, the risk of collision is evaluated by the distance to obstacle
d and the inverse time to collision (TTC−1) [Sajadi-Alamdari et al., 2018],
which is defined as:

TTC−1 =
ḋ

d
(5.14)

This rate indicates the risk of collision between two agents. Negative values
correspond to a potential collision, while positive values indicate that the
agents are moving away from each other. The safest situation is around zero,
corresponding to high distances and small relative velocity.

5.4.2 Implementation details

To implement the optimal control problem defined in (5.13), ACADO Toolkit
for C++ has been used to generate a fast explicit solver for the NMPC
controller. The NMPC controller has been implemented in C++ program-
ming language, building the communications and interfaces using the The
Robot Operating System (ROS) Kinetic framework [Quigley et al., 2009].
As a simulation environment V-REP [Rohmer et al., 2013] is used to run
software-in-the-loop experiments.

The implementation parameters of the NMPC algorithm are shown in
Table 5.2. A long prediction horizon is chosen to promote a long-term optimal
control policy, which is highly sensitive to obstacles. More sensitivity is given
to ellipsoidal obstacles, which are meant to be dynamic.

An uniform weight distribution is chosen to provide a balanced trade-off
between efficiency, safety and tracking. As shown in Table 5.3, orientation
penalty is an exception that has been set aggressively to compensate the low
gain given by the model.
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Table 5.2: Model Predictive Controller implementation parameters.

Prediction horizon 4s
Discretization steps 20
Integrator type Runge-Kutta 4
Maximum controls 1 m/s
Control Rate 20 Hz
Ellipsoidal obstacles sensitivity 0.15
Planar constraints sensitivity 0.25

Table 5.3: Model Predictive Controller weighting values.

Weights

Position 10
Orientation 5000
Linear velocities 1
Angular velocities 1
Control inputs 10
Slack variables 10

5.4.3 Street crossing scenario

Lets consider a scenario where the goal of the UAV is to cross a street
populated by humans, which must be avoided without flying over them.
For that purpose, we model the pedestrians as ellipsoids with radius of
(rx, ry, rz) = (0.5m, 0.6m,∞). This generates an elliptical cylinder slightly
slimmer in the approaching direction, which reduces the probability of reach-
ing a local minima and promotes fluent maneuvers. The UAV is modeled as
a sphere with radius of 0.5m, applying a safety distance of 1m. In this
experiment, we consider three pedestrians moving alternatively at 1 m/s
perpendicular to the robot’s shortest path as shown in Fig. 5.3.

To validate the approach we compare the performance of the same con-
troller updating the obstacles in two different ways: statically updated at
each sample time and dynamically propagated based on the obstacle veloc-
ity. Fig. 5.7 shows the trajectory generated while performing the experiment
with the static approach. Even though that the UAV manage to avoid all
obstacles, the generated maneuvers interfere with the trajectories of pedes-
trians, leading to situations with greater risk and higher deviations from the
optimal path. In contrast, our approach presents a safer control policy, find-
ing optimal to avoid the obstacles without crossing their future trajectory as
shown in Fig. 5.8.
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Figure 5.3: UAV avoiding human-sized dynamic obstacles. See video in
https://rebrand.ly/castillo2018mpc

Even though the soft constraints are designed to be violated with high
sensitivity, this situation should be minimized. In Fig. 5.4 we can see that
both implementations provide a collision-free navigation. However, our ap-
proach provides safer avoidance, reducing the soft constraint violations in
time and magnitude. As shown in Fig. 5.5, our approach reduces the TTC−1

peak values and, as a result, the magnitude of the risk. The frequency in
which dangerous situations occur is shown in Fig. 5.6, where the histogram of
the minimum TTC−1 indicates that our approach reduces the time in which
the UAV is at risk of collision.

5.4.4 Multiple obstacle scenario

Lets consider a new scenario where the UAV has to cross a street populated
not only by humans, but also other aerial robots. In this experiment, the
robot is allowed to fly over other robots, but not over pedestrians. The
pedestrian model of the previous experiment is used, considering other UAVs
as ellipsoids with radius of (rx, ry, rz) = (0.5m, 0.6m, 0.5m) and a safety
distance of 1m.

In this experiment, in addition to the pedestrians of the previous sce-
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Figure 5.4: Distance to obstacles in street crossing scenario
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Figure 5.5: TTC−1 in street crossing scenario

nario, we consider four aerial robots moving alternatively at 1 m/s as shown
in Fig. 5.1. Three of them move perpendicular to the robot’s shortest path
while the fourth is moving in diagonal direction. In Fig. 5.11 is shown that
the UAV is able to avoid laterally the pedestrians while avoiding three-
dimensionaly the aerial robots. Fig. 5.9 shows that our approach manage
to avoid multiple collisions, with the increase of TTC−1 magnitude and soft
constraint violations due to the complexity of the environment.
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Figure 5.6: Histogram of minimum TTC−1 in street crossing scenario

t = 3.6s t = 6.2s t = 9.7s t = 15.8s

Figure 5.7: UAV trajectory in street crossing scenario. Static approach.

t = 4.8s t = 9.7s t = 13.4s t = 17.1s

Figure 5.8: UAV trajectory in street crossing scenario. Dynamic approach
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5.5 Conclusions

We presented a new model predictive control approach for three-dimensional
collision avoidance in scenarios with multiple dynamic obstacles. These ob-
stacles were modeled as orientable ellipsoids by using parametrized soft con-
straints, which allows a flexible obstacle definition, guaranteeing feasible solu-
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Figure 5.9: Risk variables in the multiple obstacle scenario

Figure 5.10: Minimum inverse time to collision histogram in multiple obstacle
scenario
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t = 5.5s t = 9s t = 11s t = 14s t = 16s

Figure 5.11: UAV trajectory in the multiple obstacle scenario

tions. With this formulation, the dynamics of each obstacle can be introduced
externally without additional cost, suiting the needs of each application. In
this chapter, we used a constant velocity model to test its collision avoid-
ance performance in two real-time scenarios. The first experiment shows a
considerable improvement over a static formulation, being safer and more ef-
ficient. The second experiment validates the approach for three-dimensional
avoidance in a cluttered scenario with seven moving obstacles.
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Chapter 6
Optimal Motion Planning and Control
with Safety Guarantees.

Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major
challenge for optimal robot navigation with safety guarantees. Previous work
on optimal motion planning has employed two main strategies to define a safe
bound on an obstacle’s space: using a polyhedron or a nonlinear differentiable
surface. The former approach relies on disjunctive programming, which has
a relatively high computational cost that grows exponentially with the num-
ber of obstacles. The latter approach needs to be linearized locally to find a
tractable evaluation of the chance constraints, which dramatically reduces the
remaining free space and leads to over-conservative trajectories or even unfea-
sibility. In this work, we present a hybrid approach that eludes the pitfalls of
both strategies while maintaining the original safety guarantees. The key idea
consists in obtaining a safe differentiable approximation for the disjunctive
chance constraints bounding the obstacles. The resulting nonlinear optimiza-
tion problem can be efficiently solved to meet fast real-time requirements with
multiple obstacles. We validate our approach through mathematical proof,
simulation and real experiments with an aerial robot using nonlinear model
predictive control to avoid pedestrians.

6.1 Introduction

Autonomous robots, such as self-driving cars or drones, are expected to rev-
olutionize transportation, inspection and many other applications to come
[Mohamed et al., 2018]. To fully exploit their capabilities, we need to enable
their safe operation among humans and other robots while pursuing high-level
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objectives such as safety [Hentzen et al., 2018] or energy consumption [Sajadi-
Alamdari et al., 2019]. However, planning trajectories with obstacles whose
present and future location is highly uncertain is still a difficult and computa-
tionally expensive problem [Blackmore et al., 2011]. Strong assumptions need
to be made to find tractable solutions for fast real-time applications. This
leads to over-conservative obstacle models that ensure collision-free opera-
tion but drastically reduce the remaining free space [Kamel et al., 2017a,Zhu
and Alonso-Mora, 2019], compromising the problem’s feasiblity when mul-
tiple obstacles arise. As a result, reducing conservatism in motion planning
algorithms while providing safety guarantees has become a major problem
and the subject of active research [Blackmore et al., 2011, Ono, 2012, Ono
et al., 2013, Jha et al., 2018, Zhu and Alonso-Mora, 2019, Lefkopoulos and
Kamgarpour, 2019,Ono and Williams, 2008].

In this chapter, we present a new approach to model uncertain dynamic
obstacles for fast real-time motion planning applications. This method eludes
the over-conservatism of existing real-time approaches while providing safety
guarantees at a low computational cost. The resulting problem is mod-
eled within the framework of disjunctive chance-constrained optimization and
casted into non-linear programming, for which efficient solvers exist [Houska
et al., 2011]. Thus, the main contributions of this chapter are listed as fol-
lows:

• Theoretical results on disjunctive chance constraints, providing tighter
bounds on the probability of collision.

• A new real-time approach for chance-constrained motion planning in
dynamic environments.

• Empirical validation through simulation and real experiments on an
aerial robot to avoid pedestrians.

The rest of the chapter is organized as follows: Section 6.2 presents an
overview of existing approaches for chance-constrained motion planning. We
formalize the motion planning problem in Section 6.3, and present a set of
preliminary results in Section 6.4 from which we build our theoretical results
in Section 6.5. Finally, our approach is evaluated through a benchmark,
software-in-the-loop simulations and real experiments in Section 6.6, draw-
ing the resulting conclusions and future lines of work in Section 5.5.
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6.2 Related Work

Optimal motion planning has been the subject of active research during the
last decade, as surveyed in [Dadkhah and Mettler, 2012, Hoy et al., 2015].
Generally, the space occupied by obstacles is represented as a set of con-
straints on the free space which, in general, disrupts its convexity. The choice
on the type of constraints determines the nature of the resulting optimiza-
tion problem and therefore, its performance. There are two main strategies
in the literature to encapsulate an obstacle’s space: Using a convex poly-
hedron [Blackmore et al., 2011, Lefkopoulos and Kamgarpour, 2019] (e.g. a
cuboid), or a single differentiable surface [Castillo-Lopez et al., 2018,Kamel
et al., 2017a,Zhu and Alonso-Mora, 2019] (e.g. an ellipsoid).

A polyhedral obstacle is encoded as a disjunction of linear inequality con-
straints. This represents logical or relations between the infinite planes that
define each face of the polyhedron. The resulting disjunctive problem can
be solved to global optimality using existing branch-and-bound techniques
[Balas, 2018]. This problem has a relatively high computational cost that
grows exponentially with the number of obstacles [Balas, 2018, Ono et al.,
2013]. Even though recent efforts show promising improvements on computa-
tional efficiency, over-conservatism and probabilistic guarantees [Blackmore
et al., 2011,Ono, 2012,Ono et al., 2013,Lefkopoulos and Kamgarpour, 2019],
their computational cost is still too elevated to meet fast real-time require-
ments.

Alternatively, an obstacle can be bounded by a single differentiable sur-
face (sphere, cylinder, ellipsoid, etc.) to be included as a nonlinear con-
straint of the optimization problem [Castillo-Lopez et al., 2018]. This results
in a comparatively low-dimension nonlinear program (NLP), which can be
solved efficiently by gradient-based solvers [Houska et al., 2011]. Even though
this solution cannot guarantee global optimality, its reduced computational
cost makes this strategy to be widely adopted in most time-critical motion
planning tasks, such as model predictive control for aerial robots [Zhu and
Alonso-Mora, 2019,Castillo-Lopez et al., 2018,Kamel et al., 2017a].

Accounting for uncertainty through a probabilistic framework has shown
to overcome the inherent over-conservatism of set-bounded uncertainty mod-
els [Mesbah, 2016, Ono, 2012], which is essential to avoid unfeasibility in
cluttered environments. However, the chosen strategy to bound the obsta-
cles critically impacts the evaluation of the resulting chance constraints. For
instance, the linear chance constraints that compose polyhedral obstacles
have a closed-form deterministic equivalent for Gaussian systems [Black-
more et al., 2011]. On the other hand, nonlinear chance constraints need
to be linearized [Zhu and Alonso-Mora, 2019] or approximated by sampling

61



6.3. Problem Statement

methods [Blackmore et al., 2010], which leads to over-conservatism and high
computational cost respectively.

This chapter proposes a hybrid solution that benefits from both strategies.
First, a polyhedral obstacle formulation is exploited to provide a closed-form
approximation of the disjunctive chance constraints. Then, a differential
surface provides a safe bound on polyhedral obstacle regions. To meet fast
real-time requirements, we restrict each polyhedral obstacle to be a cuboid
(i.e. bounding box), and then obtain a tight quadratic bound analytically.
As a result, we land on a nonlinear formulation that can be solved efficiently
with the guarantee that the original chance constraints will be satisfied with
the specified confidence level.

6.3 Problem Statement

In this work, we consider the problem of motion planning with non-cooperative
moving obstacles with uncertain localization, model and disturbances in the
form of additive Gaussian noise. Thus, the dynamics of a given robot and
a set of No obstacles are described as the following stochastic, discrete-time
model:

xt+1 = f(xt, ut) + wt (6.1a)

yit+1 = gi(yit) + vit i ∈ {1, . . . , No} (6.1b)

where xt ∈ Rnx , yit ∈ Rny and ut ∈ Rnu are the robot state, i-th obstacle
state and robot inputs respectively at time t ∈ N. wt ∈ Rnw and vit ∈ Rnv are
unknown disturbances with Gaussian probability distributions; and f and gi

are (possibly nonlinear) Borel-measurable functions that describe the robot
and the i-th obstacle dynamics respectively.

Let pt ⊂ xt and qit ⊂ yit be the R3 subspaces describing the position of
their respective center of mass. Then, bounding boxes centered at qit with
semi-sizes di ∈ R3 can be placed such that the free configuration space Ft is
defined as follows:

Ft :=

{
xt ∈ Rnx :

No∧
i=1

3∨
j=1

|pjt − q
ij
t | ≥ dij

}
(6.2)

where j iterates over the Cartesian coordinates of each R3 element. | · |,
∨

and
∧

denote the absolute value, the logical or and and respectively. Given
the stochastic nature of the agents, we can define the chance constraint over
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the horizon length N as follows:

P

(
N∧
t=1

xt ∈ Ft

)
≥ 1− α (6.3)

which enforces the robot to stay within the free configuration space in a prob-
abilistic sense with the confidence level 1− α. As a result, the probabilistic
motion planning problem is defined as follows:

min.
u0,...,uN−1

J(u0, . . . , uN−1, x0, . . . , xN) (6.4a)

subject to:

xt+1 = f(xt, ut) + wt (6.4b)

yit+1 = gi(yit) + vit (6.4c)

wt ∼ N (0,Wt) vit ∼ N (0, V i
t ) (6.4d)

x0 ∼ N (x̂0,Σx,0) y0 ∼ N (ŷi0,Σy,0) (6.4e)

xt+1 ∈ X, ut ∈ U (6.4f)

P

(∧
t

xt+1 ∈ Ft+1

)
≥ 1− α (6.4g)

where t ∈ {0, . . . , N − 1} and i ∈ {1, . . . , No}. The cost function (6.4a)
determines the objective to pursue such as energy consumption or a refer-
ence state. The stochastic model of the robot and the obstacles are included
in equations (6.4b) to (6.4d). The initial states in (6.4e) are assumed to be
Gaussian distributions given by a state estimation algorithm such as Kalman
filtering. The equations in (6.4f) provide additional state and control con-
straints to be defined for a given application. Finally, the collision chance
constraint is included in (6.4g) with confidence level 1− α.

The key difficulty of this problem lies on the evaluation of the non-convex
chance constraint (6.4g). It requires the integration of a multivariate Gaus-
sian distribution and the convexification of the disjunctive constraints, which
is, in general, intractable [Blackmore et al., 2011]. To overcome these dif-
ficulties, we safely approximate the problem as a deterministic disjunctive
program, which is then casted into a nonlinear program to be solved effi-
ciently by existing solvers [Houska et al., 2011].

6.4 Preliminary results

For the sake of clarity, this section introduces preliminary results to support
further developments in Section 6.5.
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6.4.1 Chance constraints for linear-Gaussian systems

Consider a multivariate Gaussian random variable X ∼ N (µ,Σ). Then, the
chance constraint

P(aTX + b ≤ 0) ≥ 1− α, a, b ∈ Rnx (6.5)

has a deterministic equivalent of the form:

aTµ+ b+ Ψ−1(1− α)
√
aTΣa ≤ 0 (6.6)

where Ψ is the standard Gaussian cumulative distribution function defined
as:

Ψ(x) =
1√
2π

∫ x

−∞
exp

{
−t

2

2

}
dt (6.7)

6.4.2 Probability theorems

For any number of events Ai, we have:

P

(∧
i

Ai

)
≤ P(Aj) ∀j (6.8)

P

(∨
i

Ai

)
≤
∑
i

P(Ai) (6.9)

P (Ai) = 1− P
(
Ai
)

(6.10)

P

(∨
i

Ai

)
= P

(∧
i

Ai

)
(6.11)

P

(∧
i

Ai

)
= P

(∨
i

Ai

)
(6.12)

where (6.8) follows from conditional probability, (6.9) is Boole’s inequality,
(6.10) is the De Moivre’s theorem and (6.11)-(6.12) describe De Morgan’s
laws.

6.4.3 Minimum volume enclosing ellipsoid of a bound-
ing box

Consider the space outside the bounding box B as

B(d) :=

{
x ∈ R3 :

3∨
i=1

|xi| > di

}
(6.13)
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where d ∈ R3
+ and the Cartesian coordenates are iterated through the index

i. This set can be safely approximated by its minimum volume enclosing
ellipsoid E , which can be computed in closed form as [John, 2014]:

E(d) :=

{
x ∈ R3 :

3∑
i=1

(
xi
di

)2

> 3

}
(6.14)

6.4.4 Bounds on disjunctive chance constraints

For the sake of clarity, this section introduces two intermediate proofs to
support further developments. Then, for any number of events Ai, we have:

P

(
N∨
i=1

Ai

)
≥ 1− α⇐

N∨
i=1

P (Ai) ≥ 1− α (6.15)

Proof. By applying (6.10) and (6.11) we have:

P

(
N∨
i=1

Ai

)
≥ 1− α⇔ P

(
N∧
i=1

Ai

)
< α (6.16)

From (6.8) follows:

P

(
N∧
i=1

Ai

)
< α⇐

N∨
i=1

P
(
Ai
)
< α (6.17)

Then, Equation (6.15) is obtained after applying (6.10) and (6.12), which
completes the proof. �

Similarly, risk allocation variables αi ∈ R can be defined such that:

P

(
N∧
i=1

Ai

)
≥ 1− α⇐

(
N∧
i=1

P (Ai) ≥ 1− αi

)

∧ (0 ≤ αi ≤ 1) ∧

(
N∑
i=1

αi ≤ α

)
(6.18)

Proof. By applying (6.10) and (6.12) we have:

P

(
N∧
i=1

Ai

)
≥ 1− α⇔ P

(
N∨
i=1

Ai

)
< α (6.19)
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From (6.9) follows:

P

(
N∨
i=1

Ai

)
< α⇐

N∑
i=1

P
(
Ai
)
< α (6.20)

Which can be reformulated into

P

(
N∨
i=1

Ai

)
< α⇐

(
N∧
i=1

P
(
Ai
)
≤ αi

)

∧ (0 ≤ αi ≤ 1) ∧

(
N∑
i=1

αi ≤ α

)
(6.21)

Equation (6.18) is obtained after applying (6.10) and (6.11), which completes
the proof. �

Thus, we have an immediate result on polyhedral obstacle regions de-
scribed by chance constraints of the type:

P

 N∧
t=1

No∧
i=1

Nf∨
j=1

Aijt

 ≥ 1− α⇐

N∧
t=1

No∧
i=1

Nf∨
j=1

P
(
Aijt
)
≥ 1− αit

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(6.22)

where Nf is the number of faces of the i-th obstacle. By direct comparison
with recent results in [Jha et al., 2018, Lefkopoulos and Kamgarpour, 2021]
we can see a considerable improvement on the chance constraint bounds,
since risk allocation parameters αit are increased by Nf times for uniformly
distributed risk allocation. Thus, less conservative obstacle bounds are ob-
tained for the same confidence level, reducing the risk of posing unfeasible
problems when multiple obstacles arise.
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6.5 Nonlinear bound for collision

chance constraints

This section develops the main theoretical contribution of this chapter: a
safe deterministic approximation of the chance constraint (6.3) given by

N∧
t=1

No∧
i=1

3∑
j=1

 p̂jt − q̂
ij
t

dijt + Ψ−1(1− αit)
√
σ2(pijt ) + σ2(qijt )

2

≥ 3

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(6.23)

where pit ∼ N (p̂it, σ
2(pit)) and qijt ∼ N (q̂ijt , σ

2(qijt )).

Proof. Let the equation (6.3) be rewritten as the disjunction:

P

(
N∧
t=1

No∧
i=1

3∨
j=1

1∨
k=0

(−1)k(pjt − q
ij
t ) + dijt ≤ 0

)
≥ 1− α (6.24)

By application of (6.22), we get:

N∧
t=1

No∧
i=1

3∨
j=1

1∨
k=0

P
(
(−1)k(pjt − q

ij
t ) + dijt ≤ 0

)
≥ 1− αit

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(6.25)

Since we now have linear combinations of Gaussian variables we can apply
equation (6.6) to obtain:

(
N∧
t=1

No∧
i=1

3∨
j=1

1∨
k=0

(−1)j(p̂jt − q̂
ij
t ) + dijt

+ Ψ−1(1− αit)
√
σ2(pjt) + σ2(qijt ) < 0

)

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(6.26)
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which is equivalent to(
N∧
t=1

No∧
i=1

3∨
j=1

|p̂jt − q̂
ij
t | ≥ dijt

+ Ψ−1(1− αit)
√
σ2(pjt) + σ2(qijt )

)

∧
(
0 ≤ αit ≤ 1

)
∧

(
N∑
t=1

No∑
i=1

αit ≤ α

)
(6.27)

The equation (6.27) defines a bounding box to which (6.14) can be applied
to obtain (6.23) and complete the proof. �

6.5.1 Discussion

Even though the process of obtaining an ellipsoidal approximation to each
obstacle space is mathematically involved, the underlying principle is simple.
As shown in Fig. 6.1, the space occupied by each obstacle is defined by a blue
bounding box. Due to the different sources of uncertainty, we increase the
size of the bounding box to ensure that the risk of collision remains below
the user-defined level α, illustrated by the orange bounding box. Then, we
obtain the minimum-volume enclosing ellipsoid to provide a smooth bounding
surface while preserving the original safety guarantees.

The main benefit of employing our approximation lies in our ability to
address the problem (6.4) through nonlinear programming, which critically
impacts its tractability and scalability. For instance, each polyhedral obsta-
cle requires 7N mixed-integer constraints and 6N binary variables [Lefkopou-
los and Kamgarpour, 2019], while our method can be implemented with N
quadratic constraints and zero additional variables. In addition, the disjunc-
tive program has a relatively high computational cost that grows exponen-
tially with the number of obstacles [Ono et al., 2013,Balas, 2018]. In contrast,
our nonlinear program can be solved with polynomial complexity [Houska
et al., 2011], being computationally efficient for large-scale problems [Biegler
and Zavala, 2009].

6.6 Case Study: Robot Collision Avoidance

In this section we implement our motion planning approach (6.4) in a Model
Predictive Control (MPC) fashion to provide collision-free navigation on a
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Figure 6.1: Geometric illustration of the mathematical procedure employed
to derive our solution. The blue bounding box accounts for the dimensions
of the obstacle. The orange bounding box renders the geometric space for
which the risk of collision remains below the user-defined level α. The green
minimum-volume enclosing ellipsoid is the final representation employed for
optimal motion planning and control. We include our video presentation for
further clarification: http://rebrand.ly/castillo_RAL2020

DJI-M1001 quadrotor. The results of the experiments are complemented by
the video demonstration https://rebrand.ly/castillo_RAL2020.

6.6.1 Robot Model

Based on the DJI SDK, the control inputs given to the quadrotor are defined
as u = [ux uy uz uψ]T , which correspond to forward, sideward, upward, and
heading velocity references, respectively based on a local frame L parallel to
the ground (see [Castillo-Lopez et al., 2018] for details). Thus, the nominal
system dynamics are modeled as follows:

ṗ = R(ψ)v (6.28a)

v̇i =
1

τi
(−vi + kiui), i ∈ {x, y, z} (6.28b)

ψ̈ =
1

τψ
(−ψ̇ + kψuψ) (6.28c)

where v = [vx vy vz]
T is the linear velocity of the center of mass in the local

frame and R(ψ) the rotation matrix for the yaw angle ψ. ki, kψ and τi, τψ
are the gain and time constants relative to each component of u respectively.
Thus, the robot state is defined as xt = [pt vt ψt ψ̇t] and the nominal discrete
dynamics f(xt, ut) are obtained through 4-th order Runge-Kutta integration

1DJI Matrice 100: https://www.dji.com/matrice100
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of (6.28). The nominal state prediction x̂t and its covariance matrix Σx
t are

approximated with a first-order Taylor expansion [Luo and Yang, 2017]:

x̂t+1 = f(x̂t, ut) (6.29a)

Σx
t+1 = (∇xf(x̂t, ut)) Σx

t (∇xf(x̂t, ut))
T +Wt (6.29b)

where ut is obtained from the predicted inputs of the MPC algorithm. Even
though there exists more precise uncertainty propagation methods [Luo and
Yang, 2017], we use Taylor expansion for the sake of computational efficiency.

6.6.2 Obstacle Model

Obstacles are modeled with constant velocity nominal dynamics:

q̇i = R(ψi)vi, v̇i = ψ̈i = 0 (6.30)

where vi and ψi are the linear velocity in the body frame and yaw an-
gle of the i-th obstacle respectively. Thus, obstacle states are defined as
yit = [qit v

i
t ψ

i
t ψ̇

i
t] where the nominal discrete dynamics gi(yit) are determined

through Euler integration of (6.30). Similarly, the nominal state ŷit and its

covariance matrix Σyi

t are approximated with a first-order Taylor expansion

ŷit+1 = gi(ŷit) (6.31a)

Σyi

t+1 = ∇gi(ŷit)Σ
yi

t

(
∇gi(ŷit)

)T
+ V i

t (6.31b)

6.6.3 Objective Function

We define the cost function in (6.4a) as:

J =
N∑
t=1

(
‖xt − xrt‖2P + ‖ut−1‖2Q

)
(6.32)

where xrt is the user-defined goal state. ‖·‖P and ‖·‖Q are the norms induced
by the P and Q weighting matrices.

6.6.4 One-Horizon Benchmarks

In this section, our method is compared against three state-of-the-art ap-
proaches [Kamel et al., 2017a,Zhu and Alonso-Mora, 2019,Blackmore et al.,
2011] on stochastic optimal collision avoidance for real-time systems. We de-
sign two experiments where the robot and the obstacle are placed at p0 = [0 0]
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and q0 = [5 − 0.01] respectively. Uncertain obstacle’s location is considered
with covariance Σq = diag(0.4 0.1). We have selected a prediction horizon of
8 seconds with N = 40 steps and a confidence level 1−α = 0.99 with uniform
risk allocation αit = α/N . For the sake of a purely chance-constrained bench-
mark, we have dropped the additional potential fields implemented in [Kamel
et al., 2017a,Zhu and Alonso-Mora, 2019] that would have made these imple-
mentations even more conservative. For the first benchmark, the bounding
box size is d = [1 0.5] as shown in Fig. 6.2.

Figure 6.2: One horizon benchmark of our approach against the linearized
chance constraint from [Zhu and Alonso-Mora, 2019], the robust constraint
from [Kamel et al., 2017a] and the disjunctive chance constraint from [Black-
more et al., 2011].

As shown in Fig. 6.2, our approach is able to reduce conservatism with
respect to existing real-time approaches while preserving the original safety
guarantees from [Blackmore et al., 2011]. As presented in Table 6.1, our
approach solves a conservative approximation of [Blackmore et al., 2011]
over 142 times faster at the price 4% of optimality. Our computation time
falls within the range of [Kamel et al., 2017a, Zhu and Alonso-Mora, 2019],
which have been widely used for fast real-time motion planning and control.

Even though this benchmark has shown the benefits of our approach
regarding conservatism and safety guarantees, it fails to back our claims in
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Table 6.1: Relative results from the one horizon benchmark.

Ours Kamel et. al. Zhu et. al. Blackmore et. al.

Objective 1.0 1.0925 1.0205 0.9614
CPU time (s) 1.0 1.3198 1.2045 142.08

reducing the tendency of falling into local minima with respect to [Zhu and
Alonso-Mora, 2019]. Therefore, we introduce second experiment with a larger
obstacle d = [1 2]. As shown in Fig. 6.3, the linearization of the obstacle
region performed by Zhu et.al. [Zhu and Alonso-Mora, 2019] leads to local
minima, while our approach is still able to find a solution that reaches the
goal. Note that the robust approach from [Kamel et al., 2017a] fails to ensure
that the risk of collision remains below the desired risk level αit, presenting a
less conservative trajectory in this particular case. These experiments have
been executed from the optimization framework CasADi [Andersson et al.,
2018], being publicly available on-line to be reproduced2.

6.6.5 Real experiment: Pedestrian collision avoidance.

The experiment consists in two pedestrians who naturally walk inside a closed
area where the robot is operating. As shown in Fig. 6.4 and the complemen-
tary video, when the pedestrians intend to occupy the robot’s safe space,
evasive trajectories are planned and executed while tracking a reference po-
sition given by prt = [0 0 1.5] m.

The experiment is conducted in a flying arena of [4 3 3] m equipped with
an Optitrack3 motion capture system, which provides raw pose measurements
of the robot and the obstacles. These poses are processed by Extended
Kalman Filter (EKF) algorithms [Sanchez-Lopez et al., 2017] according to
the robot (6.29) and the obstacle (6.31) models. Gaussian model disturbances
in linear and angular velocities have been considered as σ2(vt) = 0.03 m2/s2

and σ2(ψ̇t) = 0.03 rad2/s2 for the robot and the obstacles. The measurement
noise on position has been identified to be σ2(pt) = σ2(qit) = 2.5 · 10−3m2.
The bounding boxes around the pedestrians are defined by dit = [2 2 4] m
with confidence level 1− α = 0.99 and uniform risk allocation αit = α/NNo.
The real-time implementation of the problem (6.4) with N = 20 steps over
4s of prediction horizon is based on ACADO Toolkit [Houska et al., 2011]
and ROS Kinetic [Quigley et al., 2009] C++ framework running on a on an
Intel i7-6820HQ CPU@2.70GHz.

In this work, we include the results over 5 minutes of experiment. The

2Benchmark code: https://rebrand.ly/castillo_RAL2020benchmark
3Optitrack motion capture system https://optitrack.com/
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Figure 6.3: One horizon benchmark with increased obstacle dimensions d =
[1 2]
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Figure 6.4: An instant of the proposed approach running on an aerial vehicle
to avoid pedestrians in a cluttered environment. The planned trajectory has
been rendered into the image plane as red balls. The predicted bounding
ellipsoids of one pedestrian are projected into the ground as degraded-green
ellipses. Video: http://rebrand.ly/castillo_RAL2020

outcome of this experiment in terms of safety are evaluated statistically
through the distance to the closest obstacle d and its inverse time-to-collision
TTC−1 = ḋ/d [Van Der Horst and Hogema, 1993]. Large negative values of
TTC−1 indicate high risk of collision, while values near zero correspond to
safe situations [Van Der Horst and Hogema, 1993]. As shown in Fig. 6.5,
the robot presented a low risk of collision, since the distance to the closest
obstacle lies in the range [1, 3] m with median 1.7 m and the TTC−1 val-
ues are concentrated around −0.09s−1 with a minimum value of −0.4 s−1.
In addition, our approach presents fast real-time capabilities with a median
control delay of 2.4 ms.

6.6.6 Simulation: Crowd Collision Avoidance

This experiment consists in a software-in-the-loop simulation where the robot
navigates in a crowded scenario. 30 pedestrians, driven by the social force
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Figure 6.5: Pedestrian Collision Avoidance: Box plots for the distance to
the closest obstacle, the inverse time to collision TTC−1, and the control
delay. The median is represented in red and the 25-75th percentiles in blue.
The black whiskers represent 1.5 times the interquartile range. Outliers are
plotted as blue circles
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model [Helbing and Molnar, 1995]4, follow a squared path of 14 m length
with a reference velocity of 1 m/s. The robot, simulated according to (6.28),
is tracking the same path in opposite direction at 1.5m/s while avoiding
the pedestrians, as shown in Fig. 6.6 and the complementary video. The
simulation runs at 100 Hz with the same setup as the experiment conducted
in Section 6.6.5.

In this simulation we include the results over 20 minutes of experiment.
Analogously to Section 6.6.5, the outcome of this experiment is evaluated
statistically through the inverse time to collision (TTC−1), the distance to the
closest obstacle and the control delay, as shown in Fig. 6.7. The nature of the
experiment and the higher number of obstacles involves a greater risk than
the previous experiment, with a median TTC−1 of −0.84 s−1. Consequently,
our algorithm shows a more conservative behavior, with a median distance
to the closest obstacle of 3.22 m. Finally, the higher number of obstacles
moderately increases the computation time to 4.2 ms, leaving room to scale
up to more complex scenarios.

6.7 Conclusions

We presented a new real-time approach to address chance-constrained motion
planning with dynamic obstacles. The obstacles are considered to have un-
certain localization, model and disturbances in the form of additive Gaussian
noise. We developed a closed-form differentiable bound on the probability
of collision to safely approximate the disjunctive chance-constrained opti-
mization problem as a nonlinear program. Consequently, the computational
cost was reduced dramatically while maintaining the original safety guar-
antees, allowing its implementation in fast real-time applications. Through
mathematical proof and simulations, our method has shown to reduce con-
servatism with respect to recent real-time approaches, remaining tractable
when accounting for multiple obstacles. Finally, real-time experiments vali-
dated the presented approach using nonlinear model predictive control on an
aerial robot to avoid pedestrians.

4Pedestrian simulator code: https://github.com/srl-freiburg/pedsim_ros
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Figure 6.6: Crowd collision avoidance simulation with 30 pedestrians. The
orange arrow represents the moving reference position. The robot pose and
predicted trajectory are indicated by the frame and the purple arrows re-
spectively.
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Figure 6.7: Crowd Collision Avoidance: Box plots for the distance to the
closest obstacle, the inverse time to collision TTC−1, and the control de-
lay. The median is represented in red and the 25-75th percentiles in blue.
The black whiskers represent 1.5 times the interquartile range. Outliers are
plotted as blue circles
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Chapter 7
Infinite-Horizon Optimal Motion
Planning and Control.

Recent advances have settled Model Predictive Control (MPC) as a uni-
fied framework for optimal optimal motion planning and control with safety
guarantees. However, the fast dynamics and the real-time requirements of
autonomous robots such as self-driving cars or drones forces most MPC im-
plementations to have short prediction horizons, reducing their capabilities
to anticipate evasive maneuvers. This chapter proposes an infinite-horizon
MPC approach with a non-uniform distribution of the planning steps that pri-
oritizes near-future events while relaxing the pursuit of long-term objectives,
showing considerable improvements on tracking performance and constraint
satisfaction. As a result, safer trajectories are generated on static and dy-
namic environments under uncertainty. The proposed approach is validated
empirically through simulations with static and uncertain dynamic obstacles,
such as pedestrians. Additionally, a real experiment on an aerial robot with
two pedestrians has been included which, as far as we know, constitutes the
first real-time implementation of infinite-horizon MPC for collision avoid-
ance on aerial robots.

7.1 Introduction

Model Predictive Control (MPC) has shown exceptional success for the high-
performance control of complex systems [Mesbah, 2016, Maciejowski, 2002].
With the increasing interest of autonomous robots, such as self-driving cars
or drones, the leading research is extending MPC capabilities to include
obstacle avoidance in the problem formulation [Kamel et al., 2017a,Zhu and
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Figure 7.1: An instant of the proposed approach running on an aerial vehicle
to avoid two pedestrians. The planned trajectory is shown by purple arrows.
The bounding ellipsoids and their prediction are shown in red and green
respectively. Video: https://rebrand.ly/castillo_ihmpc

Alonso-Mora, 2019], being able to generate sub-optimal trajectories with
safety guarantees [Castillo-Lopez et al., 2020, Lew et al., 2020]. However,
the fast dynamics of autonomous robots, forces most implementations to
have short prediction horizons [Bicego et al., 2020, Zhu and Alonso-Mora,
2019, Kamel et al., 2017a, Falanga et al., 2018]. As a result, robots suffer a
drastic reduction of their planning capabilities, showing reactive behaviors to
events only when they affect the immediate future. This lack of anticipation
compromises the safety and the efficiency that they were designed to pursue,
requiring new approaches to address this issue.

In this chapter, we present a new infinite-horizon MPC approach that
extends the planning capabilities of traditional MPC approaches with a low
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computational footprint. The core approach is based on techniques borrowed
from the pseudospectral optimal control literature to solve infinite-horizon
optimal control problems [Fahroo and Ross, 2008,Garg et al., 2011]. Instead
of truncating the prediction horizon to a finite value, the infinite horizon
is mapped to a compact domain, which results in a non-uniform allocation
of the planning steps. When implemented in a receding-horizon scheme,
we observe significant improvements on constraint satisfaction, planning and
tracking performance. We validate our approach through simulations and
real experiments on collision avoidance for aerial robots.

7.2 Related Work

Model Predictive Control (MPC) is a popular technique to numerically ap-
proximate optimal control problems which, in general, cannot be solved ana-
lytically. Instead of calculating an offline feedback control law over an infinite
horizon, MPC numerically addresses a finite-horizon problem in a receding
horizon manner [Mayne et al., 2000]. This approach is largely employed
for high-performance control of mobile robots [Kamel et al., 2017b,Di Carlo
et al., 2018, Kabzan et al., 2019], for which a short prediction horizon is
desirable to reduce its complexity [Morari and Lee, 1999]. However, re-
cent contributions are exploiting the predictive nature of MPC to provide a
unified framework for optimal motion planning and control with safety guar-
antees [Castillo-Lopez et al., 2020, Lew et al., 2020, Zhu and Alonso-Mora,
2019]. To that aim, a short horizon is no longer suitable and new methods
are required to extend the planning capabilities of MPC approaches without
compromising its computational tractability.

An alternative treatment of the horizon can be found in the pseudospec-
tral optimal control literature [Fahroo and Ross, 2008, Ross and Karpenko,
2012,Garg et al., 2011] where, instead of truncating the horizon, the infinite
horizon is mapped into a compact domain, and the transformed problem is
addressed numerically through collocation methods. Different authors have
exploited infinite-horizon formulations in mobile robotics to obtain guaran-
tees on closed-loop stability and recursive feasibility [Mayne et al., 2000]. For
instance, [Erez et al., 2012] developed an infinite-horizon MPC approach for
contact-based robot control. In [Mehrez et al., 2020], they employ infinite-
horizon value approximation to provide closed-loop stability of holonomic
ground robots. In [Muehlebach et al., 2017], they developed an infinite-
horizon MPC approach to stabilize a rocket-like aerial platform. Even though
different contributions have exploited the benefits of infinite-horizon formu-
lations for regulation purposes, none of them have explored their benefits in
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motion planning applications such as obstacle avoidance. In this chapter,
we attack this problem by developing an infinite-horizon MPC approach for
real-time collision avoidance in aerial robots.

7.3 Infinite-Horizon Optimal Control Prob-

lem

Let us consider the following Infinite-Horizon Optimal Control Problem:

min.
x(t),u(t)

∫ ∞
0

g(x(t), u(t))dt (7.1a)

subject to:

x(0) = x̂0 (7.1b)

ẋ(t) = f(x(t), u(t)) (7.1c)

0 ≥ h(x(t), u(t)) (7.1d)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the state and control trajectories over
the prediction horizon t ∈ R+. The optimal state x∗(t) and control u∗(t)
trajectories are obtained by minimizing the cost functional (7.1a) while sat-
isfying initial conditions (7.1b), system dynamics (7.1c) and path constraints
(7.1d). g, f and h are possibly nonlinear differentiable functions.

To map the infinite horizon to a finite one, arbitrary domain transforma-
tions have been proposed in the literature [Fahroo and Ross, 2008,Garg et al.,
2011]. In this work, we aim to provide a model-based domain transformation,
where the domain transformation is induced by the system dynamics. To that
aim, we assume that the system is linear or exponentially stable, which is
reasonable for aerial robots, since modern control approaches provide expo-
nential stability while tracking a reference state [Lee et al., 2010,Gamagedara
et al., 2019]. Therefore, the error metric of our system r(t) ∈ R will present
an exponential decay with a time constant λ ∈ R+ as shown in Fig. 7.2.
Mathematically, the error metric is expressed as follows:

r(t) = r(0)exp

{
− t
λ

}
(7.2)

Then, with α ∈ N+, we propose the following domain transformation

τ = 1− exp
{
− t

αλ

}
⇐⇒ t = αλlog

(
1

1− τ

)
(7.3)

which maps the time variable t ∈ [0,∞) into τ ∈ [0, 1) by adding the tun-
ing parameter α ∈ N+ as a multiplier to the time constant of the system.
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Figure 7.2: Exponential decay of the error dynamics r(t) with initial value
r(0) and time constant λ.
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When applying the domain transformation to the error metric, we obtain a
polynomial expression as follows:

r(τ) = r(0)(1− τ)α (7.4)

Thus, by uniform sampling of the time variable τk = k/N , the parameter α
can be tuned such that

dα+1

dτα+1
r(τ) = 0⇒ dα

dτα
r(τk+1) =

dα

dτα
r(τk) (7.5)

for k = 0, 1, . . . , N−1. Due to the singularity at τ = 1, we can only approach
it in the sense of a limit, rendering a numerically finite horizon [Fahroo and
Ross, 2008]. Thus, the last time sample is defined as τN = 1 − ε, where ε
need to be chosen sufficiently small to nullify the cost of the OCP at the end
of the horizon, and preserve the infinite-horizon equivalence [Mayne et al.,
2000].

The use of the proposed discretization already leads to improvements in
numerical simulation. Fig. 7.3 shows the result of applying the proposed
time grid (α = 4) to simulate the unitary impulse response of the error
metric (λ = 1) by Euler integration. One can see that, for a given number
of discretization steps (N = 40), the proposed grid significantly reduces the
integration error, providing a finer discretization grid during the transient
response of the system.

As shown in [Garg et al., 2011, Fahroo and Ross, 2008], we can apply
the domain transformation (7.3) to the OCP (7.1), to obtain the equivalent
finite-horizon OCP as follows:

min.
x(τ),u(τ)

∫ 1

0

φ(τ)g(x(τ), u(τ))dτ (7.6a)

subject to:

x(0) = x̂0 (7.6b)

ẋ(τ) = f(x(τ), u(τ))φ(τ) (7.6c)

0 ≥ h(x(τ), u(τ)) (7.6d)

where

φ(τ) :=
dt

dτ
=

αλ

1− τ
(7.7)

To address the OCP (7.6) numerically, we perform a multiple shooting
transcription of the OCP over the horizon [0, 1 − ε], which results in the
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Figure 7.3: Uniform discretization grid (above) vs proposed discretization
grid with α = 4 (below), both with 40 discretization steps.
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nonlinear program:

min.
X,U

gN(xN) +
N−1∑
k=0

gk(xk, uk) (7.8a)

subject to:

x0 = x̂0 (7.8b)

xk+1 = fk(xk, uk) (7.8c)

0 ≥ h(xk, uk) k = 0, . . . , N − 1 (7.8d)

where gk(xk, uk) denotes the Riemman sum approximation of (7.6a) and
fk(xk, uk) represents the simulation of the nonlinear dynamics (7.6c) over
each shooting interval, employing a collocation integration scheme to en-
sure global convergence [Quirynen et al., 2015a]. Note that, to maintain
the infinite-horizon equivalence for the computational domain [0, 1 − ε], ε
must be sufficiently small to nullify the stage cost at the end of the horizon
gN(xN) [Mayne et al., 2000].

Since the evaluation of φ(τ) near the end of the horizon may lead to
numerical instability during optimization, we employed a piecewise constant
approximation of φ(τ) given by:

φ(τ) ≈ φk τk ≤ τ < τk+1 (7.9)

where we φk is the average value of φ(τ) on each shooting interval.

φk : =
1

τk+1 − τk

∫ τk+1

τk

φ(τ)dτ

=
αλ

τk+1 − τk
log

(
1− τk

1− τk+1

)
k = 0, . . . , N − 1 (7.10)

7.4 Implementation for Collision Avoidance

in Aerial Robots

In this section, we implement the proposed methodology to design a Model
Predictive Control approach for stochastic collision avoidance on aerial robots.
We build upon our previous approach [Castillo-Lopez et al., 2020] to generate
evasive trajectories with safety guarantees.
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7.4.1 Robot model

Based on the SDK provided by DJI-M1001 aerial robot, the control inputs
given to the quadrotor are defined as u = [ux uy uz uω]T , which corresponds
to forward, sideward, upward, and heading velocity references respectively
based on a local frame L parallel to the ground (see [Castillo-Lopez et al.,
2018] for details). Thus, we can define the nominal system dynamics as
follows:

ṗ = R(ψ)v (7.11a)

ψ̇ = ω (7.11b)

v̇i = (−vi + kiui)/δi, i ∈ {x, y, z} (7.11c)

ω̇ = (−ω + kωuω)/δω (7.11d)

where p = [px py pz]
T is the robot’s position in the world frame, v = [vx vy vz]

T

is its linear velocity in the local frame and R(ψ) is the rotation matrix for
the yaw angle ψ. ki, kω and δi, δω are the gain and time constants relative
to each component of u respectively. Thus, the robot state is defined as
xk = [pk vk ψk ωk] and the discrete dynamics fk(xk, uk) are obtained through
4-th order Gauss-Legendre integration of (7.11).

7.4.2 Obstacle Model

Obstacles are modeled with constant velocity nominal dynamics:

q̇i = R(ψi)vi, v̇i = ψ̈i = 0 (7.12)

where qi, vi and ψi are the position in the world frame, linear velocity in the
body frame and yaw angle of the i-th obstacle respectively. Thus, obstacle
states are defined as yi = [qi vi ψi ψ̇i] where the nominal discrete dynamics
are determined through Euler integration of (7.12).

7.4.3 Obstacle Chance Constraints

According to [Castillo-Lopez et al., 2020], if we consider the robot and ob-
stacle models with additive Gaussian noise, including the constraint (7.13)
in the OCP guarantees that the probability of collision with No obstacles is
below a determined risk level β

∑
j

 pj − qij
dij + Ψ−1(1− β/NNo)

√
σ2(pj) + σ2(qij)

2

≥ 3 (7.13)

1DJI Matrice 100: https://www.dji.com/matrice100
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where j iterates over the Cartesian coordinates {x, y, z} of each R3 element
and the i-th obstacle is bounded by a cuboid with semi-sizes di ∈ R3. Ψ(·)
is the standard Gaussian cumulative distribution function and σ2(p) and
σ2(qi) correspond to the position covariance of the robot and the i-th obsta-
cle respectively. The nominal position and orientation of the obstacles are
propagated along the prediction horizon according to (7.12). The covariance
of the robot and the obstacles are propagated by first-order Taylor expansion,
as shown in [Castillo-Lopez et al., 2020].

7.4.4 Objective Function

We define the cost function as:

gk(xk, uk) =
N−1∑
k=0

(
‖xk+1 − xrk+1‖2P + ‖uk‖2Q

)
(7.14a)

gN(xN) = ‖xN − xrN‖2P (7.14b)

where xrk is the user-defined goal state. ‖·‖P and ‖·‖Q are the norms induced
by the weighting matrices P and Q.

7.5 Experimental Validation

In this section we perform a series of simulations and experiments that val-
idate our approach and shows its benefits regarding constraint satisfaction,
planning and tracking performance. Since [Castillo-Lopez et al., 2020] is al-
ready benchmarked with state-of-the-art MPC approaches for collision avoid-
ance, we compare our proposed treatment of the horizon against two finite-
horizon schemes, all of them with the same optimal control problem formula-
tion, as described in the previous section. Using N = 20 discretization steps,
our approach is set with tN = 200 s of prediction horizon. Then, one finite-
horizon scheme is set with horizon 1.64 s to match the smallest sample time of
the proposed scheme. The second implementation corresponds to [Castillo-
Lopez et al., 2020], which includes a longer horizon of 4s. The real-time
implementation is based on ACADO Toolkit [Quirynen et al., 2015b] and
ROS melodic [Quigley et al., 2009] C++ framework running on an Intel i7-
6820HQ CPU@2.70GHz. The results of the experiments are complemented
by the video demonstration https://rebrand.ly/castillo_ihmpc.
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7.5.1 Simulation: Static Obstacle Avoidance

In this experiment, we define a scenario with 30 static cylindrical obstacles
with 1 m radius plus an additional meter to account for the robot size as
shown in Fig. 7.4. From a steady state at the coordinates (0, 0, 1) m the aerial
robot has to navigate 40 m in the x-axis direction and avoid the obstacles.

In Fig. 7.4 and Table 7.1 we can see the different results generated by each
MPC scheme. On the one hand, the long horizon scheme (4s) from [Castillo-
Lopez et al., 2020] anticipates well the avoidance maneuvers, but the larger
separation between time samples leads to over 66% deeper constraint viola-
tions. On the other hand, the finer discretization grid of the short horizon
scheme (1.64s) considerably reduces the constraint violations at the price
of reactive trajectories that present 65% larger deviations with respect to a
straight path. Unlike these finite-horizon schemes, our approach is able to
perform efficient maneuvers with moderate constraint violations (4.7% with
respect to the diameter of the cylindrical obstacle) with a control delay of
8.4 ms, remaining suitable for real-time application on embedded platforms.

Table 7.1: Relative results from the static obstacle avoidance simulation. It
includes the median control delay (MCD), the median constraint violation
(MCV) and the root-mean-square error (RMSE) with respect to the reference
path (straight line).

MCD MCV RMSE

Infinite Horizon (200s) 1.0 1.0 1.0
Finite Horizon (1.64s) 0.9721 1.1191 1.6500
Finite Horizon (4s) 0.9972 1.6679 0.9429

7.5.2 Simulation: Dynamic Obstacle Avoidance

In this experiment we run a simulation over 10 minutes where the robot navi-
gates in a crowded environment under uncertainty. 30 pedestrians, driven by
the social force model [Helbing and Molnar, 1995], follow a squared path of
14 m length with a reference velocity of 1 m/s. The robot, simulated accord-
ing to (7.11), is tracking the same path in opposite direction at 1.5 m/s while
avoiding the pedestrians, as shown in Fig. 7.5 and the complementary video.
The simulation runs at 100 Hz, which provides raw pose measurements of
the robot and the obstacles. These poses are processed by Extended Kalman
Filter (EKF) algorithms [Sanchez-Lopez et al., 2017] according to the robot
(7.11) and the obstacle (7.12) models. Gaussian model disturbances in lin-
ear and angular velocities have been considered as σ2(v) = 0.03 m2/s2 and
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Figure 7.4: Trajectory of the aerial robot during the static collision avoidance
simulation running the MPC approach proposed by [Castillo-Lopez et al.,
2020] with three different treatments of the horizon. The proposed infinite-
horizon approach (200s), the one employed in [Castillo-Lopez et al., 2020]
(4s), and a prediction horizon with the same resolution as the first step of
the infinite-horizon scheme (1.64s).

σ2(ωi) = 0.03 rad2/s2 for the robot and the obstacles. The measurement
noise on position has been considered to be σ2(p) = σ2(qi) = 2.5 · 10−3 m2.
The bounding boxes around the pedestrians are defined by di = [2 2 4] m
with confidence level 1− β = 0.99.

The outcome of this experiment in terms of safety are evaluated statisti-
cally through the distance to the closest obstacle d and its inverse time-to-
collision TTC−1 = ḋ/d [Van Der Horst and Hogema, 1993]. Large negative
values of TTC−1 indicate high risk of collision, while values near zero cor-
respond to safe situations [Van Der Horst and Hogema, 1993]. As shown in
Table 7.2, our approach outperforms both MPC schemes in terms of safety,
with median distance to the closest obstacle of 3.46 m, median TTC−1 of
−0.72 s−1 and median control delay of 13.73 ms. Therefore, our approach re-
mains suitable for real-time collision avoidance with multiple obstacles. Note
that further research is needed for long-term pedestrian prediction and un-
certainty propagation, which directly impacts the planning performance of
our algorithm.

7.5.3 Real experiment: Pedestrian collision avoidance.

The experiment consists in two pedestrians who naturally walk inside a closed
area where the robot is operating. As shown in Fig. 7.1 and the complemen-
tary video, when the pedestrians intend to occupy the robot’s safe space,
evasive trajectories are planned and executed while tracking a reference po-
sition given by pr = [0 0 1.5] m.

90



7. Infinite-Horizon Optimal Motion Planning and Control.

Figure 7.5: Dynamic obstacle avoidance simulation with 30 pedestrians. The
orange arrow represents the moving reference position. The predicted tra-
jectory of the robot is indicated by the purple arrows.

Table 7.2: Relative results from the obstacle avoidance benchmark. In-
cludes the median control delay (MCD), the median inverse time to collision
(MTTC−1) and the median distance to the closest obstacle (MDCO).

MCD MTTC−1 MDCO

Infinite Horizon (200s) 1.0 1.0 1.0
Finite Horizon (1.64s) 0.8004 1.1667 0.8769
Finite Horizon (4s) 1.0160 1.0278 0.9682
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The experiment is conducted in a flying arena of [4 3 3] m equipped with
an Optitrack2 motion capture system, which provides raw pose measurements
of the robot and the obstacles. We employ the same experimental setup to
process the pose measurements as in Section 7.5.2. Analogously, the out-
come of the experiment is evaluated statistically through the inverse time to
collision (TTC−1), the distance to the closest obstacle and the control delay.
As shown in Fig. 7.6, the robot presented a relatively low risk of collision,
since the distance to the closest obstacle lies in the range [0.64, 2.6] m with
median 1.33 m and the TTC−1 values are concentrated around −0.15 s−1

with a minimum value of −0.8 s−1. In addition, our approach presents fast
real-time capabilities with a median control delay of 4.52 ms.

Figure 7.6: Pedestrian Collision Avoidance: Box plots for the distance to
the closest obstacle, the inverse time to collision TTC−1, and the control
delay. The median is represented in red and the 25-75th percentiles in blue.
The black whiskers represent 1.5 times the interquartile range. Outliers are
plotted as blue circles.

2Optitrack motion capture system https://optitrack.com/
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7. Infinite-Horizon Optimal Motion Planning and Control.

7.6 Conclusions

We presented a new infinite-horizon Model Predictive Control approach for
stochastic collision avoidance with static and/or dynamic obstacles. As far
as we know, this constitutes the first real-time implementation of infinite-
horizon MPC for collision avoidance on aerial robots. Our approach presents
a non-uniform allocation of the planning steps that prioritizes near-future
events while relaxing the pursuit of long-term objectives. As a result, sig-
nificant improvements on constraint satisfaction, planning performance and
safety have been observed during real-time simulations with static obstacles.
However, minor improvements have been observed for pedestrian avoidance.
The main reason behind this issue lies in our ability to produce reliable long-
term pedestrian predictions, which remains a challenge and the subject of
future work.
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Chapter 8
Conclusions and Future Work.

This thesis provided different contributions to the state of the art towards
optimal motion planning and control with safety guarantees for aerial robots.
To that aim, we pushed the boundaries of Model Predictive Control beyond
regulation purposes by adding multiple obstacles in the problem formulation.
Unifying planning and control pipelines led to different contributions to the
existing literature, listed as follows:

• Efficient and flexible obstacle representations. We included orientable
ellipsoids as an alternative representation to spheres, which was the
main approach proposed in the existing literature. This resulted in a
reduction of the obstacle space that allowed real-time optimal motion
planning and control in crowded environments.

• Inclusion of obstacle dynamics. Modeling obstacle dynamics with ad-
ditional decision variables in the optimization problem did not allow
real-time execution, so we represented each obstacle by a sequence of
ellipsoids that spanned their expected occupied space. This approach
proved to outperform previous approaches while remaining tractable
and scalable in real applications.

• Real-time optimal motion planning and control with safety guarantees.
This problem was already addressed in the literature. However, the ex-
isting formulations never reached real-time application on aerial robots
due to their high computational cost and poor scalability. We provided
an efficient and scalable approximation to this problem while preserv-
ing the original safety guarantees, which allowed its application in real
experiments with multiple dynamic obstacles such as pedestrians.
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• Infinite-Horizon optimal motion planning and control. In practice, the
computational limitations of aerial robots led to algorithms with short
prediction horizons and poor planning capabilities. We built upon tech-
niques from the pseudospectral optimal control literature, to propose
a new MPC approach with a non-uniform distribution of the plan-
ning steps that allowed to increase the prediction horizon with minimal
computational footprint. The results have shown considerable improve-
ments on tracking performance, safety and constraint satisfaction with
static obstacles, while providing minor improvements when applied to
uncertain dynamic obstacles such as pedestrians. The challenge of ac-
curately predicting these pedestrians was influencing negatively to the
performance to our algorithm, requiring further research.

These contributions have been materialized into three publications [Castillo-
Lopez et al., 2017, Castillo-Lopez et al., 2018, Castillo-Lopez et al., 2020]
plus Chapter 7, which remains to be published. Additionally, we have par-
ticipated in three publications for global optimal planning [Sanchez-Lopez
et al., 2018,Sanchez-Lopez et al., 2020a] and situational awareness [Sanchez-
Lopez et al., 2020b].

Different future lines of research can be considered from this stage, which
are listed as follows:

• Modeling: Combining physics-driven with data-driven models has shown
to boost performance on regulation problems [Torrente et al., 2021,
Hewing et al., 2018]. We consider to be a promising line of research
to apply those methods to optimal motion planning and control with
safety guarantees.

• Reducing conservatism: Different techniques such as closed-loop chance
constraint satisfaction [Hewing et al., 2020], disturbance feedback [Sessa
et al., 2018] and the use of multi-modal Gaussian distributions [Ahn
et al., 2021] has shown promising results to further reduce conservatism
while maintaining safety guarantees.

• Uncertainty propagation: Propagating uncertainty remains one of the
biggest challenges for optimal motion planning and control with safety
guarantees, since it quickly leads to large reductions of the free space
[Mesbah, 2016].

• Improving pedestrian prediction: Accurately predicting pedestrians re-
mains difficult. However, exploiting information about the environ-
ment [Kooij et al., 2014] and their expected goals [Rehder and Kloeden,
2015] shows promising results that could be exploited by this work.

96



. Conclusions and Future Work.

• Including perception objectives: Actively accounting for perception ca-
pabilities has shown to improve performance for regulation purposes
[Falanga et al., 2018, Jacquet and Franchi, 2020]. It is expected to
improve safety, but remains open for future work.
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