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Abstract. In AsiaCrypt 2019, Genise, Gentry, Halevi, Li and Miccian-
cio put forth two novel and intriguing computational hardness hypothe-
ses: The inhomogeneous NTRU (iNTRU) assumption and its matrix ver-
sion MiNTRU. In this work, we break the integer case of the iNTRU
assumption through elementary lattice reduction, and we describe how
the attack might be generalized to polynomial rings and to the low di-
mensional MiNTRU assumption with small noise.
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1 Introduction

Security reductions form the core of modern cryptography. Appraised by the-
orists, but largely ignored by programmers, reductions guarantee that specific
attacks captured by some security experiment are infeasible. A reduction has two
main components: some construction that needs to be proven secure and some
problem that is assumed to be hard – usually denoted by the term assumption.

The last cryptographic epoch was synonymous with the raise of post-quantum
cryptographic assumptions. Among these, lattice assumptions occupy a central
role and today most of the provably secure lattice schemes rely on the Learning-
with-Errors (LWE) problem, as described in the seminal paper of Regev [19].
A second group of assumptions is based on the NTRU problem, as postulated
in [9]. While the former group is reducible to standard average-case assumptions,
the latter is not. However, often the latter group offers superior practical per-
formance, and results in this area are preferred for implementations. Besides the
traditional definitions, there are a wide set of versions used in different sub-areas
of cryptography, not all of them being deeply studied.

In this work, we consider two novel versions of the NTRU assumption from
[6]. We show a practical attack against the one-dimensional version and gener-
alize it to the multidimensional version with small dimension or small noise. In
particular, our attacks show that both problems can directly be reduced to the
shortest vector problem.

1.1 Contribution 1: Breaking the integer iNTRU assumption

The inhomogeneous NTRU (decision) problem (iNTRU) introduced in [6] consists
in distinguishing between a random and a synthetically constructed (ℓ+1)-tuple.
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The synthetically constructed tuple follows the so-called iNTRU distribution that
is obtained in two steps: First, a secret invertible ring element s ∈ R/qR is ran-
domly sampled and small error values ei stemming from a specific error distri-
bution are determined. Second, the tuple is defined by setting a0 := e0/s mod q
and the remaining ℓ entries are fixed by ai := (2i−1 − ei)/s mod q.

We analyse the integer iNTRU problem (i.e., R = Z) and develop two el-
ementary lattice based distinguisher. Our key idea consists in replacing ai by
bi := 2ai − ai+1 = (−2ei + ei+1)/s mod q and making so the entries indepen-
dent of the blow up term 2i. This change guarantees the existence of an extremely
small vector (smaller than the expected heuristic value) inside well constructed
lattices. A vector of this magnitude will not be contained in those lattices if the
initial tuple was randomly sampled. Finally, simple lattice reduction spots the
difference and even reveals the secret s.

1.2 Contribution 2: Generalizing the one-dimensional attack to the
MiNTRU assumption

After introducing the one dimensional version of the inhomogeneous NTRU
problem, the authors of [6] generalize it to matrices. The matrix inhomoge-
neous NTRU (decision) problem (MiNTRU) consists in distinguishing between
a randomly sampled and a synthetically constructed matrix. The synthetically
constructed matrix is again obtained in two steps: First, a random invertible
matrix S ∈ Zn×n

q is sampled and an error matrix E ∈ Zn×(n(ℓ+1))
q stemming

from a specific error distribution is determined. Second, the challenge matrix is
defined as A := S−1×(G−E) mod q where G = [0|I|2I|...|2ℓ−1I] is an extended
gadget matrix.

We generalize our previous iNTRU distinguisher to the multidimensional case.
Again, the method relies on first eliminating the blow up factor 2i−1 (hidden in
the gadget matrix), but this time even the secret matrix S will be canceled out,
leading to a system of low norm matrices only. From there on, a well constructed
lattice reveals again an extremely short vector, which can not be found in case
of a random initial matrix. As the involved lattice dimensions are increasing, the
output may deviate from the shortest vector, and so the secret will no longer
be recovered. Nonetheless, this method has a relatively good success rate if the
dimension n is small or if the error distribution for E is too narrow.

1.3 Disclaimer 1

We highlight that our attacks differ from the one in [12] based on [10].
Our iNTRU attack and its generalization follow standard lattice techniques

and do not require advanced sub-lattice constructions. Although the latter may
be used to simplify the construction, it is not needed. In particular, we will not
get back to the highly useful methods from [10].

We note that besides using a different construction, we also work in a different
context than [12]. Indeed, whereas they started from secret Bernoulli matrices
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(−1, 0, 1 entries), we work in a more general context where the secret matrix
is sampled completely at random. In addition, our methods allow bypassing
far larger entropic noise than their sub-lattice attack, but our approach is still
somewhat dependent on the overstretched regime of the iNTRU instantiation.

Unfortunately, compared to their attack, our attacks are less powerful. More
precisely, they managed to recover efficiently the secret matrix, thereby breaking
the search version of the assumptions. We will be content with attacking the
decision version without guarantee of recovering the secret.

Finally, we note that [6] has been updated to bypass the attack from [12]
(which was in fact based on a toy example from [6]). In particular, the secret
matrix is not a Bernoulli matrix anymore, implying that the size estimate used
in [12] does no longer hold, and the final recovering step cannot be applied. We
are not aware on how to use their attack on a completely random secret matrix.

1.4 Disclaimer 2

We remark that our attacks are devised for the integer case (R = Z) only, and
that their efficiency for general rings is limited. Albeit they reflect a potential the-
oretical threat, our constructions are not strong enough to impact the security of
recent cryptographic constructions such as [7] or [6] that either use iNTRU with
rings of large degree or the MiNTRU with matrices of large dimension. Thereby,
our contribution can only be seen as a first indication that the iNTRU (respec-
tively the MiNTRU) assumption is not as hard as other well assumptions (like
LWE). Further security analyses may be required to develop practical attacks
against iNTRU (respectively MiNTRU) based cryptographic protocols.

1.5 Paper Organization

We start with setting the notations in Section 2 and continue this section with
a reminder about lattices. In Section 3, we redefine the iNTRU assumption,
and we quickly review its recent use. In Section 4 and Section 5, we develop
two complementary lattice attacks against the one-dimensional integer iNTRU
assumption. The first one will only be applicable if a specific invertibility con-
dition is satisfied, and the second attack may be used in the opposite case.
We complete our analysis in Section 6 with a short description on how to gen-
eralize our attacks to the polynomial ring iNTRU assumption and to the low
dimensional MiNTRU assumption with low entropic noise. The latter assump-
tion is formally redefined in Appendix B and the detailed attack is outlined in
Appendix C. Due to the increasing approximation uncertainty of the shortest
vector by lattice reduction, this attack is only guaranteed to work for MiNTRU
instantiations of small dimensions or low entropic noise. We complete our anal-
ysis in Appendix D with a short comparison of the studied assumptions with
the Learning-with-Errors assumption. Fully commented SageMath source codes
corresponding to our attacks may be found in Appendix E and Appendix F or
at http://hdl.handle.net/10993/47990.

3

http://hdl.handle.net/10993/47990


2 Preliminaries

2.1 Notations

For a finite set S, we denote its cardinality by |S| and the action of sampling
an element x uniformly at random from S is denoted by x←$S. When another,
non-uniform distribution χ over the support set S is used, we abuse the notation
and write x← χ(S) or simply x← χ if the support set is clear from context. We
denote by ∥ · ∥ := ∥ · ∥2 the real Euclidean norm and by log := log2 the base 2
logarithm. For an integer q ≥ 2, we denote by Z/qZ the ring of integers modulo q
and we represent it using the 0-centered representation Z/qZ = (−q/2, q/2]∩Z.
We denote an ordered list of n elements by (a1, . . . , an). Lowercase variables in
bold font, such as a, usually denote (row) vectors and bold uppercase letters,
such as A, usually denote matrices.

2.2 Lattice preliminaries

Lattices Let v1, . . . ,vn ∈ Zm be linearly independent row vectors. The row
lattice generated by the basis v1, . . . ,vn is the linear span

Λ = L(v1, . . . ,vn) =

{
n∑

i=1

xivi | x1, . . . , xn ∈ Z

}
.

We call a matrix B a basis matrix of Λ if Λ is generated by the rows of B. It is
well known that two bases B,B′ generate the same lattice if and only if there
is an unimodular matrix U ∈ GL(Z, d) such that B = UB′. The determinant
of a lattice Λ is defined by det(Λ) =

√
det(BBT ) where B denotes any basis of

Λ. Naturally, this determinant is independent of the chosen basis. The rank (or
dimension) of a lattice is the dimension as a vector space of the lattice, and a
lattice is full rank if it has maximal rank.

Successive minima For i ∈ {1, . . . , n}, we define the ith successive minimum
of Λ as the smallest r > 0 such that Λ contains at least i linearly independent
vectors of length bounded by r, λi(Λ) = inf{r ∈ R>0 : dim(span(Λ∩B(0, r))) ≥
i} where B(0, r) = {x ∈ Rm : ∥x∥ ≤ r} is the closed ball of radius r around 0.
The successive minima are achieved (thus, one may use the minimum instead
of the infimum in its definition) and lattice points of norm λi(Λ) are called i-th
shortest vectors, but may not be unique. Minkowski’s Second Theorem states

that for each 1 ≤ i ≤ n the product
(∏i

j=1 λj(Λ)
)1/i

≤
√

n
2πe det(Λ)

1/n.

LLL reduction Given 1/4 < δ < 1, a lattice basis v1, . . . ,vn of Λ is LLL
reduced with factor δ if the following holds

1. Size reduced:
∣∣∣ ⟨vi,v

∗
j ⟩

⟨v∗
j ,v

∗
j ⟩

∣∣∣ ≤ 1
2 for all 1 ≤ j < i < n;

4



2. Lovász condition: ∥v∗
j∥2 ≥

(
δ −

∣∣∣ ⟨vj ,v
∗
j−1⟩

⟨v∗
j−1,v

∗
j−1⟩

∣∣∣2) ∥v∗
j−1∥2 for each 2 ≤ j ≤ n;

where v∗
1, . . . ,v

∗
n denote the Gram-Schmidt orthogonalization of the basis vec-

tors. Traditionally δ = 3/4, but in practice δ = 0.99 is chosen. LLL reduced bases
are not unique, but they have many desired properties. Indeed, let α = 1

δ− 1
4

,
then

1. ∥vj∥ ≤ α
n−1
2 λi(Λ) for all 1 ≤ j ≤ i ≤ n;

2. det(Λ) =
∏n

i=1 ∥v∗
i ∥ ≤

∏n
i=1 ∥vi∥ ≤ α

n(n−1)
2 det(Λ).

The LLL algorithm [13] outputs a LLL reduced basis of a rank n lattice in Zm

in time O(n5m log(K)3) from basis vectors of norm less than K. 3

Heuristics The Gaussian Heuristic (see [2] and [5]) yields that for a "ran-
dom" lattice of "large" dimension, we expect the shortest vector to be of norm
λ1(Λ) ≃

√
n

2πe det(Λ)1/n. Furthermore, in this case, all the lattice minima can
be expected to be of approximately the same size.

Q-ary lattices If qZm ⊆ Λ ⊆ Zm for some q ∈ Z≥2, then Λ is called a q-
ary lattice. We remark first that, by definition, every q-ary lattice has full rank
n = m. Secondly, we observe that the lattice minima of a q-ary lattice are
upper bounded by λi(Λ) ≤ q for all i ∈ {1, . . . ,m}. Given any matrix A ∈
(Z/qZ)k×m, we define the two special q-ary lattices Λq(A) = {y ∈ Zm|y = ATx
mod (q) for some x ∈ Zk} and Λ⊥

q (A) = {y ∈ Zm|Ay = 0 mod (q)}. As a
matter of fact, any q-ary lattice may be expressed as one of those lattices for
some matrix A ∈ (Z/qZ)k×m and det(Λq(A)) ≥ qm−k with equality if A is
non-singular. Due to their special structure, q-ary lattices can not be seen as
random (as required for the Gaussian heuristic). Nonetheless, [3] states that the
Gaussian heuristic appears to hold exceedingly well for such lattices. A bit more
precisely, [22, Lemma 2.18] proves that for fixed prime q and m ≥ k, and for a
randomly sampled matrix A ∈ (Z/qZ)k×m, the first lattice minimum is lower
bounded by min

{
q,

√
m
8πeq

m−k
m

}
with probability greater than 1−2−m. We note

that
√

m
8πeq

m−k
m corresponds to half the Gaussian heuristic if A is non-singular.

Our lattices Hereinafter, we will use particular q-ary lattices where A ∈
(Z/qZ)1×m with a fixed entry equal to 1 and where q is not necessarily a prime.
Although, none of the above results perfectly match our setup, we assume that,
with noticeable probability, the first lattice minimum satisfies

λ1(Λ) ≥ min

{
q,

√
m

8πe
q

m−1
m

}
. (H)

3 Hereinafter, we will only use the LLL algorithm for lattice reduction. Better results
may be achieved using recent results on the BKZ algorithm (see [14]). However, the
LLL algorithm suffices for our elementary analysis.
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3 The iNTRU assumption

In this section, we (re-)define the inhomogeneous NTRU (iNTRU) assumption,
we describe some variants and outline its use.

3.1 The iNTRU assumption

The iNTRU problem has initially been introduced in [6, Section 4.1] formula (3).

Definition 1 (iNTRU distribution). Let R be a ring, q any modulus, ℓ =
⌈log(q)⌉ and χ be a symmetric error distribution over R producing with over-
whelming probability elements with norm ≪ q. Define the iNTRU distribution
with these parameters to be obtained by the following sampling process

iNTRU =


s←$ (R/qR)×
ei ← χ ∀i ∈ {0, ..., ℓ}
a0 := e0/s mod q
ai := (2i−1 − ei)/s mod q ∀i ∈ {1, ..., ℓ}

 (1)

and denote any such tuple (a0, . . . , aℓ) by iNTRU tuple.

Definition 2 (iNTRU search problem). Given an iNTRU tuple (a0, . . . , aℓ)
and a modulus q, the iNTRU search problem consists in finding the hidden secret
s. The iNTRU search assumption predicts that s can only be determined with
negligible probability.

Definition 3 (iNTRU decision problem). Given a tuple (x0, . . . , xℓ) and a
modulus q, the iNTRU decision problem consists in distinguishing whether the
tuple has been sampled using the iNTRU distribution or the uniform distribution
over R/qR. The iNTRU decision assumption predicts that such a distinction can
only be made with negligible probability.

We highlight that in [6] only the decision variant has been defined. However, in
practice, the search variant may be used.

3.2 Further remarks

Hereinafter, we will point out some particular points of the definitions:

1. The iNTRU definition gives no limitation for the modulus q. Indeed, theo-
retically R/qR might only be a ring and does not need to be a field.

2. If R = Z, then the underlying error distribution χ may be considered to be
the discrete Gaussian distribution with variance σχ = O(

√
q) (following a

suggestion of [6]).
3. One can define shortened iNTRU tuples by removing the first entries of an

iNTRU tuple. Especially, the first entry a0 is sometimes removed.
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3.3 Applications

Currently, the iNTRU assumption has only been used in [7] to develop two ring
based short integer solution lattice trapdoors. The pseudorandomness of those
trapdoors stems directly from the iNTRU assumption. We will fast revise their
construction.

Trapdoors Intuitively, a trapdoor is some information that allows to invert a
function [4]. For instance, if fa(x) := a · xT , where a,x are elements over some
polynomial quotient ring (R/qR)m, then a trapdoor would allow recovering x.

Short Integer Solutions The Short Integer Solution (SIS) problem (see [1]
for the original integer case, [16] for the ring based definition, and [11] for the
module version) is a standard cryptographic problem which, in the ring version,
asks to find, for a given vector a ∈ (R/qR)m and a bound value β ∈ R>0, a
vector x ∈ (R/qR)m such that fa(x) = a · xT = 0 and ∥x∥ρ < β for a suitable
metric ∥ · ∥ρ.

Usually, this problem is tackled by an elementary trapdoor mechanism. More
precisely, assume that it is easy to solve the short integer solution problem for fg
where g is a known vector called the gadget. Assume further to know a low norm
matrix R, called a g-trapdoor, such that a ·R = g. Then, it is easy to solve the
initial short integer solution problem. Indeed, one first samples at random any
x such that fg(x) = 0 and ∥x∥ρ < β (which is supposedly easy to find). Next,
one computes x′ := R · x and finally hopes that it still fulfills ∥x′∥ρ < β, which,
due to the low norm entries of R, generally holds. The preimage construction
(i.e., finding x) is commonly based on a discrete Gaussian sampling procedure
(see [8] for a broad overview).

Despite their utility, such trapdoors may incorporate a security thread. In-
deed, as outlined above, anyone knowing the trapdoor may solve the initial prob-
lem. Thereby, a necessary security feature required by such a trapdoor is that
it is difficult to be guessed or put another way, it should be pseudorandom. [7]
constructs two such trapdoors as follows.

Their idea The main idea behind their trapdoors is to use the inherent trapdoor
potential of the iNTRU distribution. Concretely, a shortened iNTRU tuple a =
(a1, . . . , aℓ) can be represented as a = s−1(g + e) where g = (1, 2, 22, . . . , 2ℓ−1)
is the gadget vector, e = (e1, . . . , eℓ)←$χℓ and s ∈ (R/qR)× (they even choose
s← χ). Since sa = g + e ≈ g, the secret s is almost a g-trapdoor for a, falling
only short of the corresponding error vector e.

Their trapdoor generation Unfortunately, such a direct construction might
leak some information on the trapdoor (we omit the details here). To bypass this
leakage, the authors suggest replacing the gadget g by an approximate gadget
f = (2j , . . . , 2ℓ−1) for some j ∈ N>1 (often j = ⌈log(q)/2⌉) and to proceed in the
usual way, i.e., a = s−1(f + e). The f -trapdoor will then consist in (s, e).
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The main difference of their constructions are the preimage sampling pro-
cesses. These rely on different choices of perturbations and provoke a change in
the discrete Gaussian sampling step. We omit the technical details about the
procedures, as they will not be affected by what follows.

Pseudorandomness In the described construction, trapdoor pseudorandom-
ness stems directly from the pseudorandomness of iNTRU tuples. Indeed, if, for
given a (and implicitly the approximate gadget f), one could retrieve the secret
s, then one can also find the error tuple e and so the desired trapdoor.

3.4 Our contribution

We are going to prove that neither the decision, nor the search variant of the
iNTRU assumption are safe in the integer case R = Z and so the iNTRU distri-
bution is not pseudorandom. Independent of the chosen modulus and the exact
error distribution, our lattice attacks will distinguish with noticeable probability
between random tuples and synthetically constructed ones, and they will retrieve
the hidden secret in the latter case.

Our first attack is the natural choice when facing a challenge tuple. It will
slightly modify the challenge entries and then construct a lattice. In the presence
of a random challenge tuple, the shortest vector of this lattice will follow a specific
heuristic (close to the Gaussian heuristic) whereas for a synthetically constructed
one, the shortest vector will be far smaller and can be used to retrieve the secret.
Unfortunately, the involved transformations include a modular inversion which
may not be feasible in some cases, and one may bypass the attack by a suitable
construction.

Our second attack can be used in case the first attack does not apply. It
follows a similar transformation chain, but does not involve a modular inversion.
The basic idea of the attack is the same, but this time the second-shortest vector
will be compared to the heuristic. Due to this non-standard approach and an
increased complexity, the first attack is preferable in most cases.

Although our attacks are conceived for the integer case, one may generalize
them for polynomial rings. Such a generalization however needs to be carried
out carefully, as the lattice dimension will increase and limits the applicability
of the attack. Thereby, the attack is predicted to work for low degree polynomial
rings only.

4 Attacking the iNTRU assumption - First approach

In this section, we describe our first lattice attack against the search and decision
variant of the iNTRU assumption. We develop the attack for R = Z only, but we
emphasise that it can be generalized to low degree polynomial rings. Our attack
first outlines whether a given tuple stems from the iNTRU distribution and if
so it will find the underlying secret s. The development is based on full length
challenge tuples but can, through small changes, also be applied to shortened
tuples.
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4.1 Our first lattice and its properties

Let (x0, . . . , xℓ) be an challenge tuple corresponding either to the uniform or the
iNTRU distribution.

Lattice construction First, we slightly modify our challenge tuple and set

y0 := x0 mod q and yi = 2xi − xi+1 mod q ∀i ∈ {1, . . . , ℓ− 1}. (2)

Let t ∈ {0, . . . , ℓ − 1} be an index such that gcd(yt, q) = 1. If no such index
exists, the subsequent development will not work and our second iNTRU attack
needs to be used (c.f. Section 5)4. We set

zi := y−1
t yi mod q ∀i ∈ {0, . . . , ℓ− 1} (3)

where zt = 1. Then, we define the ℓ× ℓ q-ary row lattice:

Λ = L



z0 . . . zt−1 1 zt+1 . . . zℓ−1

q . . . 0 0 0 . . . 0
...

. . .
...

...
...

...
0 . . . q 0 0 . . . 0
0 . . . 0 0 q . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . q


(4)

4.2 Case of a random tuple

Assume that our initial challenge tuple (x0, . . . , xℓ) was sampled uniformly at
random. Then, our constructed variables yi as well as zi (except zt = 1) will still
follow the uniform distribution as they involve only the addition and multipli-
cation of random variables. Thereby, the shortest lattice vector can be expected
to follow heuristic H and to satisfy

λ1(Λ) ≥ min

{
q,

√
ℓ

8πe
q

ℓ−1
ℓ

}
. (5)

4.3 Case of a synthetic tuple

Assume next that the initial tuple (x0, . . . , xℓ) has been synthetically constructed
following the iNTRU distribution. We will show that in this case the lattice
contains a non-trivial short vector being magnitudes smaller than the expected
heuristic.
4 For R = Z and random x0, . . . , xℓ, the probability that our first attack cannot be

used is only
(
1− ϕ(q)

q

)ℓ
where ϕ denotes the Euler totient function. In particular,

if q is prime our first attack should always work.
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First observation We recall that a synthetically constructed tuple (a0, . . . , aℓ)
following the iNTRU distribution satisfies

a0 =
e0
s

mod q and ai =
2i−1 − ei

s
mod q ∀i ∈ {1, . . . , ℓ} (6)

where e0, . . . , eℓ denote random errors sampled from the symmetric error distri-
bution χ producing with overwhelming probability small elements. Thereby,

y0 =
e0
s

mod q and yi =
−2ei + ei+1

s
mod q ∀i ∈ {1, . . . , ℓ− 1} (7)

where the numerators are still quite small. More precisely, the numerators follow
the distribution χ′ where:

1. The mean µχ′ of χ′ is given by

µχ′ = −2µχ + µχ = 0

where the first equality stems from the distribution properties of sums of
random variables as well as the fact that ai and ai+1 follow the same distri-
bution χ, and the second equality comes from the fact that the mean µχ = 0
since χ is a symmetric distribution (i.e., −χ = χ).

2. The variance σχ′ of χ′ is given by

σ2
χ′ = 3σ2

χ

since all three variables follow the distribution χ.

In particular, we conclude that since χ produces with overwhelming probability
elements with absolute value ≪ q, so does χ′. Thereby, the numerators are
expected to be quite small when compared to the modulus q.

Second observation Continuing to outline the effect of our variable changes
leads to the conclusion that

zi =
−2ei + ei+1

e′t
mod q ∀i ∈ {0, . . . , ℓ− 1} (8)

where e′t = e0 if t = 0 and e′t = −2et + et+1 if t ∈ {1, . . . , ℓ − 1}. Thus, each zi
is the quotient of two small error elements.

The shortest lattice vector Interestingly, our two observations imply that
our lattice contains the vector

v = (e0, (−2e1 + e2), . . . , (−2eℓ−1 + eℓ)) (9)

obtained by multiplying the first row by e′t and applying the "modulo q reduc-
tion", corresponding to an addition of the respective lines, as often as needed.
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We are going to show that this vector will be almost surely smaller than the
expected heuristic and the canonically short vectors with a single entry q. To
do so, first assume that the error entries are upper bounded by some constant
K > 0. i.e.,

max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ K. (10)

Then, the size of v may be upper bounded by

∥v∥2 ≤
√
ℓK2 ≤

√
ℓ K. (11)

Proposition 1. If max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ min
{

q√
ℓ
,

1√
8πe

q(ℓ−1)/ℓ
}
, then the target vector v is shorter than min

{
q,

√
ℓ

8πeq
ℓ−1
ℓ

}
.

Proof. Replace K in Equation (11) with the predicted values and compare. ⊓⊔

As in practice the error terms are O(
√
q), the size condition is almost always

satisfied. For comparison, the probability that a completely randomly sampled

ℓ-tuple would be of this size is lower than
(

2
√
ℓK+1
q

)ℓ

, which is rapidly decreasing
for small K.

Lattice reduction We need to make sure that our target vector v can also
be determined. We will show that upon slightly decreasing the upper bound K,
we are guaranteed that ordinary LLL reduction returns a vector that is smaller
than the expected heuristic. In general, the first LLL reduced vector with factor
δ will not be a smallest lattice vector, but only a good approximation of it. More
precisely, the first LLL reduced vector w1 satisfies theoretically ∥w1∥ ≤ α

ℓ−1
2 λ1

where λ1 denotes the length of a shortest lattice vector and α = 1
δ− 1

4

. However,
in practice, this artificial blowup is barely observed. We note that for increasing
δ, the blow-up factor α decreases. For the sake of explicit results, we consider
δ = 63

64 < 0.99 resulting in α = 64
47 <

√
2. By Equation (11), we know that

λ1 ≤ ∥v∥2 ≤
√
ℓK. This implies that

∥w1∥2 ≤ α
ℓ−1
2

√
ℓK ≤ 2

ℓ−1
4

√
ℓK ≤ 2

log(q)
4

√
ℓK ≤ q 1

4

√
ℓK. (12)

Proposition 2. If max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ min
{

q3/4√
ℓ
,

1√
8πe

q
3ℓ−4
4ℓ

}
, then ∥w1∥2 is smaller than min

{
q,

√
ℓ

8πeq
ℓ−1
ℓ

}
.

Proof. Replace K in Equation (12) by the predicted values and compare. ⊓⊔

As usually K = O(
√
q), we can expect the condition of Proposition 2 to hold

in practice. We highlight also that finding another vector of this magnitude is
rather improbable, and we can even expect w1 = ±v.
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4.4 Conclusion

We conclude that:

1. In case of a random tuple, the first LLL reduced vector can be expected with

noticeable probability to be lower bounded by min

{
q,

√
ℓ

8πeq
ℓ−1
ℓ

}
.

2. In case of a synthetic tuple, the first LLL reduced vector is with high proba-

bility smaller than the predicted value min

{
q,

√
ℓ

8πeq
ℓ−1
ℓ

}
and we can even

expect it to be equal to ±v where v = (e0, (−2e1 + e2), . . . , (−2eℓ−1 + eℓ))
is our target vector.

Hence, we can distinguish with noticeable probability between a randomly
sampled tuple and a synthetically constructed one by simply comparing the

length of the first LLL reduced vector with min

{
q,

√
ℓ

8πeq
ℓ−1
ℓ

}
. Furthermore,

in case of a synthetically constructed tuple, the first LLL reduced vector is ex-
pected to reveal the modified error terms. Choosing the error term in the t-th
position e′t, and computing e′t

yt
mod q = ±s reveals then the hidden secret s.

The corresponding SAGEMATH source codes for our first distinguisher (distin-
guisher1) can be found in Appendix E.

Optional bootstrapping We note that in the whole development, we never
assumed to know the precise error distribution. Indeed, multiple passages could
have been formalized and simplified when the error distribution was known (e.g.,
Discrete Gaussian). Besides retrieving the secret s, our method even allows to
retrieve the underlying error distribution. Indeed, upon reception of the secret s,
one easily reveals the original error values e0, . . . , eℓ. Once the errors have been
determined, any bootstrapping method may simulate the whole error distribu-
tion.

5 Attacking the iNTRU assumption - Second approach

In this section, we describe our second attack against the integer iNTRU assump-
tions. Whereas our first attack is foremost suitable for prime moduli q, it may
not be used under unfortunate circumstances, namely if none of the yi is invert-
ible. This can be easily determined and in the improbable case this happens,
one needs to opt for our second attack. Although slightly more challenging and
bound on a more restricted success probability, our second attack will work for
any initial challenge input. However, due to its increased complexity and unusual
approach, the first method should be used if possible.

5.1 Our second lattice and its properties

Let (x0, . . . , xℓ) be an iNTRU challenge tuple corresponding either to the uniform
or the iNTRU distribution.

12



Lattice construction Similar than in our first attack, we modify our challenge
tuple by setting

y0 := x0 mod q and yi = 2xi − xi+1 mod q ∀i ∈ {1, . . . , ℓ− 1}. (13)

But contrary to the first attack, we stop our modifications and directly construct
the (ℓ+ 1)× (ℓ+ 1) q2-ary row lattice:

Λ = L



y0q y1q y2q . . . yℓ−1q 1
q2 0 0 . . . 0 0
0 q2 0 . . . 0 0
0 0 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . q2 0


(14)

Predicted value Assuming the first row of Λ random, heuristic H yields that

λ1(Λ) ≥ min

{
q2,

√
ℓ+ 1

8πe
q

2ℓ
ℓ+1

}
. (15)

However, here our heuristic needs to be considered with precaution as it only
applies to random initial matrices A and prime moduli. Especially for our lattice
Λ, where both of those conditions are not satisfied, we must pay attention and
indeed, our lattice contains a shorter vector. More precisely, our lattice contains
the vector (0, . . . , 0, q) obtained by multiplying the first row by q and then for
each i ∈ {0, . . . , ℓ − 1} subtracting yi times row i + 1 from it. Thus, λ1 ≤ q.
Nonetheless, our heuristic is a good indication for the size of the other succes-
sive minima and in particular for λ2 (not to say that it is the only applicable
estimation).

5.2 Case of a random tuple

Let the initial tuple (x0, ..., xℓ) be randomly sampled at uniform from (Z/qZ)ℓ+1.
Then, also the corresponding yi will follow the uniform distribution and so the
first row of our lattice behaves, up to the common factor q and the last en-
try, almost randomly. We will prove that apart from our trivially short vector
(0, . . . , 0, q), its suitable multiples, and the canonical vectors with a single en-
try q2 (if applicable), it is improbable to find another vector smaller than the
expected value heuristic.

Lemma 1. Let B ≤ q
2 be an integer and S ⊆ Z be fixed. Choose randomly

r ∈ Z/q2Z and for each i ∈ {0, . . . ℓ− 1}, let also yi ∈ Z/qZ be random. Set

y = (y0q, y1q, . . . , yℓ−1q, 1).
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Then, the probability that r ∈ S and the norm of the vector ry mod q2 is at
most Bq is upper bounded by

P
((∥∥[ry mod q2]

∥∥
2
≤ Bq

)
∩ (r ∈ S)

)
≤

Bq∑
βℓ=−Bq

βℓ∈S

ℓ(2⌊B/ gcd(βℓ, q)⌋+ 1)

q2

(
gcd(βℓ, q)

q

)ℓ

.

We note that the computation of
∥∥[ry mod q2]

∥∥
2

takes place sequentially
and component-wise. More precisely, first ry is computed, then each component
is reduced modulo q2 to its centrally symmetric representative (i.e., the smallest
representative in absolute value), and finally the Euclidean norm is taken on the
resulting vector as seen over the integers. The proof of Lemma 1 can be found
in Appendix A.

To put the previous lemma into context, we point out that if S = {kq | k ∈
Z}, then the probability is smaller than 1√

q and if S = (Z/q2Z)× is the set of
units, then the probability is smaller than ℓ

qℓ−1 . Although our lattice contains
the trivial short vector (0, . . . , 0, q) and its multiples, the probability of finding
a short vector with nonzero entries on the first ℓ−1 entries is rapidly decreasing
with increasing q. For small bounds B, we expect with a high probability that
such a vector will not even exist. In this case, the best possible guess for the size

of the second-shortest vector will be min

{
q2,

√
ℓ+1
8πe q

2ℓ
ℓ+1

}
.

5.3 Case of a synthetic tuple

Assume next that the initial tuple (x0, . . . , xℓ) has been synthetically constructed
following the iNTRU distribution. Then, we will prove that apart from our triv-
ially short vector (0, . . . , 0, q), its multiples and the canonical vectors with a
single entry q2, our lattice contains at least one more linearly independent short
vector.

Preliminary observation Similar than in our first attack, we note that a tuple
(a0, . . . , aℓ) following the iNTRU distribution satisfies

a0 =
e0
s

mod q and ai =
2i−1 − ei

s
mod q ∀i ∈ {1, . . . , ℓ} (16)

where e0, . . . , eℓ denote random errors sampled from the symmetric error distri-
bution χ producing with overwhelming probability small elements and that

y0 =
e0
s

mod q and yi =
−2ei + ei+1

s
mod q ∀i ∈ {1, . . . , ℓ− 1} (17)

where the numerators follow the symmetric distribution χ′ with µχ′ = 0 and
σχ′ =

√
3σχ and are thus still quite small.

14



Another short vector Our lattice contains the vector

v = (e0q, (−2e1 + e2)q, . . . , (−2eℓ−1 + eℓ)q, s) (18)

obtained by multiplying the first row by s and applying the "modulo q2 reduc-
tion", corresponding to an addition of the respective lines, as often as needed.
We are going to show that this vector will be almost surely smaller than the
expected heuristic. To do so, we first assume that the error entries are upper
bounded by some constant K > 0. i.e.,

max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ K. (19)

Then, the size of v may be upper bounded by

∥v∥2 ≤
√
ℓK2q2 + s2 ≤

√
ℓK2q2 + q2 ≤

√
ℓ+ 1 qK. (20)

Whenever K is small enough, this upper bound is smaller than the expected
heuristic. That this smallness condition is in general no limitation is shown by
the following proposition.

Proposition 3. If max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ min
{

q√
ℓ+1

,

1√
8πe

q
ℓ−1
ℓ+1

}
, then the target vector v is shorter than min

{
q2,

√
ℓ+1
8πe q

2ℓ
ℓ+1

}
.

Proof. Replace K by the upper bound for max in Equation (20). ⊓⊔

As usually the error terms are O(
√
q), our target vector v will almost surely be

smaller than the expected heuristic.

Lattice reduction Finally, it is time to check whether our target vector v
can even be determined using ordinary lattice reduction. Hereinafter, we will
only consider LLL reduction. An LLL reduced basis (w1, . . . ,wℓ+1) satisfies
theoretically ∥wi∥2 ≤ α

ℓ
2λi where λi denotes the i-th successive minimum of

the lattice and α = 1
δ− 1

4

. For the sake of explicit results, we again consider

δ = 63
64 < 0.99 resulting in α = 64

47 <
√
2.

Let us concentrate on the first LLL output, namely w1. We recall that our
shortest vector will probably be v0 = (0, ..., 0, q).5 Thus, we assume λ1 ≤ q. This
implies that

∥w1∥2 ≤ α
ℓ
2 q ≤ 2

ℓ
4 q ≤ 2

log(q)+1
4 q ≤ (2q)

1
4 q.

Lemma 1 yields that such a short vector can only be found at random with
extremely low probability Thus, it seems improbable that apart from v0 and its

5 The only possibility for which this would not be the case takes place when g =
gcd(y0, . . . , yℓ−1, q) > 1 as then (0, . . . , 0, q

g
) will be the shortest lattice vector, but

this scenario is rather improbable.
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multiples, another vector of this magnitude exists, and we expect w1 to be (a
multiple of) v0.6

Next, we consider the second LLL output, namely w2. Assuming that w1 is
a multiple of v0, the second LLL output w2 needs to contain non-zero entries on
the first ℓ entries (otherwise it would not be linearly independent from w1). By
Equation (20), we know that ∥v∥2 ≤

√
ℓ+ 1 qK where K denotes the maximal

error term and by Proposition 3 we know that our target vector is almost surely

smaller than min

{
q2,

√
ℓ

8πeq
2ℓ

ℓ+1

}
. If we slightly reduce the upper bound K, we

obtain a similar result for w2.

Proposition 4. If max{|e0|, |−2e1+ e2|, . . . , |−2eℓ−1+ eℓ|} ≤ min
{

q3/4

21/4
√
ℓ+1

,

1
23/4

√
πe
q

3ℓ−5
4(ℓ+1)

}
, then ∥w2∥2 is smaller than min

{
q2,

√
ℓ

8πeq
2ℓ

ℓ+1

}
.

Proof. Let max{|e0|, | − 2e1 + e2|, . . . , | − 2eℓ−1 + eℓ|} ≤ K. Then we know that
∥w2∥2 ≤ α

ℓ
2λ2 ≤ α

ℓ
2v. Using again the fact that α ≤

√
2 implies α

ℓ
2 ≤ (2q)

1
4

and with Equation (20), we conclude

∥w2∥2 ≤ (2q)
1
4

√
ℓ+ 1 qK.

Replacing K by the claimed upper bounds concludes the proposition. ⊓⊔

The upper bound for K in Proposition 4 is O(q
3
4 ) and as usually K = O(

√
q),

we can expect the condition to hold in practice. In comparison, using Lemma 1,
we conclude that such a short vector will only be found at random with low
probability. Thereby, we can even expect w2 = ±v.

5.4 Conclusion

Our cautious lattice analysis gives rise to multiple conclusions:

1. In case of a random tuple as well as in the case of a synthetically constructed
one, the first LLL reduced vector will with overwhelming probability be a
multiple of (0, . . . , 0, q).

2. In case of a random tuple, the second LLL reduced vector can be expected

to be lower bounded by min

{
q2,

√
ℓ

8πeq
2ℓ

ℓ+1

}
.

3. In case of a synthetic tuple, the second LLL reduced vector is with a high

probability smaller than min

{
q2,

√
ℓ

8πeq
2ℓ

ℓ+1

}
. Furthermore, we can expect

it to be equal to ±v where v = (e0q, (−2e1 + e2)q, . . . , (−2eℓ−1 + eℓ)q, s) is
our target vector.

6 This conclusion also holds in the case of a random tuple.
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Hence, we finally conclude that we can distinguish with noticeable probability
between a randomly sampled tuple and a synthetically constructed one by simply

comparing the length of the second LLL reduced vector with min

{
q,

√
ℓ

8πeq
2ℓ

ℓ+1

}
.

Furthermore, in case of a synthetically constructed tuple, the last entry of this
vector should reveal the secret value s or its negative −s. Especially if the ini-
tial errors are comparably small with respect to q (e.g., O(

√
q)), there is a high

chance of revealing the secret. The corresponding SAGEMATH source codes for
our second distinguisher (distinguisher2) can be found in Appendix E.

Optional bootstrapping As in the first attack, we never assumed to know
the precise error distribution. Similar to the first attack, after retrieving the
secret s, one can extract the original error values e0, . . . , eℓ and use a suitable
bootstrapping method to simulate the whole error distribution.

6 Generalizing our attacks

Our two lattice attacks against the iNTRU assumption have been conceived for
the integer case (R = Z) only. However, it is not difficult to generalize them.

6.1 iNTRU - The general case

In, order to generalize our attacks to polynomial rings, one may simply replace
the xi’s by the corresponding polynomial values and carry on with the construc-
tions. The corresponding lattices will then contain the corresponding polynomial
coefficients. The arising difficulty is that in the presence of degree d polynomi-
als, the lattice dimension will increase by a factor of d as well. This blow-up
heavily impacts the detectable error limits in Proposition 2 and Proposition 4
up to the point where only Bernoulli errors would be detectable (i.e. −1, 0, 1).
To be precise, degree d polynomials would only lead to the theoretical bound
∥w1∥2 ≤ q

d
4K for the first LLL reduced vector in Equation (12) which, for large

d, is not short enough to grant the required upper bound ∥w1∥2 ≤ q. Likewise,
for our second distinguisher, the theoretical bound ∥w2∥2 ≤ q2 will not be ful-
filled for large d. As in general LLL performs better in practice than in theory,
slightly larger degrees might be achievable, but only the use of stronger reduction
algorithms such as BKZ (see [14]) will lead to well-functioning distinguishers.

6.2 MiNTRU

Our attacks can also be generalized to the second assumption introduced in [6],
the so called matrix inhomogeneous NTRU (MiNTRU) assumption. The MiNTRU
assumption essentially replaces polynomial elements in the iNTRU assumption
by integer modular matrices. To be precise, let q be any modulus, ℓ = ⌈log(q)⌉,
m = n(ℓ + 1), G = [0|I|2I|...|2ℓ−1I] ∈ Zn×m an extended gadget matrix, and χ
a symmetric error distribution over Z producing with overwhelming probability
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elements with norm≪ q. Then, the MiNTRU distribution with these parameters
is obtained by the following sampling process

MiNTRU =

S← (Z/qZ)n×n
invertible

E← χn×m

A := S−1 × (G−E) mod q


and the MiNTRU decision problem requires to distinguish this distribution from
the random distribution over (Z/qZ)n×m. By decomposing the matrix A into
(ℓ + 1) individual n × n matrices A0, . . .Aℓ such that A = [A0| . . . |Aℓ], then
setting Y0 := A0 mod q and Yi = 2Ai −Ai+1 mod q ∀i ∈ {1, . . . , ℓ −
1} and finally computing Zi := Y−1

t Yi mod q ∀i ∈ {0, . . . , ℓ − 1} for some
invertible matrix Yt, removes completely the dependence of the gadget matrix
G and ends up in matrices with entries of quotients of small norm error elements
only. Thereby, the same strategy as in the iNTRU attack may be mounted against
the underlying decision problem. However, once again, the success chance of our
attack is strongly affected by the matrix dimensions. Concretely, the generalized
attacks will only work for low dimensional matrices or matrices with low entropic
noise. A more detailed analysis may be found in Appendix B and Appendix C.

7 Conclusion

Our simple lattice based distinguishers break with noticeable probability the
integer case of the iNTRU assumption. Additionally, their construction yields a
theoretical thread for the general iNTRU and the MiNTRU assumption. Nonethe-
less, this thread is not reflected in practice as the distinguishers don’t cope
with large dimensions of polynomial rings (iNTRU) or with large matrix dimen-
sions (MiNTRU) as used in recent cryptographic constructions. This work should
mainly raise awareness that new hardness hypotheses should be used with cau-
tion and questions whether the two studied assumptions can compete with the
long-standing Learning-with-Errors (LWE) assumption [19] which does not suffer
from the described vulnerability (see Appendix D for a short comparison). We
emphasize that, if possible, well-known hardness assumptions should be used.
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A Proof of Lemma 1

We observe that by the properties of the Euclidean and the infinity norm, we
have

P
((∥∥[ry mod q2]

∥∥
2
≤ Bq

)
∩ (r ∈ S)

)
≤ P

((
max

{ ∣∣[ry mod q2]
∣∣ } ≤ Bq

)
∩ (r ∈ S)

)
where the maximum is taken over all the modulo reduced entries of ry. The
right expression is equal to

P


ℓ−1⋂

i=0

( ∣∣[ryiq mod q2]
∣∣ ≤ Bq

)︸ ︷︷ ︸
:=Ci

 ∩
( ∣∣[r mod q2]

∣∣ ≤ Bq
)︸ ︷︷ ︸

:=Cℓ

∩(r ∈ S)

 .

Each event C0, . . . , Cℓ−1 in the probability statement can be written as a union
of events Ci =

⋃Bq
βi=−Bq([ryiq mod q2] = βi). As this event can only take place

whenever βi is a multiple of q (otherwise, the equality cannot be satisfied), we
need only to consider the restricted union of events

⋃B
βi=−B([ryiq mod q2] =

βiq) =
⋃B

βi=−B([ryi mod q] = βi). Furthermore, Cℓ =
⋃Bq

βℓ=−Bq([r mod q2] =

βℓ) =
⋃Bq

βℓ=−Bq(r = βℓ) which is restricted to βℓ ∈ S by the last condition. Thus,
our overall probability is equal to

P


ℓ−1⋂

i=0

B⋃
βi=−B

([ryi mod q] = βi)

 ∩

 Bq⋃
βℓ=−Bq

βℓ∈S

(r = βℓ)


 .

Reordering the events gives

P

 B⋃
β0=−B

· · ·
B⋃

βℓ−1=−B

Bq⋃
βℓ=−Bq

βℓ∈S

(
ℓ−1⋂
i=0

([ryi mod q] = βi) ∩ (r = βℓ)

) .

As the events are mutually exclusive, this probability is equal to

B∑
β0=−B

· · ·
B∑

βℓ−1=−B

Bq∑
βℓ=−Bq

βℓ∈S

P

(
ℓ−1⋂
i=0

([ryi mod q] = βi) ∩ (r = βℓ)

)
.

Using Bayes’ conditional probability rule followed by Euler’s rule of interchang-
ing finite sums, this quantity can be rewritten as:

B∑
β0=−B

· · ·
B∑

βℓ−1=−B

Bq∑
βℓ=−Bq

βℓ∈S

P (r = βℓ)P

(
ℓ−1⋂
i=0

([ryi mod q] = βi)
∣∣∣ (r = βℓ)

)

=

Bq∑
βℓ=−Bq

βℓ∈S

P (r = βℓ)

B∑
β0=−B

· · ·
B∑

βℓ−1=−B

P

(
ℓ−1⋂
i=0

([ryi mod q] = βi)
∣∣∣ (r = βℓ)

)
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Naturally P (r = βℓ) =
1
q2 for any βℓ. It remains to investigate the value of the

rightmost probability. To do so, we rewrite βℓ = gℓβ
′
ℓ where gℓ = gcd(βℓ, q).

Then, for fixed β0, . . . , βℓ−1, βℓ:

P

(
ℓ−1⋂
i=0

([ryi mod q] = βi)
∣∣∣ (r = βℓ)

)

=P

(
ℓ−1⋂
i=0

([βℓyi mod q] = βi)

)

=P

(
ℓ−1⋂
i=0

([gℓβ
′
ℓyi mod q] = βi)

)

The events in this probability will only be satisfiable if βi is a multiple of gℓ, say
βi = β′

igℓ. Thus, our cumulative probability rewrites as

Bq∑
βℓ=−Bq

βℓ∈S

1

q2

⌊B/gℓ⌋∑
β′
0=−⌊B/gℓ⌋

· · ·
⌊B/gℓ⌋∑

β′
ℓ−1

=−⌊B/gℓ⌋

P

(
ℓ−1⋂
i=0

([gℓβ
′
ℓyi mod q] = β′

igℓ)

)

=

Bq∑
βℓ=−Bq

βℓ∈S

1

q2

⌊B/gℓ⌋∑
β′
0=−⌊B/gℓ⌋

· · ·
⌊B/gℓ⌋∑

β′
ℓ−1

=−⌊B/gℓ⌋

P

(
ℓ−1⋂
i=0

([β′
ℓyi mod

q

gℓ
] = β′

i)

)

=

Bq∑
βℓ=−Bq

βℓ∈S

1

q2

⌊B/gℓ⌋∑
β′
0=−⌊B/gℓ⌋

· · ·
⌊B/gℓ⌋∑

β′
ℓ−1

=−⌊B/gℓ⌋

P

(
ℓ−1⋂
i=0

([yi mod
q

gℓ
] = [β′

iβ
′−1
ℓ mod

q

gℓ
])

)

where we used the fact that gℓ = gcd(βℓ, q) which implies that β′
ℓ is invertible

modulo q
gℓ

. It is now clear that the remaining events are independent as they
only depend on yi. Thus

P

(
ℓ−1⋂
i=0

([yi mod
q

gℓ
] = [β′

iβ
′−1
ℓ mod

q

gℓ
])

)

=

ℓ−1∏
i=0

P
(
[yi mod

q

gℓ
] = [β′

iβ
′−1
ℓ mod

q

gℓ
]

)

=

(
1
q
gℓ

)ℓ

=

(
gℓ
q

)ℓ

.

Thereby, the cumulative probability is given by

Bq∑
βℓ=−Bq

βℓ∈S

ℓ(2⌊B/gℓ⌋+ 1)

q2

(
gℓ
q

)ℓ

.

⊓⊔
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B The MiNTRU assumption

In this section, we (re-)define the matrix inhomogeneous NTRU (MiNTRU) as-
sumption, we describe some variants and outline its use.

B.1 The MiNTRU assumption

The MiNTRU problem has initially been introduced in [6, Section 4.1] in formula
(4).

Definition 4 (MiNTRU distribution). Let q be any modulus, ℓ = ⌈log(q)⌉,
m = n(ℓ + 1), G = [0|I|2I|...|2ℓ−1I] ∈ Zn×m an extended gadget matrix, and χ
a symmetric error distribution over Z producing with overwhelming probability
elements with norm ≪ q. Define the MiNTRU distribution with these parameters
to be obtained by the following sampling process:

MiNTRU =

S← (Z/qZ)n×n
invertible

E← χn×m

A := S−1 × (G−E) mod q

 (21)

and denote any such matrix A by MiNTRU matrix.

Definition 5 (MiNTRU search problem). Given a MiNTRU matrix A and
a modulus q, the MiNTRU search problem consists in finding the hidden secret
matrix S. The MiNTRU search assumption predicts that S can only be determined
with negligible probability.

Definition 6 (MiNTRU decision problem). Given a matrix X and a modu-
lus q, the MiNTRU decision problem consists in distinguishing whether the matrix
has been sampled using the MiNTRU distribution or the uniform distribution over
(Z/qZ)n×m. The MiNTRU decision assumption predicts that such a distinction
can only be made with negligible probability.

We highlight that in [6] only the decision problem, has been defined. However,
in practice, the search variant may be used. Furthermore, in our presentation,
we dropped the apostrophes used in [6] to distinguish the above problem from
the so called small secret MiNTRU.

B.2 Further remarks

Hereinafter, we will point out some particular points of the definitions:

1. The MiNTRU definition gives no limitation for the modulus q, but in practice,
q is chosen to be prime.

2. The MiNTRU definition does not fix the underlying error distribution χ, but
in practice it may be considered to be the discrete Gaussian distribution
with variance σχ = O(

√
q) (following a suggestion of [6]).
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3. The MiNTRU definition gives no limitation for the matrix dimension n, but
in practice n = O(q1/4).

4. One may define other variants of the MiNTRU problem by removing the first
few n×n blocks of a MiNTRU matrix. For example, the small secret variant
in [6] is obtained by removing the first n×n block encoding the 0 block of the
gadget matrix and sampling the secret matrix S from the error distribution
χn×n
invertible.

B.3 Applications

For now, the MiNTRU assumption has only been used once in the literature,
namely in its original formalization paper [6]. The authors use the MiNTRU
assumption to prove semantic security of a new homomorphic encryption scheme
for finite automata. We will fast revise their construction.

Homomorphic encryption and non-deterministic finite automata The
core idea of homomorphic encryption (HE) [21] is to enable computation over
encrypted data. A particular case may be the evaluation of encrypted non-
deterministic finite automata (NFA) [18] which can be seen as a particular ma-
trix product. Indeed, without diving too far into the literature of homomorphic
encryption and finite automata, a homomorphic encryption scheme for non-
deterministic finite automata should allow to compute

(∏1
i=k Mi

)
· v over a

finite ring of integers7, where the matrices Mi and v are encrypted. [6] con-
structs such a scheme as follows.

Their basic encryption process To encrypt a message matrix M ∈ (Z/qZ)n×n,
they first sample a secret matrix S ∈ (Z/qZ)n×n

invertible and an error matrix
E ← χn×m with m = n × (ℓ + 1), then they consider the gadget matrix
G = [0|I|2I|...|2ℓ−1I] ∈ Zn×m and finally set C := S−1 × (M×G+E) mod q.
Decryption is achieved by computing S ×C − E := M ×G and recovering M
using a known trapdoor of the gadget matrix G. Similarly, a vector v ∈ (Z/qZ)n
is encrypted by c := S−1 × (v + e) where e← χn.

Chained encryption for homomorphic evaluation To finally enable the
homomorphic evaluation of an encrypted product

(∏1
i=k Mi

)
· v, the authors

propose a specific recursive encryption chain. In detail, first k + 1 secret keys
(Si,Ei) (i ∈ {0, . . . , k}) are sampled, then v is encrypted as c := S−1

0 × (βv+e)
mod q and finally the matrices Mi are recursively encrypted by Ci := S−1 ×
(Mi × Si−1 ×G + Ei) mod q for all i ∈ {1, . . . , k}. Homomorphic evaluation
is then performed by setting c0 := c and recursively computing ci := Ci ×
G−1(ci−1) for all i ∈ {1, . . . , k} where G−1(ci) denotes a discrete Gaussian
vector such that G×G−1(ci) = ci mod q. The decryption of the final ciphertext
ck corresponds to the desired output

(∏1
i=k Mi

)
· v.

7 Note that the product runs downwards, i.e., from k to 1.
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Security of the new scheme It is trivial to observe that semantic security of
their homomorphic encryption scheme is guaranteed if the basic encryption pro-
cedure is semantic secure. The basic encryption procedure in turn seems to link to
the MiNTRU assumption. Indeed, an encrypted matrix C := S−1× (M×G+E)
mod q consist almost in a MiNTRU matrix A := S−1 × (G + E) mod q, ex-
cept for the additional factor M. The formal security reduction is then obtained
in two steps: First, pseudorandomness of the small secret MiNTRU variant is
deduced from the usual MiNTRU. Then, semantic security of the encryption
procedure with a slightly distorted error distribution ψ[E,M × G] := {R ←
G−1(M×G), output E×R mod q} is obtained from the pseudorandomness of
the small secret MiNTRU variant. We remark that this error distribution does not
correspond to the actual low norm distribution of the encryption procedure but
that it produces far larger entropic noise and is so harder to filter out. To further
strengthen the MiNTRU assumption (and so semantic security of their scheme),
pseudorandomness of MiNTRU with error distribution χn×m × B−1(G) is de-
duced from the pseudorandomness of the n-secret LWE with trapdoor oracle to B.
Unfortunately, trapdoor oracle access for B of the n-secret LWE, whose distribu-
tion is defined by {(A,B := S×A+E) : A← Zn×m

q ,S← Zn×n
q ,E← χn×m},

is a non-standard assumption and its pseudorandomness requires further inves-
tigation. Moreover, the given reduction relies again on a small alteration of the
error distribution, namely χn×m × B−1(G), which may not correspond to the
low norm error distribution that is expected in the MiNTRU setting.

B.4 Our contribution

We are going to prove that (at least for small dimensions n) the decision variant
of the MiNTRU assumption is not safe and so the MiNTRU distribution is not
pseudorandom in that range. Independent of the chosen modulus and the exact
low norm error distribution, our lattice attack will distinguish with noticeable
probability between a random matrix and a synthetically constructed one.

Our attack can be seen as a matrix generalization of our first iNTRU attack.
It will slightly modify the challenge matrix and construct a specific lattice that
in view of a synthetic matrix contains a short vector with entries corresponding
to low norm error elements only, but in the presence of a random challenge
matrix follows a specific heuristic (close to the Gaussian heuristic). Thereby, the
distinction of matrices can be made by comparing the shortest vector to the
heuristic.
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C Attacking the MiNTRU assumption

In this section, we describe a lattice attack against the decision variant of the
MiNTRU assumption. Our development is based on full length challenge matrices
but the method will, after small changes, also work for shortened matrices. The
attack is inspired on our first iNTRU attack. An attack based on our second
iNTRU attack is possible but generally not needed (see Remark 1 below).

C.1 Our lattice and its properties

Let X be a challenge matrix corresponding either to the uniform or the MiNTRU
distribution.

Lattice construction First, we decompose our challenge matrix into (ℓ + 1)
individual n× n matrices X0, . . .Xℓ such that

X = [X0| . . . |Xℓ]. (22)

Then, we slightly modify these matrices and set

Y0 := X0 mod q and Yi = 2Xi −Xi+1 mod q ∀i ∈ {1, . . . , ℓ− 1}. (23)

Let t ∈ {0, . . . , ℓ− 1} be an index such that the matrix Yt is invertible modulo
q. If no such index exists, the subsequent development will not work.

Remark 1. Let the prime decomposition of q be q =
∏k

i=1 q
αi
i . Then, a random

n× n matrix is invertible modulo q if and only if it is so modulo qαi
i for all i ∈

{1, . . . , k} which holds for a single i with probability
∏n

j=1(1− q
−jαi

i ). Thus, the

probability that our first attack cannot be used is
(
1−

∏k
i=1

∏n
j=1(1− q

−jαi

i )
)ℓ

and so our first attack should almost always work; in the improbable case it does
not, one can generalize our second iNTRU attack being independent of invertible
elements.

We proceed by setting

Zi := Y−1
t Yi mod q ∀i ∈ {0, . . . , ℓ− 1} (24)

where Zt = I is the n× n identity matrix.
We define the ℓn× ℓn q-ary row lattice:

Λ = L



Z0 . . . Zt−1 I Zt+1 . . . Zℓ−1

qI . . . 0 0 0 . . . 0
...

. . .
...

...
...

...
0 . . . qI 0 0 . . . 0
0 . . . 0 0 qI . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . qI


(25)
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Remark 2. One may be tempted to simply reduce to the one dimensional case
by using the determinant function, in other words, to set zi = det(Zi), and
then continuing along the lines of the first iNTRU attack. One would expect
that a random matrix X leads to random zi and a synthetically constructed
matrix A to internally linked zi. Indeed, symbolically setting s = det(S−1)
and e′i = det(−2Ei + Ei) reveals this internal structure. Unfortunately, the
compression of the error terms using the determinant blows the final error up
and in order to work out, the individual error terms would need to be upper
bounded in absolute value by min

{
q3/4n√
n ℓ1/2n

, 1√
n(8πe)1/2n

q
3ℓ−4
4ℓn

}
which is only

satisfied in practice for small n. Thus, it is suggested to use another approach.

Remark 3. The lattice in Equation (25) is a direct generalization of Equation (4).
Actually, each entry of Equation (4) is expanded into a full matrix to obtain
Equation (25). Nonetheless, the underlying idea is exactly the same.

Heuristic Contrary to our original iNTRU attack, we can not use heuristic H
as instead of a simple vector, we use a matrix to define our q-ary lattice. We
recall that by [22, Lemma 2.18] for fixed prime q and m ≥ n, and for a randomly
sampled matrix A ∈ (Z/qZ)n×m, the first lattice minimum of the q-ary lattice
Λq(A) is lower bounded by min

{
q,

√
m
8πeq

m−n
m

}
with probability greater than

1− 2−m and that
√

m
8πeq

m−n
m is at most as large as half the Gaussian heuristic.

C.2 Case of a random tuple

Assume that our initial challenge matrix X was sampled uniformly at random.
Then, our constructed matrices Xi, Yi and Zi will still follow the uniform dis-
tribution (except for Zt = I). Albeit this does not fully correspond to the setup
required by the above heuristic as some part of the generating matrix is not
random (but equal to the identity matrix I) and q may not be prime, we assume
that with noticeable probability, the first lattice minimum satisfies

λ1(Λ) ≥ min

{
q,

√
ℓn

8πe
q

ℓ−1
ℓ

}
. (H’)

C.3 Case of a synthetic tuple

Assume next that the initial challenge matrix X has been synthetically con-
structed following the MiNTRU distribution. We will show that in this case the
lattice contains a non-trivial short vector being magnitudes smaller than the
expected heuristic.

First observation We recall that a synthetically constructed matrix A follow-
ing the MiNTRU distribution satisfies A = S−1× (G−E) mod q and so letting
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A = [A0| . . . |Aℓ] gives

A0 = S−1(0−E0) mod q and

Ai = S−1(2i−1I−Ei) mod q ∀i ∈ {1, . . . , ℓ}
(26)

where E0, . . . ,Eℓ denote random error matrices whose entries are sampled from
the symmetric error distribution χ producing with overwhelming probability
small elements. Thereby,

Y0 = −S−1E0 = S−1E′
0 mod q and

Yi = S−1(−2Ei +Ei+1) = S−1E′
i mod q ∀i ∈ {1, . . . , ℓ− 1}

(27)

where the entries of E′
i are still quite small for all i ∈ {0, . . . , ℓ − 1}. More pre-

cisely, they follow the distribution χ′ with µχ′ = 0 and σ′ =
√
3σ. In particular,

we conclude that since χ produces with overwhelming probability elements with
absolute value ≪ q, so does χ′ and the entries are quite small when compared
to the modulus q.

Second observation Continuing to outline the effect of our variable changes
leads to the conclusion that

Zi = E′−1
t E′

i mod q ∀i ∈ {0, . . . , ℓ− 1}. (28)

Third observation By construction, it is now clear that

E′
tZi = E′

i mod q ∀i ∈ {0, . . . , ℓ− 1} (29)

and so, denoting the j-th row of E′
i by e

(j)
i yields

e
(j)
t Zi = e

(j)
i mod q ∀i ∈ {0, . . . , ℓ− 1} and ∀j ∈ {1, . . . , n}. (30)

The shortest lattice vector Interestingly, our observations imply that our
lattice contain the n linearly independent vectors

e(j) = (e
(j)
0 | . . . |e

(j)
ℓ ) ∀j ∈ {1, . . . , n} (31)

obtained through a linear combination corresponding to e
(j)
t followed by a suit-

able "modulo q reduction". We are going to show that these vectors will be
almost surely smaller than the Gaussian heuristic. Therefore, first assume that
the error entries of the error matrices E′

i (or only of a specific row of the error
matrices) are upper bounded by some constant K > 0. Then, the size of e(j) is
upper bounded by

∥e(j)∥2 ≤
√
ℓnK2 ≤

√
ℓn K. (32)
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Proposition 5. If the error entries of the error matrices E′
i are upper bounded

by min
{

q√
ℓn
, 1√

8πe
q(ℓ−1)/ℓ

}
, then the target vectors e(j) = (e

(j)
0 | . . . |e

(j)
ℓ ) are

shorter than min

{
q,

√
ℓn
8πeq

ℓ−1
ℓ

}
for each j ∈ {1, . . . , n}.

Proof. Replace K in Equation (32) by the predicted values. ⊓⊔

As in practice the error terms are O(
√
q), the size condition is almost always

satisfied. The probability that a completely randomly sampled ℓn-vector would

be of this size is lower than
(

2
√
ℓnK+1
q

)ℓn

which is rapidly decreasing in K.

Lattice reduction Unfortunately, the large lattice dimension avoids obtaining
e(j) through usual LLL reduction. Indeed, LLL with δ = 63

64 will output w1 such
that ∥w1∥2 ≤ q

n
4 2

n−1
4

√
ℓnK which is too loose for a theoretical conclusion.8

Through BKZ reduction, the approximation factor could be strongly im-
proved and for small enough block size one may even get a polynomial runtime
(see [14, Theorem 2]). Thus, slightly larger dimensions may be treated. To be

precise, BKZ with block size β achieves ∥b1∥2 ≤ γ
ℓn

β−1

β λ1 for its first reduced vec-
tor b1 where γβ denotes the Hermite constant (better results may be achieved
with more recent results). 9 To put this into context, consider the bloc size
β = 24 for which BKZ still finishes in a reasonable amount of time. Then,
∥b1∥2 ≤ 2

2ℓn
23 λ1 ≤ 2

2ℓn
23

√
ℓnK ≤ (2q)

2n
23

√
ℓnK indicating that our method would

still work for sufficiently small n or small noise. Unfortunately, this improvement
is still not be exact enough for a theoretical conclusion in large dimensions.

Fortunately, lattice reduction algorithms often perform better in practice
than in theory and so our method may still be applied for larger lattice dimen-
sions on a speculative basis. Nonetheless, we emphasise that theoretical success
can only be shown through exact shortest vector problem solvers whose run-time
is exponential in the lattice dimension making the attack impractical.

C.4 Conclusion

We conclude that:

1. In case of a random tuple, the shortest lattice vector can be expected to be

lower bounded by min

{
q,

√
ℓn
8πeq

ℓ−1
ℓ

}
.

2. In case of a synthetic tuple, the shortest lattice vector is with high probability

smaller than min

{
q,

√
ℓn
8πeq

ℓ−1
ℓ

}
.

8 Note that if n = 1, then we recover the same bound as in Equation (12).
9 See for example Predicting Lattice Results by Gama and Nguyen in Advances in

Cryptology - Eurocrypt 2008 or Extended Lattice Reduction Experiments using the
BKZ algorithm by Schneider and Buchmann in Sicherheit 2010 and other related
references.
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Hence, we conclude that we could distinguish with noticeable probability
between a randomly sampled challenge matrix and a synthetically constructed
one by simply comparing the length of the first lattice minimum (or at least a

short enough approximation of it) with min

{
q,

√
ℓn
8πeq

ℓ−1
ℓ

}
. Unfortunately, our

development is not strong enough to theoretically prove the well functioning of
our distinguisher when relying on polynomial lattice reduction techniques only.
The corresponding SAGEMATH source codes can be found in Appendix F.

C.5 Further remarks

Remark 1: Recovering the secret We note that if a MiNTRU matrix is
detected, then it is tempting to pad the n shortest lattice vectors together in
order to recover the error matrices E′

i and through linear algebra the original
error matrices Ei and simultaneously the secret matrix S. Unfortunately such a
procedure will not work in general. First, the shortest vectors may not correspond
to the error vectors (shorter vectors may be obtained through linear combinations
of them). Second, lattice reduction may not achieve the shortest vectors. Third,
the matrices would only be determined up to a random permutation. Thus, our
method is not suitable to solve the search variant of the MiNTRU problem.

Remark 2: Minor improvement To reduce computational power, one needs
to decrease the lattice dimension. One may achieve this by not considering ℓ
copies of Zi but only b copies for some 1 ≤ b ≤ ℓ. Indeed, as long as the error
terms are small enough (c.f. Proposition 5), the construction works out. This
can also be formally proven by simply replacing ℓ by b in the whole section. We
note that it doesn’t matter which copies of Zi are chosen as long as Zt is part
of the chosen set. Zt plays a crucial role in the construction as it guarantees
that only small linear combinations will be chosen. The other b− 1 Zi’s may be
chosen randomly. In practice, b = 5 is sufficient for σχ = 2

√
q.

Furthermore, we are not restricted to choose complete copies of Zi, but we
may pick out individual columns. A mix between columns of different copies
will not interfere with the functioning of our method. However, the analysis will
change (ℓn needs to be replaced by the suitable value). Nonetheless, as long as
Zt is chosen completely, the method will work out fine.

The same improvement may be implemented for iNTRU. Unfortunately, this
improvement does not solve the true bottleneck of MiNTRU which is the size of
n = O(q

1
4 ) implying a lattice dimension that is too large for practical attacks.

Remark 3: Dependence of the matrices When developing the matrices
Zi = Y−1

t Yi, one may think to repeat the same construction for another index
t′ in order to obtain linearly independent matrices Z′

i = Y−1
t′ Yi. Unfortunately

this will not be the case as Z′
i = Z′

tZi and so no more information can be
generated through such an index change.
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D Comparison with multi-secret LWE

In this section, we rapidly compare the (matrix) inhomogeneous NTRU (iNTRU)
assumption, with the multi-secret Learning-with-Errors (LWE) assumption. In
line with the main objective of our article, we concentrate on the integer case
only.

D.1 The multi-secret LWE problem

The LWE problem has initially been introduced in [19]. Its multi-secret variant
may be formalized as follows [17].

Definition 7 (Multi-secret LWE distribution). Let q be any modulus, m ∈
Z≥n, and χ an error distribution over Z producing with overwhelming probability
elements with norm ≪ q. Define the multi-secret LWE distribution with these
parameters to be obtained by the following sampling process:

LWE =


S← (Z/qZ)n×n

E← χn×m

A← (Z/qZ)n×m

B := S×A+E mod q

 (33)

and denote any pair (A,B) as multi-secret LWE pair.

Definition 8 (Multi-secret LWE search problem). Given a multi-secret
LWE pair (A,B) and a modulus q, the multi-secret LWE search problem consists
in finding the hidden secret matrix S. The multi-secret LWE search assumption
predicts that S can only be determined with negligible probability.

Definition 9 (Multi-secret LWE decision problem). Given a pair (X,Y)
and a modulus q, the multi-secret LWE decision problem consists in distinguishing
whether the pair has been sampled using the multi-secret LWE distribution or the
uniform distribution over (Z/qZ)n×m× (Z/qZ)n×m. The multi-secret LWE deci-
sion assumption predicts that such a distinction can only be made with negligible
probability.

D.2 Hardness of multi-secret LWE

The hardness of the LWE problems have been well-studied and many surprising
properties such as self-reducibility [19] proving hardness on average have been
found. Furthermore, explicit reductions to known supposedly hard lattice prob-
lems have been outlined [15,19]. Those results, and the fact that after 16 years,
no efficient general attack has been mounted pushes us to believe that the LWE
problems are hard.

However, not all LWE instances are equally hard. Indeed, their hardness de-
pends on the chosen error scale χ. For example, neither the decision, nor the
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search variant will be solvable for completely random errors, but are surmount-
able for Bernoulli distributions. The number of samples obtained for an LWE
instance has only a small effect on the hardness as one may produce, through
linear (re-)combinations, as many valid samples as required [20].

The multi-secret LWE can be directly reduced to the usual LWE problem
and the additional information leakage (of the multiple secrets) is supposed to
not make the problem easier [17, Lemma 6.2]. Thereby, the multi-secret variant
seems to be as hard as the usual LWE.

D.3 Comparison

When comparing the (matrix) inhomogeneous NTRU problems with the multi-
secret learning with error problem, one may spot a crucial difference. Whereas
in the former case the error is added and then the secret multiplied, the latter
switches those two operations. Consisting in a syntactic change of operations,
one may still transform one problem into the other by adjusting the error distri-
bution. This adjustment provokes a distorted blow-up leading to heavier entropic
noise (see the security part in Appendix B.3). The gadget matrix in the MiNTRU
case and the inversion of S do apparently not have a considerable effect on the
hardness, but, intuitively, they give some more information about MiNTRU ma-
trices.

The main comparison point of the multi-secret LWE and MiNTRU stems from
our own analysis. Indeed, we explicitly proved that an elementary lattice attack
is sufficient to break low dimensional MiNTRU problems (for dimension n = 1 it
consists in the integer iNTRU problem). On the contrary, the multi-secret LWE
seems not to suffer from such a vulnerability. Indeed, m is at most polynomial in
n implying that the original decision variant of the LWE is hard, which in turn
guarantees hardness of its multi-secret variant.

This difference may or may not have an effect on the security of high degree
polynomial rings (for iNTRU) or for high dimensional matrices (for MiNTRU),
but it surely shows the existence of different secure parameter bounds when
compared to the multi-secret LWE. After all, multiplying and adding is not the
same as adding and multiplying!
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E Source Code for the iNTRU Attack

1 #This file is devoted to the codes referenced in Section 3-5
of the article "On the (M)iNTRU assumption in the integer
case".

2

3 #All references are made with respect to the mentioned
article.

4

5

6 #
--------------------------------------------------------------------

7 #
--------------------------------------------------------------------

8

9 #Function Declarations:
10 #----------------------
11

12

13 #First , we implement an iNTRU tuple sampler (Section 3):
14

15 def iNTRU(q,sigma):
16 """
17 Upon reception of a modulus q and a variance value sigma

the function iNTRU samples an iNTRU tuple of length ceil(
log(q,2)) using error terms from the 0-centered discrete
Gaussian distribution with variance sigma (see Equation
(1)).

18 """
19

20 # We sample the invertible secret value s:
21 s=ZZ(randint(-floor ((q-1)/2),floor ((q-1)/2)))
22 while gcd(s,q) >1:
23 s=ZZ(randint(-floor ((q-1)/2),floor ((q-1)/2)))
24

25 # We sample the error terms:
26 from sage.stats.distributions.discrete_gaussian_integer

import DiscreteGaussianDistributionIntegerSampler
27 D = DiscreteGaussianDistributionIntegerSampler(sigma=

sigma)
28 E=[]
29 for i in range(ceil(log(q,2))+1):
30 E.append(ZZ(D()))
31

32 # We construct the iNTRU tuple:
33 L=[(E[0]* Integer(Integer(s).inverse_mod(q)))%q]
34 for i in range(ceil(log(q,2))):
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35 L.append (((2^(i)-E[i+1])*Integer(Integer(s).
inverse_mod(q)))%q)

36

37 # For comparison purposes , we return the iNTRU tuple L as
well as the corresponding secret s and the error terms:

38 return (L,E,s)
39

40

41

42 #Next , we implement the uniform tuple sampler (Section 3):
43

44 def uni(q):
45 """
46 Upon reception of a modulus q the function uni samples a

tuple of length ceil(log(q,2)) from the 0-centered
uniform distribution over Z/qZ.

47 """
48

49 # We sample a vector uniformly at random and return it:
50 U=[]
51 for i in range(ceil(log(q,2))+1):
52 U.append(ZZ(randint(-floor((q-1) /2),floor ((q-1)/2))))
53 return U
54

55

56

57 #We implement our first distinguisher (Section 4):
58

59 def distinguisher1(q,X):
60 """
61 Upon reception of a modulus q and a corresponding

challenge tuple X distinguisher1 generates the lattice in
Equation (4) and approximates the shortest vector. It

outputs -1 if the method is not applicable. It outputs
(0,0) if it suspects a random challenge tuple and (1,s)
if it suspects a synthetic challenge tuple where s is the
expected secret.

62 """
63

64 #1) We compute the y_i values from the original tuple (
see Equation (2)).

65 Y=[X[0]]
66 for i in range(len(X) -2):
67 Y.append ((2*X[i+1]-X[i+2])%q)
68

69 #2) We check whether this method can be applied (i.e., if
there exists an invertible element in Y).

70 t=-1
71 for i in range(len(Y)):
72 if gcd(Y[i],q)==1:
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73 t=i
74 break
75 if t==-1:
76 return -1
77

78 #3) We compute the z_i values (see Equation (3)).
79 Z=[]
80 for i in range(len(Y)):
81 Z.append (((Y[t]%q).inverse_mod(q)*Y[i])%q)
82

83 #4) We construct the lattice in Equation (4).
84 Lambda=zero_matrix(ZZ ,nrows=len(Z),ncols=len(Z))
85 for i in range(len(Z)):
86 Lambda[0,i]=Z[i]
87 if i<t:
88 Lambda[i+1,i]=q
89 if i>t:
90 Lambda[i,i]=q
91

92 #5) We compute the first LLL reduced vector of Lambda:
93 v=Lambda.LLL().row(0)
94

95 #6) We compute our heuristic H for Lambda (see Equation
(5)):

96 H=sqrt(len(Z)/(8*pi*e))*q^(( len(Z) -1)/len(Z))
97

98 #7) If the first LLL reduced vector is longer than our
heuristic or q, we conclude that the challenge tuple was
a random tuple.

99 if v.norm()>H or v.norm()>q:
100 return (0,0)
101

102 #8) Otherwise , we conclude that it was a synthetic tuple
and we try to compute the secret (up to its sign).

103 else:
104 s=(v[t]*(Y[t]%q).inverse_mod(q))%q
105 return (1,s)
106

107

108

109 #We implement our second distinguisher (Section 5):
110

111 def distinguisher2(q,X):
112 """
113 Upon reception of a modulus q and a corresponding

challenge tuple X distinguisher2 generates the lattice in
Equation (14) and approximates the shortest vector. It

outputs (0,0) if it suspects a random challenge tuple and
(1,s) if it suspects a synthetic challenge tuple where s
is the expected secret.
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114 """
115

116 #1) We compute the y_i values from the original tuple (
see Equation (13)).

117 Y=[X[0]]
118 for i in range(len(X) -2):
119 Y.append ((2*X[i+1]-X[i+2])%q)
120

121 #2) We construct the lattice in Equation (14).
122 Lambda=zero_matrix(ZZ ,nrows=len(Y)+1,ncols=len(Y)+1)
123 Lambda[0,len(Y)]=1
124 for i in range(len(Y)):
125 Lambda[0,i]=Y[i]*q
126 Lambda[i+1,i]=q^2
127

128 #3) We compute the second LLL reduced vector of Lambda:
129 v=Lambda.LLL().row(1)
130

131 #4) We compute our heuristic H for Lambda (see Equation
(15)):

132 H=sqrt((len(Y)+1) /(8*pi*e))*q^((2* len(Y))/(len(Y)+1))
133

134 #5) If the second LLL reduced vector is longer than our
heuristic or q, we conclude that the challenge tuple was
a random tuple.

135 if v.norm()>H or v.norm()>q^2:
136 return (0,0)
137

138 #6) Otherwise , we conclude that it was a synthetic tuple
and we try to compute the secret (up to its sign).

139 else:
140 s=v[len(Y)]%q
141 return (1,s)
142

143

144

145 #
----------------------------------------------------------------------------

146 #
----------------------------------------------------------------------------

147

148 #Toy example:
149 #------------
150

151 #We generate an odd prime:
152 q=next_prime (10000)
153

154 #We construct an iNTRU tuple with variance 2*sqrt(q):
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155 sigma =2* sqrt(q)
156 (L,E,s)=iNTRU(q,sigma)
157

158 #We generate a random tuple:
159 U=uni(q)
160

161 #We use our first distinguisher:
162 distinguisher1(q,L) # should return (1,+-s%q)
163 distinguisher1(q,U) # should return (0,0)
164

165 #We use our second distinguisher:
166 distinguisher2(q,L) # should return (1,+-s%q)
167 distinguisher2(q,U) # should return (0,0)
168

169

170

171 #
-------------------------------------------------------------------------------

172

173 #Real world example:
174 #-------------------
175 #We set the required parameters:
176 q=randint (2^60 ,2^64)
177 sigma =2* sqrt(q)
178

179 #We generate an iNTRU tuple and a random one:
180 (L,E,s)=iNTRU(q,sigma)
181 U=uni(q)
182

183 #We apply our first distinguisher:
184 distinguisher1(q,L) # should return (1,+-s%q)
185 distinguisher1(q,U) # should return (0,0)
186

187 #We apply our second distinguisher:
188 distinguisher2(q,L) # should return (1,+-s%q)
189 distinguisher2(q,U) # should return (0,0)
190

191 #
-------------------------------------------------------------------------------

192

193 #Repeated cryptographic example for distinguisher1:
194 #--------------------------------------------------
195

196 #We test how often iNTRU tuple and random tuples
197 #are correctly recognized by our distinguisher1.
198 Positive_passed =0
199 Positive_failed =0
200 Negative_passed =0
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201 Negative_failed =0
202 Secrets_guessed =0
203 Test_failed =0
204 for i in range (100):
205 print(Positive_passed ,Positive_failed ,Negative_passed ,

Negative_failed ,Secrets_guessed ,Test_failed)
206 q=randint (2^40 ,2^65)
207 sigma =2* sqrt(q)
208

209 #We generate an iNTRU tuple and a random one:
210 (L,E,s)=iNTRU(q,sigma)
211 U=uni(q)
212

213 #We apply our distinguisher:
214 R=distinguisher1(q,L)
215 if R==-1:
216 Test_failed=Test_failed +1
217 elif R[0]==1:
218 Positive_passed=Positive_passed +1
219 if (R[1]%q)==(s%q) or (R[1]%q)==(-s%q):
220 Secrets_guessed=Secrets_guessed +1
221 else:
222 Positive_failed=Positive_failed +1
223 RU=distinguisher1(q,U)
224 if RU==-1:
225 Test_failed=Test_failed +1
226 elif RU [0]==0:
227 Negative_passed=Negative_passed +1
228 else:
229 Negative_failed=Negative_failed +1
230 print(Positive_passed ,Positive_failed ,Negative_passed ,

Negative_failed ,Secrets_guessed ,Test_failed)
231

232 #The final result should show a tuple (A,B,C,D,E,F) where:
233 # A denotes the number of correctly recognized iNTRU tuples (

should be high)
234 # B denotes the number of wrongly interpreted iNTRU tuples (

should be low)
235 # C denotes the number of correctly recognized random tuples

(should be high)
236 # D denotes the number of wrongly interpreted random tuples (

should be low)
237 # E denotes the number of correctly guessed secrets (should

be high)
238 # F denotes the number of failed tests due to the

invertibility condition (should be low)
239

240

241
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242 #
----------------------------------------------------------------------------

243

244 # Repeated cryptographic example for distinguisher2:
245 #--------------------------------------------------
246

247 #We test how often iNTRU tuple and random tuples are
correctly recognized by our distinguisher2.

248 Positive_passed =0
249 Positive_failed =0
250 Negative_passed =0
251 Negative_failed =0
252 Secrets_guessed =0
253 for i in range (100):
254 print(Positive_passed ,Positive_failed ,Negative_passed ,

Negative_failed ,Secrets_guessed)
255 q=randint (2^40 ,2^65)
256 sigma =2* sqrt(q)
257

258 #We generate an iNTRU tuple and a random one:
259 (L,E,s)=iNTRU(q,sigma)
260 U=uni(q)
261

262 #We apply our distinguisher:
263 (r0 ,r1)=distinguisher2(q,L)
264 if r0==1:
265 Positive_passed=Positive_passed +1
266 if (r1%q)==(s%q) or (r1%q)==(-s%q):
267 Secrets_guessed=Secrets_guessed +1
268 else:
269 Positive_failed=Positive_failed +1
270 if distinguisher2(q,U)[0]==0:
271 Negative_passed=Negative_passed +1
272 else:
273 Negative_failed=Negative_failed +1
274 print(Positive_passed ,Positive_failed ,Negative_passed ,

Negative_failed ,Secrets_guessed)
275

276 #The final result should show a tuple (A,B,C,D,E) where:
277 # A denotes the number of correctly recognized iNTRU tuples (

should be high)
278 # B denotes the number of wrongly interpreted iNTRU tuples (

should be low)
279 # C denotes the number of correctly recognized random tuples

(should be high)
280 # D denotes the number of wrongly interpreted random tuples (

should be low)
281 # E denotes the number of correctly guessed secrets (should

be high)
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282

283

284 #
-----------------------------------------------------------------------

285

286 #Conclusion:
287 #------------
288

289 #In our empirical trials (100 synthetic tuples and 100 random
tuples for each distinguisher) with the setup as stated

above:
290 # 1) All iNTRU tuples have been correctly determined (with

both distinguishers) and all secrets have been found (
with both distinguishers). (i.e., B=0 and E=100)

291 # 2) All random tuples have been correctly determined (with
both distinguishers). (i.e., D=0)
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F Source Code for the MiNTRU Attack

1 #This file is devoted to the codes referenced in Appendix B-C
of the article "On the (M)iNTRU assumption in the

integer case".
2

3 #All references are made with respect to the mentioned
article.

4

5

6 #
--------------------------------------------------------------------

7 #
--------------------------------------------------------------------

8

9 #Function Declarations:
10 #----------------------
11

12 #First , we implement the MiNTRU matrix sampler (Appendix B):
13

14 def MiNTRU(q,n,sigma):
15 """
16 Upon reception of a modulus q, a matrix dimension n and a

variance value sigma the function MiNTRU samples a n x (
n*ceil(log(q,2))) MiNTRU matrix using error terms from
the 0-centered discrete Gaussian distribution with
variance sigma (see Equation (21)).

17 """
18

19 # We sample the secret invertible matrix S:
20 S=zero_matrix(Integers(q),nrows=n,ncols=n)
21 while not S.is_invertible ():
22 for i in range(n):
23 for j in range(n):
24 S[i,j]= randint(-floor((q-1)/2),floor ((q-1)/2)

)
25

26 # We sample the error matrix:
27 from sage.stats.distributions.discrete_gaussian_integer

import DiscreteGaussianDistributionIntegerSampler
28 D = DiscreteGaussianDistributionIntegerSampler(sigma=

sigma)
29 E=zero_matrix(Integers(q),nrows=n,ncols=n*(ceil(log(q,2))

+1))
30 for i in range(n):
31 for j in range(n*(ceil(log(q,2))+1)):
32 E[i,j]=D()
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33

34 # We construct the extended gadget matrix:
35 G=zero_matrix(Integers(q),nrows=n,ncols=n*(ceil(log(q,2))

+1))
36 for i in range(n):
37 for j in range((ceil(log(q,2)))):
38 G[i,n*(j+1)+i]=2^(j)
39

40 # We construct the MiNTRU matrix:
41 A=S.inverse ()*(G-E)
42

43 # For comparison purposes , we return the MiNTRU matrix A
as well as the corresponding secret matrix S and the
error matrix:

44 return (A,E,S)
45

46

47

48 #Next , we implement the uniform tuple sampler (Appendix B):
49

50 def Muni(q,n):
51 """
52 Upon reception of an odd integer q and a matrix dimension

n the function Muni samples a n x (n*ceil(log(q,2)))
matrix from the 0-centered uniform distribution over Z/qZ
.

53 """
54

55 # We sample a matrix uniformly at random and return it:
56 U=zero_matrix(Integers(q),nrows=n,ncols=n*(ceil(log(q,2))

+1))
57 for i in range(n):
58 for j in range(n*(ceil(log(q,2))+1)):
59 U[i,j]= randint(-floor ((q-1)/2),floor ((q-1)/2))
60 return U
61

62

63 #We build our distinguisher (Appendix C):
64

65 def distinguisher(q,X):
66 """
67 Upon reception of a modulus q and a challenge matrix X,

distinguisher constructs the lattice in Equation (25) and
approximates the shortest vector. If the distinguisher

suspects a synthetic challenge matrix , it outputs 0,
otherwise , it outputs 1.

68 """
69

70 #1) We split the matrix X in n x n matrices X_i (see
Equation (22)):
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71 XList =[]
72 n=X.nrows()
73 ell1=Integer(X.ncols()/X.nrows ())
74 for k in range(ell1):
75 XTemp=zero_matrix(Integers(q),nrows=n,ncols=n)
76 for i in range(n):
77 for j in range(n):
78 XTemp[i,j]=X[i,k*n+j]
79 XList.append(XTemp)
80

81 #2) We compute the matrices Y_i (see Equation (23)):
82 YList=[ XList [0]]
83 for i in range(ell1 -2):
84 YList.append (2* XList[i+1]- XList[i+2])
85

86 #3) We check whether this method can be applied (i.e., if
there exists an invertible element in Y).

87 t=-1
88 for i in range(len(YList)):
89 if YList[i]. is_invertible ():
90 t=i
91 break
92 if t==-1:
93 return -1
94

95 #4) We compute the matrices Z_i (see Equation (24)):
96 ZList =[]
97 for k in range(len(YList)):
98 ZList.append(YList[t]. inverse ()*YList[k])
99

100 #5) We construct the lattice basis in Equation (25):
101 Lambda=zero_matrix(ZZ ,nrows=len(ZList)*n,ncols=len(ZList)

*n)
102 for k in range(len(ZList)):
103 for i in range(n):
104 for j in range(n):
105 Lambda[i,k*n+j]= ZList[k][i,j]
106 if k<t:
107 Lambda [(k+1)*n+i,k*n+i]=q
108 if k>t:
109 Lambda[k*n+i,k*n+i]=q
110

111 #6) We compute the first LLL reduced vector of Lambda:
112 v=Lambda.LLL().row(0)
113

114 #7) We compute our heuristic H’ for Lambda (see Equation
(H’)):

115 H=sqrt((len(ZList)*n)/(8*pi*e))*q^(( len(ZList) -1)/len(
ZList))

116
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117 #8) If the first LLL reduced vector is longer than our
heuristic or q, we conclude that the challenge tuple was
a random tuple.

118 if v.norm()>H or v.norm() >=q:
119 return 0
120

121 #9) Otherwise , we conclude that it was a synthetic tuple.
122 else:
123 return 1
124

125

126 #We slightly improve our distinguisher (using C.5. Remark 2):
127

128 def distinguisher_short(q,X,b):
129 """
130 Upon reception of a modulus q, a challenge matrix X and a

block count b>2, distinguisher_short constructs the
lattice in Equation (25) but only with b blocs and
approximates the shortest vector. If there are not
sufficiently many blocks to meet b blocks , the
distinguisher returns -2. If the distinguisher suspects a
synthetic challenge matrix , it outputs 0, otherwise , it

outputs 1.
131 """
132

133 #1) We split the matrix X in n x n matrices X_i (see
Equation (22)):

134 XList =[]
135 n=X.nrows()
136 ell1=Integer(X.ncols()/X.nrows ())
137 if ell1 <b:
138 return -2
139 for k in range(ell1):
140 XTemp=zero_matrix(Integers(q),nrows=n,ncols=n)
141 for i in range(n):
142 for j in range(n):
143 XTemp[i,j]=X[i,k*n+j]
144 XList.append(XTemp)
145

146 #2) We compute the matrices Y_i (see Equation (23)):
147 YList=[ XList [0]]
148 for i in range(ell1 -2):
149 YList.append (2* XList[i+1]- XList[i+2])
150

151 #3) We check whether this method can be applied (i.e., if
there exists an invertible element in Y).

152 t=-1
153 for i in range(len(YList)):
154 if YList[i]. is_invertible ():
155 t=i
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156 break
157 if t==-1:
158 return -1
159

160 #4) We compute a shortened list of matrices Z_i (see
Equation (24)):

161 ZList =[]
162 ZList.append(YList[t]. inverse ()*YList[t])
163 tnew=0
164 if t<b:
165 for k in range(b):
166 if k!=t:
167 ZList.append(YList[t]. inverse ()*YList[k])
168 else:
169 for k in range(b-1):
170 ZList.append(YList[t]. inverse ()*YList[k])
171

172 #5) We construct a shortened lattice basis (see Equation
(25)):

173 Lambda=zero_matrix(ZZ ,nrows=b*n,ncols=b*n)
174 for k in range(b):
175 for i in range(n):
176 for j in range(n):
177 Lambda[i,k*n+j]= ZList[k][i,j]
178 if k>0:
179 Lambda[k*n+i,k*n+i]=q
180

181 #6) We compute the first LLL reduced vector of Lambda:
182 v=Lambda.LLL().row(0)
183

184 #7) We compute our heuristic H’ for Lambda (see Equation
(H’)):

185 H=sqrt((b*n)/(8*pi*e))*q^((b-1)/b)
186

187 #8) If the first LLL reduced vector is longer than our
heuristic or q, we conclude that the challenge matrix was
a random matrix.

188 if v.norm()>H or v.norm() >=q:
189 return 0
190

191 #9) Otherwise , we conclude that it was a synthetic tuple.
192 else:
193 return 1
194

195

196

197 #
----------------------------------------------------------------------------
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198 #
----------------------------------------------------------------------------

199

200 #Toy example:
201 #------------
202

203 #We generate an odd prime:
204 q=next_prime (10000)
205

206 #We set a dimension:
207 n=5
208

209 #We construct a MiNTRU matrix with error variance 2* sigma:
210 sigma =2* sqrt(q)
211 (A,E,S)=MiNTRU(q,n,sigma)
212

213 #We generate a random tuple:
214 U=Muni(q,n)
215

216 #We use our distinguisher:
217 distinguisher(q,A) # should return 1
218 distinguisher(q,U) # should return 0
219

220 #We apply our improved distinguisher:
221 distinguisher_short(q,A,5) # should return 1
222 distinguisher_short(q,U,5) # should return 0
223

224 #
-------------------------------------------------------------------------------

225

226 #Slightly advanced example:
227 #-------------------
228

229

230 #We set the required parameters:
231 q=randint (2^15 ,2^19)
232 n=randint (4,16)
233

234 #We construct a MiNTRU matrix with error variance 2* sigma:
235 sigma =2* sqrt(q)
236 (A,E,S)=MiNTRU(q,n,sigma)
237

238 #We generate a random matrix:
239 U=Muni(q,n)
240

241 #We apply our distinguisher:
242 distinguisher(q,A) # should return 1
243 distinguisher(q,U) # should return 0
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244

245 #-->This is probably the limit for this method without
improvements.

246

247 #We apply our improved distinguisher:
248 distinguisher_short(q,A,5) # should return 1
249 distinguisher_short(q,U,5) # should return 0
250

251

252 #
-------------------------------------------------------------------------------

253

254 #Weak cryptographic example (may take some time):
255 #-------------------
256

257 #We set the required parameters:
258 q=randint (2^31 ,2^33)
259 n=randint (2^6 ,2^7)
260

261 #We construct a MiNTRU matrix with error variance 2* sigma:
262 sigma =2* sqrt(q)
263 (A,E,S)=MiNTRU(q,n,sigma)
264

265 #We generate a random tuple:
266 U=Muni(q,n)
267

268 #We apply our improved distinguisher:
269 distinguisher_short(q,A,5) # should return 1
270 distinguisher_short(q,U,5) # should return 0
271 #-->This is probably the limit for the improved method.
272

273

274

275 #
-------------------------------------------------------------------------------

276

277 #Repeated toy example for distinguisher_short:
278 #--------------------------------------------------
279

280 #We test how often MiNTRU matrices and random matrices are
correctly recognized by our distinguisher.

281 Positive_passed =0
282 Positive_failed =0
283 Negative_passed =0
284 Negative_failed =0
285 Test_failed =0
286 for i in range (100):
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287 print(Positive_passed ,Positive_failed ,Negative_passed ,
Negative_failed ,Test_failed)

288 q=randint (2^10 ,2^16)
289 n=randint (2 ,2^5)
290 sigma =2* sqrt(q)
291

292 #We generate an iNTRU tuple and a random one:
293 (A,E,S)=MiNTRU(q,n,sigma)
294 U=Muni(q,n)
295

296 #We apply our distinguisher:
297 R=distinguisher_short(q,A,6)
298 if R==-1:
299 Test_failed=Test_failed +1
300 elif R==1:
301 Positive_passed=Positive_passed +1
302 else:
303 Positive_failed=Positive_failed +1
304 RU=distinguisher_short(q,U,6)
305 if RU==-1:
306 Test_failed=Test_failed +1
307 elif RU==0:
308 Negative_passed=Negative_passed +1
309 else:
310 Negative_failed=Negative_failed +1
311 print(Positive_passed ,Positive_failed ,Negative_passed ,

Negative_failed ,Test_failed)
312

313

314 #The final result should show a tuple (A,B,C,D,F) where:
315 # A denotes the number of correctly recognized iNTRU tuples (

should be high)
316 # B denotes the number of wrongly interpreted iNTRU tuples (

should be low)
317 # C denotes the number of correctly recognized random tuples

(should be high)
318 # D denotes the number of wrongly interpreted random tuples (

should be low)
319 # F denotes the number of failed tests due to the

invertibility condition (should be low)
320

321

322

323

324

325 #
-----------------------------------------------------------------------

326

327 #Conclusion:
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328 #------------
329

330

331

332 #In our empirical trials (100 synthetic matrices and 100
random matrices) with the setup as stated above:

333 #1) The distinguisher_short with b=6 wrongly declared MiNTRU
matrices as random in 48% of the (non -failed) cases.

334

335 #2) The distinguisher_short correctly determined all random
matrices (in tests that didn’t fail).

336

337 #3) The distinguisher_short failed in 5% of the cases due to
the invertibility condition.

338

339

340 #--> Given the blow -up factor of LLL , the improved
distinguisher does moderately well in determining MiNTRU
matrices.

341

342 #--> More precise reduction algorithms (i.e. BKZ) may
strongly improve those statistics.

343

344 #--> In any case , the right detection is non -negligible.
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