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Abstract

We propose a simplified definition of Quillen’s fibration sequences in a pointed
model category that fully captures the theory, although it is completely indepen-
dent of the concept of action. This advantage arises from the understanding
that the homotopy theory of the model category’s arrow category contains all

homotopical information about its long fibration sequences.
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1 Introduction

Homotopy fiber sequences, also called fibration sequences, have been studied in the cat-
egory of topological spaces, the category of chain complexes of modules, in general model
categories and in homotopical categories. For instance, if f : A — B is a chain map, its
shifted mapping cone Mc(f)[—1] is the homotopy fiber of f and the associated distinguished
triangle Mc(f)[—1] - A — B is a homotopy fiber sequence.

Quillen [23] defined fibration sequences in the homotopy category of any pointed model
category (M,0). For this he first defined a loop space functor Q€ from a path space functor
and observed that the loop space QY F of a fibrant object F is a group object in the homotopy
category Ho(M) of M. Up to Ho(M)—isomorphism a fibration sequence is then a Ho(M)-sequence
K — F — F that is implemented by the kernel K of a fibration F' — F between fibrant
objects F' and F , together with an action that is up to isomorphism some action of the group
object Q9F on K . This action induces a connecting Ho(M)-morphism Q9F — K and the
sequence Q9F — K — F is again a fibration sequence.

In this paper, we also work in a general pointed model category (M,0), we define a loop
space functor 2 from any ‘dual cone functor’ and define homotopy fiber sequences as com-
mutative M-squares (A, B, C, D) such that A is a specific type of generalized representative of
the homotopy pullback of C — D <+ B and the map C' — 0 is a weak equivalence. Further,
for every morphism f : F' — F we define its homotopy fiber Ky such that K; — F' — F is
a homotopy fiber sequence. We get a universal connecting morphism QF — Ky such that

QOF — Ky — F is also a homotopy fiber sequence.

It turns out that Quillen’s loop space functor Q€ is a loop space functor € in the sense
of the present paper. Further, an objectwise fibrant homotopy fiber sequence is a fibration
sequence and our universal connecting morphism is the same as Quillen’s connecting morphism

induced by the action.



Although, as the previous descriptions show, the two theories are closely related, our
approach to homotopy fiber sequences or fibration sequences, does not rely on the additional
structure of an action. The point is that we use the homotopy theory of the category M~ of

M-morphisms, which contains all relevant information about homotopy fiber sequences of M.
More precisely, the paper is organized as follows:

Understanding homotopy fiber sequences requires a good understanding of homotopy fiber
squares, homotopy pullbacks, derived functors, and category localizations. However, there are
a number of variants and indeterminacies for each of these concepts. A structured approach in
a unifying context is suggested in [I13] and [14]. In order to ensure an independent readability
of our text, we recall in Section [2| the relevant results from [I3] and [I4], which we will need

later.

In Section [3| we give the precise definition of the category h(M) (resp., the category ¢(M))
of homotopy fiber sequences (resp., of long homotopy fiber sequences) in a pointed model
category (M, 0). We define the homotopy category of these new categories and choose a model

structure on the category M~ of M—morphisms. We prove that the localization
Ho(R;y) : Ho(¢(M)) — Ho(M™)

of the restriction R; of long homotopy fiber sequences to their first two terms yields an
equivalence of categories. This is arguably the deepest result of the present paper. To prove
the equivalence theorem we construct the inverse up to natural isomorphisms and give an

explicit description of the inverse of
HO(Rl)a.,b. : HomHo([(M))(a., b.) — HOmHO(Mﬁ») (R1 (CL.), R (b.))

(see pages 14-26).

Mimicking definitions from Algebraic Topology, we define in Section [4] the notion of ‘based
path space functor’ — which is dual to the ‘cone functor’ — and the associated ‘loop space
functor’ € — which is well-behaved with respect to fibrant objects, weak equivalences and
homotopy fiber sequences, and whose derived functor is independent of the chosen based
path space functor. We continue our abstraction of the topological situation and define
concepts of homotopy fiber and universal connecting homomorphism that allow us to make
sense of Puppe’s sequence in the general setting considered. This leads to Puppe’s functor
P :M” — ((M) whose value Py at f € M~ is the unique ¢(M)-extension of f up to a canonical
Ho(¢(M))—isomorphism. The theory is valid in every pointed model category (in this general
case it is natural to consider morphisms f with fibrant source and target) and in right proper

pointed model categories (in this case we do not need the property that the source and target



are fibrant). Just as Puppe’s sequence of a fibration gives the fibration’s long exact homotopy
sequence in Algebraic Topology, we associate in any pointed model category M a family of long

exact sequences of Ho(M)-Hom-sets to Puppe’s ¢(M)—extension of a morphism.

Section [5| contains a detailed account of the parallelism described above between Quillen’s

theory of fibration sequences and the theory of homotopy fiber sequences in the present work.

One of the advantages of the new theory is that it is easy to use. In Section [ we
apply it to the category of chain complexes of modules (both unbounded and non-negatively
graded) and recover the long exact sequence in homology induced by a short exact sequence
of chain complexes and chain maps as a special case of the long exact sequence of Ho(M)—
Hom-sets of these chain maps. To this end, we consider the category of complexes first only
as a pointed model category, then as a pointed monoidal model category. Although the two
approaches naturally lead to different based path space functors, the Puppe extensions of a

chain morphism coincide.

In the final section [7] we briefly describe follow up questions and expected applications. In
addition, the theory we develop in this text should lead to advances in homotopical algebraic
geometry [24] 25, 2 [3] [6] and higher supergeometry [7, [8, O, 22], which are the contexts from

which the need arose to examine the subjects of this paper.

Conventions and notations. We assume that the reader is familiar with model cat-
egories and adopt the definition of a model category that is used in [I5]. More precisely, a
model category is a category M that is equipped with three classes of morphisms called weak
equivalences, fibrations and cofibrations. The category M has all small limits and colimits
and the 2-out-of-3 axiom, the retract axiom and the lifting axiom are satisfied. Moreover M
admits a functorial cofibration - trivial fibration factorization system and a functorial trivial
cofibration - fibration factorization system. Further, we work with the Quillen homotopy cat-
egory Ho(M), which is a strict localization of M at its weak equivalences W with localization
functor denoted 7y, and we use the Kan extension derived functor operations LX, RX and
the strongly universal derived functor operations L5, RS in the sense of [I3]. We will con-
sider different types of replacement, in particular local fibrant C-replacements, which means
that for every X € M we choose a fibrant replacement FX — % of X such that the map
fx : X 5 FX is a cofibration and is identity if X is already fibrant. If f : X — Y, there is
a lifting F'f : FX — FY, which will play an important role:



2 Models of homotopy pullbacks

We start recalling some results of [13] and [14].

The first theorem addresses the question of stability of a derived functor with respect to
a change of definition (Kan extension versus strong universal property) and with respect to a

change of the type of fibrant replacement used to compute it (local versus global).

Theorem 1 ([13]). If G € Fun(M,N) is a functor between model categories that sends weak
equivalences between fibrant objects to weak equivalences, its Kan extension right derived func-
tor

RXG € Fun(Ho(M), Ho(N))

and its strongly universal right derived functor
R5G € Fun(Ho(M), Ho(N))
exist and we have
RXG = Ho(yy o Go F) = R3G := Ho(ywo G o R) = R5G | (2)

where F is a local fibrant C-replacement, R is a fibrant C-replacement functor and Ho the

unique on the nose factorization through Ho(M) . This implies that
RKGO’YMi’yNOGOFiR]S%GO’}/M:’yNOGOR%RSGO’yM, (3)

where = denotes a canonical natural isomorphism and = a not necessarily canonical natural

isomorphism.

The next corollary emphasizes that a derived or homotopy limit with respect to a suitable
model structure o on the diagram category under consideration belongs to a well-defined
isomorphism class of the target homotopy category, regardless of the definition of a derived
functor and the fibrant replacement we use. Considered as an object of the target model
category, a homotopy limit is thus only well-defined up to a zigzag of weak equivalences. This

indeterminacy is further increased by the ambiguity resulting from various choices for o .



Corollary 1. Let S be a small category, let M be a model category and let o be a model
structure on the category Fun(S,M) of S—shaped diagrams of M such that Lim : Fun(S,M) — M
is a right Quillen functor. If X € Fun(S,M) its homotopy limit with respect to o is given as
an object of M by

R,Lim(X) ~ Lim(R,X) = Lim(£,X) 5 Lim(F,X) (4)

where R,Lim(X) can be interpreted as Kan extension or strongly universal derived func-
tor, where ~ denotes a zigzag of weak equivalences and where Ry, F,, F, are a fibrant C-
replacement functor, a local fibrant C-replacement and any fibrant replacement in the model
structure o , respectively. The weak equivalence = between the last two representatives is the
universal morphism

Lim(f,) : Lim(F,X) = Lim(F,X) (5)

that is induced by a lifting

(6)
and its image yw(Lim(¢,)) in homotopy is independent of the lifting considered. A similar

remark holds for the weak equivalences = .

In the case S = I := {¢ — d «+ b} the functors X € Fun(I,M) are the cospan diagrams
C — D « B of Mand the limit Lim(X) is the pullback B xpC'. There are three Reedy model
structures o; (i € {1,2,3}) on Fun(I,M), for which the pullback is a right Quillen functor.
The homotopy limits R,,Lim(X) with respect to the o; are called homotopy pullbacks and
are denoted by B xg"i C'. It can be proven that common representatives exist. We define
the full homotopy pullback B x’}) C such that its canonical representatives are exactly the
representatives of all three homotopy pullbacks B X}LL)(” C (i € {1,2.3}). This leads to the

Theorem 2 ([I4]). The full homotopy pullback of a cospan C'— D < B in a model category
is independent of the type of derived functor and of the model structure o; (i € {1,2,3})
on cospan diagrams considered. We get the canonical representatives of the full homotopy
pullback from the standard pullback of the weakly equivalent cospans C' — D' < B’ with three

fibrant objects and at least one morphism that is a fibration: if in the adjacent commutative



squares

c’ D B
(7)

all vertical arrows are weak equivalences, all bottom nods are fibrant objects and at least one

of the bottom arrows is a fibration, we have
Bx"C~DB xpC. (8)

We increase the flexibility of homotopy limits, homotopy pullbacks and full homotopy
pullbacks by allowing generalized representatives. In the case of full homotopy pullbacks, we
have the

Theorem 3. The vertex A of the span of a commutative square
A B
C D
(9)

in a model category is a model or generalized representative of the full homotopy pullback

Em—

B X}l‘—) C if the universal morphism from A to a canonical representative of B X% C is a weak
equivalence. In other words, there must exist a cospan C' — D' <+ B’ to which C — D + B
is weakly equivalent, whose three nodes are fibrant objects and at least one of whose morphisms

is a fibration, such that the universal morphism A — B’ xp C' is a weak equivalence.

If the condition of Theorem [3|is satisfied for one replacement its is satisfied for all replace-

ments.

In right proper model categories, we can weaken the condition:

Theorem 4 ([14]). The vertex A of the span of a commutative square @D in a right proper
model category is a model of the full homotopy pullback B x}f) C if there exists a cospan
C' — D' + B’ to which C — D < B is weakly equivalent and at least one of whose morphisms

is a fibration, such that the universal morphism A — B’ xp, C' is a weak equivalence.

Again, if the condition of Theorem [ is satisfied for one replacement with one fibration it

is satisfied for all replacements of this type.

The following corollary is stated without proof in [18]:



Corollary 2 ([I4]). In a model category the standard pullback Bx pC' of a cospan C 4%plB
s a model of the cospan’s full homotopy pullback if at least one of the morphisms f or g is a

fibration and either all three objects B,C, D are fibrant or the model category is right proper.

Further, the concept of model of a homotopy pullback captures the notion of homotopy
fiber square defined in [I5] and puts it in the right context.

Corollary 3 ([14]). In a right proper model category with a fixed functorial trivial cofibration
- fibration factorization system, a commutative square @ is a model square, i.e., its vertex
A is a model of the homotopy pullback B x% C if and only if it is a homotopy fiber square in
the sense of [15].

There is a pasting law for model squares.

Proposition 1 ([14]). Let

D E F
(10)
be a commutative diagram in a model category. If the right square is a model square, then the

left square is a model square if and only if the total square is a model square.

The next result generalizes a property of homotopy fiber squares in a right proper model
category with a fixed functorial trivial cofibration - fibration factorization system to model

squares in an arbitrary model category.

Proposition 2 ([14]). Let ABCD and A'B'C'D’ be two commutative squares in a model
category M. If there exist four M—morphisms from the vertices of the first square to the cor-
responding vertex of the second such that the four resulting squares commute and if these
M—-morphisms are weak equivalences, then the first square is a model square if and only if the

second 1is.

(11)

Later we need



Proposition 3. Any commutative square (A, B,C, D) in a model category whose vertical (or

horizontal) arrows are weak equivalences is a model square.

Proof. We apply a fibrant C-replacement functor R to the commutative square (A, B,C, D)

and factor the morphism
R(BS D)=RB™ RD = RB 3 F(Rk) - RD

into a weak equivalence followed by a fibration. Moreover, we set P := F(Rk) Xxgp RC and

thus get the following commutative diagram:

A B
R N
" RA RB
N N G
=3 p F(Rrk)
. . (12)
C D
5l N ~
RC RD
AN RN
RC RD

Since trivial fibrations are closed under pullbacks in any model category, the arrow P — RC
is a trivial fibration, hence a weak equivalence. It follows that A — P is a weak equivalence,
so that ABCD is a model square. O

Proposition 4. Let G : M — N be a right Quillen functor and let ABCD be a commutative
square of M with fibrant vertices. Then, if ABCD is a model square of M its image G(ABCD)

is a model square of N.

Proof. We factor B D = B = F(k) — D into a weak equivalence followed by a fibration.
Further, we set P := F(k) xp C and get the commutative cube

A——— B

N N
P F(k) a3)
C «F D J{
AN N\
C — D

Since ABCD is a model square, the universal arrow A --» P is a weak equivalence. As
fibrations are closed under pullbacks, the arrow P — C is a fibration and all vertices of

are fibrant objects.
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The image of by G is the commutative cube

GA — GB

N N
GP %
ele] GD

G(F(k)) 14)
I

GC —— GD

Since right adjoint functors preserve limits, we have GP = G(F'(k)) xgp GC and the arrow
G A — GP is the universal arrow from G A to the pullback of the front cospan. As G is a right
Quillen functor it preserves weak equivalences between fibrant objects (in view of Brown’s
lemma), so that the universal arrow GA — GP and the arrow GB — G(F(k)) are weak
equivalences (x1). As G preserves fibrations (by definition of a right Quillen functor), the
arrow G(F(k)) — GD is a fibration (x2). Furthermore, the terminal object %y of M is the
limit Lim @y of the unique functor @y € Fun((),M) from the empty category @) to M. Hence, if
F € M is fibrant, we get

so that G preserves fibrant objects and all vertices of are fibrant (x3). From (x1), (%2)
and (*3) it follows that the back square G(ABCD) of is a model square of N. O

3 Long homotopy fiber sequences

3.1 Definitions

Let M be a pointed model category, i.e., a model category with a zero object 0 (a model

category whose initial and terminal objects coincide).

It is natural to refer to the pullback A := B xp 0 of an M-morphism B — D over the
point 0 — D as the fiber of B — D and to call A — B — D a fiber sequence. The following

generalization is crucial:

Definition 1. A homotopy fiber sequence A — B — D in a pointed model category M is

a model square ABCD in M whose left lower vertex C is acyclic.

Since an object C' € M is acyclic if the unique morphism 0 — C' is a weak equivalence (or
equivalently if the unique morphism C' — 0 is a weak equivalence), a homotopy fiber sequence

is a commutative square whose left upper vertex is a model of the homotopy pullback of the
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square’s cospan and whose left lower vertex is weakly equivalent to zero. We stress that,
although the left lower vertex C' is implicit in the notation A — B — D of the homotopy

fiber sequence, it is an integral part of it.

Morphisms of homotopy fiber sequences are therefore defined as morphisms of commuta-
tive squares, i.e., as commutative cubes. Explicitly a morphism of homotopy fiber sequences
from Ay — Ay — Ag with implicit vertex C'4 to By — By — By with implicit vertex Cpg is a
quadruplet

® = (¢o, ¢1, b2, ¢)

of M-morphisms
¢; A — B (1€{0,1,2}) and ¢:Cy — Cp,

such that the resulting cube commutes. So composition of morphisms of homotopy fiber
sequences is induced by the composition of M. We denote h(M) the category of homotopy fiber
sequences of M. Further, we denote

a = (a1, az)
a homotopy fiber sequence

Ay 2 A 2 A

Definition 2. In a pointed model category a long homotopy fiber sequence

(e = (a17a27a37"'> (16)
or more explicitly
(Aey@e) -+ —> Az =% Ay 25 A1 5 Ay

is a sequence of homotopy fiber sequences
A1 ™5 A, 2% Ay (ne{1,2,3---)). (17)

It is natural to define a morphism of long homotopy fiber sequences as a sequence of
morphisms of homotopy fiber sequences. Explicitly a morphism ®, of long homotopy fiber

sequences from (As, ae) to (B, be) is a sequence

q>0:(¢07¢17¢27¢3"" 7901’902"") (]‘8)

of morphisms
¢, = (¢n71,¢n7¢n+1a@n) (n € {17273}) (19)
of homotopy fiber sequences from

a n b bn
An+1 n—+§ A, a—> A,_1 to Bn+1 i% B, — B,_1.



12

Composition of morphisms of long homotopy fiber sequences is again induced by the composi-
tion in M. We denote ¢(M) the category of long homotopy fiber sequences of M. Moreover, we say
that a homotopy fiber sequence (resp., a long homotopy fiber sequence) of M is objectwise fi-
brant if its four vertices are fibrant objects of M (resp., if all homotopy fiber sequences are
objectwise fibrant). We also say that a morphism of homotopy fiber sequences (resp., of long
homotopy fiber sequences) of M is an objectwise weak equivalence if its four component
morphisms are weak equivalences of M (resp., if all morphisms of homotopy fiber sequences
are objectwise weak equivalences).

We close this subsection with the following corollary of Proposition

Corollary 4. Let G : M — N be a right Quillen functor between pointed model categories.
The image under G of an objectwise fibrant (long) homotopy fiber sequence of M is a (long)
homotopy fiber sequence of N.

Proof. If suffices to remember that a right Quillen functor G preserves weak equivalences
between fibrant objects and preserves the (fibrant) zero object (see ([15))). O

Remark 1. We will show below that in a pointed model category it is often possible to
extend a morphism to a long homotopy fiber sequence. In the next subsection we address the

question of uniqueness of such an extension if it exists.

3.2 Homotopy theory of long homotopy fiber sequences

Let C be a category and W a family of C-morphisms. The Gabriel-Zisman localization
or zigzag localization of C at W is (at least in a higher universe) a pair (C[[W~1]],~) that
consists of a category C[[W™1]] and a functor v : C — C[[W ~!]] which sends all morphisms in
W to isomorphisms. Further, every functor out of C with this property factors uniquely and on
the nose through C[[W ~!]]. Because of its universal property, the zigzag localization is unique
up to a unique isomorphism. It is the strong localization of C at W [13] and is constructed
by free inversion of the morphisms of W. More precisely, the description of (C[[W™]],7) is
exactly the one given in [I3] in the case of the homotopy category of a model category. As
already mentioned, the localized category does not have to be locally small, so we implicitly
move to a higher universe in order to get a genuine category. If the definition of W is clear,

we usually refer to C[[W~1]] as the homotopy category of C and denote it with Ho(C) .

In the case of the category ¢(M) of long homotopy fiber sequences of a pointed model
category M, we choose the objectwise weak equivalences for W and consider the homotopy

category Ho(¢(M)) in the previous sense.
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Since we are interested in possible extensions of an M-morphism to a long homotopy fiber
sequence of M, we need not only the categories £(M) and Ho(¢(M)), but also the category M~ of

M—morphisms

A 25 A (20)
and commutative squares
A, o Ao
J P J o
by
By By
(21)

and its homotopy category Ho(M™). To give meaning to the latter, we endow the category M~
with a model structure, so that its zigzag localization at its weak equivalences, which is its
Quillen homotopy category, is a genuine category without us passing into a larger universe
(see for example [I3, Theorem 2]). To find a model structure, notice that M~ is the functor
category Fun(I,M), where I is the inverse category I = {1 — 0} . In the case of such simple
Reedy categories, the corresponding Reedy model structure is the injective model structure
with objectwise weak equivalences and cofibrations (details can be found for instance in [14]).

We equip M~ with this model structure.

To study the mentioned extension problem, we introduce the restriction functor
Ry: K(M) — M7,

which we define on objects as Riae = a1 (see (16))) and on morphisms as R1®s = (¢1, ¢p) (see
(18)). The functor yy— o R; sends objectwise weak equivalences of /(M) to isomorphisms of

Ho(M™) and therefore factors uniquely through Ho(¢(M)) : there is a unique functor
Ho(R1) : Ho(£(M)) — Ho(M™), such that yu—o Ry = Ho(R1) o vy -
Theorem 5. Let M be a pointed model category. The localization
Ho(R;) : Ho(¢(M)) — Ho(M™)

of the restriction functor of long homotopy fiber sequences yields an equivalence of categories
between the homotopy category of the category of long homotopy fiber sequences of M and the
homotopy category of the category of morphisms of M.

Remark 2. The categorical equivalence means that the localized functor Ho(R;) is essentially
surjective and fully faithful. In other words, every M-morphism is up to an isomorphism the

restriction of a long homotopy fiber sequence and, for every as,be € ¢(M), the map

HO(R1)asb, : Homyo(gny) (e, be) — Hompo— (a1, b1) (22)
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is a 1:1 correspondence. Alternatively, the equivalence means that Ho(R;) has an inverse up

to natural isomorphisms. To prove the theorem we construct this inverse.

Lemma 1. Let M be a pointed model category. There exists a functor E : M7 — (M) that
preserves weak equivalences and sends morphisms a € M~ to long homotopy fiber sequences f&
made of fibrations & : F% — E? | between fibrant objects (n € {1,2,3---}).

Remark 3. In the following we use a fixed functorial trivial cofibration - fibration factorization

system («, 8) and the induced fibrant C-replacement functor R.

Proof. Let aj,b; be objects of M~ and 1 = (1), %1) an M~ —morphism between them, see .
We will construct E simultaneously and inductively on these objects and this morphism, i.e.,
we construct inductively long homotopy fiber sequences F(a;) =: f& and E(b) =: fo and
a morphism FE(¢) =: &4 of long homotopy fiber sequences between them. We start from the
commutative diagram 1 and use the chosen replacement functor and factorization system to
get the commutative diagram

RA, B p(Ray) BB Ra,

~

Rwll l lRwo (23)

RB; P p(ge) P RB,

~

We denote the upper and lower fibrations between fibrant objects by fi* : Fi'"* — Fj* and

fl : Flb1 — Fé’l, respectively. It is clear that if ¢ is a weak equivalence, all the vertical
arrows in are weak equivalences, in particular the central arrow ¢; : F{"' — F{’l and
the right arrow ¢g : Fy' — Fgl . Assume now that the long homotopy fiber sequences f&,

b1 (resp., the morphism ®, between them) have (resp., has) been constructed together with
their implicit vertices (resp., its implicit arrows) and with all the required properties, up to
order n > 1. If we apply the functorial factorization (c, §) to 0 — F;*, and 0 — Ff;l_l, we

get the commutative diagram

ai
fn+1

Fo o
< Pnt1 bn
A fbl fsl\
b n+1 b
Fnj—l Fnl
(24)
0 ——— Cpu Fy b1
N N N
0> = C b o
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in which Fy}, and ng_l are pullbacks and ¢, is the universal morphism. Both pullback
diagrams are canonically homotopy fiber sequences and, as already mentioned, the cube is
commutative. So we built two long homotopy fiber sequences E(a;) = f& and E(b) = f2
and a morphism E(1¢) = ®, between them. Since («, ) is functorial (and the induced R is a
functor), the assignment 1) — F(1)) = ®, respects compositions and identities: E is a functor
E : M7 — ((M). Since fibrations are closed under pullbacks, the morphisms f;!, fgﬁrl are
fibrations and the objects Fr‘fjrl,Fﬁrl are fibrant. Finally, the cospans of the back and the
front square are fibrant in the injective model structure, see for instance [14]. Now, if ¢,
and ¢, are weak equivalences, these fibrant cospans are weakly equivalent, as ¢, is obviously
a weak equivalence. However, the pullback functor is a right Quillen functor if the category
of cospans is equipped with its injective model structure, so that it sends weak equivalences
between fibrant objects to weak equivalences: ¢,11 is a weak equivalence. This means that

E(¢) = @, is an objectwise weak equivalence if 9 is a weak equivalence. O

Lemma 2. Let M be a pointed model category. There exists a functor I : (M) — ¢(M) that
preserves weak equivalences and sends long homotopy fiber sequences ae to long homotopy fiber

sequences 2 made of fibrations % : §& — §¢_, between fibrant objects (n € {1,2,3---}).

Proof. Let ae,be be objects of £(M) and W, an ¢(M)—morphism between them. We will construct
I simultaneously and inductively on these objects and this morphism. In other words, we
will construct long homotopy fiber sequences I(a,) =: f¢ and I(b,) =: £ and a morphism
I(¥,) =: O, of long homotopy fiber sequences between them. At the same time we build step
by step a natural weak equivalence w : idyy) = T, i.e., we build step by step a commutative
diagram

ae =2 1

[ (25)

be =25 1
If we apply Ry to Ve : ae — be, we get ¥ = (1g,%1) : a1 — by and if we apply E to the
latter, we get ®o : f&1 — fo1. We choose the first two terms ¢ = (¢g, ¢1) : fi'* — ffl of ¥,
as the first two terms 6 = (g, 61) : ¢ — 4 of O, (this includes choosing the first two terms
(Fg*, Fi') as the first two terms (§§,§{) and similarly for b). Let us remember that above
we defined 6 as follows (see Diagram (23)):
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A1 “ > AO
\ a(Rar).,  f wo\4 .
P1 RA, — 1 56
Ry b 01 (26)
Bl JV ! l > BO 00

rB " 5

Diagram is a diagram in ¢(M), so that every arrow is a sequence of commutative
cubes. Its commutativity means that the nth cube of the down-right composite (which is the
composite of a cube A ~» B and a cube B ~» §°, where ~» denotes a morphism between
squares) coincides with the nth cube of the right-down composite (which is the composite
of a cube A ~ F% and a cube F* ~ F°), for every n € {1,2,3,---}. The commutative
diagram means that half of this condition is satisfied for the 1st cubes and it shows that

wa,

= (wg,wt) : a1 — §¢ and w” consist of two weak equivalences and that ¢ is made of weak
equivalences if ¢ is. Assume now that the sequences ¢ F4, ¢, 12, w?, wb and O, have been
constructed with all the required properties and implicit vertices or arrows up to order n > 1
and that the commutation condition of Diagram is fulfilled up to half the condition for

the nth cubes.

App1 ——— A,

% ‘ % a
/ -7 Sn—i-l [ Sn
Byt =~ B,
\\J /”/r,/ ~
By > B
(27)
An—l -
\l ¥
Cgs —— Sh

\

Cg, — B, //

Oy T E

<

/,

In , the back commutative square of the right cube is a homotopy fiber sequence of
ae . The right commutative square of this cube is given by wg,a,, % and w?_;. To get the
lower commutative square, we decompose C4,, — §5_; into a weak equivalence followed by a
fibration using our fixed functorial factorization (see Remark . Now we take the pullback

nt1 7= 8p Xga_, Cga

n—1
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use the fact that fibrations are closed under pullbacks, and complete the right commutative
cube by the universal arrow A,;1 --» §7 ;. Since the back square is in particular a model
square this universal arrow is a weak equivalence. The left commutative cube is constructed
similarly. As a result of Corollary 2| the square §* (the front square of the right commutative
cube) is a homotopy fiber sequence and extends f¢ or (§7,f¢) which is made of fibrations
between fibrant objects to order n + 1. Analogously the square §® extends (F2,f2). The
commutative cube A ~~ §% (resp., B ~~ S’b) is an objectwise weak equivalence of homotopy

fiber sequences that extends the ¢(M)-morphism w? (resp., w?) to order n + 1.

We now describe the six cubes of Diagram that contain sloping arrows to the left. In
fact, the top and bottom of these cubes are fully described as soon as the two back and two
front cubes are. The commutative back cube A ~» B is a cube of the sequence W, : o — b .
The front cube AF® ~ BF® is counterpart in order n to the commutative cube and it is
commutative in view of the induction assumption that the commutation condition of Diagram
is satisfied up to half the condition for the nth cubes. Since the trivial cofibration -

fibration factorization system used is functorial, the commutative rectangle

CAn — CS% » 3?1—1

L1 >

Cp, »—— Cz —> F5_,

n

induces a central vertical arrow that makes the left and right squares (which are two of the
six bottom squares of (27)) commutative. The universal arrow §%,; --» §°_; renders the
upper and left square of the front cube F* ~» F° commutative. Finally, in the back cube
AF*C ~» BF’C, the top square is commutative because of the uniqueness of the universal
arrow. This completes the description of the fully commutative diagram . Notice that
the commutative cube F ~» F extends O, to order n + 1 and remember that we still have
to show that the complete commutation condition for the nth cubes is now fulfilled, that is,
the composite cubes A ~» B ~» §° and A ~» §% ~» F° in coincide. Since the diagram
is fully commutative, this requirement is met. As the full commutation condition for the
nth cubes includes the first half of the condition for the (n + 1)th cubes, induction works.
Eventually, if U, is an objectwise weak equivalence, it follows from the 2-out-of-3 axiom that

O, is an objectwise weak equivalence. This completes the proof. O
From the previous proof it follows that:

Corollary 5. There is a natural weak equivalence

W idg(M) %I
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The next lemma will allow us to prove Theorem
Lemma 3. There are natural weak equivalences
@ :idy-= R o FE

and
viEoR =1T.

Proof. If we go back to the original notation in Diagram , we have the commutative cube

Ay au s Ao
~ a(Ray) q  Fi1 oS o
P RA1 —_— Fl FO
Ry b 1 (29)
B]_ J/ ! l > BO ¢O
\ by \
R, "W T ph

for every M”—morphism ¢ = (1,%1) : a1 — by . The M”—morphism w : a; — f{* is the
upper commutative square which is a weak equivalence as it should be. The naturality of w

precisely means that the total left square and the right square commute, which is the case.

Next we construct v by proceeding similarly to the proof of Lemma For every ae €
¢(M) we must define an £(M)-morphism vZ : f& = §2 ie., we have to define a sequence
of commutative cubes which are objectwise weak equivalences. Moreover, for every ¢(M)—

morphism W, : ae — be , we must show that the diagram

al ~ ; a
o L2 f.
.

l@. l@. (30)

o

commutes (we have used the notations introduced above). Since we set f{ = f{* (see proof of

Lemma , we choose the identity maps as first two components v® = (vf,v{) : fi* — f{ of
vg . Since we also set (6p,01) = (¢o, ¢1), the naturality condition is so far fulfilled. Assume
now that the sequences v¢,v? of commutative cubes which are objectwise weak equivalences
have been constructed with their implicit arrows up to order n > 1 and that the commutation

condition of is fulfilled up to half the condition for nth cubes.
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To extend the sequences and the commutativity to order n+ 1, we start by describing the

total parallelepiped in the diagram

~ a1l
— —_—>
0 Cra E

y S1

Cg

n

The arrow F, — F' | is ¢,_1, the arrow F | — §% | is v®_,, the arrow Ca, — §%_,
is the composite of C4, — Ap—1 in ae and W _; : A1 — §¢_; (see Corollary , the arrow
Ca, — Cg, is the implicit arrow in the nth cube of ¥, , and §2_; — 35’1_1 is 0,1 . All four
rectangles of the parallelepiped commute (for the commutativity of the lower rectangle, see
commutative diagram ) By definition, we get the vertex Cpe1 (vesp., Cga ), if we apply the
fixed functorial trivial cofibration - fibration factorization system (see Remark | to0 — Fffl_l
(resp., Ca, — F%_;). Since the system is functorial, we also get the five central arrows,
S1, 59, 53,54 and the diagonal arrow. A priori we even get two diagonal arrows, one, say D1,
induced by the commutative square, which is made up of the top and front rectangle, and
one, Do, from the commutative square, which is made up of the back and bottom rectangle.
From the functoriality of the factorization system follows that Dy = S3057 and Dy = S4055.
However, these two commutative squares coincide as the right square of commutes (since
half of the commutation condition is satisfied for the nth cubes that correspond to (30))), so
that D1 = Do, i.e., so that the central square of commutes.

In the right cube of Diagram

by
Fn+1

Cppn
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the right commutative square is given by vy , fi*, % and v_; . The lower commutative square
is the right back square of Diagram . The vertices Fy}; and §¢,, have been defined as
pullbacks and the resulting commutative squares identified as homotopy fiber sequences. Since
the back pullback square is a homotopy fiber sequence, the universal dashed arrow between
these vertices is a weak equivalence. Hence the right commutative cube in extends the
sequence v? to order n + 1. The left commutative cube is built similarly and it extends v? to

order n 4+ 1. The objectwise weak equivalence condition is satisfied.

We now describe the six cubes in Diagram that contain sloping arrows to the left. In
fact, the top and bottom of these cubes are fully described as soon as the two back and two
front cubes are. The back cube F% ~» F? (resp., front cube §* ~ §°) is part of ®, (resp., of
©,) and therefore it commutes. The front cube F®F? ~» F" 3% is commutative because of the
induction assumption that the commutation condition of Diagram is satisfied up to half
the condition for the nth cubes. Finally, the vertical faces of the back cube F¥F*C ~» F higbC
are commutative since the are faces of other commutative cubes. Its lower face is the central
square of , which commutes. Its upper face commutes because of the uniqueness of
the universal arrow (see also (27))). We still have to show that the complete commutation
condition for the nth cubes is now fulfilled, that is, the composite cubes F% ~» §% ~» F°
and F¥ ~s Fb1 s Fin coincide. Since the diagram is fully commutative, this

requirement is met. ]
We remind the reader of the following lemma [I4], as it simplifies the proof of Theorem

Lemma 4. Let C be a category which is equipped with a distinguished family W of morphisms
called weak equivalences, let E be any category and let F,G € Fun(C,E) be functors which send
weak equivalences to isomorphisms. A family 0x : F(X) — G(X) of E-maps indezed by the
objects X of C is a natural transformation Ho(6) : Ho(F) = Ho(G) if and only if it is a

natural transformation 0 : F = G .

Lemma 5. Let C,D be categories with distinguished families W, Wp of morphisms and let
F,G € Fun(C,D) be functors which preserve these weak equivalences. A natural weak equiva-

lence n : F = G induces a natural isomorphism
Ho(n) : Ho(F) = Ho(G) .

Proof of Lemmal3 If we whisker the natural transformation 7 with the localization functor

~p we get the natural transformation

Wwxn:poF =poG,
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all whose components (1p *7)x = 7p(nx) are isomorphisms. If we apply Lemma 4| to F =
Yo F, G = 1poG and the family (1p * 7)x, and if we write as usual Ho(—) instead of

Ho(yp o —), we get the announced result. O
Proof of Theorem[J. If we apply Lemma [5] to the natural weak equivalence
w : idg(p) =171
of Corollary [5], we get a natural isomorphism
Ho(w) : idyo(eu)) = Ho(I) , (33)
since Ho(idga)) = iduo(eqny) -
Analogously, the natural weak equivalences
w:idys = RjoF and v:EoR =1

of Lemma [3| induce natural isomorphisms

Ho() : idgo(y—) = Ho(R1) o Ho(E) and Ho(v) : Ho(E) o Ho(R1) = Ho(I) . (34)
Indeed, as Ho(R; o E) is the unique endofunctor of Ho(M™~) such that

Ho(RioE)ow— =mw-o R0 E,

and as Ho(Rp) (resp., Ho(E)) is the unique functor from Ho(¢(M)) to Ho(M”) (resp., from
Ho(M™) to Ho(¢(M))) such that

Ho(R1) o yyu) = W~ o R1 (resp., such that Ho(E) oy~ = yym) o E) ,

we have that
Ho(Ry o E) = Ho(R;) o Ho(E)

and similarly for Ho(E o Ry).
If we combine and we see that

Ho(R;) : Ho(¢(M)) = Ho(M™) : Ho(FE)
is an equivalence of categories. O
As Theorem [5] has now been proven, the map
Ho(R1)a.b, + Homgo(g)) (@es be) — Homypgg—)(a1,b1) (e, be € £(M))

in Equation is a bijection. Its inverse can be described explicitly using the functor E of
Lemma [1] and the natural weak equivalences w and v of Corollary [5| and Lemma
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Proposition 5. Let M be a pointed model category, let ae,be € (M), let a1 := Ri(ae),
by := Ri(be) and let
¢ € Homgy(y—)(a1,b1) -

The unique preimage

Ee € Homyqg(my) (e, be)

of & under the bijection Ho(R1)a,p, 1S the composite of Ho(¢(M))-morphisms

7(9.;?)) ff ’y(vi)7>1 a1 Ho(E)(§) fl ’Y(UE)) f(: 7(“3)7; be | (35)

Qe o~ o~ o~

where vy = Yoy - If § is the class of weak equivalences and formal reversals of weak equivalences,
then Ho(E)(&) is an isomorphism and so is E, . In this case, we refer to E4 as the canonical

isomorphism in the homotopy category that extends & .

Proof. The unique preimage =, is a class
Q. v, Q!
Be = a0 2% ¢~ do —% -~ b))
of morphisms — of £(M) and formal reversals ~ of weak equivalences < of £(M) . If we construct
for each one of these ¢(M)-morphisms W, Q, ¥, - -+, Q, the commutative ¢(M)-squares (25))
and which encode the naturality of w and v, we get the following amalgamation of

commutative ¢(M)-squares

Ge e c.(QN' de ‘IJ'>---\QN' be

a |~ wC |~ wd ~ wb ~
o ul |

CoIW) o 10 g W) 1@

f. 4 o ~ f. AR ~ [ ] (36)
UfTN UfTN UfTN UETN

a1 , fC1 o™ dy NI b1

* (W) Ut I(Qe) Ut T(W) T(@L) CC

where Z := E o Ry . If we apply v = 7u) to (36), we get a commutative Ho(¢(M))—diagram
in which the images of the weak equivalences are isomorphisms. It is straightforwardly seen

that the composite
V() ooy (W) 0y () T 0 (W) (37)

of the first row is equal to the composite

Y(we) ™ oy (vg) oV (Z(R) T oo Y(Z(Wy)) 0V (Z(S2) T 0V (T(Ta)) 0y (vS) oy (w]) (38)
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of the first column, the last row and the last column. Since for any morphism ®, of ¢(M) we
have v(®e) = [®s], since for any weak equivalence W, of £(M) we have [W,]~! = [W,!] and
since a composite of classes is the class of the corresponding concatenation, the composite

can be written

(4] o0 [0 [] T o [Wa] = [ or- o [WLIo [ o [Wa] = [We 1 W, -+ ] = E, .
(39)

On the other hand, since for any morphism ®, any weak equivalence W, we have
Ho(Z)[®4] = v(Z(®s)) and Ho(Z)[W '] =v(Z(W.)) ™",
the partial composite in of the factors that contain Z = FE o Ry is equal to

Ho(Z)[% ] o -+ o Ho(Z)[¥,] o Ho(Z)[2; '] o Ho(Z)[¥s] = Ho(E)(Ho(R1)(Z.)) = Ho(E)(£) -

(40)

The statement now follows from , , and .

As for the second statement in Proposition [5] it suffices to observe that if
E=ww W,
then
Ho(E)(¢) = Ho(E)[w' ! o --- o Ho(E)[w'] o Ho(E)[w™!] o Ho(E)[w] =
YEW) ™ o oq(BE(w)) oy(Bw)) ™ or(E(w)),
which is a composite of isomorphisms, as E preserves weak equivalences. ]

Theorem [5| has two more corollaries that we will apply later.
Corollary 6. Let M be a pointed model category. The localization
Ho(R;) : Ho(h(M)) — Ho(M™)

of the restriction functor of homotopy fiber sequences yields an equivalence of categories be-
tween the homotopy category of the category of homotopy fiber sequences of M and the homotopy
category of the category of morphisms of M.

Proof. Corollary [6] is a consequence of the proofs of Lemma [1, Lemma [2] and Lemma [3] in

which we stop the iterative process after the first step. ]
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Corollary 7. Let M and N be pointed model categories and let F € Fun(M,N) be a functor
which preserves weak equivalences between fibrant objects and sends the zero object Oy of M to
an acyclic object F(Oy) of N. In addition, let

a: Ay 2 A Ay and b:Bg£2—>31£1—>Bo

be objectwise fibrant homotopy fiber sequences of h(M) and assume that there exists a weak
equivalence

w = (wo,wl) rap — b1

in M7. Then F preserves the homotopy fiber sequence a € h(M), i.e., we have F(a) € h(N)
if and only if it preserves the homotopy fiber sequence b € h(M), i.e., if and only if we have
F(b) € b(N). If F preserves all weak equivalences, the result is true without a and b being

objectwise fibrant.

Proof. In view of Corollary [6] Proposition [fis also valid if we replace £(M) by h(M) . The unique

preimage = € Homgy, ) (a,b) of
€ = e (w) = [w] € Hompoge (a1, 1)

under the bijection Ho(Ry)gp is

—
— .

. 'y(wa)> fa 'Y(U;)_; fal W(Eg(w%) fbl 'Y(vb)) fb 'Y(wb)_; b

o o o

This means that = is the class of

0 L o Wy g B, gy K
so that we have a zigzag
e L Blw), N R (41)

of weak equivalences between objectwise fibrant homotopy fiber sequences. It now suffices
to show that if there is a weak equivalence W : d = e between objectwise fibrant homotopy
fiber sequences d, e € h(M), then F'(d) € h(N) if and only if F(e) € h(N). Weak equivalence of
homotopy fiber sequences means of course a morphism of homotopy fiber sequences which is
objectwise a weak equivalence. Hence W is a commutative M—cube which is objectwise a weak
equivalence of M (see and omit F'). If we apply F' to W we get a commutative N—cube
which is objectwise a weak equivalence of N (see (42)) (1). From Proposition [2]it follows that
F(d) is a model square if and only if F'(e) is one. Since Cp and F(0Oy) are acyclic, i.e., since
Oy — Cp and Oy = F(Oy), we get that Oy — F(Oy) = F(Cp) (%2), so that F(Cp) is acyclic.
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The same is true for F(Cg). Hence F(d) is a homotopy fiber sequence if and only if F'(e) is

a homotopy fiber sequence.

(42)

Notice that we used the assumption that the homotopy fiber sequences a and b are objectwise
fibrant only in (x1) and (*2). Hence this assumption is not necessary if F' preserves all weak

equivalences. O

4 Puppe’s long homotopy fiber sequence

The results of this section are based on a suitable notion of loop space functor.

It is well known that the path space fibration of a pointed topological space (X, zo) is
the fibration
mx : Pathg X — X

whose total space
Pathy X := {a € C°([0,1], X) : (0) = zo}

is the space of paths of X with starting point xg and whose projection wx maps every path

a to its end point «(1). The fiber Pathy X x x 0 of mx over xg is the loop space of X at xg.

A similar concept exists in every pointed model category M. Indeed, any functorial factor-

ization into a weak equivalence followed by a fibration

00— 0
I~ I~
Pathg X — PathgY
¢ ¢

X —Y

leads to an endofunctor Pathg : M — M and a natural transformation Pathy = idy . However,

we prefer to work with a weaker notion of based path space functor Pathg :
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Definition 3. A based path space functor in a pointed model category M is an endofunctor
Pathg : M — M
together with a natural transformation
7 : Pathg = idy

whose components wx : Pathg X — X at all fibrant X € M are fibrations with acyclic domain
Pathg X < 0.

Remark 4. An important special case occurs when the pointed model category under consid-
eration is right proper and the condition that the components of the natural transformation
7w are fibrations with acyclic domain is fulfilled for each object X, whether fibrant or not
(just as when the based path space functor is induced by a functional factorization). In the

following we refer to this case as the strongly proper case.

Let I be the category 1 — 2 < 0. The functor category Fun(I,M) is then the category of

cospans of M. To every based path space functor Pathy we can associate the functor
Cpath, : M — Fun(I, M)

(if there is no possibility of confusion, we simply write C) that is defined on objects X € M by
the cospan
CX: 0— X < Pathy X

and on morphisms f: X — Y of M by the commutative diagram

CX 0 — X «+ Pathyg X
al- L]
CY 0 — Y < PathyY

Definition 4. In a pointed model category M, the loop space functor associated to a based

path space functor Pathg is the composite
Qpath, = Limo Cpatp, : M — M

(or just Q if no confusion is possible) of the cospan functor Cpagn, : M — Fun(I,M) and the
limit functor Lim : Fun(I,M) — M. In particular the loop space of X € M is the object

QX =Pathg X xx 0eM.
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Remark 5. From here on we work in a fixed pointed model category M, which is equipped

with a fixed based path space functor Pathg, and consider the associated loop space functor

Q.

Theorem 6. The loop space functor preserves all fibrant objects, the weak equivalences be-
tween fibrant objects and the objectwise fibrant homotopy fiber sequences. In the strongly
proper case, the loop space of every object is fibrant and the loop space functor preserves all

weak equivalences and all homotopy fiber sequences.

Proof. We start with a few observations. In this proof we have 0 = Pathq X — X for every
object X € M that we consider, since either this object is fibrant or we work in the strongly

proper case. For every M—morphism f: X — Y, we get a commutative diagram

QX

L/“ L

It contains three types of commutative squares, which will appear several times below. We
refer to squares similar to the commutative right lower square as squares of the type P, to
squares similar to the commutative front square as squares of the type L, and to squares
similar to the commutative upper square as squares of the type U . In every type P square
the arrow between the path spaces is a weak equivalence. Further, it follows from Corollary
that every type L square is a model square. Finally, in every type U square that is induced
by a weak equivalence f, the universal arrow is a weak equivalence because of Theorem [3| and
Theorem [l

From the last observation and the closedness of fibrations under pullbacks it follows that

the statements about weak equivalences and fibrant objects in Theorem [f are true.

Let now A 2 A % 92 be a homotopy fiber sequence. If we are not in the strongly proper

case, we assume that it is objectwise fibrant. If we factor ¢g into a weak equivalence followed
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by a fibration, we get the following commutative diagram

A A
91Ny
K :=kerg A
‘ (44)
Cx A g
| \
0 A

From Corollary [2]it follows that the front square is a homotopy fiber sequence. Since 2 is an
endofunctor that preserves weak equivalences between fibrant objects or, in the strongly proper
case, all weak equivalences, and since Q(0) = Path(0) is acyclic, we can apply Corollary [7] to
the images under € of the homotopy fiber sequences a: A - A —-Aandk: K - A — A :
to show that Q(a) is a homotopy fiber sequence, it suffices to prove that Q(k) (2 applied to
the front square of (44)) is a homotopy fiber sequence.

Because of Proposition [2], it is even enough to build a model square that is weakly equiva-
lent to the commutative square (k). We get this model square by constructing the following
commutative diagram step by step. The diagram has an upper, a lower, a left, a right, a front,
a back and two middle parts, the parallel (to the front) middle part and the orthogonal one.
In the following description, the first adjective refers always to the part and the second to the
square we are looking at in that part. For instance, the right front square is the front square
of the right part, i.e., the square Pathg A A Pathy2 2, whereas the front right square is the
right square of the front part, i.e., the square K 40 .

We start from the front right square (which is the front homotopy fiber sequence of (44))). The
right front square is a type P square. Let now K be the kernel of the morphism Pathg .4 —
A — 2 : Corollary [2| implies that the resulting square (the ‘diagonal’ square) is a homotopy
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fiber sequence. The universal arrow K --+ K makes the upper right square and the middle
upper triangle commutative. The pasting law for model squares now implies that the upper
right square is a model square. The lower right square is a type L square. The universal
arrow K --+ Q2 renders the middle lower triangle, the middle front square and the middle
right square commutative, so that the right cube is fully commutative. Moreover, Theorems

[Bland [ imply that this universal arrow is a weak equivalence.

We now describe the front left cube. Its front, left and lower squares obviously commute
(and so does its right square). The total upper front square is a type L square and therefore
a model square. Since K is a kernel, the universal arrow Q.4 --» K makes the parallel bent
triangle commutative. As K is a kernel, the upper front left square commutes and because of
the pasting law it is a model square. The parallel middle part of d5]is a type U square. As
Q2 is a pullback, the middle left square commutes.

It still remains to explain the back cube and the back 3D wedge. We start looking at the
union of this cube and wedge. The lower (left) square is the commutative square (k) and
the lower triangle can be viewed as a type U square. The left square obviously commutes
and the right square is the image under Pathy of a commutative square and is therefore itself
commutative. The back square can be interpreted as a type U square and the total upper
square is also a type U square. To understand the middle square (the back square of the
orthogonal middle part) and the resulting subdivision of the union, we have to look again at
the overall diagram . As K is a kernel, there is a universal arrow Pathy K --» K that
makes the upper triangle commutative. The total upper left square is a type L and a model
square and since K is a kernel, the upper back square commutes and is, in view of the pasting

law, a model square.

It suffices now to show that this model square is weakly equivalent to (k). We know
already that Pathg K — Pathg0 and K --» Q%2 are weak equivalences and that the lower
back square commutes. Hence all we have to do is to prove that the middle back square is

commutative. However, this is the case as Q21 is a pullback. O

Let us recall that if f : X — Y is a base point preserving continuous map between pointed

topological spaces (X, zg) and (Y, yo), its homotopy fiber or homotopy kernel
K¢ :=PathoY xy X = {(a,2) € PathgY x X : (1) = f(2)}
= {(a,2) € C%([0,1],Y) x X : a(0) = yo, (1) = f ()}

fits into the ‘homotopy fiber sequence’ Ky — X — Y . The latter can be extended to a long

sequence. More precisely, the loop space

QY = {a e C%([0,1],Y) : a(0) = (1) = yo = f(x0)}
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injects into the homotopy fiber K thus providing a connecting morphism ¢ : QY — K.

The extending long sequence mentioned is then the sequence
o Y 5 QK 2 QX 5 QY 5 Ky X =Y

which is referred to as Puppe’s sequence.

We will generalize Puppe’s sequence to our context. We start with the following definition
(see also Remark [5):

Definition 5. Let f : X — Y be an M—morphism between fibrant objects. We refer to the
pullback
Ky := Pathg Y xy X

as the homotopy kernel of f, to the universal arrow
O : QY —— Ky

as the connecting morphism associated to f

QY Pathy Y
AN \Aéf » ‘ \
Ky ! l Pathy Y
;o ;

and to the sequence

Py Moy ™oy Yoy g, Tx Ly (47)

as Puppe’s sequence of f.

Definition [5| makes also sense if X and Y are not fibrant. However, if they are, the
homotopy fiber or homotopy kernel K of f is a fibrant object and it is in view of Theorem
a canonical representative of the homotopy pullback 0 ><’{/X . This justifies the assumption that
X and Y are fibrant. In the strongly proper case, the homotopy fiber Ky of f is isomorphic
in the homotopy category to the homotopy fiber HFib(f) of f of [I5]. Therefore we use the

terminology of Definition[J also in the strongly proper case.
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Proposition 6. Let My be the full subcategory of M~ consisting of all the morphisms between
fibrant objects of M and let My be the category My , except in the strongly proper case where it

is the full category M~ . There is an extension functor
P:M7 3 fePrelM),

whose values Py on objects f € My are objectwise fibrant long homotopy fiber sequences and

to which we refer as Puppe’s extension functor.

Proof. Let f € M;” be an M-morphism with source X and target Y.

We will describe the following commutative diagram using the terminology introduced at

the beginning of the proof of Theorem [6]

QX — Pathg X = Pathg X & 0

~ ~ \L N (48)
QY -+ Ky — PathgY < 0

P~y 7
0 >y X > Y
\_/

The three lower squares of are nothing more that the commutative cube of in

Definition [5. The lower right square is a model square and even a homotopy fiber sequence

because of Corollary [2]and the total lower square is a type L square and therefore also a model
square. From the pasting law for model squares it now follows that the lower left square is
a homotopy fiber sequence. The total left square is also a model square as it is of the type
L. The total upper square is of the type U and the total right square is of the type P . The
arrow Pathg X --» K is the universal morphism and makes the upper right square and the
vertical middle bent triangle commutative. The upper left square commutes because of the
uniqueness of the universal morphism from QX to K. Finally the pasting law implies that

the upper left square is a homotopy fiber sequence.

Since () preserves objectwise fibrant homotopy fiber sequences and even all homotopy fiber

sequences if we work in a strongly proper environment, the images
QEK;) = QX = QY, Q% — Q(Kf) —» QX, QX — Q%Y — Q(Kj),

are all homotopy fiber sequences that are objectwise fibrant if f € My .

Let now f,g € My be M—morphisms with source X,U and target Y,V , respectively, and
let ¢ = (¢o,v1) : f — g be an M”—morphism between them. The next diagram, in which
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dashed arrows represent universal morphisms as usual, defines Py, : Py — P, and shows that

Py is an £(M)-morphism, i.e., a sequence of commutative cubes.

QX — Pathg X

QY -—--» K; — Pathg Y

4 -

(49)

To convince ourselves of this claim, we can first note that all arrows from the back part of
Diagram to the front part are easy to understand. The commutation of the three cubes
of is obvious because of the uniqueness of universal arrows. As €2 is a functor, we get
the desired sequence of commutative cubes. Moreover, the assignment P : 1 — Py clearly

respects compositions and identities, which completes the proof. O

Proposition 7. The extension Py € {(M) of a morphism f € M toa long homotopy fiber se-

quence is unique up to a canonical isomorphism of Ho(¢(M)), i.e., a zigzag of weak equivalences

of L(M) .

Proof. The statement is a consequence of Proposition Indeed, if by € ¢(M) is another
extension of f than ae := Py € {(M), there is a canonical isomorphism in the homotopy
category of £(M) between a, and be that extends the class £ :=[id: f — f]. O

In Algebraic Topology the long exact sequence of homotopy groups of a fibration is a
consequence of Puppe’s sequence of the fibration: to get the long exact sequence it suffices to
apply to Puppe’s sequence the covariant Hom functor in the homotopy category associated to
the O-sphere. A similar result exists in our context of a pointed model category M equipped
with a based path space functor Pathy and the corresponding loop space functor 2. More
precisely, if

[A, =] := Homyo ) (4, —)

is the covariant Hom functor in the homotopy category associated to an object A € M and if

~ is the localization functor of the category M, we have the following



33

Proposition 8. Let f € My and let A € M. The sequence

A Y] W oy BG4 ) )
A,0v] 2 (4, k) P (4, x) 2 4y (50)

is a long exact sequence of Homgqy)—sets.

We will show later that when we apply this result to chain complexes of modules, we get
the usual long exact sequence of homology modules (since our theory is an abstraction of
aspects of pointed topological spaces, it is not surprising that in this case we obtain the usual
long exact sequence of homotopy groups). Further we will explain what an exact sequence
of Homgy,y)—sets is after giving the next proposition of which Proposition [§ is obviously a

corollary.

Theorem 7. Let X i) XL Xbea homotopy fiber sequence in M and let A be an object
of M. Then the sequence

14, x] 2 [, 2 29 4, (51)
is an exact sequence of HomHo(M) —sets.

Now as to the meaning of exactness, let f : X — X be an M—morphism and let A be an
object of M. Then vf : X — X is the Ho(M)—morphism

vf=[FCfl~ € [X, ],

where F is a local fibrant C-replacement, where C is a local cofibrant F-replacement and
where [—]~ denotes the homotopy class. Further [A,~f] : [A, X]| — [A, X] is the set-theoretical
morphism

[A,7f] = [FCflzo~ .

We define im[A, v f] as the set of images and ker[A, v f] as the set of elements that are sent to
Opa,x], where Op4 y] is the image under v of the zero morphism Oax : A “4oX x .

Opux) = 7(0ax) = y(ix)oy(ta) = [0 =% FCX]~o[FCA ™S 0. = [FCA — 0 — FCX]~ .
The sequence is exact now means that

im[A, vf] = ker[A,~g] .
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Proof. Let FX = FX — FX be a factorization of a lifting Fg : FX — FX into a weak
equivalence followed by a fibration and let K — FX — FX be the kernel of this fibration.

Since K = FX x 7x 0, we have two homotopy fiber sequences

€T XLX&%
1~ I~ (52)
k: K% Fx & Fx

whose restrictions 1 and k; are related by a weak equivalence w = (wp,w;) in M~ and an
isomorphism & := - (w) in Ho(M™) . For later use, we note that all of the nodes in the lower

sequence are fibrant.

In view of Proposition [b the homotopy fiber sequences x and k are related by a zigzag
of weak equivalences of homotopy fiber sequences, i.e., by a zigzag of commutative cubes
that are objectwise weak equivalences (hence the corresponding vertices of x and k are all
related by a zigzag of weak equivalences of M). If we apply v and [A, —] to these cubes, we

get in particular the following commutative squares in the category Set of sets

A, X] [A, 7 f] A ) [A, 7] A
by ‘b2 [bg,
A ) A 4, FX] 4 (4, Fx]

(53)

whose vertical arrows are bijections. More precisely, as said above, the corresponding vertices
. . w .
X and K, for example, are related by a zigzag of weak equivalences — and weak equivalences

<~ . When we apply v we get a zigzag of isomorphisms
(L) = [FC 5]~ and ~(+) = [FC <)~ ,
so that the composite i1 of the

(FC 4. and [PC <22

is an isomorphism in Ho(M) from X to K. The bijection by is now by = [A,41]. As a map
between fibrant-cofibrant objects is a weak equivalence if and only if it is a homotopy equiv-

alence, the FC' <2~ are invertible up to homotopy by weak equivalences W, and

[FO 2t = [~ .
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Therefore i1 is a composite of homotopy classes of weak equivalences, so it is the homotopy

class of a weak equivalence:

It follows that
blo[A,X] = [FC'X = FéK]: o [FC'A —0— FéX}: = [F’C’A —-0— FCN'K]: = O[A,K] s
i.e., that the bijections by, bs and bs preserve the zero elements.

Moreover, for every object A € M, there is a cofibrant object A € M. and a weak equivalence

w: A Aof M. If we apply v we get an isomorphism i : A S Aof Ho(M) given by
i=w=[FCw]~ = [FCAS FCA~,
and for every object B € M we get a bijection
b :=[i,B] = —oi:[A B] > A, B
that sends 04 p) to

bBO[A,B] = [FOA —-0— FOB]g o [FCN'A:) FOA] = O[.A,B] .

1

Hence we have the following commutative Set—squares

[A, vk] [A,vh]

A, K] (A, FX] [A, Fae]
bk bpy bix
A, K] 1A, s (A, FX] A, 78] [A, Fae]

(54)
As for the commutativity of these squares, note that if for instance [¢)]~ € [A, K], then
[A, 6] (b []) = i 0 (W~ 00) = (vh 0 [¥]~) 08 = bpx ([4, y][¥]~) -
If we combine and , we get commutative squares

[A, 7 f] [A,vg]

[A, X] [A, X]

[4, X]

b1 ‘bQ b3
[Aa 7’%] Fx [*Aa 'Yh] |:.A, ~x]
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whose vertical arrows are bijections which respect the zero elements of their source and target
Homy,y)—sets. It is straightforward to check that the exactness of the upper sequence of

is equivalent to the exactness of the lower sequence. For instance, if
im[A, vk] C ker[A, vyh]
and if [¢]~ € [A, X], we have

[A,79) (4,7 /lg]=) = b3 ([A AR ([A, 78] (01[0]~))) = 03104 joay = Opax -
Hence, it suffices to show that the lower sequence is exact.

Since A € M, and K, FX,FX € Mg, the description of the Homy,yy—sets in the lower
sequence of can be simplified. Indeed, the map

v : Homy(A, K) 3 f — ~f € [A, K]
is surjective and induces a 1:1 correspondence
7 : Homy(A, K)/ ~ 3 [flx = f € [A, K], (56)

so that
v = [f]~ (57)

if we identify the homotopy classes with the morphisms in the homotopy category [I1, Propo-
sition 5.11].

Hence every element of im[A, vk] reads [A, y&](7f) and, since

[A,~vh] ([Av ’Y"f](’ﬁ)) =7(hokrof) = ’Y(OK,Fx of) = ’Y(OA,Fae) = 0[,471535] )

we have

im[A, vk] C ker[A,vh] .

Conversely, if vg = [g]~ € [A, FX] is an element of ker[A, yh], we have

[A,vh](vg) =v(hog) =[hog]~ = 0[,471?35] = ’Y(OAﬁx) = [0,471?35]: )
so that hogand 0:= 0 sy are left homotopic, i.e., so that (hog)I10: Al A — FX factors

through a cylinder object Cyl A of A. The cylinder object is a factorization

1,92 i w
A ATTA S cyl A S A
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of the fold map id4 ITid4 : AIl A — A into a cofibration i and a weak equivalence w, which
means that

wot :=woiop; =idy and woig:=wotopy=1idy .

Since A is cofibrant and cofibrations are closed under pushouts, the morphisms ¢; and ¢9 are
cofibrations and so are the morphisms ¢; and 4o, which are obviously also weak equivalences.
The factorization of (h o g) II 0 mentioned above now means that there is a morphism H :
CylA — % such that Hoi; = hog and H oiy = 0, so that we have the commutative
squares

Aty CylA 24 4

P £ | l (58)
L
FX —l— Fx «——0
The dashed arrow ¢ exists in view of the lifting axiom. Since h o £ o9 = 0, the morphism
Lois factors through the kernel (K, k) of h, which means that there is a morphism f: 4 — K

such that £ ois = k of. Hence we have the commutative diagram

A%Cyl}l#A

This means that ¢ is a homotopy between g and Ko f :

79 = [g]l~ = [k o fl~ = yh o = [A, k] (7])

ie.,

ker[A,vh] C im[A, yk] .
O

We denote h(Mg) the full subcategory of h(M) made of the objectwise fibrant homotopy
fiber sequences of M. The category h(M;) is the category h(M¢) except in the strongly proper
case where it is the category h(M). Proposition [§] shows that we can associate a long exact
sequence to every g € Mi”, i.e., to every k € h(M;) of the type k : K, Tos x L5 x . Tt is also

possible to associate a long exact sequence to an arbitrary x € h(M;) :
Proposition 9. Let z : X Tox 2 xbea homotopy fiber sequence x € h(M;) and let

A € M. Then there is a connecting morphism A € [QX, X] such that

s 1A, 2] PR 4 0 x MG 4 gy M) (60)



4, 0x) 25 14, ) 2 14, 2 1299 4, (61)
is a long exact sequence of Homyqy)—sets.

Remark 6. If we do not work in a strongly proper environment and = € h(M) is not necessarily
objectwise fibrant, we can apply a fibrant replacement functor R to x and associate a long

exact sequence to Rz € h(M¢) (see Proposition [2).

Proof. Since x € h(M) induces the above k € h(M) and the restrictions k1 = z; = g € M~ are

related by the isomorphism
f = idHO(M—>)g = F(idMag) = F(idM X, idM %) S HomHo(M*)(kh {Bl) y

where I' := -, Proposition implies that there is a canonical isomorphism = € Homy, ) (
k,x) that extends £ and Equation gives the h(M)—zigzag

k k E(id) ¥ w®
= xr

k—2— ff o — 9 —5 9 — 7 <

whose class is equal to =. All arrows of this zigzag are commutative cubes in M that are

objectwise weak equivalences of M. In particular we have the following commutative M—squares

iy
K, ——sx 2%
w§ ~ w{“ ~ wlg ~
A N
32 31 ” go
vl |~ ol |~ |~
£ 7
Fy =5 F} —— FJ
f g
X X X

If we apply the functor v = 4y to them, we get commutative Ho(M)—squares in which the weak
equivalences have been transformed into isomorphisms of Ho(M). By inverting the upward
isomorphisms, we obtain the commutative Ho(M)-diagram

K, T oy 9,

l (62)
X

(=23

IR
IR

g
7f>X 9 x
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in which the two last isomorphisms are equalities. Indeed, as

[1]

=F) o P o (W) o F(wh),
where /= ) , We have
[(idy X,idy X) = € = Ho(R1)(E) =
Ho(R1)(F (w*)™!) o Ho(Ry)(F (v%)) o Ho(Ru)(F (v*)™1) o Ho(Ry)(F (W) =
(T(Riw™)) ™" o T(R1v") o (T(R1v*))™" o I'(Rw") . (63)

As composition and weak equivalences of M~ have been defined objectwise, applying I means
that we apply 7 objectwise (a similar remark holds for h(M) and F ). Hence, the last row of
coincides with the two last columns of , which are therefore equalities as announced.

If we denote the left isomorphism in with € and the composite morphism

ax % K, < x| (64)

with A | we can add a corresponding square in Diagram on the left. If we apply the functor
[A, —] to this extended commutative Ho(M)-diagram, we get the commutative Set—diagram
[A Q%} [Av'y((sg)} [A, K ][A '7(7(9)} [A X] [ Vg [A, %]
N e
14, 0x] A% 14 x) W9 g p) B9y y

[A 7]

On the other hand, since € in the general case sends weak equivalences between fibrant objects
to weak equivalences (resp., in the strongly proper case preserves all weak equivalences), the
right derived functor R¥Q) € Fun(Ho(M), Ho(M)) exists and satisfies

REQoy=~70QoF (resp., RKQoy=~00Q).

In particular, if A : Y — Z is an M-morphism between fibrant objects (resp., in the strongly

proper case any M—morphism), we get that
RQ(vh) : RQ(7Y) — RQ(vZ) is given by ~(Qh) : QY — QZ |

where we omitted superscript K. So if we apply first RQ2 to the above-mentioned extended

commutative Ho(M)-diagram and then [A, —], we get the commutative Set—diagram
H [A,Rmc)}l% H H (66)
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We can of course iterate this approach. The upper rows (resp., the lower rows) of ,
and of the commutative diagrams obtained from the iteration are the long exact sequence
(resp., the sequence) of Proposition [§| (resp., of Proposition E[) From the proof of Theorem
we know that if the vertical bijections in , respect the zero elements, then the
sequence of Proposition [] is exact as well. We know from the same proof that the bijection
[A, €] respects the zero elements, as € is the composite of images yw of weak equivalences w and
inverses 7o~ ! of images of weak equivalences w . Since RQ(¢) is the composite of the ~(Qw)
and the v(Qw)~!, so is the composite of images under v of weak equivalences Qw and inverses
of such images, the bijection [A, RQ(e)] respects also the zero elements. This completes the

proof. O
We close this section with the following comparison of different loop space functors.

Proposition 10. Let M be a pointed model category, let Pathy , Pathg, Pathg ... be based
path space functors in M and denote Q%, Q°, Q°... the associated loop space functors. There
exist canonical natural isomorphisms * : RQ* S RO which satisfy the cocycle condition

ch o Lba S

Proof. Let g : X — X be an M-morphism, choose a lifting Fg : FX — X, consider Puppe’s

sequences PZ ,Pb € ¢(M) and observe that their restrictions in M~ are related by the isomor-
phism & := 1dHO(Mﬁ)(F g) . If we proceed as in the proof of Proposmlon@ but in the case of
£(M) instead of h(M)), we get the commutative Ho(M)-diagram

(5%, ) Ws) (),

o (Fa) e ) e Ky Fa X fx
J T H
() D o) 1T Ky I X

The degrees 3 and 4 part of this commutative diagram reads

ROe(¥) Y ROa(x)

Ll:\‘} >~ Lgca =
b
ROV (x) 209 Rab(x)

which proves the ‘canonical isomorphism’ part of Proposition [10] (see Lemma . The ‘cocycle

condition’ part is a direct consequence of Proposition ]
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5 Comparison with Quillen’s fibration sequences

Recall that in any model category M path objects are dual to cylinder objects: a path
object of X € M is an object Path X € M together with a factorization

X S5 PathX —» X x X

of the diagonal map
AX = (idx,idx) X > X xX

into a weak equivalence followed by a fibration [we think of the first (resp., second) morphism
of the factorization as the map which assigns to every point the constant path a this point
(resp., to every path its start and end points)]. If we fix a functorial factorization («, ) of

the diagonal map and f: X — Y is a morphism, we get the commutative diagram

X 28 path x 284 x x x

lf i Path f i FXf

y 289 pathy 28 y oy
Indeed, if we denote m; and mo the projections out of Y x Y, there is a unique morphism
(f,f): X =Y xY such that

ﬂlo(f7f):7r20(f7f>:f'

Since (f x f) o Ax and Ay o f satisfy this condition, the total square commutes. It follows
from the functoriality of the factorization that the arrow Path f that makes the left and right
squares commutative exists, and that Path is an endofunctor of M. We refer to Path as the

path space functor of M.
Now let M be a pointed model category as in the preceding sections.

In Section [ we considered a based path space functor Pathg of M and the corresponding
loop space functor 2 of M. On fibrant objects X € M¢ the loop space 2X € My is the kernel of the
fibration Pathg X — X and on Mg—morphisms f : X — Y the Mf—morphism Qf : QX — QY
is the universal arrow

QX " Pathg X —» X

3 Qf lPatho f f

QY 5 PathgY —» Y

Quillen defines a loop space functor Q9 of M from the path space functor Path of M. On
objects X € M the loop space Q9X € My is the kernel of the fibration Path X — X x X and
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on M-morphisms f : X — Y the My-morphism Q9 f : Q9X — QY is the universal arrow

QX X5 PathX —» X x X
|0 f | Path f §f><f

Oy ™y PathY — 3 Y xY

A non-obvious result is that for any V € M¢ the functor of points
[—,Q9V] € Fun(Ho(M)°P, Set)

is valued in the category Grp of groups and that ‘accordingly’ Q®V is a group object of Ho(M) .
Another non-trivial result is that if K is the kernel of a fibration U — V between fibrant
objects U, V, there is an M-morphism p : QPV xy K — K such that vp : QPV Xpo) K — K
is an action of the group object 29V on K .

Theorem 8. Let M be a pointed model category that is equipped with a path space functor
Path implemented by a fized functorial factorization. Quillen’s loop space functor QF is a
loop space functor in the sense of the present paper, i.e., a loop space functor associated to a
based path space functor PathOQ of M.

Proof. It is natural to define the based path space Pathfj? X of X € M as the kernel of the
composite Path X — X x X 55 X | where m; is the projection on the first factor of X x X .
The projection on the second factor will be denoted m5. For f : X — Y and i € {1,2}, we

have a commutative diagram

PathY X —* PathX —» X x X —» X

| Path f | Path f | Fxf lf

Path?Y —% PathY —» ¥V xY —— Y

where PathOQ f is the universal arrow that we get for ¢ = 1. Since Path is an endofunctor, the

same holds for Pathg2 . If i = 2 the diagram gives a natural transformation PathOQ = idy .

The functor PathOQ is a based path space functor in the sense of Definition |3] if for every
fibrant X € M the M-morphism Path(? X — X is a fibration with an acyclic domain.

Since fibrations are closed under pullbacks, the projection m; : X x X — X is a fibration
if X is fibrant, so that the composite p; : PathX — X x X % X is also a fibration. As
X S PathX & X is identity by definition of Path X , it follows from the 2-out-of-3 axiom

that p; is a weak equivalence and therefore a trivial fibration. Since trivial fibrations are
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closed under pullbacks and PathOQ X = kerp; = Path X xx 0, the morphism Path(? X =0
is a trivial fibration, so that PathOQ X is acyclic. Next we show that the M-morphism

po : Path@ X 25 Path X 3 X

is a fibration. Therefore, let Y ~ 7 be a trivial cofibration such that the left square of the
diagram
Y — Path9 X —* Path X

=y
IAJ I L i
g g

7z o x O v x

commutes. To see that the right square also commutes, observe that there is a unique mor-
phism m : Patho(‘2 X — X x X such that m; om = 0 and 7 o m = py. Since both morphisms
Patth X — X x X in the right square fulfill these conditions, they coincide. As the total
square now commutes, there exists a lifting £ : Z --» Path X . Since Pauthg2 X is a kernel,
there is a unique morphism [: Z — PathOQ X such that £x ol = £. As the total upper triangle
commutes and £y is a monomorphism so left cancellable, the left upper triangle commutes.
In order to conclude that the left lower triangle commutes and that ps is a fibration, it suffices
to notice that (0,1id) is left cancellable.

It remains to prove that the loop space functor 2 associated to the chosen based path
space functor Patth is Quillen’s loop space functor Q% . For any f : X — Y we have the

following commutative diagram

Ox kX(le PathggX tx (p1)

B path X -2 X x X —™5 X

7 EX /,/?

~

QV 5 PathQV — PathY — 25 Y xY —— VY f

o
- = \
Y

in which only the universal morphisms £x and [x and the associated commutative squares

require explanation. Obviously there is a unique morphism £y : QX — Path(? X such that

EX(pl)ngzﬁx((bx) . (68)
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Notice now that
mio¢px obx(p1)okx(p2) =0,

as tx(p1) (resp., kx(p2)) is the kernel of p; (resp., p2). However, the zero morphism QX —
0 — X x X is the unique morphism from QX to X x X whose composite with 7; is the zero
morphism QX — 0 — X . Hence

¢x o tx(p1)okx(p2) =0
and there is a unique morphism [x : QX — Q%X such that
rx(¢x)olx = tx(p1) o kx(p2) . (69)
From and it follows that
tx(p1) olx olx = tx(p1) o kx(p2) and fxolx = kx(p2),
as tx(p1) is left cancellable. The commutativity of the square associated with £x, ¢y (resp.,

with [x, l[y) follows from the left cancellability of ¢y (resp., of Ky ).

We are now prepared to show that the pair (29X, £x) is a kernel of py so that QX = QX ,
Q9f = Qf and Q9 = Q, which then completes the proof (cf. Diagram ) To see that
(Q9X, £x) is a kernel, notice first that

prolx =mopxokx(px)=0.

Further, if A : A — PathOQX satisfies po o A = 0, there is a unique morphism g : A — QX
such that kx(p2) o p = A. However, then [x opu: A — Q9 X satisfies £x o [y o p = X and is
the unique morphism with these properties. Indeed, if v : A — Q9X is such that {x ov = X,
then

kx(px)ov="tx(p1)olxov==_tx(p)oA==tx(p1)okx(p2)on=rx(¢x)olxopu,
so that v=1Ixop. O

Remark 7. If we dualize the constructions of this paper, we get the reduced suspension
functor X instead of the loop space functor 2. From Theorem [§] and its dualization it follows
that Quillen’s suspension and loop space functors £9 and Q@ are suspension and loop space
functors in our sense. Since

LX? : Ho(M) = Ho(M) : RQY

are adjoint functors, Proposition and its dualization show that any derived suspension

functor LY is left adjoint to any derived loop space functor R2.
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Because of Theorems [8| and |§| Quillen’s loop space functor Q9 € Fun(M, M) preserves weak
equivalences between fibrant objects, so that Theoremimplies that its derived functor RKQ®
exists and is given at X € M by

RO (%) = Q9(FX) € Ho(M) ,
where we omitted superscript K . Quillen now gives the following

Definition 6. Let M be a pointed model category. A fibration sequence in Ho(M) is a
sequence
X—=>X—=X

in Ho(M) together with a Ho(M)-morphism R : RQ®(X) Xuom) X — X, such that the following
holds:

1. the sequence is isomorphic in Ho(M) to a sequence K — U — V that is implemented
by the kernel K of an M—fibration U — V between fibrant objects U,V | i.e., there is a

commutative Ho(M)—diagram

S
}R

Il
<.
< Il =
P
1%
o~
=

<

whose vertical arrows are isomorphisms;

2. the morphism R coincides under this isomorphism with the morphism vp, i.e., if k is
the isomorphism
ROC(X) S Q9V

that is induced by k and if k=1 x i1 is the isomorphism
PV Xgopn K = ROP(X) Xgop X
that is induced by k=L and i™!, we have
ioRo (k™! xiY)y=nrp.
We will show that Quillen’s fibration sequences are tightly related to our homotopy fiber

sequences. An initial observation that confirms this claim is Quillen’s result that if we take a

fibration sequence K — U — V with action vp, we have a connecting Ho(M)—morphism

59 Q% - K, (71)
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QQV (ldﬂg)) QQV XHO(M) K ﬂ) K,

Q
such that QPV &5 K — U is also a fibration sequence. Moreover, Quillen gets a long exact
sequence similar to the long exact sequence in Proposition[8 Finally, the connecting morphism
and the similarly defined connecting morphism

A9 ROP(X) » X (72)
render the left square of the diagram

ROQ(X) 2% x — X

= s

Q@Y s K U

<
IR

commutative.

The next theorem specifies the relationship between fibration sequences and homotopy

fiber sequences.

Theorem 9. A homotopy fiber sequence X i) x L ox of h(M¢) is a fibration sequence
x 2 x 2% xin Ho(M) and the connecting morphism A defined in coincides with the
connecting morphism AQ considered in .

Proof. Let X J ¥ % % bean objectwise fibrant homotopy fiber sequence of M, let X = X 3
X be a factorization of g into a weak equivalence followed by a fibration and let (K, k) be the
kernel of . Then K = X 2 X is also a homotopy fiber sequence of M and, if we proceed as

at the beginning of the proof of Proposition |§|, we get a commutative Ho(M)-diagram

vfxvg%

1E ’ (74)

Sharale

l)%

i

YR
—

The group action vp : QX Xpomy K — K mentioned just above Theorem |8 induces a Ho(M)—
morphism
d s 4
R : RO2(X) xgouny X B Q0% xyopy K B K X

which, together with the sequence X ﬁ X Xx , satisfies the requirements of Definition |§|7 SO

that this sequence is a fibration sequence in Ho(M) as announced.
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To prove that A = A® we will describe the following commutative Ho(M)-diagram:

7(0g),

//m K 22 X x
00x K/
5 g
’Y( g) (75)
€| %
09x X

The commutative front of Diagram comes from the commutative Ho(M)-diagram

and Equation . In particular
A =eo(dy) . (76)

The commutative bottom is nothing but the commutative Ho (M)fdiagram In particular,
its arrows that are not labelled are the isomorphisms ¢ and j .

The upper row of the back of Diagram consists of the image under v of the terms
of degrees 0 — 3 of Puppe’s long homotopy fiber sequence Py € £(M;) associated to g € My .
Notice that it follows from Diagram and the pasting law for pullbacks that (Q%X, dg) is
the kernel of the fibration 75 : K5 — X with fibrant source and target.

The lower row of the back contains the fibration sequence that is implemented by the
kernel K of the fibration X — X between the fibrant objects X and X and the connecting

morphism

Q
0ex S K
of Equation that makes
xS KX (77)

a fibration sequence (see paragraph below Definition |§| and [23, Section 1.3.5, Proposition 3]).

As in the commutative M—diagram

Qi
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the front square is a model square and the back square is the pullback of a weakly equivalent
fibrant cospan, the universal arrow £ : K --» Kj is a weak equivalence. This explains the
middle and right commutative squares of the back of Diagram . In order to show that
(77) satisfies the requirements of Definition @ Quillen had to construct a sequence that is
implemented by the kernel of a fibration between fibrant objects and is isomorphic in Ho(M)
to . Actually he showed that the left square of the back of Diagram commutes and

uses the isomorphism given by the left and middle squares:
69 =yt Loy (dy) . (78)

In order to understand the top square of ([75]), we consider the commutative M—-diagram

Once more, since the front square is a model square and the back square is the pullback of a
weakly equivalent fibrant cospan, the universal arrow K, --» Kj is a weak equivalence. Hence,
the top middle and right squares of commute and their arrows that are not labelled are
isomorphisms; the one on the right is isomorphism j and the one on the left is an isomorphism
that we denote by ¢. From the commutativity of Diagram follows that the top left square
of Diagram commutes:
V(dg) = tov(dy) - (79)
It remains to explain the commutativity of the squares that are parallel to the right face
of Diagram . Only the commutativity of the leftmost square is not entirely obvious.
However, as

K,B%x %% and K5 X5 %

are homotopy fiber sequences of M and the factorization
3
X=X —>X
of g implements an isomorphism ¢ in Ho(M~) between their restrictions, there is a unique
isomorphism = in Ho(h(M)) that extends £ . Hence

ioe=~tlou. (80)
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If we compare Diagrams and , we see that in our case k = id, so that Diagram
(73]) shows that
AQ =i1og?. (81)

On the other hand, it follows from Equations , , and that

A=¢€oy(dy) =€o0 o ~v(d5) = itoytlo v(6g) = ilod? . (82)
Finally, Equations and allow us to conclude that A = A9, O

6 Application to chain complexes

6.1 Long homotopy fiber sequence and long exact homology

sequence

A particular advantage of our homotopy fiber sequence concept and related theory is
that they are easy to apply. Let us summarize our construction. In each pointed model
category that is equipped with a based path space functor, we consider the associated loop
space functor and, for each morphism between fibrant objects, we take the associated homotopy
kernel and connecting morphism. We then get Puppe’s long homotopy fiber sequence and the
corresponding long exact sequences of sets. In this section we apply the previous construction

to chain complexes of modules.

Let A be an Abelian category and denote by Ch(A) the Abelian category of chain complexes
and chain maps in A. If R is a unital ring, the category R—Mod of left R—modules and R-linear
maps is Abelian and Ch(R) := Ch(R — Mod) is the (Abelian) category of chain complexes of
(left) R—modules and corresponding chain maps. We denote Ch>o(R) the full subcategory of
non-negatively graded chain complexes of R-modules. Both categories, Ch(R) and Ch>o(R),
have a projective model structure in which weak equivalences are quasi-isomorphisms, while
fibrations are degree-wise surjective chain maps in the unbounded case and chain maps that
are surjective in positive degrees in the non-negatively graded case. In particular, in both
cases all objects are fibrant. Moreover, both model categories are pointed with zero object the
chain complex ({0},0).

If p € Z, the translation functor [p] € Fun(Ch(A),Ch(A)) is defined on objects (A,d4) €
Ch(A) by
Alpln == Ap—p and dap) == (=1)Pda, (83)
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and on Ch(A)-morphisms f : (A,da) = (B,dg) by f[p|n := fn—p . Further, the mapping cone
Mc(f) of the chain map f is the chain complex given by

It is well known that to every short exact sequence 0 — A i) B % C — 0 of chain
complexes and chain maps in A is associated a long exact sequence in homology. It is easy to

see that the short sequences of chain complexes
0— B % Mec(f) B All] = 0 (85)

(i and p are the canonical injection and projection, respectively) and 0 — C' — Mc(g) —
B[1] — 0 are exact. The long exact sequences associated to the latter two short exact
sequences and the long exact sequence associated to the former short exact sequence are
known to coincide. Since H,(A[p]) = H,—p(A), the long exact sequence in homology reads

for instance [27]

Hl( ) )

. — Hi(Mc(f)) 25 Ham*ﬁ+ﬂm3>

) fo(e(r) 8 By 4) =Y B - (86)

As mentioned above, in the case A = R —Mod , the underlying category Ch(R) or Ch>o(R)
is a pointed model category. Hence it is natural to ask whether we can find a based path
space functor of the category of chain complexes considered, such that the preceding long

exact sequence in homology associated to f : A — B or to the sequence
s Me()-1 " AL B Me() 2 A M By — - (87)

can be obtained as a long exact sequence of sets

(M, QB [M’Y( (65 M, (K )] [M:’Yﬂ)”f))] (M, QA] [Mﬁf)]
a5y M ) MO (a4 M (o, (58)
corresponding to Puppe’s long homotopy fiber sequence
2B k) a4 Yoo Mk, oA LB (89)

of f.
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6.2 Chain complexes as pointed model category

The comparison of and suggests that we find a based path space functor
Pathg € Fun(Ch(R),Ch(R))

such that the homotopy kernel Ky := Pathg B x g A of a chain map f : A — B coincides with
the shifted mapping cone Mc(f)[—1] of f, so that we must define Pathg B = Kjq, by

Pathg B := Mc(idg)[—1] € Ch(R) ,

for any B € Ch(R). In view of and we have

d 0
(Pathg B),, = By, ® Bpy1 and  dp 1= dpathg B = —dic(idg) = 7
—idg —dp

If B € Ch>o(R) C Ch(R), then its based path space

d d d dp
Pathgy B : ‘--igBl@Bzi%B()@BlﬂBo kel
in Ch(R) has a term in degree —1, so that we define its based path space Trathg B in Ch>q(R)

by truncation as the sub-complex
dp,2 dp,1 dpo
Trathg B: -+ — B1 & By — kerdB,O — 0.

If f: A— B isachain map, then f® f[—1] is a chain map from A® A[—1] to B& B[—1], i.e.,
it is a degree 0 R-linear map that commutes with the differentials d ® (—d) , so also with the
differentials d since the additional terms are both equal to —f . Hence Pathg f := f@® f[—1] is
a chain map from Pathg A to Pathy B and its restriction Trathg f := Pathg f| Tvath, 4 is valued
in Trathg B and is therefore a chain map from Trathg A to Trathg B . Since @ is the coproduct
functor

IT: Ch(R) x Ch(R) — Ch(R)

on the product category, we have
Patho(g o f) =I(g o f,g[~1] o f[-1]) = I((g, 9[-1]) o (f, f[-1])) =

I(g, g[-1]) o LI(f, f[~1]) = Pathg g o Pathy f ,

and the same result obviously holds for the restriction Trathg(g o f) of Pathg(g o f). Since
Pathy and Trathg clearly preserve identities, they are endofunctors of Ch(R) and Ch>((R),
respectively. Further, the projection wp : Pathy B — B onto the first term of Pathy B

is visibly a degree-wise surjective chain map, i.e., a fibration of Ch(R), and the projection
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7 : Trathg B — B onto the first term is a chain map that is surjective in positive degrees,
i.e., is a fibration of Ch>((R) . Since idp is a quasi-isomorphism its mapping cone Mc(idp) has
vanishing homology and so has its shift Pathg B and the sub-complex Trathg B . This means
that the morphisms 0 — Pathg B and 0 — Trathg B are quasi-isomorphisms, so that the based
path spaces in Ch(R) and Ch>o(R) are acyclic. Finally, the transformations 7 : Pathg — idey(p)
and 7 : Trathg — idey.,(g) are clearly natural, so that Pathy and Trathg are actually based
path space functors iniCh(R) and Ch>((R), respectively.

To compute Puppe’s sequence, we still need the loop space functor, the homotopy kernel

and the connecting morphism.

By definition the loop space of B is the kernel of the fibration mg or 75 . It is easy to see
that in the unbounded case, the loop space QB is

OB = B[-1] (90)

with differential dop = dp|_1] = —dp, and that in the non-negatively graded case, the loop

space ©B is the truncation sub-complex
—dB,2 —dp1
eB: .- — B2 — kerdBJ — 0 (91)

of QB . Moreover, the universal morphisms 2f and O f associated to a chain map f: A — B

are obviously the chain map
Qf = f[-1] (92)
and its restriction
of = fl-1lea (93)
respectively.

Remember now that we chose the based path space functor so that the homotopy kernel
K of a chain map f : A — B should be the (—1)-shift of this map’s mapping cone Mc(f).
A direct computation shows that in the unbounded case the pullback Ky := Pathg B xp A is
actually given by

Ky = Me(f)[~1]. (94)

i.e., that we have

d 0
(Kf>n:An@Bn+1 and df = dKf = A
-/ —dgp
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Indeed, it is straightforward to check that the arrows of the square in the diagram

(95)

are chain maps and that the square commutes. Further assume that ¢; : C — Pathg B and
2 : C — A are chain maps such that mp o @1 = fopy. If we set p1c = (p1¢)n + (P16)nt1

the preceding commutation information reads

(P16)n = f(pac) - (96)

Now, if the universal arrow p exists we have necessarily

(He)n = p2c and  (uc)pt1 = (P10)n41 (97)

so that it is unique. A short computation that uses shows that conversely the map p
defined by @ is a chain map that makes the two triangles in commute. In the non-
negatively graded case, the homotopy kernel 3 is again the truncation sub-complex, i.e., in

positive degrees 3 coincides with Ky and in degree zero Sy is given by
(%f)O = kerdf,g = {(ao,bl) € Ayd By : dB(bl) = —f(a())} . (98)

Finally, we defined the connecting morphism d; as the universal map Q1B --» K asso-
ciated to the inclusion ¢; and the zero morphism 9. From it follows that df is in the

unbounded case the inclusion
o =i[-1] : B[-1] = Mc(f)[-1], (99)

where i : B — Mc(f) is the injection of Equation . In the non-negatively graded case, the
universal connecting morphism 6; : ©B --» 3¢ coincides with i[—1] in positive degrees and

070 :kerdp1 --» kerdy g is the inclusion

gf,() = i[_l]O‘kerdBJ (100)

as 1,0 is the inclusion from kerdp 1 to

kerdpo = {(—dpb,b) : b€ By} .
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Let us still mention that 7, : Ky — A is in the unbounded case the projection
my = p[=1] : Mc(f)[-1] = A, (101)

where p : Mc(f) — A[1] is the projection of Equation (85), and that in the non-negatively

graded case it coincides with p[—1] in all positive degrees and with the restriction

770 = P[—1olker d; (102)

in degree 0.

We are now prepared to compute Puppe’s long homotopy fiber sequence and the corre-
sponding long exact sequences in sets. We already mentioned previously (see Equation )
that there is a 1:1 correspondence between the set [A, B] of Ho(M)—morphisms from a cofibrant
object A of a model category M to a fibrant object B and the set Homy(A, B)/ ~ of homotopy
classes of M-morphisms from A to B. Let us remember that two morphisms from a cofibrant
A to a fibrant B are homotopic if and only if they are right homotopic. For M = Ch with
Ch = Ch(R) or Ch = Ch>o(R), two chain maps from a cofibrant A to any B are homotopic if
and only if they are chain homotopic [16, Theorem 2.3.11]. Moreover, the chain complex R

concentrated in degree 0 (with zero differential) is cofibrant [16, Lemma 2.3.6], so that
[R, A] = HomCh(R, A)/ ~ .

Since the ring R with unit 1 is a free R-module with basis 1, a degree zero R-linear map
f: R — A is fully determined by the image f(1) € Ay and a chain map f: R — A can be
identified with the image f(1) € kerda : there is a 1:1 correspondence

b: Homen(R, A) 3§+ f(1) € kerday .

Further, two chain maps f,g : R — A are homotopic if and only if there is an R-linear map
h: R — Aj such that f —g=da0b, or, equivalently, there is a 1-chain h(1) € A; such that
f(1) —g(1) = da1(h(1)). This means that

fo~g if and only if b(f) —b(g) € imda, .
Hence b induces a 1:1 correspondence
by : [R, A] =2 Homen(R, A)/ ~ 3 [fl~ — [f(1)]im € Ho(A) . (103)

Since [fl~ = ~f (see (57)), if f € Homen(4, B), then vf € [A, B] and [R,~f] is the set-
theoretical map

[R,vf]: [R, A] 5 [fl~ = [f ofl~ € [R, B
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If we read this map through the correspondence (103)), we get the map
Ho(f) : Ho(A) 3 [f(1)]im = [f(F(1))]im € Ho(B) . (104)
In the case M = Ch(R), if we apply with M = R, take into account , , ,
and (101)), and use the identifications ((103)) and (104)), we find the long exact sequence

Ha (1) H2_(P>)

— Hy(Mc(f))

() Y9 by (ve(£)) 8 mo(4) Y po () |

- — Hy(B) Hy(4) MY

which is the left hand side of the homology sequence . In the case M = Ch>o(R), the
additional equations , , , 100) and (102)) lead to the same homology sequence

(since in degree zero the homologies of the sub-complexes coincide with those of the full
complexes), which in this case is the complete sequence. In the unbounded case, we can also
get the complete sequence, or, more precisely, we can extend the homology sequence obtained
to the right up to any degree —n (n > 0). For this it suffices to replace in the construction

above the chain map f by the chain map f[n] and to observe that

Hy(Kpp)) = Hi(Kg[n]) = He—n(Ky) -

6.3 Monoidal model categories

In this subsection we introduce a suitable based path space functor in a pointed monoidal

model category. First we recall the

Definition 7. A closed symmetric monoidal category is a symmetric monoidal category
(C,®,1) such that for every B € C the functor —® B : C — C has a right adjoint Hom.(B, —),

i.e., there exists a functor Homq(B, —) together with a family of bijections
Hom¢(A ® B, C) = Hom¢ (A, Homq (B, C)) (105)
indezed by A,C € C that is natural in A and C'.

A closed symmetric monoidal category is a closed category. In particular, there is an
internal Hom functor
Hom;:C?’ xC—C

such that if we fix the first argument we get the right adjoint of the definition. Moreover,
there is a natural isomorphism
Hom(I, —) = idc

that allows us to identify these endofunctors.

We will use the following definition of a monoidal model category.
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Definition 8. A monoidal model category is a closed symmetric monoidal category
(M, ®, I, Homy) equipped with a model structure such that the following two compatibility con-
ditions are fulfilled:

(i) the monoidal unit I is a cofibrant object,
(ii) for every cofibration i : A — B and every fibration p : K — L, the universal map
Homy (B, K) --» Homy(B, L) X Hom,(4,1) Homy (4, K) (106)
is a fibration which is a weak equivalence if i or p is.
Remark 8. It follows from [16, Lemma 4.2.2.] that Condition (i7) is equivalent to the
pushout-product axiom
PPA:Ifi: A~ B and j : K — L are cofibrations, the universal morphism
AL [ B®K--»B®L
ARK

is a cofibration which is a weak equivalence if ¢ or j is.

Further, Condition (i) and the PPA imply the unit axiom

UA: for every cofibrant replacement CI -5 I of I and every cofibrant object X the mor-
phism
Cle X 5% x
is a weak equivalence. Indeed, the PPA implies that — ® X preserves trivial cofibrations, so
that because of Brown’s lemma — ® X sends weak equivalences between cofibrant objects to
weak equivalences. Since C1T 4 T is if T is cofibrant a weak equivalence between cofibrant

objects, the conclusion follows.

Hence Definition [§]is a little stronger than the standard definition which requires that the
axioms UA and PPA are fulfilled.

For example, if R = k is a commutative unital ring, the category
(Ch(k)a ®k7 kv mm’l(k))

of chain complexes in the category Mod(k) of modules over k with its projective model structure
is a (pointed) monoidal model category in the sense of Definition 8 This follows from [16],
Proposition 4.2.13] and the observation in the previous subsection that R = k is cofibrant.

Let us also remind that the tensor product is defined by

(A®p B), = @ A, ®,B,, dg(a®b)=daa®b+ (~1)"a® dgb

p+rv=n
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and that the internal Hom is given by

men(k)(Aa B), = H HomMod(k) (A/u Bu—‘rn) ) (df)u =dpo f,+ (—1)n+1fu_1 ody . (107)
WEZL

Let now (M, ®, I, Homy) be any pointed monoidal model category and let
I — Cone(I) = 0 (108)

be a factorization of I — 0 into a cofibration followed by a weak equivalence. It is easy to
check that if M = Ch(k) and thus I = k, the mapping cone

Mc(idg): - —0— k - & —5 00—, (109)
— =~

(1) (0)

where the integers in parentheses indicate the degree, satisfies the condition
k — Mc(idg) = 0,

so that we can choose
Cone(k) = Mc(idg) . (110)

Indeed, the morphism k — Mc(idg) is the morphism S°(k) — D!(k) from the O-sphere at
k to the 1-disk at k which is a generating cofibration and the morphism Mc(idx) — 0 is a

quasi-isomorphism as
H(Mc(0 : Mc(idg) — 0)) = H(Mc(idg)[1]) = 0

since idy is a quasi-isomorphism. This justifies the notation Come(I) and the name ‘cone of

I’. It is now natural to define the cone functor Cone € Fun(M,M) by
Cone := — ® Cone(I)
and the dual based path space functor Pathy € Fun(M,M) by
Pathg := Homy(Cone(I), —) .

Proposition 11. In a pointed monoidal model category (M, ®, 1, Homy) with unit cone Cone(I)

defined by (L08)), the functor
Pathg := Homy(Cone(I), —) (111)

is a based path space functor in the sense of Definition [3
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Proof. For every A, B € M, we have
Homy(A, Homy(B,0)) = Homy(A ® B,0) ,

so that there is a unique morphism from every A € M to Homy(B,0) € M, which means that
for every B € M, we have
Homy(B,0) = 0.

The same result holds for Homy(0, B) . Indeed, since left adjoint functors preserve colimits,
the functor — ® A preserves the initial object, so that A® 0 = 0® A = 0. Hence, for every
A€M, we get

Homy(A, Homy(0, B)) = Homy(0, B) ,

which implies that
Homy(0,B) = 0.

If i : T— Cone(I), then for every A € M, we have a morphism
Homy (i, A) : Homy(Cone(I), A) — Homy (I, A)
and these morphisms are the components of a natural transformation
7 : Pathg = idy .

Indeed, if f : A — B is a morphism, then f omwy = 7wp o Pathgf, since the left hand side
Homy(idy, f) o Homy(7,1d 4) and the right hand side Homy (i, id ) o Homy (id cone(ny, f) are both
equal to Homy (7, f), as Homy is a functor on the product category M°P x M with composition

(9,9) ox (f, f') = (gomer f.9" ou f') = (foug,g"on f') ,
for all M°P—morphisms f: A — B and g : B — C and all M-morphisms [’ : A’ — B’ and ¢’ :
B — (.
Let now A € M be a fibrant object. If we apply the axiom (i7) of Definition [§ to the
cofibration i : I — Cone(I) and the fibration p : A — 0, we find that the universal map

PathpA = Homy(Cone(I), A) --» Homy(Cone(I), 0) X gom,(1,0) Homy (I, 4) = A

is a fibration. Further, since the morphism Cone(I) — 0 is a weak equivalence, it follows
from the 2-out-of-3 axiom that the morphism 0 — Cone(I) is also a weak equivalence. As I
is cofibrant by definition, this morphism ¢ : 0 — I — Cone(I) is a trivial cofibration. If we

apply now the axiom (i7) to ¢ and p, we get that the universal map
PathgA = Homy(Cone(I), A) --» Homy(Cone(I), 0) X gom,(0,0) Homy(0, 4) =0

is a trivial fibration, so that PathgA is acyclic. O
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6.4 Chain complexes as monoidal model category

In Subsection [6.2] we have applied the machinery of this paper to the pointed model
category Ch(R) of chain complexes in the category R — Mod of left modules over a unital ring
R . It seemed natural to define the based path space Pathg A of a complex A as the mapping
cone Mc(id4)[—1] of the identity of A shifted by —1. In the case where R is a commutative
unital ring k, we can also consider Ch(R) = Ch(k) as a pointed monoidal model category,
apply Proposition (11| and define the based path space functor as the dual Pathgy of the cone
Cone(k) of k. In this subsection we compute the based path space PathgA , the corresponding

loop space, homotopy kernel... and compare the results to those of Subsection [6.2

From Equations (111)), (110), (109)) and (107]), it follows that

(PathgA), = HOJCh(k)(COHQ(k)vA)n = Homyeq(x) (k ,An) © Homyoq(x) (k _ Ans1)
(0) 1

so that we have the isomorphism of k—modules
I, : (PathoA)n 3 (fu)u = (fo, f1) = an + ant1 = fo(1) + f1(1) € Ay & Ay . (112)
If we read the differential through the isomorphisms Z,, , we get the differential
dy =T, 10doT;}

given by

da ( in > =T 1(d(fo, /1)) = Tn-1(dao fo+dao fi + (=1)"T o) =

an+41

d 0 an
daan + daani1 + (=1)"a, = ( ( 1;‘+1 da ) ( a ) ’
- n—+1

since dcone(k) vanishes except if y =1 where it is the identity. Finally,

da 0
PathgA),, = A, © A, and dg., = . 113
( 0 ) +1 n A, ( (_1)n+1 idg dy ) ( )

The A-component of the natural transformation 7 : Pathg = idep(x) is 74 = Homgy, 1y (i, A)
where the cofibration ¢ : kK — Cone(k) vanishes except in degree 0 where it is the identity. If we
read (m4)n through the isomorphism Z,, we get the canonical projection my : A, ® Apt1 — Ay, .
The loop space of A is its kernel

(OA)p, = Apy1 and doan =dan+i - (114)
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A direct verification shows that given a morphism f : A — B, the homotopy kernel Ky =
PathgB xg A is

da 0
(Kf)n =A, @ Bn+1 and df,n = ((—1)n+1f ClB> . (115)

The mapping cone Mc(f) of a chain map f : A — B is defined in . An alternative

definition is

d
Mc(f)n := A[l], ® B, and nd(f),n = ( (—1;1"1" d(; ) . (116)

Equations (113), (114) and (115 show that the complexes obtained here and in Subsection
[6.2] are the same graded modules. As for their differentials, we found in [6.2] that

dA,n = dPatho An — _nd(idA),n+1 s dQA,n = _dA,nJrl and df,n = dKf,n = _nd(f),n+1 .

Here we find the same differentials, but without the sign change in the right hand side and
with the standard differential dyy.(y) replaced by the previous alternative differential dye(fy :

dAm, = dPathoA,n = nd(idA),n+1 s dOA,n = dA,n—i—l and df,n = dKf,n = nd(f),n+1 .

These slight differences are of course completely irrelevant.

7 Follow up questions

In a triangulated category, every morphism f : A — B has a cone B — C(f) — A[l]
such that A — B — C(f) — A[l] is a distinguished triangle. However, the cone C' is not
a functor. It has been mentioned in the literature [12] that this drawback is a sign that the
axioms of a triangulated category are suboptimal. More precisely, if C(f)[-1] - A — B
and C(f")[-1] —» A" — B’ are distinguished triangles together with a commutative square
S :=(A,B, A, B’), the is no unique induced map C(S) : C(f)[—1] — C(f')[—1] that makes
C a functor. We expect that Theorem [5] and Proposition [5] can be used to suggest a definition

of triangulated categories with a functorial cone.

In [B, 6] and [2I], Di Brino and two of the authors of the present work have taken up
ideas from [I1 [4, [19], 20, 24], 25] 26] and have introduced homotopical algebraic geometry over
the ring of differential operators as a suitable framework for investigating the solution space
of partial differential equations modulo symmetries. The implementation of the associated
research program requires that a certain quintuplet be a homotopical algebraic geometric
context (HAGC) in the sense of [25]. We are convinced that the theory of homotopy fiber
sequences, which we have detailed in this paper, will enable us to prove the HAGC theorem

and thus to take an important step towards fully working through the above program.
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