Received: 2 August 2020

Revised: 11 January 2021

Accepted: 11 March 2021

IET Signal Processing

DOI: 10.1049/sil2.12040

ORIGINAL RESEARCH PAPER

Algorithm based on 2-bit adaptive delta modulation and fractional linear prediction for Gaussian source coding

Vladimir Despotovic² Zoran Peric¹ Bojan Denic¹

¹Department of Telecommunications, University of Nis, Faculty of Electronic Engineering, Nis, Serbia

²Department of Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg

Correspondence

Bojan Denic, Department of Telecommunications, University of Nis, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia.

Abstract

A novel 2-bit adaptive delta modulation (ADM) algorithm is presented based on uniform scalar quantization and fractional linear prediction (FLP) for encoding the signals modelled by a Gaussian probability density function. The study focusses on two major areas: realization of a 2-bit adaptive quantizer based on Q-function approximation that significantly facilitates quantizer design; and implementation of a recently introduced FLP approach with the memory of two samples, which replaces the first-order linear prediction used in standard ADM algorithms and enables improved performance without