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Abstract—The use of a large-scale antenna array (LSAA) has
become an important characteristic of multi-antenna commu-
nication systems to achieve beamforming gains. For example,
in millimeter wave (mmWave) systems, an LSAA is employed
at the transmitter/receiver end to combat severe propagation
losses. In such applications, each antenna element has to be
driven by a radio frequency (RF) chain for the implementation
of fully-digital beamformers. This strict requirement significantly
increases the hardware cost, complexity, and power consumption.
Therefore, constant-modulus analog beamforming (CMAB) be-
comes a viable solution. In this paper, we consider the scaled
analog beamforming (SAB) or CMAB architecture and design
the system parameters by solving the beampattern matching
problem. We consider two beampattern matching problems. In
the first case, both the magnitude and phase of the beampattern
are matched to the given desired beampattern whereas in the
second case, only the magnitude of the beampattern is matched.
Both the beampattern matching problems are cast as a variant of
the constant-modulus least-squares problem. We provide efficient
algorithms based on the alternating majorization-minimization
(AMM) framework that combines the alternating minimization
and the MM frameworks and the conventional-cyclic coordinate
descent (C-CCD) framework to solve the problem in each case.
We also propose algorithms based on a new modified-CCD (M-
CCD) based approach. For all the developed algorithms we prove
convergence to a Karush-Kuhn-Tucker (KKT) point (or a sta-
tionary point). Numerical results demonstrate that the proposed
algorithms converge faster than state-of-the-art solutions. Among
all the algorithms, the M-CCD-based algorithms have faster
convergence when evaluated in terms of the number of iterations
and the AMM-based algorithms offer lower complexity.

Index Terms—Analog beamforming, majorization-
minimization, MM, alternating MM, AMM, cyclic coordinate
descent, CCD, large-scale antenna arrays, unit-modulus
constraints, nonconvex optimization, block cyclic coordinate
descent, BCCD.

I. INTRODUCTION

In multi-antenna communication systems, an antenna array
is employed at the transmitter and/or at the receiver to achieve
beamforming, performance gains. For example, the use of a
large-scale antenna array (LSAA) has become a decisive part
of a mmWave system. This is because the communication at
mmWave frequencies suffers from several propagation losses
[2]–[4]. Therefore, to alleviate these losses an LSAA is
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employed at the transmitter to achieve beamforming gains.
Some other applications of beamforming design are in acoustic
imaging for underwater exploration [5], channel sounding in
mmWave communications [6], etc. The fully-digital imple-
mentation of a beamformer requires as many radio frequency
(RF) chains as the number of antenna elements. Consequently,
this places demands on hardware and increases implementa-
tion cost and power consumption. One possibility is to employ
analog phase-shifters but an LSAA requires as many power
amplifiers (PAs) as the number of antennas. This design further
limits the applicability. To alleviate the requirement of multiple
PAs, an alternative is to use a variable gain amplifier (VGA)
driving a phase-shifting network. Thus, the beamforming vec-
tor is constrained to have constant-modulus entries, where the
magnitude of each entry corresponds to the gain contribution
from the VGA. In this case, the transmitted signals present
low Peak-to-Average-Ratio (PAR) and they enable the use of
power-efficient nonlinear amplifiers at the transmitter’s side.
This characteristic is highly desirable in LSAA-based systems
[7], [8] because they do not require highly linear PAs which are
necessary for the fully-digital beamforming implementation
[9], [10]. The analog beamforming architectures have several
other advantages, for example, adjusting only the phases of
the beamforming vector constrains the power required to drive
an antenna element to be a constant. These gains are more
appealing when the transmitter/receiver employs an LSAA.

A. Literature Review

The constant-modulus analog beamforming (CMAB) prob-
lem has been studied in the past [11]–[15], where the optimal
beamforming vector is designed by solving an optimization
problem subject to the unit-modulus constraints on the en-
tries of the beamforming vector. For example, an signal-
to-interference-plus-noise ratio (SINR) maximization problem
is considered in [11]. However, due to the unit-modulus
constraints, the resulting optimization problem is nonconvex
and in general NP-hard [16]. Two algorithms based on the
conjugate gradient and Newton’s method to compute the
beamforming weights are proposed in [11]. These methods are
the special cases of Riemannian optimization on manifolds. A
gradient search algorithm is presented in [12], with the angle
parameterization of the unit-modulus constraints to adaptively
adjust the phases of the entries of the beamforming vector.
Receive beamforming is studied in [13] and the optimal
beamforming weights are designed by minimizing the mean
square error (MSE) between the array output and the desired
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signal. For null steering, a position-perturbation technique is
presented in [14].

Recently, this problem has received attention from a beam-
pattern matching perspective, where the desired beampattern
is matched using an analog phase shifting network [1], [15].
This problem is cast as a unit-modulus least squares (ULS)
problem. A closely related problem of unimodular radar se-
quence (or code) design also arises in several active sensing
applications [17]–[27]. In these applications, different perfor-
mance metrics for example, in [22] the Peak Sidelobe Level
(PSL), and Integrated Sidelobe Level (ISL) based designs are
proposed. Therein, the worst-case PSL/ISL is optimized under
the steering vector mismatches. In [23], the worst-case signal-
to-interference-plus-noise ratio (SINR) is maximized over the
steering vector mismatches under the constant-modulus and
similarity constraints for radar waveform synthesis. In [24], an
objective function consisting of a specific weighted beampat-
tern matching error and the space-frequency stopband energy
is minimized subject to the constant-modulus constraints.
In [25], a quadratic function is maximized subject to the
unit-modulus and similarity constraints. In [26], a wideband
multiple-input multiple-output (MIMO) radar transmit beam-
pattern design with spectral and constant-modulus constraints
is considered and is solved through a sequence of constrained
quadratic programs such that the constant-modulus constraint
is achieved at the convergence. A recent paper [27] considers
the synthesis of constant-modulus waveforms by maximizing
the SINR subject to multiple spectral compatibility constraints.
To solve the problem, an iterative procedure based on the
coordinate descent (CD) framework is proposed.

In the literature, an approximate solution to the ULS prob-
lem is found by employing the semidefinite relaxation (SDR)
technique, which lifts the dimensionality of the search space
from M to M2. As a result, a large number of design pa-
rameters need to be optimized, resulting in increased memory
usage and storage requirements, which may be impractical.
Another disadvantage with SDR is that it empirically returns
a rank-1 solution, but in cases when the solution is not rank-1,
an appropriate randomization technique should be employed
[16], [28]; this further increases the overhead. To that end, the
scalability of the SDR technique is a bottleneck in designing
beamformers for LSAA-based systems. Therefore, to keep the
computational complexity low, gradient-projection (GP) based
algorithms are proposed in [15]. Another recent work proposed
an alternating direction method of multipliers (ADMM) based
algorithm for beamforming in the context of wireless sensor
networks [29].

In the context of radar sequence design, the majorization-
minimization (MM) and the CD frameworks have been
adopted in the literature to handle the unit-modulus or
constant-modulus constraints [19], [27], [30]. In many of these
applications, the problem is modeled as a convex/nonconvex
quadratically constrained quadratic program (QCQP). In [19],
[30], MM algorithms to solve the ISL minimization problem
are proposed. In [27], a CD-based procedure is proposed to
solve the problem. But the development of an MM and a CD-
based algorithm crucially depends on the specific structure of
the problem. In contrast to the existing problems solved using

MM or CD-based algorithms which optimize a unit-modulus
vector, our problem entails optimizing two coupled unit-
modulus vector variables and a multiplicative scalar variable.
Therefore, the existing algorithms in the literature can not be
directly applied to the beampattern matching problem because
of fundamental differences in the problem formulation. Fur-
thermore, beamforming design with unit-modulus constraints
is NP-hard [16] and hence, there exists scope for efficient and
scalable algorithms with better performance compared to the
existing ones.

B. Contributions

In this paper, we consider the scaled analog beamforming
(SAB) architecture and design the beamforming vector by
solving the beampattern matching problem subject to the
constant-modulus constraints [15]. In SAB architecture, a
common variable gain amplifier (VGA) drives the phase-
shifting network. Therefore, the magnitude of each entry
of the beamforming vector is a constant, representing the
gain introduced by VGA1. We consider two variants of the
beampattern matching problem, which can be cast as the
constant-modulus least squares (CLS) problem. In the first
problem, we consider both gain and phase of the beampattern
as variables, whereas in the second problem we match only
the magnitude of the beampattern [15]. Later, we show that the
first problem formulation becomes a special case of the second
one. This is affected by formulating the problem with unit-
modulus beamforming weight and beampattern phase vectors
as well as a scalar corresponding to VGA gain as variables.

For the considered formulations, we provide redefficient
algorithms, and the convergence guarantees to an associated
stationary point. In this context, the contributions of the work
include:
• Algorithms: We propose efficient algorithms specializing

on the MM and the cyclic coordinate descent (CCD)
optimization frameworks to the considered problem for-
mulations. As mentioned earlier, the MM and the CCD
(or in general CD) are optimization frameworks and the
algorithm development under each framework crucially
depends on the structure of the specific problem. Herein,
we propose efficient and scalable algorithms for LSAAs
by exploiting the problem structure with theoretical con-
vergence guarantees. There are no works on exploring
different optimization frameworks for the increasingly
important beamforming problem [15]. In this context,
the works closer to the one pursued are [31]–[33] where
the MM and the CCD frameworks are utilized to solve
different optimization problems involving only one unit-
modulus constrained vector variables. Moreover, we show
that the optimization problem can be solved in closed-
form in one of the unit-modulus constrained vector vari-
ables as well as the scaling variable. Therefore, we exploit
the problem structure and develop algorithmic solutions
tailored to the specific problems resulting in enhanced
performance gains in comparison to the existing works.
Following we summarize the algorithmic contributions:

1All the elements of the beamforming vector have the same magnitude.
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– The MM-based algorithms utilize alternating min-
imization along with the MM framework. Thus,
we call them as alternating MM (AMM)-based al-
gorithms. These, algorithms differ from the stan-
dard MM formulation where the cost function is
majorized for all variables, herein we only need
majorization to handle the optimization over the
beamforming vector and the remaining variables are
optimized in closed-form. In particular, this departs
from the approach of [15] where the beampattern
phase vector is optimized using a gradient-projection
(GP) method and requires tuning an additional step-
size parameter. This leads to effective and efficient
MM implementations.

– Similarly, in the development of the CCD-based
algorithm, we do not solve all the associated single
variable sub-problems; only those associated with
the beamforming vector are solved componentwise,
whereas the other variables are updated block-wise
as they admit a closed-form solution. This again
leads to improved CCD implementation than state-
of-art.

– Apart from the conventional-CCD (C-CCD) based
approach, we also propose modified-CCD (M-CCD)
based algorithms employing a new update rule and
offering faster convergence in comparison to the
other algorithms.

• Convergence: We theoretically establish convergence
guarantees for all the proposed algorithms.

– Even though the constraints are nonconvex, we
show that the sequence of iterates generated by the
AMM, C-CCD, and M-CCD algorithms converge to
a Karush-Kuhn-Tucker (KKT) point and is bounded.

– We also prove that the solutions obtained by all the
algorithms satisfy the linear independence constraint
qualification (LICQ) (Proposition 3.1.1 in [34]) reg-
ularity condition.

• Simulations: Numerical simulations under different
beampattern settings demonstrate the effectiveness of
the proposed algorithms. We analyze the evolution of
beampattern matching error with the number of iterations
and study the scalability with the number of antennas.
It is observed that the proposed algorithms converge
faster with a better beampattern matching accuracy in
comparison with the state-of-the-art solutions existing in
the literature. Moreover, increased performance gains are
observed when LSAAs are employed.

C. Organization of the Paper

The remainder of the paper is organized as follows. In
Section II, the analog beamforming architecture is described
and the two problems are formulated. In Section III, we first
describe algorithmic frameworks followed by the proposed
algorithmic solutions and convergence guarantees for the prob-
lem formulations presented in Section II. Simulation results are
presented in Section IV and Section V concludes the work.

D. Notations Used
The following notations are used throughout the paper. A

vector and a matrix are represented by a and A respectively.
The i, j element of a matrix is denoted as A(i, j). The i-th
entry of a vector a is represented as a(i) or ai. The complex
exponential operation on each entry of a matrix is represented
as e(jA), the phase/argument of each element of a matrix is
denoted as arg (A). The trace operator and the Frobenius norm
are represented as Tr (A) and ‖A‖F ; ‖a‖2 denotes the `2
norm of the vector. The real part of a scalar complex variable
z or a matrix varaible Z, is represented as Re (z). The symbol
| · | denotes the modulus of a complex number. The Hermitian
operation, conjugate, and transpose of a matrix are denoted as
AH , A∗, and AT respectively. The Schur-Hadamard product
between two matrices is represented as A◦B; A � 0 denotes
a positive semi-definite (p.s.d.) matrix. The set of Hermitian
positive semi-definite matrices is represented as S+n . A vector
of all ones and all zeros, each of size m are denoted as 1m×1
and 0m×1, respectively.

II. ANALOG BEAMFORMING ARCHITECTURE AND
PROBLEM FORMULATIONS

In this section, we first present the SAB architecture fol-
lowed by two beamforming design problem formulations.

A. SAB Architecture
A transmitter equipped with an analog phase shifting net-

work driven by a common VGA serving multiple single-
antenna users is considered, as shown in Fig. 1. The use
of a common VGA for all branches motivates the term
SAB architecture. The gain of VGA is assumed to be an
unknown and considered as a design variable. Therefore, the
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Fig. 1. CMAB or SAB architecture.

overall beamforming vector is constrained to have constant-
modulus entries, where the unknown constant represents the
gain introduced by the VGA. Herein, we consider a uniform
linear array (ULA) with M antenna elements and a spacing
d = λ

2 at the transmitter, where λ represents the wavelength
of operation. The array transmits the same information to the
users, therefore, this a broadcast beamforming scenario [35].

The array response of a ULA in a direction θi is modeled
as,

a(θi) =
[
1 ejθi ej2θi . . . ej(M−1)θi

]T
. (1)
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We consider an uniform discretization of the angular space

into N points as θ =
[
0, 2πN ,

4π
N , . . . ,

2(N−1)π
N

]T
. Then, the

array response from these directions can be written compactly
in matrix form as A(θ) = [a(θ1),a(θ2), . . . ,a(θN )]H , where
θi represents the i-th element of θ. The beampattern in the
direction θi takes the form y(θi) = a(θi)

Hw̃, where w̃
is the beamforming vector to be designed. For notational
convenience, from now onwards we write y(θi), a(θi) and
A(θ) as yi, ai and A, respectively.

B. Beampattern matching
The least-squares beampattern matching problem after con-

sidering the requirements in all {θi} is formulated as,

P1 : min
r∈R,w̃

‖y −Aw̃‖22
subject to |w̃i| = r, ∀i ∈ [1,M ],

where y is an N -dimensional vector denoting the desired
response along the directions represented by the elements of
vector θ and the variable r models the gain introduced by
the VGA. The elements of the overall beamforming vector
w̃ are constrained to be constant modulus, thus representing
phase-only beamforming.

C. Beampattern Matching with Additional Degrees of Free-
dom

In the case of transmit beamforming, it may be required
to match only the magnitude of the beampattern because in
general, a receiver has to compensate for phase inconsistency
[15]. In this case, the system of equations for matching the
beampattern magnitude can be expressed as,

y = |Aw̃| , (2)

where |·| denotes the entry-wise magnitude of the vector Aw̃.
Because of the non-differentiability of the modulus function,
the least-squares matching problem similar to problem P1 will
result in a non-differentiable objective function. To that end,
we can equivalently rewrite the system of equations in (2) as
given by,

y ◦ u = Aw̃,

where u represents an additional vector with its i-th entry
ui = ej arg(a

H
i w̃) and the symbol ◦ denotes the element-wise

product between two vectors or matrices. Another way of
modeling this scenario is to consider |u| = 1N×1 [15]. For
simplicity, we follow the same approach as well and formulate
the following minimization problem,

P2 : min
r∈R,w̃,u

‖y ◦ u−Aw̃‖22
subject to |w̃i| = r, ∀i ∈ [1,M ]

|uj | = 1,∀j ∈ [1, N ].

In the subsequent section, we propose efficient algorithms to
solve problems P1 and P2.

Remark 1. It is important to note that problem P1 can be
viewed as a special case of problem P2. Therefore, first, we
propose efficient algorithms for solving problem P2, and the
algorithms for solving problem P1 are derived afterward.

III. ALGORITHMIC SOLUTIONS FOR ANALOG
BEAMFORMING

Before proceeding towards the algorithm development, first,
we briefly discuss the algorithmic frameworks, MM, AMM,
and CCD. These preliminaries are added for the sake of
improving the readability.

A. Algorithmic Frameworks

1) The MM Algorithm: The majorization-minimization
method works on the principle of iteratively solving a sequence
of easier problems [36]–[39]. For example, let us consider the
following minimization problem,

P3 : min
x

f(x)

subject to x ∈ G,

where f : G → R is a continuous function, G is the constraint
set and x is the unknown decision variable. In particular, an
algorithm based on the MM framework starts with a feasible
point x(0) ∈ G and iteratively solves the following problem,

x(k+1) ∈ argmin
x
f̃(x;x(k)) (3)

subject to x ∈ G,

where f̃(x;x(k)) is the surrogate function majorizing the orig-
inal objective function f(x) at x(k) and x(k) is the solution to
the above problem at k-th iteration. A valid surrogate function
for the minimization problem has the following properties,

f̃(x;x(k)) ≥ f(x),∀x ∈ G (4)
f̃(x(k);x(k)) = f(x(k)) (5)
∇f̃(x(k);x(k))= ∇f(x(k)). (6)

Inequality (4) and equation (6) imply that the the surrogate
function is a tight upper bound of the original objective
function. Because of this property of the surrogate function,
the objective function value decreases with the number of
iterations, ultimately converging to a stationary point of the
original problem. Equation (6), which is termed as the gradient
consistency [40], ensures that the surrogate function and the
objective function have the same gradients at x(k). To formally
prove the convergence of an MM algorithm, first, we introduce
the first-order optimality condition for the minimization of a
continuously differentiable function from Proposition 3 in [30]
as,

Proposition III.1 (Proposition 3 in [30]). Consider f : Rn →
R be a continuously differentiable function and if x(∞) is a
local minimum of f over a subset G of Rn, then

∇f
(
x(∞)

)T
y ≥ 0,∀y ∈ TG

(
x(∞)

)
, (7)

where TG
(
x(∞)

)
denotes the tangent cone of G at x(∞).

A vector x satisfying the optimality condition (7) is referred
to as a stationary point. For more insights on the MM
framework and its convergence properties, one may refer to
[30], [36]–[39] and references therein.
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2) Alternating Majorization-Minimization (AMM) Algo-
rithm: Let us consider the following minimization problem,

P4 : min
x

f(x1,x2, . . . ,xn)

subject to xi ∈ Gi,∀i = 1, 2, . . . , n

where f : G → R is the objective function, G = G1 × G2 ×
· · · × Gn is the constraint set and x = (x1,x2, . . . ,xn) is the
decision variable partitioned into n-blocks with each block
xi having dimensions ni × 1. At the k-th iteration, following
sub-problem is solved,

x
(k+1)
i ∈ argmin

xi

gi

(
xi;x

(k+1)
1 , . . . ,x

(k+1)
i−1 ,x

(k)
i , . . . ,x(k)

n

)
subject to xi ∈ Gi, (8)

for all i = 1, 2, . . . , n and the blocks are updated in a cyclic
order and x

(j)
i denotes the update available for block xi at

j-th iteration. Similar to the conventional MM framework,
here function gi

(
xi;x

(k+1)
1 , . . . ,x

(k+1)
i−1 ,x

(k)
i , . . . ,x

(k)
n

)
is a

tight majorizer of the original objective function in block
variable xi and satisfies the properties from (4)-(6). The AMM
algorithm can also be interpreted as a block-successive upper
minimization (BSUM) [40] / block MM algorithm [38]. It
is important to note that in the AMM algorithm, noncon-
vex constraints can be accommodated. Moreover, only those
objective functions are majorized for which the subproblems
are not easy to minimize. Otherwise, the original objective
function is minimized with respect to each block. There-
fore, the convergence proof in [40] is adapted accordingly.
A sequential optimization algorithm with a maximum block
improvement (MBI) technique [41], [42] is also proposed in
[43] for dealing with resource allocation in wireless networks
and radar systems.

3) Block Cyclic Coordinate Descent (BCCD) Algorithm: In
the BCCD approach, problem P4 is solved block-wise. Similar
to the AMM framework, here, the problem is solved for each
block while keeping the remaining blocks fixed. The most
common form of the BCCD algorithm is given by,

P5 : x
(k+1)
i ∈ arg min

xi∈Gi
f
(
x
(k+1)
1 ,x

(k+1)
2 ,xi,x

(k)
i+1, . . . ,x

(k)
n

)
subject to xi ∈ Gi,

for all i = 1, 2, . . . , n. Therefore, each minimization step
considers the previously computed minimizers. When block
size reduces to one, the resulting algorithm is known by the
name of the cyclic coordinate descent (CCD) algorithm. For
more information, one may refer to [34] and references therein.

4) Modified BCCD Algorithm: Consider problem P4 and
select m out of n blocks of the decision variable x. Let U =
{1, 2, . . . , n} and U1 = {n1, n2, . . . , nm} denote the index set
for all the blocks of decision variable x and the index set of
the selected blocks, respectively, where each ni ∈ [1, n] and
ni 6= nj ,∀i 6= j. Since, the constraints are separable in each
xi we propose to consider the following nested algorithm.

1) Initialize all x
(0)
i ,∀i ∈ [1, n] to a feasible point from

their respective constraint sets and set k = 0.
2) For all i ∈ U \ U1

a) Solve the subproblem for x(k)
i given the remaining

updated blocks of x.

i) Solve the subproblems for xj ,∀j ∈ U1 given
the remaining updated blocks of x.

b) Increment i to i+ 1 and go to step 2a.

3) If the convergence condition is met, then stop. Other-
wise, increment k to k + 1 and go to step 2.

In this algorithmic setup, the variables xi,∀i ∈ U1 are updated
more frequently than the remaining block variables. As will
be seen later, this modification achieves a lower objective
per-iteration value than the C-CCD-based approach. For the
specific case of beampattern matching problems P1 and P2,
we will establish convergence guarantees to a stationary point.
We refer to the algorithms developed based on this approach
as M-CCD-based algorithms.

A maximum block improvement (MBI) technique can also
be adopted to solve problems P1 and P2 [41]–[43]. But select-
ing the maximum improvement block requires the computation
of the objective function with respect to each block variable at
every iteration of an MBI selection rule-based algorithm [41],
[42]. This significantly increases the computational complexity
of the algorithm especially for the large dimensional block
variables and when a large number of blocks are to be
optimized as in the case of beamforming design with LSAAs.

B. Algorithms for Problem P2

It can be seen that problem P2 is nonconvex because of the
multiplicative variables u and w, and the constant-modulus
constraints. Even if, the variables r and u are known the
problem is shown to be NP-hard [16]. We reconsider problem
P2 and write it in a more amenable form as given by,

P6 : min
s∈C,w,u

f(s,u,w) = ‖y ◦ u− sAw‖22

subject to w ∈ AM ,u ∈ AN ,

where A =
{
x ∈ C| |x|2 = 1

}
and AM denotes the M -

ary Cartesian product, the constant modulus constraints on
vector w̃ in P2 are equivalently replaced by an unconstrained
complex factor s multiplying w and variable u is a vector
having the unit-modulus entries. The beamforming vector is
now constrained to have the unit-modulus entries and the
magnitude of variable s represents the gain introduced by the
VGA.

1) AMM-Based Algorithm: Problem P6 is still nonconvex
and cannot be solved jointly in all the variables. But, in present
form the objective function of problem P6 is partially convex,
meaning, given one variable it is convex in the other. Thus,
we exploit the partial convexity of the objective function and
propose an alternating minimization scheme.

At (k + 1)-th iteration, problem P6 is solved with-respect-
to variable s by assuming the solutions w(k) and u(k) for
variables w and u, respectively. Then, the variable u is
updated given s(k+1) and w(k). Finally, the problem is solved
for variable w using the solution, s(k+1) and u(k+1) for
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variables s and u, respectively. This procedure results in three
subproblems as given below:

s(k+1) = argmin
s∈C

f(s,u(k),w(k)) (9)

u(k+1) = arg min
u∈AN

f(s(k+1),u,w(k)) (10)

w(k+1) = arg min
w∈AM

f(s(k+1),u(k+1),w). (11)

Working on the aforementioned idea, the sub-problem with
respect to variable s is convex and admits the following closed-
form solution,

sk+1 =
(w(k))HAHYu(k)∥∥Aw(k)

∥∥2
2

, (12)

where Y = diag (y) is a diagonal matrix. Now, considering
variable s to be given as s(k+1), we need to solve problem
(10). But this minimization problem is not straightforward to
solve because of the unit-modulus constraints on vector u. To
get an update for u, we assume s and w to be given and
expand the objective function of problem (10),

uHYHYu− 2Re
(
s(k+1)uHYHAw(k)

)
+|s(k+1)|2

∥∥∥Aw(k)
∥∥∥2
2
. (13)

The first and the last terms in the objective function above are
independent of u, therefore, after ignoring the constant terms
we arrive at the following formulation,

P7 : min
u

−Re
(
s(k+1)uHYHAw(k)

)
subject to u ∈ AN .

It is seen that problem P7 admits the following closed-form
solution,

u(k+1) = ej arg (s
(k+1)YHAw(k)). (14)

Now, assuming the solutions s(k+1) and u(k+1) for the vari-
ables s and u, respectively, we need to solve problem (11).
But this minimization problem is shown to be NP-hard [16].
Therefore, we propose to adopt the AMM framework and
construct a majorizing function for the objective function of
problem (11). More precisely speaking, we propose an AMM
algorithm that is similar to the block MM framework, except
for one change. That is, sub-problems that are difficult to di-
rectly minimize are approximated using a majorizing function,
and for the remaining variables solution is directly computed
in closed-form. We refer to this as an AMM algorithm. To this
end, we propose to use the following Lemma from [30], [36],
to construct a majorizing function for the objective function
of problem (11).

Lemma III.2 (Lemma 1 in [30]). The quadratic function of
the form wHSw, with S being a Hermitian matrix is ma-
jorized by wHTw+2Re

(
wH(S−T)wk

)
+wH

k (T−S)wk

at the point wk, where T is a Hermitian matrix such that
T � S.

Lemma III.2 can be easily proven using second order Taylor
expansion and subsequently replacing the Hessian matrix S by

another Hermitian matrix T such that T � S. For a general
twice differentiable function, Lemma III.2 is also known by
the name of quadratic upper bound principle as mentioned in
equation (4.6) under Section 4.6 in Chapter 4 of [37].

For obtaining the solution for variable w, once again we
expand the objective function of problem (11) as given by,

f(s(k+1),u(k+1),w) =(u(k+1))HYHYu(k+1)

−2Re
(
s(k+1)(u(k+1))HYHAw

)
+|s(k+1)|2 ‖Aw‖22 . (15)

The first term in (15) is independent of w and the third term
is convex in w. Therefore, using Lemma III.2 we majorize the
third term and obtain a tight upper bound, as given by,

wHP̃w ≤ λmax(P̃)wHw (16)

+2Re
(
wH(P̃− λmax(P̃)I)w(k)

)
+(w(k))H(λmax(P̃)I− P̃)w(k),

where P̃ = |s(k+1)|2AHA, I is a M ×M identity matrix and
we have chosen matrix T = λmax(P̃)I = |s(k+1)|2λmax(P)I,
where P = AHA. The function λmax(P) represents the
maximum eigenvalue of matrix P. Therefore, the function,
f(s(k+1),u(k+1),w) is majorized as,

f(s(k+1),u(k+1),w)≤ f̃(w; s(k+1),u(k+1),w(k)) (17)

= yHy − 2Re
(
s(k+1)uHYHAw(k)

)
+ λmax(P̃)wHw

+ 2Re
(
wH(P̃− λmax(P̃)I)w(k)

)
+ (w(k))H(λmax(P̃)I− P̃)w(k). (18)

The first and fifth terms on the right-hand side of the inequality
(17) are independent of w, and the third term is also a
constant, ‖w‖22 = M , due to the unit-modulus property of
the beamforming vector. After ignoring the constant terms on
the right-hand-side (RHS) of (17), the majorized problem to
solve problem (11) for variable w is formulated as,

P8 : min
w

−Re
(
wHb(k+1)

)
subject to w ∈ AM ,

where b(k+1) = (s(k+1))∗Ỹu(k+1) − |s(k+1)|2Qw(k), Ỹ =
AHY, Q = (P−λmax(P)I) and w(k) is the solution available
at k-th iteration. It can be shown that problem P8 admits the
following closed-form solution,

w = ej arg (b
(k+1)). (19)

The complete algorithm summarizing the steps is presented in
Algorithm 1.

2) CCD-Based Algorithm: Here, we present CCD-based
algorithms. We provide two versions of the CCD-type algo-
rithms. The first algorithm follows the C-CCD-based approach,
that is all the decision variables are concatenated into one
vector as [s,uT ,wT ]T and (M +N + 1) scalar subproblems
are solved at every iteration or lesser subproblems depending
upon the block size chosen. As already mentioned in Section
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Algorithm 1 MM Based CMAB Design with Additional
Degrees of Freedom

Input: The matrix A, Y, w(0) ∈ A and u(0) ∈ A
Output: w, s
Set k = 0, P = AHA, Ỹ = AHY, β = λmax(A

HA)

1: repeat . index over k = 0 : N ′ − 1

2: sk+1 = (w(k))HỸu(k)

‖Aw‖22
;

3: u(k+1) = ej arg (s
(k+1)ỸHw(k));

4: b(k+1) = (s(k+1))∗Ỹu(k+1) − |s(k+1)|2Qw(k)

5: w(k+1) = ej arg (b
(k+1));

6: until convergence

III-A3, in the second approach, we update variables s and
u after updating each component, wi of the beamforming
vector w. This modification results in faster convergence, for
more information on the advantages of M-CCD the reader is
referred to the simulation results. Later in this section, we also
prove the convergence guarantees to a stationary point for both
approaches.

Steps for C-CCD: First, we write the update steps associated
with the C-CCD-based algorithm.

s(k+1) = argmin
s∈C

f(s,u(k),w(k)) (20)

u(k+1) = arg min
u∈AM

f(s(k+1),u,w(k)) (21)

w
(k+1)
1 = arg min

w1∈A
f(s(k+1),u(k+1), w1, w

(k)
2 , . . . , w

(k)
M )

(22)

w
(k+1)
2 = arg min

w2∈A
f(s(k+1),u(k+1), w

(k+1)
1 , w2,

w
(k)
3 , . . . , w

(k)
M )(23)

...
w

(k+1)
i = arg min

wi∈A
f(s(k+1),u(k+1), w

(k+1)
1 , . . . ,

w
(k+1)
i−1 , wi, w

(k)
i+1, . . . , w

(k)
M ), (24)

...
w

(k+1)
M =arg min

wM∈A
f(s(k+1),u(k+1), w

(k+1)
1 , . . . ,

w
(k+1)
M−1 , wM ), (25)

where w(k+1)
i denotes the update of wi at k + 1-th iteration,

A−i is the matrix formed after removing the i-th column from
the matrix A, ãi is the i-th column of matrix A, w−i is the
vector formed by removing the i-th element from vector w

and w
(k)
−i denotes the update available for vector w−i after

k-th iteration. It is important to note that the minimization
problem (25) is solved for each component wi.

As already shown, for the given values of variables u and
w, the minimization problem (20) with respect to variable
s admits the closed-form solution as given in (12) with
appropriate change of iteration indices. For variable u, we
do not have to update its component variables sequentially, as
problem (21) with respect to the block variable u admits the
closed-form solution as given by (14). Now, we consider the

minimization problem (25) with respect to the each component
wi of the vector w, as given by,

P9 : min
wi

∥∥∥Yu(k+1) − s(k+1)h
(k)
i − s

(k+1)wiãi

∥∥∥2
2

subject to wi ∈ A.

where h
(k)
i =

(∑
j<i w

(k+1)
j ãj +

∑
j>i w

(k)
j ãj

)
. Now, upon

expanding the objective function of problem P9 and ignoring
the constant terms, we obtain,

P10 : min
wi

−Re
(
w∗i (s

(k+1))∗ãHi (Yu(k+1) − s(k+1)h(k))
)

subject to wi ∈ A.

It is evident that problem P10 admits the following closed-
form solution,

wi = e
j arg

(
(s(k+1))∗ãH

i (Yu(k+1)−s(k+1)h
(k)
i

)
, (26)

for all i in [1,M ].
Steps for M-CCD: For the M-CCD approach, we assume

that the w(k) and u(k) are the solutions available for variables
w and u, respectively at the k-th iteration. With the slight
abuse of notation, we use u

(k)
i to denote the i-th inner update

of u at the k-th outer iteration of the algorithm. Then, the
following sub-problems need to be solved to solve at every
iteration,

s
(k+1)
1 = argmin

s∈C
f(s,u(k), w

(k)
1 , w

(k)
2 , . . . , w

(k)
M ) (27)

u
(k+1)
1 = arg min

u∈AN
f(s,u, w

(k)
1 , w

(k)
2 , . . . , w

(k)
M ) (28)

w
(k+1)
1 = arg min

w1∈A
f(s

(k+1)
1 ,u(k+1), w1, w

(k)
2 , . . . , w

(k)
M )

(29)

s
(k+1)
2 = argmin

s∈C
f(s,u

(k+1)
1 , w

(k+1)
1 , w

(k)
2 , . . . , w

(k)
M )

(30)

u
(k+1)
2 = arg min

u∈AN
f(s

(k+1)
2 ,u, w

(k+1)
1 , w

(k+1)
2 , w

(k)
3 ,

. . . , w
(k)
M ) (31)

w
(k+1)
2 = arg min

w2∈A
f(s

(k+1)
2 ,u

(k+1)
2 , w

(k+1)
1 , w2,

w
(k)
3 , . . . , w

(k)
M ) (32)

...
s
(k+1)
M = argmin

s∈C
f(s,u

(k+1)
M−1 , w

(k+1)
1 , w

(k+1)
2 ,

. . . , w
(k+1)
M−1 , w

(k)
M ) (33)

u
(k+1)
M = arg min

u∈AN
f(s

(k+1)
M ,u, w

(k+1)
1 ,

. . . , w
(k+1)
M−1 , w

(k)
M ) (34)

w
(k+1)
M =arg min

wM∈A
f(s

(k+1)
M ,u

(k+1)
M , w

(k+1)
1 , w

(k+1)
2 ,

. . . , w
(k+1)
M−1 , wM ). (35)

After the completion of (k + 1)-th iteration, we denote
s(k+1) = s

(k+1)
M , w(k+1) = [w

(k+1)
1 , w

(k+1)
2 , . . . , w

(k+1)
M ]T

and u(k+1) = u
(k+1)
M . As can be seen from the above updates

the variables s and u are updated after obtaining the solution
of each wi. Each sub-problem in the aforementioned steps
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Algorithm 2 Conventional/Modified-Cyclic Coordinate De-
scent (C/M-CCD)-Based CMAB Design with Additional De-
grees of Freedom
Input: The matrix A, y and w0 ∈ A
Output: w, s
Set k = 0, u = 1

1: repeat . index over k = 0 : N ′ − 1
2: Update s using (12); . Conventional version
3: Update u using (14); . Conventional version
4: for i = 1 to M do
5: Update s using (12); . Modified version
6: Update u using (14); . Modified version
7: Update wi using (26);
8: end for
9: until convergence

is solved using the solutions obtained from C-CCD based
approach.

Depending upon where we update variables s and u, we
obtain two different algorithms as summarized in Algorithm 2.
To distinguish between the two algorithms we denote conven-
tional and modified CCD-based algorithms as Algorithm 2 (C-
CCD) and Algorithm 2 (M-CCD), respectively. As pointed out
earlier in Section III-A4, here we also expect that the M-CCD
algorithm to have faster convergence than the other algorithms.
This will be seen shortly in Section IV from simulation results.

C. Algorithms for Problem P1

As mentioned earlier problem P1 can be considered as a
special case of P2, that is when ui = 1,∀i ∈ [1, N ] and
eliminating its update from the algorithms. Similar to problem
P2, problem P1 can be reformulated as,

P11 : min
s∈C,w

g(s,w) = ‖y − sA(θ)w‖22

subject to w ∈ AM .

The algorithms proposed for solving problem P2 can be
tailored for P11 as well. Therefore, for brevity, we do
not provide the detailed derivation steps for obtaining the
algorithms.

1) AMM-Based Algorithm: In this case, the solution to
problems (9) and (11) become

s(k+1)=
(w(k))HAHy∥∥Aw(k)

∥∥2
2

, (36)

and
w = ej arg (c

(k+1)), (37)

where c(k+1) = (s(k+1))∗AHy − |s(k+1)|2Qw(k), respec-
tively. The overall algorithm summarizing the steps is pre-
sented in Algorithm 3. The convergence of Algorithm 3 is
proven as a special case of the convergence of Algorithm
1, which will be presented in Section III-B1. The reader is
referred to the proof of Theorem III.3 in Appendix A.

Algorithm 3 MM Based CMAB Design
Input: The matrix A, y and w0 ∈ A
Output: w, s
Set k = 0, P = AHA, ỹ = AHy, β = λmax(A

HA), Q =
P− βI

1: repeat . index over k = 0 : N ′ − 1

2: s(k+1) = (w(k))HAHy

‖Aw(k)‖2
2

;

3: c(k+1) = (s(k+1))∗ỹ − |s(k+1)|2Qw(k);
4: Compute w(k+1) = ej arg (c

(k+1));
5: until convergence

Algorithm 4 Conventional/Modified-Cyclic Coordinate De-
scent (C/M-CCD)-Based CMAB Design
Input: The matrix A, y, w0 ∈ A and s0 ∈ C
Output: w, s
Set k = 0,

1: repeat . index over k = 0 : N ′ − 1
2: for i = 1 to M do
3: Update s using (36); . Modified version
4: Update wi using (38);
5: end for
6: Update s using (36); . Conventional version
7: until convergence

2) CCD-Based Algorithm: Here, we present two CCD
based algorithms as a special case of the ones in Section
III-B2. When |u| = 1N×1, the solution to problem (20) is
given by (36) with appropriate change of iteration indices and
the solution to problem (25) is given by,

wi = ej arg ((s
(k+1))∗ãH

i (y−s(k+1)d(k))),∀i ∈ [1,M ], (38)

where d
(k)
i =

(∑
j<i w

(k+1)
j ãj +

∑
j>i w

(k)
j ãj

)
. The steps

of the algorithms are presented in Algorithm 4. Likewise, in
the case of problem P2, here we also expect the M-CCD-based
algorithm to perform better than the C-CCD-based algorithm.

The convergence of Algorithm 4 for both modified as well
as conventional approaches are proven as a special case of the
convergence of Algorithm 2, to be presented in Section III-B2.

D. Convergence Analysis

In this section, we present convergence guarantees of the
proposed algorithms based on the AMM, C-CCD and M-CCD
frameworks.

1) Convergence Analysis of AMM-Based Algorithms: First,
we prove the convergence guarantees to a stationary point for
Algorithm 1 in Theorem III.3. Because the convergence of
Algorithm 3 follows the same steps except for one change,
that is by substituting u = 1N×1 and ignoring its update
in the proof of Theorem III.3. Therefore, the convergence
of Algorithm 3 can be easily proven as a special case of
Algorithm 3.

Theorem III.3. Let {s(k),w(k),u(k)} be a sequence gener-
ated by Algorithm 1. Then, every limit point of the sequence
is a KKT-point of problem P6.
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Proof. See Appendix A. �

2) Convergence Analysis of CCD-Based Algorithms: We
establish the convergence guarantees to a stationary for Al-
gorithm 2 for both the conventional as well as modified
CCD based approaches in Theorem III.4. Similar, to Section
III-D1 the convergence for Algorithm 4 for both conventional
as well as modified approaches follow the same steps with
u = 1N×1 and removing its update in the proof of Theorem
III.4. Therefore, we consider the general case of Algorithm 4.

Theorem III.4. Let {s(k),w(k),u(k)} be the sequence gen-
erated by Algorithm 2 using either the conventional or
the modified CCD approaches. Then, every limit point of
{s(k),w(k),u(k)} is a KKT-point of problem P6.

Proof. See Appendices B and C for C-CCD and M-CCD based
algorithms, respectively. �

E. Complexity Analysis

1) Algorithm 1 (MM): From Algorithm 1, it is seen that
the computational complexity is mainly affected by the matrix-
matrix product and the eigenvalue computation. The maximum
eigenvalue of Hermitian positive semidefinite matrix P is easy
to compute using Krylov–Schur Algorithm [44]. Since the
matrix P and the maximum eigenvalue of P is computed
outside the loop, we analyze the worst-case per iteration
complexity by considering the naive implementation of matrix-
vector products. The quantity ‖Aw‖22 can be computed in
O(N2) operations. The product Pw is computed in O(M2)
operations, whereas the phase computation can be done in
O(M) operations. In addition to this, variable u can be
computed in O(NM) operations.

2) Algorithm 2 (C-CCD and M-CCD): The computational
complexity for the C-CCD approach in Algorithm 2 is domi-
nated by the computation of elements wi’s of the beamforming
vector w. Each wi is computed in O(NM) operations, thus,
to compute all the entries of w, O(NM2) operations are
required. For the M-CCD-based approach, the computation of
each wi is followed by an update of s and u, both of them
can be computed in O(NM) operations. The per-iteration
complexity becomes O(NM2+NM). Whilst the complexity
of M-CCD based Algorithm 2 increases to O(NM2 +NM).

3) Algorithm 3 (MM): The complexity of computing each
step of Algorithm 3 is similar to that of Algorithm 1, except
for the removal of update of variable u while updating wi’s.
Thus, there will be a reduction by a factor O(NM).

4) Algorithm 4 (C-CCD and M-CCD): Similar to Algo-
rithm 2, the computational complexity for the C-CCD based
Algorithm 2 is modified due to the removal of the update of
variable u while updating wi. In comparison to 2 (C-CCD),
the complexity of M-CCD based Algorithm 3 increases to
O(NM2 +NM).

IV. SIMULATION RESULTS

In this section, we provide numerical simulations to evaluate
the performance of the proposed algorithms and show their
potential in different scenarios. Specifically, we consider two

beamforming scenarios, namely pencil and sector beamform-
ing. For each scenario, we compare the proposed algorithms
to the ones in [15] and the semidefinite relaxation (SDR)
based algorithm. The performance is evaluated based on the
evolution of the beampattern matching error with the number
of iterations and the scalability with the number of antennas.
All the results are averaged over 10,000 Monte-Carlo runs.
The advantages of having additional degrees of freedom as
shown in problem P2 in comparison to problem P1 are
already mentioned in [15]. Therefore, we consider problem
P1 for the pencil beamforming and problem P2 for the sector
beamforming scenario.

A. Pencil Beamforming

Herein, we consider the scenario with M = 100, antenna
elements, the angle space is uniformly discretized into N =
36 points in radians. The beampattern vector y is generated
according to the following equation,

yi =

{
1 if i ∈ I,
0 otherwise,

(39)

where I ∈ [1, N ] denotes the index set for non-zero entries of
vector y with cardinality of card (I) = K. For fairness, all the
algorithms are initialized to the same feasible starting point.
We choose K = 4 entries to construct the index set I from
[1, N ], and select the corresponding K angles from θ. The
index set chosen in this case is, I = {5, 10, 15, 20}. We then
obtain y according to (39). Fig. 2 shows the objective function
variation of problem P11 with the number of iterations. It is
observed that the proposed algorithms converge faster with a
lower beampattern matching error in comparison to the state-
of-the-art algorithms in the literature [15] and as well as the
SDR-based algorithm. It is important to highlight the fact that
the M-CCD-based algorithm outperforms the other algorithms
in the comparison. The modified update for the variable s
reduces significantly the objective function in comparison to
the C-CCD-based algorithm. One of the potential reasons
is being the fact that, for each variable of problem P6

given the rest of the variables, the problem admits a closed-
form solution. Therefore, updating s inside the inner loop of
Algorithm 4 (M-CCD) significantly decreases the objective
function in comparison to Algorithm 4 (C-CCD). The sampled
beampatterns obtained are shown in Fig. 3. Kindly note that
the algorithms for pattern matching consider only the sample
points as presented in (39). Under this formulation, it is seen
that the proposed algorithms match the original beampattern
better than the existing algorithms.

Next, we study the scalability of the proposed algorithms
with increasing the number antennas. The stopping criteria
chosen for the algorithms is either ‖wk−wk−1‖2

‖wk‖2
≤ 10−6

or a maximum number iterations are reached. The average
beampattern matching error variation with M is shown in Fig.
4, where the number of antenna elements are varied from 2 to
100. The index set chosen in this case is, I = {5, 10, 15, 20}.
It is observed that increasing the number of antenna elements
results in a better beampattern approximation. Moreover, the
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Fig. 2. Objective function evolution with the number of iterations in pencil
beamfomring scenario, N = 36 and M = 100.
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Fig. 3. Sampled beampatterns obtained from different algorithms (refer to
(39)) for pencil beamforming, N = 36 and M = 100.

proposed algorithms achieve several orders of lower beampat-
tern matching error in comparison to Algorithm 2 from [15]
and as well as the SDR-based algorithm. It is also seen that the
SDR-based algorithm does not scale well with respect to the
number of antenna elements as observed in [15]. Once, again
the M-CCD approach is superior to the other algorithms. The
average per-iteration runtime required by the algorithms with
increasing the number of antennas is shown in Fig. 5. It is seen
that Algorithm 3 uses a similar amount of average per-iteration
central processing unit (CPU) time to that of Algorithm 2
in [15] albeit having superior beampattern matching accuracy
as observed from Fig. 4. It is important to highlight that the
average per-iteration CPU time required by all the proposed al-
gorithms is significantly lesser than the SDR-based algorithm.
The CCD-based approaches presented in Algorithm 4 require
more time to converge, the reason behind this is the increased
per-iteration complexity. The modified approach results in far
better beampattern approximation as shown in Fig. 4 than
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antenna elements in pencil beamforming scenario, N = 36.
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Fig. 5. Variation of the average per-iteration runtime with the number of
antenna elements in pencil beamforming scenario, N = 36.

all the algorithms but it has higher per-iteration complexity.
Therefore, the AMM-based method provides a good trade-off
between the performance and the computational complexity.
On the one hand, it has better beampattern matching accuracy
in comparison to the Algorithm 2 in [15] but lesser than the
CCD based algorithms, whereas, on the other hand, it takes
similar CPU time to converge to that of Algorithm 2 from
[15].

B. Sector Beamforming

In the sectored beamforming scenario, we quantize the
angle space with N = 144 points in radians and consider
M = 250. Similar, to the previous case the beampattern
vector y is generated by (39), with the following index
set, I = {1, 2, . . . , 18, 55, 56, . . . , 90, 127, 128, . . . , 144}. The
objective function variation of problem P6 with the number
of iterations is shown in Fig. 6. It is seen that the proposed
algorithms have superior performance to the one in [15] and
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Fig. 6. Objective function evolution with the number of iterations in sector
beamforming scenario, N = 144 and M = 250.
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Fig. 7. Sampled beampatterns obtained from different algorithms (refer to
(39)) for sector beamforming scenario, N = 144 and M = 250.

Algorithm 2 (M-CCD) achieves lesser beampattern matching
error within a small number of iterations in comparison to the
other algorithms. Once again, it is also seen that the proposed
M-CCD-based algorithm outperforms the other algorithms in
comparison. This performance gain comes from the modified
update of variables s and u as both the subproblems admit
closed-form solutions. Thus, updating s and u while updating
wi in Algorithm 2 (M-CCD) significantly decreases the ob-
jective function in comparison to Algorithm 2 (C-CCD). This
results in much better beampattern matching accuracy.

The sampled beampatterns obtained are shown in Fig. 7.
Please note that the algorithms for pattern matching consider
only the sample points as presented in (39). Under this
formulation, it is seen that the proposed algorithms match the
original beampattern better than the existing algorithms.

The scalability of the algorithms with the number of antenna
elements is shown in Fig. 8, the number of antenna elements
is varied from 2 to 350. It is observed that the beampattern
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Fig. 8. Variation of the beampattern matching error with the number of
antenna elements in sector beamforming, N = 144.
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Fig. 9. Variation of the average per-iteration runtime with the number of
antenna elements in sector beamforming scenario, N = 144.

matching error drops by several orders of magnitude when
an LSAA is employed. This results in a better beampattern
matching accuracy. All the algorithms perform similar until
M = 144, which is the length of the beampattern vector y.
After this point, the proposed algorithms result in significantly
better beampattern approximation. The performance is further
reinforced if the number of antenna elements is significantly
larger than the cardinality of the angular discretization. Once
again, the proposed algorithms outperform the one in [15] as
well as the SDR-based algorithm. The SDR-based algorithm
does not scale well with the number of antenna elements as
observed in [15].

The average per-iteration runtime required by the algorithms
is shown in Fig. 9. It is observed that the Algorithm 1 based
on the AMM approach uses a lesser average per-iteration CPU
time than Algorithm 3 from [15] albeit with better beampattern
approximation accuracy. All the proposed algorithms require
less per-iteration CPU time than the SDR-based algorithm.
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As expected, Algorithm 2 (modified as well as conventional
CCD) uses more CPU time per-iteration because of the ele-
ments of the analog beamforming vector w that are updated
sequentially followed by the computation of variables s and
u. Moreover, the M-CCD-based Algorithm 2 is slightly com-
putationally expensive in comparison with the conventional
one because of the sequential updates of variables s and u
in conjunction with the components wi’s. Therefore, AMM-
based Algorithm 2 again provides a trade-off between the
performance and the computational complexity.

V. CONCLUSION

In this paper, we studied the problem of designing constant-
modulus analog beamforming (CMAB) systems equipped with
large-scale antenna arrays (LSAAs). Two beampattern match-
ing problems were considered to design the parameters of
an analog beamforming system based on the scaled analog
beamforming (SAB) or CMAB architecture. In the beampat-
tern matching problem, the least-squares error between the
desired and the designed beampatterns was minimized subject
to the unit-modulus constraints. In the first case, both the
magnitude and phase of the beampattern were matched to the
given desired beampattern whereas in the second case, the
magnitude of the beampattern is matched, resulting in coupled
unit-modulus vectors.

For each problem, we proposed efficient alternating
majorization-minimization (AMM) and conventional-cyclic
coordinate descent (C-CCD) based algorithms. In addition
to the conventional-CCD (C-CCD) based approach, we also
proposed modified-CCD (M-CCD) algorithms. The conver-
gence of the proposed algorithms to stationary points of
the optimization problems was theoretically established. In
numerical simulations, different beamforming scenarios were
considered for the comparison of the algorithms. We list the
following observations exhibiting the performance gains of the
proposed algorithms:
• The proposed algorithms outperformed the state-of-the-

art solutions existing in the literature, resulting in better
beampattern matching accuracy.

• The M-CCD-based algorithms converged faster in com-
parison to the other algorithms when visualized with the
number of iterations.

• The M-CCD-based algorithms converged with the least
beampattern matching error.

• The AMM-based Algorithm 3 performed even better
in terms of average CPU time to converge, thereby,
providing a good trade-off between performance and
complexity.

Our results demonstrated the aforementioned gains of the
proposed algorithms by utilizing a new approach based on
the MM, alternating minimization, and CCD frameworks.

APPENDIX A
PROOF OF THEOREM III.3

Before presenting the convergence proof, we first note that
the optimization problem w.r.t u is not observable for the
zero entries of y. Hence, the focus is on the case of non-zero

entries, yi. Now, we prove the following Lemma A.1 for the
uniqueness of the minimizer of the optimization sub-problems
with respect to variables s and u which is used in the proof
later in this section.

Lemma A.1 (Uniqueness of Minimizers). The objective
f(s,w,u) has an unique minimizer for
A. s given w,u, and
B. u given s,w.

Proof. We show the proof into two parts as follows:
A. Optimization of s given u and w: The considered objective
function, ‖y ◦ u− sAw‖22 is strictly convex in s since the
second-order derivative satisfies, 2 ‖Aw‖22 > 0; this is because
A is full rank (Vandermonde) and w 6= 0. As a result, it has
the following unique minimizer,

s∗ =
wHAHYu

‖Aw‖22
. (40)

B. Optimization of u given s and w: The objective function
in variable u can be written as,

f(s,u,w) = ‖y‖22 + ‖sAw‖22 − 2Re
(
uH(sYHAw)

)
.

(41)

Noting that all the entries of vector u are unit-modulus, the
minimum of (41) occurs when u is aligned with sYHAw
leading to,

u∗ = ej arg(sY
HAw). (42)

We show that u∗ = ej arg(sY
HAw) is the unique minimizer,

by contradiction. Let u+ = ej(arg(sY
HAw)+θ) be another

minimizer, where at least one entry of θ is non-zero and is not
an integer multiple of 2π (otherwise, u∗ = u+). Then, from
(42), we have,

f(s,u∗,w) = ‖y‖22 + ‖sAw‖22 − 2
∑
i

|sYHAw|i (43)

f(s,u+,w) = ‖y‖22 + ‖sAw‖22 − 2
∑
i

|sYHAw|i cos(θi).

(44)

Since both u∗ and u+ minimize f(s,u,w), it follows from
(43), (44) that, f(s,u∗,w) = f(s,u+,w). This is possible
only if cos(θi) = 1,∀i ∈ [N ], which implies that all the entries
of θ are zero or some integer multiples of 2π going against the
assumption. This leads to a contradiction and hence proving
the uniqueness. �

Now we are ready to prove Theorem III.3.

Proof. First, we recall from (9)-(11) the following update
order of the iterates from the algorithm at (k+1)-th iteration,

s(k+1) = argmin
s
f(s,w(k),u(k)) (45)

u(k+1) = argmin
u
f(s(k+1),w(k),u) (46)

w(k+1) = arg min
w∈A

f̃(w; s(k+1),w(k),u(k+1)) (47)

where f̃(w; s(k+1),w(k),u(k+1)) denotes the majorizing func-
tion of the original objective function f(s,w,u) after the



THIS ARTICLE IS ACCEPTED FOR PUBLICATION IN A FUTURE ISSUE OF THE IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

updates of the variables s and u. The majorizing function also
depends upon the solution w(k) obtained at the k-th iteration.
The following can be easily shown,

f(s(k),u(k),w(k))≥ f(s(k+1),u(k),w(k)) (48)
≥ f(s(k+1),u(k+1),w(k)) (49)
= f̃(w(k); s(k+1),u(k+1),w(k)) (50)
≥ f̃(w(k+1); s(k+1),u(k+1),w(k)) (51)
≥ f(s(k+1),u(k+1),w(k+1)). (52)

Inequality (48) and (49) above follows from the updates
of s and u, respectively. Equation (50) holds because the
approximated function is a valid majorizer in the block w,
inequality (51) follows from (47), inequality (52) follows from
the descent property of the MM framework. Therefore, the
function sequence {f(s(k),u(k),w(k))} decreases monotoni-
cally and thus, converges.

A. Convergence to a Stationary Point

Now, we show that the sequence generated by the al-
gorithm converges to a KKT-point of the problem. As-
sume a convergent subsequence {s(kj),u(kj),w(kj)} →
{s(∞),u(∞),w(∞)}. It is important to note that s(∞) ∈ C,
u(∞) ∈ AN and w(∞) ∈ AM because the respective
constraint sets are closed. We now show that s(∞), u(∞) and
w(∞) are the block-wise minimizers of the function f(s,u,w)
with respect to s, u and w, respectively.

1) Convergence for s: To demonstrate this, we present the
following set of inequalities,

f(s,u(kj),w(kj))

≥ f(s(kj+1),u(kj),w(kj)) (53)
...
≥ f(s(kj+1),u(kj+1),w(kj+1)) (54)
≥ f(s(kj+1),u(kj+1),w(kj+1)). (55)

These inequalities are based on the descent of the objective
function from (48)-(52). Now, letting j →∞, using the con-
vergence of the subsequences and the continuity of f(s,u,w)
and f̃(w; s(k),u(k),w(k)), we get,

f(s,u(∞),w(∞)) ≥ f(s(∞),u(∞),w(∞)). (56)

The inequality (56) implies that, s(∞) is a block-wise mini-
mizer of the function f(·) and therefore, satisfies the partial
KKT conditions with respect to the variable s, given by,

∇sf(s(∞),u(∞),w(∞)) = 0. (57)

2) Convergence for u: We now focus on u, we begin with
the following claim.
Claim 1: Both s(kj) and s(kj+1) converge to s(∞).

First, we show that s(kj+1) converges. This follows directly

from the equation s(kj+1) =
[w(kj)]

H
AHYu(kj))

‖Aw(kj)‖2
2

and t(∞) =

limj→∞ s(kj+1) → [w(∞)]
H
AHYu(∞)

‖Aw(∞)‖2
2

. We show that t(∞) =

s(∞). Consider the following,

f(s,u(kj),w(kj))≥ f(s(kj+1),u(kj),w(kj)). (58)

Now, letting j →∞ and using the continuity of the functions
f(s,w,u) and u(kj) → u(∞), w(kj) → w(∞), and s(kj+1) →
t(∞), it follows that,

f(s,u(∞),w(∞)) ≥ f(t(∞),u(∞),w(∞)). (59)

This implies that t(∞), in addition to s(∞), is also the
minimizer of f(s,u(∞),w(∞)). Since f(s,u(∞),w(∞)) has
a unique minimizer from Lemma A.1, it follows that t(∞) =
s(∞). This implies limj→∞ s(kj+1) = s(∞). We use this in
the next step.

Block Minimization: To prove that u(∞) is a block-wise
minimizer of f(s,u,w) given s and w, we first write the
following set of inequalities,

f(s(kj+1),w(kj),u) (60)
≥ f(s(kj+1),u(kj+1),w(kj)) (61)
= f̃(w(kj); s(kj+1),u(kj+1),w(kj)) (62)
≥ f̃(w(kj+1); s(kj+1),u(kj+1),w(kj)) (63)
≥ f(s(kj+1),u(kj+1),w(kj+1)) (64)
≥ f(s(kj+1),u(kj+1),w(kj+1)). (65)

These inequalities are obtained using standard manipulations.
It should be noted that (60) differs from (53) in the fact that the
LHS of inequality uses a different subsequence of s. Using the
fact s(kj+1) converges to s(∞) as j →∞ from Claim 1, and
letting j → ∞, and given that s(kj+1), s(kj+1) both converge
to s(∞), it can be shown that,

f(s(∞),u,w(∞)) ≥ f(s(∞),u(∞),w(∞)), (66)

The inequality (66) implies that, u(∞) is a block-wise mini-
mizer of f(·) and, therefore, satisfies the partial KKT condi-
tions with respect to the variable u, given by,

∇uf(s
(∞),u(∞),w(∞)) + 2ν ◦ u(∞) = 0, (67)

where ν ∈ RN×1 is the dual-variable vector associated with
the unit-modulus constraints on vector u.

3) Convergence for w: For the minimization with respect
to w, we start with the following claim.
Claim 2: Both u(kj) and u(kj+1) converge to u(∞).

To prove the claim, first, we show that u(kj+1) converges to
u(∞) as j →∞ as it depends upon s(kj+1), w(kj) and it has
been shown that the objective function is uniquely minimized.
Thus, we can write,

z(∞) = lim
j→∞

u(kj+1)= lim
j→∞

ej arg(s
(kj+1)YHAw(kj)) (68)

= ej arg(s
(∞)YHAw(∞)). (69)

We now show that z(∞) = u(∞). For this, we present the
following inequality that follows from the minimization w.r.t
u,

f(s(kj+1),u,w(kj))≥ f(s(kj+1),u(kj+1),w(kj)). (70)

Now, letting j →∞ and using the continuity of the functions
f(s,w,u) and s(kj+1) → s(∞) (Claim 1), w(kj) → w(∞)

(choice of subsequence), and u(kj+1) → z(∞) (as shown in
(69)), it follows that,

f(s(∞),u,w(∞)) ≥ f(s(∞), z(∞),w(∞)). (71)
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This implies that z(∞), in addition to u(∞), is also the mini-
mizer of f(s(∞),u,w(∞)). However, since f(s(∞),u,w(∞))
has a unique minimizer for u given w(∞), s(∞), it follows
that z(∞) = u(∞). This implies limj→∞ u(kj+1) = u(∞). We
use this in the next step.

Block Minimization: To prove block minimizer, the proof
follows the earlier presented ones, except for the fact that the
inequality is for the majorizer,

f̃(w; s(kj+1),u(kj+1),w(kj))

≥ f̃(w(kj+1); s(kj+1),u(kj+1),w(kj)) (72)
≥ f(s(kj+1),u(kj+1),w(kj+1)) (73)
≥ f(s(kj+1),u(kj+1),w(kj+1)) (74)
= f̃(w(kj+1); s(kj+1),u(kj+1),w(kj+1)), (75)

where (73) follows from the upper bound property (4) of the
majorizing function function. Now, taking the limit j → ∞,
and by the convergence of s(kj+1),u(kj+1) we obtain,

f̃(w; s(∞),u(∞),w(∞)) (76)
≥ f̃(w(∞); s(∞),u(∞),w(∞)). (77)

The inequality (72) implies that, w(∞) is a minimizer with
respect to the variable w for function f̃ , as given by,

∇wf̃(w
(∞); s(∞),u(∞),w(∞)) + 2λ ◦w(∞) = 0 (78)

∇wf(s
(∞),u(∞),w(∞)) + 2λ ◦w(∞) = 0, (79)

where λ ∈ RM×1 is the dual-variable vector associated with
the unit-modulus constraints. In (78) we have used the gradient
consistency condition between the objective function and its
majorizer, given in (6), to obtain (79). This arises from the
requirement that the original objective function in (15) and
the majorizing function in (17) should have the same gradient
at (s(∞),w(∞),u(∞)).
Regularity Condition: The regularity condition, linear inde-
pendence constraint qualification (LICQ) implies that the gra-
dients of the active inequality constraints and the gradients of
equality constraints are linearly independent at a feasible point
(Proposition 3.1.1 in [34]). This condition is automatically
satisfied at the solution as there are no constraints on variable
s and the constraint sets involving w, u satisfy the LICQ
condition. For w(∞) and u, the constraints |wi|2 = 1, for all
i ∈ [M ] and |uj |2 = 1, for all j ∈ [M ] are decoupled among
the entries wi’s and uj’s, respectively. All the constrained
optimization variables can be combined in to a single vector as,
x := [wT ,uT ]T . Now the gradient of constraint |xi|2−1 = 0
with respect to x is computed as, gi(x) = 2ei, for all
i ∈ [M + N ], where ei ∈ R(M+N)×1 is a vector with i-th
entry being 1 and rest of the entries are zeros. Clearly all the
gradient vectors are linearly independent. This implies that
each point of the constraint set of problem P6 is regular.
Thus, combining the partial KKT-conditions along each block
(57), (67) and (79), we get,∇sf(s(∞),u(∞),w(∞))
∇uf(s

(∞),u(∞),w(∞))
∇wf(s

(∞),u(∞),w(∞))

+ 2

0ν
λ

 ◦
 0
u
w

 = 0M+N+1.

(80)

Thus, we conclude that every limit point of the sequence
generated by the algorithm is a KKT-point of the problem. �

APPENDIX B
PROOF OF THEOREM III.4 (C-CCD)

First, we prove the following lemma for the uniqueness of
the minimizer for the sub-problem with respect to variable wi.

Lemma B.1. The objective function of problem P9,

f(s(k+1),u(k+1), w
(k+1)
1 , . . . , w

(k+1)
i−1 , wi, w

(k)
i+1),

is uniquely minimized along each wi, ∀i ∈ [M ].

Proof. We first write problem P9 as,

P12 : min
wi

∥∥∥Yu(k+1) − s(k+1)h
(k)
i − s

(k+1)wiãi

∥∥∥2
2

subject to wi ∈ A,

where h
(k)
i =

(∑
j<i w

(k+1)
j ãj +

∑
j>i w

(k)
j ãj

)
. Let-

ting v
(k+1)
i = Yu(k+1) − s(k+1)h

(k)
i and c̃

(k)
i =

(s(k+1))∗ãHi v
(k+1)
i , the cost function in (81) can be written

as,

P13 : min
wi

||v(k+1)||22 + ||s(k+1)ãi||22 − 2Re
(
w∗i c̃

(k)
i

)
subject to wi ∈ A.

This problem is similar to the one presented for u in (43) and
the solution to this problem takes the form,

wi = e
j arg

(
c̃
(k)
i

)
, if c̃

(k)
i 6= 0

= 1 otherwise. (81)

Again, using the steps in the derivation of u in Lemma A.1, it
can be shown that the minimizer of wi in (81) is unique given
the other components of w, this is important since ci depends
on vi which further depends on other values of w. �

Now we proceed to prove Theorem III.4.

Proof. Let us first consider the updates of Algorithm 2 from
(20)-(25).

A. Descent of the Objective Function

From the update steps (20)-(25), it can be shown that,

f(s(k),u(k),w(k))

≥ f(s(k+1),u(k),w(k)) (82)
...
≥ f(s(k+1),u(k+1),w(k+1)). (83)
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B. Convergence to a Stationary Point

Let x(∞) = [s(∞),u(∞),w(∞)]T be a limit point of
the sequence {s(k),u(k),w(k)}. It is important to note that
s(∞) ∈ C, u(∞) ∈ AN and w(∞) ∈ AM because the
respective constraint sets are closed. The inequalities from
(82) to (83) imply that {f(s(k),u(k),w(k))} converges to
{f(s(∞),u(∞),w(∞))}. It now remains to show that x(∞) is
a KKT-point of the problem. To that end, assume a convergent
subsequence {s(kj),u(kj),w(kj)} → {s(∞),u(∞),w(∞)}.
For this, we exploit the following properties from the con-
vergence proof of Theorem III.3 in Appendix A:

(a) s(∞) and u(∞) are block-wise minimizers of s and u,
respectively.

(b) s(kj) and s(kj+1) converge to s(∞).
(c) u(kj) and u(kj+1) converge to u(∞).

Algorithm 2 based on the C-CCD approach, solves (M + 2)
subproblems at every iteration with the following update
sequence, s → u → w1 → · · · → wm whereas Algorithm
1 based on the AMM approach solves three subproblems at
every iteration with the following update sequence s→ u→
w. A cursory look at the two update sequences immediately
indicates the difference: all the entries of w are updated
simultaneously in AMM while it is undertaken sequentially
in C-CCD. However, both algorithms solve identical sub-
problems for s and u given in (9) and (10), respectively.
Thus focussing on the appropriate convergent subsequence for
w1, . . . , wM in C-CCD, the steps presented in Sections B1 and
B2 of Appendix A can be repeated to show the block-wise
convergence of s and u as well, respectively.

1) Convergence for w1: From (82)-(83), we have,

f(s(kj+1),u(kj+1), w1, w
(kj)
2 , . . . , w

(kj)
M )

≥ f(s(kj+1),u(kj+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M ) (84)

...
≥ f(s(kj+1),u(kj+1), w

(kj+1)
1 , w

(kj+1)
2 , . . . , w

(kj+1)
M )

(85)
= f(s(kj+1),u(kj+1),w(kj+1)) (86)
≥ f(s(kj+1),u(kj+1),w(kj+1)). (87)

Using the fact that s(kj+1) and u(kj+1) converge to s(∞) and
u(∞), respectively, and letting j →∞, it can be shown that,

f(s(∞),u(∞), w1, w
∞
2 , . . . , w

∞
M )

≥ f(s(∞),u(∞),w(∞)), (88)

where w(∞) = [w∞1 , w
∞
2 , . . . , w

∞
N ]T . The inequality (88)

implies that, w(∞)
1 is an element-wise minimizer of f(·) and,

therefore, satisfies the partial KKT conditions with respect to
the variable w1, given by,

∇w1
f(s(∞),u(∞),w(∞)) + 2λ1w

(∞)
1 = 0, (89)

where λ1 ∈ C is the dual-variable associated with the unit-
modulus constraint over w1. We now prove the convergence
for w2; this is necessitated.

2) Convergence for w2: First, we need to prove the conver-
gence of w(kj+1)

1 . To that end, we show that w(kj+1)
1 converges

to w
(∞)
1 as j → ∞. Let β(∞)

1 := limj→∞ w
(kj+1)
1 =

e
j arg

(
(s(∞))∗ãH

1 (Yu(∞)−s(∞)h
(∞)
1

)
, where h

(kj)
1 also converges

to h
(∞)
1 because it is a function of w(kj)

i , which converges to
w

(∞)
i for all i ∈ [2,M ]. It follows from (84) that,

f(s(kj+1),u(kj+1), w1, w
(kj)
2 , . . . , w

(kj)
M )

≥ f(s(kj+1),u(kj+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M ). (90)

Letting j → ∞, noting the appropriate limits and exploiting
the continuous nature, it follows from the above equation that,

f(s(∞),u(∞), w1, w
(∞)
2 , . . . , w

(∞)
M )

≥ f(s(∞),u(∞), β(∞), w
(∞)
2 , . . . , w

(∞)
M ). (91)

Thus, it follows from (91), that β(∞) and w(∞)
1 both minimize

f(s(∞),u(∞), w1, w
(∞)
2 , . . . , w

(∞)
M ). Since the function has a

unique minimizer for wi, it follows that β(∞) = w
(∞)
1 and

thus, w(kj+1)
1 → w

(∞)
1 .

To prove the minimization of the function by w
(∞)
2 , we

consider the standard update for w2,

f(s(kj+1),u(kj+1), w
kj+1
1 , w2, . . . , w

(kj)
M )

≥ f(s(kj+1),u(kj+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M ). (92)

Now letting j → ∞, and using the convergence of w(kj+1)
1 ,

it can be shown that,

f(s(∞),u(∞), w∞1 , w2, . . . , w
(∞)
M )

≥ f(s(∞),u(∞),w(∞)). (93)

The inequality (93) implies that, w(∞)
2 is a block-wise mini-

mizer of f(·) w.r.t w2 and, therefore, satisfies the partial KKT
conditions with respect to the variable w2, given by,

∇w2
f(s(∞),u(∞),w(∞)) + 2λ2w

(∞)
2 = 0, (94)

where λ2 ∈ C is the dual-variable associated with the unit-
modulus constraint over w2. From Lemma B.1 and similar
to the steps for the convergence of w(kj+1)

1 to w
(∞)
1 , it can

be shown that w(kj+1)
2 converges to w(∞)

2 . A verbatim of the
above proof for w1 and w2 can be sequentially carried out
for the remaining blocks to prove that, w(∞)

i is a block-wise
minimizer of f(·) with respect to wi given the remaining
variables and therefore, satisfies the partial KKT conditions
with respect to the variable wi,

∇wif(s
(∞),u(∞),w(∞)) + 2λiw

(∞)
i = 0, (95)

and w
(kj+1)
i converges to w

(∞)
i , ∀i ∈ [M ] by invoking

uniqueness using Lemma B.1. It is already shown that the
constraint of the problem is regular. Thus, combining the
partial KKT-conditions along each block, (57), (67) and (95)
for all i ∈ [M ],∇sf(s(∞),u(∞),w(∞))
∇uf(s

(∞),u(∞),w(∞))
∇wf(s

(∞),u(∞),w(∞))

+ 2

0ν
λ

 ◦
 0
u
w

 = 0M+N+1.

(96)
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Thus, we conclude that every limit point of the sequence
generated by the algorithm is a KKT-point of the problem. �

APPENDIX C
PROOF OF THEOREM III.4 (M-CCD)

Proof. Consider the following updates for the first iteration of
the algorithm when it is initialized to (s(0),u(0),w(0)),

s(1) = argmin
s∈C

g(s,u(0), w
(0)
1 , w

(0)
2 , . . . , w

(0)
M ) (97)

u(1) = arg min
u∈AN

g(s(1),u, w
(0)
1 , w

(0)
2 , . . . , w

(0)
M ) (98)

w
(1)
1 = arg min

w1∈A
g(s(1),u(1), w

(1)
1 , w

(0)
2 , . . . , w

(0)
M ) (99)

s(2) = argmin
s∈C

g(s,u(1), w
(1)
1 , w

(0)
2 , . . . , w

(0)
M ) (100)

u(2) = arg min
u∈AN

g(s(2),u, w
(1)
1 , w

(0)
2 , . . . , w

(0)
M ) (101)

w
(1)
2 = arg min

w2∈A
g(s(2),u(2), w

(1)
1 , w

(1)
2 , w

(0)
3 , . . . , w

(0)
M )

(102)
...

s(M) = argmin
s∈C

g(s,u(M−1), w
(1)
1 , w

(M)
2 , . . . , w

(0)
M−1, wM )

(103)

u(M) = arg min
u∈AN

g(s(M),u, w
(1)
1 , w

(M)
2 , . . . , w

(1)
M−1, w

(0)
M )

(104)

w
(1)
M =arg min

wM∈A
g(s(M),u(M), w

(1)
1 , w

(1)
2 , . . . , w

(1)
M−1, wM ).

(105)

Thus, the iterates available after the first iteration are given
as (s(M),uM ,w(1)). Following, the above minimization pro-
cedure, the solution available after k-th outer iteration is
(s(kM),u(kM),w(k)). Now, it can be seen from (97)-(105) that
continuing the algorithm with the iteration index decreases the
objective function monotonically and the sequence of objective
values {f(s(kM),u(kM),w(k))} converges.

Let x(∞) = (s(∞),u(∞),w(∞)) be a limit-point
of the sequence {s(kM),u(kM),w(k)}. Now, continuing
the set of inequalities from (97)-(105) to further itera-
tions, it can be seen that {f(s(kM),u(kM),w(k))} con-
verges to f(s(∞),u(∞),w(∞)}. Now, it remains to show
that {s(∞),u(∞),w(∞)} is a KKT-point of the prob-
lem. To that end, assume a convergent subsequence
{s(kjM),u(kjM),w(kj)} → {s(∞),u(∞),w(∞)}.

A. Convergence for s

We now show that the limit point is the block minimizer.
For this, we begin with the variable s and from (97)-(105),
we get the following set of inequalities,

f(s,u(kjM),w(kj))

≥ f(s(kjM+1),u(kjM),w(kj)) (106)

≥ f(s(kjM+1),u(kjM), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

(107)

...
≥ f(s(kjM+M),u(kjM+M),w(kj+1)) (108)
≥ f(s(kj+1M),u(kj+1M),w(kj+1)). (109)

Now, letting j →∞, and using the continuity of the function
f(s,u,w), we get,

f(s,u(∞),w(∞)) ≥ f(s(∞),u(∞),w(∞)). (110)

The inequality (110) implies that, s(∞) is a block-wise min-
imzer of the function f(·) and therefore, satisfies the partial
KKT conditions with respect to the variable s, given by,

∇sf(s(∞),u(∞),w(∞)) = 0. (111)

Claim 3: Both s(kj) and s(kjM+1) converge to s(∞).
Proof: We now show that s(kjM+1) also converges to s(∞) by
invoking uniqueness of the minimizer of f with respect to s.
To this end, define t(∞)

1 as,

t
(∞)
1 = lim

j→∞
s(kjM+1) (112)

= lim
j→∞

[
w(kj)

]H
AHYu(kjM)∥∥Aw(kj)

∥∥2
2

→
[
w(∞)

]H
AHYu(∞)∥∥Aw(∞)

∥∥2
2

,

(113)

where
∥∥Aw(∞)

∥∥2
2
6= 0 as Aw can never be an all zero vector.

Consider the following and let j →∞,

f(s,w(kj),u(kjM))≥ f(s(kjM+1),u(kj),w(kj)) (114)

f(s,u(∞),w(∞)) ≥ f(t(∞)
1 ,u(∞),w(∞)). (115)

This implies that t
(∞)
1 , in addition to s(∞), is also the

minimizer of f(s,u(∞),w(∞)). Since f(s,u(∞),w(∞)) has
a unique minimizer from Lemma A.1, it follows that t(∞)

1 =
s(∞). This implies limj→∞ s(kjM+1) = s(∞).

B. Convergence for u

For the variable u we can write the following set of
inequalities,

f(s(kjM+1),u,w(kj)) (116)
≥ f(s(kjM+1),u(kjM+1),w(kj)) (117)

≥ f(s(kjM+1),u(kjM+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

(118)
...
≥ f(s(kjM+M),u(kjM+M),w(kj+1)) (119)
≥ f(s(kj+1M),u(kj+1M),w(kj+1)). (120)

Using the fact s(kjM+1), u(kjM) and w(kj) converge to
s(∞), u(∞) and w(∞) respectively, as j → ∞, and letting
j →∞, we get,

f(s(∞),u,w(∞)) ≥ f(s(∞),u(∞),w(∞)). (121)

The inequality (121) implies that, u(∞) is a block-wise min-
imzer of f(·) with respect to u. Therefore, it satisfies the
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partial KKT conditions with respect to the variable u, as given
by,

∇uf(w
(∞); s(∞),u(∞),w(∞)) + 2ν ◦ u(∞) = 0,

(122)

where ν ∈ CM×1 is the dual vector associated with the unit-
modulus constraints.
Claim 4: Both u(kj) and u(kjM+1) converge to u(∞).
Proof: To prove the claim, first, we show that u(kjM+1)

converges to u(∞) as j →∞. To this end, define z
(∞)
1 ,

z
(∞)
1 = lim

j→∞
u(kjM+1) (123)

= lim
j→∞

ej arg(s
(kjM+1)YHAw(kj)) → ej arg(s

(∞)YHAw(∞)).

(124)

We now show that z
(∞)
1 = u(∞). For this, we note the

following inequality following from (117),

f(s(kjM+1),u,w(kj)) ≥ f(s(kjM+1),u(kjM+1),w(kj)).(125)

Now, letting j → ∞, using the continuity of the functions
f(s,u,w), s(kjM+1) → s(∞) (Claim 3), w(kj) → w(∞)

(choice of subsequence), and u(kjM+1) → z
(∞)
1 (as shown

in (123)), it follows that,

f(s(∞),u,w(∞)) ≥ f(s(∞), z(∞),w(∞)). (126)

This implies that z(∞), in addition to u(∞), is also the mini-
mizer of f(s(∞),u,w(∞)). However, since f(s(∞),u,w(∞))
has a unique minimizer for u given w(∞), s(∞), it follows
that z(∞) = u(∞). This implies limj→∞ u(kj+1) = u(∞). We
use this in the next step.

C. Convergence for w

To prove the convergence for variable w we start with w1.
1) Convergence for w1: For w1 we can write the descent

of the objective function as,

f(s(kjM+1),u(kjM+1), w1, w
(kj)
2 , . . . , w

(kj)
M )

≥ f(s(kjM+1),u(kjM+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

(127)

≥ f(s(kjM+2),u(kjM+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

(128)

≥ f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

(129)

≥ f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w

(kj+1)
2 , . . . , w

(kj)
M )

(130)
...
≥ f(s(kjM+M),u(kjM+M),w(kj+1)) (131)
≥ f(s(kj+1M),u(kj+1M),w(kj+1)). (132)

Now we take the limit j →∞,

f(s(∞),u(∞), w1, w
(∞)
2 , . . . , w

(∞)
M )≥ f(s(∞),u(∞),w(∞)).

(133)

The solution w(∞)
1 satisfies the following partial KKT condi-

tions,

∇w1
f(s(∞),u(∞),w(∞)) + 2λ1w

(∞)
1 = 0. (134)

Claim 5: Both w(kj)
1 and w(kj+1)

1 converge to w(∞)
1 .

Proof: We now prove the convergence of w
(kj+1)
1 . To

that end, we show that w
(kj+1)
1 converges to w

(∞)
1

as j → ∞. Let β
(∞)
1 := limj→∞ w

(kj+1)
1 =

e
j arg

(
(s(∞))∗ãH

1 (Yu(∞)−s(∞)h
(∞)
1

)
, where h

(kj)
1 also converges

to h
(∞)
1 because it is a function of w(kj)

i , which converges to
w

(∞)
i for all i ∈ [2,M ]. It also follows from (127) that,

f(s(kjM+1),u(kjM+1), w1, w
(kj)
2 , . . . , w

(kj)
M ) (135)

≥ f(s(kjM+1),u(kjM+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M ).

Letting j → ∞, noting the appropriate limits and exploiting
the continuous nature of f(·), it follows from the above
equation that,

f(s(∞),u(∞), w1, w
(∞)
2 , . . . , w

(∞)
M )

≥ f(s(∞),u(∞), β
(∞)
1 , w

(∞)
2 , . . . , w

(∞)
M ). (136)

Thus, it follows from (136), that β(∞)
1 and w

(∞)
1 both mini-

mize f(s(∞), w1, w
(∞)
2 , . . . , w

(∞)
M ,u(∞)). Since the function

has a unique minimizer for wi for all i ∈ [M ], it follows that
β
(∞)
1 = w

(∞)
1 and thus w(kj+1)

1 → w
(∞)
1 .

Claim 6: s(kjM+2) converges to s(∞).
Proof: Consider the following update,

t
(∞)
2 = lim

j→∞
s(kjM+2) →

[
w(∞)

]H
AHYu(∞)∥∥Aw(∞)

∥∥2
2

. (137)

Consider the following and let j →∞,

f(s,u(kjM+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

≥ f(s(kj+2),u(kjM+1), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M ) (138)

f(s,u(∞), w
(∞)
1 , w

(∞)
2 , . . . , w

(∞)
M )

≥ f(t(∞)
2 ,u(∞), w

(∞)
1 , w

(∞)
2 , . . . , w

(∞)
M ). (139)

This implies that t
(∞)
2 , in addition to s(∞), is also the

minimizer of f(s,u(∞),w(∞)). Since f(s,u(∞),w(∞)) has
a unique minimizer from Lemma A.1, it follows that t(∞)

2 =
s(∞). This implies limj→∞ s(kjM+2) = s(∞).
Claim 7: u(kjM+2) converges to u(∞).
Proof: Consider the following limit for u(kj+2),

z
(∞)
2 = lim

j→∞
u(kjM+2) → ej arg(s

(∞)YHAw(∞)). (140)

where we have used the fact that w(kj+1)
1 , w(kj)

i , for all i ∈
[2,M ], s(kjM+2) and u(kjM+1) converge to w(∞)

1 , w(∞)
i , for

all i ∈ [2,M ], s(∞) and u(∞), respectively. Now, consider the
following inequality,

f(s(kjM+2),u, w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M )

≥ f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w

(kj)
2 , . . . , w

(kj)
M ),

(141)
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and letting j →∞, we obtain,

f(s(∞),u,w(∞))≥ f(s(∞), z
(∞)
2 ,w(∞)). (142)

This implies that z(∞)
2 , in addition to u(∞), is also the mini-

mizer of f(s(∞),u,w(∞)). However, since f(s(∞),u,w(∞))
has a unique minimizer for u given w(∞), s(∞), it follows
that z(∞)

2 = u(∞). This implies limj→∞ u(kjM+2) = u(∞).
2) Convergence for w2: For w2 we can write the following

inequalities,

f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w2, . . . , w

(kj)
M )

≥ f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w

(kj+1)
2 ,

w
(kj)
3 , . . . , w

(kj)
M ) (143)

...
≥ f(s(kjM+M),u(kjM+M),w(kj+1)) (144)

≥ f(s(kj+1M),u(kj+1M)

,w(kj+1)). (145)

Now we take the limit j →∞,

f(s(∞),u(∞), w
(∞)
1 , w2, . . . , w

(∞)
M ) ≥ f(s(∞),u(∞),w(∞)).

(146)

The solution w(∞)
2 satisfies the following partial KKT condi-

tions,

∇w1
f(s(∞),u(∞),w(∞)) + 2λ2w

(∞)
2 = 0. (147)

Claim 8: Both w(kj)
2 and w(kj+1)

2 converge to w(∞)
2 .

Proof: Let β
(∞)
2 := limj→∞ w

(kj+1)
2 =

e
j arg

(
(s(∞))∗ãH

2 (Yu(∞)−s(∞)h
(∞)
2

)
, where h

(kj)
2 also converges

to h
(∞)
2 because it is a function of w(kj+1)

1 and w
(kj)
i , both

of them converge to w
(∞)
1 and w

(∞)
i for all i ∈ [3,M ],

respectively. It follows from (143) that,

f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w2, . . . , w

(kj)
M )

≥ f(s(kjM+2),u(kjM+2), w
(kj+1)
1 , w

(kj+1)
2 ,

w
(kj)
3 , . . . , w

(kj)
M ), (148)

and letting the limit j →∞ we obtain,

f(s(∞),u(∞), w
(∞)
1 , w2, w

(∞)
3 , . . . , w

(∞)
M )

≥ f(s(∞),u(∞), β
(∞)
1 , w

(∞)
1 , β

(∞)
2 , w

(∞)
3 , . . . , w

(∞)
M ).

(149)

Therefore, it follows from (149), that β(∞)
2 and w

(∞)
2 both

minimize f(s(∞),u(∞), w
(∞)
1 , w2, w

(∞)
3 , . . . , w

(∞)
M ). Since

the function has a unique minimizer for wi for all i ∈ [M ], it
follows that β(∞)

2 = w
(∞)
2 and thus w(kj+1)

2 → w
(∞)
2 .

Inductively continuing the above arguments for all the M
blocks of variable w, we establish that w(∞) is a block-wise
minimizer of function f with respect to block w. Therefore,
the solution w.r.t w satisfies the partial KKT conditions with
respect to the variable wi, for all i in [M ] as,

∇wi
f(s(∞),u(∞),w(∞)) + 2λiw

(∞)
i = 0,∀i ∈ [M ].

(150)

It is already shown in the proof of Theorem III.3 that the
constraint of the problem is regular. Thus after combining the
partial KKT-conditions along each block we get,∇sf(s(∞),u(∞),w(∞))
∇uf(s

(∞),u(∞),w(∞))
∇wf(s

(∞),u(∞),w(∞))

+ 2

0ν
λ

 ◦
 0
u
w

 = 0M+N+1.

(151)

where λ and ν are M and N dimensional dual-variables
corresponding to each wi and ui, respectively, at the solution
(s(∞),w(∞),u(∞)). Thus, we conclude that every limit point
of the sequence generated by the algorithm is a KKT-point of
the problem. �
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Sweden, in 1986, and the Ph.D. degree in electri-
cal engineering from Stanford University, Stanford,
CA, USA, in 1990. He has held research posi-
tions with the Department of Electrical Engineering,
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