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Abstract

We propose a simplified definition of Quillen’s fibration sequences in a pointed model category
that fully captures the theory, although it is completely independent of the concept of action.
This advantage arises from the understanding that the homotopy theory of the model category’s
arrow category contains all homotopical information about its long fibration sequences.
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1. Introduction

Homotopy (co)fiber sequences, also called (co)fibration sequences, have been studied in
the category of topological spaces, the category of chain complexes of modules, in general
model categories and in homotopical categories.

Homotopy fiber sequences can be traced back to the beginnings of homological algebra
in the 1940s. Indeed, the long exact sequences in homology associated with short exact
sequences of chain complexes and chain maps [24] turned out to be shadows of homotopy
fiber sequences. The first systematic investigation of homotopy cofiber sequences appeared
in 1958 in Puppe’s work [31], which is written in the context of pointed topological spaces.
The author constructed the mapping cone Mc(f) of a continuous base point preserving
map f : X → Y and the connecting homomorphism δf : Mc(f) → ΣX valued in the
suspension of X, which led to a long sequence

X
f−→ Y

pf−→ Mc(f)
δf−→ ΣX

Σ(f)−−−→ ΣY
Σ(pf )−−−−→ Σ(Mc(f))

Σ(δf )−−−→ · · · ,
where every short sequence extracted from it is a homotopy cofiber sequence. On the
side of homological algebra, Verdier [37] defined triangulated categories in 1963 as a
generalization of derived categories of Abelian categories. He considered the mapping
cone Mc(f) of a chain map f : X → Y and axiomatized properties of sequences that are
isomorphic in the derived category to

X
f−→ Y

pf−→ Mc(f)
δf−→ X[1],

where [1] is the suspension operator. In 1961, Puppe and Dold [10] independently of
Verdier found similar axioms when studying stable homotopy theory. The difference be-
tween [31] and [37, 10] is that in the latter the suspension functor is an equivalence—
a condition that is generally referred to as the stability condition. Nonetheless, all three
sources deal with homotopy cofiber sequences, each in its setting.

In 1967, Quillen [32] introduced model categories by abstracting the notions and prop-
erties of cofibrations, fibrations and weak homotopy equivalences of topological spaces.
Over time, the theory got recognized as the proper framework for abstract homotopy
theory. Quillen defined (co)fibration sequences in the homotopy category of any pointed
model category (M, 0). For this he first defined a loop space functor ΩQ from a path space
functor and observed that the loop space ΩQF of a fibrant object F is a group object in
the homotopy category Ho(M) of M. Up to Ho(M)-isomorphism a fibration sequence is then
a Ho(M)-sequence K → F → F that is implemented by the kernel K of a fibration F → F
between fibrant objects F and F , together with an action that is up to isomorphism some
action of the group object ΩQF on K. This action induces a connecting Ho(M)-morphism

[5]
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ΩQF → K and the sequence ΩQF → K → F is again a fibration sequence. Cofibration
sequences are defined dually. Although it was clear from the beginning that (co)fibration
sequences are closely related to triangulated categories, it was Hovey [22] who first proved
that the homotopy category Ho(M) of a stable pointed model category M with (co)fibration
sequences along with the connecting homomorphism as distinguished triangles, satisfies
all axioms of the triangulated categories, including the octahedral axiom. In [33], Schwede
shows that the constructions remain valid in the more general framework of cofibration
(or fibration) categories.

A shortcoming of Verdier’s defining axioms of a triangulated category is the well-
known fact that the mapping cone (resp., dually, the mapping fiber) is not functorial.
This non-functoriality is an obstruction to the interpretation of the mapping cone (resp.,
the mapping fiber) as pushout (resp., pullback) along zero. More precisely, in a trian-
gulated category, say Ho(M), where M is a stable pointed model category, there is no
mapping cone (resp., no mapping fiber) functor Ho(M)→ → Ho(M), where the source is
the arrow category of the homotopy category. The idea to substitute the homotopy cate-
gory Ho(M→) of the arrow category of M to Ho(M)→ and more generally to study diagrams
Fun(I, M) before localizing, together with its implementation as the theory of derivators,
was first proposed by Grothendieck [17], then further developed by many authors ([16],
[18]–[20], [26]). In short, one considers homotopy categories Ho(Fun(I, M)) of diagram cat-
egories, together with pullbacks f∗ : Ho(Fun(J, M)) → Ho(Fun(I, M)) and Kan extensions
f!, f∗ : Ho(Fun(I, M))→ Ho(Fun(J, M)). One defines homotopy (co)limits and in particular
homotopy pullbacks and homotopy pushouts in terms of Kan extensions. Finally, the
mapping cone and mapping fiber are both viewed as functors Ho(M→) → Ho(M) and can
actually be interpreted as homotopy pushout and homotopy pullback along zero.

In this paper, we also work in a general pointed model category (M, 0), we define a
loop space functor Ω from any ‘dual cone functor’ and define homotopy fiber sequences
as commutative M-squares (A,B,C,D) such that A is a specific type of generalized rep-
resentative of the homotopy pullback of C → D ← B and the map C → 0 is a weak
equivalence. Further, for every morphism f : F → F we define its homotopy fiber Kf

such that Kf → F → F is a homotopy fiber sequence. We get a universal connecting
morphism ΩF → Kf such that ΩF → Kf → F is also a homotopy fiber sequence.

It turns out that Quillen’s loop space functor ΩQ is a loop space functor Ω in the
sense of the present paper. Further, an objectwise fibrant homotopy fiber sequence is a
fibration sequence in Quillen’s sense and our universal connecting morphism is the same
as Quillen’s connecting morphism induced by the action.

Although, as the previous descriptions show, the two theories are closely related, the
new approach to homotopy fiber sequences or fibration sequences does not rely on the
additional structure of an action. The point is that we use the homotopy theory of the
category M→ of M-morphisms, which contains all relevant information about homotopy
fiber sequences of M. Moreover, we are convinced that our approach to homotopy fiber
sequences will allow us to find a solution to the problem described above of interpreting
the mapping cone and the mapping fiber as pushout and pullback along zero, within the
framework of model categories and that we do not have to invoke the theory of derivators.
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More precisely, the paper is organized as follows:
Understanding homotopy fiber sequences requires a good understanding of homotopy

fiber squares, homotopy pullbacks, derived functors, and category localizations. However,
there are a number of variants and indeterminacies for each of these concepts. A struc-
tured approach in a unifying context is suggested in [14] and [15]. In order to ensure an
independent readability of our text, we recall in Chapter 2 the relevant results from [14]
and [15], which we will need later.

In Chapter 3 we give the precise definition of the category h(M) (resp., ℓ(M)) of homo-
topy fiber sequences (resp., long homotopy fiber sequences) in a pointed model category
(M, 0). We define the homotopy category of these new categories and choose a model
structure on the category M→ of M-morphisms. We prove that the localization

Ho(R1) : Ho(ℓ(M))→ Ho(M→)

of the restriction R1 of long homotopy fiber sequences to their first two terms yields an
equivalence of categories. This is arguably the deepest result of the present paper. To
prove the equivalence theorem we construct the inverse up to natural isomorphisms and
give an explicit description of the inverse of

Ho(R1)a•,b• : HomHo(ℓ(M))(a•, b•)→ HomHo(M→)(R1(a•), R1(b•))

(see pp. 14–26).
Mimicking definitions from algebraic topology, we define in Chapter 4 the notion of

‘based path space functor’ (dual to the ‘cone functor’) and the associated ‘loop space
functor’ Ω (which is well behaved with respect to fibrant objects, weak equivalences and
homotopy fiber sequences, and whose derived functor is independent of the chosen based
path space functor). We continue our abstraction of the topological situation and define
concepts of homotopy fiber and universal connecting homomorphism that allow us to
make sense of Puppe’s sequence in the general setting considered. This leads to Puppe’s
functor P : M→ → ℓ(M) whose value Pf at f ∈ M→ is the unique ℓ(M)-extension of f up to
a canonical Ho(ℓ(M))-isomorphism. The theory is valid in every pointed model category
(in this general case it is natural to consider morphisms f with fibrant source and target)
and in right proper pointed model categories (in this case we do not need the property
that the source and target are fibrant). Just as Puppe’s sequence of a fibration gives
the fibration’s long exact homotopy sequence in algebraic topology, we associate in any
pointed model category M a family of long exact sequences of Ho(M)-Hom-sets to Puppe’s
ℓ(M)-extension of a morphism.

Chapter 5 contains a detailed account of the parallelism described above between
Quillen’s theory of fibration sequences and the theory of homotopy fiber sequences in the
present work.

One of the advantages of the new theory is that it is easy to use. In Chapter 6 we apply
it to the category of chain complexes of modules (both unbounded and non-negatively
graded) and recover the long exact sequence in homology induced by a short exact se-
quence of chain complexes and chain maps as a special case of the long exact sequence
of Ho(M)-Hom-sets of these chain maps. To this end, we consider the category of com-
plexes first only as a pointed model category, then as a pointed monoidal model category.
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Although the two approaches naturally lead to different based path space functors, the
Puppe extensions of a chain morphism coincide.

In the final Chapter 7, we briefly describe follow-up questions and expected applica-
tions. In addition, the theory we develop in this text should lead to advances in homo-
topical algebraic geometry [34, 35, 2, 3, 6] and higher supergeometry [7, 8, 9, 30], which
are the contexts from which the need arose to examine the subjects of this paper.

Conventions and notations. We assume that the reader is familiar with model cate-
gories and adopt the definition of a model category that is used in [21]. More precisely,
a model category is a category M that is equipped with three classes of morphisms called
weak equivalences, fibrations and cofibrations. The category M has all small limits and
colimits and the 2-out-of-3 axiom, the retract axiom and the lifting axiom are satisfied.
Moreover M admits a functorial cofibration–trivial fibration factorization system, and a
functorial trivial cofibration–fibration factorization system. Further, we work with the
Quillen homotopy category Ho(M), which is a strict localization of M at its weak equiv-
alences W with localization functor denoted γM, and we use the Kan extension derived
functor operations LK,RK and the strongly universal derived functor operations LS,RS

in the sense of [14]. We will consider different types of replacement, in particular local
fibrant C-replacements, which means that for every X ∈ M we choose a fibrant replace-
ment F̃X ↠ ∗ of X such that the map fX : X

∼−→ F̃X is a cofibration and is identity if
X is already fibrant. If f : X → Y, there is a lifting F̃ f : F̃X → F̃ Y, which will play an
important role:

X Y F̃Y

F̃X ∗

f ˜fY

˜fX
F̃ f

(1.1)

2. Models of homotopy pullbacks

We start recalling some results of [14] and [15].
The first theorem addresses the question of stability of a derived functor with respect

to a change of definition (Kan extension versus strong universal property) and with
respect to a change of the type of fibrant replacement used to compute it (local versus
global).

Theorem 2.1 ([14]). If G ∈ Fun(M, N) is a functor between model categories that sends
weak equivalences between fibrant objects to weak equivalences, its Kan extension right
derived functor

RKG ∈ Fun(Ho(M), Ho(N))

and its strongly universal right derived functor

RSG ∈ Fun(Ho(M), Ho(N))
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exist and we have

RKG
.
= Ho(γN ◦G ◦ F̃ ) .= RS

RG := Ho(γN ◦G ◦R)
∼=
=⇒ RSG, (2.1)

where F̃ is a local fibrant C-replacement, R is a fibrant C-replacement functor and Ho

the unique on the nose factorization through Ho(M). This implies that

RKG ◦ γM .
= γN ◦G ◦ F̃ .

= RS
RG ◦ γM = γN ◦G ◦R

∼=
=⇒ RSG ◦ γM, (2.2)

where .
= denotes a canonical natural isomorphism and

∼=
=⇒ a not necessarily canonical

natural isomorphism.

The next corollary emphasizes that a derived or homotopy limit with respect to a
suitable model structure σ on the diagram category under consideration belongs to a well
defined isomorphism class of the target homotopy category, regardless of the definition
of a derived functor and the fibrant replacement we use. Considered as an object of the
target model category, a homotopy limit is thus only well defined up to a zigzag of weak
equivalences. This indeterminacy is further increased by the ambiguity resulting from
various choices for σ.

Corollary 2.2. Let S be a small category, let M be a model category and let σ be a
model structure on the category Fun(S, M) of S-shaped diagrams of M such that Lim :

Fun(S, M)→ M is a right Quillen functor. If X ∈ Fun(S, M), its homotopy limit with respect
to σ is given as an object of M by

Rσ Lim(X) ≈ Lim(RσX)
∼−→←− Lim(F̃σX)

∼−→ Lim(FσX), (2.3)

where Rσ Lim(X) can be interpreted as Kan extension or strongly universal derived func-
tor, where ≈ denotes a zigzag of weak equivalences and where Rσ, F̃σ, Fσ are a fibrant
C-replacement functor, a local fibrant C-replacement and any fibrant replacement in the
model structure σ, respectively. The weak equivalence ∼−→ between the last two represen-
tatives is the universal morphism

Lim(ℓσ) : Lim(F̃σX)
∼−→ Lim(FσX) (2.4)

that is induced by a lifting

X FσX

F̃σX ∗

∼
fX

∼ f̃X
`σ

(2.5)

and its image γM(Lim(ℓσ)) in homotopy is independent of the lifting considered. A similar
remark holds for the weak equivalences

∼−→←−.

In the case S = I := {c→ d← b} the functors X ∈ Fun(I, M) are the cospan diagrams
C → D ← B of M and the limit Lim(X) is the pullback B ×D C. There are three Reedy
model structures σi (i ∈ {1, 2, 3}) on Fun(I, M), for which the pullback is a right Quillen
functor. The homotopy limits Rσi

Lim(X) with respect to the σi are called homotopy
pullbacks and are denoted by B ×hσi

D C. It can be proven that common representatives
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exist. We define the full homotopy pullback B×hDC such that its canonical representatives
are exactly the representatives of all three homotopy pullbacks B ×hσi

D C (i ∈ {1, 2.3}).
This leads to

Theorem 2.3 ([15]). The full homotopy pullback of a cospan C → D ← B in a model
category is independent of the type of derived functor and of the model structure σi
(i ∈ {1, 2, 3}) on cospan diagrams considered. We get the canonical representatives of
the full homotopy pullback from the standard pullback of the weakly equivalent cospans
C ′ → D′ ← B′ with three fibrant objects and at least one morphism that is a fibration: if
in the adjacent commutative squares

C D B

C ′ D′ B′

∼ ∼ ∼ (2.6)

all vertical arrows are weak equivalences, all bottom nods are fibrant objects and at least
one of the bottom arrows is a fibration, then we have

B ×hD C ≈ B′ ×D′ C ′. (2.7)

We increase the flexibility of homotopy limits, homotopy pullbacks and full homotopy
pullbacks by allowing generalized representatives. In the case of full homotopy pullbacks,
we have

Theorem 2.4. The vertex A of the span of a commutative square

A B

C D

(2.8)

in a model category is a model or generalized representative of the full homotopy pullback
B ×hD C if the universal morphism from A to a canonical representative of B ×hD C is
a weak equivalence. In other words, there must exist a cospan C ′ → D′ ← B′ to which
C → D ← B is weakly equivalent, whose three nodes are fibrant objects and at least one
of whose morphisms is a fibration, such that the universal morphism A → B′ ×D′ C ′ is
a weak equivalence.

If the condition of Theorem 2.4 is satisfied for one replacement, it is satisfied for all
replacements.

In right proper model categories, we can weaken the condition:

Theorem 2.5 ([15]). The vertex A of the span of a commutative square (2.8) in a right
proper model category is a model of the full homotopy pullback B ×hD C if there exists
a cospan C ′ → D′ ← B′ to which C → D ← B is weakly equivalent and at least one
of whose morphisms is a fibration, such that the universal morphism A → B′ ×D′ C ′ is
a weak equivalence.
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Again, if the condition of Theorem 2.5 is satisfied for one replacement with one fibra-
tion, it is satisfied for all replacements of this type.

The following corollary is stated without proof in [25]:

Corollary 2.6 ([15]). In a model category the standard pullback B ×D C of a cospan
C

g−→ D
f←− B is a model of the cospan’s full homotopy pullback if at least one of the

morphisms f or g is a fibration and either all three objects B,C,D are fibrant or the
model category is right proper.

Further, the concept of model of a homotopy pullback captures the notion of homotopy
fiber square defined in [21] and puts it in the right context.

Corollary 2.7 ([15]). In a right proper model category with a fixed functorial trivial
cofibration–fibration factorization system, a commutative square (2.8) is a model square,
i.e., its vertex A is a model of the homotopy pullback B ×hD C if and only if it is a
homotopy fiber square in the sense of [21].

There is a pasting law for model squares.

Proposition 2.8 ([15]). Let

A B C

D E F

(2.9)

be a commutative diagram in a model category. If the right square is a model square, then
the left square is a model square if and only if the total square is a model square.

The next result generalizes a property of homotopy fiber squares in a right proper
model category with a fixed functorial trivial cofibration–fibration factorization system
to model squares in an arbitrary model category.

Proposition 2.9 ([15]). Let ABCD and A′B′C ′D′ be two commutative squares in a
model category M. If there exist four M-morphisms from the vertices of the first square to
the corresponding vertices of the other one such that the four resulting squares commute
and if these M-morphisms are weak equivalences, then the first square is a model square
if and only if the other one is.

A B

A′ B′

C D

C ′ D′

∼ ∼

∼ ∼

(2.10)

Later we need
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Proposition 2.10. Any commutative square ABCD in a model category whose vertical
(or horizontal) arrows are weak equivalences is a model square.

Proof. We apply a fibrant C-replacement functor R to the commutative square ABCD
and factor the morphism

R(B
κ−→ D) = RB

Rκ−−→ RD = RB
∼−→ F (Rκ)↠ RD

into a weak equivalence followed by a fibration. Moreover, we set P := F (Rκ) ×RD RC

and thus get the following commutative diagram:

A B

RA RB

P F (Rκ)

C D

RC RD

RC RD

∼

∼ ∼

∼

∼ ∼

∼

∼∼ ∼

(2.11)

As trivial fibrations are closed under pullbacks in any model category, the arrow P → RC

is a trivial fibration, hence a weak equivalence. It follows that A → P is a weak equiva-
lence, so that ABCD is a model square.

Proposition 2.11. Let G : M → N be a right Quillen functor and let ABCD be a
commutative square of M with fibrant vertices. If ABCD is a model square of M, then its
image G(ABCD) is a model square of N.

Proof. We factor B κ−→ D = B
∼−→ F (κ) ↠ D into a weak equivalence followed by a

fibration. Further, we set P := F (κ)×D C and get the commutative cube

A B

P F (κ)

C D

C D

∼

(2.12)

Since ABCD is a model square, the universal arrow A 99K P is a weak equivalence. As
fibrations are closed under pullbacks, the arrow P → C is a fibration and all vertices
of (2.12) are fibrant objects.
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The image of (2.12) under G is the commutative cube

GA GB

GP G(F (κ))

GC GD

GC GD

(2.13)

Since right adjoint functors preserve limits, we have GP = G(F (κ)) ×GD GC and the
arrow GA → GP is the universal arrow from GA to the pullback of the front cospan.
As G is a right Quillen functor, it preserves weak equivalences between fibrant objects
(in view of Brown’s lemma), so that the universal arrow GA → GP and the arrow
GB → G(F (κ)) are weak equivalences (⋆1). As G preserves fibrations (by definition of
a right Quillen functor), the arrow G(F (κ))→ GD is a fibration (⋆2). Furthermore, the
terminal object ∗M of M is the limit Lim∅M of the unique functor ∅M ∈ Fun(∅, M) from the
empty category ∅ to M. Hence, if F ∈ M is fibrant, we get

G(F↠ ∗M) = G(F↠ Lim∅M) = GF↠ LimG(∅M) = GF↠ Lim∅N = GF↠ ∗N, (2.14)

so that G preserves fibrant objects and all vertices of (2.13) are fibrant (⋆3). From (⋆1),
(⋆2) and (⋆3) it follows that the back square G(ABCD) of (2.13) is a model square of N.

3. Long homotopy fiber sequences

3.1. Definitions. Let M be a pointed model category, i.e., a model category with a zero
object 0 (a model category whose initial and terminal objects coincide).

It is natural to refer to the pullback A := B ×D 0 of an M-morphism B → D over
the point 0 → D as the fiber of B → D and to call A → B → D a fiber sequence. The
following generalization is crucial:

Definition 3.1. A homotopy fiber sequence A→ B → D in a pointed model category M

is a model square ABCD in M whose left lower vertex C is acyclic.

Since an object C ∈ M is acyclic if the unique morphism 0→ C is a weak equivalence
(or equivalently if the unique morphism C → 0 is a weak equivalence), a homotopy fiber
sequence is a commutative square whose left upper vertex is a model of the homotopy
pullback of the square’s cospan and whose left lower vertex is weakly equivalent to zero.
We stress that, although the left lower vertex C is implicit in the notation A→ B → D

of the homotopy fiber sequence, it is an integral part of it.
Morphisms of homotopy fiber sequences are therefore defined as morphisms of com-

mutative squares, i.e., as commutative cubes. Explicitly a morphism of homotopy fiber
sequences from A2 → A1 → A0 with implicit vertex CA to B2 → B1 → B0 with implicit
vertex CB is a quadruplet

Φ = (ϕ0, ϕ1, ϕ2, φ)



14 A. Govzmann, D. Pištalo, and N. Poncin

of M-morphisms

ϕi : Ai → Bi (i ∈ {0, 1, 2}) and φ : CA → CB ,

such that the resulting cube commutes. So composition of morphisms of homotopy fiber
sequences is induced by the composition of M. We denote by h(M) the category of homotopy
fiber sequences of M. Further, we denote by

a = (a1, a2)

a homotopy fiber sequence
A2

a2−→ A1
a1−→ A0.

Definition 3.2. In a pointed model category a long homotopy fiber sequence

a• = (a1, a2, a3, . . .) (3.1)

or more explicitly
(A•, a•) : · · · −→ A3

a3−→ A2
a2−→ A1

a1−→ A0

is a sequence of homotopy fiber sequences

An+1
an+1−−−→ An

an−−→ An−1 (n ∈ {1, 2, . . .}). (3.2)

It is natural to define a morphism of long homotopy fiber sequences as a sequence
of morphisms of homotopy fiber sequences. Explicitly a morphism Φ• of long homotopy
fiber sequences from (A•, a•) to (B•, b•) is a sequence

Φ• = (ϕ0, ϕ1, ϕ2, ϕ3, . . . , φ1, φ2, . . . ) (3.3)

of morphisms
Φn = (ϕn−1, ϕn, ϕn+1, φn) (n ∈ {1, 2, . . . }) (3.4)

of homotopy fiber sequences from

An+1
an+1−−−→ An

an−−→ An−1 to Bn+1
bn+1−−−→ Bn

bn−→ Bn−1.

Composition of morphisms of long homotopy fiber sequences is again induced by the
composition in M. We denote by ℓ(M) the category of long homotopy fiber sequences
of M. Moreover, we say that a homotopy fiber sequence (resp., a long homotopy fiber
sequence) of M is objectwise fibrant if its four vertices are fibrant objects of M (resp., if all
homotopy fiber sequences (3.2) are objectwise fibrant). We also say that a morphism of
homotopy fiber sequences (resp., of long homotopy fiber sequences) of M is an objectwise
weak equivalence if its four component morphisms are weak equivalences of M (resp., if all
morphisms of homotopy fiber sequences (3.4) are objectwise weak equivalences).

We close this section with the following corollary of Proposition 2.11:

Corollary 3.3. Let G : M → N be a right Quillen functor between pointed model cate-
gories. The image under G of an objectwise fibrant (long) homotopy fiber sequence of M
is a (long) homotopy fiber sequence of N.

Proof. If suffices to remember that a right Quillen functor G preserves weak equivalences
between fibrant objects and preserves the (fibrant) zero object (see (2.14)).
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Remark 3.4. We will show below that in a pointed model category it is often possible
to extend a morphism to a long homotopy fiber sequence. In the next section we address
the question of uniqueness of such an extension if it exists.

3.2. Homotopy theory of long homotopy fiber sequences. Let C be a category and
W a family of C-morphisms. The Gabriel–Zisman localization or zigzag localization of C at
W is (at least in a higher universe) a pair (C[[W−1]], γ) that consists of a category C[[W−1]]

and a functor γ : C → C[[W−1]] which sends all morphisms in W to isomorphisms.
Further, every functor out of C with this property factors uniquely and on the nose
through C[[W−1]]. Because of its universal property, the zigzag localization is unique up
to a unique isomorphism. It is the strong localization of C at W [14] and is constructed
by free inversion of the morphisms of W . More precisely, the description of (C[[W−1]], γ)

is exactly the one given in [14] in the case of the homotopy category of a model category.
As already mentioned, the localized category does not have to be locally small, so we
implicitly move to a higher universe in order to get a genuine category. If the definition
of W is clear, we usually refer to C[[W−1]] as the homotopy category of C and denote it
by Ho(C).

In the case of the category ℓ(M) of long homotopy fiber sequences of a pointed model
category M, we choose the objectwise weak equivalences for W and consider the homotopy
category Ho(ℓ(M)) in the previous sense.

Since we are interested in possible extensions of an M-morphism to a long homotopy
fiber sequence of M, we need not only the categories ℓ(M) and Ho(ℓ(M)), but also the
category M→ of M-morphisms

A1
a1−→ A0 (3.5)

and commutative squares

A1 A0

B1 B0

a1

b1

ψ1 ψ0 (3.6)

and its homotopy category Ho(M→). To give a meaning to the latter, we endow the cate-
gory M→ with a model structure, so that its zigzag localization at its weak equivalences,
which is its Quillen homotopy category, is a genuine category without us passing into a
larger universe (see for example [14, Theorem 2]). To find a model structure, notice that
M→ is the functor category Fun(I, M), where I is the inverse category I = {1 → 0}. In
the case of such simple Reedy categories, the corresponding Reedy model structure is the
injective model structure with objectwise weak equivalences and cofibrations (details can
be found for instance in [15]). We equip M→ with this model structure.

To study the above-mentioned extension problem, we introduce the restriction functor

R1 : ℓ(M)→ M→,

which we define on objects as R1a• = a1 (see (3.1)) and on morphisms as R1Φ• =

(ϕ1, ϕ0) (see (3.3)). The functor γM→ ◦ R1 sends objectwise weak equivalences of ℓ(M)
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to isomorphisms of Ho(M→) and therefore factors uniquely through Ho(ℓ(M)): there is a
unique functor

Ho(R1) : Ho(ℓ(M))→ Ho(M→) such that γM→ ◦R1 = Ho(R1) ◦ γℓ(M).

Theorem 3.5. Let M be a pointed model category. The localization

Ho(R1) : Ho(ℓ(M))→ Ho(M→)

of the restriction functor of long homotopy fiber sequences yields an equivalence of cat-
egories between the homotopy category of the category of long homotopy fiber sequences
of M and the homotopy category of the category of morphisms of M.

Remark 3.6. The categorical equivalence means that the localized functor Ho(R1) is
essentially surjective and fully faithful. In other words, every M-morphism is up to an
isomorphism the restriction of a long homotopy fiber sequence and, for any a•, b• ∈ ℓ(M),
the map

Ho(R1)a•b• : HomHo(ℓ(M))(a•, b•)→ HomHo(M→)(a1, b1) (3.7)

is a 1:1 correspondence. Alternatively, the equivalence means that Ho(R1) has an inverse
up to natural isomorphisms. To prove the theorem we construct this inverse.

Lemma 3.7. Let M be a pointed model category. There exists a functor E : M→→ ℓ(M)

that preserves weak equivalences and sends morphisms a∈ M→ to long homotopy fiber
sequences fa• made up of fibrations fan :F an→F an−1 between fibrant objects (n∈{1, 2, . . .}).

Remark 3.8. In the following we use a fixed functorial trivial cofibration–fibration fac-
torization system (α, β) and the induced fibrant C-replacement functor R.

Proof of Lemma 3.7. Let a1, b1 be objects of M→ and ψ = (ψ0, ψ1) an M→-morphism
between them (see (3.6)). We will construct E simultaneously and inductively on these
objects and this morphism, i.e., we construct inductively long homotopy fiber sequences
E(a1) =: fa1• and E(b1) =: f b1• and a morphism E(ψ) =: Φ• of long homotopy fiber
sequences between them. We start from the commutative diagram ψ and use the chosen
replacement functor and factorization system to get the commutative diagram

RA1 F (Ra1) RA0

RB1 F (Rb1) RB0

α(Ra1)

∼

Rψ1

β(Ra1)

Rψ0

α(Rb1)

∼
β(Rb1)

(3.8)

We denote the upper and lower fibrations between fibrant objects by fa11 : F a11 → F a10 and
f b11 : F b11 → F b10 , respectively. It is clear that if ψ is a weak equivalence, all the vertical
arrows in (3.8) are weak equivalences, in particular the central arrow ϕ1 : F a11 → F b11 and
the right arrow ϕ0 : F a10 → F b10 . Assume now that the long homotopy fiber sequences
fa1• , f b1• (resp., the morphism Φ• between them) have (resp., has) been constructed
together with their implicit vertices (resp., its implicit arrows) and with all the required
properties, up to order n ≥ 1. If we apply the functorial factorization (α, β) to 0→ F a1n−1
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and 0→ F b1n−1, we get the commutative diagram

F a1
n+1 F a1

n

F b1n+1 F b1n

0 CFa1
n

F a1
n−1

0 C
F

b1
n

F b1n−1

f
a1
n+1

φn+1

fa1
n

φn

f
b1
n+1

fb1
n

∼

∼
ϕn

φn−1

∼

(3.9)

in which F a1n+1 and F b1n+1 are pullbacks and ϕn+1 is the universal morphism. Both pullback
diagrams are canonically homotopy fiber sequences and, as already mentioned, the cube
is commutative. So we have built two long homotopy fiber sequences E(a1) = fa1• and
E(b1) = f b1• and a morphism E(ψ) = Φ• between them. Since (α, β) is functorial (and
the induced R is a functor), the assignment ψ 7→ E(ψ) = Φ• respects compositions and
identities: E is a functor E : M→ → ℓ(M). Since fibrations are closed under pullbacks, the
morphisms fa1n+1, f

b1
n+1 are fibrations and the objects F a1n+1, F

b1
n+1 are fibrant. Finally, the

cospans of the back and the front square are fibrant in the injective model structure (see
for instance [15]). Now, if ϕn−1 and ϕn are weak equivalences, these fibrant cospans are
weakly equivalent, as φn is obviously a weak equivalence. However, the pullback functor
is a right Quillen functor if the category of cospans is equipped with its injective model
structure, so that it sends weak equivalences between fibrant objects to weak equivalences:
ϕn+1 is a weak equivalence. This means that E(ψ) = Φ• is an objectwise weak equivalence
if ψ is a weak equivalence.

Lemma 3.9. Let M be a pointed model category. There exists a functor I : ℓ(M) → ℓ(M)

that preserves weak equivalences and sends long homotopy fiber sequences a• to long
homotopy fiber sequences fa• made up of fibrations fan : Fan → Fan−1 between fibrant objects
(n ∈ {1, 2, . . .}).
Proof. Let a•, b• be objects of ℓ(M) and Ψ• an ℓ(M)-morphism between them. We will
construct I simultaneously and inductively on these objects and this morphism. In other
words, we will construct long homotopy fiber sequences I(a•) =: fa• and I(b•) =: fb• and
a morphism I(Ψ•) =: Θ• of long homotopy fiber sequences between them. At the same
time we build step by step a natural weak equivalence ω : idℓ(M)

∼
=⇒ I, i.e., we build step

by step a commutative diagram

a• fa•

b• fb•

ωa
•
∼

Ψ• Θ•

∼
ωb
•

(3.10)

If we apply R1 to Ψ• : a• → b•, we get ψ = (ψ0, ψ1) : a1 → b1, and if we apply E to the
latter, we get Φ• : fa1• → f b1• . We choose the first two terms ϕ = (ϕ0, ϕ1) : fa11 → f b11
of Φ• as the first two terms θ = (θ0, θ1) : f

a
1 → fb1 of Θ• (this includes choosing the first
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two terms (F a10 , F a11 ) as the first two terms (Fa0 ,Fa1) and similarly for b). Let us remember
that above we defined θ as follows (see diagram (3.8)):

A1 A0

RA1 Fa1 Fa0

B1 B0

RB1 Fb1 Fb0

a1

ψ1

∼
ψ0

∼
α(Ra1)

∼

Rψ1

fa1

θ1

θ0
b1

∼ ∼
α(Rb1)

∼
fb1

(3.11)

Diagram (3.10) is a diagram in ℓ(M), so that every arrow is a sequence of commutative
cubes. Its commutativity means that the nth cube of the down-right composite (which
is the composite of a cube A ⇝ B and a cube B ⇝ Fb, where ⇝ denotes a morphism
between squares) coincides with the nth cube of the right-down composite (which is
the composite of a cube A ⇝ Fa and a cube Fa ⇝ Fb), for every n ∈ {1, 2, . . .}. The
commutative diagram (3.11) means that half of this condition is satisfied for the first
cubes and it shows that ωa = (ωa0 , ω

a
1 ) : a1 → fa1 and ωb consist of two weak equivalences

and that θ is made up of weak equivalences if ψ is. Assume now that the sequences
Fa•, Fb•, fa•, fb•, ωa• , ωb• and Θ• have been constructed with all the required properties and
implicit vertices or arrows up to order n ≥ 1 and that the commutation condition of
diagram (3.10) is fulfilled up to half the condition for the nth cubes.

An+1 An

Fan+1 Fan

Bn+1 Bn

Fbn+1 Fbn

CAn
An−1

CFa
n

Fan−1

CBn Bn−1

CFb
n

Fbn−1

∼

∼

∼ ∼

∼ ∼

(3.12)

In (3.12), the back commutative square of the right cube is a homotopy fiber sequence
of a•. The right commutative square of this cube is given by ωan, an, fan and ωan−1. To
get the lower commutative square, we decompose CAn

→ Fan−1 into a weak equivalence
followed by a fibration using our fixed functorial factorization (see Remark 3.8). Now we
take the pullback

Fan+1 := Fan ×Fa
n−1

CFa
n
,

use the fact that fibrations are closed under pullbacks, and complete the right commuta-
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tive cube by the universal arrow An+1 99K Fan+1. Since the back square is in particular a
model square, this universal arrow is a weak equivalence. The left commutative cube is
constructed similarly. As a result of Corollary 2.6 the square Fa (the front square of the
right commutative cube) is a homotopy fiber sequence and extends fa• or (Fa•, fa•) which is
made up of fibrations between fibrant objects to order n+ 1. Analogously the square Fb

extends (Fb•, f
b
•). The commutative cube A ⇝ Fa (resp., B ⇝ Fb) is an objectwise weak

equivalence of homotopy fiber sequences that extends the ℓ(M)-morphism ωa• (resp., ωb•)
to order n+ 1.

We now describe the six cubes of diagram (3.12) that contain sloping arrows to the
left. In fact, the top and bottom of these cubes are fully described as soon as the two
back and two front cubes are. The commutative back cube A ⇝ B is a cube of the
sequence Ψ• : a• → b•. The front cube AFa ⇝ BFb is a counterpart in order n to the
commutative cube (3.11) and it is commutative in view of the induction assumption that
the commutation condition of diagram (3.10) is satisfied up to half the condition for the
nth cubes. Since the trivial cofibration–fibration factorization system used is functorial,
the commutative rectangle

CAn
CFa

n
Fan−1

CBn
CFb

n
Fbn−1

∼

∼
(3.13)

induces a central vertical arrow that makes the left and right squares (which are two of the
six bottom squares of (3.12)) commutative. The universal arrow Fan+1 99K F

b
n+1 renders

the upper and left square of the front cube Fa ⇝ Fb commutative. Finally, in the back
cube AFaC ⇝ BFbC, the top square is commutative because of the uniqueness of the
universal arrow. This completes the description of the fully commutative diagram (3.12).
Notice that the commutative cube Fa ⇝ Fb extends Θ• to order n + 1 and remember
that we still have to show that the complete commutation condition for the nth cubes
is now fulfilled, that is, the composite cubes A ⇝ B ⇝ Fb and A ⇝ Fa ⇝ Fb in (3.12)
coincide. Since the diagram (3.12) is fully commutative, this requirement is met. As the
full commutation condition for the nth cubes includes the first half of the condition for
the (n+1)th cubes, induction works. Eventually, if Ψ• is an objectwise weak equivalence,
it follows from the 2-out-of-3 axiom that Θ• is an objectwise weak equivalence. This
completes the proof.

From the previous proof it follows that:

Corollary 3.10. There is a natural weak equivalence

ω : idℓ(M)
∼
=⇒ I.

The next lemma will allow us to prove Theorem 3.5.

Lemma 3.11. There are natural weak equivalences

ϖ : idM→
∼
=⇒ R1 ◦ E and υ : E ◦R1

∼
=⇒ I.
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Proof. If we go back to the original notation in the diagram (3.11), we have the commu-
tative cube

A1 A0

RA1 F a1
1 F a1

0

B1 B0

RB1 F b11 F b10

a1

ψ1

∼
ψ0

∼
α(Ra1)

∼

Rψ1

f
a1
1

φ1

φ0
b1

∼ ∼

α(Rb1)

∼
f
b1
1

(3.14)

for every M→-morphism ψ = (ψ0, ψ1) : a1 → b1. The M→-morphism ϖa1 : a1 → fa11 is the
upper commutative square which is a weak equivalence as it should be. The naturality
of ϖ precisely means that the total left square and the right square commute, which is
the case.

Next we construct υ by proceeding similarly to the proof of Lemma 3.9. For every
a• ∈ ℓ(M) we must define an ℓ(M)-morphism υa• : fa1•

∼−→ fa•, i.e., we have to define a
sequence of commutative cubes which are objectwise weak equivalences. Moreover, for
every ℓ(M)-morphism Ψ• : a• → b•, we must show that the diagram

fa1• fa•

f b1• fb•

υa
•

∼

Φ• Θ•

∼
υb
•

(3.15)

commutes (we have used the notations introduced above). Since we set fa1 = fa11 (see
proof of Lemma 3.9), we choose the identity maps as first two components υa = (υa0 , υ

a
1 ) :

fa11 → fa1 of υa• . Since we also set (θ0, θ1) = (ϕ0, ϕ1), the naturality condition is so far
fulfilled. Assume now that the sequences υa• , υb• of commutative cubes which are objectwise
weak equivalences have been constructed with their implicit arrows up to order n ≥ 1

and that the commutation condition of (3.15) is fulfilled up to half the condition for nth
cubes.

To extend the sequences and the commutativity to order n+1, we start by describing
the total parallelepiped in the diagram

0 CFa1
n

F a1
n−1

0 C
F

b1
n

F b1n−1

CAn
CFa

n
Fan−1

CBn
CFb

n
Fbn−1

∼

∼

∼
S2

S1

∼∼

∼
S3

∼
∼

S4∼

(3.16)

The arrow F a1n−1 → F b1n−1 is ϕn−1, the arrow F a1n−1 → Fan−1 is υan−1, the arrow CAn → Fan−1

is the composite of CAn
→ An−1 in a• and ωan−1 : An−1 → Fan−1 (see Corollary 3.10), the
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arrow CAn → CBn is the implicit arrow in the nth cube of Ψ•, and Fan−1 → Fbn−1 is θn−1.
All four rectangles of the parallelepiped commute (for the commutativity of the lower
rectangle, see the commutative diagram (3.12)). By definition, we get the vertex CFa1

n

(resp., CFa
n
), if we apply the fixed functorial trivial cofibration–fibration factorization

system (see Remark 3.8) to 0→ F a1n−1 (resp., CAn → Fan−1). Since the system is functorial,
we also get the five central arrows, S1, S2, S3, S4 and the diagonal arrow. A priori we even
get two diagonal arrows, one, say D1, induced by the commutative square, which is made
up of the top and front rectangle, and one, D2, from the commutative square, which is
made up of the back and bottom rectangle. From the functoriality of the factorization
system it follows that D1 = S3 ◦ S1 and D2 = S4 ◦ S2. However, these two commutative
squares coincide as the right square of (3.16) commutes (since half of the commutation
condition is satisfied for the nth cubes that correspond to (3.15)), so that D1 = D2, i.e.,
so that the central square of (3.16) commutes.

In the right cube of the following diagram (3.17)

F a1
n+1 F a1

n

Fan+1 Fan

F b1n+1 F b1n

Fbn+1 Fbn

CFa1
n

F a1
n−1

CFa
n

Fan−1

C
F

b1
n

F b1n−1

CFb
n

Fbn−1

∼

∼

∼ ∼

∼ ∼

(3.17)

the right commutative square is given by υan, fa1n , fan and υan−1. The lower commutative
square is the right back square of diagram (3.16). The vertices F a1n+1 and Fan+1 have been
defined as pullbacks and the resulting commutative squares identified as homotopy fiber
sequences. Since the back pullback square is a homotopy fiber sequence, the universal
dashed arrow between these vertices is a weak equivalence. Hence the right commutative
cube in (3.17) extends the sequence υa• to order n+1. The left commutative cube is built
similarly and it extends υb• to order n+ 1. The objectwise weak equivalence condition is
satisfied.

We now describe the six cubes in diagram (3.17) that contain sloping arrows to the
left. In fact, the top and bottom of these cubes are fully described as soon as the two
back and two front cubes are. The back cube F a1 ⇝ F b1 (resp., front cube Fa ⇝ Fb)
is part of Φ• (resp., of Θ•) and therefore it commutes. The front cube F a1Fa ⇝ F b1Fb

is commutative because of the induction assumption that the commutation condition of
diagram (3.15) is satisfied up to half the condition for the nth cubes. Finally, the vertical
faces of the back cube F a1FaC ⇝ F b1FbC are commutative since they are faces of other
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commutative cubes. Its lower face is the central square of (3.16), which commutes. Its
upper face commutes because of the uniqueness of the universal arrow (see also (3.12)).
We still have to show that the complete commutation condition for the nth cubes is now
fulfilled, that is, the composite cubes F a1 ⇝ Fa ⇝ Fb and F a1 ⇝ F b1 ⇝ Fb in (3.17)
coincide. Since the diagram (3.17) is fully commutative, this requirement is met.

We remind the reader of the following lemma [15], as it simplifies the proof of Theo-
rem 3.5.

Lemma 3.12. Let C be a category which is equipped with a distinguished family W of
morphisms called weak equivalences, let E be any category and let F ,G ∈ Fun(C, E) be
functors which send weak equivalences to isomorphisms. A family θX : F(X)→ G(X) of
E-maps indexed by the objects X of C is a natural transformation Ho(θ) : Ho(F)⇒ Ho(G)
if and only if it is a natural transformation θ : F ⇒ G.
Lemma 3.13. Let C, D be categories with distinguished families WC,WD of morphisms and
let F,G ∈ Fun(C, D) be functors which preserve these weak equivalences. A natural weak
equivalence η : F

∼
=⇒ G induces a natural isomorphism

Ho(η) : Ho(F )
∼=
=⇒ Ho(G) .

Proof of Lemma 3.13. If we whisker the natural transformation η with the localization
functor γD we get the natural transformation

γD ⋆ η : γD ◦ F ⇒ γD ◦G,
all whose components (γD ⋆ η)X = γD(ηX) are isomorphisms. If we apply Lemma 3.12 to
F = γD ◦ F , G = γD ◦G and the family (γD ⋆ η)X , and if we write as usual Ho(−) instead
of Ho(γD ◦ −), we get the announced result.

Proof of Theorem 3.5. If we apply Lemma 3.13 to the natural weak equivalence

ω : idℓ(M)
∼
=⇒ I

of Corollary 3.10, we get a natural isomorphism

Ho(ω) : idHo(ℓ(M))
∼=
=⇒ Ho(I), (3.18)

since Ho(idℓ(M)) = idHo(ℓ(M)).
Analogously, the natural weak equivalences

ϖ : idM→
∼
=⇒ R1 ◦ E and υ : E ◦R1

∼
=⇒ I

of Lemma 3.11 induce natural isomorphisms

Ho(ϖ) : idHo(M→)

∼=
=⇒ Ho(R1) ◦Ho(E) and Ho(υ) : Ho(E) ◦Ho(R1)

∼=
=⇒ Ho(I). (3.19)

Indeed, as Ho(R1 ◦ E) is the unique endofunctor of Ho(M→) such that

Ho(R1 ◦ E) ◦ γM→ = γM→ ◦R1 ◦ E,
and as Ho(R1) (resp., Ho(E)) is the unique functor from Ho(ℓ(M)) to Ho(M→) (resp., from
Ho(M→) to Ho(ℓ(M))) such that

Ho(R1) ◦ γℓ(M) = γM→ ◦R1 (resp., such thatHo(E) ◦ γM→ = γℓ(M) ◦ E),
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we have
Ho(R1 ◦ E) = Ho(R1) ◦Ho(E)

and similarly for Ho(E ◦R1).
If we combine (3.18) and (3.19) we see that

Ho(R1) : Ho(ℓ(M))⇄ Ho(M→) : Ho(E)

is an equivalence of categories.

As Theorem 3.5 has now been proven, the map

Ho(R1)a•b• : HomHo(ℓ(M))(a•, b•)→ HomHo(M→)(a1, b1) (a•, b• ∈ ℓ(M))
in (3.7) is a bijection. Its inverse can be described explicitly using the functor E of
Lemma 3.7 and the natural weak equivalences ω and υ of Corollary 3.10 and Lemma 3.11:

Proposition 3.14. Let M be a pointed model category, let a•, b• ∈ ℓ(M), let a1 := R1(a•),
b1 := R1(b•) and let

ξ ∈ HomHo(M→)(a1, b1).

The unique preimage
Ξ• ∈ HomHo(ℓ(M))(a•, b•)

of ξ under the bijection Ho(R1)a•b• is the composite of Ho(ℓ(M))-morphisms

a• fa• fa1• f b1• fb• b•,
γ(ωa
• )

∼=
γ(υa
• )−1

∼=
Ho(E)(ξ) γ(υb

•)
∼=

γ(ωb
•)
−1

∼= (3.20)

where γ = γℓ(M). If ξ is the class of weak equivalences and formal reversals of weak
equivalences, then Ho(E)(ξ) is an isomorphism and so is Ξ•. In this case, we refer to Ξ•
as the canonical isomorphism in the homotopy category that extends ξ.

Proof. The unique preimage Ξ• is a class

Ξ• = [a•
Ψ•−−→ c•

Ω−1
• // d•

Ψ′
•−−→ · · · Ω′−1

• // b•]

of morphisms → of ℓ(M) and formal reversals ⇝ of weak equivalences ∼←− of ℓ(M). If we
construct for each one of these ℓ(M)-morphisms Ψ•,Ω•,Ψ′

•, . . . ,Ω
′
• the commutative ℓ(M)-

squares (3.10) and (3.15) which encode the naturality of ω and υ, we get the following
amalgamation of commutative ℓ(M)-squares:

a• c• d• . . . b•

fa• fc• fd• . . . fb•

fa1• f c1• fd1• . . . f b1•

∼ωa
•

Ψ•

∼ωc
•

∼
Ω• Ψ′•

∼ωd
•

∼
Ω′•

∼ωb
•

I(Ψ•)
∼

I(Ω•) I(Ψ′•)
∼

I(Ω′•)

∼

I(Ψ•)

υa
• ∼υc

• ∼υd
•

∼
I(Ω•) I(Ψ′•)

∼υb
•

∼
I(Ω′•)

(3.21)

where I := E◦R1. If we apply γ = γℓ(M) to (3.21), we get a commutative Ho(ℓ(M))-diagram
in which the images of the weak equivalences are isomorphisms. It is straightforwardly
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seen that the composite

γ(Ω′
•)

−1 ◦ · · · ◦ γ(Ψ′
•) ◦ γ(Ω•)

−1 ◦ γ(Ψ•) (3.22)

of the first row is equal to the composite

γ(ωb•)
−1 ◦ γ(υb•) ◦ γ(I(Ω′

•))
−1 ◦ · · · ◦ γ(I(Ψ′

•)) ◦ γ(I(Ω•))
−1 ◦ γ(I(Ψ•)) ◦ γ(υa•)−1 ◦ γ(ωa•)

(3.23)
of the first column, the last row and the last column. Since for any morphism Φ• of ℓ(M) we
have γ(Φ•) = [Φ•], since for any weak equivalence W• of ℓ(M) we have [W•]−1 = [W−1

• ],
and since a composite of classes is the class of the corresponding concatenation, the
composite (3.22) can be written

[Ω′
•]

−1 ◦ · · · ◦ [Ψ′
•] ◦ [Ω•]

−1 ◦ [Ψ•]

= [Ω′−1
• ] ◦ · · · ◦ [Ψ′

•] ◦ [Ω−1
• ] ◦ [Ψ•] = [Ψ•Ω

−1
• Ψ′

• . . .Ω
′−1
• ] = Ξ• (3.24)

On the other hand, since for any morphism Φ• and any weak equivalence W• we have

Ho(I)[Φ•] = γ(I(Φ•)) and Ho(I)[W−1
• ] = γ(I(W•))

−1,

the partial composite in (3.23) of the factors that contain I = E ◦R1 is equal to

Ho(I)[Ω′−1
• ] ◦ · · · ◦Ho(I)[Ψ′

•] ◦Ho(I)[Ω−1
• ] ◦Ho(I)[Ψ•]

= Ho(E)(Ho(R1)(Ξ•)) = Ho(E)(ξ). (3.25)

(3.20) now follows from (3.22)–(3.25).
As for the second statement in Proposition 3.14, it suffices to observe that if

ξ = [wω−1w′ . . . ω′−1],

then

Ho(E)(ξ) = Ho(E)[ω′−1] ◦ · · · ◦Ho(E)[w′] ◦Ho(E)[ω−1] ◦Ho(E)[w]

= γ(E(ω′))−1 ◦ · · · ◦ γ(E(w′)) ◦ γ(E(ω))−1 ◦ γ(E(w)),

which is a composite of isomorphisms, as E preserves weak equivalences.

Theorem 3.5 has two more corollaries that we will apply later.

Corollary 3.15. Let M be a pointed model category. The localization

Ho(R1) : Ho(h(M))→ Ho(M→)

of the restriction functor of homotopy fiber sequences yields an equivalence of categories
between the homotopy category of the category of homotopy fiber sequences of M and the
homotopy category of the category of morphisms of M.

Proof. This is a consequence of the proofs of Lemmas 3.7, 3.9 and 3.11 in which we stop
the iterative process after the first step.

Corollary 3.16. Let M and N be pointed model categories and let F ∈ Fun(M, N) be
a functor which preserves weak equivalences between fibrant objects and sends the zero
object 0M of M to an acyclic object F (0M) of N. In addition, let

a : A2
a2−→ A1

a1−→ A0 and b : B2
b2−→ B1

b1−→ B0
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be objectwise fibrant homotopy fiber sequences of h(M) and assume that there exists a weak
equivalence

w = (w0, w1) : a1 → b1

in M→. Then F preserves the homotopy fiber sequence a ∈ h(M), i.e., we have F (a) ∈ h(N)

if and only if it preserves the homotopy fiber sequence b ∈ h(M), i.e., if and only if we
have F (b) ∈ h(N). If F preserves all weak equivalences, the result is true without a and b
being objectwise fibrant.

Proof. In view of Corollary 3.15, Proposition 3.14 is also valid if we replace ℓ(M) by h(M).
The unique preimage Ξ ∈ HomHo(h(M))(a, b) of

ξ := γM→(w) = [w] ∈ HomHo(M→)(a1, b1)

under the bijection Ho(R1)ab is

Ξ : a fa fa1 f b1 fb b.
γ(ωa)

∼=
γ(υa)−1

∼=
γ(E(w))

∼=
γ(υb)

∼=
γ(ωb)−1

∼=

This means that Ξ is the class of

a fa fa1 f b1 fb b,ωa

∼
(υa)−1 E(w)

∼
υb

∼
(ωb)−1

so that we have a zigzag

a fa fa1 f b1 fb bωa

∼
υa

∼
E(w)

∼
υb

∼
ωb

∼ (3.26)

of weak equivalences between objectwise fibrant homotopy fiber sequences. It now suffices
to show that if there is a weak equivalence W : d

∼−→ e between objectwise fibrant
homotopy fiber sequences d, e ∈ h(M), then F (d) ∈ h(N) if and only if F (e) ∈ h(N). Weak
equivalence of homotopy fiber sequences means of course a morphism of homotopy fiber
sequences which is objectwise a weak equivalence. Hence W is a commutative M-cube
which is objectwise a weak equivalence of M (see (3.27) below and omit F ).

(⋆1) If we apply F to W we get a commutative N-cube which is objectwise a weak
equivalence of N (see (3.27)).

From Proposition 2.9 it follows that F (d) is a model square if and only if so is F (e). Since
CD and F (0M) are acyclic, i.e., since 0M

∼−→ CD and 0N
∼−→ F (0M), we find that

(⋆2) 0N
∼−→ F (0M)

∼−→ F (CD),

so that F (CD) is acyclic. The same is true for F (CE). Hence F (d) is a homotopy fiber
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sequence if and only if F (e) is.

F (D2) F (D1)

F (E2) F (E1)

F (CD) F (D0)

F (CE) F (E0)

∼ ∼

∼ ∼

(3.27)

Notice that we have used the assumption that the homotopy fiber sequences a and b

are objectwise fibrant only in (⋆1) and (⋆2). Hence this assumption is not necessary if
F preserves all weak equivalences.

4. Puppe’s long homotopy fiber sequence

The results of this chapter are based on a suitable notion of loop space functor.
It is well known that the path space fibration of a pointed topological space (X,x0)

is the fibration
πX : Path0X → X

whose total space
Path0X := {α ∈ C0([0, 1], X) : α(0) = x0}

is the space of paths of X with starting point x0 and whose projection πX maps every
path α to its end point α(1). The fiber Path0X ×X 0 of πX over x0 is the loop space
of X at x0.

A similar concept exists in every pointed model category M. Indeed, any functorial
factorization into a weak equivalence followed by a fibration

0 0

Path0X Path0 Y

X Y

∼ ∼

leads to an endofunctor Path0 : M → M and a natural transformation Path0 ⇒ idM.
However, we prefer to work with a weaker notion of based path space functor Path0:

Definition 4.1. A based path space functor in a pointed model category M is an endo-
functor

Path0 : M→ M

together with a natural transformation

π : Path0 ⇒ idM
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whose components πX : Path0X ↠ X at all fibrant X ∈ M are fibrations with acyclic
domain Path0X

∼←− 0.

Remark 4.2. An important special case occurs when the pointed model category under
consideration is right proper and the condition that the components of the natural trans-
formation π are fibrations with acyclic domain is fulfilled for each object X, whether
fibrant or not (just as when the based path space functor is induced by a functional
factorization). In the following we refer to this case as the strongly proper case.

Let I be the category 1→ 2← 0. The functor category Fun(I, M) is then the category
of cospans of M. To every based path space functor Path0 we can associate the functor

CPath0 : M→ Fun(I, M)

(if there is no possibility of confusion, we simply write C) that is defined on objects X ∈ M

by the cospan

CX : 0→ X ← Path0X

and on morphisms f : X → Y of M by the commutative diagram

CX 0 X Path0X

CY 0 Y Path0 Y

Cf :

Definition 4.3. In a pointed model category M, the loop space functor associated to a
based path space functor Path0 is the composite

ΩPath0
:= Lim ◦ CPath0

: M→ M

(or just Ω if no confusion is possible) of the cospan functor CPath0
: M → Fun(I, M) and

the limit functor Lim : Fun(I, M)→ M. In particular the loop space of X ∈ M is the object

ΩX = Path0X ×X 0 ∈ M.

Remark 4.4. From here on we work in a fixed pointed model category M, which is
equipped with a fixed based path space functor Path0, and consider the associated loop
space functor Ω.

Theorem 4.5. The loop space functor preserves all fibrant objects, the weak equivalences
between fibrant objects and the objectwise fibrant homotopy fiber sequences. In the strongly
proper case, the loop space of every object is fibrant and the loop space functor preserves
all weak equivalences and all homotopy fiber sequences.

Proof. We start with a few observations. In this proof we have 0
∼−→ Path0X ↠ X for

every object X ∈ M that we consider, since either this object is fibrant or we work in the
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strongly proper case. For every M-morphism f : X → Y , we get a commutative diagram

0

0

ΩY Path0 Y

ΩX Path0X

0 Y

0 X

∼
∼

∼

∼
f

(4.1)

It contains three types of commutative squares, which will appear several times below.
We refer to squares similar to the commutative right lower square as squares of type P ,
to squares similar to the commutative front square as squares of type L, and to squares
similar to the commutative upper square as squares of type U . In every type P square the
arrow between the path spaces is a weak equivalence. Further, it follows from Corollary 2.6
that every type L square is a model square. Finally, in every type U square that is
induced by a weak equivalence f , the universal arrow is a weak equivalence because of
Theorems 2.4 and 2.5.

From the last observation and the closedness of fibrations under pullbacks it follows
that the statements about weak equivalences and fibrant objects in Theorem 4.5 are true.

Let now A
f−→ A g−→ A be a homotopy fiber sequence. If we are not in the strongly

proper case, we assume that it is objectwise fibrant. If we factor g into a weak equivalence
followed by a fibration, we get the following commutative diagram:

A A

K := ker ḡ Ā

CA A

0 A

g ∼

ḡ

(4.2)

From Corollary 2.6 it follows that the front square is a homotopy fiber sequence. Since
Ω is an endofunctor that preserves weak equivalences between fibrant objects or, in the
strongly proper case, all weak equivalences, and since Ω(0) = Path0(0) is acyclic, we can
apply Corollary 3.16 to the images under Ω of the homotopy fiber sequences a : A →
A→ A and k : K → Ā → A; to show that Ω(a) is a homotopy fiber sequence, it suffices
to prove that Ω(k) (Ω applied to the front square of (4.2)) is a homotopy fiber sequence.

Because of Proposition 2.9, it is even enough to build a model square that is weakly
equivalent to the commutative square Ω(k). We get this model square by constructing the
following commutative diagram step by step. The diagram has an upper, a lower, a left, a
right, a front, a back and two middle parts, the parallel (to the front) middle part and the
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orthogonal one. In the following description, the first adjective refers always to the part
and the second to the square we are looking at in that part. For instance, the right front
square is the front square of the right part, i.e., the square Path0 ĀĀPath0 AA, whereas
the front right square is the right square of the front part, i.e., the square KĀ0A.

ΩK Path0K

ΩĀ K Path0 Ā

ΩK Ω(0) = Path0 0

0 K Ā

ΩĀ ΩA Path0 A

0 0 A

(4.3)

We start from the front right square (which is the front homotopy fiber sequence of (4.2)).
The right front square is a type P square. Let now K be the kernel of the morphism
Path0 Ā↠ Ā↠ A. Corollary 2.6 implies that the resulting square (the ‘diagonal’ square)
is a homotopy fiber sequence. The universal arrow K 99K K makes the upper right square
and the middle upper triangle commutative. The pasting law for model squares now
implies that the upper right square is a model square. The lower right square is a type L
square. The universal arrow K 99K ΩA renders the middle lower triangle, the middle
front square and the middle right square commutative, so that the right cube is fully
commutative. Moreover, Theorems 2.4 and 2.5 imply that this universal arrow is a weak
equivalence.

We now describe the front left cube. Its front, left and lower squares obviously com-
mute (and so does its right square). The total upper front square is a type L square
and therefore a model square. Since K is a kernel, the universal arrow ΩĀ 99K K makes
the parallel bent triangle commutative. As K is a kernel, the upper front left square
commutes and because of the pasting law it is a model square. The parallel middle part
of (4.3) is a type U square. As ΩA is a pullback, the middle left square commutes.

It remains to explain the back cube and the back 3D wedge. We start looking at
the union of this cube and wedge. The lower (left) square is the commutative square
Ω(k) and the lower triangle can be viewed as a type U square. The left square obviously
commutes and the right square is the image under Path0 of a commutative square and
is therefore itself commutative. The back square can be interpreted as a type U square
and the total upper square is also a type U square. To understand the middle square (the
back square of the orthogonal middle part) and the resulting subdivision of the union,
we have to look again at the overall diagram (4.3). As K is a kernel, there is a universal
arrow Path0K 99K K that makes the upper triangle commutative. The total upper left
square is a type L and a model square and since K is a kernel, the upper back square
commutes and is, in view of the pasting law, a model square.
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It suffices now to show that this model square is weakly equivalent to Ω(k). We know
already that Path0K → Path0 0 and K 99K ΩA are weak equivalences and that the lower
back square commutes. Hence all we have to do is to prove that the middle back square
is commutative. However, this is the case as ΩA is a pullback.

Let us recall that if f : X → Y is a base point preserving continuous map between
pointed topological spaces (X,x0) and (Y, y0), its homotopy fiber or homotopy kernel

Kf := Path0 Y ×Y X = {(α, x) ∈ Path0 Y ×X : α(1) = f(x)}
= {(α, x) ∈ C0([0, 1], Y )×X : α(0) = y0, α(1) = f(x)}

fits into the ‘homotopy fiber sequence’ Kf → X → Y . The latter can be extended to a
long sequence. More precisely, the loop space

ΩY := {α ∈ C0([0, 1], Y ) : α(0) = α(1) = y0 = f(x0)}
injects into the homotopy fiber Kf thus providing a connecting morphism δ : ΩY → Kf .
The extending long sequence mentioned is then the sequence

· · · → Ω2Y → Ω(Kf )→ ΩX → ΩY → Kf → X → Y

which is referred to as Puppe’s sequence.
We will generalize Puppe’s sequence to our context. We start with the following

definition (see also Remark 4.4):

Definition 4.6. Let f : X → Y be an M-morphism between fibrant objects. We refer to
the pullback

Kf := Path0 Y ×Y X
as the homotopy kernel of f , to the universal arrow

δf : ΩY 99K Kf

as the connecting morphism associated to f ,

ΩY Path0 Y

Kf Path0 Y

0 Y

0

X Y

X Y

δf
pf

πf

∼

f

f

(4.4)

and to the sequence

Pf : · · · −→ Ω2Y
Ω(δf )−−−→ Ω(Kf )

Ω(πf )−−−−→ ΩX
Ωf−−→ ΩY

δf−→ Kf
πf−−→ X

f−→ Y (4.5)

as Puppe’s sequence of f .
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Definition 4.6 makes also sense if X and Y are not fibrant. However, if they are,
the homotopy fiber or homotopy kernel Kf of f is a fibrant object and it is in view of
Theorem 2.3 a canonical representative of the homotopy pullback 0×hY X. This justifies
the assumption that X and Y are fibrant. In the strongly proper case, the homotopy
fiber Kf of f is isomorphic in the homotopy category to the homotopy fiber HFib(f)

of f of [21]. Therefore we use the terminology of Definition 4.6 also in the strongly proper
case.

Proposition 4.7. Let M→
f be the full subcategory of M→ consisting of all the morphisms

between fibrant objects of M and let M→
† be the category M→

f , except in the strongly proper
case where it is the full category M→. There is an extension functor

P : M→
† ∋ f 7→ Pf ∈ ℓ(M),

whose values Pf on objects f ∈ M→
f are objectwise fibrant long homotopy fiber sequences

and to which we refer as Puppe’s extension functor.

Proof. Let f ∈ M→
† be an M-morphism with source X and target Y .

We will describe the following commutative diagram using the terminology introduced
at the beginning of the proof of Theorem 4.5.

ΩX Path0X Path0X 0

ΩY Kf Path0 Y 0

0 X Y

∼

∼

(4.6)

The three lower squares of (4.6) are just the commutative cube of (4.4) in Definition 4.6.
The lower right square is a model square and even a homotopy fiber sequence because of
Corollary 2.6 and the total lower square is a type L square and therefore also a model
square. From the pasting law for model squares it now follows that the lower left square
is a homotopy fiber sequence. The total left square is also a model square as it is of
the type L. The total upper square is of the type U and the total right square is of the
type P . The arrow Path0X 99K Kf is the universal morphism and makes the upper
right square and the vertical middle bent triangle commutative. The upper left square
commutes because of the uniqueness of the universal morphism from ΩX to Kf . Finally
the pasting law implies that the upper left square is a homotopy fiber sequence.

Since Ω preserves objectwise fibrant homotopy fiber sequences and even all homotopy
fiber sequences if we work in a strongly proper environment, the images

Ω(Kf )→ ΩX → ΩY, Ω2Y → Ω(Kf )→ ΩX, Ω2X → Ω2Y → Ω(Kf ), . . .

are all homotopy fiber sequences that are objectwise fibrant if f ∈ M→
f .

Let now f, g ∈ M→
† be M-morphisms with source X,U and target Y, V , respectively, and

let ψ = (ψ0, ψ1) : f → g be an M→-morphism between them. The next diagram, in which
dashed arrows represent universal morphisms as usual, defines Pψ : Pf → Pg and shows
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that Pψ is an ℓ(M)-morphism, i.e., a sequence of commutative cubes.

ΩX Path0X

ΩY Kf Path0 Y

ΩU Path0 U

0 X Y

ΩV Kg Path0 V

0 U V

f

ψ0

ψ1

g

(4.7)

To convince ourselves of this claim, we can first note that all arrows from the back part
of diagram (4.7) to the front part are easy to understand. The commutation of the three
cubes of (4.7) is obvious because of the uniqueness of universal arrows. As Ω is a functor,
we get the desired sequence of commutative cubes. Moreover, the assignment P : ψ 7→ Pψ
clearly respects compositions and identities, which completes the proof.

Proposition 4.8. The extension Pf ∈ ℓ(M) of a morphism f ∈ M→
† to a long homotopy

fiber sequence is unique up to a canonical isomorphism of Ho(ℓ(M)), i.e., a zigzag of weak
equivalences of ℓ(M).

Proof. The statement is a consequence of Proposition 3.14. Indeed, if b• ∈ ℓ(M) is an
extension of f other than a• := Pf ∈ ℓ(M), there is a canonical isomorphism in the
homotopy category of ℓ(M) between a• and b• that extends the class ξ := [id : f → f ].

In algebraic topology the long exact sequence of homotopy groups of a fibration is
a consequence of Puppe’s sequence of the fibration: to get the long exact sequence it
suffices to apply to Puppe’s sequence the covariant Hom functor in the homotopy category
associated to the 0-sphere. A similar result exists in our context of a pointed model
category M equipped with a based path space functor Path0 and the corresponding loop
space functor Ω. More precisely, if

[A,−] := HomHo(M)(A,−)
is the covariant Hom functor in the homotopy category associated to an object A ∈ M

and if γ is the localization functor of the category M, we have the following

Proposition 4.9. Let f ∈ M→
† and let A ∈ M. The sequence

· · · −→ [A,Ω2Y ]
[A,γ(Ω(δf ))]−−−−−−−−→ [A,Ω(Kf )]

[A,γ(Ω(πf ))]−−−−−−−−→ [A,ΩX]
[A,γ(Ωf)]−−−−−−→

[A,ΩY ]
[A,γ(δf )]−−−−−−→ [A,Kf ]

[A,γ(πf )]−−−−−−→ [A,X]
[A,γf ]−−−−→ [A, Y ] (4.8)

is a long exact sequence of HomHo(M)-sets.

We will show later that when we apply this result to chain complexes of modules, we
get the usual long exact sequence of homology modules (since our theory is an abstraction
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of aspects of pointed topological spaces, it is not surprising that in this case we obtain the
usual long exact sequence of homotopy groups). Further we will explain what an exact
sequence of HomHo(M)-sets is after giving the next proposition of which Proposition 4.9 is
obviously a corollary.

Theorem 4.10. Let X f−→ X g−→ X be a homotopy fiber sequence in M and let A be an
object of M. Then the sequence

[A,X]
[A,γf ]−−−−→ [A,X ] [A,γg]−−−−→ [A,X] (4.9)

is an exact sequence of HomHo(M)-sets.

Now as to the meaning of exactness, let f : X → X be an M-morphism and let A be
an object of M. Then γf : X → X is the Ho(M)-morphism

γf = [F̃ C̃f ]≃ ∈ [X,X ],
where F̃ is a local fibrant C-replacement, C̃ is a local cofibrant F-replacement and [−]≃
denotes the homotopy class. Further, [A, γf ] : [A,X] → [A,X ] is the set-theoretical
morphism

[A, γf ] = [F̃ C̃f ]≃ ◦ −.
We define im[A, γf ] as the set of images and ker[A, γf ] as the set of elements that are sent
to 0[A,X ], where 0[A,X ] is the image under γ of the zero morphism 0AX : A

tA−→ 0
iX−→ X :

0[A,X ] = γ(0AX ) = γ(iX ) ◦ γ(tA) = [0
F̃ C̃iX−−−−→ F̃ C̃X ]≃ ◦ [F̃ C̃A F̃ C̃tA−−−−→ 0]≃

= [F̃ C̃A→ 0→ F̃ C̃X ]≃.
The fact that the sequence (4.9) is exact now means that

im[A, γf ] = ker[A, γg].

Proof. Let F̃X ∼−→ F̄X ↠ F̃X be a factorization of a lifting F̃ g : F̃X → F̃X into a weak
equivalence followed by a fibration and let K → F̄X ↠ F̃X be the kernel of this fibration.
Since K = F̄X ×F̃X 0, we have two homotopy fiber sequences

x : X X X

k : K F̄X F̃X

f g

∼ ∼
κ h

(4.10)

whose restrictions x1 and k1 are related by a weak equivalence w = (w0, w1) in M→ and
an isomorphism ξ := γM→(w) in Ho(M→). For later use, we note that all of the nodes in
the lower sequence are fibrant.

In view of Proposition 3.14, the homotopy fiber sequences x and k are related by a
zigzag (3.26) of weak equivalences of homotopy fiber sequences, i.e., by a zigzag of com-
mutative cubes that are objectwise weak equivalences (hence the corresponding vertices
of x and k are all related by a zigzag of weak equivalences of M). If we apply γ and [A,−]
to these cubes, we get in particular the following commutative squares in the category
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Set of sets

[A,X] [A,X ] [A,X]

[A,K] [A, F̄X ] [A, F̃X]

[A, γf ] [A, γg]

b1 b2 b3

[A, γκ] [A, γh]

(4.11)

whose vertical arrows are bijections. More precisely, as said above, the corresponding
vertices X and K, for example, are related by a zigzag of weak equivalences ω−→ and weak
equivalences ϖ←−. When we apply γ we get a zigzag of isomorphisms

γ(
ω←−) = [F̃ C̃

ω←−]≃ and γ(
ϖ←−) = [F̃ C̃

ϖ←−]≃,
so that the composite i1 of

[F̃ C̃
ω−→]≃ and [F̃ C̃

ϖ←−]−1
≃

is an isomorphism in Ho(M) from X to K. The bijection b1 is now b1 = [A, i1]. As a map
between fibrant-cofibrant objects is a weak equivalence if and only if it is a homotopy
equivalence, the F̃ C̃ ϖ←− are invertible up to homotopy by weak equivalences W←− and

[F̃ C̃
ϖ←−]−1

≃ = [
W−→]≃.

Therefore i1 is a composite of homotopy classes of weak equivalences, so it is the homotopy
class of a weak equivalence:

i1 = [F̃ C̃X
∼−→ F̃ C̃K]≃.

It follows that

b10[A,X] = [F̃ C̃X
∼−→ F̃ C̃K]≃ ◦ [F̃ C̃A→ 0→ F̃ C̃X]≃ = [F̃ C̃A→ 0→ F̃ C̃K]≃ = 0[A,K],

i.e., that the bijections b1, b2 and b3 preserve the zero elements.
Moreover, for every object A ∈ M, there is a cofibrant object A ∈ Mc and a weak

equivalence ω : A ∼−→ A of M. If we apply γ we get an isomorphism i : A ∼=−→ A of Ho(M)
given by

i = γω = [F̃ C̃ω]≃ = [F̃ C̃A ∼−→ F̃ C̃A]≃,

and for every object B ∈ M we get a bijection

bB := [i, B] = − ◦ i : [A,B]
∼=−→ [A, B]

that sends 0[A,B] to

bB0[A,B] = [F̃ C̃A→ 0→ F̃ C̃B]≃ ◦ [F̃ C̃A ∼−→ F̃ C̃A]≃ = 0[A,B].

Hence we have the following commutative Set-squares

[A,K] [A, F̄X ] [A, F̃X]

[A,K] [A, F̄X ] [A, F̃X]

[A, γκ] [A, γh]

bK bF̄X bF̃X

[A, γκ] [A, γh]
(4.12)
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As for the commutativity of these squares, note that if for instance [ψ]≃ ∈ [A,K], then

[A, γκ](bK [ψ]≃) = γκ ◦ ([ψ]≃ ◦ i) = (γκ ◦ [ψ]≃) ◦ i = bF̄X ([A, γκ][ψ]≃).

If we combine (4.11) and (4.12), we get commutative squares

[A,X] [A,X ] [A,X]

[A,K] [A, F̄X ] [A, F̃X]

[A, γf ] [A, γg]

[1 [2 [3

[A, γκ] [A, γh]
(4.13)

whose vertical arrows are bijections which respect the zero elements of their source and
target HomHo(M)-sets. It is straightforward to check that the exactness of the upper se-
quence of (4.13) is equivalent to the exactness of the lower sequence. For instance, if

im[A, γκ] ⊂ ker[A, γh]
and if [ϕ]≃ ∈ [A,X], we have

[A, γg]([A, γf ][ϕ]≃) = ♭−1
3

(
[A, γh]

(
[A, γκ](♭1[ϕ]≃)

))
= ♭−1

3 0[A,F̃X] = 0[A,X].

Hence, it suffices to show that the lower sequence is exact.
Since A ∈ Mc and K, F̄X , F̃X ∈ Mf , the description of the HomHo(M)-sets in the lower

sequence of (4.13) can be simplified. Indeed, the map

γ : HomM(A,K) ∋ f 7→ γf ∈ [A,K]

is surjective and induces a 1:1 correspondence

γ̃ : HomM(A,K)/≃ ∋ [f]≃ 7→ γf ∈ [A,K], (4.14)

so that
γf = [f]≃ (4.15)

if we identify the homotopy classes with the morphisms in the homotopy category [12,
Proposition 5.11].

Hence every element of im[A, γκ] reads [A, γκ](γf), and since

[A, γh]
(
[A, γκ](γf)

)
= γ(h ◦ κ ◦ f) = γ(0K,F̃X ◦ f) = γ(0A,F̃X) = 0[A,F̃X],

we have
im[A, γκ] ⊂ ker[A, γh].

Conversely, if γg = [g]≃ ∈ [A, F̄X ] is an element of ker[A, γh], we have

[A, γh](γg) = γ(h ◦ g) = [h ◦ g]≃ = 0[A,F̃X] = γ(0A,F̃X) = [0A,F̃X]≃,

so that h ◦ g and 0 := 0A,F̃X are left homotopic, i.e., (h ◦ g) ⨿ 0 : A ⨿ A → F̃X factors
through a cylinder object CylA of A. The cylinder object is a factorization

A
ϕ1,ϕ2−−−−−−⇒ A⨿A

i
↣ CylA

w∼−→ A
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of the fold map idA⨿ idA : A ⨿ A → A into a cofibration i and a weak equivalence w,
which means that

w ◦ i1 := w ◦ i ◦ ϕ1 = idA and w ◦ i2 := w ◦ i ◦ ϕ2 = idA .

As A is cofibrant and cofibrations are closed under pushouts, the morphisms ϕ1 and ϕ2
are cofibrations and so are the morphisms i1 and i2, which are obviously also weak
equivalences. The factorization of (h ◦ g)⨿ 0 mentioned above now means that there is a
morphism H : CylA → F̃X such that H ◦ i1 = h ◦ g and H ◦ i2 = 0, so that we have the
commutative squares

A CylA A

F̄X F̃X 0

i1
∼

g `
H

∼
i2

h

(4.16)

The dashed arrow ℓ exists in view of the lifting axiom. Since h ◦ ℓ ◦ i2 = 0, the morphism
ℓ ◦ i2 factors through the kernel (K,κ) of h, which means that there is a morphism
f : A → K such that ℓ ◦ i2 = κ ◦ f. Hence we have the commutative diagram

A CylA A

F̄X F̄X K

i1
∼

g `

∼
i2

f

κ

(4.17)

This means that ℓ is a homotopy between g and κ ◦ f:
γg = [g]≃ = [κ ◦ f]≃ = γκ ◦ γf = [A, γκ](γf),

i.e.,
ker[A, γh] ⊂ im[A, γκ].

We denote by h(Mf) the full subcategory of h(M) made up of the objectwise fibrant
homotopy fiber sequences of M. The category h(M†) is the category h(Mf) except in the
strongly proper case where it is the category h(M). Proposition 4.9 shows that we can
associate a long exact sequence to every g ∈ M→

† , i.e., to every k ∈ h(M†) of the type

k : Kg
πg−→ X g−→ X. It is also possible to associate a long exact sequence to an arbitrary

x ∈ h(M†):

Proposition 4.11. Let x : X
f−→ X g−→ X be a homotopy fiber sequence x ∈ h(M†) and let

A ∈ M. Then there is a connecting morphism ∆ ∈ [ΩX, X] such that

· · · −→ [A,Ω2X]
[A,RΩ(∆)]−−−−−−→ [A,ΩX]

[A,γ(Ωf)]−−−−−−→ [A,ΩX ] [A,γ(Ωg)]−−−−−−→ (4.18)

[A,ΩX]
[A,∆]−−−→ [A,X]

[A,γf ]−−−−→ [A,X ] [A,γg]−−−−→ [A,X] (4.19)

is a long exact sequence of HomHo(M)-sets.

Remark 4.12. If we do not work in a strongly proper environment and x ∈ h(M) is not
necessarily objectwise fibrant, we can apply a fibrant replacement functor R to x and
associate a long exact sequence to Rx ∈ h(Mf) (see Proposition 2.9).
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Proof of Proposition 4.11. Since x ∈ h(M) induces the above k ∈ h(M) and the restrictions
k1 = x1 = g ∈ M→ are related by the isomorphism

ξ := idHo(M→)g = Γ(idM→ g) = Γ(idM X , idM X) ∈ HomHo(M→)(k1, x1),

where Γ := γM→ , Proposition 3.14 implies that there is a canonical isomorphism Ξ ∈
HomHo(h(M))(k, x) that extends ξ, and (3.26) gives the h(M)-zigzag

k fk fg fg fx xωk

∼
υk

∼
E(id)

∼
υx

∼
ωx

∼

whose class is equal to Ξ. All arrows of this zigzag are commutative cubes in M that
are objectwise weak equivalences of M. In particular we have the following commutative
M-squares:

Kg X X

Fk2 Fk1 Fk0

F g2 F g1 F g0

...
...

...

X X X

πg

∼ωk
2

g

∼ωk
1

∼ωk
0

fk2 fk1

∼

fg
2

∼υk
2

∼

∼υk
1

fg
1

∼

∼υk
0

f

∼ ∼
g

∼

If we apply the functor γ = γM to them, we get commutative Ho(M)-squares in which the
weak equivalences have been transformed into isomorphisms of Ho(M). By inverting the
upward isomorphisms, we obtain the commutative Ho(M)-diagram

Kg X X

X X X

γ(πg)

∼=

γg

∼= ∼=
γf γg

(4.20)

in which the last two isomorphisms are equalities. Indeed, as

Ξ = 𭟋(ωx)−1 ◦𭟋(υx) ◦𭟋(υk)−1 ◦𭟋(ωk),

where 𭟋 = γh(M), we have

Γ(idM X , idM X) = ξ = Ho(R1)(Ξ)

= Ho(R1)(𭟋(ωx)−1) ◦Ho(R1)(𭟋(υx)) ◦Ho(R1)(𭟋(υk)−1) ◦Ho(R1)(𭟋(ωk))

= (Γ(R1ω
x))−1 ◦ Γ(R1υ

x) ◦ (Γ(R1υ
k))−1 ◦ Γ(R1ω

k). (4.21)

As composition and weak equivalences of M→ have been defined objectwise, applying Γ

means that we apply γ objectwise (a similar remark holds for h(M) and 𭟋). Hence, the last
row of (4.21) coincides with the last two columns of (4.20), which are therefore equalities
as announced.
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If we denote the left isomorphism in (4.20) by ϵ and the composite morphism

ΩX
γ(δg)−−−→ Kg

ϵ−→ X, (4.22)

by ∆, we can add a corresponding square in (4.20) on the left. If we apply the functor
[A,−] to this extended commutative Ho(M)-diagram, we get the commutative Set-diagram

[A,ΩX] [A,Kg] [A,X ] [A,X]

[A,ΩX] [A,X] [A,X ] [A,X]

[A,γ(δg)] [A,γ(πg)]

[A,ε] ∼=

[A,γg]

[A,∆] [A,γf ] [A,γg]

(4.23)

On the other hand, since Ω in the general case sends weak equivalences between fibrant
objects to weak equivalences (resp., in the strongly proper case preserves all weak equiv-
alences), the right derived functor RKΩ ∈ Fun(Ho(M), Ho(M)) exists and satisfies

RKΩ ◦ γ .
= γ ◦ Ω ◦ F̃ (resp.,RKΩ ◦ γ .

= γ ◦ Ω).
In particular, if h : Y → Z is an M-morphism between fibrant objects (resp., in the
strongly proper case any M-morphism), we find that

RΩ(γh) : RΩ(γY )→ RΩ(γZ) is given by γ(Ωh) : ΩY → ΩZ,

where we omitted the superscript K. So if we apply first RΩ to the above-mentioned
extended commutative Ho(M)-diagram and then [A,−], we get the commutative Set-
diagram

[A,Ω2X] [A,Ω(Kg)] [A,ΩX ] [A,ΩX]

[A,Ω2X] [A,ΩX] [A,ΩX ] [A,ΩX]

[A,γ(Ω(δg))] [A,γ(Ω(πg))]

[A,RΩ(ε)] ∼=

[A,γ(Ωg)]

[A,RΩ(∆)] [A,γ(Ωf)] [A,γ(Ωg)]

(4.24)

We can of course iterate this procedure. The upper rows (resp., the lower rows) of (4.23),
(4.24) and of the commutative diagrams obtained from the iteration are the long exact
sequence (resp., the sequence) of Proposition 4.9 (resp., Proposition 4.11). From the proof
of Theorem 4.10 we know that if the vertical bijections in (4.23), (4.24) and the diagrams
obtained by iteration respect the zero elements, then the sequence of Proposition 4.11 is
exact as well. We know from the same proof that the bijection [A, ϵ] respects the zero
elements, as ϵ is the composite of images γω of weak equivalences ω and inverses γϖ−1

of images of weak equivalences ϖ. Since RΩ(ϵ) is the composite of the γ(Ωω) and the
γ(Ωϖ)−1, so is the composite of images under γ of weak equivalences Ωω and inverses of
such images, the bijection [A,RΩ(ϵ)] respects also the zero elements. This completes the
proof.

We close this chapter with the following comparison of different loop space functors.

Proposition 4.13. Let M be a pointed model category, let Patha0 ,Path
b
0,Path

c
0, . . . be based

path space functors in M and denote by Ωa,Ωb,Ωc, . . . the associated loop space functors.
There exist canonical natural isomorphisms ιba : RΩa ∼

=⇒ RΩb which satisfy the cocycle
condition ιcb ◦ ιba = ιca.
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Proof. Let g : X → X be an M-morphism, choose a lifting F̃ g : F̃X → F̃X, consider
Puppe’s sequences Pa

F̃g
,Pb

F̃ g
∈ ℓ(M) and observe that their restrictions in M→ are related

by the isomorphism ξ := idHo(M→)(F̃ g). If we proceed as in the proof of Proposition 4.11
(but in the case of ℓ(M) instead of h(M)), we get the commutative Ho(M)-diagram

· · · Ωa(F̃X ) Ωa(F̃X) Ka
F̃g

F̃X F̃X

· · · Ωb(F̃X ) Ωb(F̃X) Kb
F̃ g

F̃X F̃X

γ(Ωa(F̃ g))

∼= ∼=

γ(δa
F̃g

) γ(πa
F̃g

)

∼=

γ(F̃ g)

γ(Ωb(F̃ g)) γ(δb
F̃g

) γ(πb
F̃g

) γ(F̃ g)

The degrees 3 and 4 part of this commutative diagram reads

RΩa(X ) RΩa(X)

RΩb(X ) RΩb(X)

RΩa(γg)

∼=ιbaX
∼=ιbaX

RΩb(γg)

which proves the ‘canonical isomorphism’ part of Proposition 4.13 (see Lemma 3.12). The
‘cocycle condition’ part is a direct consequence of Proposition 3.14.

5. Comparison with Quillen’s fibration sequences

Recall that in any model category M path objects are dual to cylinder objects: a path
object of X ∈ M is an object PathX ∈ M together with a factorization

X
∼−→ PathX ↠ X ×X

of the diagonal map
∆X := (idX , idX) : X → X ×X

into a weak equivalence followed by a fibration [we think of the first (resp., second)
morphism of the factorization as the map which assigns to every point the constant
path at this point (resp., to every path its start and end points)]. If we fix a functorial
factorization (α, β) of the diagonal map and f : X → Y is a morphism, we get the
commutative diagram

X PathX X ×X

Y PathY Y × Y

α(∆X)

∼
f

β(∆X)

Path f f×f
α(∆Y )

∼
β(∆Y )

Indeed, if we denote by π1 and π2 the projections out of Y ×Y , there is a unique morphism
(f, f) : X → Y × Y such that

π1 ◦ (f, f) = π2 ◦ (f, f) = f.

Since (f×f)◦∆X and ∆Y ◦f satisfy this condition, the total square commutes. It follows
from the functoriality of the factorization that the arrow Path f that makes the left and
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right squares commutative exists, and that Path is an endofunctor of M. We refer to Path

as the path space functor of M.
Now let M be a pointed model category as in the preceding chapters.
In Chapter 4 we considered a based path space functor Path0 of M and the correspond-

ing loop space functor Ω of M. On fibrant objects X ∈ Mf the loop space ΩX ∈ Mf is the
kernel of the fibration Path0X ↠ X and on Mf -morphisms f : X → Y the Mf -morphism
Ωf : ΩX → ΩY is the universal arrow

ΩX Path0X X

ΩY Path0 Y Y

kX

Ωf Path0 f f

kY

Quillen defines a loop space functor ΩQ of M from the path space functor Path of M. On
objectsX ∈ M the loop space ΩQX ∈ Mf is the kernel of the fibration PathX ↠ X×X and
on M-morphisms f : X → Y the Mf -morphism ΩQf : ΩQX → ΩQY is the universal arrow

ΩQX PathX X ×X

ΩQY PathY Y × Y

κX

ΩQf Path f f×f
κY

A non-obvious result is that for any V ∈ Mf the functor of points

[−,ΩQV ] ∈ Fun(Ho(M)op, Set)

is valued in the category Grp of groups and that ‘accordingly’ ΩQV is a group object
of Ho(M). Another non-trivial result is that if K is the kernel of a fibration U ↠ V

between fibrant objects U, V , there is an M-morphism ρ : ΩQV ×M K → K such that
γρ : ΩQV ×Ho(M) K → K is an action of the group object ΩQV on K.

Theorem 5.1. Let M be a pointed model category that is equipped with a path space functor
Path implemented by a fixed functorial factorization. Quillen’s loop space functor ΩQ is a
loop space functor in the sense of the present paper, i.e., a loop space functor associated
to a based path space functor PathQ0 of M.

Proof. It is natural to define the based path space PathQ0 X of X ∈ M as the kernel of
the composite PathX ↠ X × X π1−→ X, where π1 is the projection on the first factor
of X ×X. The projection on the second factor will be denoted π2. For f : X → Y and
i ∈ {1, 2}, we have a commutative diagram

PathQ0 X PathX X ×X X

PathQ0 Y PathY Y × Y Y

kX

PathQ
0 f Path f

πi

f×f f

kY

where PathQ0 f is the universal arrow that we get for i = 1. Since Path is an endo-
functor, the same holds for PathQ0 . If i = 2 the diagram gives a natural transformation
PathQ0 ⇒ idM.
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The functor PathQ0 is a based path space functor in the sense of Definition 4.1 if for
every fibrant X ∈ M the M-morphism PathQ0 X → X is a fibration with an acyclic domain.

Since fibrations are closed under pullbacks, the projection πi : X × X → X is a
fibration if X is fibrant, so that the composite pi : PathX ↠ X × X πi−→ X is also a
fibration. As X ∼−→ PathX

pi−→ X is the identity by definition of PathX, it follows from
the 2-out-of-3 axiom that pi is a weak equivalence and therefore a trivial fibration. Since
trivial fibrations are closed under pullbacks and PathQ0 X := ker p1 = PathX ×X 0, the
morphism PathQ0 X → 0 is a trivial fibration, so that PathQ0 X is acyclic. Next we show
that the M-morphism

p2 : PathQ0 X
kX−−→ PathX

p2−→ X

is a fibration. Let Y ∼−→ Z be a trivial cofibration such that the left square of the diagram

Y PathQ0 X PathX

Z X X ×X

∼

kX

p2

`
l

(0,id)

commutes. To see that the right square also commutes, observe that there is a unique
morphism m : PathQ0 X → X × X such that π1 ◦ m = 0 and π2 ◦ m = p2. Since both
morphisms PathQ0 X → X ×X in the right square fulfill these conditions, they coincide.
As the total square now commutes, there exists a lifting ℓ : Z 99K PathX. Since PathQ0 X

is a kernel, there is a unique morphism l : Z → PathQ0 X such that kX ◦ l = ℓ. As the
total upper triangle commutes and kX is a monomorphism and so is left cancellable, the
left upper triangle commutes. In order to conclude that the left lower triangle commutes
and that p2 is a fibration, it suffices to notice that (0, id) is left cancellable.

It remains to prove that the loop space functor Ω associated to the chosen based path
space functor PathQ0 is Quillen’s loop space functor ΩQ. For any f : X → Y we have the
following commutative diagram:

ΩX PathQ0 X PathX X ×X X

ΩQX X

ΩY PathQ0 Y PathY Y × Y Y

ΩQY Y

lX

Ωf

kX(p2)

PathQ
0 f

p2

kX(p1)

Path f

φX

f×f

π2

f

`X

ΩQf

κX(φX)

p1

f

π1

kY kY φY

κY

(5.1)
in which only the universal morphisms ℓX and lX and the associated commutative squares
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require explanation. Obviously there is a unique morphism ℓX : ΩQX → PathQ0 X with

kX(p1) ◦ ℓX = κX(ϕX). (5.2)

Notice now that
πi ◦ ϕX ◦ kX(p1) ◦ kX(p2) = 0,

as kX(p1) (resp., kX(p2)) is the kernel of p1 (resp., p2). However, the zero morphism
ΩX → 0→ X ×X is the unique morphism from ΩX to X ×X whose composite with πi
is the zero morphism ΩX → 0→ X. Hence

ϕX ◦ kX(p1) ◦ kX(p2) = 0

and there is a unique morphism lX : ΩX → ΩQX such that

κX(ϕX) ◦ lX = kX(p1) ◦ kX(p2). (5.3)

From (5.2) and (5.3) it follows that

kX(p1) ◦ ℓX ◦ lX = kX(p1) ◦ kX(p2) and ℓX ◦ lX = kX(p2),

as kX(p1) is left cancellable. The commutativity of the square associated with ℓX , ℓY
(resp., with lX , lY ) follows from the left cancellability of kY (resp., of κY ).

We are now prepared to show that the pair (ΩQX, ℓX) is a kernel of p2 so that
ΩQX

.
= ΩX, ΩQf .

= Ωf and ΩQ
.
= Ω, which then completes the proof (cf. diagram (5.1)).

To see that (ΩQX, ℓX) is a kernel, notice first that

p2 ◦ ℓX = π2 ◦ ϕX ◦ κX(ϕX) = 0.

Further, if λ : Λ→ PathQ0 X satisfies p2 ◦λ = 0, there is a unique morphism µ : Λ→ ΩX

such that kX(p2) ◦ µ = λ. However, then lX ◦ µ : Λ → ΩQX satisfies ℓX ◦ lX ◦ µ = λ

and is the unique morphism with these properties. Indeed, if ν : Λ → ΩQX is such that
ℓX ◦ ν = λ, then

κX(ϕX) ◦ ν = kX(p1) ◦ ℓX ◦ ν = kX(p1) ◦ λ = kX(p1) ◦ kX(p2) ◦ µ = κX(ϕX) ◦ lX ◦ µ,
so that ν = lX ◦ µ.

Remark 5.2. If we dualize the constructions of this paper, we get the reduced suspension
functor Σ instead of the loop space functor Ω. From Theorem 5.1 and its dualization it
follows that Quillen’s suspension and loop space functors ΣQ and ΩQ are suspension and
loop space functors in our sense. Since

LΣQ : Ho(M)⇄ Ho(M) : RΩQ

are adjoint functors, Proposition 4.13 and its dualization show that any derived suspen-
sion functor LΣ is left adjoint to any derived loop space functor RΩ.

Because of Theorems 5.1 and 4.5 Quillen’s loop space functor ΩQ ∈ Fun(M, M) preserves
weak equivalences between fibrant objects, so that Theorem 2.1 implies that its derived
functor RKΩQ exists and is given at X ∈ M by

RΩQ(X) .= ΩQ(F̃X) ∈ Ho(M),

where we omitted superscript K. Quillen now gives the following
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Definition 5.3. Let M be a pointed model category. A fibration sequence in Ho(M) is a
sequence

X → X → X

in Ho(M) together with a Ho(M)-morphism R : RΩQ(X)×Ho(M) X → X, such that:

(1) the sequence is isomorphic in Ho(M) to a sequence K → U → V that is implemented
by the kernel K of an M-fibration U ↠ V between fibrant objects U, V , i.e., there is
a commutative Ho(M)-diagram

X X X

K U V

∼=i ∼=j ∼=k (5.4)

whose vertical arrows are isomorphisms;
(2) the morphism R coincides under this isomorphism with the morphism γρ, i.e., if k̃ is

the isomorphism
RΩQ(X)

∼=−→ ΩQV

that is induced by k and if k̃−1 × i−1 is the isomorphism

ΩQV ×Ho(M) K
∼=−→ RΩQ(X)×Ho(M) X

that is induced by k̃−1 and i−1, we have

i ◦R ◦ (k̃−1 × i−1) = γρ.

We will show that Quillen’s fibration sequences are tightly related to our homotopy
fiber sequences. An initial observation that confirms this claim is Quillen’s result that
if we take a fibration sequence K → U → V with action γρ, we have a connecting
Ho(M)-morphism

δQ : ΩQV → K, (5.5)

namely

ΩQV
(id,γ(0))−−−−−→ ΩQV ×Ho(M) K

γρ−→ K,

such that ΩQV δQ−−→ K → U is also a fibration sequence. Moreover, Quillen gets a long ex-
act sequence similar to the long exact sequence in Proposition 4.9. Finally, the connecting
morphism (5.5) and the similarly defined connecting morphism

∆Q : RΩQ(X)→ X (5.6)

render the left square of the diagram

RΩQ(X) X X

ΩQV K U

∆Q

∼=k̃ ∼=i ∼=j

δQ

(5.7)

commutative.
The next theorem specifies the relationship between fibration sequences and homotopy

fiber sequences.



44 A. Govzmann, D. Pištalo, and N. Poncin

Theorem 5.4. A homotopy fiber sequence X f−→ X g−→ X of h(Mf) is a fibration sequence
X

γf−−→ X γg−→ X in Ho(M) and the connecting morphism ∆ defined in (4.22) coincides with
the connecting morphism ∆Q considered in (5.6).

Proof. Let X f−→ X g−→ X be an objectwise fibrant homotopy fiber sequence of M, let
X ∼−→ X̄ ḡ

↠ X be a factorization of g into a weak equivalence followed by a fibration
and let (K,κ) be the kernel of ḡ. Then K

κ−→ X̄ ḡ
↠ X is also a homotopy fiber sequence

of M, and if we proceed as at the beginning of the proof of Proposition 4.11, we get a
commutative Ho(M)-diagram

X X X

K X̄ X

γf

∼=i

γg

∼=j

γκ γḡ

(5.8)

The group action γρ : ΩQX×Ho(M) K → K mentioned just above Theorem 5.1 induces a
Ho(M)-morphism

R : RΩQ(X)×Ho(M) X
id×i−−−→ ΩQX×Ho(M) K

γρ−→ K
i−1

−−→ X

which, together with the sequence X γf−−→ X γg−→ X, satisfies the requirements of Defini-
tion 5.3, so that this sequence is a fibration sequence in Ho(M) as announced.

To prove that ∆ = ∆Q we will describe the following commutative Ho(M)-diagram:

ΩQX Kḡ X̄ X

ΩQX Kg X X

ΩQX K X̄ X

ΩQX X X X

γ(δḡ) γ(πḡ)

γk−1 ∼=

γḡ

γ(δg) γ(πg) γg

δQ γκ γḡ

∆ γf

ε ∼=

γg

(5.9)

The commutative front of (5.9) comes from the commutative Ho(M)-diagram (4.20)
and (4.22). In particular,

∆ = ϵ ◦ γ(δg). (5.10)

The commutative bottom is nothing but the commutative Ho(M)-diagram 5.8. In par-
ticular, its arrows that are not labelled are the isomorphisms i and j.

The upper row of the back of diagram (5.9) consists of the image under γ of the terms
of degrees 0–3 of Puppe’s long homotopy fiber sequence Pḡ ∈ ℓ(Mf) associated to ḡ ∈ M→

f .
Notice that it follows from diagram (4.6) and the pasting law for pullbacks that (ΩQX, δḡ)
is the kernel of the fibration πḡ : Kḡ ↠ X̄ with fibrant source and target.

The lower row of the back contains the fibration sequence that is implemented by the
kernel K of the fibration X̄ ↠ X between the fibrant objects X̄ and X and the connecting
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morphism (5.5) that makes

ΩQX
δQ−−→ K

γκ−−→ X̄ (5.11)

a fibration sequence (see paragraph below Definition 5.3 and [32, Section I.3.5, Proposi-
tion 3]).

As in the commutative M-diagram

Kḡ X̄

K X̄

PathQ0 X X

0 X

ḡ

πḡ

κ

k

∼

ḡ

the front square is a model square and the back square is the pullback of a weakly
equivalent fibrant cospan, the universal arrow k : K 99K Kḡ is a weak equivalence. This
explains the middle and right commutative squares of the back of diagram (5.9). In order
to show that (5.11) satisfies the requirements of Definition 5.3, Quillen had to construct
a sequence that is implemented by the kernel of a fibration between fibrant objects and
is isomorphic in Ho(M) to (5.11). Actually he showed that the left square of the back of
diagram (5.9) commutes and uses the isomorphism given by the left and middle squares:

δQ = γk−1 ◦ γ(δḡ). (5.12)

In order to understand the top square of (5.9), we consider the commutative M-diagram

Kḡ X̄

Kg X

PathQ0 X X

PathQ0 X X

ḡ

πḡ

πg

∼

g

Once more, since the front square is a model square and the back square is the pullback of
a weakly equivalent fibrant cospan, the universal arrow Kg 99K Kḡ is a weak equivalence.
Hence, the top middle and right squares of (5.9) commute and their arrows that are not
labelled are isomorphisms; the one on the right is isomorphism j and the one on the left
is an isomorphism that we denote by ι. From the commutativity of diagram (4.7), follows
that the top left square of diagram (5.9) commutes:

γ(δḡ) = ι ◦ γ(δg). (5.13)
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It remains to explain the commutativity of the squares that are parallel to the right
face of diagram (5.9). Only the commutativity of the leftmost square is not entirely
obvious. However, as

Kg
πg−→ X g−→ X and K

κ−→ X̄ ḡ
↠ X

are homotopy fiber sequences of M and the factorization

X ∼−→ X̄
ḡ

↠ X

of g implements an isomorphism ξ in Ho(M→) between their restrictions, there is a unique
isomorphism Ξ in Ho(h(M)) that extends ξ. Hence

i ◦ ϵ = γk−1 ◦ ι. (5.14)

If we compare diagrams (5.8) and (5.4), we see that in our case k = id, so that diagram
(5.7) shows that

∆Q = i−1 ◦ δQ. (5.15)

On the other hand, it follows from (5.10), (5.13), (5.14) and (5.12) that

∆ = ϵ ◦ γ(δg) = ϵ ◦ ι−1 ◦ γ(δḡ) = i−1 ◦ γk−1 ◦ γ(δḡ) = i−1 ◦ δQ. (5.16)

Finally, (5.15) and (5.16) allow us to conclude that ∆ = ∆Q.

6. Application to chain complexes

6.1. Long homotopy fiber sequence and long exact homology sequence. A par-
ticular advantage of our homotopy fiber sequence concept and related theory is that they
are easy to apply. Let us summarize our construction. In each pointed model category
that is equipped with a based path space functor, we consider the associated loop space
functor and, for each morphism between fibrant objects, we take the associated homotopy
kernel and connecting morphism. We then get Puppe’s long homotopy fiber sequence and
the corresponding long exact sequences of sets. In this chapter we apply the previous
construction to chain complexes of modules.

Let A be an Abelian category and denote by Ch(A) the Abelian category of chain com-
plexes and chain maps in A. If R is a unital ring, the category R-Mod of left R-modules
and R-linear maps is Abelian and Ch(R) := Ch(R-Mod) is the (Abelian) category of chain
complexes of (left) R-modules and corresponding chain maps. We denote by Ch≥0(R)

the full subcategory of non-negatively graded chain complexes of R-modules. Both cate-
gories, Ch(R) and Ch≥0(R), have a projective model structure in which weak equivalences
are quasi-isomorphisms, while fibrations are degreewise surjective chain maps in the un-
bounded case and chain maps that are surjective in positive degrees in the non-negatively
graded case. In particular, in both cases all objects are fibrant. Moreover, both model cat-
egories are pointed with zero object the chain complex ({0}, 0).

If p ∈ Z, the translation functor [p] ∈ Fun(Ch(A), Ch(A)) is defined on objects (A, dA) ∈
Ch(A) by

A[p]n := An−p and dA[p] := (−1)pdA, (6.1)
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and on Ch(A)-morphisms f : (A, dA) → (B, dB) by f [p]n := fn−p. Further, the mapping
cone Mc(f) of the chain map f is the chain complex given by

Mc(f)n := A[1]n ⊕Bn and dMc(f) :=

(
dA[1] 0

f dB

)
. (6.2)

It is well known that to every short exact sequence 0 → A
f−→ B

g−→ C → 0 of chain
complexes and chain maps in A is associated a long exact sequence in homology. It is easy
to see that the short sequences of chain complexes

0→ B
i−→ Mc(f)

p−→ A[1]→ 0 (6.3)

(i and p are the canonical injection and projection, respectively) and 0→ C → Mc(g)→
B[1] → 0 are exact. The long exact sequences associated to the latter two short exact
sequences and the long exact sequence associated to the former short exact sequence are
known to coincide. Since Hn(A[p]) = Hn−p(A), the long exact sequence in homology
reads (see for instance [38])

· · · −→ H1(Mc(f))
H1(p)−−−−→ H0(A)

H0(f)−−−−→ H0(B)

H0(i)−−−→ H0(Mc(f))
H0(p)−−−−→ H−1(A)

H−1(f)−−−−−→ H−1(B) −→ · · · . (6.4)

As mentioned above, in the case A = R − Mod, the underlying category Ch(R) or
Ch≥0(R) is a pointed model category. Hence it is natural to ask whether we can find a
based path space functor of the category of chain complexes considered, such that the
preceding long exact sequence in homology associated to f : A→ B or to the sequence

· · · −→ Mc(f)[−1] p[−1]−−−→ A
f−→ B

i−→ Mc(f)
p−→ A[1]

f [1]−−→ B[1] −→ · · · (6.5)

can be obtained as a long exact sequence of sets

· · · −→ [M,Ω2B]
[M,γ(Ω(δf ))]−−−−−−−−→ [M,Ω(Kf )]

[M,γ(Ω(πf ))]−−−−−−−−→ [M,ΩA]

[M,γ(Ωf)]−−−−−−→ [M,ΩB]
[M,γ(δf )]−−−−−−→ [M,Kf ]

[M,γ(πf )]−−−−−−→ [M,A]
[M,γf ]−−−−→ [M,B] (6.6)

corresponding to Puppe’s long homotopy fiber sequence

· · · −→ Ω2B
Ω(δf )−−−→ Ω(Kf )

Ω(πf )−−−−→ ΩA
Ωf−−→ ΩB

δf−→ Kf
πf−−→ A

f−→ B (6.7)

of f .

6.2. Chain complexes as pointed model category. The comparison of (6.5) and
(6.7) suggests that we find a based path space functor

Path0 ∈ Fun(Ch(R), Ch(R))

such that the homotopy kernel Kf := Path0B×B A of a chain map f : A→ B coincides
with the shifted mapping cone Mc(f)[−1] of f , so that we must define Path0B = KidB

by
Path0B := Mc(idB)[−1] ∈ Ch(R),
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for any B ∈ Ch(R). In view of (6.1) and (6.2) we have

(Path0B)n = Bn ⊕Bn+1 and dB := dPath0 B = −dMc(idB) =

(
dB 0

− idB −dB

)
.

If B ∈ Ch≥0(R) ⊂ Ch(R), then its based path space

Path0B : · · · dB,2−−−→ B1 ⊕B2
dB,1−−−→ B0 ⊕B1

dB,0−−−→ B0
dB,−1−−−−→ 0

in Ch(R) has a term in degree −1, so that we define its based path space Trath0B in
Ch≥0(R) by truncation as the sub-complex

Trath0B : · · · dB,2−−−→ B1 ⊕B2
dB,1−−−→ ker dB,0

dB,0−−−→ 0.

If f : A → B is a chain map, then f ⊕ f [−1] is a chain map from A ⊕ A[−1] to
B ⊕ B[−1], i.e., it is a degree zero R-linear map that commutes with the differentials
d⊕ (−d), so also with the differentials d since the additional terms are both equal to −f .
Hence Path0 f := f ⊕ f [−1] is a chain map from Path0A to Path0B and its restriction
Trath0 f := Path0 f |Trath0 A is valued in Trath0B and is therefore a chain map from
Trath0A to Trath0B. Since ⊕ is the coproduct functor

⨿ : Ch(R)× Ch(R)→ Ch(R)

on the product category, we have

Path0(g ◦ f) = ⨿
(
g ◦ f, g[−1] ◦ f [−1]

)
= ⨿

(
(g, g[−1]) ◦ (f, f [−1])

)
= ⨿

(
g, g[−1]

)
◦ ⨿

(
f, f [−1]

)
= Path0 g ◦ Path0 f,

and the same result obviously holds for the restriction Trath0(g ◦ f) of Path0(g ◦ f).
Since Path0 and Trath0 clearly preserve the identities, they are endofunctors of Ch(R)
and Ch≥0(R), respectively. Further, the projection πB : Path0B → B onto the first term
of Path0B is visibly a degreewise surjective chain map, i.e., a fibration of Ch(R), and
the projection τB : Trath0B → B onto the first term is a chain map that is surjective
in positive degrees, i.e., is a fibration of Ch≥0(R). Since idB is a quasi-isomorphism, its
mapping cone Mc(idB) has vanishing homology and so does its shift Path0B and the
subcomplex Trath0B. This means that the morphisms 0 → Path0B and 0 → Trath0B

are quasi-isomorphisms, so that the based path spaces in Ch(R) and Ch≥0(R) are acyclic.
Finally, the transformations π : Path0 → idCh(R) and τ : Trath0 → idCh≥0(R) are clearly
natural, so that Path0 and Trath0 are actually based path space functors in Ch(R) and
Ch≥0(R), respectively.

To compute Puppe’s sequence, we still need the loop space functor, the homotopy
kernel and the connecting morphism.

By definition the loop space of B is the kernel of the fibration πB or τB . It is easy to
see that in the unbounded case, the loop space ΩB is

ΩB = B[−1] (6.8)

with differential dΩB = dB[−1] = −dB , while in the non-negatively graded case, the loop
space ΘB is the truncation subcomplex

ΘB : · · · −→ B2
−dB,2−−−−→ ker dB,1

−dB,1−−−−→ 0 (6.9)
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of ΩB. Furthermore, the universal morphisms Ωf and Θf associated to a chain map
f : A→ B are obviously the chain map

Ωf = f [−1] (6.10)

and its restriction
Θf = f [−1]|ΘA, (6.11)

respectively.
Recall now that we chose the based path space functor so that the homotopy kernel

Kf of a chain map f : A→ B should be the (−1)-shift of this map’s mapping cone Mc(f).
A direct computation shows that in the unbounded case the pullbackKf := Path0B×BA
is actually given by

Kf = Mc(f)[−1], (6.12)

i.e.,

(Kf )n = An ⊕Bn+1 and df := dKf
=

(
dA 0

−f −dB

)
.

Indeed, it is straightforward to check that the arrows of the square in the diagram

Cn

An ⊕Bn+1 Bn ⊕Bn+1

An Bn

µ
ϕ1

ϕ2

πf

f⊕id[−1]

πB

f

(6.13)

are chain maps and the square commutes. Further assume that φ1 : C → Path0B and
φ2 : C → A are chain maps such that πB ◦φ1 = f ◦φ2. If we set φ1c = (φ1c)n+(φ1c)n+1,
the preceding commutation information reads

(φ1c)n = f(φ2c). (6.14)

Now, if the universal arrow µ exists we necessarily have

(µc)n = φ2c and (µc)n+1 = (φ1c)n+1, (6.15)

so that it is unique. A short computation that uses (6.14) shows that conversely, the map µ
defined by (6.15) is a chain map that makes the two triangles in (6.13) commute. In the
non-negatively graded case, the homotopy kernel ℑf is again the truncation subcomplex,
i.e., in positive degrees ℑf coincides with Kf , while in degree zero ℑf is given by

(ℑf )0 = ker df,0 = {(a0, b1) ∈ A0 ⊕B1 : dB(b1) = −f(a0)}. (6.16)

Finally, we defined the connecting morphism δf as the universal map ΩB 99K Kf

associated to the inclusion φ1 and the zero morphism φ2. From (6.15) it follows that δf is
in the unbounded case the inclusion

δf = i[−1] : B[−1]→ Mc(f)[−1], (6.17)

where i : B → Mc(f) is the injection of (6.3). In the non-negatively graded case, the
universal connecting morphism θf : ΘB 99K ℑf coincides with i[−1] in positive degrees,
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and θf,0 : ker dB,1 99K ker df,0 is the inclusion

θf,0 = i[−1]0|ker dB,1
(6.18)

because φ1,0 is the inclusion from ker dB,1 to

ker dB,0 = {(−dBb, b) : b ∈ B1}.
Let us still mention that in the unbounded case, πf : Kf → A is the projection

πf = p[−1] : Mc(f)[−1]→ A, (6.19)

where p : Mc(f)→ A[1] is the projection of (6.3), and in the non-negatively graded case
πf coincides with p[−1] in all positive degrees and with the restriction

πf,0 = p[−1]0|ker df,0
(6.20)

in degree zero.
We are now prepared to compute Puppe’s long homotopy fiber sequence and the cor-

responding long exact sequences in sets. We already mentioned (see (4.14)) that there
is a 1:1 correspondence between the set [A,B] of Ho(M)-morphisms from a cofibrant ob-
ject A of a model category M to a fibrant object B and the set HomM(A,B)/≃ of homotopy
classes of M-morphisms from A to B. Let us recall that two morphisms from a cofibrant A
to a fibrant B are homotopic if and only if they are right homotopic. For M = Ch with
Ch = Ch(R) or Ch = Ch≥0(R), two chain maps from a cofibrant A to any B are homo-
topic if and only if they are chain homotopic [22, Theorem 2.3.11]. Moreover, the chain
complex R concentrated in degree zero (with zero differential) is cofibrant [22, Lemma
2.3.6], so that

[R,A] ∼= HomCh(R,A)/ ≃ .
Since the ring R with unit 1 is a free R-module with basis 1, a degree zero R-linear map
f : R→ A is fully determined by the image f(1) ∈ A0 and a chain map f : R→ A can be
identified with the image f(1) ∈ ker dA,0: there is a 1:1 correspondence

♭ : HomCh(R,A) ∋ f 7→ f(1) ∈ ker dA,0.

Further, two chain maps f, g : R → A are homotopic if and only if there is an R-linear
map h : R → A1 such that f − g = dA,1 ◦ h, or equivalently there is a 1-chain h(1) ∈ A1

such that f(1)− g(1) = dA,1(h(1)). This means that

f ≃ g if and only if ♭(f)− ♭(g) ∈ im dA,1.

Hence ♭ induces a 1:1 correspondence

♭♯ : [R,A] ∼= HomCh(R,A)/≃ ∋ [f]≃ 7→ [f(1)]im ∈ H0(A). (6.21)

Since [f]≃ = γf (see (4.15)), if f ∈ HomCh(A,B), then γf ∈ [A,B] and [R, γf ] is the
set-theoretical map

[R, γf ] : [R,A] ∋ [f]≃ 7→ [f ◦ f]≃ ∈ [R,B].

If we read this map through the correspondence (6.21), we get the map

H0(f) : H0(A) ∋ [f(1)]im 7→ [f(f(1))]im ∈ H0(B). (6.22)
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In the case M = Ch(R), if we apply (6.6) with M = R, take into account (6.8), (6.10),
(6.12), (6.17) and (6.19), and use the identifications (6.21) and (6.22), we find the long
exact sequence

· · · −→H2(B)
H2(i)−−−→ H2(Mc(f))

H2(p)−−−−→ H1(A)
H1(f)−−−−→

H1(B)
H1(i)−−−→ H1(Mc(f))

H1(p)−−−−→ H0(A)
H0(f)−−−−→ H0(B),

which is the left hand side of the homology sequence (6.4). In the case M = Ch≥0(R), the
additional equations (6.9), (6.11), (6.16), (6.18) and (6.20) lead to the same homology
sequence (since in degree zero the homologies of the subcomplexes coincide with those of
the full complexes), which in this case is the complete sequence. In the unbounded case,
we can also get the complete sequence, or, more precisely, we can extend the homology
sequence obtained to the right up to any degree −n (n > 0). For this it suffices to replace
in the construction above the chain map f by the chain map f [n] and to observe that

Hk(Kf [n]) = Hk(Kf [n]) = Hk−n(Kf ).

6.3. Monoidal model categories. In this section we introduce a suitable based path
space functor in a pointed monoidal model category. First we recall

Definition 6.1. A closed symmetric monoidal category is a symmetric monoidal category
(C,⊗, I) such that for every B ∈ C the functor − ⊗ B : C → C has a right adjoint
HomC(B,−), i.e., there exists a functor HomC(B,−) together with a family of bijections

HomC(A⊗B,C) ∼= HomC(A,HomC(B,C)) (6.23)

indexed by A,C ∈ C that is natural in A and C.

A closed symmetric monoidal category is a closed category. In particular, there is an
internal Hom functor

HomC : C
op × C→ C

such that if we fix the first argument we get the right adjoint of the definition. Moreover,
there is a natural isomorphism

HomC(I,−) ∼= idC

that allows us to identify these endofunctors.
We will use the following definition of a monoidal model category.

Definition 6.2. A monoidal model category is a closed symmetric monoidal category
(M,⊗, I,HomM) equipped with a model structure such that the following two compatibility
conditions are fulfilled:

(i) the monoidal unit I is a cofibrant object,
(ii) for every cofibration i : A↣ B and every fibration p : K ↠ L, the universal map

HomM(B,K) 99K HomM(B,L)×HomM(A,L)
HomM(A,K) (6.24)

is a fibration which is a weak equivalence if i or p is.

Remark 6.3. It follows from [22, Lemma 4.2.2] that Condition (ii) is equivalent to the
pushout-product axiom
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PPA: If i : A↣ B and j : K ↣ L are cofibrations, the universal morphism

A⊗ L
∐
A⊗K

B ⊗K 99K B ⊗ L

is a cofibration which is a weak equivalence if i or j is.

Further, condition (i) and the PPA imply the unit axiom

UA: For every cofibrant replacement CI q−→ I of I and every cofibrant object X the
morphism

CI⊗X q⊗idX−−−−→ X

is a weak equivalence.

Indeed, PPA implies that − ⊗ X preserves trivial cofibrations, so that because of
Brown’s lemma −⊗X sends weak equivalences between cofibrant objects to weak equiv-
alences. Since if I is cofibrant, CI q−→ I is a weak equivalence between cofibrant objects,
the conclusion follows.

Hence Definition 6.2 is a little stronger than the standard definition which requires
that the axioms UA and PPA are fulfilled.

For example, if R = k is a commutative unital ring, the category

(Ch(k),⊗k, k,HomCh(k))

of chain complexes in the category Mod(k) of modules over k with its projective model
structure is a (pointed) monoidal model category in the sense of Definition 6.2. This
follows from [22, Proposition 4.2.13] and the observation in the previous section that
R = k is cofibrant. Let us also recall that the tensor product is defined by

(A⊗k B)n =
⊕

µ+ν=n

Aµ ⊗k Bν , d⊗(a⊗ b) = dAa⊗ b+ (−1)µa⊗ dBb,

and that the internal Hom is given by

HomCh(k)(A,B)n =
∏
µ∈Z

HomMod(k)(Aµ, Bµ+n), (df)µ = dB ◦ fµ + (−1)n+1fµ−1 ◦ dA.

(6.25)
Let now (M,⊗, I,HomM) be any pointed monoidal model category and let

I↣ Cone(I) ∼−→ 0 (6.26)

be a factorization of I → 0 into a cofibration followed by a weak equivalence. It is easy
to check that if M = Ch(k) and thus I = k, the mapping cone

Mc(idk) : · · · −→ 0 −→ k︸︷︷︸
(1)

idk−−→ k︸︷︷︸
(0)

−→ 0 −→ · · · , (6.27)

where the integers in parentheses indicate the degree, satisfies the condition

k↣ Mc(idk)
∼−→ 0,

so that we can choose
Cone(k) = Mc(idk). (6.28)
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Indeed, the morphism k → Mc(idk) is the morphism S0(k) → D1(k) from the 0-sphere
at k to the 1-disk at k which is a generating cofibration and the morphism Mc(idk)→ 0

is a quasi-isomorphism because

H(Mc(0 : Mc(idk)→ 0)) = H(Mc(idk)[1]) = 0

since idk is a quasi-isomorphism. This justifies the notation Come(I) and the name ‘cone
of I’. It is now natural to define the cone functor Cone ∈ Fun(M, M) by

Cone := −⊗ Cone(I)

and the dual based path space functor Path0 ∈ Fun(M, M) by

Path0 := HomM(Cone(I),−).
Proposition 6.4. In a pointed monoidal model category (M,⊗, I,HomM) with unit cone
Cone(I) defined by (6.26), the functor

Path0 := HomM(Cone(I),−) (6.29)

is a based path space functor in the sense of Definition 4.1.

Proof. For all A,B ∈ M, we have

HomM(A,HomM(B, 0))
∼= HomM(A⊗B, 0),

so that there is a unique morphism from every A ∈ M to HomM(B, 0) ∈ M, which means
that for every B ∈ M, we have

HomM(B, 0)
∼= 0.

The same result holds for HomM(0, B). Indeed, since left adjoint functors preserve colimits,
the functor − ⊗ A preserves the initial object, so that A ⊗ 0 ∼= 0 ⊗ A ∼= 0. Hence, for
every A ∈ M, we get

HomM(A,HomM(0, B)) ∼= HomM(0, B),

which implies that
HomM(0, B) ∼= 0.

If i : I↣ Cone(I), then for every A ∈ M we have a morphism

HomM(i, A) : HomM(Cone(I), A)→ HomM(I, A)

and these morphisms are the components of a natural transformation

π : Path0 ⇒ idM .

Indeed, if f : A→ B is a morphism, then f ◦ πA = πB ◦ Path0f , since the left hand side
HomM(idI, f) ◦HomM(i, idA) and the right hand side HomM(i, idB) ◦HomM(idCone(I), f) are
both equal to HomM(i, f), as HomM is a functor on the product category Mop × M with
composition

(g, g′) ◦× (f, f ′) = (g ◦Mop f, g′ ◦M f ′) = (f ◦M g, g′ ◦M f ′),
for all Mop-morphisms f : A → B and g : B → C and all M-morphisms f ′ : A′ → B′ and
g′ : B′ → C ′.
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Let now A ∈ M be a fibrant object. If we apply axiom (ii) of Definition 6.2 to the
cofibration i : I↣ Cone(I) and the fibration p : A↠ 0, we find that the universal map

Path0A = HomM(Cone(I), A) 99K HomM(Cone(I), 0)×HomM(I,0) HomM(I, A) = A

is a fibration. Further, since the morphism Cone(I)→ 0 is a weak equivalence, it follows
from the 2-out-of-3 axiom that the morphism 0→ Cone(I) is also a weak equivalence. As
I is cofibrant by definition, this morphism ι : 0↣ I↣ Cone(I) is a trivial cofibration. If
we apply now axiom (ii) to ι and p, we see that the universal map

Path0A = HomM(Cone(I), A) 99K HomM(Cone(I), 0)×HomM(0,0)
HomM(0, A) = 0

is a trivial fibration, so that Path0A is acyclic.

6.4. Chain complexes as monoidal model category. In Section 6.2 we have applied
the machinery of this paper to the pointed model category Ch(R) of chain complexes in
the category R-Mod of left modules over a unital ring R. It seemed natural to define
the based path space Path0A of a complex A as the mapping cone Mc(idA)[−1] of the
identity of A shifted by −1. In the case where R is a commutative unital ring k, we can
also consider Ch(R) = Ch(k) as a pointed monoidal model category, apply Proposition 6.4
and define the based path space functor as the dual Path0 of the cone Cone(k) of k. In
this section we compute the based path space Path0A, the corresponding loop space,
homotopy kernel, etc. and compare the results to those of Section 6.2.

From (6.29), (6.28), (6.27) and (6.25), it follows that

(Path0A)n = HomCh(k)(Cone(k), A)n = HomMod(k)( k︸︷︷︸
(0)

, An)⊕HomMod(k)( k︸︷︷︸
(1)

, An+1),

so that we have the isomorphism of k-modules

In : (Path0A)n ∋ (fµ)µ = (f0, f1) 7→ an + an+1 := f0(1) + f1(1) ∈ An ⊕An+1. (6.30)

If we read the differential (6.25) through the isomorphisms In, we get the differential

dA = In−1 ◦ d ◦ I−1
n

given by

dA

(
an
an+1

)
= In−1(d(f0, f1)) = In−1(dA ◦ f0 + dA ◦ f1 + (−1)n+1f0)

= dAan + dAan+1 + (−1)n+1an =

(
dA 0

(−1)n+1 dA

)(
an
an+1

)
,

since dCone(k) vanishes except if µ = 1 where it is the identity. Finally,

(Path0A)n = An ⊕An+1 and dA,n =

(
dA 0

(−1)n+1 idA dA

)
. (6.31)

The A-component of the natural transformation π : Path0 ⇒ idCh(k) is given by
πA = HomCh(k)(i, A) where the cofibration i : k ↣ Cone(k) vanishes except in degree
zero where it is the identity. If we read (πA)n through the isomorphism In we get the
canonical projection π1 : An ⊕An+1 → An. The loop space of A is its kernel

(OA)n = An+1 and dOA,n = dA,n+1. (6.32)
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A direct verification shows that given a morphism f : A → B, the homotopy kernel
Kf = Path0B ×B A is

(Kf )n = An ⊕Bn+1 and df,n =

(
dA 0

(−1)n+1f dB

)
. (6.33)

The mapping cone Mc(f) of a chain map f : A→ B is defined in (6.2). An alternative
definition is

Mc(f)n := A[1]n ⊕Bn and dMc(f),n :=

(
dA 0

(−1)nf dB

)
. (6.34)

Formulas (6.31)–(6.33) show that the complexes obtained here and in Section 6.2 are the
same graded modules. As for their differentials, we found in 6.2 that

dA,n := dPath0 A,n = −dMc(idA),n+1,

dΩA,n = − dA,n+1, and

df,n := dKf ,n = −dMc(f),n+1.

Here we find the same differentials, but without the sign change on the right hand side
and with the standard differential dMc(f) replaced by the previous alternative differen-
tial dMc(f):

dA,n := dPath0A,n = dMc(idA),n+1, dOA,n = dA,n+1 and df,n := dKf ,n = dMc(f),n+1.

These slight differences are of course completely irrelevant.

7. Follow-up questions

In a triangulated category, every morphism f : A→ B has a cone B → C(f)→ A[1] such
that A→ B → C(f)→ A[1] is a distinguished triangle. However, the cone C is not a func-
tor. It has been mentioned in the literature (see [13]) that this drawback shows that the
axioms of a triangulated category are suboptimal. More precisely, if C(f)[−1]→ A→ B

and C(f ′)[−1]→ A′ → B′ are distinguished triangles together with a commutative square
S := (A,B,A′, B′), there is no unique induced map C(S) : C(f)[−1] → C(f ′)[−1] that
makes C a functor. We expect that Theorem 3.5 and Proposition 3.14 can be used to
suggest a definition of triangulated categories with a functorial cone.

In [5, 6] and [29], Di Brino and two of the authors of the present work have taken up
ideas from [1, 4, 27, 28, 34, 35, 36] and have introduced homotopical algebraic geometry
over the ring of differential operators as a suitable framework for investigating the solution
space of partial differential equations modulo symmetries. The implementation of the
associated research program requires that a certain quintuplet be a homotopical algebraic
geometric context (HAGC) in the sense of [35]. We are convinced that the theory of
homotopy fiber sequences, which we have detailed in this paper, will enable us to prove
the HAGC theorem and thus to take an important step towards fully working through
the above program.
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