Specifying Properties over Inter-Procedural, Source
Code Level Behaviour of Programs

1[{0000—0002—2289—1620]
[0000—0002—4854—685X |

Joshua Heneage Dawes and Domenico

Bianculli

University of Luxembourg, Luxembourg
{joshua.dawes,domenico.bianculli}@uni.lu

Abstract. The problem of verifying a program at runtime with respect to some
formal specification has led to the development of a rich collection of specifica-
tion languages. These languages often have a high level of abstraction and provide
sophisticated modal operators, giving a high level of expressiveness. In particular,
this makes it possible to express properties concerning the source code level be-
haviour of programs. However, for many languages, the correspondence between
events generated at the source code level and parts of the specification in question
would have to be carefully defined.

To enable expressing — using a temporal logic — properties over source code
level behaviour without the need for this correspondence, previous work intro-
duced Control-Flow Temporal Logic (CFTL), a specification language with a
low level of abstraction with respect to the source code of programs. However,
this work focused solely on the intra-procedural setting. In this paper, we address
this limitation by introducing Inter-procedural CFTL, a language for expressing
source code level, inter-procedural properties of program runs. We evaluate the
new language, iCFTL, via application to a real-world case study.

Keywords: Dynamic Analysis - Source Code - Inter-procedural

1 Introduction

Within the context of Runtime Verification [5], many languages have been introduced
in order to allow the specification of properties that executions of programs should
hold. These languages include temporal logics (such as Linear Temporal Logic [24] and
Metric Temporal Logic [23]]), stream equations [L1]], rule systems [4]], automata [3110]],
and others [21118]].

Specification languages typically achieve a high level of expressiveness. For ex-
ample, temporal logics often combine a high level of abstraction with complex modal
operators such as next, until, and eventually (along with timed extensions of these oper-
ators). This approach has clear benefits. For example, given different correspondences
between the specification and the events generated at runtime, one specification lan-
guage can be used to express properties concerning multiple levels of granularity of a
system (for example, properties concerning both objects and individual lines of code).
An example of a tool that provides support in constructing this correspondence is JAVA-
MAC [22]. However, the language then misses specific operators that would make ex-
pression of properties over specific types of runtime events easier. As an example, we



2 J. H. Dawes et al.

consider Metric Temporal Logic. The duration of a function call could be captured by
referring to the time difference between the occurrence of the function return event, and
the function call event. A language specialised for source code level properties could
improve on this by 1) assuming a trace that contains the appropriate information and 2)
introducing specific operators, such as function call duration.

In doing this, the expression of properties such as “the time taken by each call to
the function f is no more than 0.001 times the length of the list 1 immediately before
the call” would become more straightforward. Further, if one were to use a language
specialised to the source code setting, there would be no need to define how events such
as function calls and returns, or variable value changes, relate to parts of specifications.

Some approaches, such as the LARVA tool [10] (whose specification formalism is
automata whose transitions trigger the execution of pieces of attached Java code), al-
ready allow properties over the source code level of programs to be expressed easily.
Another example, which focuses less on the order of events, is Control-Flow Temporal
Logic (CFTL) [17]], which was introduced as a linear-time, temporal logic to be used
specifically for expressing properties over the source code level behaviour of programs.
Specifications written in CFTL do not require any additional information to have mean-
ing with respect to a program.

CFTL has been shown to be a useful specification formalism (as seen in applications
of VYPR [14[15], the framework built for analysing programs with respect to CFTL
specifications). However, only properties concerning the intra-procedural behaviour of
programs can be expressed (because these properties were sufficient for the case studies
being considered in that work). This restriction means that one cannot express proper-
ties such as “if the variable a drops below some threshold in functio funcl, then
variable flag is set to true in function func2”. Given that large programs are often
divided into multiple procedures, many properties that software engineers could want
to express would likely involve multiple procedures, like the property mentioned above.

In this paper, we introduce an extension of CFTL that enables one to express such
properties. We call this new language inter-procedural CFTL, or iCFTL. iCFTL pro-
vides the same operators as CFTL (for example, to measure the duration of a function
call and to obtain the value held by a variable at a given point in time), but allows the
points at runtime referred to by properties to be taken from multiple procedures. This
extension of the features offered by CFTL to the inter-procedural setting allows the ex-
pression of new classes of properties, and requires us to address challenges such as 1)
constructing a new kind of trace that can represent the inter-procedural behaviour of
a program; 2) extending the CFTL syntax to deal with the new kind of trace; and 3)
performing instrumentation in a wider scope than that required for CFTL. With these
challenges addressed, we demonstrate the utility of extending CFTL’s features to the
inter-procedural setting via a case study involving a real-world system used by the CMS
Experiment at CERN [9], in which properties that cannot be expressed in CFTL are ex-
pressed in iCFTL.

!'In the rest of the paper, we use the terms function and procedure interchangeably to denote a
general, callable subroutine.



Properties over Inter-Procedural, Source Code Level Program Behaviour 3

Program := x = expr | func | Program; Program |
if expr then (Program) else (Program) |
while expr do (Program) | for x in iterator do (Program)

&)

expr = x| func | arithExpr | boolExpr
Sunc = f(expry,...,expr,)
iterator := range(expr,expr)

Fig. 1: A grammar for simple imperative programs.

Structure of the paper. In order to introduce iCFTL, the paper is structured as follows:
In Section 2] we give background material on CFTL, since variations of much of the
machinery are used by iCFTL. In Sections [3] and i we introduce iCFTL by giving its
syntax and semantics. In Section[5] we introduce an instrumentation approach based on
iCFTL specifications. In Section [} we acknowledge that our initial monitoring algo-
rithm is not efficient and describe how it can be optimised based on information from
instrumentation. In Section [7} we report on our case study. In Section [§] we position
our contribution in the literature (alongside giving a brief discussion of the expressive
power of iCFTL) and in Section 9] we give concluding remarks.

2 Background: Control-Flow Temporal Logic

Control-Flow Temporal Logic (CFTL) [[L7] is a linear-time, temporal logic used to ex-
press properties over the source code level behaviour of programs. In this section, we
will introduce CFTL by first defining the structures over which its semantics is defined,
and then giving examples of specifications. The structures that we will introduce are the
symbolic control-flow graph of a program and a dynamic run, our version of a trace.

2.1 Symbolic Control-Flow Graphs

We introduce a graph structure that can be used to encode the state change and reach-
ability information found in a program. For simplicity of presentation, we will assume
that P is a program generated by the grammar in Figure [T} We will also assume that
each statement stmt in the program P can be associated with a unique program point
taken from the abstract syntax tree of P. Such program points can be assigned simply
by associating an integer with each node in the abstract syntax tree. We will denote
the program point of a statement stmt by p(stmt). Further, for a program P we de-
note by Vars(P) the set of program variables found in P. Vars(P) can be partitioned
into PVar(P) (the primitive type variables) and RVar(P) (the reference type variables).
Note that, in the CFTL case, we do not consider concurrency and concentrate on the
intra-procedural setting.

Based on these assumptions about the structure of a program, we now define the
components of a symbolic control-flow graph. First, a symbolic state ¢ associated with
a statement stmt is a pair (p(stmt),m), for a mapping m from Vars(P) to statuses in
{changed, unchanged, undefined, called}. We abuse notation and write ¢(x) to mean



4 J. H. Dawes et al.

g []0'0
el

[x — changed]g,

n
for i in range(n): lez e3
y = ix2 loop [i — changed]s, —— [y > changed]g,
a =73 €s \_/
£0 '

endLoop [|g, €4

Jeo

e
[a — changed]q, -, [f > called]q,

Fig.2: A Python program with a for-loop with its symbolic control-flow graph.

m(x), for m the map contained in o. The symbolic control-flow graph SCFG(P) of a
program is then a directed graph with symbolic states as vertices. Formally, SCFG(P) =
(V,E,vs) where V is a set of symbolic states, E C V x V a set of edges, and v; € V the
starting symbolic state.

We say that a symbolic state o is final in SCFG(P) if it has no successors, i.e., there
is no edge (0, 0’) € E for some ¢’ € V. Further, we say that a path 7 through SCFG(P)
is a sequence of edges ej,es,...,e, such that each ¢; € E and, for each ¢; and ey,
e; = (0,0') and e;y1 = (0’,0") (i.e., edges have to be adjacent).

We give an example of a program with its symbolic control-flow graph in Figure
One could construct the symbolic control-flow graph of a program in a language al-
lowing more complex syntax than that described in Figure [T} provided that one can
construct a scheme to translate programs to graphs.

2.2 Dynamic Runs

We now define the type of trace, which we call a dynamic run, over which the CFTL se-
mantics is defined. Intuitively, a dynamic run follows a path through a symbolic control-
flow graph and gives concrete timing and data values to each symbolic state encountered
along the path.

More formally, a dynamic run of a program P is a sequence of triples (¢, 6, m) with
a timestamp ¢ € R>, a symbolic state ¢, and a mapping m from program variables
in Vars(P) to concrete values. Further, for each pair of consecutive triples (t,c,m),
(f',06’,m'), there is a path from o to 6’ in SCFG(P).

Each triple in a dynamic run is known as a concrete state. Given a concrete state
s = (t,0,m), we write s(x) to refer to the value given to the program variable x by the
map m. We denote by t({t,5,m)) the timestamp ¢. We call a pair ((t,0,m),(t',0’,m'))
of consecutive concrete states a fransition, which we usually denote by 7. We denote
by paths(tr) the set of paths from o to ¢’ in SCFG(P). A transition ¢r is atomic if the
only acyclic path from o to 6’ in SCFG(P) is of length 1. We define t(.) for transitions
by t({(t,0,m),(t',0’,m’))) =1, i.e., the time at which the transition started.



Properties over Inter-Procedural, Source Code Level Program Behaviour 5

2.3 Examples of CFTL Specifications

With our notion of a trace introduced, we briefly describe the structure of CFTL specifi-
cations, and then give examples. CFTL specifications are always universally-quantified
at least once, do not have existential quantifiers, and are in prenex normal form. The
quantifiers use predicates in order to extract relevant concrete states or transitions from
dynamic runs and bind them to variables. For example, calls(f) identifies all transi-
tions whose second concrete state contains a symbolic state that maps £ to called, and
changes(x) identifies all concrete states whose symbolic states map x to changed. Fur-
ther, there can be no free variables. Examples of CFTL specifications include the fol-
lowing:

— The property that “the next call to f after each change of the variable var should
take less than 10 seconds” can be expressed by

Vg € changes(var) : duration(next(g,calls(f))) € (0,10).

The predicate calls(f) captures all transitions that represent calls of the function
f and next refers to the next transition (after g) in the dynamic run satisfying the
predicate calls(f).

— The property “whenever the function f is called, its duration must be no more than
0.001 times the length of the list held in variable x immediately before the call” can
be expressed by

Vt € calls(f) : duration(r) < length(source(r)(x)) x 0.001.

source(t)(x) gives the concrete state immediately before the transition ¢, and then
gets the value of the program variable x in that concrete state.

3 iCFTL: Inter-procedural CFTL

We now present an extension of CFTL to the inter-procedural setting. This new lan-
guage is called iCFTL.

3.1 Systems of Multiple Procedures

In the intra-procedural setting, we assume that traces being checked for satisfaction of
some CFTL specification are generated by single procedures. In the inter-procedural
setting, we will be checking a trace generated by some system consisting of multiple
procedures, each of which is a program obtained from the grammar in Figure [1| This
enables us to construct their symbolic control-flow graphs. We group the name and
program associated with each procedure in a system of multiple procedures.

Definition 1. A system of multiple procedures S is a pair (£, prog) for & a set of
names of procedures and prog a map that sends each name in & to a program gener-
ated by the grammar in Figure([l

We will often refer to a system of multiple procedures simply as a system.



6 J. H. Dawes et al.

3.2 Inter-procedural Dynamic Runs

The dynamic run defined in Section [2.2] when considered in the scope of an entire
system of multiple procedures, represents a single execution of some procedure. In
order to define a language similar to CFTL, but with the ability to express properties
concerning inter-procedural behaviour, we introduce a kind of trace that represents a
run of a system of multiple procedures.

Our approach is to collect the dynamic runs generated by each procedure in a sys-
tem, label each one with the name of the procedure that generated it, and assume that
the timestamps of the concrete states in each dynamic run are synchronise(ﬂ We refer
to a collection of dynamic runs generated by a run of a system S as an inter-procedural
dynamic run over the system S.

Definition 2. An inter-procedural dynamic run 9 over the system S is a triple
(PAD,..., D}, L),

where P is a set of names of procedures in the system S; {Z;} is a set of dynamic runs
generated by the procedures in S; and £ is a mapping that labels each dynamic run 9;
with the name of the procedure in & that generated it.

Given a concrete state s in any dynamic run in an inter-procedural dynamic run, we
denote by dynamicRun(s) the unique dynamic run to which s belongs (which exists
because each s has a unique timestamp). We extend this to transitions 1r = (s,s') by
dynamicRun(#r) = dynamicRun(s). We then combine dynamicRun(.) with the map
Z to define a map proc by proc(s) = £ (dynamicRun(s)). Similarly for transitions
tr = (s,s5'), we set proc(tr) = proc(s). Intuitively, proc(.) gives the name of the unique
procedure that had control in the system when the concrete state/transition given was
attained/taking place.

To generalise our approach to multiple types of systems, we assume that there is
always more to observe. While it is possible to observe everything in some cases (e.g.,
programs that compute a single result and terminate), for other systems it is not. For
example, Web services (such as the one used in our case study described in Section [7)
constantly receive new requests that trigger repeated executions of procedures.

3.3 Syntax of iCFTL

We give a grammar for the iCFTL syntax in Figure |3} In the grammar, the non-terminal
symbols used in rules are highlighted in blue. We also group the rules by Quantifiers,
Predicates, and Constraints. We now describe the role of each group of rules, and give
examples to illustrate how rules can be applied to construct certain specifications.

Quantifiers. The first rule to apply from the grammar to generate an iCFTL specifica-
tion is @. This rule can be applied repeatedly in order to generate multiple quantifiers.
We will always assume specifications are in prenex normal form.

2 This assumption is reasonable since either 1) everything will happen on the same machine, so
the machine’s clock can be used for synchronisation; or 2) if this is not the case, then protocols
such as NTP can be used.



Properties over Inter-Procedural, Source Code Level Program Behaviour 7

Quantifiers
o — Vgelps: ¢ |Vi€lpr: 9|0V o |0 |¢s|or|true
Predicates
Ips  — Iy |future(q,I5) | future(r,Ig)
Ior  — Iy |futureq,I7) | future(,I7)
I —  changes(x).during(p)
I —  calls(f).during(p)
Concrete State and Transition Selection
S — g before(T) | after(T) | S.next(Ig) | T.next(Iy)
T —  t]|S.next(IT) | T.next(IT)
Constraints
¢s = S()=v|[S(x) =S(x)[S(x) € (n,m) | S(x) € [n,m]
¢r  — duration(T) € (n,m) | duration(T) € [n,m]

(n
| timeBetween(S,S) € (n,m) | timeBetween(S,S) € [n,m]

Fig. 3: Syntax of iCFTL.

Predicates. Each quantifier requires a predicate in order to identify concrete states or
transitions to which the variable used in the quantifier should be bound. These predi-
cates are generated by the Ips and Ipr rules. In these cases, there are two parts: one to
select the relevant dynamic run (during) and one to select the relevant concrete state or
transition from that dynamic run (see Section [2.3).

To give some examples, the predicate changes(x).during(p) captures concrete states
generated by the procedure p in which the program variable x has just been changed.
Similarly, the predicate calls(f).during(p) captures transitions representing a call of
the procedure f during the procedure p. The future operators extends these predicates
to identify all such concrete states or transitions in the future, rather than just the next
occurrence.

Combining quantifiers and predicates. Quantifiers and predicates are combined to form
sequences of quantifiers. An example is

Vg € changes(x).during(f) : Vtr € future(qg, calls(g).during(h)) : ...

This sequence of quantifiers would capture each concrete state representing a change
of the program variable x (during calls of the procedure f) and, for each change, every
call of the function g occurring in the future (during calls of the procedure ).

Concrete State and Transition Selection. Quantifiers allow us to select concrete states
and transitions to be used in the inner-most, quantifier free part of a specification. Given
these concrete states and transitions, we must be able to navigate the inter-procedural
dynamic run in order to select others. Using the rules S and 7, this can be done by
1) applying the simple operators before and after to transitions (which obtain the con-
crete state immediately before and immediately after the transition); or 2) using next in



8 J. H. Dawes et al.

conjunction with one of the predicates changes(x).during(p) or calls(f).during(p) to
search forwards in time. Hence, given concrete states or transitions identified by quan-
tifiers, one can either write constraints over those directly, or use the before, after, or
next operators to navigate the inter-procedural dynamic run.

Constraints. For an iCFTL specification ¢, we denote by inner(¢) the inner-most,
quantifier-free part of the specification. Once the sequence of quantifiers has been gen-
erated, one can generate inner(@), which is intuitively the constraint to check at each
combination of concrete states/transitions identified by the quantifiers. The grammar al-
lows for disjunction and negation, but we frequently use additional Boolean connectives
such as conjunction and implication.

Within the Boolean combination of constraints, each part of the specification gen-
erated by an application of either ¢g or ¢r is called an arom. Atoms place constraints
on quantities extracted from concrete states or transitions identified using the S and T
rules.

Atoms generated by rules containing only one non-terminal symbol are called nor-
mal and atoms generated by rules containing two non-terminal symbols are called
mixed. Atoms are the parts of the specification that place constraints on quantities ex-
tracted from dynamic runs. We refer to the parts of specifications generated by the rules
Sand T as expressions.

Building Constraints. Suppose we have the sequence of quantifiers
Vg € changes(x).during(f),

and would like to assert that each concrete state bound to the variable ¢ maps the pro-
gram variable x to a value that is strictly less than 10. Our first step would be to take
the variable ¢ (treating it as a concrete state) and determine the value to which it maps
the variable x. Since there is no navigation of the inter-procedural dynamic run to be
performed (we are placing a constraint over a quantity measurable directly from the con-
crete state held by ¢), we can go immediately to the ¢g rule and generate the constraint
q(x) € (0,10) (acknowledging that there would have to be a conjunction to include the
possibility of g(x) being equal to 0).

Formula Trees for iCFTL. Given inner(¢) of an iCFTL specification ¢, we denote
by tree(inner(¢@)) the and-or formula tree of inner(¢). This formula tree is such that
leaves correspond to either normal atoms or expressions in mixed atoms. We use this
mechanism when defining our monitoring procedure for iCFTL in Section [3}

3.4 Examples
We now give some examples of properties that can be expressed using iCFTL:

— The property “when the variable 1level drops below 10 in the method check, the
time until the next call of adjust in the method control should be no more than
1 second” can be expressed by
Vg € changes(level).during(check) : g(level) < 10 =
timeBetween (g, before(g.next(calls(ad just).during(control)))) € [0, 1].



Properties over Inter-Procedural, Source Code Level Program Behaviour 9

2,q - changes(x).during(func) iff 6 (x) = changed and proc(gq) = func
2,q - future(s, changes(x).during(func)) iff
t(g) > t(s) and Z,q I- changes(x).during(func)
P,tr - calls(f).during(func) iff
for every path 7 € paths(tr) there is:
some (07, 0,) € 7 such that 05 (f) = called
9, tr - future(s, calls(£).during(func)) iff t(zr) > t(s) and 2, tr - calls(£).during(func)

and proc(tr) = func

Fig. 4: The quantifier relation - for the iCFTL semantics.

— The property “for each change of the variable user during an execution of the pro-
cedure login, and for each future change of the variable user during executions
of the procedure getUser, the value of variable user should remain the same”,
taking some liberties with syntax, can be expressed by:

Vg € changes(user).during(login) : 2
Vq' € future(q,changes(user).during(getUser)) : ¢'(user) = g(user)

The key syntactic novelty in iCFTL is the during component of predicates, which allows
one to refer to events across multiple procedures.

4 A Semantics for iCFTL

In order to align with our case study (see Section [7), which is a Web service whose
traces must be assumed to be infinite, we define the semantics of iCFTL with respect to
prefixes of infinite program traces. We take a similar approach to much existing work in
the RV community: we define a semantics over prefixes of program traces [6] and give a
provisional verdict. This semantics consists of two key steps. The first involves deriving
a set of bindings by inspection of an inter-procedural dynamic run & with respect to the
quantifiers in an iCFTL specification ¢. These bindings will collect together concrete
states and transitions from & and provide them to inner(¢). The second step involves
evaluating inner(¢@) with respect to each binding derived.

4.1 Finding Bindings

Given an inter-procedural dynamic run & and an iCFTL specification ¢, our goal is to
inspect its quantifiers Vg, € I : - - - : Vg, € I, in order to derive a set of maps, which we
will refer to as bindings. These bindings will send the variable g; to a concrete state or
transition satisfying I, the variable ¢, to a concrete state or transition satisfying I>, and
so on. We will then take each binding and decide on a truth value for inner(¢@) based on
the values given to each variable ¢y, ..., g, by the binding.

We begin the construction of the set of bindings by defining the quantifier relation,
denoted by -, that indicates whether a given concrete state g or transition ¢r satisfies a
predicate used in a quantifier. The definition is given in Figure



10 J. H. Dawes et al.

5o {login,getUser,getUserData},{%, %>, 73, %4},
"\ [21 — login, ?, s getUser, 75 — getUserData, 74 — getUser]

21 = (0,[],[]),(0.2, [getUser — called,user — changed], [user — 10]),...
2, = (0.1,]],1]),(0.15, [user — changed,...], [user — 10]),...
23 = (0.3,]],1]),(0.45, [getUser — called,user — changed], [user — 10]),...

P4 = (0.35,]],]]), (0.4, [user > changed,...], [user — 10]),...

Fig.5: An example inter-procedural dynamic run.

The second and final step is to recurse on the quantifiers in order to progressively
construct the set of bindings, which we denote by bindings(p(@,Vql elj:---:Vq, €
I;). This is done by determining the concrete states or transitions that satisfy the pred-
icate of the first quantifier and then, if there are multiple quantifiers, identifying the
concrete states or transitions that satisfy the next predicates. The check for satisfaction
at each step is based on the relation defined in Figure[d] We highlight that, if no concrete
states or transitions are identified by a predicate, a binding is generated that does not
include all variables from the specification. We refer to such a binding as partial.

An example. In order to illustrate the procedure for constructing bindings, we consider
the iCFTL specification in Equation[2]along with an inter-procedural dynamic run given
in Figure [5] In this inter-procedural dynamic run, there are three procedures, login,
getUser, getUserData. We assume that both 1login and getUserData involve calls
to getUser. One can see the caller-callee relationship between dynamic runs when
all of the timestamps of concrete states of a callee dynamic run fall in between two
timestamps of consecutive concrete states in the caller dynamic run.

Based on the inter-procedural dynamic run in Figure[5] binding construction would
go as follows: The procedure would identify concrete states that satisfy the first quanti-
fier, and then inspect the second quantifier. For the first quantifier

changes(user).during(login),

the concrete state (0.2, [getUser — called,user — changed], [user — 10]) would be
identified. Based on this initially identified concrete state, we look for further concrete
states satisfying

future(g,changes(user).during(getUser)),
with respect to the concrete state (0.2, [getUser — called, user — changed], [user —

10]) identified by the first quantifier. Hence, the concrete state (0.4, [user — changed,
..], [user — 10]) would be identified. Since all quantifiers have been inspected, we



Properties over Inter-Procedural, Source Code Level Program Behaviour 11

conclude with the set of bindings:
(g~ (0.2,[getUser — called,user ~ changed], [user — 10]) | ,

g+ (0.2,[getUser + called,user — changed], [user — 10]),
g+ (0.4, [user > changed,...], [user — 10])

Notice that we keep a binding that only sends g to a concrete state, and not ¢’. This is
to capture the intuition that the binding with only ¢ may be extended with a new value
of ¢’ given more observations from the monitored system.

4.2 Evaluation at a binding

The next step in developing the semantics is to evaluate the constraints defined by the
specification at each of the bindings in the set bindings(p(@,Vql el:-:Vg, €Iy).
For this, we introduce the eval(Z, 8,X) function.

This function takes an expression from the specification, along with a binding and
an inter-procedural dynamic run, and gives the unique concrete state or transition that
is required by that expression. If no such concrete state or transition exists, the function
returns null.

Once we have obtained the concrete state or transition referred to by an expres-
sion, we can determine the truth values of atoms, and therefore the truth values of
Boolean combinations of atoms. This process is encoded in the [.]g function, which
is defined recursively in Figure @ The function [.]g takes as input an inter-procedural
dynamic run, a binding and either a Boolean combination of atoms, or a single atom,
and gives a truth value from the set {true,false,inconclusive}. This set has ordering
false < inconclusive < true with —inconclusive = inconclusive.

If a single atom is given and the required concrete states and transitions are found,
the truth value given is either true or false. If a single atom is given and no concrete
state or transition is identified, the truth value is inconclusive. If a Boolean combination
of atoms is given, the total order of the truth domain is used to determine the truth value,
given the truth values of the subformulasﬂ

4.3 The Semantics Function

We have now introduced the machinery for 1) extracting a set of bindings from an inter-
procedural dynamic run based on a specification; and 2) determining the truth values of
atoms in an iCFTL specification given a specific binding. The final step in defining the
semantics for iCFTL is to combine all of these components in order to give a verdict.
While most existing work in RV concentrates on generating verdicts that are simple
objects, such as true or false, taken from a truth domain, our approach differs. Instead,
the verdict that we provide is a map from bindings extracted from the inter-procedural

3 Of course, if the specification expresses a tautology or is unsatisfiable, this evaluation-by-
composition approach is problematic. However, as seen in [13], satisfiability for CFTL (and
therefore iCFTL) can only be decided once a sufficiently long trace has been observed, hence
we do not consider it in the semantics.



12 J. H. Dawes et al.

[@7B7¢1 \/¢2]B = [927[),’(1)1][3'—'[927[33(1)2}[3 [@7ﬁ7ﬂ¢]ﬁ = _‘[92757¢]ﬁ

true eval(2,B,S) # null A eval(Z,B,S)(x) =n
[2,B,8(x) = njg = { false eval(2,B,S) # null A eval(Z2,8,S)(x) #n
inconclusive otherwise
true eval(2,B,81) # null Aeval(2,,S,) # null
A eval_(.@,ﬁ,Sl)(x) = eval(.@_,B, 2)(x)
(2,B,S1(x) = S2(x)]p = false eval(@,,{j’,Sl) # null /\eval(_@,ﬁ,Sz) # null
Neval(Z,B,81)(x) # eval(Z,B,52)(x)

inconclusive otherwise

Fig. 6: Part of the constraint function for iCFTL.

true (2, ,inner(@)]g = true A B is complete
false (2, ,inner(¢@)]g = false A B is complete
_ inconclusive [, ,inner(@)]g = inconclusive A B is complete
translate(2,8,¢) = - . .
true, [2,B,inner(¢)]g = true A B is partial
false, [2,B,inner(@)] = false A B is partial
inconclusive, [2,8, inner(¢)]g = inconclusive A B is partial

Fig. 7: The translation function.

dynamic run to truth values. In addition, we encode in these truth values whether or not
the binding associated with the truth value is partial. We do this because, if a binding
is partial, we cannot be sure that it will be extended to form a complete binding given
further observations from the system.

In order to provide this distinction, we introduce the translate function. This func-
tion, defined in Figure [/ translates from the truth values {true,false,inconclusive}
given by the function in Figure [6] to complete and partial versions of the same truth
values:

{true,true,,, false, false,,inconclusive,inconclusive, }.

Finally, we define the semantics function [Z, ¢]s, which simply computes the set of
bindings for a given inter-procedural dynamic run with respect to an iCFTL specifica-
tion and, for each one, gives the value of the translation function:

[2,¢]s = [B — translate(Z, B, ) : B € bindings,(Z,Vq €I} : --- : Vg, € I,)].

Hence, for a given inter-procedural dynamic run and iCFTL specification, the verdict

that we compute is the map given by [Z, ¢]s indicating 1) the truth values given by the



Properties over Inter-Procedural, Source Code Level Program Behaviour 13

constraints in the specification at each binding; and 2) the type of binding for which
each truth value was obtained.

S Monitoring

We now develop an initial algorithm that processes an inter-procedural dynamic run and
an iCFTL specification in order to give a verdict. The algorithm is inspired by the work
on CFTL and VYPR [17)14]]. We will see that it does not scale well, and describe an
instrumentation process in Section [6]to greatly improve the situation.

Given an inter-procedural dynamic run (&, {%1,...,%n},-£), our “naive” moni-
toring approach for iCFTL, given in Algorithm[I] consists of iterating through the con-
crete states contained in all of the dynamic runs %; in ascending order of timestamps.
This sequence of concrete states is denoted by flattened(2). For each concrete state
curr, we see if 1) curr, or the transition leading into it, contributes to a binding and 2)
curr, or the transition leading to it, contributes to the truth value of some atom. If curr
or the transition leading to it contributes to the truth value of some atom, Algorithm [I]
uses formula trees to determine the new truth value of inner(¢). We highlight that 1 is
the map update operator, that is, a T [e — v] refers to the map that agrees with a on all
elements of the domain of a, except for e which is mapped to v.

Formula trees. The monitoring algorithm often instantiates a new formula tree tree(¢)
(or uses an existing one) and then updates it with the update function. This function
takes a formula tree with a concrete state or transition and replaces the relevant nodes
in the formula tree accordingly.

If the concrete state/transition given is relevant to an expression, the node holding
that expression is replaced by the value given to that expression by the concrete state/-
transition. For example, if we have the concrete state (0.1,[x — changed], [x — 1.5])
and an expression g on a leaf of the formula tree, the latter can be replaced by 1.5 if
the ¢ is part of ¢(x) in the specification. Alternatively, if the concrete state/transition is
relevant to a normal atom, the node holding that atom is replaced with a truth value. For
example, given the same concrete state and an atom g(x) < 2, the leaf could be replaced
by true. Once this replacement has taken place, the formula tree is collapsed based on
the conventional rules for propositional connectives.

Correctness. A correctness argument for Algorithm [I] involves showing that 1) the
bindings generated by the algorithm and the semantics are the same; and 2) the proce-
dure for obtaining truth values of inner(¢) in the algorithm has the same result as the
semantics. It is similar to the one given in [13]].

Complexity. The main loop of Algorithm [1| performs as many iterations as there are
concrete states in &, which we will denote by |Z|. For each of these iterations, we
process the existing bindings, of which there are at most |2|™/m! [13]. Hence, the
approximate complexity is O(|Z|™*! /m!). We highlight that m is rarely greater than 2,
hence the complexity can be seen as O(|Z|"™"!), meaning that, even for specifications
with only one quantifier, this initial monitoring algorithm scales quadratically in the
length of the trace.




14 J. H. Dawes et al.

Algorithm 1 Monitoring for an iCFTL specification Vg, € I7 : -+ : Vg, € I,y : .
I: M«] > empty map from bindings to formula trees
2: prev + (11, [], 1) > to store the previous state, assuming #; is the first timestamp in the

dynamic run
: for concrete state curr € flattened (%) do
> Handle the cases where a new binding should be generated
> New bindings are generated if the state/transition is in I
if curr I then
M =M ¥ ([q1 — curr] — update(tree(¢),curr))
if (prev,curr) 1] then
9: M=M T ([g1 — (prev,curr)] — update(tree(¢), (prev,curr)))
10: > Bindings are extended if the state/transition is in I for i > 1
11:  for (B =[q1 = vi,-..qx — w],T) in M where k < m do

® JN k@

12: if curr = Iz then

13: M =M+ ((B 1 [gk+1 — curr]) — update(T,curr))

14: if (prev,curr) F I}, then

15: M=M+ ((B T [gks1 — (prev,curr)]) — update(T, (prev,curr)))

16:  for (B,7T) in M do > Now update formula trees for existing bindings
17: T’ < update(T,curr)

18:  prev < curr > Finally save the current state as the last state
19: return M

6 Instrumentation

The inefficiency of Algorithm|[I|has two principal causes: 1) the amount of unnecessary
information contained in the inter-procedural dynamic run being processed; and 2) the
lookup required to decide whether a concrete state/transition contributes to a binding.
To improve the situation, we traverse the symbolic control-flow graphs of the relevant
procedures in order to determine which program points are relevant to a specification.
This traversal is part of the process of instrumentation, whose steps are described in the
following sections.

6.1 Inspection of the Quantifiers

For an iCFTL specification with quantifiers Vq; € I : --- : Vg, € I, we recursively
construct maps from the variables ¢q1,...,qg, to symbolic states from the relevant sym-
bolic control-flow graphs. As an example, suppose that we are monitoring a system S =
({£},prog). If a specification had the quantifier sequence Vq € changes(x).during(£),
we would identify all symbolic states ¢ in the symbolic control-flow graph of the pro-
gram prog(£) that had o(x) = changed. A final step, which helps during monitoring, is
the assignment of a unique integer (i.e., an index) to each map from the variables g; to
concrete states.



Properties over Inter-Procedural, Source Code Level Program Behaviour 15

6.2 Inspection of the Atoms

Given the set of maps constructed from the inspection of quantifiers, we perform further
traversal of the symbolic control-flow graphs of the system for each atom in inner(@).
For example, if we had the iCFTL specification

Vg € changes(x).during(f) : duration(g.next(calls(g).during(h))) < 1,

then we would traverse the symbolic control-flow graph of the procedure prog(h) in
order to find symbolic states 6 with o(g) = called.

6.3 Filtering Dynamic Runs

After applying the procedure described in Sections and we have a set of sym-
bolic states, which we call instrumentation points, taken from the various symbolic
control-flow graphs in the system. This set of instrumentation points is such that we
can remove any concrete state from an inter-procedural dynamic run that does not cor-
respond to one of the symbolic states in the set. More formally, if a concrete state
(t,0,m) appears in an inter-procedural dynamic run and o is not in the set of instru-
mentation points, the concrete state can be removed from the inter-procedural dynamic
run. The safety of this approach is proved in [13]]. While the proof there is for CFTL,
the instrumentation approaches are sufficiently similar that it applies here.

6.4 Lookup during Monitoring

An important source of inefficiency in Algorithm [I]is the requirement to find the for-
mula trees that must be updated, given a measurement from an inter-procedural dynamic
run. In order to reduce the number of formula trees that must be checked, we group for-
mula trees by the unique integer identifying each map constructed in Section [6.1] For
each concrete state, we can then extract its symbolic state and determine which map (if
any) it belongs to (this can be performed as a pre-processing step to improve lookup
speeds further). With formula trees grouped with respect to these uniquely identifying
integers, we can then determine the set of formula trees that must be updated.

6.5 Implications for Complexity

These optimisations mean that 1) there can be fewer concrete states to process, since we
can filter them based on relevant symbolic states; and 2) lookup of the relevant formula
trees is faster. A more in-depth discussion can be found in [17] and [13]].

7 Case Study

To evaluate iCFTL, we have extended the existing VYPR framework [14] to include a
new library for building iCFTL specifications, along with machinery for instrumenta-
tion and monitoring. The prototype implementation is available under the Apache 2.0



16 J. H. Dawes et al.

license at https://doi.org/10.5281/zenodo.5195959, with development occur-
ring athttps://github.com/SNTSVV/VyPR-iCFTL.

Using this implementation, we have performed some initial experiments on a Python-
based case study [12] provided by the CMS Experiment at CERN [9], where the initial
work on CFTL and VYPR was performed. This case study is a Web service, therefore
consisting of a server and (to simplify this initial experimental setting) a single client.
The client uploads data to the server over the course of multiple HTTP requests. We
note that the restriction of CFTL to the intra-procedural setting means that properties
that require measurements to be taken over multiple HTTP requests certainly cannot
be expressed. With iCFTL this limitation is gone, since inter-procedural also means
“inter-request’.

In order to demonstrate this concretely, we present an iCFTL specification that we
have been able to monitor, which could not be expressed in CFTL (hence demonstrating
the usefulness of taking the features offered by CFTL and extending them to the inter-
procedural setting). We also present initial measurements of the overhead induced by
the extended implementation of VYPR.

Specification. Our principal specification, taking liberties with syntax, is:

Ve € calls(find_new).during(app.routes.hashes):
timeBetween (before(c),

after(c.next(calls(get_usage).during(app.routes.upload md))) < 4

This specification expresses the property that the time between two concrete states at-
tained at runtime in two different procedures of the system under scrutiny must be less
than four seconds. The first of these concrete states is the concrete state immediately
before the transition representing a call of the function find_new, occurring during a
dynamic run generated by the hashes procedure (found in the module app.routes).
The second concrete state is the one immediately after the transition representing the
next call of get_usage that occurs during a dynamic run generated by the upload-md
procedure.

Overhead. In order to obtain initial measurements of the overhead induced by VYPR,
we ran the same upload 100 times, with and without monitoring. When this was done
with no delay between uploads, we obtained an overhead of approximately 3.22%. By
introducing a delay between uploads, we could reduce the overhead to 1.69%. We high-
light that this delay between requests allows any measurements not processed by the
VYPR monitoring algorithm during requests to be processed between requests. A more
detailed discussion of the overhead induced by VYPR is given in [13].

8 Related Work

We first discuss the relationship between iCFTL and CFTL [17]]. Despite the fact that
iCFTL can express properties that could not be expressed in CFTL, if we restrict the
semantics of iCFTL to a single dynamic run, the newly introduced syntax does not al-
low any new kinds of properties to be expressed in this setting. That is, the notable


https://doi.org/10.5281/zenodo.5195959
https://github.com/SNTSVV/VyPR-iCFTL

Properties over Inter-Procedural, Source Code Level Program Behaviour 17

extensions of the syntax (the introduction of the during(p) component to various pred-
icates) would not be useful in the intra-procedural setting. Hence, rather than referring
to iCFTL as an improvement on the expressive power of CFTL, we refer to iCFTL as
an extension of the features provided by CFTL into the inter-procedural setting.

iCFTL is a departure from the conventional approach seen in (or adapted to) the
RV community, which often involves an extremely expressive specification formalism
with a high level of abstraction [24/23/4/21]]. iCFTL does not distinguish between the
symbols that are used in a specification and the events that occur during the runtime of
a program. This has the disadvantage that a change to the source code requires a change
to the specification, however we argue that specifications should be actively maintained
as code changes. Work with a similar approach includes LARVA [[10]], which provides
specification formalisms with a low level of abstraction, but that focus on the order of
events, which is not the focus of iCFTL. Further, CARET [252] allows references to
(untimed) function calls and returns. In contrast, iCFTL enables one to talk about time
and data, alongside function calls (which are not separated into call and return events).

The monitoring approach used for iCFTL varies from many used in RV in that
many approaches use automata [7020]. Given that iCFTL specifications are universally-
quantified, and must be in prenex-normal form, there is some similarity between our
monitoring approach and that used for the Quantified Event Automata formalism [3].
Here, bindings are generated and a central monitor structure (an automaton) is instan-
tiated for each binding. If one replaces these automata with our formula trees, the ap-
proaches are similar.

Our instrumentation approach applies static analysis to determine the program points
from which data should be taken at runtime. We also use instrumentation to optimise
lookup. There are multiple bodies of work in RV that use instrumentation to optimise
the monitoring process. The most notable include CLARA [8]], which applies a series
of static analyses in order to decide which statements do not need to be instrumented
(and in order to generate a residual property, which is a property that has been partially
proved during static analysis), and STARVOORS [1]], which attempts to prove pre-
and post-conditions of specifications written in a specification formalism that combines
DATEs [10] and Dynamic Logic [19].

9 Conclusion

The central contribution of this paper is our new specification language, iCFTL (Inter-
procedural Control-Flow Temporal Logic). This new logic enables the expression of
properties concerning the inter-procedural, source code level behaviour of programs.
Such properties cannot be expressed in CFTL, which focuses on the intra-procedural
setting.

Our development of iCFTL has involved introduction of an initial monitoring algo-
rithm, along with the acknowledgement that this does not scale well for larger traces. To
remedy the situation, we have made reference to our previous work on instrumentation
which can be applied with almost no modification. To demonstrate the expressiveness of
iCFTL, we have extended the existing VYPR framework and applied it to a case study:
a Web service used at the CMS Experiment at CERN. This case study has demon-



18 J. H. Dawes et al.

strated that more properties can be checked, leading to enhanced analysis capability of
the VYPR framework.

Key directions for future work identified so far include 1) refining our instrumenta-
tion approach and 2) translating the explanation machinery presented recently [[14116]
into the inter-procedural setting.

Acknowledgments. The research described has been carried out as part of the COS-
MOS Project, which has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 957254. The authors
wish to thank Lionel Briand for his feedback on iCFTL, and the CMS Experiment at
CERN for help with the case study.

References

1. Ahrendt, W., Pace, G.J., Schneider, G.: A Unified Approach for Static and Runtime Ver-
ification: Framework and Applications. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for Master-
ing Change - 5th International Symposium, ISoLA 2012, Heraklion, Crete, Greece, Oc-
tober 15-18, 2012, Proceedings, Part I. Lecture Notes in Computer Science, vol. 7609,
pp. 312-326. Springer (2012). https://doi.org/10.1007/978-3-642-34026-0_24,
https://doi.org/10.1007/978-3-642-34026-0_24

2. Alur, R., Etessami, K., Madhusudan, P.: A Temporal Logic of Nested Calls and Returns. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp. 467—
481. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_35, https://
doi.org/10.1007/978-3-540-24730-2_35

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified Event
Automata: Towards Expressive and Efficient Runtime Monitors. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012: Formal Methods - 18th International Symposium, Paris, France,
August 27-31, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7436, pp.
68-84. Springer (2012). https://doi.org/10.1007/978-3-642-32759-9_9, https:
//doi.org/10.1007/978-3-642-32759-9_9

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifica-
tion. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and Abstract In-
terpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January 11-13,
2004, Proceedings. Lecture Notes in Computer Science, vol. 2937, pp. 44-57. Springer
(2004). https://doi.org/10.1007/978-3-540-24622-0_5, https://doi.org/10.
1007/978-3-540-24622-0_5

5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to Runtime Verifica-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Introductory
and Advanced Topics, Lecture Notes in Computer Science, vol. 10457, pp. 1-33. Springer
(2018). https://doi.org/10.1007/978-3-319-75632-5_1| https://doi.org/10.
1007/978-3-319-75632-5_1

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime Verification.
J. Log. Comput. 20(3), 651-674 (2010). https://doi.org/10.1093/1logcom/exn075,
https://doi.org/10.1093/logcom/exn075


https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-642-34026-0_24
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075

10.

11.

12.

15.

16.

17.

Properties over Inter-Procedural, Source Code Level Program Behaviour 19

. Bensalem, S., Bozga, M., Krichen, M., Tripakis, S.: Testing Conformance of Real-Time

Applications by Automatic Generation of Observers. Electron. Notes Theor. Comput.
Sci. 113, 23-43 (2005). https://doi.org/10.1016/j.entcs.2004.01.036, https:
//doi.org/10.1016/j.entcs.2004.01.036

. Bodden, E., Lam, P, Hendren, L.J.: Clara: A Framework for Partially Evaluating Finite-

State Runtime Monitors Ahead of Time. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, 1., Pace, GJ., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Run-
time Verification - First International Conference, RV 2010, St. Julians, Malta, Novem-
ber 1-4, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6418, pp. 183—
197. Springer (2010). https://doi.org/10.1007/978-3-642-16612-9_15, https:
//doi.org/10.1007/978-3-642-16612-9_15

. CERN: Compact Muon Solenoid experiment. https://home.cern/science/

experiments/cms

Colombo, C., Pace, G.J., Schneider, G.: Dynamic Event-Based Runtime Monitoring
of Real-Time and Contextual Properties. In: Cofer, D.D., Fantechi, A. (eds.) Formal
Methods for Industrial Critical Systems, 13th International Workshop, FMICS 2008,
L’ Aquila, Italy, September 15-16, 2008, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 5596, pp. 135-149. Springer (2008). https://doi.org/10.1007/
978-3-642-03240-0_13, https://doi.org/10.1007/978-3-642-03240-0_13
D’Angelo, B., Sankaranarayanan, S., Sdnchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: LOLA: Runtime Monitoring of Synchronous Systems.
In: 12th International Symposium on Temporal Representation and Reasoning (TIME
2005), 23-25 June 2005, Burlington, Vermont, USA. pp. 166-174. IEEE Computer Soci-
ety (2005). https://doi.org/10.1109/TIME.2005.26, https://doi.org/10.1109/
TIME.2005.26

Dawes, J.H.: A Python object-oriented framework for the CMS alignment and calibration
data. Journal of Physics: Conference Series 898, 042059 (oct 2017). https://doi.org/
10.1088/1742-6596/898/4/042059

. Dawes, J.H.: Towards Automated Performance Analysis of Programs by Runtime Verifica-

tion. Ph.D. thesis, University of Manchester (2021)

. Dawes, J.H., Han, M., Javed, O., Reger, G., Franzoni, G., Pfeiffer, A.: Analysing the Perfor-

mance of Python-Based Web Services with the VyPR Framework. In: Deshmukh, J., Nick-
ovic, D. (eds.) Runtime Verification - 20th International Conference, RV 2020, Los Ange-
les, CA, USA, October 6-9, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12399, pp. 67-86. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7_
4, https://doi.org/10.1007/978-3-030-60508-7_4

Dawes, J.H., Han, M., Reger, G., Franzoni, G., Pfeiffer, A.: Analysis Tools for the VYPR
Framework for Python. In: International Conference on Computing in High Energy and Nu-
clear Physics, Adelaide, Australia 2019 (2019)

Dawes, J.H., Reger, G.: Explaining Violations of Properties in Control-Flow Temporal Logic.
In: Finkbeiner, B., Mariani, L. (eds.) Runtime Verification - 19th International Confer-
ence, RV 2019, Porto, Portugal, October 8-11, 2019, Proceedings. Lecture Notes in Com-
puter Science, vol. 11757, pp. 202-220. Springer (2019). https://doi.org/10.1007/
978-3-030-32079-9_12, https://doi.org/10.1007/978-3-030-32079-9_12
Dawes, J.H., Reger, G.: Specification of temporal properties of functions for runtime
verification. In: Hung, C., Papadopoulos, G.A. (eds.) Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019.
pp. 2206-2214. ACM (2019). https://doi.org/10.1145/3297280.3297497, https:
//doi.org/10.1145/3297280.3297497


https://doi.org/10.1016/j.entcs.2004.01.036
https://doi.org/10.1016/j.entcs.2004.01.036
https://doi.org/10.1016/j.entcs.2004.01.036
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1007/978-3-642-16612-9_15
https://home.cern/science/experiments/cms
https://home.cern/science/experiments/cms
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1088/1742-6596/898/4/042059
https://doi.org/10.1088/1742-6596/898/4/042059
https://doi.org/10.1007/978-3-030-60508-7_4
https://doi.org/10.1007/978-3-030-60508-7_4
https://doi.org/10.1007/978-3-030-60508-7_4
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1145/3297280.3297497

20

18.

19.

20.

21.

22.

23.

24.

25.

J. H. Dawes et al.

Dou, W., Bianculli, D., Briand, L.C.: A Model-Driven Approach to Trace Checking of
Pattern-Based Temporal Properties. In: 20th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, September
17-22, 2017. pp. 323-333. IEEE Computer Society (2017). https://doi.org/10.1109/
MODELS.2017 .9, https://doi.org/10.1109/MODELS.2017.9

Fischer, M.J., Ladner, R.E.: Propositional Dynamic Logic of Regular Programs. J. Comput.
Syst. Sci. 18(2), 194-211 (1979). https://doi.org/10.1016/0022-0000(79) 90046-1,
https://doi.org/10.1016/0022-0000(79)90046-1

Gastin, P., Oddoux, D.: Fast LTL to Biichi Automata Translation. In: Berry, G., Comon,
H., Finkel, A. (eds.) Computer Aided Verification. pp. 53—65. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001)

Hallé, S.: When RV Meets CEP. In: Falcone, Y., Sanchez, C. (eds.) Runtime Veri-
fication - 16th International Conference, RV 2016, Madrid, Spain, September 23-30,
2016, Proceedings. Lecture Notes in Computer Science, vol. 10012, pp. 68-91. Springer
(2016). https://doi.org/10.1007/978-3-319-46982-9_6| https://doi.org/10.
1007/978-3-319-46982-9_6

Kim, M., Viswanathan, M., Kannan, S., Lee, 1., Sokolsky, O.: Java-MaC: A Run-Time As-
surance Approach for Java Programs. Formal Methods Syst. Des. 24(2), 129-155 (2004).
https://doi.org/10.1023/B:FORM.0000017719.43755.7c, https://doi.org/10.
1023/B:FORM.0000017719.43755.7c

Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real Time
Syst. 2(4), 255-299 (1990). https://doi.org/10.1007/BF01995674, https://doi.
org/10.1007/BF01995674

Pnueli, A.: The Temporal Logic of Programs. In: 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977.
pp. 46-57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32,
https://doi.org/10.1109/SFCS.1977.32

Rosu, G., Chen, F.,, Ball, T.: Synthesizing Monitors for Safety Properties: This Time with
Calls and Returns. In: Leucker, M. (ed.) Runtime Verification, 8th International Work-
shop, RV 2008, Budapest, Hungary, March 30, 2008. Selected Papers. Lecture Notes in
Computer Science, vol. 5289, pp. 51-68. Springer (2008). https://doi.org/10.1007/
978-3-540-89247-2_4, https://doi.org/10.1007/978-3-540-89247-2_4


https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1109/MODELS.2017.9
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1023/B:FORM.0000017719.43755.7c
https://doi.org/10.1023/B:FORM.0000017719.43755.7c
https://doi.org/10.1023/B:FORM.0000017719.43755.7c
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1007/978-3-540-89247-2_4

	Specifying Properties over Inter-Procedural, Source Code Level Behaviour of Programs

