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Nonequilibrium dissipation in living oocytes
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Abstract – Living organisms are inherently out-of-equilibrium systems. We employ recent devel-
opments in stochastic energetics and rely on a minimal microscopic model to predict the amount
of mechanical energy dissipated by such dynamics. Our model includes complex rheological effects
and nonequilibrium stochastic forces. By performing active microrheology and tracking micron-
sized vesicles in the cytoplasm of living oocytes, we provide unprecedented measurements of the
spectrum of dissipated energy. We show that our model is fully consistent with the experimental
data, and we use it to offer predictions for the injection and dissipation energy scales involved in
active fluctuations.
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Perrin’s century old picture [1] where the Brownian mo-
tion of a colloid results from the many collisions exerted
by the solvent’s molecules is a cornerstone of soft-matter
physics. Langevin [2] modeled the ensuing energy ex-
changes between the solvent and the colloidal particle in
terms of a dissipation channel and energy injection kicks.
The key ingredient in the success of that theory was to
completely integrate out the “uninteresting” degrees of
freedom of the solvent whose properties are gathered in
a friction constant and a temperature. In this work we
take exactly the reverse stance and ask how, by observ-
ing the motion of a tracer embedded in a living medium,
one can infer the amount of energy exchange and dissi-
pation with the surrounding medium. The main goal is
to quantify the energetic properties of the medium, both
injection- and dissipation-wise.

This is a stimulating question because there are of
course striking differences between a living cell and its
equilibrium polymer gel counterpart, to which newly
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developed [3,4] methods of nonequilibrium statistical me-
chanics apply. Beyond thermal exchanges that fall within
the scope of a Langevin approach, ATP consumption fu-
els molecular motor activity and drives relentless rear-
rangement of the cytoskeleton. This chemically driven
continuous injection and dissipation of energy adds a
nonequilibrium channel that eludes straightforward quan-
titative analysis. In short, a living cell is not only a
fertile playground for testing new ideas from nonequi-
librium physics, but also one in which these ideas can
lead to a quantitative evaluation of an otherwise ill-
understood activity which is of intrinsic biophysical inter-
est. Our work addresses both aspects by a combination of
active microrheology, tracking experiments, and theoreti-
cal modeling.

One experimental way to access nonequilibrium physics
in the intracellular medium is to focus on the deviation
from thermal equilibrium behavior of the tracer’s position
statistics: forming the ratio of the response of the tracer’s
position to an infinitesimal external perturbation to its un-
perturbed mean-square displacement leads to a quantity
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that only reduces to the inverse temperature when in equi-
librium, by virtue of the fluctuation-dissipation theorem
(FDT). Earlier tracking experiments supplemented by mi-
crorheology techniques have allowed the departure from
equilibrium to be analyzed in terms of this ratio in a vari-
ety of contexts [5–10] ranging from reconstituted actin gels
to single cells. However, the limitations inherent to this
effective temperature are well known: it bears no universal
meaning as it depends on the observable under scrutiny,
thus it cannot be equated to a bona fide temperature, and
hence it does not connect to the underlying microscopic
dynamics. In spite of these caveats, the effective tempera-
ture has been widely measured in nonequilibrium systems
since it is perhaps the simplest way to assess deviation
from equilibrium.

Here we exploit a body of theoretical methods that have
been developed over the last ten years to infer quantita-
tive information about the nonequilibrium processes driv-
ing intracellular dynamics. Within the realm of stochastic
thermodynamics [3,4] as it strives to extend concepts of
macroscopic thermodynamics to small and highly fluctu-
ating systems [11–13], the Harada-Sasa equality stands out
as being particularly suited to our goal [14,15]. Nonequi-
librium systems are characterized by the dissipation of en-
ergy, which is absorbed by the surrounding thermostat via
a transfer from the system to the bath. The Harada-Sasa
equality connects the rate of dissipated energy to the spa-
tial fluctuations in a nonequilibrium steady-state system.
The feasibility of measuring the various ingredients in the
Harada-Sasa framework was demonstrated in model sys-
tems such as a micron-sized colloidal particle in a viscous
fluid [16,17], and then later generalized to a viscoelastic
medium [18]. It has also been used to quantify the effi-
ciency of an isolated molecular motor [19].

The systems to which we apply this equality are micron-
sized vesicles that are present in the cytoplasm of mouse
unfertilized eggs, known as oocytes. Their motion in the
cell is mainly regulated by myosin-V motors on the actin
network [20–22]. The use of such vesicles allows us to cap-
ture the intrinsic intracellular dynamics without using ar-
tificial external particles that may alter the environment.
From a physics perspective, oocytes are also major assets
since they constitute a rare example of a living cell that re-
mains steady on the time scales of hours. They are spheri-
cal in shape, with typical radius of about 40µm, and their
nucleus is centrally located at the end of Prophase I [23].

In this paper, we directly access nonequilibrium dissipa-
tion within the cell. We first characterize the intrinsic rhe-
ology of the medium experienced by the vesicles. Then, we
present a minimal microscopic model for the dynamics of
the vesicles which is driven by the nonequilibrium reorga-
nization of the cytoskeleton by molecular motor generated
forces. Our first main result is to demonstrate that this
model is sufficient to capture the available experimental
data. As a second step, we use the Harada-Sasa equality to
predict and quantify the rate of nonequilibrium dissipated
energy in our experimental system. Finally, we employ

Fig. 1: (Color online) Experimental setup for measuring oocyte
microrheology. (a) We embed oocytes in a collagen matrix be-
tween two glass coverslips to prevent rolling during measure-
ment. (b) We use optical tweezers to trap intracellular vesicles
and perform active microrheology to measure local mechanical
properties [5]. (c) Real (G′) and imaginary (G′′) part of the
complex modulus, measured from active microrheology. Data
at 10 Hz is used in [22]. Best-fit curves are shown as solid and
dashed lines for G′ and G′′, respectively. (d) We use laser track-
ing interferometry to track spontaneous vesicle motion with
high spatiotemporal resolution (10 nm, 1 kHz) [28].

this new prediction to evaluate how nonequilibrium ac-
tivity varies across the cell, and we offer interpretations
about the role of molecular motors in vesicle motion.

Experimental setup. – Mouse oocytes are collected
from 13-week-old mice and embedded in a collagen gel be-
tween two glass coverslips [24]. We measure the local me-
chanical environment surrounding vesicles in living mouse
oocytes using active microrheology [5,25]. We use an op-
tical tweezer to trap vesicles and apply a sinusoidal os-
cillating force (fig. 1). The resulting displacement of the
vesicle due to the applied force reflects the mechanical re-
sponse of the system. We deduce the complex modulus of
the intracellular environment surrounding the vesicle from
the generalized Stokes-Einstein relation G∗ = 1/(6πaχ̃),
where χ̃ is the Fourier response function, and a is the
vesicle’s average radius.

We find that the intracellular mechanics exhibits a
power law rheology at high frequencies, and levels off at
lower frequencies, as seen in the real and imaginary parts
of G∗, respectively denoted by G′ and G′′ (fig. 1(c)). We
fit the experimental data with the function

G∗(ω) = G0(1 + (iωτα)α), (1)

where τα is a thermal relaxation time scale [26,27]. To
experimentally quantify nonequilibrium dissipation, we
must also measure the spontaneous motion of the vesi-
cles by laser interferometry, and extract the power spec-
tral density of the vesicles’ position [28], as is done for
passive microrheology [29] (fig. 1(d)). These spontaneous
fluctuations entangle information about the thermal and
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nonequilibrium forces applied on vesicles in the oocyte
cytoskeleton [25].

Caging model. – We propose a model for the vesi-
cle dynamics and the effect of the surrounding fluctuating
actin mesh that takes the observed power law behavior
of G∗ into account. The model has itself been previously
introduced in [30], but it is generalized here to encom-
pass strong memory effects [31]. The underlying physi-
cal picture is that the vesicle is caged in the cytoskeleton
(fig. 1(b)), modeled as a harmonic trap of constant k, and
we assume that nonequilibrium activity induces rearrange-
ments of the cytoskeletal network resulting in a displace-
ment of the cage. In a medium characterized by a memory
kernel ζ(t), we then describe the one dimensional position
x of a vesicle with two coupled generalized Langevin-like
equations involving the center of the cage x0:

ζ ∗
dx

dt
= −k(x − x0) + ξ, ζ ∗

dx0

dt
= kταvA, (2)

where ∗ denotes the convolution product, ξ is a zero mean
Gaussian colored noise with correlations 〈ξ(t)ξ(t′)〉 =
kBTζ(|t − t′|) as provided by the FDT [32], and T is the
bath temperature. All the degrees of freedom of the sur-
rounding network are embodied by the cage center x0. We
have assumed that the dynamics of the network is not af-
fected by the tracer in the regime of our experiment.

The cage motion is given by the active burst vA: a zero
mean stochastic process representing the random vesicle
motion driven by cellular activity [22,31]. In our further
analysis, we consider that this process has a single time
scale τ that governs its decorrelation:

〈vA(t)vA(0)〉 =
kBTA

kτα

e−|t|/τ

τ
, (3)

where, by analogy with a standard Langevin equation, we
have defined an active temperature TA associated to the
amplitude of this process. Notice that TA is a scalar quan-
tity which quantifies the amplitude of the active fluctua-
tions. We choose the memory kernel ζ to recover the ob-
served behavior of the measured G∗ by adopting a power
law decay:

ζ(t) = k
(τα

t

)α Θ(t)

Γ(1 − α)
, (4)

where Γ is the Gamma function, Θ is the Heaviside func-
tion, and α < 1. From the generalized Stokes-Einstein
relation, we derive that G∗(ω) = [k + iωζ̃(ω)]/(6πa) [33],
where the superscript tilde denotes a Fourier transform.
The normalization factor in (4) is chosen so that the cor-
responding G∗ has exactly the same expression as the
phenomenological function (1) that we use to fit the
experimental data, where k = 6πaG0. In that respect,
the specific form of the memory kernel in (4) reflects the
explicit choice of the best-fit curve in (1), yet our approach
bears a higher level of generality since it can be extended
in a straightforward manner to other kinds of rheology.

However, it is not possible to capture the complex fre-
quency dependence of G∗ shown in fig. 1 by discarding
memory effects in the dynamics.

Effective temperature. – A standard quantification
of the departure of the dynamics from equilibrium relies
on a frequency dependent “effective temperature”. Fol-
lowing [8,9,34], it has been introduced by analogy with
the FDT as

Teff(ω) =
ωC̃(ω)

2kBχ̃′′(ω)
, (5)

where C̃ and χ̃′′ are the Fourier position autocorrelation
function and the imaginary part of the response function,
respectively. As a first step, we compute it in terms of the
microscopic parameters as

Teff(ω) = T +
1

(ωτα)3α−1 sin(πα
2 )

TA

1 + (ωτ)2
. (6)

The high frequency value collapses to the bath tem-
perature as for an equilibrium behaviour provided that
3α − 1 > 0. It constitutes a useful benchmark to delin-
eate a thermal regime where active fluctuations are neg-
ligible [8]. It also diverges at low frequency as a result
of nonequilibrium activity, with a coefficient depending
on both the material properties {α, τα} and the active
temperature TA. This interplay between mechanics and
activity reflects the fact that, in our model, the nonequi-
librium processes operating in the system drive motion of
the cytoskeletal cage, which, in turn, affects the vesicle
dynamics.

Dissipation spectrum. – A quantification of direct
physical relevance is the work done by the vesicle on the
thermostat [35], which is the dissipated mechanical en-
ergy. The mean rate of energy dissipation Jdiss is the
power of the forces exerted by the vesicle on the heat
bath, namely the forces opposed to the thermal forces
acting on the vesicle by virtue of the action-reaction prin-
ciple. The thermal forces comprise both the drag force
−ζ ∗ ẋ and the Gaussian noise ξ. Therefore, the dissipa-
tion rate reads Jdiss = 〈ẋ(ζ∗ẋ−ξ)〉, where ẋ = dx/dt is the
vesicle’s velocity [35,36]. It is proportional to the rate at
which the vesicle exchanges energy with the surrounding
environment [37]. In equilibrium Jdiss would vanish, thus
expressing the fact that the vesicle releases and absorbs
on average the same amount of energy from the thermo-
stat. The dissipation rate is equal to the mean rate of en-
tropy production times the bath temperature T . Thereby,
it directly characterizes the irreversible properties of the
dynamics stemming from the active fluctuations.

The Harada-Sasa equality connects the spectral density
I of mechanical energy dissipation to C̃ and χ̃′′ in a vis-
cous fluid [14,15]. It has been generalized to the case of a
complex rheology [18], and we express it in terms of the
effective temperature as

I =
2kB(Teff − T )

1 + (G′/G′′)2
. (7)
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This relation allows one to precisely identify the dissipa-
tion rate with the nonequilibrium properties of the vesi-
cles’ dynamics, since I vanishes at equilibrium. It also
enables one to quantify dissipation in the system without
any a priori knowledge on the internal source of nonequi-
librium fluctuations. The relation (7) between effective
temperature and dissipation holds independently of our
modeling of intracellular activity; it can be used for a large
variety of nonequilibrium dynamics. Within our model,
the dissipation spectrum is

I(ω) =
(ωτα)1−α sin(πα

2 )

1 + 2(ωτα)α cos(πα
2 ) + (ωτα)2α

2kBTA

1 + (ωτ)2
. (8)

There is no nonequilibrium dissipation when TA = 0 as
expected, while in general it depends on both mechan-
ics and activity as for Teff. By integrating the dissipa-
tion spectrum over the whole frequency range, we can
deduce the total dissipation rate Jdiss =

∫

dωI(ω)/(2π).
By contrast to Teff, the dissipation spectrum not only
quantifies the deviation from equilibrium properties, it is
also related to the energy injected by the nonequilibrium
processes.

Using the model (2), the nonequilibrium drive is em-
bodied by the kx0 force applied on the vesicle. The dissi-
pation rate precisely equals the mean power of this force:
Jdiss = 〈ẋkx0〉, reflecting the fact that the mechanical en-
ergy dissipated by the vesicle is also the energy provided by
the nonequilibrium processes driving the vesicle’s motion.
In addition, the dissipation spectrum I equals the Fourier
transform of the time symmetric correlation between the
vesicle velocity ẋ and the driving force kx0.

Energy conversion. – The picture that emerges from
our model is that the vesicle motion results from the dis-
placement of the confining cytoskeletal cage, which is due
to the active reorganization of the local environment. We
denote by Jenv the power of the random force driving
the cage’s motion. This is the rate of energy injected by
the nonequilibrium processes into the environment lead-
ing to the cytoskeleton rearrangement in our model. It is
given by the mean power injected by the force kταvA to
the cage: Jenv = 〈ẋ0kταvA〉, where ẋ0 = dx0/dt. This
can be computed in terms of the microscopic parameters
Jenv = kBTA/τ(τα/τ)1−α. Note that Jenv can also be re-
garded as the work per unit time done by the cage on the
thermostat, namely on the surrounding medium where the
cage is immersed. This interpretation stems from the fact
that our model is the limit version of one that features
a reaction force of the vesicle upon the cage (for which
mechanical interpretations are ambiguity-free), along with
thermal fluctuations acting directly on the cage [38].

In our phenomenological picture, the energy Jenv in-
jected by the intracellular active processes serves to relent-
lessly remodel the cytoskeleton network (represented by
x0). This energy is then transduced into the vesicles con-
fined in such network (represented by x), which is embod-
ied by Jdiss, thus driving their active motion. To quantify

the efficiency of this energy transduction we introduce the
dimensionless ratio ρ = Jdiss/Jenv of the energy effectively
dissipated through active motion of the vesicles over that
injected by the nonequilibrium processes into the cage. We
find the energetic efficiency ρ to be independent of TA, and
is thus controlled by the time scales τ and τα. We under-
stand such energy transduction as the conversion of the
active stirring of the cytoskeleton network into the active
dynamics of the intracellular components.

Quantification of the activity. – We exploit our the-
oretical predictions to quantify the experimental measure-
ments of nonequilibrium dissipation inside living oocytes.
We extract the data for the effective temperature and the
dissipation spectrum from a combination of active and
passive microrheology. We observe that the experimen-
tal effective temperature diverges at low frequency, as a
clear evidence that nonequilibrium processes drive the in-
tracellular dynamics in this regime (fig. 2(a)). It reaches
the equilibrium plateau at high frequency as expected.
Deviation from thermal equilibrium was already reported
in other living systems [7,10,31]. We use our analytic pre-
diction in eq. (8) to fit the dissipation spectrum data. As
we have already quantified the viscoelastic properties, the
remaining two free parameters are the ones characterizing
the properties of the nonequilibrium processes, namely the
active temperature TA, and the mean persistence time τ .
Our best fit is in very good agreement with the measured
dissipation spectrum (fig. 2(b)). This is the first main re-
sult of this paper: our minimal model reproduces very well
the available experimental data. It supports the underly-
ing phenomenological picture that the main contribution
of the active force driving the vesicle dynamics is medi-
ated by the surrounding network. Moreover, the excellent
agreement points to a single dominant active process in
the system, characterized by a single time scale and force
magnitude, as captured by the parameters of our model.

The extracted value of the active temperature TA =
(6.2 ± 0.5)T is larger than the bath temperature T . By
contrast to Teff, the active temperature is frequency in-
dependent, and it quantifies the amplitude of the active
fluctuations. Hence, our estimation reveals that the fluc-
tuations due to the nonequilibrium rearrangement of the
cytoskeleton have a larger amplitude than the equilibrium
thermal fluctuations dominating the short time dynamics.
The time scale τ = (0.34±0.04) ms that we obtain is of the
order of the power stroke time of a single myosin-V mo-
tor [31,39]. This supports the fact that the nonequilibrium
processes driving the vesicle dynamics are related to the
microscopic kinetics of the molecular motors. It is consis-
tent with the fact that nonequilibrium processes are dom-
inant at a higher frequency in our system than in others
which were mainly driven by myosin-II [5,7], for which the
power stroke time is about 0.1 s [40]. It is not an obvious
result a priori that one can extract the kinetics of indi-
vidual motors from global measurements of response and
fluctuations. Our analytic prediction for Teff in eq. (6), for
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Fig. 2: (Color online) (a) Effective temperature Teff and (b) dis-
sipation spectrum I as functions of frequency (◦), best fits in
solid lines using eqs. (6) and (8). The horizontal dashed line
in (a) is the prediction for a thermal equilibrium system in the
absence of activity, for which the dissipation spectrum equals
zero. The experimental data is averaged over the whole oocyte.
(c) We distinguish three concentric shells around the central
nucleus (black) with a radial extension of about 10 µm each:
near nucleus (blue), middle (yellow), and cortex (red). (d) Ac-
tive temperature, (e) dissipation rate, and (f) power conversion
rate estimated from the best fits of Teff and I at three locations
within the cytoplasm: near the nucleus (Nuc), near the cortex
(Cor), and in the region in between (Mid).

which we use the parameter values {α, τα, TA, τ} extracted
from the previous fits of G∗ (fig. 1(c)) and I(ω) (fig. 2(b)),
is in consistent agreement with the experimental data
(fig. 2(a)).

To go beyond the calibration of the model presented
above, we now use our predictions to investigate energy
transfers within the oocytes. From the best-fit param-
eters, we directly estimate the dissipation rate Jdiss =
(360 ± 110) kBT/s, as well as the power conversion rate
ρ = (1.7 ± 0.8)10−3. The definition of Jdiss is indepen-
dent of any modeling of the underlying activity, whereas
ρ depends on our specific model. We find that the con-
version of energy from the cytoskeletal network to the
vesicle is very low. This is the second main result of
this paper. It suggests that a major proportion of the
nonequilibrium injected power is dedicated to the network
rearrangement, and not necessarily to vesicle dynamics
per se. In other words, the injected energy tends to go

mostly into elastic stresses, and only a small fraction ends
up in kinetic energy [41,42]. Note that the power of the
active force driving the vesicle being small compared with
the one moving the cage is not in contradiction with our
assumption that the vesicle driving is mediated by the
cage. Indeed, such a driving already leads to a significant
deviation from equilibrium, as shown in fig. 2(a).

It has been reported that a single myosin-V motor
does about 3 kBT of work during one power stroke [43],
from which we deduce that it dissipates approximately
104 kBT/s into the intracellular environment during the
power stroke. This result is to be compared with our esti-
mation of Jenv = (2.0 ± 0.5)105 kBT/s. We infer that the
power injected by the nonequilibrium processes into the
environment represents approximately the activity pro-
vided by 20 myosin-V motors. Assuming that the nonequi-
librium processes in oocytes are indeed mainly regulated
by myosin-V activity, we infer that 20 is the typical num-
ber of motors involved in the nonequilibrium reorganiza-
tion of the cytoskeletal cage in the vicinity of a vesicle.

Variability across the oocyte. – One of the main
advantages of our energetic approach lies in the ability to
compare the same physical quantities across a large vari-
ety of living systems, or in different locations of the same
system. We consider three concentric shells within the
oocyte cytoplasm located near the nucleus, near the cor-
tex, and between these two regions. Each shell has a radial
extension of about 10µm (fig. 2(c)). We fit the real and
imaginary parts of G∗ for the three regions, and we use
our analysis to quantify the corresponding TA, Jdiss, and ρ.
Our results hint that nonequilibrium activity is increased
near the middle of the cell, and slightly decreased near the
nucleus, as quantified by TA and Jdiss (figs. 2(d)–(e)). This
suggests that living oocytes locally regulate the nonequi-
librium activity throughout their cytoplasm by injecting
different amounts of energy. Note that the relative varia-
tion of Jdiss and TA are similar, showing the close relation
between these quantities as highlighted in eq. (8).

In comparison, the variation of ρ does not exhibit a
clear trend across the oocyte (fig. 2(f)). Since the ρ def-
inition is a balance of a purely active parameter τ and
the material properties {α, τα}, this result suggests that
the nonequilibrium fluctuations are adapted in each re-
gion to the local mechanical properties. It is known that
the molecular motors do not only produce active forces
in the cell, they also affect its mechanical properties [31].
Therefore, we speculate that there might be a feedback
between the overall fluctuations induced by the motor ac-
tivity and the mechanics of the surrounding cytoplasmic
network within which they move to find an optimum rate
of power conversion, the optimal value being roughly the
same for the three locations.

Conclusion. – We quantified the amount of mechani-
cal energy dissipated by the intracellular dynamics. Our
analysis utilizes a minimal model describing the effect of
the nonequilibrium stochastic forces in living systems with
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complex rheology. We find the predictions of our model
to be in excellent agreement with the experimental re-
sults for vesicles in living mouse oocytes, thus allowing
us to quantify the main properties of the nonequilibrium
dynamics: the amplitude and typical time scale of active
fluctuations, the amount of dissipated energy, and the rate
of energy transmitted from the cytoskeletal network to the
intracellular components. The extracted parameters pro-
vide a quantitative support to the experimental picture
that the nonequilibrium processes are mainly driven by
myosin-V activity [20–22,31]. The use of general prin-
ciples in stochastic energetics, together with a minimal
microscopic model, makes the results of our study highly
relevant to a large variety of nonequilibrium processes in
biology and active matter [44–47].
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