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Abstract

We propose a simplified definition of Quillen’s fibration sequences in a pointed

model category that fully captures the theory, although it is completely indepen-

dent of the concept of action. This advantage arises from the understanding

that the homotopy theory of the model category’s arrow category contains all

homotopical information about its long fibration sequences.
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1 Introduction

Homotopy fiber sequences, also called fibration sequences, have been studied in the cat-

egory of topological spaces, the category of chain complexes of modules, in general model

categories and in homotopical categories. For instance, if f : A → B is a chain map, its

shifted mapping cone Mc(f)[−1] is the homotopy fiber of f and the associated distinguished

triangle Mc(f)[−1]→ A→ B is a homotopy fiber sequence.

Quillen [23] defined fibration sequences in the homotopy category of any pointed model

category (M, 0) . For this he first defined a loop space functor ΩQ from a path space functor

and observed that the loop space ΩQF of a fibrant object F is a group object in the homotopy

category Ho(M) of M . Up to Ho(M)–isomorphism a fibration sequence is then a Ho(M)–sequence

K → F → F that is implemented by the kernel K of a fibration F → F between fibrant

objects F and F , together with an action that is up to isomorphism some action of the group

object ΩQF on K . This action induces a connecting Ho(M)–morphism ΩQF → K and the

sequence ΩQF → K → F is again a fibration sequence.

In this paper, we also work in a general pointed model category (M, 0) , we define a loop

space functor Ω from any ‘dual cone functor’ and define homotopy fiber sequences as com-

mutative M–squares (A,B,C,D) such that A is a specific type of generalized representative of

the homotopy pullback of C → D ← B and the map C → 0 is a weak equivalence. Further,

for every morphism f : F → F we define its homotopy fiber Kf such that Kf → F → F is

a homotopy fiber sequence. We get a universal connecting morphism ΩF → Kf such that

ΩF → Kf → F is also a homotopy fiber sequence.

It turns out that Quillen’s loop space functor ΩQ is a loop space functor Ω in the sense

of the present paper. Further, an objectwise fibrant homotopy fiber sequence is a fibration

sequence and our universal connecting morphism is the same as Quillen’s connecting morphism

induced by the action.
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Although, as the previous descriptions show, the two theories are closely related, our

approach to homotopy fiber sequences or fibration sequences, does not rely on the additional

structure of an action. The point is that we use the homotopy theory of the category M→ of

M–morphisms, which contains all relevant information about homotopy fiber sequences of M .

More precisely, the paper is organized as follows:

Understanding homotopy fiber sequences requires a good understanding of homotopy fiber

squares, homotopy pullbacks, derived functors, and category localizations. However, there are

a number of variants and indeterminacies for each of these concepts. A structured approach in

a unifying context is suggested in [13] and [14]. In order to ensure an independent readability

of our text, we recall in Section 2 the relevant results from [13] and [14], which we will need

later.

In Section 3 we give the precise definition of the category h(M) (resp., the category `(M))

of homotopy fiber sequences (resp., of long homotopy fiber sequences) in a pointed model

category (M, 0) . We define the homotopy category of these new categories and choose a model

structure on the category M→ of M–morphisms. We prove that the localization

Ho(R1) : Ho(`(M))→ Ho(M→)

of the restriction R1 of long homotopy fiber sequences to their first two terms yields an

equivalence of categories. This is arguably the deepest result of the present paper. To prove

the equivalence theorem we construct the inverse up to natural isomorphisms and give an

explicit description of the inverse of

Ho(R1)a•,b• : HomHo(`(M))(a•, b•)→ HomHo(M→)(R1(a•), R1(b•))

(see pages 14–26).

Mimicking definitions from Algebraic Topology, we define in Section 4 the notion of ‘based

path space functor’ – which is dual to the ‘cone functor’ – and the associated ‘loop space

functor’ Ω – which is well-behaved with respect to fibrant objects, weak equivalences and

homotopy fiber sequences, and whose derived functor is independent of the chosen based

path space functor. We continue our abstraction of the topological situation and define

concepts of homotopy fiber and universal connecting homomorphism that allow us to make

sense of Puppe’s sequence in the general setting considered. This leads to Puppe’s functor

P : M→ → `(M) whose value Pf at f ∈ M→ is the unique `(M)–extension of f up to a canonical

Ho(`(M))–isomorphism. The theory is valid in every pointed model category (in this general

case it is natural to consider morphisms f with fibrant source and target) and in right proper

pointed model categories (in this case we do not need the property that the source and target
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are fibrant). Just as Puppe’s sequence of a fibration gives the fibration’s long exact homotopy

sequence in Algebraic Topology, we associate in any pointed model category M a family of long

exact sequences of Ho(M)–Hom-sets to Puppe’s `(M)–extension of a morphism.

Section 5 contains a detailed account of the parallelism described above between Quillen’s

theory of fibration sequences and the theory of homotopy fiber sequences in the present work.

One of the advantages of the new theory is that it is easy to use. In Section 6 we

apply it to the category of chain complexes of modules (both unbounded and non-negatively

graded) and recover the long exact sequence in homology induced by a short exact sequence

of chain complexes and chain maps as a special case of the long exact sequence of Ho(M)–

Hom-sets of these chain maps. To this end, we consider the category of complexes first only

as a pointed model category, then as a pointed monoidal model category. Although the two

approaches naturally lead to different based path space functors, the Puppe extensions of a

chain morphism coincide.

In the final section 7, we briefly describe follow up questions and expected applications. In

addition, the theory we develop in this text should lead to advances in homotopical algebraic

geometry [24, 25, 2, 3, 6] and higher supergeometry [7, 8, 9, 22], which are the contexts from

which the need arose to examine the subjects of this paper.

Conventions and notations. We assume that the reader is familiar with model cat-

egories and adopt the definition of a model category that is used in [15]. More precisely, a

model category is a category M that is equipped with three classes of morphisms called weak

equivalences, fibrations and cofibrations. The category M has all small limits and colimits

and the 2-out-of-3 axiom, the retract axiom and the lifting axiom are satisfied. Moreover M

admits a functorial cofibration - trivial fibration factorization system and a functorial trivial

cofibration - fibration factorization system. Further, we work with the Quillen homotopy cat-

egory Ho(M) , which is a strict localization of M at its weak equivalences W with localization

functor denoted γM , and we use the Kan extension derived functor operations LK,RK and

the strongly universal derived functor operations LS,RS in the sense of [13]. We will con-

sider different types of replacement, in particular local fibrant C-replacements, which means

that for every X ∈ M we choose a fibrant replacement F̃X � ∗ of X such that the map

fX : X
∼→ F̃X is a cofibration and is identity if X is already fibrant. If f : X → Y , there is

a lifting F̃ f : F̃X → F̃ Y, which will play an important role:
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X Y F̃Y

F̃X ∗

f ˜ fY
˜ fX F̃ f

(1)

2 Models of homotopy pullbacks

We start recalling some results of [13] and [14].

The first theorem addresses the question of stability of a derived functor with respect to

a change of definition (Kan extension versus strong universal property) and with respect to a

change of the type of fibrant replacement used to compute it (local versus global).

Theorem 1 ([13]). If G ∈ Fun(M, N) is a functor between model categories that sends weak

equivalences between fibrant objects to weak equivalences, its Kan extension right derived func-

tor

RKG ∈ Fun(Ho(M), Ho(N))

and its strongly universal right derived functor

RSG ∈ Fun(Ho(M), Ho(N))

exist and we have

RKG
.
= Ho(γN ◦G ◦ F̃ )

.
= RS

RG := Ho(γN ◦G ◦R)
∼=⇒ RSG , (2)

where F̃ is a local fibrant C-replacement, R is a fibrant C-replacement functor and Ho the

unique on the nose factorization through Ho(M) . This implies that

RKG ◦ γM
.
= γN ◦G ◦ F̃

.
= RS

RG ◦ γM = γN ◦G ◦R
∼=⇒ RSG ◦ γM , (3)

where
.
= denotes a canonical natural isomorphism and

∼=⇒ a not necessarily canonical natural

isomorphism.

The next corollary emphasizes that a derived or homotopy limit with respect to a suitable

model structure σ on the diagram category under consideration belongs to a well-defined

isomorphism class of the target homotopy category, regardless of the definition of a derived

functor and the fibrant replacement we use. Considered as an object of the target model

category, a homotopy limit is thus only well-defined up to a zigzag of weak equivalences. This

indeterminacy is further increased by the ambiguity resulting from various choices for σ .
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Corollary 1. Let S be a small category, let M be a model category and let σ be a model

structure on the category Fun(S, M) of S–shaped diagrams of M such that Lim : Fun(S, M) → M

is a right Quillen functor. If X ∈ Fun(S, M) its homotopy limit with respect to σ is given as

an object of M by

RσLim(X) ≈ Lim(RσX)
∼
� Lim(F̃σX)

∼→ Lim(FσX) , (4)

where RσLim(X) can be interpreted as Kan extension or strongly universal derived func-

tor, where ≈ denotes a zigzag of weak equivalences and where Rσ, F̃σ, Fσ are a fibrant C-

replacement functor, a local fibrant C-replacement and any fibrant replacement in the model

structure σ , respectively. The weak equivalence
∼→ between the last two representatives is the

universal morphism

Lim(`σ) : Lim(F̃σX)
∼→ Lim(FσX) (5)

that is induced by a lifting

X FσX

F̃σX ∗

∼
fX

∼ f̃X
`σ

(6)

and its image γM(Lim(`σ)) in homotopy is independent of the lifting considered. A similar

remark holds for the weak equivalences
∼
� .

In the case S = I := {c → d ← b} the functors X ∈ Fun(I, M) are the cospan diagrams

C → D ← B of M and the limit Lim(X) is the pullback B×DC . There are three Reedy model

structures σi (i ∈ {1, 2, 3}) on Fun(I, M) , for which the pullback is a right Quillen functor.

The homotopy limits RσiLim(X) with respect to the σi are called homotopy pullbacks and

are denoted by B ×hσiD C . It can be proven that common representatives exist. We define

the full homotopy pullback B ×hD C such that its canonical representatives are exactly the

representatives of all three homotopy pullbacks B ×hσiD C (i ∈ {1, 2.3}). This leads to the

Theorem 2 ([14]). The full homotopy pullback of a cospan C → D ← B in a model category

is independent of the type of derived functor and of the model structure σi (i ∈ {1, 2, 3})
on cospan diagrams considered. We get the canonical representatives of the full homotopy

pullback from the standard pullback of the weakly equivalent cospans C ′ → D′ ← B′ with three

fibrant objects and at least one morphism that is a fibration: if in the adjacent commutative
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squares

C D B

C ′ D′ B′

∼ ∼ ∼

(7)

all vertical arrows are weak equivalences, all bottom nods are fibrant objects and at least one

of the bottom arrows is a fibration, we have

B ×hD C ≈ B′ ×D′ C ′ . (8)

We increase the flexibility of homotopy limits, homotopy pullbacks and full homotopy

pullbacks by allowing generalized representatives. In the case of full homotopy pullbacks, we

have the

Theorem 3. The vertex A of the span of a commutative square

A B

C D
(9)

in a model category is a model or generalized representative of the full homotopy pullback

B ×hD C if the universal morphism from A to a canonical representative of B ×hD C is a weak

equivalence. In other words, there must exist a cospan C ′ → D′ ← B′ to which C → D ← B

is weakly equivalent, whose three nodes are fibrant objects and at least one of whose morphisms

is a fibration, such that the universal morphism A→ B′ ×D′ C ′ is a weak equivalence.

If the condition of Theorem 3 is satisfied for one replacement its is satisfied for all replace-

ments.

In right proper model categories, we can weaken the condition:

Theorem 4 ([14]). The vertex A of the span of a commutative square (9) in a right proper

model category is a model of the full homotopy pullback B ×hD C if there exists a cospan

C ′ → D′ ← B′ to which C → D ← B is weakly equivalent and at least one of whose morphisms

is a fibration, such that the universal morphism A→ B′ ×D′ C ′ is a weak equivalence.

Again, if the condition of Theorem 4 is satisfied for one replacement with one fibration it

is satisfied for all replacements of this type.

The following corollary is stated without proof in [18]:



8

Corollary 2 ([14]). In a model category the standard pullback B×DC of a cospan C
g→ D

f← B

is a model of the cospan’s full homotopy pullback if at least one of the morphisms f or g is a

fibration and either all three objects B,C,D are fibrant or the model category is right proper.

Further, the concept of model of a homotopy pullback captures the notion of homotopy

fiber square defined in [15] and puts it in the right context.

Corollary 3 ([14]). In a right proper model category with a fixed functorial trivial cofibration

- fibration factorization system, a commutative square (9) is a model square, i.e., its vertex

A is a model of the homotopy pullback B ×hD C if and only if it is a homotopy fiber square in

the sense of [15].

There is a pasting law for model squares.

Proposition 1 ([14]). Let

A B C

D E F
(10)

be a commutative diagram in a model category. If the right square is a model square, then the

left square is a model square if and only if the total square is a model square.

The next result generalizes a property of homotopy fiber squares in a right proper model

category with a fixed functorial trivial cofibration - fibration factorization system to model

squares in an arbitrary model category.

Proposition 2 ([14]). Let ABCD and A′B′C ′D′ be two commutative squares in a model

category M . If there exist four M–morphisms from the vertices of the first square to the cor-

responding vertex of the second such that the four resulting squares commute and if these

M–morphisms are weak equivalences, then the first square is a model square if and only if the

second is.

A B

A′ B′

C D

C ′ D′

∼ ∼

∼ ∼

(11)

Later we need
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Proposition 3. Any commutative square (A,B,C,D) in a model category whose vertical (or

horizontal) arrows are weak equivalences is a model square.

Proof. We apply a fibrant C-replacement functor R to the commutative square (A,B,C,D)

and factor the morphism

R(B
κ→ D) = RB

Rκ→ RD = RB
∼→ F (Rκ)� RD

into a weak equivalence followed by a fibration. Moreover, we set P := F (Rκ) ×RD RC and

thus get the following commutative diagram:

A B

RA RB

P F (Rκ)

C D

RC RD

RC RD

∼

∼ ∼

∼

∼ ∼

∼

∼∼ ∼

(12)

Since trivial fibrations are closed under pullbacks in any model category, the arrow P → RC

is a trivial fibration, hence a weak equivalence. It follows that A→ P is a weak equivalence,

so that ABCD is a model square.

Proposition 4. Let G : M → N be a right Quillen functor and let ABCD be a commutative

square of M with fibrant vertices. Then, if ABCD is a model square of M its image G(ABCD)

is a model square of N .

Proof. We factor B
κ→ D = B

∼→ F (κ)� D into a weak equivalence followed by a fibration.

Further, we set P := F (κ)×D C and get the commutative cube

A B

P F (κ)

C D

C D

∼

(13)

Since ABCD is a model square, the universal arrow A 99K P is a weak equivalence. As

fibrations are closed under pullbacks, the arrow P → C is a fibration and all vertices of (13)

are fibrant objects.
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The image of (13) by G is the commutative cube

GA GB

GP G(F (κ))

GC GD

GC GD

(14)

Since right adjoint functors preserve limits, we have GP = G(F (κ)) ×GD GC and the arrow

GA→ GP is the universal arrow from GA to the pullback of the front cospan. As G is a right

Quillen functor it preserves weak equivalences between fibrant objects (in view of Brown’s

lemma), so that the universal arrow GA → GP and the arrow GB → G(F (κ)) are weak

equivalences (?1). As G preserves fibrations (by definition of a right Quillen functor), the

arrow G(F (κ)) → GD is a fibration (?2). Furthermore, the terminal object ∗M of M is the

limit Lim∅M of the unique functor ∅M ∈ Fun(∅, M) from the empty category ∅ to M . Hence, if

F ∈ M is fibrant, we get

G(F� ∗M) = G(F� Lim∅M) = GF� LimG(∅M) = GF� Lim∅N = GF� ∗N , (15)

so that G preserves fibrant objects and all vertices of (14) are fibrant (?3). From (?1), (?2)

and (?3) it follows that the back square G(ABCD) of (14) is a model square of N .

3 Long homotopy fiber sequences

3.1 Definitions

Let M be a pointed model category, i.e., a model category with a zero object 0 (a model

category whose initial and terminal objects coincide).

It is natural to refer to the pullback A := B ×D 0 of an M–morphism B → D over the

point 0→ D as the fiber of B → D and to call A→ B → D a fiber sequence. The following

generalization is crucial:

Definition 1. A homotopy fiber sequence A→ B → D in a pointed model category M is

a model square ABCD in M whose left lower vertex C is acyclic.

Since an object C ∈ M is acyclic if the unique morphism 0→ C is a weak equivalence (or

equivalently if the unique morphism C → 0 is a weak equivalence), a homotopy fiber sequence

is a commutative square whose left upper vertex is a model of the homotopy pullback of the
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square’s cospan and whose left lower vertex is weakly equivalent to zero. We stress that,

although the left lower vertex C is implicit in the notation A → B → D of the homotopy

fiber sequence, it is an integral part of it.

Morphisms of homotopy fiber sequences are therefore defined as morphisms of commuta-

tive squares, i.e., as commutative cubes. Explicitly a morphism of homotopy fiber sequences

from A2 → A1 → A0 with implicit vertex CA to B2 → B1 → B0 with implicit vertex CB is a

quadruplet

Φ = (φ0, φ1, φ2, ϕ)

of M–morphisms

φi : Ai → Bi (i ∈ {0, 1, 2}) and ϕ : CA → CB ,

such that the resulting cube commutes. So composition of morphisms of homotopy fiber

sequences is induced by the composition of M . We denote h(M) the category of homotopy fiber

sequences of M . Further, we denote

a = (a1, a2)

a homotopy fiber sequence

A2
a2−→ A1

a1−→ A0 .

Definition 2. In a pointed model category a long homotopy fiber sequence

a• = (a1, a2, a3, · · · ) (16)

or more explicitly

(A•, a•) : · · · −→ A3
a3−→ A2

a2−→ A1
a1−→ A0

is a sequence of homotopy fiber sequences

An+1
an+1−→ An

an−→ An−1 (n ∈ {1, 2, 3 · · · }) . (17)

It is natural to define a morphism of long homotopy fiber sequences as a sequence of

morphisms of homotopy fiber sequences. Explicitly a morphism Φ• of long homotopy fiber

sequences from (A•, a•) to (B•, b•) is a sequence

Φ• = (φ0, φ1, φ2, φ3, · · · , ϕ1, ϕ2, · · · ) (18)

of morphisms

Φn = (φn−1, φn, φn+1, ϕn) (n ∈ {1, 2, 3 · · · }) (19)

of homotopy fiber sequences from

An+1
an+1−→ An

an−→ An−1 to Bn+1
bn+1−→ Bn

bn−→ Bn−1 .
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Composition of morphisms of long homotopy fiber sequences is again induced by the composi-

tion in M . We denote `(M) the category of long homotopy fiber sequences of M . Moreover, we say

that a homotopy fiber sequence (resp., a long homotopy fiber sequence) of M is objectwise fi-

brant if its four vertices are fibrant objects of M (resp., if all homotopy fiber sequences (17) are

objectwise fibrant). We also say that a morphism of homotopy fiber sequences (resp., of long

homotopy fiber sequences) of M is an objectwise weak equivalence if its four component

morphisms are weak equivalences of M (resp., if all morphisms of homotopy fiber sequences

(19) are objectwise weak equivalences).

We close this subsection with the following corollary of Proposition 4:

Corollary 4. Let G : M → N be a right Quillen functor between pointed model categories.

The image under G of an objectwise fibrant (long) homotopy fiber sequence of M is a (long)

homotopy fiber sequence of N .

Proof. If suffices to remember that a right Quillen functor G preserves weak equivalences

between fibrant objects and preserves the (fibrant) zero object (see (15)).

Remark 1. We will show below that in a pointed model category it is often possible to

extend a morphism to a long homotopy fiber sequence. In the next subsection we address the

question of uniqueness of such an extension if it exists.

3.2 Homotopy theory of long homotopy fiber sequences

Let C be a category and W a family of C–morphisms. The Gabriel-Zisman localization

or zigzag localization of C at W is (at least in a higher universe) a pair (C[[W−1]], γ) that

consists of a category C[[W−1]] and a functor γ : C→ C[[W−1]] which sends all morphisms in

W to isomorphisms. Further, every functor out of C with this property factors uniquely and on

the nose through C[[W−1]] . Because of its universal property, the zigzag localization is unique

up to a unique isomorphism. It is the strong localization of C at W [13] and is constructed

by free inversion of the morphisms of W . More precisely, the description of (C[[W−1]], γ) is

exactly the one given in [13] in the case of the homotopy category of a model category. As

already mentioned, the localized category does not have to be locally small, so we implicitly

move to a higher universe in order to get a genuine category. If the definition of W is clear,

we usually refer to C[[W−1]] as the homotopy category of C and denote it with Ho(C) .

In the case of the category `(M) of long homotopy fiber sequences of a pointed model

category M , we choose the objectwise weak equivalences for W and consider the homotopy

category Ho(`(M)) in the previous sense.
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Since we are interested in possible extensions of an M–morphism to a long homotopy fiber

sequence of M , we need not only the categories `(M) and Ho(`(M)), but also the category M→ of

M–morphisms

A1
a1−→ A0 (20)

and commutative squares

A1 A0

B1 B0

a1

b1

ψ1 ψ0

(21)

and its homotopy category Ho(M→) . To give meaning to the latter, we endow the category M→

with a model structure, so that its zigzag localization at its weak equivalences, which is its

Quillen homotopy category, is a genuine category without us passing into a larger universe

(see for example [13, Theorem 2]). To find a model structure, notice that M→ is the functor

category Fun(I, M) , where I is the inverse category I = {1 → 0} . In the case of such simple

Reedy categories, the corresponding Reedy model structure is the injective model structure

with objectwise weak equivalences and cofibrations (details can be found for instance in [14]).

We equip M→ with this model structure.

To study the mentioned extension problem, we introduce the restriction functor

R1 : `(M)→ M→ ,

which we define on objects as R1a• = a1 (see (16)) and on morphisms as R1Φ• = (φ1, φ0) (see

(18)). The functor γM→ ◦ R1 sends objectwise weak equivalences of `(M) to isomorphisms of

Ho(M→) and therefore factors uniquely through Ho(`(M)) : there is a unique functor

Ho(R1) : Ho(`(M))→ Ho(M→) , such that γM→ ◦R1 = Ho(R1) ◦ γ`(M) .

Theorem 5. Let M be a pointed model category. The localization

Ho(R1) : Ho(`(M))→ Ho(M→)

of the restriction functor of long homotopy fiber sequences yields an equivalence of categories

between the homotopy category of the category of long homotopy fiber sequences of M and the

homotopy category of the category of morphisms of M .

Remark 2. The categorical equivalence means that the localized functor Ho(R1) is essentially

surjective and fully faithful. In other words, every M–morphism is up to an isomorphism the

restriction of a long homotopy fiber sequence and, for every a•, b• ∈ `(M) , the map

Ho(R1)a•b• : HomHo(`(M))(a•, b•)→ HomHo(M→)(a1, b1) (22)
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is a 1:1 correspondence. Alternatively, the equivalence means that Ho(R1) has an inverse up

to natural isomorphisms. To prove the theorem we construct this inverse.

Lemma 1. Let M be a pointed model category. There exists a functor E : M→ → `(M) that

preserves weak equivalences and sends morphisms a ∈ M→ to long homotopy fiber sequences fa•
made of fibrations fan : F an → F an−1 between fibrant objects (n ∈ {1, 2, 3 · · · }) .

Remark 3. In the following we use a fixed functorial trivial cofibration - fibration factorization

system (α, β) and the induced fibrant C-replacement functor R .

Proof. Let a1, b1 be objects of M→ and ψ = (ψ0, ψ1) an M→–morphism between them, see (21).

We will construct E simultaneously and inductively on these objects and this morphism, i.e.,

we construct inductively long homotopy fiber sequences E(a1) =: fa1
• and E(b1) =: f b1• and

a morphism E(ψ) =: Φ• of long homotopy fiber sequences between them. We start from the

commutative diagram ψ and use the chosen replacement functor and factorization system to

get the commutative diagram

RA1 F (Ra1) RA0

RB1 F (Rb1) RB0

α(Ra1)

∼

Rψ1

β(Ra1)

Rψ0

α(Rb1)

∼
β(Rb1)

(23)

We denote the upper and lower fibrations between fibrant objects by fa1
1 : F a1

1 → F a1
0 and

f b11 : F b11 → F b10 , respectively. It is clear that if ψ is a weak equivalence, all the vertical

arrows in (23) are weak equivalences, in particular the central arrow φ1 : F a1
1 → F b11 and

the right arrow φ0 : F a1
0 → F b10 . Assume now that the long homotopy fiber sequences fa1

• ,

f b1• (resp., the morphism Φ• between them) have (resp., has) been constructed together with

their implicit vertices (resp., its implicit arrows) and with all the required properties, up to

order n ≥ 1 . If we apply the functorial factorization (α, β) to 0 → F a1
n−1 and 0 → F b1n−1, we

get the commutative diagram

F a1
n+1 F a1

n

F b1n+1 F b1n

0 CFa1
n

F a1
n−1

0 C
F
b1
n

F b1n−1

f
a1
n+1

φn+1

f
a1
n

φn

f
b1
n+1

f
b1
n

∼

∼
ϕn φn−1

∼

(24)
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in which F a1
n+1 and F b1n+1 are pullbacks and φn+1 is the universal morphism. Both pullback

diagrams are canonically homotopy fiber sequences and, as already mentioned, the cube is

commutative. So we built two long homotopy fiber sequences E(a1) = fa1
• and E(b1) = f b1•

and a morphism E(ψ) = Φ• between them. Since (α, β) is functorial (and the induced R is a

functor), the assignment ψ 7→ E(ψ) = Φ• respects compositions and identities: E is a functor

E : M→ → `(M) . Since fibrations are closed under pullbacks, the morphisms fa1
n+1, f

b1
n+1 are

fibrations and the objects F a1
n+1, F

b1
n+1 are fibrant. Finally, the cospans of the back and the

front square are fibrant in the injective model structure, see for instance [14]. Now, if φn−1

and φn are weak equivalences, these fibrant cospans are weakly equivalent, as ϕn is obviously

a weak equivalence. However, the pullback functor is a right Quillen functor if the category

of cospans is equipped with its injective model structure, so that it sends weak equivalences

between fibrant objects to weak equivalences: φn+1 is a weak equivalence. This means that

E(ψ) = Φ• is an objectwise weak equivalence if ψ is a weak equivalence.

Lemma 2. Let M be a pointed model category. There exists a functor I : `(M) → `(M) that

preserves weak equivalences and sends long homotopy fiber sequences a• to long homotopy fiber

sequences fa• made of fibrations fan : Fan → Fan−1 between fibrant objects (n ∈ {1, 2, 3 · · · }) .

Proof. Let a•, b• be objects of `(M) and Ψ• an `(M)–morphism between them. We will construct

I simultaneously and inductively on these objects and this morphism. In other words, we

will construct long homotopy fiber sequences I(a•) =: fa• and I(b•) =: fb• and a morphism

I(Ψ•) =: Θ• of long homotopy fiber sequences between them. At the same time we build step

by step a natural weak equivalence ω : id`(M)
∼⇒ I , i.e., we build step by step a commutative

diagram

a• fa•

b• fb•

ωa•
∼

Ψ• Θ•

∼
ωb•

(25)

If we apply R1 to Ψ• : a• → b• , we get ψ = (ψ0, ψ1) : a1 → b1 and if we apply E to the

latter, we get Φ• : fa1
• → f b1• . We choose the first two terms φ = (φ0, φ1) : fa1

1 → f b11 of Φ•

as the first two terms θ = (θ0, θ1) : fa1 → fb1 of Θ• (this includes choosing the first two terms

(F a1
0 , F a1

1 ) as the first two terms (Fa0,F
a
1) and similarly for b). Let us remember that above

we defined θ as follows (see Diagram (23)):
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A1 A0

RA1 Fa1 Fa0

B1 B0

RB1 Fb1 Fb0

a1

ψ1

∼
ψ0

∼
α(Ra1)

∼

Rψ1

fa1

θ1
θ0

b1

∼ ∼

α(Rb1)

∼
fb1

(26)

Diagram (25) is a diagram in `(M) , so that every arrow is a sequence of commutative

cubes. Its commutativity means that the nth cube of the down-right composite (which is the

composite of a cube A  B and a cube B  Fb , where  denotes a morphism between

squares) coincides with the nth cube of the right-down composite (which is the composite

of a cube A  Fa and a cube Fa  Fb), for every n ∈ {1, 2, 3, · · · }. The commutative

diagram (26) means that half of this condition is satisfied for the 1st cubes and it shows that

ωa = (ωa0 , ω
a
1) : a1 → fa1 and ωb consist of two weak equivalences and that θ is made of weak

equivalences if ψ is. Assume now that the sequences Fa• Fb• , f
a
• , f

b
• , ω

a
• , ω

b
• and Θ• have been

constructed with all the required properties and implicit vertices or arrows up to order n ≥ 1

and that the commutation condition of Diagram (25) is fulfilled up to half the condition for

the nth cubes.

An+1 An

Fan+1 Fan

Bn+1 Bn

Fbn+1 Fbn

CAn An−1

CFan Fan−1

CBn Bn−1

CFbn
Fbn−1

∼

∼

∼ ∼

∼ ∼

(27)

In (27), the back commutative square of the right cube is a homotopy fiber sequence of

a• . The right commutative square of this cube is given by ωan, an, f
a
n and ωan−1 . To get the

lower commutative square, we decompose CAn → Fan−1 into a weak equivalence followed by a

fibration using our fixed functorial factorization (see Remark 3). Now we take the pullback

Fan+1 := Fan ×Fan−1
CFan ,
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use the fact that fibrations are closed under pullbacks, and complete the right commutative

cube by the universal arrow An+1 99K Fan+1 . Since the back square is in particular a model

square this universal arrow is a weak equivalence. The left commutative cube is constructed

similarly. As a result of Corollary 2 the square Fa (the front square of the right commutative

cube) is a homotopy fiber sequence and extends fa• or (Fa•, f
a
•) which is made of fibrations

between fibrant objects to order n + 1 . Analogously the square Fb extends (Fb•, f
b
•) . The

commutative cube A  Fa (resp., B  Fb) is an objectwise weak equivalence of homotopy

fiber sequences that extends the `(M)–morphism ωa• (resp., ωb•) to order n+ 1.

We now describe the six cubes of Diagram (27) that contain sloping arrows to the left. In

fact, the top and bottom of these cubes are fully described as soon as the two back and two

front cubes are. The commutative back cube A B is a cube of the sequence Ψ• : a• → b• .

The front cube AFa  BFb is counterpart in order n to the commutative cube (26) and it is

commutative in view of the induction assumption that the commutation condition of Diagram

(25) is satisfied up to half the condition for the nth cubes. Since the trivial cofibration -

fibration factorization system used is functorial, the commutative rectangle

CAn CFan Fan−1

CBn CFbn
Fbn−1

∼

∼

(28)

induces a central vertical arrow that makes the left and right squares (which are two of the

six bottom squares of (27)) commutative. The universal arrow Fan+1 99K Fbn+1 renders the

upper and left square of the front cube Fa  Fb commutative. Finally, in the back cube

AFaC  BFbC, the top square is commutative because of the uniqueness of the universal

arrow. This completes the description of the fully commutative diagram (27). Notice that

the commutative cube Fa  Fb extends Θ• to order n + 1 and remember that we still have

to show that the complete commutation condition for the nth cubes is now fulfilled, that is,

the composite cubes A  B  Fb and A  Fa  Fb in (27) coincide. Since the diagram

(27) is fully commutative, this requirement is met. As the full commutation condition for the

nth cubes includes the first half of the condition for the (n + 1)th cubes, induction works.

Eventually, if Ψ• is an objectwise weak equivalence, it follows from the 2-out-of-3 axiom that

Θ• is an objectwise weak equivalence. This completes the proof.

From the previous proof it follows that:

Corollary 5. There is a natural weak equivalence

ω : id`(M)
∼⇒ I .
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The next lemma will allow us to prove Theorem 5.

Lemma 3. There are natural weak equivalences

$ : idM→
∼⇒ R1 ◦ E

and

υ : E ◦R1
∼⇒ I .

Proof. If we go back to the original notation in Diagram (26), we have the commutative cube

A1 A0

RA1 F a1
1 F a1

0

B1 B0

RB1 F b11 F b10

a1

ψ1

∼
ψ0

∼

α(Ra1)

∼

Rψ1

f
a1
1

φ1

φ0
b1

∼ ∼

α(Rb1)

∼
f
b1
1

(29)

for every M→–morphism ψ = (ψ0, ψ1) : a1 → b1 . The M→–morphism $a1 : a1 → fa1
1 is the

upper commutative square which is a weak equivalence as it should be. The naturality of $

precisely means that the total left square and the right square commute, which is the case.

Next we construct υ by proceeding similarly to the proof of Lemma 2. For every a• ∈
`(M) we must define an `(M)–morphism υa• : fa1

•
∼→ fa• , i.e., we have to define a sequence

of commutative cubes which are objectwise weak equivalences. Moreover, for every `(M)–

morphism Ψ• : a• → b• , we must show that the diagram

fa1
• fa•

f b1• fb•

υa•

∼

Φ• Θ•

∼
υb•

(30)

commutes (we have used the notations introduced above). Since we set fa1 = fa1
1 (see proof of

Lemma 2), we choose the identity maps as first two components υa = (υa0 , υ
a
1) : fa1

1 → fa1 of

υa• . Since we also set (θ0, θ1) = (φ0, φ1) , the naturality condition is so far fulfilled. Assume

now that the sequences υa• , υ
b
• of commutative cubes which are objectwise weak equivalences

have been constructed with their implicit arrows up to order n ≥ 1 and that the commutation

condition of (30) is fulfilled up to half the condition for nth cubes.
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To extend the sequences and the commutativity to order n+1 , we start by describing the

total parallelepiped in the diagram

0 CFa1
n

F a1
n−1

0 C
F
b1
n

F b1n−1

CAn CFan Fan−1

CBn CFbn
Fbn−1

∼

∼

∼
S2

S1

∼∼

∼
S3

∼
∼

S4∼

(31)

The arrow F a1
n−1 → F b1n−1 is φn−1 , the arrow F a1

n−1 → Fan−1 is υan−1 , the arrow CAn → Fan−1

is the composite of CAn → An−1 in a• and ωan−1 : An−1 → Fan−1 (see Corollary 5), the arrow

CAn → CBn is the implicit arrow in the nth cube of Ψ• , and Fan−1 → Fbn−1 is θn−1 . All four

rectangles of the parallelepiped commute (for the commutativity of the lower rectangle, see

commutative diagram (27)). By definition, we get the vertex CFa1
n

(resp., CFan), if we apply the

fixed functorial trivial cofibration - fibration factorization system (see Remark 3) to 0→ F a1
n−1

(resp., CAn → Fan−1). Since the system is functorial, we also get the five central arrows,

S1, S2, S3, S4 and the diagonal arrow. A priori we even get two diagonal arrows, one, say D1 ,

induced by the commutative square, which is made up of the top and front rectangle, and

one, D2 , from the commutative square, which is made up of the back and bottom rectangle.

From the functoriality of the factorization system follows that D1 = S3 ◦S1 and D2 = S4 ◦S2 .

However, these two commutative squares coincide as the right square of (31) commutes (since

half of the commutation condition is satisfied for the nth cubes that correspond to (30)), so

that D1 = D2 , i.e., so that the central square of (31) commutes.

In the right cube of Diagram (32)

F a1
n+1 F a1

n

Fan+1 Fan

F b1n+1 F b1n

Fbn+1 Fbn

CFa1
n

F a1
n−1

CFan Fan−1

C
F
b1
n

F b1n−1

CFbn
Fbn−1

∼

∼

∼ ∼

∼ ∼

(32)
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the right commutative square is given by υan , f
a1
n , fan and υan−1 . The lower commutative square

is the right back square of Diagram (31). The vertices F a1
n+1 and Fan+1 have been defined as

pullbacks and the resulting commutative squares identified as homotopy fiber sequences. Since

the back pullback square is a homotopy fiber sequence, the universal dashed arrow between

these vertices is a weak equivalence. Hence the right commutative cube in (32) extends the

sequence υa• to order n+ 1 . The left commutative cube is built similarly and it extends υb• to

order n+ 1 . The objectwise weak equivalence condition is satisfied.

We now describe the six cubes in Diagram (32) that contain sloping arrows to the left. In

fact, the top and bottom of these cubes are fully described as soon as the two back and two

front cubes are. The back cube F a1  F b1 (resp., front cube Fa  Fb) is part of Φ• (resp., of

Θ•) and therefore it commutes. The front cube F a1Fa  F b1Fb is commutative because of the

induction assumption that the commutation condition of Diagram (30) is satisfied up to half

the condition for the nth cubes. Finally, the vertical faces of the back cube F a1FaC  F b1FbC

are commutative since the are faces of other commutative cubes. Its lower face is the central

square of (31), which commutes. Its upper face commutes because of the uniqueness of

the universal arrow (see also (27)). We still have to show that the complete commutation

condition for the nth cubes is now fulfilled, that is, the composite cubes F a1  Fa  Fb

and F a1  F b1  Fb in (32) coincide. Since the diagram (32) is fully commutative, this

requirement is met.

We remind the reader of the following lemma [14], as it simplifies the proof of Theorem 5.

Lemma 4. Let C be a category which is equipped with a distinguished family W of morphisms

called weak equivalences, let E be any category and let F ,G ∈ Fun(C, E) be functors which send

weak equivalences to isomorphisms. A family θX : F(X) → G(X) of E–maps indexed by the

objects X of C is a natural transformation Ho(θ) : Ho(F) ⇒ Ho(G) if and only if it is a

natural transformation θ : F ⇒ G .

Lemma 5. Let C, D be categories with distinguished families WC,WD of morphisms and let

F,G ∈ Fun(C, D) be functors which preserve these weak equivalences. A natural weak equiva-

lence η : F
∼⇒ G induces a natural isomorphism

Ho(η) : Ho(F )
∼=⇒ Ho(G) .

Proof of Lemma 5. If we whisker the natural transformation η with the localization functor

γD we get the natural transformation

γD ? η : γD ◦ F ⇒ γD ◦G ,
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all whose components (γD ? η)X = γD(ηX) are isomorphisms. If we apply Lemma 4 to F =

γD ◦ F , G = γD ◦ G and the family (γD ? η)X , and if we write as usual Ho(−) instead of

Ho(γD ◦ −) , we get the announced result.

Proof of Theorem 5. If we apply Lemma 5 to the natural weak equivalence

ω : id`(M)
∼⇒ I

of Corollary 5, we get a natural isomorphism

Ho(ω) : idHo(`(M))

∼=⇒ Ho(I) , (33)

since Ho(id`(M)) = idHo(`(M)) .

Analogously, the natural weak equivalences

$ : idM→
∼⇒ R1 ◦ E and υ : E ◦R1

∼⇒ I

of Lemma 3 induce natural isomorphisms

Ho($) : idHo(M→)

∼=⇒ Ho(R1) ◦Ho(E) and Ho(υ) : Ho(E) ◦Ho(R1)
∼=⇒ Ho(I) . (34)

Indeed, as Ho(R1 ◦ E) is the unique endofunctor of Ho(M→) such that

Ho(R1 ◦ E) ◦ γM→ = γM→ ◦R1 ◦ E ,

and as Ho(R1) (resp., Ho(E)) is the unique functor from Ho(`(M)) to Ho(M→) (resp., from

Ho(M→) to Ho(`(M))) such that

Ho(R1) ◦ γ`(M) = γM→ ◦R1 ( resp., such that Ho(E) ◦ γM→ = γ`(M) ◦ E) ,

we have that

Ho(R1 ◦ E) = Ho(R1) ◦Ho(E)

and similarly for Ho(E ◦R1) .

If we combine (33) and (34) we see that

Ho(R1) : Ho(`(M))� Ho(M→) : Ho(E)

is an equivalence of categories.

As Theorem 5 has now been proven, the map

Ho(R1)a•b• : HomHo(`(M))(a•, b•)→ HomHo(M→)(a1, b1) (a•, b• ∈ `(M))

in Equation (22) is a bijection. Its inverse can be described explicitly using the functor E of

Lemma 1 and the natural weak equivalences ω and υ of Corollary 5 and Lemma 3:
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Proposition 5. Let M be a pointed model category, let a•, b• ∈ `(M) , let a1 := R1(a•) ,

b1 := R1(b•) and let

ξ ∈ HomHo(M→)(a1, b1) .

The unique preimage

Ξ• ∈ HomHo(`(M))(a•, b•)

of ξ under the bijection Ho(R1)a•b• is the composite of Ho(`(M))–morphisms

a• fa• fa1
• f b1• fb• b• ,

γ(ωa• )

∼=
γ(υa• )−1

∼=
Ho(E)(ξ) γ(υb•)

∼=
γ(ωb•)

−1

∼=
(35)

where γ = γ`(M) . If ξ is the class of weak equivalences and formal reversals of weak equivalences,

then Ho(E)(ξ) is an isomorphism and so is Ξ• . In this case, we refer to Ξ• as the canonical

isomorphism in the homotopy category that extends ξ .

Proof. The unique preimage Ξ• is a class

Ξ• = [a•
Ψ•−→ c•

Ω−1
• // d•

Ψ′•−→ · · · Ω′−1
• // b•]

of morphisms→ of `(M) and formal reversals of weak equivalences
∼← of `(M) . If we construct

for each one of these `(M)–morphisms Ψ•,Ω•,Ψ
′
•, · · · ,Ω′• the commutative `(M)–squares (25)

and (30) which encode the naturality of ω and υ , we get the following amalgamation of

commutative `(M)–squares

a• c• d• · · · b•

fa• fc• fd• · · · fb•

fa1
• f c1• fd1

• · · · f b1•

∼ωa•

Ψ•

∼ωc•

∼
Ω• Ψ′•

∼ωd•

∼
Ω′•

∼ωb•

I(Ψ•)
∼

I(Ω•) I(Ψ′•)
∼

I(Ω′•)

∼

I(Ψ•)

υa• ∼υc• ∼υd•

∼
I(Ω•) I(Ψ′•)

∼υb•

∼
I(Ω′•)

(36)

where I := E ◦ R1 . If we apply γ = γ`(M) to (36), we get a commutative Ho(`(M))–diagram

in which the images of the weak equivalences are isomorphisms. It is straightforwardly seen

that the composite

γ(Ω′•)
−1 ◦ · · · ◦ γ(Ψ′•) ◦ γ(Ω•)

−1 ◦ γ(Ψ•) (37)

of the first row is equal to the composite

γ(ωb•)
−1 ◦ γ(υb•) ◦ γ(I(Ω′•))

−1 ◦ · · · ◦ γ(I(Ψ′•)) ◦ γ(I(Ω•))
−1 ◦ γ(I(Ψ•)) ◦ γ(υa•)

−1 ◦ γ(ωa•) (38)
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of the first column, the last row and the last column. Since for any morphism Φ• of `(M) we

have γ(Φ•) = [Φ•] , since for any weak equivalence W• of `(M) we have [W•]
−1 = [W−1

• ] and

since a composite of classes is the class of the corresponding concatenation, the composite

(37) can be written

[Ω′•]
−1 ◦ · · · ◦ [Ψ′•]◦ [Ω•]

−1 ◦ [Ψ•] = [Ω′−1
• ]◦ · · · ◦ [Ψ′•]◦ [Ω−1

• ]◦ [Ψ•] = [Ψ•Ω−1
• Ψ′• · · · Ω′−1

• ] = Ξ• .

(39)

On the other hand, since for any morphism Φ• any weak equivalence W• we have

Ho(I)[Φ•] = γ(I(Φ•)) and Ho(I)[W−1
• ] = γ(I(W•))

−1 ,

the partial composite in (38) of the factors that contain I = E ◦R1 is equal to

Ho(I)[Ω′−1
• ] ◦ · · · ◦Ho(I)[Ψ′•] ◦Ho(I)[Ω−1

• ] ◦Ho(I)[Ψ•] = Ho(E)(Ho(R1)(Ξ•)) = Ho(E)(ξ) .

(40)

The statement (35) now follows from (37), (38), (39) and (40).

As for the second statement in Proposition 5, it suffices to observe that if

ξ = [wω−1w′ · · · ω′−1] ,

then

Ho(E)(ξ) = Ho(E)[ω′−1] ◦ · · · ◦Ho(E)[w′] ◦Ho(E)[ω−1] ◦Ho(E)[w] =

γ(E(ω′))−1 ◦ · · · ◦ γ(E(w′)) ◦ γ(E(ω))−1 ◦ γ(E(w)) ,

which is a composite of isomorphisms, as E preserves weak equivalences.

Theorem 5 has two more corollaries that we will apply later.

Corollary 6. Let M be a pointed model category. The localization

Ho(R1) : Ho(h(M))→ Ho(M→)

of the restriction functor of homotopy fiber sequences yields an equivalence of categories be-

tween the homotopy category of the category of homotopy fiber sequences of M and the homotopy

category of the category of morphisms of M .

Proof. Corollary 6 is a consequence of the proofs of Lemma 1, Lemma 2 and Lemma 3 in

which we stop the iterative process after the first step.
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Corollary 7. Let M and N be pointed model categories and let F ∈ Fun(M, N) be a functor

which preserves weak equivalences between fibrant objects and sends the zero object 0M of M to

an acyclic object F (0M) of N . In addition, let

a : A2
a2−→ A1

a1−→ A0 and b : B2
b2−→ B1

b1−→ B0

be objectwise fibrant homotopy fiber sequences of h(M) and assume that there exists a weak

equivalence

w = (w0, w1) : a1 → b1

in M→. Then F preserves the homotopy fiber sequence a ∈ h(M) , i.e., we have F (a) ∈ h(N)

if and only if it preserves the homotopy fiber sequence b ∈ h(M) , i.e., if and only if we have

F (b) ∈ h(N) . If F preserves all weak equivalences, the result is true without a and b being

objectwise fibrant.

Proof. In view of Corollary 6, Proposition 5 is also valid if we replace `(M) by h(M) . The unique

preimage Ξ ∈ HomHo(h(M))(a, b) of

ξ := γM→(w) = [w] ∈ HomHo(M→)(a1, b1)

under the bijection Ho(R1)ab is

Ξ : a fa fa1 f b1 fb b .
γ(ωa)

∼=
γ(υa)−1

∼=
γ(E(w))

∼=
γ(υb)

∼=
γ(ωb)−1

∼=

This means that Ξ is the class of

a fa fa1 f b1 fb b ,ωa

∼
(υa)−1 E(w)

∼
υb

∼
(ωb)−1

so that we have a zigzag

a fa fa1 f b1 fb bωa

∼
υa

∼
E(w)

∼
υb

∼
ωb

∼ (41)

of weak equivalences between objectwise fibrant homotopy fiber sequences. It now suffices

to show that if there is a weak equivalence W : d
∼→ e between objectwise fibrant homotopy

fiber sequences d, e ∈ h(M) , then F (d) ∈ h(N) if and only if F (e) ∈ h(N) . Weak equivalence of

homotopy fiber sequences means of course a morphism of homotopy fiber sequences which is

objectwise a weak equivalence. Hence W is a commutative M–cube which is objectwise a weak

equivalence of M (see (42) and omit F ). If we apply F to W we get a commutative N–cube

which is objectwise a weak equivalence of N (see (42)) (?1). From Proposition 2 it follows that

F (d) is a model square if and only if F (e) is one. Since CD and F (0M) are acyclic, i.e., since

0M
∼→ CD and 0N

∼→ F (0M) , we get that 0N
∼→ F (0M)

∼→ F (CD) (?2), so that F (CD) is acyclic.
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The same is true for F (CE) . Hence F (d) is a homotopy fiber sequence if and only if F (e) is

a homotopy fiber sequence.

F (D2) F (D1)

F (E2) F (E1)

F (CD) F (D0)

F (CE) F (E0)

∼ ∼

∼ ∼

(42)

Notice that we used the assumption that the homotopy fiber sequences a and b are objectwise

fibrant only in (?1) and (?2) . Hence this assumption is not necessary if F preserves all weak

equivalences.

4 Puppe’s long homotopy fiber sequence

The results of this section are based on a suitable notion of loop space functor.

It is well known that the path space fibration of a pointed topological space (X,x0) is

the fibration

πX : Path0X → X

whose total space

Path0X := {α ∈ C0([0, 1], X) : α(0) = x0}

is the space of paths of X with starting point x0 and whose projection πX maps every path

α to its end point α(1) . The fiber Path0X ×X 0 of πX over x0 is the loop space of X at x0 .

A similar concept exists in every pointed model category M . Indeed, any functorial factor-

ization into a weak equivalence followed by a fibration

0 0

Path0X Path0 Y

X Y

∼ ∼

leads to an endofunctor Path0 : M→ M and a natural transformation Path0 ⇒ idM . However,

we prefer to work with a weaker notion of based path space functor Path0 :
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Definition 3. A based path space functor in a pointed model category M is an endofunctor

Path0 : M→ M

together with a natural transformation

π : Path0 ⇒ idM

whose components πX : Path0X � X at all fibrant X ∈ M are fibrations with acyclic domain

Path0X
∼← 0 .

Remark 4. An important special case occurs when the pointed model category under consid-

eration is right proper and the condition that the components of the natural transformation

π are fibrations with acyclic domain is fulfilled for each object X , whether fibrant or not

(just as when the based path space functor is induced by a functional factorization). In the

following we refer to this case as the strongly proper case.

Let I be the category 1→ 2← 0 . The functor category Fun(I, M) is then the category of

cospans of M . To every based path space functor Path0 we can associate the functor

CPath0 : M→ Fun(I, M)

(if there is no possibility of confusion, we simply write C) that is defined on objects X ∈ M by

the cospan

CX : 0→ X ← Path0X

and on morphisms f : X → Y of M by the commutative diagram

CX 0 X Path0X

CY 0 Y Path0 Y

Cf :

Definition 4. In a pointed model category M , the loop space functor associated to a based

path space functor Path0 is the composite

ΩPath0 := Lim ◦ CPath0 : M→ M

(or just Ω if no confusion is possible) of the cospan functor CPath0 : M → Fun(I, M) and the

limit functor Lim : Fun(I, M)→ M . In particular the loop space of X ∈ M is the object

ΩX = Path0X ×X 0 ∈ M .
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Remark 5. From here on we work in a fixed pointed model category M , which is equipped

with a fixed based path space functor Path0 , and consider the associated loop space functor

Ω .

Theorem 6. The loop space functor preserves all fibrant objects, the weak equivalences be-

tween fibrant objects and the objectwise fibrant homotopy fiber sequences. In the strongly

proper case, the loop space of every object is fibrant and the loop space functor preserves all

weak equivalences and all homotopy fiber sequences.

Proof. We start with a few observations. In this proof we have 0
∼→ Path0X � X for every

object X ∈ M that we consider, since either this object is fibrant or we work in the strongly

proper case. For every M–morphism f : X → Y , we get a commutative diagram

0

0

ΩY Path0 Y

ΩX Path0X

0 Y

0 X

∼
∼

∼

∼
f

(43)

It contains three types of commutative squares, which will appear several times below. We

refer to squares similar to the commutative right lower square as squares of the type P , to

squares similar to the commutative front square as squares of the type L , and to squares

similar to the commutative upper square as squares of the type U . In every type P square

the arrow between the path spaces is a weak equivalence. Further, it follows from Corollary

2 that every type L square is a model square. Finally, in every type U square that is induced

by a weak equivalence f , the universal arrow is a weak equivalence because of Theorem 3 and

Theorem 4.

From the last observation and the closedness of fibrations under pullbacks it follows that

the statements about weak equivalences and fibrant objects in Theorem 6 are true.

Let now A
f→ A g→ A be a homotopy fiber sequence. If we are not in the strongly proper

case, we assume that it is objectwise fibrant. If we factor g into a weak equivalence followed
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by a fibration, we get the following commutative diagram

A A

K := ker ḡ Ā

CA A

0 A

g ∼

ḡ

(44)

From Corollary 2 it follows that the front square is a homotopy fiber sequence. Since Ω is an

endofunctor that preserves weak equivalences between fibrant objects or, in the strongly proper

case, all weak equivalences, and since Ω(0) = Path0(0) is acyclic, we can apply Corollary 7 to

the images under Ω of the homotopy fiber sequences a : A→ A→ A and k : K → Ā → A :

to show that Ω(a) is a homotopy fiber sequence, it suffices to prove that Ω(k) (Ω applied to

the front square of (44)) is a homotopy fiber sequence.

Because of Proposition 2, it is even enough to build a model square that is weakly equiva-

lent to the commutative square Ω(k) . We get this model square by constructing the following

commutative diagram step by step. The diagram has an upper, a lower, a left, a right, a front,

a back and two middle parts, the parallel (to the front) middle part and the orthogonal one.

In the following description, the first adjective refers always to the part and the second to the

square we are looking at in that part. For instance, the right front square is the front square

of the right part, i.e., the square Path0 Ā Ā Path0 A A , whereas the front right square is the

right square of the front part, i.e., the square K Ā 0 A .

ΩK Path0K

ΩĀ K Path0 Ā

ΩK Ω(0) = Path0 0

0 K Ā

ΩĀ ΩA Path0 A

0 0 A

(45)

We start from the front right square (which is the front homotopy fiber sequence of (44)). The

right front square is a type P square. Let now K be the kernel of the morphism Path0 Ā �
Ā� A : Corollary 2 implies that the resulting square (the ‘diagonal’ square) is a homotopy
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fiber sequence. The universal arrow K 99K K makes the upper right square and the middle

upper triangle commutative. The pasting law for model squares now implies that the upper

right square is a model square. The lower right square is a type L square. The universal

arrow K 99K ΩA renders the middle lower triangle, the middle front square and the middle

right square commutative, so that the right cube is fully commutative. Moreover, Theorems

3 and 4 imply that this universal arrow is a weak equivalence.

We now describe the front left cube. Its front, left and lower squares obviously commute

(and so does its right square). The total upper front square is a type L square and therefore

a model square. Since K is a kernel, the universal arrow ΩĀ 99K K makes the parallel bent

triangle commutative. As K is a kernel, the upper front left square commutes and because of

the pasting law it is a model square. The parallel middle part of 45 is a type U square. As

ΩA is a pullback, the middle left square commutes.

It still remains to explain the back cube and the back 3D wedge. We start looking at the

union of this cube and wedge. The lower (left) square is the commutative square Ω(k) and

the lower triangle can be viewed as a type U square. The left square obviously commutes

and the right square is the image under Path0 of a commutative square and is therefore itself

commutative. The back square can be interpreted as a type U square and the total upper

square is also a type U square. To understand the middle square (the back square of the

orthogonal middle part) and the resulting subdivision of the union, we have to look again at

the overall diagram (45). As K is a kernel, there is a universal arrow Path0K 99K K that

makes the upper triangle commutative. The total upper left square is a type L and a model

square and since K is a kernel, the upper back square commutes and is, in view of the pasting

law, a model square.

It suffices now to show that this model square is weakly equivalent to Ω(k) . We know

already that Path0K → Path0 0 and K 99K ΩA are weak equivalences and that the lower

back square commutes. Hence all we have to do is to prove that the middle back square is

commutative. However, this is the case as ΩA is a pullback.

Let us recall that if f : X → Y is a base point preserving continuous map between pointed

topological spaces (X,x0) and (Y, y0) , its homotopy fiber or homotopy kernel

Kf := Path0 Y ×Y X = {(α, x) ∈ Path0 Y ×X : α(1) = f(x)}

= {(α, x) ∈ C0([0, 1], Y )×X : α(0) = y0, α(1) = f(x)}

fits into the ‘homotopy fiber sequence’ Kf → X → Y . The latter can be extended to a long

sequence. More precisely, the loop space

ΩY := {α ∈ C0([0, 1], Y ) : α(0) = α(1) = y0 = f(x0)}
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injects into the homotopy fiber Kf thus providing a connecting morphism δ : ΩY → Kf .

The extending long sequence mentioned is then the sequence

· · · → Ω2Y → Ω(Kf )→ ΩX → ΩY → Kf → X → Y

which is referred to as Puppe’s sequence.

We will generalize Puppe’s sequence to our context. We start with the following definition

(see also Remark 5):

Definition 5. Let f : X → Y be an M–morphism between fibrant objects. We refer to the

pullback

Kf := Path0 Y ×Y X

as the homotopy kernel of f , to the universal arrow

δf : ΩY 99K Kf

as the connecting morphism associated to f

ΩY Path0 Y

Kf Path0 Y

0 Y

0

X Y

X Y

δf
pf

πf

∼

f

f

(46)

and to the sequence

Pf : · · · −→ Ω2Y
Ω(δf )
−→ Ω(Kf )

Ω(πf )
−→ ΩX

Ωf−→ ΩY
δf−→ Kf

πf−→ X
f−→ Y (47)

as Puppe’s sequence of f .

Definition 5 makes also sense if X and Y are not fibrant. However, if they are, the

homotopy fiber or homotopy kernel Kf of f is a fibrant object and it is in view of Theorem 2

a canonical representative of the homotopy pullback 0×hY X . This justifies the assumption that

X and Y are fibrant. In the strongly proper case, the homotopy fiber Kf of f is isomorphic

in the homotopy category to the homotopy fiber HFib(f) of f of [15]. Therefore we use the

terminology of Definition 5 also in the strongly proper case.
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Proposition 6. Let M→f be the full subcategory of M→ consisting of all the morphisms between

fibrant objects of M and let M→† be the category M→f , except in the strongly proper case where it

is the full category M→ . There is an extension functor

P : M→† 3 f 7→ Pf ∈ `(M) ,

whose values Pf on objects f ∈ M→f are objectwise fibrant long homotopy fiber sequences and

to which we refer as Puppe’s extension functor.

Proof. Let f ∈ M→† be an M–morphism with source X and target Y .

We will describe the following commutative diagram using the terminology introduced at

the beginning of the proof of Theorem 6.

ΩX Path0X Path0X 0

ΩY Kf Path0 Y 0

0 X Y

∼

∼ (48)

The three lower squares of (48) are nothing more that the commutative cube of (46) in

Definition 5. The lower right square is a model square and even a homotopy fiber sequence

because of Corollary 2 and the total lower square is a type L square and therefore also a model

square. From the pasting law for model squares it now follows that the lower left square is

a homotopy fiber sequence. The total left square is also a model square as it is of the type

L . The total upper square is of the type U and the total right square is of the type P . The

arrow Path0X 99K Kf is the universal morphism and makes the upper right square and the

vertical middle bent triangle commutative. The upper left square commutes because of the

uniqueness of the universal morphism from ΩX to Kf . Finally the pasting law implies that

the upper left square is a homotopy fiber sequence.

Since Ω preserves objectwise fibrant homotopy fiber sequences and even all homotopy fiber

sequences if we work in a strongly proper environment, the images

Ω(Kf )→ ΩX → ΩY , Ω2Y → Ω(Kf )→ ΩX , Ω2X → Ω2Y → Ω(Kf ) , · · ·

are all homotopy fiber sequences that are objectwise fibrant if f ∈ M→f .

Let now f, g ∈ M→† be M–morphisms with source X,U and target Y, V , respectively, and

let ψ = (ψ0, ψ1) : f → g be an M→–morphism between them. The next diagram, in which
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dashed arrows represent universal morphisms as usual, defines Pψ : Pf → Pg and shows that

Pψ is an `(M)–morphism, i.e., a sequence of commutative cubes.

ΩX Path0X

ΩY Kf Path0 Y

ΩU Path0 U

0 X Y

ΩV Kg Path0 V

0 U V

f

ψ0

ψ1

g

(49)

To convince ourselves of this claim, we can first note that all arrows from the back part of

Diagram (49) to the front part are easy to understand. The commutation of the three cubes

of (49) is obvious because of the uniqueness of universal arrows. As Ω is a functor, we get

the desired sequence of commutative cubes. Moreover, the assignment P : ψ 7→ Pψ clearly

respects compositions and identities, which completes the proof.

Proposition 7. The extension Pf ∈ `(M) of a morphism f ∈ M→† to a long homotopy fiber se-

quence is unique up to a canonical isomorphism of Ho(`(M)), i.e., a zigzag of weak equivalences

of `(M) .

Proof. The statement is a consequence of Proposition 5. Indeed, if b• ∈ `(M) is another

extension of f than a• := Pf ∈ `(M) , there is a canonical isomorphism in the homotopy

category of `(M) between a• and b• that extends the class ξ := [id : f → f ] .

In Algebraic Topology the long exact sequence of homotopy groups of a fibration is a

consequence of Puppe’s sequence of the fibration: to get the long exact sequence it suffices to

apply to Puppe’s sequence the covariant Hom functor in the homotopy category associated to

the 0-sphere. A similar result exists in our context of a pointed model category M equipped

with a based path space functor Path0 and the corresponding loop space functor Ω . More

precisely, if

[A,−] := HomHo(M)(A,−)

is the covariant Hom functor in the homotopy category associated to an object A ∈ M and if

γ is the localization functor of the category M , we have the following
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Proposition 8. Let f ∈ M→† and let A ∈ M . The sequence

· · · −→ [A,Ω2Y ]
[A,γ(Ω(δf ))]
−→ [A,Ω(Kf )]

[A,γ(Ω(πf ))]
−→ [A,ΩX]

[A,γ(Ωf)]−→

[A,ΩY ]
[A,γ(δf )]
−→ [A,Kf ]

[A,γ(πf )]
−→ [A,X]

[A,γf ]−→ [A, Y ] (50)

is a long exact sequence of HomHo(M)–sets.

We will show later that when we apply this result to chain complexes of modules, we get

the usual long exact sequence of homology modules (since our theory is an abstraction of

aspects of pointed topological spaces, it is not surprising that in this case we obtain the usual

long exact sequence of homotopy groups). Further we will explain what an exact sequence

of HomHo(M)–sets is after giving the next proposition of which Proposition 8 is obviously a

corollary.

Theorem 7. Let X
f−→ X g−→ X be a homotopy fiber sequence in M and let A be an object

of M . Then the sequence

[A,X]
[A,γf ]−→ [A,X ]

[A,γg]−→ [A,X] (51)

is an exact sequence of HomHo(M)–sets.

Now as to the meaning of exactness, let f : X → X be an M–morphism and let A be an

object of M . Then γf : X → X is the Ho(M)–morphism

γf = [F̃ C̃f ]' ∈ [X,X ] ,

where F̃ is a local fibrant C-replacement, where C̃ is a local cofibrant F-replacement and

where [−]' denotes the homotopy class. Further [A, γf ] : [A,X]→ [A,X ] is the set-theoretical

morphism

[A, γf ] = [F̃ C̃f ]' ◦ − .

We define im[A, γf ] as the set of images and ker[A, γf ] as the set of elements that are sent to

0[A,X ] , where 0[A,X ] is the image under γ of the zero morphism 0AX : A
tA→ 0

iX→ X :

0[A,X ] = γ(0AX ) = γ(iX )◦γ(tA) = [0
F̃ C̃iX−→ F̃ C̃X ]'◦ [F̃ C̃A

F̃ C̃tA−→ 0]' = [F̃ C̃A→ 0→ F̃ C̃X ]' .

The sequence (51) is exact now means that

im[A, γf ] = ker[A, γg] .
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Proof. Let F̃X ∼→ F̄X � F̃X be a factorization of a lifting F̃ g : F̃X → F̃X into a weak

equivalence followed by a fibration and let K → F̄X � F̃X be the kernel of this fibration.

Since K = F̄X ×F̃X 0 , we have two homotopy fiber sequences

x : X X X

k : K F̄X F̃X

f g

∼ ∼
κ h

(52)

whose restrictions x1 and k1 are related by a weak equivalence w = (w0, w1) in M→ and an

isomorphism ξ := γM→(w) in Ho(M→) . For later use, we note that all of the nodes in the lower

sequence are fibrant.

In view of Proposition 5, the homotopy fiber sequences x and k are related by a zigzag

(41) of weak equivalences of homotopy fiber sequences, i.e., by a zigzag of commutative cubes

that are objectwise weak equivalences (hence the corresponding vertices of x and k are all

related by a zigzag of weak equivalences of M). If we apply γ and [A,−] to these cubes, we

get in particular the following commutative squares in the category Set of sets

[A,X] [A,X ] [A,X]

[A,K]
[
A, F̄X

] [
A, F̃X

]

[A, γf ] [A, γg]

b1 b2 b3

[A, γκ] [A, γh]

(53)

whose vertical arrows are bijections. More precisely, as said above, the corresponding vertices

X and K, for example, are related by a zigzag of weak equivalences
ω−→ and weak equivalences

$←− . When we apply γ we get a zigzag of isomorphisms

γ(
ω−→) = [F̃ C̃

ω−→]' and γ(
$←−) = [F̃ C̃

$←−]' ,

so that the composite i1 of the

[F̃ C̃
ω−→]' and [F̃ C̃

$←−]−1
'

is an isomorphism in Ho(M) from X to K . The bijection b1 is now b1 = [A, i1] . As a map

between fibrant-cofibrant objects is a weak equivalence if and only if it is a homotopy equiv-

alence, the F̃ C̃
$←− are invertible up to homotopy by weak equivalences

W−→ and

[F̃ C̃
$←−]−1
' = [

W−→]' .
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Therefore i1 is a composite of homotopy classes of weak equivalences, so it is the homotopy

class of a weak equivalence:

i1 = [F̃ C̃X
∼→ F̃ C̃K]' .

It follows that

b10[A,X] = [F̃ C̃X
∼→ F̃ C̃K]' ◦ [F̃ C̃A→ 0→ F̃ C̃X]' = [F̃ C̃A→ 0→ F̃ C̃K]' = 0[A,K] ,

i.e., that the bijections b1, b2 and b3 preserve the zero elements.

Moreover, for every object A ∈ M , there is a cofibrant objectA ∈ Mc and a weak equivalence

ω : A ∼→ A of M . If we apply γ we get an isomorphism i : A
∼=→ A of Ho(M) given by

i = γω = [F̃ C̃ω]' = [F̃ C̃A ∼→ F̃ C̃A]' ,

and for every object B ∈ M we get a bijection

bB := [i, B] = − ◦ i : [A,B]
∼=→ [A, B]

that sends 0[A,B] to

bB0[A,B] = [F̃ C̃A→ 0→ F̃ C̃B]' ◦ [F̃ C̃A ∼→ F̃ C̃A]' = 0[A,B] .

Hence we have the following commutative Set–squares

[A,K]
[
A, F̄X

] [
A, F̃X

]

[A,K]
[
A, F̄X

] [
A, F̃X

]

[A, γκ] [A, γh]

bK bF̄X bF̃X

[A, γκ] [A, γh]

(54)

As for the commutativity of these squares, note that if for instance [ψ]' ∈ [A,K] , then

[A, γκ]
(
bK [ψ]'

)
= γκ ◦

(
[ψ]' ◦ i

)
=
(
γκ ◦ [ψ]'

)
◦ i = bF̄X

(
[A, γκ][ψ]'

)
.

If we combine (53) and (54), we get commutative squares

[A,X] [A,X ] [A,X]

[A,K]
[
A, F̄X

] [
A, F̃X

]

[A, γf ] [A, γg]

[1 [2 [3

[A, γκ] [A, γh]

(55)
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whose vertical arrows are bijections which respect the zero elements of their source and target

HomHo(M)–sets. It is straightforward to check that the exactness of the upper sequence of (55)

is equivalent to the exactness of the lower sequence. For instance, if

im[A, γκ] ⊂ ker[A, γh]

and if [φ]' ∈ [A,X] , we have

[A, γg]
(
[A, γf ][φ]'

)
= [−1

3

(
[A, γh]

(
[A, γκ]([1[φ]')

))
= [−1

3 0[A,F̃X] = 0[A,X] .

Hence, it suffices to show that the lower sequence is exact.

Since A ∈ Mc and K, F̄X , F̃X ∈ M f , the description of the HomHo(M)–sets in the lower

sequence of (55) can be simplified. Indeed, the map

γ : HomM(A,K) 3 f 7→ γf ∈ [A,K]

is surjective and induces a 1:1 correspondence

γ̃ : HomM(A,K)/ ' 3 [f]' 7→ γf ∈ [A,K] , (56)

so that

γf = [f]' (57)

if we identify the homotopy classes with the morphisms in the homotopy category [11, Propo-

sition 5.11].

Hence every element of im[A, γκ] reads [A, γκ](γf) and, since

[A, γh]
(
[A, γκ](γf)

)
= γ(h ◦ κ ◦ f) = γ(0K,F̃X ◦ f) = γ(0A,F̃X) = 0[A,F̃X] ,

we have

im[A, γκ] ⊂ ker[A, γh] .

Conversely, if γg = [g]' ∈ [A, F̄X ] is an element of ker[A, γh] , we have

[A, γh](γg) = γ(h ◦ g) = [h ◦ g]' = 0[A,F̃X] = γ(0A,F̃X) = [0A,F̃X]' ,

so that h ◦ g and 0 := 0A,F̃X are left homotopic, i.e., so that (h ◦ g)q 0 : AqA → F̃X factors

through a cylinder object CylA of A . The cylinder object is a factorization

A
φ1,φ2

⇒ AqA
i
� CylA

w
∼→ A
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of the fold map idAq idA : AqA → A into a cofibration i and a weak equivalence w , which

means that

w ◦ i1 := w ◦ i ◦ φ1 = idA and w ◦ i2 := w ◦ i ◦ φ2 = idA .

Since A is cofibrant and cofibrations are closed under pushouts, the morphisms φ1 and φ2 are

cofibrations and so are the morphisms i1 and i2 , which are obviously also weak equivalences.

The factorization of (h ◦ g) q 0 mentioned above now means that there is a morphism H :

CylA → F̃X such that H ◦ i1 = h ◦ g and H ◦ i2 = 0 , so that we have the commutative

squares

A CylA A

F̄X F̃X 0

i1
∼

g `
H

∼
i2

h

(58)

The dashed arrow ` exists in view of the lifting axiom. Since h ◦ ` ◦ i2 = 0 , the morphism

`◦ i2 factors through the kernel (K,κ) of h , which means that there is a morphism f : A → K

such that ` ◦ i2 = κ ◦ f . Hence we have the commutative diagram

A CylA A

F̄X F̄X K

i1
∼

g `

∼
i2

f

κ

(59)

This means that ` is a homotopy between g and κ ◦ f :

γg = [g]' = [κ ◦ f]' = γκ ◦ γf = [A, γκ](γf) ,

i.e.,

ker[A, γh] ⊂ im[A, γκ] .

We denote h(M f) the full subcategory of h(M) made of the objectwise fibrant homotopy

fiber sequences of M . The category h(M†) is the category h(M f) except in the strongly proper

case where it is the category h(M) . Proposition 8 shows that we can associate a long exact

sequence to every g ∈ M→† , i.e., to every k ∈ h(M†) of the type k : Kg
πg−→ X g−→ X . It is also

possible to associate a long exact sequence to an arbitrary x ∈ h(M†) :

Proposition 9. Let x : X
f−→ X g−→ X be a homotopy fiber sequence x ∈ h(M†) and let

A ∈ M . Then there is a connecting morphism ∆ ∈ [ΩX, X] such that

· · · −→ [A,Ω2X]
[A,RΩ(∆)]−→ [A,ΩX]

[A,γ(Ωf)]−→ [A,ΩX ]
[A,γ(Ωg)]−→ (60)
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[A,ΩX]
[A,∆]−→ [A,X]

[A,γf ]−→ [A,X ]
[A,γg]−→ [A,X] (61)

is a long exact sequence of HomHo(M)–sets.

Remark 6. If we do not work in a strongly proper environment and x ∈ h(M) is not necessarily

objectwise fibrant, we can apply a fibrant replacement functor R to x and associate a long

exact sequence to Rx ∈ h(M f) (see Proposition 2).

Proof. Since x ∈ h(M) induces the above k ∈ h(M) and the restrictions k1 = x1 = g ∈ M→ are

related by the isomorphism

ξ := idHo(M→)g = Γ(idM→g) = Γ(idMX , idMX) ∈ HomHo(M→)(k1, x1) ,

where Γ := γM→ , Proposition 5 implies that there is a canonical isomorphism Ξ ∈ HomHo(h(M))(

k, x) that extends ξ and Equation (41) gives the h(M)–zigzag

k fk fg fg fx xωk

∼
υk

∼
E(id)

∼
υx

∼
ωx

∼

whose class is equal to Ξ . All arrows of this zigzag are commutative cubes in M that are

objectwise weak equivalences of M . In particular we have the following commutative M–squares

Kg X X

Fk2 Fk1 Fk0

F g2 F g1 F g0

...
...

...

X X X

πg

∼ωk2

g

∼ωk1 ∼ωk0

fk2 fk1

∼

fg2

∼υk2

∼

∼υk1

fg1

∼

∼υk0

f

∼ ∼
g

∼

If we apply the functor γ = γM to them, we get commutative Ho(M)–squares in which the weak

equivalences have been transformed into isomorphisms of Ho(M) . By inverting the upward

isomorphisms, we obtain the commutative Ho(M)–diagram

Kg X X

X X X

γ(πg)

∼=

γg

∼= ∼=
γf γg

(62)
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in which the two last isomorphisms are equalities. Indeed, as

Ξ = z(ωx)−1 ◦z(υx) ◦z(υk)−1 ◦z(ωk) ,

where z = γh(M) , we have

Γ(idMX , idMX) = ξ = Ho(R1)(Ξ) =

Ho(R1)(z(ωx)−1) ◦ Ho(R1)(z(υx)) ◦ Ho(R1)(z(υk)−1) ◦ Ho(R1)(z(ωk)) =

(Γ(R1ω
x))−1 ◦ Γ(R1υ

x) ◦ (Γ(R1υ
k))−1 ◦ Γ(R1ω

k) . (63)

As composition and weak equivalences of M→ have been defined objectwise, applying Γ means

that we apply γ objectwise (a similar remark holds for h(M) and z). Hence, the last row of

(63) coincides with the two last columns of (62), which are therefore equalities as announced.

If we denote the left isomorphism in (62) with ε and the composite morphism

ΩX
γ(δg)−→ Kg

ε−→ X , (64)

with ∆ , we can add a corresponding square in Diagram (62) on the left. If we apply the functor

[A,−] to this extended commutative Ho(M)–diagram, we get the commutative Set–diagram

[A,ΩX] [A,Kg] [A,X ] [A,X]

[A,ΩX] [A,X] [A,X ] [A,X]

[A,γ(δg)] [A,γ(πg)]

[A,ε] ∼=

[A,γg]

[A,∆] [A,γf ] [A,γg]

(65)

On the other hand, since Ω in the general case sends weak equivalences between fibrant objects

to weak equivalences (resp., in the strongly proper case preserves all weak equivalences), the

right derived functor RKΩ ∈ Fun(Ho(M), Ho(M)) exists and satisfies

RKΩ ◦ γ .
= γ ◦ Ω ◦ F̃ (resp., RKΩ ◦ γ .

= γ ◦ Ω) .

In particular, if h : Y → Z is an M–morphism between fibrant objects (resp., in the strongly

proper case any M–morphism), we get that

RΩ(γh) : RΩ(γY )→ RΩ(γZ) is given by γ(Ωh) : ΩY → ΩZ ,

where we omitted superscript K . So if we apply first RΩ to the above-mentioned extended

commutative Ho(M)–diagram and then [A,−] , we get the commutative Set–diagram[
A,Ω2X

]
[A,Ω(Kg)] [A,ΩX ] [A,ΩX]

[
A,Ω2X

]
[A,ΩX] [A,ΩX ] [A,ΩX]

[A,γ(Ω(δg))] [A,γ(Ω(πg))]

[A,RΩ(ε)] ∼=

[A,γ(Ωg)]

[A,RΩ(∆)] [A,γ(Ωf)] [A,γ(Ωg)]

(66)
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We can of course iterate this approach. The upper rows (resp., the lower rows) of (65), (66)

and of the commutative diagrams obtained from the iteration are the long exact sequence

(resp., the sequence) of Proposition 8 (resp., of Proposition 9). From the proof of Theorem

7 we know that if the vertical bijections in (65), (66)... respect the zero elements, then the

sequence of Proposition 9 is exact as well. We know from the same proof that the bijection

[A, ε] respects the zero elements, as ε is the composite of images γω of weak equivalences ω and

inverses γ$−1 of images of weak equivalences $ . Since RΩ(ε) is the composite of the γ(Ωω)

and the γ(Ω$)−1, so is the composite of images under γ of weak equivalences Ωω and inverses

of such images, the bijection [A,RΩ(ε)] respects also the zero elements. This completes the

proof.

We close this section with the following comparison of different loop space functors.

Proposition 10. Let M be a pointed model category, let Patha0 , Pathb0 , Pathc0 ... be based

path space functors in M and denote Ωa, Ωb, Ωc... the associated loop space functors. There

exist canonical natural isomorphisms ιba : RΩa ∼⇒ RΩb which satisfy the cocycle condition

ιcb ◦ ιba = ιca .

Proof. Let g : X → X be an M–morphism, choose a lifting F̃ g : F̃X → F̃X , consider Puppe’s

sequences Pa
F̃ g
,Pb

F̃ g
∈ `(M) and observe that their restrictions in M→ are related by the isomor-

phism ξ := idHo(M→)(F̃ g) . If we proceed as in the proof of Proposition 9 (but in the case of

`(M) instead of h(M)), we get the commutative Ho(M)–diagram

· · · Ωa(F̃X ) Ωa(F̃X) Ka
F̃ g

F̃X F̃X

· · · Ωb(F̃X ) Ωb(F̃X) Kb
F̃ g

F̃X F̃X

γ(Ωa(F̃ g))

∼= ∼=

γ(δa
F̃g

) γ(πa
F̃g

)

∼=

γ(F̃ g)

γ(Ωb(F̃ g)) γ(δb
F̃ g

) γ(πb
F̃ g

) γ(F̃ g)

The degrees 3 and 4 part of this commutative diagram reads

RΩa(X ) RΩa(X)

RΩb(X ) RΩb(X)

RΩa(γg)

∼=ιbaX
∼=ιbaX

RΩb(γg)

which proves the ‘canonical isomorphism’ part of Proposition 10 (see Lemma 4). The ‘cocycle

condition’ part is a direct consequence of Proposition 5.
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5 Comparison with Quillen’s fibration sequences

Recall that in any model category M path objects are dual to cylinder objects: a path

object of X ∈ M is an object PathX ∈ M together with a factorization

X
∼→ PathX � X ×X

of the diagonal map

∆X := (idX , idX) : X → X ×X

into a weak equivalence followed by a fibration [we think of the first (resp., second) morphism

of the factorization as the map which assigns to every point the constant path a this point

(resp., to every path its start and end points)]. If we fix a functorial factorization (α, β) of

the diagonal map and f : X → Y is a morphism, we get the commutative diagram

X PathX X ×X

Y PathY Y × Y

α(∆X)

∼
f

β(∆X)

Path f f×f
α(∆Y )

∼
β(∆Y )

Indeed, if we denote π1 and π2 the projections out of Y × Y , there is a unique morphism

(f, f) : X → Y × Y such that

π1 ◦ (f, f) = π2 ◦ (f, f) = f .

Since (f × f) ◦∆X and ∆Y ◦ f satisfy this condition, the total square commutes. It follows

from the functoriality of the factorization that the arrow Path f that makes the left and right

squares commutative exists, and that Path is an endofunctor of M . We refer to Path as the

path space functor of M .

Now let M be a pointed model category as in the preceding sections.

In Section 4 we considered a based path space functor Path0 of M and the corresponding

loop space functor Ω of M .On fibrant objectsX ∈ M f the loop space ΩX ∈ M f is the kernel of the

fibration Path0X � X and on M f–morphisms f : X → Y the M f–morphism Ωf : ΩX → ΩY

is the universal arrow

ΩX Path0X X

ΩY Path0 Y Y

kX

Ωf Path0 f f

kY

Quillen defines a loop space functor ΩQ of M from the path space functor Path of M . On

objects X ∈ M the loop space ΩQX ∈ M f is the kernel of the fibration PathX � X ×X and
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on M–morphisms f : X → Y the M f–morphism ΩQf : ΩQX → ΩQY is the universal arrow

ΩQX PathX X ×X

ΩQY PathY Y × Y

κX

ΩQf Path f f×f

κY

A non-obvious result is that for any V ∈ M f the functor of points

[−,ΩQV ] ∈ Fun(Ho(M)op, Set)

is valued in the category Grp of groups and that ‘accordingly’ ΩQV is a group object of Ho(M) .

Another non-trivial result is that if K is the kernel of a fibration U � V between fibrant

objects U, V, there is an M–morphism ρ : ΩQV ×M K → K such that γρ : ΩQV ×Ho(M) K → K

is an action of the group object ΩQV on K .

Theorem 8. Let M be a pointed model category that is equipped with a path space functor

Path implemented by a fixed functorial factorization. Quillen’s loop space functor ΩQ is a

loop space functor in the sense of the present paper, i.e., a loop space functor associated to a

based path space functor PathQ0 of M .

Proof. It is natural to define the based path space PathQ0 X of X ∈ M as the kernel of the

composite PathX � X ×X π1→ X , where π1 is the projection on the first factor of X ×X .

The projection on the second factor will be denoted π2 . For f : X → Y and i ∈ {1, 2} , we

have a commutative diagram

PathQ0 X PathX X ×X X

PathQ0 Y PathY Y × Y Y

kX

PathQ0 f Path f

πi

f×f f

kY

where PathQ0 f is the universal arrow that we get for i = 1 . Since Path is an endofunctor, the

same holds for PathQ0 . If i = 2 the diagram gives a natural transformation PathQ0 ⇒ idM .

The functor PathQ0 is a based path space functor in the sense of Definition 3, if for every

fibrant X ∈ M the M–morphism PathQ0 X → X is a fibration with an acyclic domain.

Since fibrations are closed under pullbacks, the projection πi : X ×X → X is a fibration

if X is fibrant, so that the composite pi : PathX � X × X πi→ X is also a fibration. As

X
∼→ PathX

pi→ X is identity by definition of PathX , it follows from the 2-out-of-3 axiom

that pi is a weak equivalence and therefore a trivial fibration. Since trivial fibrations are
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closed under pullbacks and PathQ0 X := ker p1 = PathX ×X 0 , the morphism PathQ0 X → 0

is a trivial fibration, so that PathQ0 X is acyclic. Next we show that the M-morphism

p2 : PathQ0 X
kX→ PathX

p2→ X

is a fibration. Therefore, let Y
∼
� Z be a trivial cofibration such that the left square of the

diagram

Y PathQ0 X PathX

Z X X ×X

∼

kX

p2

`
l

(0, id)

commutes. To see that the right square also commutes, observe that there is a unique mor-

phism m : PathQ0 X → X ×X such that π1 ◦m = 0 and π2 ◦m = p2 . Since both morphisms

PathQ0 X → X × X in the right square fulfill these conditions, they coincide. As the total

square now commutes, there exists a lifting ` : Z 99K PathX . Since PathQ0 X is a kernel,

there is a unique morphism l : Z → PathQ0 X such that kX ◦ l = ` . As the total upper triangle

commutes and kX is a monomorphism so left cancellable, the left upper triangle commutes.

In order to conclude that the left lower triangle commutes and that p2 is a fibration, it suffices

to notice that (0, id) is left cancellable.

It remains to prove that the loop space functor Ω associated to the chosen based path

space functor PathQ0 is Quillen’s loop space functor ΩQ . For any f : X → Y we have the

following commutative diagram

ΩX PathQ0 X PathX X ×X X

ΩQX X

ΩY PathQ0 Y PathY Y × Y Y

ΩQY Y

lX

Ωf

kX(p2)

PathQ0 f

p2

kX(p1)

Path f

φX

f×f

π2

f

`X

ΩQf

κX(φX)

p1

f

π1

kY kY φY

κY

(67)

in which only the universal morphisms `X and lX and the associated commutative squares

require explanation. Obviously there is a unique morphism `X : ΩQX → PathQ0 X such that

kX(p1) ◦ `X = κX(φX) . (68)
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Notice now that

πi ◦ φX ◦ kX(p1) ◦ kX(p2) = 0 ,

as kX(p1) (resp., kX(p2)) is the kernel of p1 (resp., p2). However, the zero morphism ΩX →
0→ X ×X is the unique morphism from ΩX to X ×X whose composite with πi is the zero

morphism ΩX → 0→ X . Hence

φX ◦ kX(p1) ◦ kX(p2) = 0

and there is a unique morphism lX : ΩX → ΩQX such that

κX(φX) ◦ lX = kX(p1) ◦ kX(p2) . (69)

From (68) and (69) it follows that

kX(p1) ◦ `X ◦ lX = kX(p1) ◦ kX(p2) and `X ◦ lX = kX(p2) ,

as kX(p1) is left cancellable. The commutativity of the square associated with `X , `Y (resp.,

with lX , lY ) follows from the left cancellability of kY (resp., of κY ).

We are now prepared to show that the pair (ΩQX, `X) is a kernel of p2 so that ΩQX
.
= ΩX ,

ΩQf
.
= Ωf and ΩQ .

= Ω , which then completes the proof (cf. Diagram (67)). To see that

(ΩQX, `X) is a kernel, notice first that

p2 ◦ `X = π2 ◦ φX ◦ κX(φX) = 0 .

Further, if λ : Λ → PathQ0 X satisfies p2 ◦ λ = 0 , there is a unique morphism µ : Λ → ΩX

such that kX(p2) ◦ µ = λ . However, then lX ◦ µ : Λ → ΩQX satisfies `X ◦ lX ◦ µ = λ and is

the unique morphism with these properties. Indeed, if ν : Λ→ ΩQX is such that `X ◦ ν = λ ,

then

κX(φX) ◦ ν = kX(p1) ◦ `X ◦ ν = kX(p1) ◦ λ = kX(p1) ◦ kX(p2) ◦ µ = κX(φX) ◦ lX ◦ µ ,

so that ν = lX ◦ µ .

Remark 7. If we dualize the constructions of this paper, we get the reduced suspension

functor Σ instead of the loop space functor Ω . From Theorem 8 and its dualization it follows

that Quillen’s suspension and loop space functors ΣQ and ΩQ are suspension and loop space

functors in our sense. Since

LΣQ : Ho(M)� Ho(M) : RΩQ

are adjoint functors, Proposition 10 and its dualization show that any derived suspension

functor LΣ is left adjoint to any derived loop space functor RΩ .
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Because of Theorems 8 and 6 Quillen’s loop space functor ΩQ ∈ Fun(M, M) preserves weak

equivalences between fibrant objects, so that Theorem 1 implies that its derived functor RKΩQ

exists and is given at X ∈ M by

RΩQ (X)
.
= ΩQ(F̃X) ∈ Ho(M) ,

where we omitted superscript K . Quillen now gives the following

Definition 6. Let M be a pointed model category. A fibration sequence in Ho(M) is a

sequence

X → X → X

in Ho(M) together with a Ho(M)–morphism R : RΩQ(X)×Ho(M) X → X , such that the following

holds:

1. the sequence is isomorphic in Ho(M) to a sequence K → U → V that is implemented

by the kernel K of an M–fibration U � V between fibrant objects U, V , i.e., there is a

commutative Ho(M)–diagram

X X X

K U V

∼=i ∼=j ∼=k (70)

whose vertical arrows are isomorphisms;

2. the morphism R coincides under this isomorphism with the morphism γρ , i.e., if k̃ is

the isomorphism

RΩQ(X)
∼=→ ΩQV

that is induced by k and if k̃−1 × i−1 is the isomorphism

ΩQV ×Ho(M) K
∼=→ RΩQ(X)×Ho(M) X

that is induced by k̃−1 and i−1 , we have

i ◦R ◦ (k̃−1 × i−1) = γρ .

We will show that Quillen’s fibration sequences are tightly related to our homotopy fiber

sequences. An initial observation that confirms this claim is Quillen’s result that if we take a

fibration sequence K → U → V with action γρ , we have a connecting Ho(M)–morphism

δQ : ΩQV → K , (71)
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namely

ΩQV
(id,γ(0))−→ ΩQV ×Ho(M) K

γρ−→ K ,

such that ΩQV
δQ→ K → U is also a fibration sequence. Moreover, Quillen gets a long exact

sequence similar to the long exact sequence in Proposition 8. Finally, the connecting morphism

(71) and the similarly defined connecting morphism

∆Q : RΩQ(X)→ X (72)

render the left square of the diagram

RΩQ(X) X X

ΩQV K U

∆Q

∼=k̃ ∼=i ∼=j

δQ

(73)

commutative.

The next theorem specifies the relationship between fibration sequences and homotopy

fiber sequences.

Theorem 9. A homotopy fiber sequence X
f−→ X g−→ X of h(M f) is a fibration sequence

X
γf−→ X γg−→ X in Ho(M) and the connecting morphism ∆ defined in (64) coincides with the

connecting morphism ∆Q considered in (72).

Proof. Let X
f→ X g→ X be an objectwise fibrant homotopy fiber sequence of M , let X ∼→ X̄

ḡ
�

X be a factorization of g into a weak equivalence followed by a fibration and let (K,κ) be the

kernel of ḡ . Then K
κ→ X̄

ḡ
� X is also a homotopy fiber sequence of M and, if we proceed as

at the beginning of the proof of Proposition 9, we get a commutative Ho(M)–diagram

X X X

K X̄ X

γf

∼=i

γg

∼=j

γκ γḡ

(74)

The group action γρ : ΩQX×Ho(M) K → K mentioned just above Theorem 8 induces a Ho(M)–

morphism

R : RΩQ(X)×Ho(M) X
id×i→ ΩQX×Ho(M) K

γρ→ K
i−1

→ X

which, together with the sequence X
γf→ X γg→ X , satisfies the requirements of Definition 6, so

that this sequence is a fibration sequence in Ho(M) as announced.
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To prove that ∆ = ∆Q we will describe the following commutative Ho(M)–diagram:

ΩQX Kḡ X̄ X

ΩQX Kg X X

ΩQX K X̄ X

ΩQX X X X

γ(δḡ) γ(πḡ)

γk−1 ∼=

γḡ

γ(δg) γ(πg) γg

δQ γκ γḡ

∆ γf

ε ∼=

γg

(75)

The commutative front of Diagram (75) comes from the commutative Ho(M)–diagram (62)

and Equation (64). In particular

∆ = ε ◦ γ(δg) . (76)

The commutative bottom is nothing but the commutative Ho(M)–diagram 74. In particular,

its arrows that are not labelled are the isomorphisms i and j .

The upper row of the back of Diagram (75) consists of the image under γ of the terms

of degrees 0 − 3 of Puppe’s long homotopy fiber sequence Pḡ ∈ `(M f) associated to ḡ ∈ M→f .

Notice that it follows from Diagram (48) and the pasting law for pullbacks that (ΩQX, δḡ) is

the kernel of the fibration πḡ : Kḡ � X̄ with fibrant source and target.

The lower row of the back contains the fibration sequence that is implemented by the

kernel K of the fibration X̄ � X between the fibrant objects X̄ and X and the connecting

morphism

ΩQX
δQ→ K

of Equation (71) that makes

ΩQX
δQ→ K

γκ→ X̄ (77)

a fibration sequence (see paragraph below Definition 6 and [23, Section I.3.5, Proposition 3]).

As in the commutative M–diagram

Kḡ X̄

K X̄

PathQ0 X X

0 X

ḡ

πḡ

κ

k

∼

ḡ
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the front square is a model square and the back square is the pullback of a weakly equivalent

fibrant cospan, the universal arrow k : K 99K Kḡ is a weak equivalence. This explains the

middle and right commutative squares of the back of Diagram (75). In order to show that

(77) satisfies the requirements of Definition 6, Quillen had to construct a sequence that is

implemented by the kernel of a fibration between fibrant objects and is isomorphic in Ho(M)

to (77). Actually he showed that the left square of the back of Diagram (75) commutes and

uses the isomorphism given by the left and middle squares:

δQ = γk−1 ◦ γ(δḡ) . (78)

In order to understand the top square of (75), we consider the commutative M–diagram

Kḡ X̄

Kg X

PathQ0 X X

PathQ0 X X

ḡ

πḡ

πg
∼

g

Once more, since the front square is a model square and the back square is the pullback of a

weakly equivalent fibrant cospan, the universal arrow Kg 99K Kḡ is a weak equivalence. Hence,

the top middle and right squares of (75) commute and their arrows that are not labelled are

isomorphisms; the one on the right is isomorphism j and the one on the left is an isomorphism

that we denote by ι . From the commutativity of Diagram (49) follows that the top left square

of Diagram (75) commutes:

γ(δḡ) = ι ◦ γ(δg) . (79)

It remains to explain the commutativity of the squares that are parallel to the right face

of Diagram (75). Only the commutativity of the leftmost square is not entirely obvious.

However, as

Kg
πg→ X g→ X and K

κ→ X̄
ḡ
� X

are homotopy fiber sequences of M and the factorization

X ∼→ X̄
ḡ

� X

of g implements an isomorphism ξ in Ho(M→) between their restrictions, there is a unique

isomorphism Ξ in Ho(h(M)) that extends ξ . Hence

i ◦ ε = γk−1 ◦ ι . (80)
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If we compare Diagrams (74) and (70), we see that in our case k = id , so that Diagram

(73) shows that

∆Q = i−1 ◦ δQ . (81)

On the other hand, it follows from Equations (76), (79), (80) and (78) that

∆ = ε ◦ γ(δg) = ε ◦ ι−1 ◦ γ(δḡ) = i−1 ◦ γk−1 ◦ γ(δḡ) = i−1 ◦ δQ . (82)

Finally, Equations (81) and (82) allow us to conclude that ∆ = ∆Q .

6 Application to chain complexes

6.1 Long homotopy fiber sequence and long exact homology

sequence

A particular advantage of our homotopy fiber sequence concept and related theory is

that they are easy to apply. Let us summarize our construction. In each pointed model

category that is equipped with a based path space functor, we consider the associated loop

space functor and, for each morphism between fibrant objects, we take the associated homotopy

kernel and connecting morphism. We then get Puppe’s long homotopy fiber sequence and the

corresponding long exact sequences of sets. In this section we apply the previous construction

to chain complexes of modules.

Let A be an Abelian category and denote by Ch(A) the Abelian category of chain complexes

and chain maps in A . If R is a unital ring, the category R−Mod of left R–modules and R–linear

maps is Abelian and Ch(R) := Ch(R − Mod) is the (Abelian) category of chain complexes of

(left) R–modules and corresponding chain maps. We denote Ch≥0(R) the full subcategory of

non-negatively graded chain complexes of R-modules. Both categories, Ch(R) and Ch≥0(R) ,

have a projective model structure in which weak equivalences are quasi-isomorphisms, while

fibrations are degree-wise surjective chain maps in the unbounded case and chain maps that

are surjective in positive degrees in the non-negatively graded case. In particular, in both

cases all objects are fibrant. Moreover, both model categories are pointed with zero object the

chain complex ({0}, 0) .

If p ∈ Z , the translation functor [p] ∈ Fun(Ch(A), Ch(A)) is defined on objects (A, dA) ∈
Ch(A) by

A[p]n := An−p and dA[p] := (−1)pdA , (83)
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and on Ch(A)–morphisms f : (A, dA)→ (B, dB) by f [p]n := fn−p . Further, the mapping cone

Mc(f) of the chain map f is the chain complex given by

Mc(f)n := A[1]n ⊕Bn and dMc(f) :=

(
dA[1] 0

f dB

)
. (84)

It is well known that to every short exact sequence 0 → A
f→ B

g→ C → 0 of chain

complexes and chain maps in A is associated a long exact sequence in homology. It is easy to

see that the short sequences of chain complexes

0→ B
i→ Mc(f)

p→ A[1]→ 0 (85)

(i and p are the canonical injection and projection, respectively) and 0 → C → Mc(g) →
B[1] → 0 are exact. The long exact sequences associated to the latter two short exact

sequences and the long exact sequence associated to the former short exact sequence are

known to coincide. Since Hn(A[p]) = Hn−p(A) , the long exact sequence in homology reads

for instance [27]

· · · −→ H1(Mc(f))
H1(p)−→ H0(A)

H0(f)−→ H0(B)

H0(i)−→ H0(Mc(f))
H0(p)−→ H−1(A)

H−1(f)−→ H−1(B) −→ · · · . (86)

As mentioned above, in the case A = R− Mod , the underlying category Ch(R) or Ch≥0(R)

is a pointed model category. Hence it is natural to ask whether we can find a based path

space functor of the category of chain complexes considered, such that the preceding long

exact sequence in homology associated to f : A→ B or to the sequence

· · · −→ Mc(f)[−1]
p[−1]−→ A

f−→ B
i−→ Mc(f)

p−→ A[1]
f [1]−→ B[1] −→ · · · (87)

can be obtained as a long exact sequence of sets

· · · −→ [M,Ω2B]
[M,γ(Ω(δf ))]
−→ [M,Ω(Kf )]

[M,γ(Ω(πf ))]
−→ [M,ΩA]

[M,γ(Ωf)]−→

[M,ΩB]
[M,γ(δf )]
−→ [M,Kf ]

[M,γ(πf )]
−→ [M,A]

[M,γf ]−→ [M,B] (88)

corresponding to Puppe’s long homotopy fiber sequence

· · · −→ Ω2B
Ω(δf )
−→ Ω(Kf )

Ω(πf )
−→ ΩA

Ωf−→ ΩB
δf−→ Kf

πf−→ A
f−→ B (89)

of f .
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6.2 Chain complexes as pointed model category

The comparison of (87) and (89) suggests that we find a based path space functor

Path0 ∈ Fun(Ch(R), Ch(R))

such that the homotopy kernel Kf := Path0B×B A of a chain map f : A→ B coincides with

the shifted mapping cone Mc(f)[−1] of f , so that we must define Path0B = K idB by

Path0B := Mc(idB)[−1] ∈ Ch(R) ,

for any B ∈ Ch(R) . In view of (83) and (84) we have

(Path0B)n = Bn ⊕Bn+1 and dB := dPath0B = −dMc(idB) =

(
dB 0

− idB −dB

)
.

If B ∈ Ch≥0(R) ⊂ Ch(R) , then its based path space

Path0B : · · ·
dB,2−→ B1 ⊕B2

dB,1−→ B0 ⊕B1
dB,0−→ B0

dB,−1−→ 0

in Ch(R) has a term in degree −1 , so that we define its based path space Trath0B in Ch≥0(R)

by truncation as the sub-complex

Trath0B : · · ·
dB,2−→ B1 ⊕B2

dB,1−→ ker dB,0
dB,0−→ 0 .

If f : A→ B is a chain map, then f⊕f [−1] is a chain map from A⊕A[−1] to B⊕B[−1] , i.e.,

it is a degree 0 R-linear map that commutes with the differentials d⊕ (−d) , so also with the

differentials d since the additional terms are both equal to −f . Hence Path0 f := f ⊕ f [−1] is

a chain map from Path0A to Path0B and its restriction Trath0 f := Path0 f |Trath0 A is valued

in Trath0B and is therefore a chain map from Trath0A to Trath0B . Since ⊕ is the coproduct

functor

q : Ch(R)× Ch(R)→ Ch(R)

on the product category, we have

Path0(g ◦ f) = q
(
g ◦ f, g[−1] ◦ f [−1]

)
= q

(
(g, g[−1]) ◦ (f, f [−1])

)
=

q
(
g, g[−1]

)
◦ q
(
f, f [−1]

)
= Path0 g ◦ Path0 f ,

and the same result obviously holds for the restriction Trath0(g ◦ f) of Path0(g ◦ f) . Since

Path0 and Trath0 clearly preserve identities, they are endofunctors of Ch(R) and Ch≥0(R) ,

respectively. Further, the projection πB : Path0B → B onto the first term of Path0B

is visibly a degree-wise surjective chain map, i.e., a fibration of Ch(R) , and the projection
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τB : Trath0B → B onto the first term is a chain map that is surjective in positive degrees,

i.e., is a fibration of Ch≥0(R) . Since idB is a quasi-isomorphism its mapping cone Mc(idB) has

vanishing homology and so has its shift Path0B and the sub-complex Trath0B . This means

that the morphisms 0→ Path0B and 0→ Trath0B are quasi-isomorphisms, so that the based

path spaces in Ch(R) and Ch≥0(R) are acyclic. Finally, the transformations π : Path0 → idCh(R)

and τ : Trath0 → idCh≥0(R) are clearly natural, so that Path0 and Trath0 are actually based

path space functors in Ch(R) and Ch≥0(R) , respectively.

To compute Puppe’s sequence, we still need the loop space functor, the homotopy kernel

and the connecting morphism.

By definition the loop space of B is the kernel of the fibration πB or τB . It is easy to see

that in the unbounded case, the loop space ΩB is

ΩB = B[−1] (90)

with differential dΩB = dB[−1] = −dB , and that in the non-negatively graded case, the loop

space ΘB is the truncation sub-complex

ΘB : · · · −→ B2
−dB,2−→ ker dB,1

−dB,1−→ 0 (91)

of ΩB . Moreover, the universal morphisms Ωf and Θf associated to a chain map f : A→ B

are obviously the chain map

Ωf = f [−1] (92)

and its restriction

Θf = f [−1]|ΘA , (93)

respectively.

Remember now that we chose the based path space functor so that the homotopy kernel

Kf of a chain map f : A → B should be the (−1)–shift of this map’s mapping cone Mc(f) .

A direct computation shows that in the unbounded case the pullback Kf := Path0B ×B A is

actually given by

Kf = Mc(f)[−1] , (94)

i.e., that we have

(Kf )n = An ⊕Bn+1 and df := dKf =

(
dA 0

−f −dB

)
.
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Indeed, it is straightforward to check that the arrows of the square in the diagram

Cn

An ⊕Bn+1 Bn ⊕Bn+1

An Bn

µ
ϕ1

ϕ2

πf

f⊕ id[−1]

πB

f

(95)

are chain maps and that the square commutes. Further assume that ϕ1 : C → Path0B and

ϕ2 : C → A are chain maps such that πB ◦ ϕ1 = f ◦ ϕ2 . If we set ϕ1c = (ϕ1c)n + (ϕ1c)n+1 ,

the preceding commutation information reads

(ϕ1c)n = f(ϕ2c) . (96)

Now, if the universal arrow µ exists we have necessarily

(µc)n = ϕ2c and (µc)n+1 = (ϕ1c)n+1 , (97)

so that it is unique. A short computation that uses (96) shows that conversely the map µ

defined by (97) is a chain map that makes the two triangles in (95) commute. In the non-

negatively graded case, the homotopy kernel =f is again the truncation sub-complex, i.e., in

positive degrees =f coincides with Kf and in degree zero =f is given by

(=f )0 = ker df,0 = {(a0, b1) ∈ A0 ⊕B1 : dB(b1) = −f(a0)} . (98)

Finally, we defined the connecting morphism δf as the universal map ΩB 99K Kf asso-

ciated to the inclusion ϕ1 and the zero morphism ϕ2 . From (97) it follows that δf is in the

unbounded case the inclusion

δf = i[−1] : B[−1]→ Mc(f)[−1] , (99)

where i : B → Mc(f) is the injection of Equation (85). In the non-negatively graded case, the

universal connecting morphism θf : ΘB 99K =f coincides with i[−1] in positive degrees and

θf,0 : ker dB,1 99K ker df,0 is the inclusion

θf,0 = i[−1]0|ker dB,1 (100)

as ϕ1,0 is the inclusion from ker dB,1 to

ker dB,0 = {(−dBb, b) : b ∈ B1} .
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Let us still mention that πf : Kf → A is in the unbounded case the projection

πf = p[−1] : Mc(f)[−1]→ A , (101)

where p : Mc(f) → A[1] is the projection of Equation (85), and that in the non-negatively

graded case it coincides with p[−1] in all positive degrees and with the restriction

πf,0 = p[−1]0|ker df,0 (102)

in degree 0.

We are now prepared to compute Puppe’s long homotopy fiber sequence and the corre-

sponding long exact sequences in sets. We already mentioned previously (see Equation (56))

that there is a 1:1 correspondence between the set [A,B] of Ho(M)–morphisms from a cofibrant

object A of a model category M to a fibrant object B and the set HomM(A,B)/ ' of homotopy

classes of M–morphisms from A to B . Let us remember that two morphisms from a cofibrant

A to a fibrant B are homotopic if and only if they are right homotopic. For M = Ch with

Ch = Ch(R) or Ch = Ch≥0(R) , two chain maps from a cofibrant A to any B are homotopic if

and only if they are chain homotopic [16, Theorem 2.3.11]. Moreover, the chain complex R

concentrated in degree 0 (with zero differential) is cofibrant [16, Lemma 2.3.6], so that

[R,A] ∼= HomCh(R,A)/ ' .

Since the ring R with unit 1 is a free R-module with basis 1 , a degree zero R-linear map

f : R → A is fully determined by the image f(1) ∈ A0 and a chain map f : R → A can be

identified with the image f(1) ∈ ker dA,0 : there is a 1:1 correspondence

[ : HomCh(R,A) 3 f 7→ f(1) ∈ ker dA,0 .

Further, two chain maps f, g : R → A are homotopic if and only if there is an R-linear map

h : R→ A1 such that f− g = dA,1 ◦ h , or, equivalently, there is a 1–chain h(1) ∈ A1 such that

f(1)− g(1) = dA,1(h(1)) . This means that

f ' g if and only if [(f)− [(g) ∈ im dA,1 .

Hence [ induces a 1:1 correspondence

[] : [R,A] ∼= HomCh(R,A)/ ' 3 [f]' 7→ [f(1)] im ∈ H0(A) . (103)

Since [f]' = γf (see (57)), if f ∈ HomCh(A,B) , then γf ∈ [A,B] and [R, γf ] is the set-

theoretical map

[R, γf ] : [R,A] 3 [f]' 7→ [f ◦ f]' ∈ [R,B] .
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If we read this map through the correspondence (103), we get the map

H0(f) : H0(A) 3 [f(1)] im 7→ [f(f(1))] im ∈ H0(B) . (104)

In the case M = Ch(R) , if we apply (88) with M = R , take into account (90), (92), (94),

(99) and (101), and use the identifications (103) and (104), we find the long exact sequence

· · · −→ H2(B)
H2(i)−→ H2(Mc(f))

H2(p)−→ H1(A)
H1(f)−→

H1(B)
H1(i)−→ H1(Mc(f))

H1(p)−→ H0(A)
H0(f)−→ H0(B) ,

which is the left hand side of the homology sequence (86). In the case M = Ch≥0(R) , the

additional equations (91), (93), (98), (100) and (102) lead to the same homology sequence

(since in degree zero the homologies of the sub-complexes coincide with those of the full

complexes), which in this case is the complete sequence. In the unbounded case, we can also

get the complete sequence, or, more precisely, we can extend the homology sequence obtained

to the right up to any degree −n (n > 0). For this it suffices to replace in the construction

above the chain map f by the chain map f [n] and to observe that

Hk(Kf [n]) = Hk(Kf [n]) = Hk−n(Kf ) .

6.3 Monoidal model categories

In this subsection we introduce a suitable based path space functor in a pointed monoidal

model category. First we recall the

Definition 7. A closed symmetric monoidal category is a symmetric monoidal category

(C,⊗, I) such that for every B ∈ C the functor −⊗B : C→ C has a right adjoint HomC(B,−) ,

i.e., there exists a functor HomC(B,−) together with a family of bijections

HomC(A⊗B,C) ∼= HomC(A,HomC(B,C)) (105)

indexed by A,C ∈ C that is natural in A and C .

A closed symmetric monoidal category is a closed category. In particular, there is an

internal Hom functor

HomC : Cop × C→ C

such that if we fix the first argument we get the right adjoint of the definition. Moreover,

there is a natural isomorphism

HomC(I,−) ∼= idC

that allows us to identify these endofunctors.

We will use the following definition of a monoidal model category.
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Definition 8. A monoidal model category is a closed symmetric monoidal category

(M,⊗, I,HomM) equipped with a model structure such that the following two compatibility con-

ditions are fulfilled:

(i) the monoidal unit I is a cofibrant object,

(ii) for every cofibration i : A� B and every fibration p : K � L , the universal map

HomM(B,K) 99K HomM(B,L)×HomM(A,L) HomM(A,K) (106)

is a fibration which is a weak equivalence if i or p is.

Remark 8. It follows from [16, Lemma 4.2.2.] that Condition (ii) is equivalent to the

pushout-product axiom

PPA: If i : A� B and j : K � L are cofibrations, the universal morphism

A⊗ L
∐
A⊗K

B ⊗K 99K B ⊗ L

is a cofibration which is a weak equivalence if i or j is.

Further, Condition (i) and the PPA imply the unit axiom

UA: for every cofibrant replacement CI q→ I of I and every cofibrant object X the mor-

phism

CI⊗X q⊗ idX→ X

is a weak equivalence. Indeed, the PPA implies that −⊗X preserves trivial cofibrations, so

that because of Brown’s lemma −⊗X sends weak equivalences between cofibrant objects to

weak equivalences. Since CI q→ I is if I is cofibrant a weak equivalence between cofibrant

objects, the conclusion follows.

Hence Definition 8 is a little stronger than the standard definition which requires that the

axioms UA and PPA are fulfilled.

For example, if R = k is a commutative unital ring, the category(
Ch(k),⊗k, k,HomCh(k)

)
of chain complexes in the category Mod(k) of modules over k with its projective model structure

is a (pointed) monoidal model category in the sense of Definition 8. This follows from [16,

Proposition 4.2.13] and the observation in the previous subsection that R = k is cofibrant.

Let us also remind that the tensor product is defined by

(A⊗k B)n =
⊕

µ+ν=n

Aµ ⊗k Bν , d⊗(a⊗ b) = dAa⊗ b+ (−1)µa⊗ dBb
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and that the internal Hom is given by

HomCh(k)(A,B)n =
∏
µ∈Z

HomMod(k)(Aµ, Bµ+n) , (df)µ = dB ◦ fµ + (−1)n+1fµ−1 ◦ dA . (107)

Let now (M,⊗, I,HomM) be any pointed monoidal model category and let

I� Cone(I) ∼→ 0 (108)

be a factorization of I → 0 into a cofibration followed by a weak equivalence. It is easy to

check that if M = Ch(k) and thus I = k , the mapping cone

Mc(idk) : · · · −→ 0 −→ k︸︷︷︸
(1)

idk−→ k︸︷︷︸
(0)

−→ 0 −→ · · · , (109)

where the integers in parentheses indicate the degree, satisfies the condition

k� Mc(idk)
∼→ 0 ,

so that we can choose

Cone(k) = Mc(idk) . (110)

Indeed, the morphism k → Mc(idk) is the morphism S0(k) → D1(k) from the 0-sphere at

k to the 1-disk at k which is a generating cofibration and the morphism Mc(idk) → 0 is a

quasi-isomorphism as

H(Mc(0 : Mc(idk)→ 0)) = H(Mc(idk)[1]) = 0

since idk is a quasi-isomorphism. This justifies the notation Come(I) and the name ‘cone of

I’. It is now natural to define the cone functor Cone ∈ Fun(M, M) by

Cone := −⊗ Cone(I)

and the dual based path space functor Path0 ∈ Fun(M, M) by

Path0 := HomM(Cone(I),−) .

Proposition 11. In a pointed monoidal model category (M,⊗, I,HomM) with unit cone Cone(I)
defined by (108), the functor

Path0 := HomM(Cone(I),−) (111)

is a based path space functor in the sense of Definition 3.
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Proof. For every A,B ∈ M , we have

HomM(A,HomM(B, 0)) ∼= HomM(A⊗B, 0) ,

so that there is a unique morphism from every A ∈ M to HomM(B, 0) ∈ M , which means that

for every B ∈ M , we have

HomM(B, 0) ∼= 0 .

The same result holds for HomM(0, B) . Indeed, since left adjoint functors preserve colimits,

the functor − ⊗ A preserves the initial object, so that A ⊗ 0 ∼= 0 ⊗ A ∼= 0 . Hence, for every

A ∈ M , we get

HomM(A,HomM(0, B)) ∼= HomM(0, B) ,

which implies that

HomM(0, B) ∼= 0 .

If i : I� Cone(I) , then for every A ∈ M , we have a morphism

HomM(i, A) : HomM(Cone(I), A)→ HomM(I, A)

and these morphisms are the components of a natural transformation

π : Path0 ⇒ idM .

Indeed, if f : A → B is a morphism, then f ◦ πA = πB ◦ Path0f , since the left hand side

HomM(idI, f)◦HomM(i, idA) and the right hand side HomM(i, idB)◦HomM(idCone(I), f) are both

equal to HomM(i, f) , as HomM is a functor on the product category Mop × M with composition

(g, g′) ◦× (f, f ′) = (g ◦Mop f, g′ ◦M f ′) = (f ◦M g, g′ ◦M f ′) ,

for all Mop–morphisms f : A → B and g : B → C and all M–morphisms f ′ : A′ → B′ and g′ :

B′ → C ′ .

Let now A ∈ M be a fibrant object. If we apply the axiom (ii) of Definition 8 to the

cofibration i : I� Cone(I) and the fibration p : A� 0 , we find that the universal map

Path0A = HomM(Cone(I), A) 99K HomM(Cone(I), 0)×HomM(I,0) HomM(I, A) = A

is a fibration. Further, since the morphism Cone(I) → 0 is a weak equivalence, it follows

from the 2-out-of-3 axiom that the morphism 0 → Cone(I) is also a weak equivalence. As I
is cofibrant by definition, this morphism ι : 0 � I � Cone(I) is a trivial cofibration. If we

apply now the axiom (ii) to ι and p , we get that the universal map

Path0A = HomM(Cone(I), A) 99K HomM(Cone(I), 0)×HomM(0,0) HomM(0, A) = 0

is a trivial fibration, so that Path0A is acyclic.
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6.4 Chain complexes as monoidal model category

In Subsection 6.2 we have applied the machinery of this paper to the pointed model

category Ch(R) of chain complexes in the category R− Mod of left modules over a unital ring

R . It seemed natural to define the based path space Path0A of a complex A as the mapping

cone Mc(idA)[−1] of the identity of A shifted by −1 . In the case where R is a commutative

unital ring k , we can also consider Ch(R) = Ch(k) as a pointed monoidal model category,

apply Proposition 11 and define the based path space functor as the dual Path0 of the cone

Cone(k) of k . In this subsection we compute the based path space Path0A , the corresponding

loop space, homotopy kernel... and compare the results to those of Subsection 6.2.

From Equations (111), (110), (109) and (107), it follows that

(Path0A)n = HomCh(k)(Cone(k), A)n = HomMod(k)( k︸︷︷︸
(0)

, An) ⊕ HomMod(k)( k︸︷︷︸
(1)

, An+1) ,

so that we have the isomorphism of k–modules

In : (Path0A)n 3 (fµ)µ = (f0, f1) 7→ an + an+1 := f0(1) + f1(1) ∈ An ⊕An+1 . (112)

If we read the differential (107) through the isomorphisms In , we get the differential

dA = In−1 ◦ d ◦ I−1
n

given by

dA

(
an

an+1

)
= In−1(d(f0, f1)) = In−1(dA ◦ f0 + dA ◦ f1 + (−1)n+1f0) =

dAan + dAan+1 + (−1)n+1an =

(
dA 0

(−1)n+1 dA

)(
an

an+1

)
,

since dCone(k) vanishes except if µ = 1 where it is the identity. Finally,

(Path0A)n = An ⊕ An+1 and dA,n =

(
dA 0

(−1)n+1 idA dA

)
. (113)

The A-component of the natural transformation π : Path0 ⇒ idCh(k) is πA = HomCh(k)(i, A)

where the cofibration i : k� Cone(k) vanishes except in degree 0 where it is the identity. If we

read (πA)n through the isomorphism In we get the canonical projection π1 : An ⊕An+1 → An .

The loop space of A is its kernel

(OA)n = An+1 and dOA,n = dA,n+1 . (114)
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A direct verification shows that given a morphism f : A → B , the homotopy kernel Kf =

Path0B ×B A is

(Kf )n = An ⊕ Bn+1 and df,n =

(
dA 0

(−1)n+1f dB

)
. (115)

The mapping cone Mc(f) of a chain map f : A → B is defined in (84). An alternative

definition is

Mc(f)n := A[1]n ⊕Bn and dMc(f),n :=

(
dA 0

(−1)nf dB

)
. (116)

Equations (113), (114) and (115) show that the complexes obtained here and in Subsection

6.2 are the same graded modules. As for their differentials, we found in 6.2 that

dA,n := dPath0 A,n = −dMc(idA),n+1 , dΩA,n = −dA,n+1 and df,n := dKf ,n = −dMc(f),n+1 .

Here we find the same differentials, but without the sign change in the right hand side and

with the standard differential dMc(f) replaced by the previous alternative differential dMc(f) :

dA,n := dPath0A,n = dMc(idA),n+1 , dOA,n = dA,n+1 and df,n := dKf ,n = dMc(f),n+1 .

These slight differences are of course completely irrelevant.

7 Follow up questions

In a triangulated category, every morphism f : A → B has a cone B → C(f) → A[1]

such that A → B → C(f) → A[1] is a distinguished triangle. However, the cone C is not

a functor. It has been mentioned in the literature [12] that this drawback is a sign that the

axioms of a triangulated category are suboptimal. More precisely, if C(f)[−1] → A → B

and C(f ′)[−1] → A′ → B′ are distinguished triangles together with a commutative square

S := (A,B,A′, B′) , the is no unique induced map C(S) : C(f)[−1] → C(f ′)[−1] that makes

C a functor. We expect that Theorem 5 and Proposition 5 can be used to suggest a definition

of triangulated categories with a functorial cone.

In [5, 6] and [21], Di Brino and two of the authors of the present work have taken up

ideas from [1, 4, 19, 20, 24, 25, 26] and have introduced homotopical algebraic geometry over

the ring of differential operators as a suitable framework for investigating the solution space

of partial differential equations modulo symmetries. The implementation of the associated

research program requires that a certain quintuplet be a homotopical algebraic geometric

context (HAGC) in the sense of [25]. We are convinced that the theory of homotopy fiber

sequences, which we have detailed in this paper, will enable us to prove the HAGC theorem

and thus to take an important step towards fully working through the above program.
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