
NIKE from Affine Determinant Programs

Jim Barthel1 and Răzvan Roşie2

1 University of Luxembourg, jim.barthel@uni.lu
2 JAO, Luxembourg, rosie@jao.eu

Abstract. A multi-party non-interactive key-exchange (NIKE) scheme
enables N users to securely exchange a secret key K in a non-interactive
manner. It is well-known that NIKE schemes can be obtained assuming
the existence of indistinguishability obfuscation (iO).
In this work, we revisit the original, iO-based, provably-secure NIKE
construction by Boneh and Zhandry, aiming to simplify it. The core
idea behind our protocol is to replace the functionality of the obfuscator
with the one of an affine determinant program (ADP). Although ADPs
have been designed with the purpose of attaining indistinguishability
obfuscation, such implication is left open for general circuits.
The ingredients enabling to prove the security of our scheme stem into a
more careful analysis of the branching programs needed to build ADPs.
In particular, we show:
1. An intuitive indistinguishability notion defined for ADPs of punc-

turable pseudorandom functions (PRFs) is sufficient to prove security
for NIKE.

2. A set of simple conditions based on ADP’s branching program topol-
ogy that are sufficient for proving indistinguishability of ADPs. We
leave open the question of finding ADPs satisfying them.

Keywords: NIKE, branching programs, affine determinant programs .

1 Introduction

Key-exchange [8] is arguably the simplest public-key cryptographic protocol, and
probably one of the most used in real world applications. Intriguingly, since its
introduction for the case of two parties, and the advances in exchanging keys
between three parties [14], few progress has been achieved in obtaining provable,
non-interactive key-exchange protocols between multiple parties (at least four
for the problem at hand).

In the last decade, it has been shown that the existence of secure advanced
cryptographic primitives, such as multilinear maps [9] or indistinguishability ob-
fuscation (iO) [1] would imply the existence of such non-interactive key-exchange
protocols [5]. Until recently, the security of the former cryptographic primitives
was less understood, and the problem of building NIKE schemes remained open.
A stream of recent works [3,11,12] culminated with the breakthrough result that
iO can be obtained from well-understood assumptions [13]. Such results posit
the problem of obtaining NIKE in the realizable landscape.

Author preprint of:
Barthel, J., Roşie, R. (2021). NIKE from Affine Determinant Programs. In Qiong Huang and Yu Yu, editors, Provable
and Practical Security - ProvSec 2021, pages 98–115. Lecture Notes in Computer Science, vol 13059. Springer, Cham.
https://doi.org/10.1007/978-3-030-90402-9_6

https://doi.org/10.1007/978-3-030-90402-9_6

In our work, we propose a new instantiation of the NIKE scheme put forth by
Boneh and Zhandry [5], while replacing the circuit to be iO-obfuscated with an
affine determinant program [3]. To this end, we proceed with a brief description
of the scheme we use, followed by the techniques that allow to plug in the ADP.

1.1 Prior Work on NIKE

NIKE from iO. Boneh and Zhandry [5] put forth a simple NIKE protocol,
which can be described as follows: assume that N participants into the protocol
have access to a public set of parameters pp. Each participant computes and
publishes terms that are designated to the remaining N -1 entities. Finally, each
party u, by knowing its own secret key sk(u) as well as the N -1 terms published
by other parties, is able to compute the exchanged key.

Concretely, imagine the exchanged key is retrieved as the output of a specific
circuit C applied over the input domain {0, 1}N×h′

where h′ denotes the length

of each sk(u). Essentially, C does two things: (1) performs a check that someone
using the circuit is authorized to evaluate the key exchange function; (2) com-
putes the result of a (puncturable) PRF over the joint inputs, then outputs K
as an exchanged key (see Figure 1).

CpPRF.k
(
sk(u), u, sk(1), . . . , sk(N)

)
:

if PRG(sk(u)) = sk(u):

K ← pPRF
(
pPRF.k, sk(1)|| . . . ||sk(N)

)
return K

return ⊥

Fig. 1. Each party u knows its own private key sk(u) and releases sk(u) ← PRG
(
sk(u)

)
.

On input u, sk(u), and the released values
{
sk(v)

}
v∈[N]

, the circuit checks whether

PRG
(
sk(u)

)
= sk(u), in which case a PRF value is returned.

The verification subroutine of the circuit C requires to know the pre-image
of some PRG value: user u is required to provide sk(u) in order to be checked

against the already published sk(u), where sk(u) ← PRG(sk(u)). If the check
passes, evaluate pPRF over all published values and learn

K ← pPRF.Eval
(
pPRF.k, sk(1)|| . . . ||sk(N)

)
.

For the proof, the authors require the PRG to stretch the inputs over a larger
output domain, emphasizing that a length-doubling PRG suffices for this task.

The correctness of the scheme follows as all parties evaluate the pPRF in the
same point and under the same key. Intuitively, security stems from the necessity
to provide a preimage for PRG in order to be able to evaluate pPRF.

2

1.2 Our Result and Techniques

Our main result is a new instantiation of the multi-partite NIKE protocol pro-
posed in [5]. Our key ingredients are affine determinant programs for puncturable
functionalities reaching a natural indistinguishability notion.

Theorem 1 (Informal). Assuming the existence of secure length-doubling
pseudorandom generators, secure puncturable pseudorandom functions in NC1,
and indistinguishably-secure affine determinant programs, there exists a secure
NIKE scheme for N parties.

As our NIKE construction is close to the one in [5], we begin with the intuition
for affine determinant programs (introduced in [3]) for PRFs and then present
an overview of our techniques.

Affine Determinant Programs - Setup. The idea behind ADPs is to use
branching programs in conjunction with decomposability. Consider a PRF keyed3

by k and its ith bit restriction PRFi as a function from {0, 1}k+n to {0, 1}.
Assume the circuit representation of PRFi is C i and that it belongs to NC1 (this
is the class we are interested in). We can infer that its branching program has
polynomial size [6]. For each C i, let Gi

k||input denote the adjacency matrix4 of its

branching program BPi.
Following known techniques [10], we slightly post-process this adjacency ma-

trix of BPi, by removing its first column and last row, in order to obtain G
i

k||input.

Then, we left/right multiply it with random binary invertible matrices Li,Ri.
The resulting matrix Ti

k||input satisfies:

det
(
Li ·Gi

k||input ·Ri
)

︸ ︷︷ ︸
Ti

k||input

= BPi(k||input) = C i
k (input),

where “det” denotes the determinant over F2. The crux idea is to decompose

each entry (u, v) of Li ·Gi

k||input ·Ri into sums of inputj-dependent monomials:

Ti
u,v,k||input ← Ti

u,v,k +Ti
u,v,input1

+ . . .+Ti
u,v,inputn

, (1)

where each Ti
u,v,⃗0j

,Ti
u,v,⃗1j

is a sum of degree-three monomials of the form: lα ·
gβ · rγ . Oversimplified, to enable the simulation of Ti

u,v,k||input in Equation (1),

we reveal all pairs {Ti
u,v,⃗0j

,Ti
u,v,⃗1j

}, as depicted in Figure 2.

The setup of the ADP proceeds by generating the branching programs of
each boolean function PRFi and the corresponding adjacency matrices. Then, it
samples the invertible matrices Li,Ri to obtain the set:{

Ti
u,v,k,T

i
u,v,input1

, . . . ,Ti
u,v,inputn

}
3 The length of the key is k.
4 The structure of adjacency matrix is settled by both k and input, a fact reflected in
the notation Gi

k||input.

3

k: 1 2 · · · |k|-1 |k|

1 0 · · · 1 0

M : 1 2 · · · |input|

0 0 · · · 0 0

1 1 · · · 1 1

Fig. 2. An element Ti
u,v,k is provided for the bits of the key k, while ele-

ments Ti
u,v,inputj

correspond to the bits in the binary decomposition of the mes-

sage. We assume input = (0, 1, . . . , 0, 0), meaning that the coloured encodings
{Ti

u,v,⃗01
,Ti

u,v,⃗12
, . . . ,Ti

u,v,⃗0|input|−1
,Ti

u,v,⃗0|input|
} are selected and are summed up with

Ti
u,v,k.

These values are published, for all i and for all entries (u, v) and constitute the
affine determinant program corresponding to the keyed function PRF.

Affine Determinant Programs - Evaluation. Running the ADP.Eval is
straightforward. Given the input message input := (input1, . . . , inputn), a first
step reconstructs:

Ti
u,v,k||input ← Ti

u,v,k +Ti
u,v,input1

+ . . .+Ti
u,v,inputn

,

by simply selecting the terms corresponding to input1, . . . , inputn. In this way,
we recover a value Ti

u,v,k||input corresponding to some position (u, v).

Repeating this reconstruction for every entry (u, v), we recover the desired
matrix Ti

k||input. Then, ADP.Eval computes the determinant of Ti
k||input and re-

covers one bit in the output of C . This step is repeated for every output bit i

of C . We stress that Ti
k||input ← Li ·Gi

k||input ·Ri, and its determinant is in fact

C i
k (input) (C ’s ith output bit) where G

i

k||input is “close to” the adjacency matrix
of BP.

Affine Determinant Programs - Reducing the size of the program.
The size of ADPs can be improved in the following way: instead of releasing
both values Ti

u,v,⃗0j
and Ti

u,v,⃗1j
, we add to Ti

u,v,k the sum corresponding to the

all-zero message:

Ti
u,v,k +

n∑
j=1

Ti
u,v,⃗0j

.

To ensure correctness, we release the difference terms corresponding to each:

Ti
∆u,v,j

← Ti
u,v,⃗1j

−Ti
u,v,⃗0j

, (2)

which can be used to reconstruct the sum in Equation (1). We stress that a
user could always recover the difference of monomial-sums depending on 1 and
0 in position (u, v) if it was given both Ti

u,v,⃗0j
and Ti

u,v,⃗1j
. Informally, by pro-

viding the difference, we also reduce the amount of information provided to the
adversary.
NIKE from IND-Secure ADPs.

4

We observe that ADPs corresponding to puncturable PRFs that enjoy a natu-
ral indistinguishability property, suffice for our proof. By indistinguishability, we
mean that given two different punctured keys5 for two different points, which are
embedded in two equivalent circuits6, the ADPs of such circuits are indistinguish-
able. We are able to prove NIKE security under indistinguishable ADPs only for
circuits which have identical structure but embed different keys. This latter fact
constrains us to use a punctured key in our real NIKE protocol in order to make
the proof of Theorem 1 work, as usually pPRF.Eval(·) and pPRF.PuncEval(·)
have different circuit representations, and ADP indistinguishability will not be
achievable.

More interesting than the NIKE proof is the ADP indistinguishability. In the
full version we provide a thorough analysis of ADPs’ security. To this end, we
rewrite ADPs into a form that isolates the differing variables occurring in the
BP’s adjacency matrices. The lack of standard complexity assumption to work
with forces us to investigate the perfect security. Finally, we show that ADPs
admitting BP representations having the first line set to (0, . . . , 0, 1) and where
the input dependent nodes occur “after” the sensitive nodes admit perfectly
secure ADPs. We leave open the problem of obtaining such BP representation.

Paper Organization. In Section 2, we introduce the standard notations to be
adopted throughout the paper, followed by the definitions of the primitives that
we use as building blocks. Section 3 reviews the construction of randomized en-
codings from branching programs and introduces the novel concept of augmented
branching programs In Section 4, we describe our NIKE scheme. Section 5 de-
scribes our conditions on circuits and BPs to admit indistinguishably-secure
ADPs, while in the full version we provide a detail look into ADPs and prove
they achieve indistinguishability.

2 Background

Notations. We denote the security parameter by λ ∈ N∗ and we assume it
is implicitly given to all algorithms in the unary representation 1λ. An algo-
rithm is equivalent to a Turing machine. Algorithms are assumed to be ran-
domized unless stated otherwise; ppt stands for “probabilistic polynomial-time”
in the security parameter (rather than the total length of its inputs). Given
a randomized algorithm A we denote the action of running A on input(s)
(1λ, x1, . . .) with uniform random coins r and assigning the output(s) to (y1, . . .)
by (y1, . . .)←$ A(1λ, x1, . . . ; r). When A is given oracle access to some proce-
dure O, we write AO. For a finite set S, we denote its cardinality by |S| and
the action of sampling a uniformly at random element x from X by x←$ X. We
let bold variables such as w⃗ represent column vectors. Similarly, bold capitals
usually stand for matrices (e.g. A). A subscript Ai,j indicates an entry in the

5 This is a significant difference to [5].
6 The circuits are equivalent by preventing the evaluation of the pPRF at the punctured
points through simple sanity checks.

5

matrix. We abuse notation and write α(u) to denote that variable α is associ-
ated to some entity u. For any variable k ∈ N∗, we define [k] := {1, . . . , k}. A
real-valued function Negl(λ) is negligible if Negl(λ) ∈ O(λ−ω(1)). We denote
the set of all negligible functions by Negl. Throughout the paper ⊥ stands for
a special error symbol. We use || to denote concatenation. For completeness, we
recall standard algorithmic and cryptographic primitives to be used. We consider
circuits as the prime model of computation for representing (abstract) functions.
Unless stated otherwise, we use n to denote the input length of the circuit, s for
its size and d for its depth.

2.1 Randomized Encodings

Definition 1 (Randomized Encoding Scheme). A randomized encoding
scheme RE for a function f : {0, 1}n → Y consists of a randomness distribution
R, an encoding function Encode : {0, 1}n×R → {0, 1}ℓ, and a decoding function
Decode : {0, 1}ℓ → Y.

A randomized encoding scheme RE := (R,Encode,Decode) should satisfy:

– Correctness. For any input M ∈ {0, 1}n,

Pr
R←R

[Decode(Encode(M ;R)) = C (M)] = 1 .

– Security. For all M ,M ′ ∈ {0, 1}n with C (M) = C (M ′), the distribution of
Encode(M ;R) is identical to the distribution of Encode(M ′;R) when sam-
pling R←$ R.

The definition of security can be relaxed, just requiring that Encode(M ;R) and
Encode(M ′;R) cannot be effectively distinguished by small circuits. Formally:

– (s, δ)-Security. For all M ,M ′ ∈ {0, 1}n such that C (M) = C (M ′), for any
circuit C : {0, 1}ℓ → {0, 1} of size at most s,

Pr
R←$ R

[C (Encode(M ;R)) = 1]− Pr
R←$ R

[C (Encode(M ′;R)) = 1] ≤ δ.

2.2 Multi-Party Non-Interactive Key-Exchange

Non-interactive key-exchange (multi-partite) is a beautiful problem in cryptog-
raphy. All known, provably-secure constructions rely on either multilinear maps
or iO constructions. NIKE definition follows.

Definition 2. A non-interactive key-exchange (NIKE) scheme consists in a
triple of polynomial-time algorithms (Setup,Publish,KeyGen) behaving as follows:

– pars←$ Setup(1λ, N): given the security parameter λ in unary and the num-
ber of participant parties N , the algorithm generates the public parameters
pars.

6

– (pk(u), sk(u))←$ Publish(pars, u): each party u of N taking part into the pro-

tocol derives its own secret and public keys. While sk(u) is kept secret, pk(u)

is publicly disclosed.
– K ←$ KeyGen(pars, u, sk(u), pk(u), pk(v∈S)): the key-generation procedure cor-

responding to party u ∈ [N] uses its secret key sk(u) together with the public
keys of all participants v ∈ [N] to derive the common key K .

The correctness requirement states that any two parties u and v must derive
the same key K :

∀(u, v) ∈ [N]× [N] :

Pr

[
Ku = Kv

∣∣∣∣∣Ku←$ KeyGen(pars, u, sk(u), pk(v∈[N])) ∧
Kv←$ KeyGen(pars, v, sk(v), pk(u∈[N]))

]
∈ 1−Negl(λ).

Security: the security experiment we present corresponds to the static ver-
sion of the one presented in [5]. Namely, the advantage of any ppt-bounded
adversary in winning the game defined in Figure 3 (left) is bounded:

AdvIND−NIKE
A,NIKE (λ) :=

∣∣∣∣Pr [1←$ IND− NIKEA
NIKE(λ)

]
− 1

2

∣∣∣∣ ∈ Negl(λ) .

IND− NIKEA,N
NIKE(λ):

b←$ {0, 1}
pp←$ NIKE.Setup(1λ, N)
for u ∈ [N] :(

sk(u), pk(u)
)
←$ NIKE.Publish(pp, u)

K ← NIKE.KeyGen
(
pp, 1, sk(1), {pk(u)}u∈[N]

)
if b = 1, then K ← {0, 1}|K|

b′ ← A
(
1λ, pp,K , {pk(u)}u∈[N]

)
return (b′

?
= b)

PRFA
PRF(λ):

b←$ {0, 1}; L← ∅
K ←$ Setup(1λ)

b′←$ APrf(·)(1λ)

return (b′
?
= b)

Proc. Prf(M):

if M ∈ L then return L[M]
Y ← PRF(K ,M)

if b = 0 then Y←${0, 1}|Y |

L← L ∪ {(M , Y)}
return Y

Fig. 3. Games defining the security of pseudorandom functions (right), as well as NIKE
security (left).

2.3 Affine Determinant Programs

Section 1 provides the intuition behind Affine Determinant Programs. Below, we
formalize the notion, as introduced in [3], but postpone the formal construction
from randomized encodings of branching programs to Section 3.3.

Definition 3 (Affine Determinant Programs). An affine determinant pro-
gram consists of two ppt algorithms:

– Prog←$ ADP.Setup(1λ,C): the Setup is a randomized algorithm such that
given a circuit description C of some function C : {0, 1}n → {0, 1}, output
a program Prog consisting of n + 1 square matrices Ti over some algebraic
structure S and having dimensions poly(n). The matrices correspond to C .

7

– b← ADP.Eval(Prog,M): given the program Prog and some input M , return a
value b. b is computed as the determinant of the subset sum: T0+

∑n
i=1 T

Mi
i .

Correctness: For all M ∈ {0, 1}n, it holds that

Pr
[
C (M) = ADP.Eval(Prog,M)

∣∣Prog←$ ADP.Setup(1λ,C)
]
= 1 .

Security: We say that a ADP scheme is IND− ADP secure with respect to a class
of circuits Cλ, if ∀(C1,C2) ∈ Cλ × Cλ such that ∀M ∈ {0, 1}λ,C1(M) = C2(M)
it holds that∣∣∣∣Pr [b←$ A(1λ,Prog)

∣∣ b←$ {0, 1} ∧ Prog←$ ADP.Setup(1λ,Cb)
]
− 1

2

∣∣∣∣ ∈ Negl(λ) .

The security definition above makes clear the link between the security of an
iO obfuscator [1] and indistinguishability for ADPs. Trivially, a secure IND− ADP
affine determinant program gives rise to an indistinguishability obfuscator for
the specific class of circuits.

3 Warm-Up: ADP from Randomized Encodings

3.1 Randomized Encodings via Branching Programs

A branching programs corresponds to a sequential evaluation of a function. De-
pending on each input bit, a specific branch of a circuit computing the function is
followed until a terminal node – 0 or 1 – is reached (we assume we only work with
single bit output functions). We highlight that any function C : {0, 1}n → {0, 1}
in NC1 admits a polynomial size branching program representation. As a con-
sequence of this fact, any function C ′ : {0, 1}n → {0, 1}n′

can be thought of as
a concatenation of n′ branching programs, each outputting a single bit. In an
acclaimed result, Barrington [2] shows that the shorter the depth of the circuit
representation of C , the shorter the length of the branching program. In indepen-
dent results, Ben-Or and Cleve [7] show a matrix-based version of Barrington’s
proof, where the length of the branching program is constant for constant depth
circuits.

In this work, we consider GM to be the adjacency matrix corresponding
to the branching program of some C : {0, 1}|M | → {0, 1}. Let, for technical
reasons, the main diagonal be 1s and let each row have at most one extra 1
apart from the 1 appearing on the main diagonal. Let GM stand for the matrix
obtained by removing the first column and the last row of GM . As shown in
[10], C (M) = det(GM). Furthermore, two matrices Rl and Rr (sampled from
a designated distribution) exist, such that the following relation holds:

Rl ·GM ·Rr =

(
0 C (M)
I 0

)
=

0 0 . . . 0 C (M)
1 0 . . . 0 0
0 1 . . . 0 0
...
...

...
...

0 0 . . . 1 0

 = GC (M) ∈ GF(2)m×m

8

Such a representation of C (M), as a product of fixed matrices Rl and Rr

plays a role in the simulation security of the randomized encoding. Concretely,
the value C (M) is given to the simulator, which, in turn, is able to simulate a
product of either full-ranked matrices or of rank m− 1, as enforced by the value
of C (M). Therefore, this representation confers an innate randomized encoding.
The decoder in the randomized encoding has to compute the determinant of
Rl ·GM ·Rr and recover the value of C (M), given that Rl,Rr are full ranked
matrices.

For clarity, Rr ∈ GF(2)m×m and Rl ∈ GF(2)m×m have the following forms:

Rr =

1 0 0 . . . 0 $
0 1 0 . . . 0 $
...
...
...

...
...

0 0 0 . . . 1 $
0 0 0 . . . 0 1

 , Rl =

1 $ $. . . $ $
0 1 $. . . $ $
...
...
...

...
...

0 0 0 . . . 1 $
0 0 0 . . . 0 1

 .

A generalization of the previous observation would use different distributions
for Rl,Rr. To this end, let L and R be two matrices sampled uniformly at
random from the set of invertible matrices over GF(2)m×m (i.e., Rl and Rr are
full rank). One can express

L← L′ ·Rl and R← Rr ·R′ .

Note that:

L ·GM ·R = (L′ ·Rl) ·GM · (Rr ·R) = L′ · (Rl ·GM ·Rr) ·R
= L′ ·GC (M) ·R′

(3)

Since L′ and R′ are full-rank matrices, det
(
L ·GM ·R

)
= det

(
GM

)
= C (M).

On a different note, we can observe that each of the m × m entries of the re-
sulting matrix TM ← L ·GM ·R, can be expressed as a sum of monomials of
degree three. As noted in [10], while “splitting” each entry Ti,j into monomials,
no monomial depends on more than one input bit of M . Also, each monomial
includes one component from each of L and R. Put differently, each monomial
contains at most one entry from GM , which is M -dependent. We return to such
a representation while reaching the proof of our construction.

3.2 Augmenting NC1 Branching Programs for Keyed Functions

This part will be used exclusively in the proof provided in the full version and
readers may skip it for the moment and return to it later. In short, we introduce
a method to augment a branching program with a set of intermediate nodes
without changing the behaviour of the program, having the purpose of isolating
“sensitive” variables. We use the terminology introduced in Section 3.1. To this
end, consider the branching program BP corresponding to some keyed function
represented by C (k||M); its graph representation consists of two complementary

9

sets of nodes: one containing the nodes depending on the secret (k), and the
other ones depending on the input (the message M 7). Assume the secret key k
is fixed (embedded in the circuit), a fact that settles the nodes depending on k
in BP.

What we mean through an augmented branching program is an extra set of
nodes that is to be added to the graph of BP. Let v denote a vertex depending
on k and let u be any other vertex such that there is an arc v → u in the digraph
representation of BP. We introduce an auxiliary node α between v and u. Now,
v is no longer directly connected to u, but rather the link becomes v → α→ u.
We present this pictorially in Figure 4.

1

2

8 9

3

10 11

1

2

4

8

5

9

3

6

10

7

11

Fig. 4. Left: original branching program. Right: augmented branching program corre-
sponding to C . The auxiliary nodes (4-7) are depicted in blue while red nodes (2,3,11)
correspond to nodes settled by the bits of the secret key of the permutation.

Definition 4 (Augmented Branching Programs for NC1). Let BP be the
branching program corresponding to some circuit Ck ∈ NC1 that embeds k. Let V
denote the set of vertices settled by k. For any vertex v ∈ V let u be a vertex such
that there exists an arc from v to u. Define the augmented branching program
ABP by extending the BP graph and introducing an intermediate vertex α on the
path between any node v depending on k and any child vertex u.

We show that augmenting a branching program preserves the behaviour (cor-
rectness) of the original branching program. It is easy to observe that while
working over F2, computing the determinant is equivalent to computing the
permanent [15] of a matrix. To deduce correctness of the output, think at the
determinant as the sum of m! permutations. If there exists a path from the start
node to the node that represents 1, then this path, in conjunction with the 1s
on the second diagonal will make one of the sums occurring in the development
of the permanent be 1.

Remark 1 (Size of ABP). The size of the augmented branching program ABP is
upper-bounded by 3× |BP|. Assuming the original branching program has |BP|
nodes, each key-dependent node will add two other nodes. Hence the very loose
bound of 3× |BP|.
7 We assume that any other node (if any) that is input-independent is included in the
first set.

10

The main advantage conferred by ABPs is a decoupling of the rows (or
columns) in R (or L) that depend on the sensitive input (k) from the rest of the
nodes. More explicitly, when the dependency graph G is multiplied with R, the
lines in R that are triggered by the nodes depending on k are separated from
the lines in R that are triggered by the message.

Similarly, the columns in L can be split in three independent sets, depending
on either k, the message or the auxiliary variables (note the asymmetry to R,
where we only split the rows in twain).

3.3 ADPs for Keyed Functions from RE

We turn to the usage of randomized encodings for branching programs described
in Section 3.1, preserving the goal of instantiating ADPs for keyed functions8. We
treat each Ti

k||input independently, as the product of three matrices. Explicitly,
this is:

Ti
k||input ← Li ·

(
G

i

k||input ·Ri
)

, ∀i ∈ [|input|] (4)

Remark 2. We remind that for the NIKE scheme, the length of input is N · h,
and we treat each bit i ∈ µ of the exchanged key K independently.

ADP.Setup: Using the intuition provided in Section 1, we provide an explicit
form for:

Ti
k||⃗0 ← Li ·Gi

k||⃗0 ·Ri (5)

The program Progi will consist of Ti
k||⃗0 as well as the additional set:{

Ti
∆j
← Li ·

(
G

i

k||⃗1j −G
i

k||⃗0j

)
·Ri

)}
j∈[N ·h]

(6)

for each output bit i.
ADP.Eval : to run Progi and recover the output of C i

k (input) proceed as follows:

C i
k (input) = det

Ti
k +

N ·h∑
j=1

inputj ·Ti
∆j

 (7)

4 Multi-Party NIKE via ADP

Our NIKE scheme follows from the one in [5]. The main significant difference
consists in implementing a puncturable PRFs through affine determinant pro-
grams, instead of using the full power of an indistinguishability obfuscator for
P/poly9. The security analysis follows in Section 4.2.

8 Note that we are mainly interested in ADPs for puncturable PRFs.
9 An astute reader may notice that, in fact, an iO for NC1 would suffice here, as we
assume the existence of pPRFs in NC1.

11

4.1 Our NIKE Scheme

We remind below some useful notations to be used: µ stands for the length of
the key to be exchanged, sk(u) denotes the secret key corresponding to party u

having length h, and sk(u) denotes the public key.

Definition 5 (NIKE Scheme for N parties). Let PRG : {0, 1}h → {0, 1}2h
denote a secure pseudorandom generator, and let pPRF : {0, 1}(N ·2h)+1 → {0, 1}µ
denote a secure puncturable pseudorandom function. Let ADP : {0, 1}N ·2h →
{0, 1} denote an affine determinant program reaching indistinguishability. De-
fine a NIKE scheme as follows.

– NIKE.Setup(1λ, N, h, µ): the Setup is given a number of parties N , the length
µ of the exchanged key and the length h of each party’s secret keys. For each
i ∈ [µ], initiate the public parameters pp ← ∅. For each i ∈ [µ], repeat the
following steps:
(1) Sample a pPRF key and puncture it at point 0N ·2h+1:

ki ← pPRF.Puncture(pPRF.KeyGen(1λ),0N ·2h+1) .

(2) Consider the following circuit C i:

C i
pPRF.ki

(
u, sk

(u)
i , sk

(1)
i , . . . , sk

(N)
i

)
:

if PRG
(
sk

(u)
i

)
= sk

(u)
i :

K ← pPRF
(
pPRF.ki, 1||sk(1)i || . . . ||sk

(N)
i

)
return Ki // the ith bit of K

return ⊥

Fig. 5. Note that the pPRF can only be evaluated on half of its input space, as 1 is
concatenated to every input. This is a noticeable difference to [5].

(3) Instantiate an ADP from this circuit: Progi ← ADP.Setup(1λ,C i
pPRF.ki

) .

(4) Add to pp the program Progi: pp ← pp ∪ Progi . Publish the public
parameters pp.

– NIKE.Publish(pp, u):

(1) u samples {sk(u)i }i∈[µ]←$ {0, 1}h.
(2) u publishes the following value as her public key:

sk
(u)
i ← PRG

(
sk

(u)
i

)
.

These steps are repeated for all i ∈ [µ].

– NIKE.KeyGen(pp, u, {sk(u)i }i∈[µ], {Progi}i∈[µ], {sk
(v)
i }i∈[µ],v∈[N]):

(1) Provide to Progi the input u, sk
(u)
i , {sk(v)i }v∈[N] and set

Ki ← ADPi.Eval
(
Progi,

(
u, sk

(u)
i , {sk(v)i }v∈[N]

))
.

Repeat these steps for all i ∈ [µ].

Proposition 1. The construction in Definition 5 is correct.

Proof (Proposition 1). See full paper.

12

4.2 Security from IND-Secure ADP

The proof is structured similarly to the one in [5], up to the variation in the
usage of ADP. A second notable difference concerns the usage of a punctured
PRF key in the real construction: mind the fact that our circuit evaluates the
pPRF exclusively in inputs having the first bit set to 1, while the punctured
key is punctured under a point having the first bit set to 0. Hence, the pPRF
evaluation is always possible. The reason behind embedding a punctured key
in the real construction is that we can only prove indistinguishability for ADPs
under identically structured branching programs. Put differently, it is usually
the case that the normal and punctured evaluation procedures differ for existing
pPRFs in NC1, while we want a unique pPRF.Eval procedure (e.g., [4]).

We also stress that we consider only the static security notion (Definition 5).

Theorem 2. Let NIKE be the scheme described in Section 4.1. Let PRG be a
secure pseudorandom generator and pPRF denote a secure puncturable pseudo-
random function. Then, the NIKE scheme in Section 4.1 is secure according to
Definition 5.

Proof (Theorem 2). The proof follows through a hybrid argument.

Game0: this is the real game, where the adversary is provided either the real
exchanged key K or some value sampled uniformly at random.

Game1.0: is identical to Game0.

Game1.u: in this game, we change the distribution of the published parameters

pp; instead of issuing sk(u), as the output of the PRG(sk(u)), party u samples

sk(u) over {0, 1}2h. The distance to the previous game is bounded by the
security of the PRG. Most importantly, the newly sampled point is not in
the co-domain of the PRG with overwhelming probability, due to the PRG
stretch.

Game1.N : all public parameters sk(u) are sampled uniformly.

Game2: in this game, the original puncturable PRF key is replaced with a new
one, which is punctured in the point 1||sk(1)|| . . . sk(N). Mind the fact that
originally, the key has been punctured in the all-0 point, while the pPRF
has been evaluated in an input that always began with 1 (i.e. the evaluation
happened for all inputs); for the second case, we note that the PRF will

not evaluate over (sk(1)|| . . . ||sk(N)) as these points have no pre-image in the
PRG domain. This happens thanks to the stretch of the PRG. Therefore,
the two circuits are equivalent. The advantage of any adversary in noticing
this game hope is negligible, down to the IND− ADP security of our ADP,

In Game2, we can bound the advantage of an adversary in retrieving a bit in
the K by the advantage of an adversary in guessing the output of the pPRF
in the challenge (punctured) point. Concretely, the pPRF game provides the
reduction with a key punctured in the challenge point. This punctured key will
be embedded into the circuit. The adversary is also provided with the challenge

13

value the pPRF game provides, which corresponds to either the real NIKE key
K (i.e. the real pPRF evaluation) or a uniform value. If the adversary correctly
guesses, then it wins the pPRF game. We apply the union bound, and conclude
that the advantage of any ppt bounded adversary in winning the IND− NIKE
game is upper bounded by:

AdvIND−NIKE
A,NIKE (λ) ≤ µ ·N ·Advprg

A1,PRG
(λ)+µ ·AdvIND−ADP

A2,ADP (λ)+µ ·Advpuncture
A3,pPRF

(λ) (8)

where the right hand side is negligible. ⊓⊔

5 Sufficiency Conditions for IND-Secure ADP

Section 1 provides the intuition behind Affine Determinant Programs. The se-
curity definition of ADPs makes clear the link between the security of an iO
obfuscator [1] and indistinguishability for ADPs. Trivially, a secure IND− ADP
affine determinant program gives rise to an indistinguishability obfuscator for
our specific class of circuits.

Furthermore, we can strengthen the security definition in the following sense:
for specific classes of functions, it can be the case that ADP.Setup(1λ,C0;R0) =
ADP.Setup(1λ,C1;R1). That is, for two equivalent functions, we obtain the same
implementation under two different sets of randomness coins, namely R and R′.

Definition 6 (Colliding-Secure ADPs). We say that two different circuits
C0 and C1 admit ADP implementations that are colliding-secure if for any R0,
there exists a unique R1 such that:

ADP.Setup(1λ,C0;R0) = ADP.Setup(1λ,C1;R1) .

5.1 Admissible Classes of Functions for Matrix-Based ADPs

A relevant theory should link affine determinant programs to existing problems
in cryptographic landscape. Such problems are, for instance, multi-party non-
interactive key-exchange schemes or indistinguishability obfuscation. The two
primitives can be obtained if there exist obfuscation for puncturable pseudoran-
dom functions, as shown by Boneh and Zhandry for the case of NIKE, and by
Pass et al. for the case of iO (via XiO).

What we require for Matrix-Based ADPs. Given these observation, our
main goal would be to achieve IND− ADP (in fact PS−ADP) branching program-
based ADPs for relevant puncturable functions. We state informally the require-
ments we have over the admissible classes. The requirements are enforced either
by the envisioned applications or by the envisioned proof technique.

Requirement 1: The first requirement concerns the depth of circuits. We need

circuits to admit branching programs. Thus we need circuits in NC1.

Requirement 1 Let Cd,k+n denote a class of circuits of depth d and input
length k+n. A necessary condition for Cd,k+n to admit a matrix-based ADP
implementation is

d ∈ O(log(k + n)) .

14

Requirement 2: Considering that our envisioned applications are built over
pseudorandom functions, we are interested in ADPs for keyed functions.
Thus we can think at their inputs as concatenation of “k||input”. Our func-
tion that is modeled by some circuit can be described as:

f : {0, 1}k+n → {0, 1} .

Requirement 2 Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit an PS − ADP-secure
implementation is that every C ∈ Cd,k+n models a two input function C :
{0, 1}k+n → {0, 1}.

Requirement 3: We only consider functions that are non-constant under dif-
ferent keys. This requirement is motivated by the need to use invertible
matrices in our proof10. Formally, the condition becomes:

Requirement 3 Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit a PS − ADP-secure
implementation is that: for every C ∈ Cd,k+n modelling some f , there exists
a ppt algorithm R such that:

Pr
[
f(k, input) = 1| (k, input)← R(1λ, f)

]
>

1

poly(λ = k + n)
.

The condition should be read as: there exists a ppt procedure able to find
some key and some input such that f(k, input) = 1. We stress that R is not
required to sample uniformly at random the input point, nor the key k.

Requirement 4: In words, we would like to have an efficient procedure R ca-
pable of generating two keys (k, k′) such that f(k, X) = f(k′, X). Formally:

Requirement 4 Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit a PS − ADP-secure
implementation is that: for every C ∈ Cd,k+n modelling some f , there exists
a ppt algorithm R such that ∀ input ∈ X ,

Pr[k ̸= k′ ∧ f(k, input) = f(k′, input)|(k, k′)← R(1λ,C)] >
1

poly(k + n)
.

Remark 3. R is not required to sample the keys uniformly at random.

Requirement 5: Another requirement enforced by our security proof in the

full version is that the first line in matrix Gk||⃗0 has the form

(0, 0, 0, ∗, ∗, . . . , ∗)
10 We want the function to be puncturable: under two different keys to obtain the same

result under multiple points. Ideally, the punctured point will be excluded from the
input space.

15

From a high-level point of view, we can translate this into:

f(k, 0|| ∗ ∗ ∗ ∗) = 1 .

An astute reader may observe that for a f fulfilling the constraint above,
some branching program can be found such that the first line is not (0, 0, 0, ∗, ∗, . . . , ∗).
However, without loss of generality, we assume this is not the case.

Requirement 5 Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit a PS − ADP-secure
implementation is that: for every C ∈ Cd,k+n modelling some f , there exists
an efficiently computable key k such that:

f(k, b||input′) :=
{
1 , if b = 0.

f(k, b||input]) , if b = 1 and ∀input′ ∈ {0, 1}n−1

Requirement 6: Finally, we are left with the ordering of variables. It is neces-
sary that BP nodes depending on inputs have greater order numbers com-
pared to the nodes depending on k. In layman’s terms, the nodes depending
on input in a branching program are “below” the ones depending on k.

Requirement 6 Let Cd,k+n denote a class of circuits of depth d and input
length n. A necessary condition for Cd,k+n to admit an PS − ADP-secure
implementation is that any index of a node depending on input is greater
than any index of a node depending on k.

Definition 7 (Admissible Class for ADPs via Branching Programs).
Let Cλ,d,|k|+n denote a class of circuits, such that d ∈ log(n). We call this class
admissible if the requirements (1), (2), (3), (4), (5) and (6) stated above hold.

5.2 Our Claim

We state below our claim in terms of the function belonging to the class Cd,k+n

mentioned above. The proof is provided in the full version.

Theorem 3 (IND− ADP programs for ADP admissible functions). Let
Cd,k+n denote a class of circuits of depth d and input length n which is admissible
according to Definition 7. Then, there exists an ADP that reaches PS − ADP-
security with respect to every single C in the admissible class Cd,k+n. Let pPRF
denote a puncturable PRF admitting circuits in NC1. Let C i denote the circuit
described in Section 4.1. Let k and k′ be two pPRF keys punctured respectively in
point 0||0|| . . . ||0 and in some random point 1||$|| . . . ||$. Then, the distributions
of ADPi(C i

k) and ADPi(C i
k′) are identical.

Acknowledgements. Jim Barthel was supported in part by the Luxembourg
National Research Fund through grant PRIDE15/10621687/SPsquared. Răzvan
Roşie was supported in part by ERC grant CLOUDMAP 787390 and is thankful
to Hart Montgomery and Arnab Roy for extremely valuable discussions and for
a large number of ideas in this work.

16

References

1. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

2. David A Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

3. James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark
Zhandry. Affine determinant programs: A framework for obfuscation and witness
encryption. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 82:1–82:39.
LIPIcs, January 2020.

4. Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs
from standard lattice assumptions. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 415–
445. Springer, Heidelberg, April / May 2017.

5. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499.
Springer, Heidelberg, August 2014.

6. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for
secure computation under DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539. Springer, Heidelberg,
August 2016.

7. Richard Cleve. Towards optimal simulations of formulas by bounded-width pro-
grams. Computational Complexity, 1(1):91–105, 1991.

8. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

9. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

10. Yuval Ishai. Randomization techniques for secure computation. Secure Multi-party
Computation, 10:222, 2013.

11. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 251–281. Springer, Heidelberg, May 2019.

12. Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and as-
sumptions for iO. Cryptology ePrint Archive, Report 2019/1252, 2019. https:

//eprint.iacr.org/2019/1252.
13. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from

well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020.
https://eprint.iacr.org/2020/1003.

14. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of
Cryptology, 17(4):263–276, September 2004.

15. Leslie G Valiant. The complexity of computing the permanent. Theoretical com-
puter science, 8(2):189–201, 1979.

17

https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2020/1003

	 NIKE from Affine Determinant Programs

