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Abstract

In [13] we studied the indeterminacy of the value of a derived functor at an

object using different definitions of a derived functor and different types of fibrant

replacement. In the present work we focus on derived or homotopy limits, which

of course depend on the model structure of the diagram category under con-

sideration. The latter is not necessarily unique, which is an additional source of

indeterminacy. In the case of homotopy pullbacks, we introduce the concept of full

homotopy pullback by identifying the homotopy pullbacks associated with three

different model structures of the category of cospan diagrams, thus increasing the

number of canonical representatives. Finally, we define generalized representa-

tives or models of homotopy limits and full homotopy pullbacks. The concept of

model is a unifying approach that includes the homotopy pullback used in [24]

and the homotopy fiber square defined in [21] in right proper model categories.

Properties of the latter are generalized to models in any model category.
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1 Introduction

Derived functors first appeared in homological algebra. Such right derived functors lead

to a natural extension of the left exact sequence induced by applying an additive covariant

left exact functor between abelian categories to a left exact sequence in its source category
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that is assumed to contain enough injectives. These classical derived functors, acting between

the same abelian categories as the functor from which they are derived, are special cases of

the derived functors between derived categories, constructed as the localization of an induced

triangulated functor with respect to an induced null system.

On the topological side, topologists recognized that the category of interest is not the

category Top of topological spaces and continuous maps, but the category in which topolog-

ical spaces are considered isomorphic if they have approximately the same shape, although

they are not necessarily homeomorphic. Hence the need arose to consider weak homotopy

equivalences W as isomorphisms, i.e. to introduce the localized category Top[W−1] in which

weak equivalences of the standard model structure on Top become invertible. More generally,

each model category M can be localized with respect to the class W of its weak equivalences,

leading to its homotopy category Ho(M) = M[W−1] which is presented by the original category

M. In this case, functors between model categories should induce derived functors between the

more fundamental homotopy categories or localized categories, provided they send, roughly

speaking, weak equivalences to weak equivalences.

As a matter of fact, model categories were introduced by D. Quillen, in particular to

unify the homotopy theory of topological spaces and the homology theory of chain complexes

of modules. And indeed, for chain complexes of modules, the derived category of the first

paragraph agrees with the homotopy category of the second and the ‘abelian’ derived functor

is the same as the ‘model-theoretical’ one.

Against this background, it is not really surprising that in the literature one can find

a number of different definitions of the localization of a category, of a model category, the

homotopy category and a derived functor. Furthermore, a chosen definition of the homotopy

category and the corresponding localization functor can have different descriptions, and if we

also consider the computation of the different types of derived functors, at least four different

replacement types are used. Although a certain equivalence of all resulting constructions can

be expected and their nature is probably well known to experts, the jungle of these different

notions is quite confusing for a beginner and it is not easy to navigate through it. In [13] we

unravel this tangle. In fact, to the best of our knowledge, there is no single reference that has

carefully examined all of these indeterminacies and compared the resulting concepts.

More precisely, there are four definitions of localization of a category C at a class of

morphisms W . They differ in the strength of the universal property of the pair (C[W−1], L) ,

where the first element is the localized category and the second is the localization functor

L : C → C[W−1] sending morphisms in W to isomorphism. The so-called strong universal
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property requires that for every pair (D, F ) with the same property as (C[W−1], L) there is a

unique functor Ho(F ) : C[W−1] → D which makes the resulting triangle commutative on the

nose. If in addition the pullback functor L⋆ = −◦L by the localization functor is fully faithful,

we call the universal property strict. The faint universal property requires that there is a

functor F̄ : C[W−1]→ D that makes the triangle commutative up to a natural isomorphism η

and that the pair (F̄ , η) is unique up to a unique natural isomorphism. If the pullback functor

L⋆ is fully faithful, uniqueness up to a unique natural isomorphism follows, and we refer to

the universal property as weak. For instance, the classical Kan homotopy category HoK(M)

of a model category M (see [21, Definition 7.5.8]) and its localization functor LM is a weak

(hence a faint) localization. The Quillen homotopy category HoQ(M) or just Ho(M) (see [21,

Definition 8.3.2]) and its localization functor γM is a strict (hence a strong) localization (see

also [22, Section 1.2, Paragraph 1]). The concept of faint (resp., strong) localization is used

in [23, Definition 7.1.1], [29, Section 2, General Definition] and [27, Definition 2.1] (resp., [11,

Definition 6.1], [21, Definition 9.6.1], [22, Lemma 1.2.2], and [36, Chapter 1, Definition 5]).

On the other hand, ‘all concepts are Kan extensions’ [25]. A right Kan extension operation

L⋆ along a functor L : C → C′ exists if and only if for every functor F : C → D there is an

‘extension’ L⋆F : C′ → D which makes the resulting triangle commutative up to a natural

transformation η : L⋆F ◦ L⇒ F such that the pair (L⋆F, η) is unique up to a unique natural

transformation. Note that this definition is similar to the faint localization definition above,

except that above we are dealing with natural isomorphisms.

Let now M, N be two model categories which admit a functorial factorization system, let

F : M → N be a left Quillen functor or any functor which sends weak equivalences between

cofibrant objects to weak equivalences, let i : Mc → M be the canonical inclusion functor of the

full subcategory of cofibrant objects and let W be the class of weak equivalences of M or the

one of Mc (the meaning will always be clear from the context).

The authors that use the presentation (HoK(M),LM) of the localization (M[W−1], L) (see

[27], [24]), define the total left derived functor of F either as the right Kan extension of

LN ◦ F ◦ i along LM ◦ i (see [26]) or as the faint factorization of LN ◦ F ◦ i (see [24]). It is not

too hard to check that the Kan extension derived functor is given by the faint derived functor

[13].

Most authors use the presentation (Ho(M), γM) of the localization (M[W−1], L). They define

the total left derived functor of F either as the right Kan extension of γN ◦ F along γM (see

[21]) or as the composite of the strong factorization of γN ◦ F ◦ i and a quasi-inverse of the

strong factorization of γM ◦ i (see [22]). For further details we refer the reader to Section 2. It
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can be shown that the Kan extension derived functor and the strong derived functor coincide

up to a natural isomorphism [13].

In the present work we focus on derived or homotopy limits. Since a derived functor

depends on the model structures of the source and target of the original functor, the derived

limit functor or homotopy limit functor depends on the model structures of the small diagram

category D := Fun(S, M) and of the underlying category M considered (we use the terminology

of [31]). The model structure σ of D is not necessarily unique, even if the model structure of

the ambient category M remains unchanged and we take into account that the limit functor

must be a right Quillen functor with respect to σ . The resulting freedom in choosing σ is an

additional source of indeterminacy (see Theorem 4.1).

In the case S = {c→ d← b} the diagrams Fun(S, M) are the cospan diagrams C → D ← B

of M and the homotopy limit is the homotopy pullback. The category of cospan diagrams can

be equipped with three Reedy model structures σi (i ∈ {1, 2, 3}) with respect to which the

pullback functor is a right Quillen functor. The homotopy pullbacks of a cospan C → D ← B

with respect to the different σi-s admit as canonical representatives the standard pullbacks

of the corresponding σi-fibrant replacements of C → D ← B . We define the full homotopy

pullback of C → D ← B by identifying its homotopy pullbacks with respect to the σi , thus

increasing the number of canonical representatives (see Theorem 5.1).

We further enhance the flexibility of homotopy limits by defining generalized representa-

tives, also referred to as models. The concept of model is valid in every model category but

the model condition simplifies in right proper model categories (see Theorem 6.1 and Theorem

6.2). Models are a unifying approach that captures the notion of homotopy pullback that is

used in [24] and the notion of homotopy fiber square that is defined in right proper model

categories equipped with a fixed functorial factorization system in [21] (see Corollary 6.1 and

Corollary 6.2). Most results of homotopy fiber squares in right proper model categories re-

main valid for models or model squares in all model categories (see for example Proposition

6.3 and Proposition 6.4).

Although not all of the results of this paper are completely new, a structured rigorous

presentation in an appropriate unifying context does not seem to exist. The proven theorems

offer guidance in an environment with many indeterminacies and show that the standard

concepts concerned have a pretty good stability with regard to all the necessary choices.

Applications can be expected in homotopical algebraic geometry [37, 38, 2, 3, 6] and higher

supergeometry [7, 8, 9, 35], as these areas make extensive use of the functor of points and are
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the contexts from which the need arose to examine the subjects of this paper. We refer the

reader to Section 7 for further details.

2 Conventions and notations

We assume that the reader is familiar with model categories. Although we use many

results of [13], we paid attention to independent readability when writing this work. We

adopt the definition of a model category that is used in [21]. More precisely, a model category

is a category M that is equipped with three classes of morphisms called weak equivalences,

fibrations and cofibrations. The category M has all small limits and colimits and the 2-out-of-

3 axiom, the retract axiom and the lifting axiom are satisfied. Moreover M admits a functorial

cofibration - trivial fibration factorization system (Cof - TrivFib factorization) and a functorial

trivial cofibration - fibration factorization system (TrivCof - Fib factorization). Furthermore,

we work with the Quillen homotopy category Ho(M) of M , which is a strong localization M[W−1]

and even a strict localization M[[W−1]] of M at its weak equivalencesW with localization functor

denoted γM , and we use the Kan extension derived functor operations LK,RK and the strong

derived functor operations LS,RS in the sense of [13], which we already mentioned above.

More specifically, if we use the same data and notation as above, and in particular con-

sider a functor F : M → N which sends weak equivalences between cofibrant objects to weak

equivalences, the total left derived functor of F is defined either as the right Kan extension

(see [21])

LKF := (γM)⋆(γN ◦ F ) ∈ Fun(Ho(M), Ho(N)) , (2.1)

which comes with a natural transformation

η : LKF ◦ γM ⇒ γN ◦ F , (2.2)

or as the composite

LS
IF := Ho(γN ◦ F ◦ i) ◦ I ∈ Fun(Ho(M), Ho(N)) (2.3)

of the strong factorization Ho(γN ◦ F ◦ i) =: Ho(F ) and a quasi-inverse I of the strong

factorization Ho(γM ◦ i) =: Ho(i) (here i is the same as i : Mc → M defined in the introduction).

Whatever quasi-inverse we choose, we get a representative of the same isomorphism class of

functors, so that LSF is defined up to a natural isomorphism. It can be checked that every
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cofibrant replacement functor Q : M → Mc induces a quasi-inverse Ho(L ◦ Q) =: Ho(Q) of

Ho(i) , which implies that

LSF
∼=⇒ LS

QF = Ho(F ) ◦Ho(Q) = Ho(F ◦Q) .

Moreover, we have the equality (see [22])

LS
QF ◦ γM = γN ◦ F ◦Q . (2.4)

Despite the difference between the definitions (2.1) and (2.3) and between the properties (2.2)

and (2.4), it can be shown – as mentioned previously – that the Kan extension derived functor

and the strong derived functor coincide up to a natural isomorphism [13]. Similar results hold

for total right derived functors of functors that send weak equivalences between fibrant objects

to weak equivalences (see Theorem 3.1). For more details on the preceding derived functor

operations, we refer the reader to Definition 8 and Propositions 5, 11, 12 and 13 in [13].

3 Indeterminacy of a derived functor

Let (α, β) be any functorial TrivCof - Fib factorization system. For every object X ∈ M , it

factors the map tX : X → ∗ to the terminal object of M into a trivial cofibration rX := α(tX)

followed by a fibration β(tX) :

tX : X
∼
↣ RX ↠ ∗ .

Regardless of the factorization

tX : X
∼→ FX ↠ ∗

of tX : X → ∗ into a weak equivalence fX followed by a fibration considered, we refer to FX

as a fibrant replacement of X . The object RX we call a fibrant C-replacement of X (or just

a fibrant replacement if we do not want to stress that rX is a cofibration). From the fact

that the factorization (α, β) is functorial it follows that R is an endofunctor of M . Moreover

rX : X → RX is functorial in X : r is a natural transformation r : idM ⇒ R from the identity

functor idM to the fibrant replacement functor R [22]. Instead of the fibrant C-replacement

functor R that is globally defined by the functorial factorization (α, β) , we will also use local

/ object-wise fibrant replacements FX or local fibrant C-replacements F̃X such that the map

fX in the factorization

tX : X
∼
↣ F̃X↠∗

is idX if X is already fibrant [28]. If for every X we choose such a local fibrant C-replacement

and if f : X → Y , there is a lifting F̃ f : F̃X → F̃ Y, which will play an important role:
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X Y F̃Y

F̃X ∗

f fY˜
fX ˜ F̃ f

(3.1)

From [13] we also know:

Theorem 3.1. If G ∈ Fun(M, N) is a functor between model categories that sends weak equiv-

alences between fibrant objects to weak equivalences, its Kan extension right derived functor

RKG ∈ Fun(Ho(M), Ho(N))

and its strongly universal right derived functor

RSG ∈ Fun(Ho(M), Ho(N))

exist and we have

RKG
.
= Ho(γN ◦G ◦ F̃ )

.
= RS

RG := Ho(γN ◦G ◦R)
∼=⇒ RSG , (3.2)

where F̃ is a local fibrant C-replacement, R is a fibrant C-replacement functor and Ho the

unique on the nose factorization through Ho(M) . This implies that

RKG ◦ γM
.
= γN ◦G ◦ F̃

.
= RS

RG ◦ γM = γN ◦G ◦R
∼=⇒ RSG ◦ γM , (3.3)

where
.
= denotes a canonical natural isomorphism and

∼=⇒ a not necessarily canonical natural

isomorphism.

Hence, for every X ∈ M , the value of the derived functor at γMX = X ∈ Ho(M) is

RKG(X)
.
= G(F̃X)

.
= RS

RG(X) = G(RX) ∼= RSG(X) . (3.4)

Remark 3.1. Since RKG (resp., RSG) is defined up to a canonical natural isomorphism

(resp., up to a natural isomorphism) [13], the results of (3.2) are the best possible ones.

The next diagram shows that if FX is any fibrant replacement of X , there is a lifting

ℓ : F̃X → FX :
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X FX

F̃X ∗

∼
fX

∼ f̃X
ℓ

(3.5)

Since ℓ is a weak M-equivalence between fibrant objects, its image G(ℓ) is a weak N-equivalence

G(F̃X)
∼→ G(FX) (3.6)

and the image γN(G(ℓ)) is a Ho(N)-isomorphism

G(F̃X) ∼= G(FX) . (3.7)

Proposition 3.1. The isomorphism (3.7) is canonical:

G(F̃X)
.
= G(FX) . (3.8)

Proof. Take two different M-morphisms ℓi : F̃X → FX (i ∈ {1, 2}) that render the upper

triangle in Diagram 3.5 commutative, so that ℓ1 ◦ f̃X = ℓ2 ◦ f̃X . Since Y := FX is fibrant and

f̃X : X
∼
↣ F̃X is a trivial cofibration, right composition by f̃X induces a 1:1 correspondence

between right homotopy classes of morphisms (the result is well known; we gave the proof of

its dual in [13]), we get ℓ1 ≃r ℓ2 . This means that ℓ1 × ℓ2 : F̃X → Y × Y factors through a

path object Path(Y ) of Y , i.e., that there is a factorization

p1 ◦ w := ψ1 ◦ p ◦ w = idY and p2 ◦ w := ψ2 ◦ p ◦ w = idY , (3.9)

where ψ1, ψ2 : Y × Y → Y , w : Y
∼→ Path(Y ) and p : Path(Y )↠ Y × Y, and a factorization

p1 ◦K = ℓ1 and p2 ◦K = ℓ2 , (3.10)

where K : F̃X → Path(Y ) . From (3.9) it follows that pi : Path(Y )→ Y is a weak equivalence

between fibrant objects (indeed, since fibrations are closed under pullbacks and compositions,

the product of fibrant objects and the path object of a fibrant object are fibrant). If we apply

γN ◦G to (3.9) and remember that γN(G(pi)) is an isomorphism in view of the assumption on

G , we see that γN(G(w)) is the inverse isomorphism and that γN(G(p1)) = γN(G(p2)) . It now

follows from (3.10) that

γN(G(ℓ1)) = γN(G(ℓ2)) , (3.11)

so that the Ho(N)-isomorphism γN(G(ℓ)) is canonically implemented by the replacements F̃X

and FX .
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Notice now that if X,Y ∈ M are related by a zigzag of weak M-equivalences it suffices to

apply the localization functor γM to see that X and Y are isomorphic in Ho(M) . It is well known

that the converse is also true:

Proposition 3.2. Two objects of a model category M are isomorphic as objects of Ho(M) if

and only if they are related by a zigzag of weak equivalences of M .

The previous observations clarify the indeterminacy of a value of a derived functor:

Conclusion 3.1. In view of (3.4) and (3.8) the value of a derived functor at an object is well

defined only up to isomorphism of the target homotopy category. The isomorphism class is

independent of the type of derived functor considered, Kan extension or strongly universal, as

well as independent of the type of fibrant C-replacement considered, local or global. Also the

choice of another local or another global replacement does not change the isomorphism class.

If we compute the value of the derived functor using a local fibrant replacement that is not

necessarily a C-replacement, we get again the same class. Finally, the three representatives

considered of the value of the derived functor are related by canonical isomorphisms when

viewed as objects of Ho(N) and by zigzags of weak equivalences when viewed as objects of N .

This zigzag is the first source of ambiguity or indeterminacy in the values of a derived functor.

Remark 3.2. In the following we write X ≈ Y if X and Y are related by a zigzag of weak

equivalences and we write X
∼
⇄ Y if there is a weak equivalence from X to Y and a weak

equivalence from Y to X.

If we use the notation of Remark 3.2, Equation (3.4) and Equation (3.6) imply that if

G ∈ Fun(M, N) is a functor between model categories that sends weak M-equivalences between

fibrant objects to weak N-equivalences, then, for every X ∈ M , we have

RKG(X) ≈ RSG(X) ≈ G(RX)
∼
⇄ G(F̃X)

∼→ G(FX) . (3.12)

We get the weak equivalences between G(RX) and G(F̃X) just as we got the one from

G(F̃X) to G(FX) .

The dual versions of the results in this section for left derived functors are also true.

4 Indeterminacy of a homotopy limit

If S is a small category and M a model category, the functor category Fun(S, M) admits under

mild conditions on the target category M an injective (resp., projective) model structure. The
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injective weak equivalences and cofibrations are defined as object-wise weak M-equivalences

and M-cofibrations. The resulting classes of weak equivalences, cofibrations and fibrations

satisfy the model category axioms, if M is a combinatorial model category. In this case, we

refer to the model structure defined in this way as the injective model structure. The

projective model structure is defined dually. A sufficient condition of existence is that the

target category M is cofibrantly generated. Details can be found for instance in [10, Chapter

III], [21, Section 11.6] and [22, Chapter 2].

Remark 4.1. Note that besides the injective and projective model structures - if M is com-

binatorial, the functor category considered also admits a Reedy model structure - if S is a

Reedy category (see Equation 4.8).

The constant functor −∗ : M→ Fun(S, M) is the left adjoint to the limit functor:

−∗ : M⇄ Fun(S, M) : Lim (4.1)

If the injective model structure of Fun(S, M) exists, the constant functor respects cofibrations

and trivial cofibrations and the adjunction is therefore a Quillen adjunction. More generally,

let σ be any model structure on Fun(S, M) such that (4.1) is a Quillen adjunction −∗ ⊣ Lim .

It follows from Brown’s lemma [22, Lemma 1.1.12] that a right (resp., left) Quillen functor

sends weak equivalences between fibrant (resp., cofibrant) objects to weak equivalences, so

that its right (resp., left) derived functor exists (see Theorem 3.1). The left and right derived

functors induced between the homotopy categories by adjoint Quillen functors are themselves

adjoint functors. The Quillen adjunction (4.1) induces therefore the adjunction

Lσ(−∗) : Ho(M)⇄ Ho(Funσ(S, M)) : RσLim .

This holds in both the case of K and S derived functors [13].

Definition 4.1. The derived functor RσLim is referred to as the homotopy limit functor

with respect to the model structure σ on diagrams.

From Equation (3.12) follows the

Theorem 4.1. Let S be a small category, let M be a model category and let σ be a model

structure on the category Fun(S, M) of S-shaped diagrams in M such that the adjunction (4.1)

is a Quillen adjunction −∗ ⊣ Lim . If X ∈ Fun(S, M) its homotopy limit with respect to σ is

given as an object of M by

RσLim(X) ≈ Lim(RσX)
∼
⇄ Lim(F̃σX)

∼→ Lim(FσX) , (4.2)
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where Rσ, F̃σ, Fσ are a fibrant C-replacement functor, a local fibrant C-replacement and a local

fibrant replacement, respectively, in the model structure σ on Fun(S, M) . The weak equivalence
∼→ is the universal morphism

Lim(ℓσ) : Lim(F̃σX)
∼→ Lim(FσX) (4.3)

that is induced by a lifting ℓσ : F̃σX ⇒ FσX and its image γM(Lim(ℓσ)) in homotopy is inde-

pendent of the lifting considered (see (3.11)). A similar remark holds for the weak equivalences
∼
⇄ .

In particular, if the injective model structure exists, then for the homotopy limit functor

we have:

R injLim(X) ≈ Lim(R injX)
∼
⇄ Lim(F̃ injX)

∼→ Lim(F injX) . (4.4)

If the projective model structure exists, then the dual result holds for the homotopy colimit

functor:

LprojColim(X) ≈ Colim(QprojX)
∼
⇄ Colim(C̃projX)

∼← Colim(CprojX) , (4.5)

where Qproj, C̃proj and Cproj are cofibrant replacements.

Remark 4.2. Equation (4.4) clarifies the indeterminacy of a small homotopy limit R injLim(X)

viewed as an object of the underlying model category in relation to the chosen definition of

derived functors and the chosen replacement of the diagram under consideration. However,

if the index category S is an appropriate Reedy category R , the limit functor is also a right

Quillen functor if the diagram category is equipped with its Reedy model structure. This leads

to a homotopy limit RReeLim(X) with respect to the Reedy structure and thus to another

possible indeterminacy.

In the remainder of this section, we recall the results on Reedy categories and Reedy

model structures (see [10, Chapter III], [21, Chapter 15] or [22, Chapter 5]) that we need in

the next section to explore the indeterminacy just mentioned. The exact understanding of

all the indeterminacies is a prerequisite for the new approach to model categorical homotopy

fiber sequences that we detail in [14].

If R is a Reedy category and M any model category, the functor category Fun(R, M) can be

equipped with a Reedy model structure.

Reedy categories are defined using direct and inverse categories which are particularly

simple examples of Reedy categories [10]. A direct category (resp., an inverse category)
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is a small category that comes with a map deg from objects to ordinals such that every non-

identity morphism r → s raises (resp., lowers) the degree: deg r < deg s (resp., deg r > deg s).

A Reedy category is a small category R together with two subcategories R+ and R− which

contain all the objects, and a map deg from objects to ordinals such that:

1. every R-morphism factors uniquely into an R−-morphism and an R+-morphism,

2. every non-identity R−-morphism lowers the degree,

3. every non-identity R+-morphism raises the degree.

Example 4.1. The category I := {c→ d← b} is a direct category when equipped with degree

map deg1 defined by {0→ 2← 1}, it is an inverse category for the degree map deg2 defined by

{1→ 0← 2} and it is a non-trivial Reedy category for deg3 and deg4 given by {0→ 1← 2}
and {2→ 1← 0}, respectively.

For every X ∈ Fun(R, M) and every r ∈ R one defines the matching object MrX of X at

r as the limit

MrX := Lim(Rr−
For→ R

X→ M) = Lim(For∗X) ∈ M ,

where Rr− is the full subcategory of the under-category r ↓ R− that contains all the objects

except the identity of r and where For is the forgetful functor.

For instance, let r → r′ and r → r′′ be two non-identity morphisms of R− and let r′ → r′′

be a morphism of R− that makes the resulting triangle (4.5.1) commutative:

r Xr Xr MrX

MrX

r′ r′′ Xr′ Xr′′ Yr MrY

(4.5.1) (4.5.2) (4.5.3)

mr(X)

mr(Y )

fr Mrf

The functor For sends this morphism of Rr− to r′ → r′′ and the functor X sends the latter

to Xr′ → Xr′′ : see Diagram (4.5.2). One can prove that the matching objects MrX (X ∈
Fun(R, M)) can be extended into a matching functor Mr and that the universal matching

morphisms mr(X) : Xr 99KMrX define a matching natural transformation mr:

Mr = Lim ◦For∗ ∈ Fun(Fun(R, M), M) and mr : −r ⇒Mr , (4.6)



Models of homotopy limits 13

where −r : Fun(R, M)→M is the evaluation functor. Hence, if X,Y ∈ Fun(R, M) and f : X ⇒
Y, the square (4.5.3) commutes.

The Reedy weak equivalences are defined object-wise and are therefore the same as

for the projective and injective model structures. The Reedy fibrations are the natural

transformations f : X ⇒ Y such that the induced universal M-morphism

Xr → Yr ×MrY MrX (4.7)

is a fibration for every r ∈ R. The Reedy cofibrations are defined dually. For more details

we refer the reader to [10].

If the Reedy category R is a direct category, its subcategory R+ is the full category R and

its subcategory R− is the discrete category that contains all the objects r ∈ R . In this case

the full subcategory Rr− is the empty category, the functor For∗X is the empty diagram and

MrX is the terminal object ∗ of M for all X . It follows from (4.7) that the Reedy fibrations

are exactly the object-wise fibrations. Therefore the Reedy model structure of Fun(R, M) is the

projective model structure. The dual result is also true:

Remark 4.3. If the Reedy category R is a direct (resp., an inverse) category, the Reedy model

structure of Fun(R, M) is the projective (resp., the injective) model structure.

If R is any Reedy category and M is a combinatorial model category, so that all three

model structures exist, the identity functor id of Fun(R, M) is a left Quillen equivalence from

the projective model structure to the Reedy model structure and from the Reedy structure to

the injective one and a right Quillen equivalence in the other direction [24, A.2.9, paragraph

1 and A.2.9.23]:

id : Funproj(R, M)⇄ FunReedy(R, M)⇄ Fun inj(R, M) : id . (4.8)

5 Indeterminacy of a homotopy pullback

In this section we examine the additional indeterminacy of a homotopy pullback, which

we already addressed in Remark 4.2, namely the ambiguity caused by the choice of the model

structure on the functor, diagram or here the cospan category. As stated in Remark 4.1,

the model structures to be considered are the injective, the projective and the various Reedy

structures, where the projective model structure is used to compute homotopy colimits (see



Models of homotopy limits 14

Equation 4.5) and in particular homotopy pushouts and is therefore not of interest in our case

of homopoty pullbacks.

Let M now be any model category and let R be the inverse Reedy category I2 whose

underlying category is I := {c→ d← b} and whose degree map is the above-mentioned map

deg2 defined by {1→ 0← 2} (see Example 4.1). The objects X of the functor category

MI := Fun(I, M)

are the M-cospans C → D ← B and its morphisms f : X ⇒ Y are the corresponding adjacent

commutative squares

C D B

C ′ D′ B′

fc fd fb

(5.1)

In view of Remark 4.3 the Reedy model structure on MI2 is the injective model structure of MI .

Further, a natural transformation f : X ⇒ Y is an injective fibration if and only if Condition

(4.7) is satisfied. It follows from the definition of matching objects of objects X ∈ MI2 that

MbX = D, McX = D and MdX = ∗ , so that f is an injective fibration if and only if the

induced universal M-morphisms are fibrations:

B ↠ B′ ×D′ D , C ↠ C ′ ×D′ D , D ↠ D′ .

In particular:

Proposition 5.1. For any model category M , the injective model structure on the category of

M-cospans exists. Moreover, an M-cospan C → D ← B is injectively fibrant if and only if D is

a fibrant object of M and both arrows are fibrations of M :

C ↠ D f ↞ B . (5.2)

If I3 is the Reedy category I = {c→ d← b} with degree map deg3 defined by {0→ 1← 2}
(see Example 4.1), the computation of the Reedy fibrations is the same as in the case of I2 ,

except that McX = ∗ , so that f is a fibration of the Reedy model structure ReeI defined by

the increasing labelling {0→ 1← 2} if and only if

B ↠ B′ ×D′ D , C ↠ C ′ , D ↠ D′ .
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Dually, a natural transformation f is a cofibration of the Reedy model structure ReeI if and

only if

B↣ B′ , C ↣ C ′ , D ⨿C C
′↣ D′ . (5.3)

In particular:

Proposition 5.2. For any model category M , an M-cospan C → D ← B is fibrant for the

Reedy model structure Ree I defined by the increasing labelling {0→ 1← 2} if and only if C

and D are fibrant objects of M and the second arrow is a fibration of M :

C f → D f ↞ B . (5.4)

If MI is equipped with its Reedy structure ReeI , the constant functor

−∗ : M⇄ FunRee I
(I, M) : Lim (5.5)

preserves cofibrations. Indeed, the image by −∗ of an M-morphism m : E → E′ is the

commutative diagram

E E E

E′ E′ E′

idE idE

idE′ idE′

m m m

(5.6)

and if m : E ↣ E′ , this diagram is a cofibration of ReeI if and only if the conditions (5.3)

are satisfied, i.e., if and only if the universal morphism u : E ⨿E E′ → E′ induced by m

is a cofibration in M . One easily sees that u = idE′ , so the previous diagram is indeed a

cofibration of ReeI . As weak equivalences are defined object-wise in any Reedy structure,

the constant functor preserves also trivial cofibrations and therefore the adjunction (5.5) is a

Quillen adjunction. The right adjoint functor of the resulting adjunction in homotopy

LRee I
(−∗) : Ho(M)⇄ Ho(FunRee I

(I, M)) : RRee I
Lim

is the K or the S homotopy limit functor with respect to the Reedy model structure ReeI (see

Definition 4.1).

Similarly, if I4 is the Reedy category I = {c → d ← b} with degree map deg4 defined by

the decreasing labelling {2→ 1← 0} (see Example 4.1), we get the
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Proposition 5.3. For any model category M , an M-cospan C → D ← B is fibrant for the

Reedy model structure ReeD defined by the decreasing labelling {2→ 1← 0} if and only if D

and B are fibrant objects of M and the first arrow is a fibration of M :

C ↠ D f ← B f . (5.7)

Moreover, just as in the case of ReeI , there is a K and an S homotopy limit functor

RReeD
Lim with respect to ReeD .

Remark 5.1. With regard to Remark 4.3, the Reedy model structure that is induced on

cospans by the direct categorical structure, which in turn is defined by the degree map deg1

of example 4.1 given by 0 → 2 ← 1, is the projective model structure and is therefore not

relevant for our purpose here - see first paragraph of Section 5. The same applies to the degree

map 1→ 2← 0. The degree map 2→ 0← 1 defines an inverse categorical structure so that

the induced Reedy structure on cospans is the injective model structure and the situation is

the same as for deg2 defined by 1→ 0← 2. Therefore, the only relevant model structures of

the category of cospans are the model structures σ ∈ {inj,ReeI,ReeD}, which are implemented

by the degree maps 1→ 0← 2, 0→ 1← 2 and 2 → 1 ← 0 and which we explored in detail

above.

Definition 5.1. Let I be the category {c→ d← b} , let M be a model category and let σ be a

model structure on the category Fun(I, M) of cospans of M such that the adjunction (4.1) is a

Quillen adjunction −∗ ⊣ Lim . From what we said earlier, these model structures are precisely

the structures σ ∈ {inj,Ree I,ReeD} . For every M-cospan X = {C → D ← B} , its homotopy

limit with respect to σ

RσLim(X) ≈ Lim(RσX)
∼
⇄ Lim(F̃σX)

∼→ Lim(FσX) (5.8)

(Theorem 4.1) is referred to as the homotopy pullback of X with respect to σ and it is

denoted

B ×hσ
D C := RσLim(C → D ← B) .

If Fσ1X and Fσ2X are two fibrant replacements of X in σ , it follows from (5.8) that there

is a span of weak equivalences

Lim(Fσ1X)
∼← · ∼→ Lim(Fσ2X) .

If σ = ReeI , we get in particular

B ×hRee I
D C ≈ Lim(G↠ H f ↞ E)

∼← · ∼→ Lim(L f →M f ↞ K) , (5.9)
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for every cospans to which X is weakly equivalent. Similarly, if σ = ReeD , we obtain

B ×hReeD
D C ≈ Lim(G↠ H f ↞ E)

∼← · ∼→ Lim(P ↠ S f ← N f) , (5.10)

whenever the cospans considered are replacements of X . Since the first replacement in the

last two equations is also fibrant if σ = inj , we have

B ×h inj

D C ≈ Lim(G↠ H f ↞ E) . (5.11)

Of course, the standard limit of a cospan is its standard pullback.

Conclusion 5.1. In every model category M the homotopy pullback of a cospan with respect

to σ ∈ {inj,ReeI,ReeD} is well defined as an isomorphism class of objects of Ho(M) , but

is only defined up to a zigzag of weak equivalences if it is viewed as an object of M . All

types of fibrant replacement (fibrant C-replacement functor, local fibrant C-replacement, or

just any fibrant replacement) provide representatives of the σ-homotopy pullback considered,

and this for both interpretations of the homotopy pullback (Kan extension derived functor

or strongly homotopy derived functor). In addition, we can regard the representatives of a

homotopy pullback for the three model structures on cospans (injective model structure, Reedy

model structure defined by the increasing labelling, or Reedy model structure defined by the

decreasing labelling) as being the same. In this sense the homotopy pullback is independent

of the model structure on cospans.

What we said above leads to the next theorem which deals with all of the possible inde-

terminacies in homotopy pullbacks (see (5.9), (5.10), (5.11)).

Theorem 5.1. The homotopy pullback of a cospan in a model category is independent of the

type of derived functor and of the model structure

σ ∈ {inj,Ree I,ReeD}

on cospan diagrams considered. We get canonical representatives of the homotopy pullback

from the standard pullback of weakly equivalent cospans with three fibrant objects and at least

one morphism that is a fibration: more precisely, if in the adjacent commutative squares

C D B

C ′ D′ B′

∼ ∼ ∼

(5.12)
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all vertical arrows are weak equivalences, all bottom nods are fibrant objects and at least one

of the bottom arrows is a fibration, we have

B ×h
D C ≈ B′ ×D′ C ′ . (5.13)

In other words, we consider the full homotopy pullback (or simply the homotopy pullback)

B ×h
D C , whose canonical representatives are the standard pullbacks of weakly equivalent

cospans whose three nods are fibrant and at least one of whose arrows is a fibration.

6 Models of a homotopy pullback

In this section we generalize the concept of representative of a homotopy limit under

the name of homotopy limit model and apply the model notion in particular to homotopy

pullbacks. More precisely, the canonical representatives of a full homotopy pullback are the

standard pullback of an appropriate weakly equivalent cospan, so that they complete this

equivalent cospan into a commutative square. Generalized representatives or models of a full

homotopy pullback will be defined as specific objects that complete the original cospan into

a commutative diagram.

Let S be a small category, let M be a model category and let σ be a model structure on

the category Fun(S, M) such that the adjunction

−∗ : M⇄ Funσ(S, M) : Lim

is a Quillen adjunction −∗ ⊣ Lim . If X ∈ Fun(S, M) and FσX is a fibrant replacement

tFσX ◦ fX : X
∼→ FσX ↠ ∗

of X , the universal morphism

Lim(fX) : LimX → Lim(FσX)

from the limit LimX of X to the representative Lim(FσX) of the homotopy limit RσLim(X)

of X is usually not a weak equivalence.

Definition 6.1. Let S , M and σ be as above, and let A ∈ M , X ∈ Fun(S, M) and

α ∈ HomFun(S,M)(A
∗, X) ∼= HomM(A, LimX) ∋ Limα .
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We say that A is a generalized representative of the σ-homotopy limit of X or is a

σ-homotopy limit model of X, if there exists a fibrant replacement FσX of X such that the

composite of universal morphisms

Lim(fX) ◦ Limα : A→ LimX → Lim(FσX)

is a weak equivalence.

Proposition 6.1. If the condition in Definition 6.1 is satisfied for one fibrant replacement,

it holds also for every other fibrant replacement.

Proof. Let F ′
σX be another fibrant replacement of X and let F̃σX be a fibrant C-replacement:

A∗

X

FσX F̃σX F ′
σX

α

fX
f̃X

f ′X

ℓσ ℓ′σ (6.1)

Recall that the liftings ℓσ and ℓ′σ in the previous commutative triangles are weak equivalences

since fX , f̃X and f ′X are (see (3.5)). As

Lim(fX) ◦ Limα = Lim(fX ◦ α) = Lim(ℓσ ◦ f̃X ◦ α) = Lim(ℓσ) ◦ Lim(f̃X ◦ α) , (6.2)

it follows from (4.3) that Lim(f̃X ◦α) is a weak equivalence, and it follows from (6.2) written

for f ′X and ℓ′σ and from (4.3) that Lim(f ′X) ◦ Limα is a weak equivalence.

In the special case of the homotopy pullback the category S is I = {c → d ← b} and X
is a cospan {C → D ← B} . The natural transformation α is made of adjacent commutative

squares whose top row A→ A← A contains two copies of idA , or, better, is made of a single

commutative square

A B

C D
(6.3)
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and Limα is the universal morphism A→ B×D C . The replacement FσX is a fibrant cospan

C ′ → D′ ← B′ to which C → D ← B is weakly equivalent; its pullback B′ ×D′ C ′ is a

representative of B ×hσ
D C . The composite Lim(fX) ◦ Limα of universal morphisms is the

universal morphism A → B ×D C → B′ ×D′ C ′ from A to the representative of B ×hσ
D C

considered. Hence, the definition (6.1) becomes:

Definition 6.2. Let M be a model category and let σ be a model structure on the category of

cospans of M such that −∗ ⊣ Lim is a Quillen adjunction. The vertex A of a commutative

square (6.3) is a model or generalized representative of the σ-homotopy pullback

B ×hσ
D C if there exists a fibrant replacement C ′ → D′ ← B′ of C → D ← B in σ such that

the universal morphism A → B′ ×D′ C ′ from A to the representative of B ×hσ
D C considered,

is a weak equivalence.

The condition in Definition 6.2 is satisfied for every fibrant replacement in σ if it is

satisfied for one of them. As mentioned in the proof of Proposition 6.1, this independence of

the replacement is due to (4.3), therefore it is a consequence of the fact that the limit functor

preserves weak equivalences between fibrant objects; so it is ultimately a consequence of the

assumption that −∗ ⊣ Lim is a Quillen adjunction.

Given the remark 5.1, we can restrict ourselves to the model structures σ ∈ {inj,ReeI,ReeD} ,
so that the definition is not only independent of the replacement, but also of the model struc-

ture in which this replacement is chosen:

Theorem 6.1. The vertex A of a commutative square (6.3) in a model category is a model

of the full homotopy pullback B ×h
D C if the universal morphism from A to a canonical

representative of B ×h
D C is a weak equivalence. In other words, there must exist a cospan

C ′ → D′ ← B′ to which C → D ← B is weakly equivalent, whose three nodes are fibrant

objects and at least one of whose morphisms is a fibration, such that the universal morphism

A→ B′ ×D′ C ′ is a weak equivalence.

Proof. If the condition is satisfied for a fibrant replacement in one of the three model struc-

tures, it is satisfied for all the fibrant replacements in this model structure and in particular

for the replacements of the type G ↠ H f ↞ E . Hence, it is also satisfied for all the fibrant

replacements in any of the other two model structures (see (5.9),(5.10),(5.11)).

Remark 6.1. We just showed that if the condition in Theorem 6.1 is satisfied for one replace-

ment with three fibrant nodes and at least one fibration, it is satisfied for all replacements of

this type. In other words, the concept of model is compatible with our identification of the

homotopy pullbacks with respect to σ ∈ {inj,ReeI,ReeD} .
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Remark 6.2. The definition of homotopy pullbacks varies from author to author. For ex-

ample, in [11], the authors define a homotopy pullback as the value of the right derived limit

functor for the injective model structure on the category of cospan diagrams. In [22] the

author fixes functorial TrivCof-Fib and Cof-TrivFib factorization systems (α, β) and (α′, β′),

respectively, and uses framings in dealing with homotopy limits. In [21] the author works in

a right proper model category, fixes a factorization system (α, β) and defines the homotopy

pullback of a cospan C → D ← B with mappings g and f as the standard pullback of the

cospan β(g) and β(f). Note that the latter cospan is not a fibrant replacement of the original

cospan, neither in the injective model structure on cospans, nor for ReeI or ReeD . For this

specific definition, the standard pullback of C → D ← B is also its homotopy pullback if

either arrow g or f is a fibration. Note that none of the three objects need be fibrant. In

[24] the homotopy pullback is computed using a replacement of the considered cospan whose

central object is fibrant and whose two morphisms are fibrations. A generalization of homo-

topy pullbacks is defined under the name of homotopy pullback square. The claim is made

that a standard pullback square is also a homotopy pullback square if one of the morphisms

of the cospan is a fibration and either all three of its objects are fibrant or the underlying

model category is right proper. No proof is provided and no mention is made of the model

structure on cospans considered. In [30] the ‘global’ definition of [11] is juxtaposed with a

‘local’ definition which is equivalent only if all three objects of the cospan are fibrant. The

same two sufficient conditions for a standard pullback to be a homotopy pullback are stated as

in [24] and the one valid in a right proper model category is proved independently in a rather

involved way. This sufficient condition is intuitively justified by referring to the possibility of

using the Reedy model structure on cospans to compute the homotopy pullback. However,

if the limit functor’s source category model structure is changed, we change its right derived

functor, i.e. in our case we change the homotopy pullback functor.

In the present paper, we consider the full homotopy pullback and its generalized represen-

tatives or models - thus including the injective and the two relevant Reedy model structures

on cospans - and prove that the known results are valid. In particular, the one that holds in

right proper model categories does not require an independent complex proof, but is merely

a consequence of the general result valid in each model category. Hence, in what follows, the

reader will not find anything really new – what he does find is a new, structured, linear presen-

tation that rigorously embeds all the different possible choices and all the known, sometimes

somewhat handswavingly accepted outcomes into a homogeneous, compact and (hopefully)

clear explanatory text.
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Note that we have worked in any model category so far. If the model category is right

proper, the model condition of Definition 6.1 simplifies and we recover the well-known

Theorem 6.2. The vertex A of a commutative square (6.3) in a right proper model category

is a model (in the sense of Definition 6.1) of the full homotopy pullback B×h
DC if there exists

a cospan C ′ → D′ ← B′ to which C → D ← B is weakly equivalent and at least one of

whose morphisms is a fibration, such that the universal morphism A → B′ ×D′ C ′ is a weak

equivalence.

Lemma 6.1. Let M be a right proper model category and let f : A → D , g : B → C and

h : C → D be morphisms in M . The pullbacks A ×D B and A ×D C exist and there is a

universal morphism u : A ×D B → A ×D C . If f : A ↠ D and g : B
∼→ C , we have

u : A×D B
∼
99K A×D C :

A×D B A×D C A

B C D

∼ u

∼ g h

k f

(6.4)

Proof. This lemma is well known and will not be proved again here.

Proof of Theorem 6.2. Assume that C ′ g→ D′ f← B′ is a replacement of C → D ← B and

that one of its morphisms is a fibration, for instance the second one. If we apply a fibrant

C-replacement functor R to C ′ g→ D′ f
↞ B′ and decompose the first arrow RC ′ Rg→ RD′ into

RC ′ ∼→ F (Rg)↠ RD′ , we get the commutative diagram

A

C D B

C ′ D′ B′

RC ′ RD′ RB′

F (Rg) RD′ RB′

∼ ∼ ∼
g f

∼ ∼ ∼
Rg Rf

∼ id id
Rf

(6.5)
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From the 2-out-of-3 axiom it follows that there is a universal weak equivalence

C ′ ∼
99K D′ ×RD′ F (Rg) ,

as the model category is right proper. In view of Lemma 6.1, we have now universal weak

equivalences

B′ ×D′ C ′ ∼
99K B′ ×D′ (D′ ×RD′ F (Rg)) ∼= B′ ×RD′ F (Rg)

∼
99K RB′ ×RD′ F (Rg) .

Hence, the universal morphism

A 99K B′ ×D′ C ′ (6.6)

is a weak equivalence if and only if the universal morphism

A 99K RB′ ×RD′ F (Rg) (6.7)

is a weak equivalence. Since the cospan F (Rg) ↠ RD′ ← RB′ is weakly equivalent to

C → D ← B , has three fibrant nodes and at least one of its morphisms is a fibration, the

vertex A of the square (6.3) is a model of B ×h
D C , if (6.6) is a weak equivalence.

Proposition 6.2. If the condition in Theorem 6.2 is satisfied for one replacement with one

fibration it is satisfied for all replacements of this type.

Proof. We see from Equations (6.6) and (6.7) that the condition is satisfied for a given re-

placement with one fibration if and only if it is satisfied for an associated replacement with

three fibrant nodes and one fibration. However, from Remark 6.1 we know that if the con-

dition is satisfied for one replacement of the latter type it is satisfied for all replacements of

this type.

Remark 6.3. Theorem 6.2 shows that our definition of a homotopy pullback model general-

izes the definition in a right proper model category.

The following corollary is stated without proof in [24]:

Corollary 6.1. In a model category the standard pullback B ×D C of a cospan C
g→ D

f← B

is a homotopy pullback if at least one of the morphisms f or g is a fibration and either all

three objects B,C,D are fibrant or the model category is right proper.

Proof. Under the stated conditions B×DC is a model of B×h
DC . Indeed, if the model category

is right proper (resp., B,C and D are fibrant), the cospan C → D ← B is a replacement of

itself, one of its morphisms is a fibration (resp., and all its nodes are fibrant), and the universal

morphism id : B ×D C 99K B ×D C is a weak equivalence. The conclusion now follows from

Theorem 6.2 (resp., Theorem 6.1).
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Remark 6.4. The concept of model of a homotopy pullback is actually a unifying approach

that captures not only the notion of homotopy pullback that is used in [24] (Corollary 6.1)

but also the notion of homotopy fiber square that is defined in right proper model categories

equipped with a fixed functorial factorization system in [21] (Corollary 6.2).

Let (α, β) be a fixed functorial trivial cofibration - fibration factorization system (FFF for

short) of a model category and let C
g→ D

f← B be a cospan. The system considered provides

decompositions

C
∼
↣ Ξ(g)↠ D ↞ Ξ(f)

∼
↢ B

[21, Definition 13.3.12].

Definition 6.3. Let M be a right proper model category with an FFF. A commutative square

A B

C D
g

f

(6.8)

is a homotopy fiber square if the universal morphism A 99K Ξ(f) ×D Ξ(g) is a weak

equivalence.

Corollary 6.2. In a right proper model category with an FFF, the vertex A of a commutative

square (6.8) is a model of the homotopy pullback B ×h
D C if and only if it is a homotopy fiber

square.

Proof. In view of Proposition 6.2, since the second row in the commutative diagram

A

C D B

Ξ(g) D Ξ(f)

g f

∼ id ∼

(6.9)

is a replacement of the first row with at least one fibration, the vertex A of the commutative

triangle or square is a model of the homotopy pullback B ×h
D C if and only if the universal

morphism A 99K Ξ(f) ×D Ξ(g) is a weak equivalence, i.e., if and only if the square is a

homotopy fiber square.
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Remark 6.5. Our philosophy has been to refer to the upper left vertex of a commutative

square as a model for the homotopy pullback of the square’s cospan when the universal

morphism from it to a canonical representative of the homotopy pullback is a weak equivalence.

In view of Corollary 6.2 and Definition 6.3 it makes therefore sense to regard the standard

pullback Ξ(f)×DΞ(g) as a representative of B×h
DC , provided the underlying model category

is right proper and equipped with an FFF. Actually the homotopy pullback B×h
DC is defined

in [21] as being this representative. If the lower right vertex of the square is fibrant, the

homotopy pullback of [21], which is well defined as an object of the model category, is a

canonical representative of our full homotopy pullback, which is only defined up to a zigzag

of weak equivalences.

Next we prove that there is a pasting law for model squares in any model category.

This result generalizes Proposition 13.3.15 of [21].

Proposition 6.3. Let

A B C

D E F
(6.10)

be a commutative diagram in a model category. If the right square is a model square, i.e., if

B is a model of the homotopy pullback C ×h
F E , then the left square is a model square if and

only if the total square is a model square.

Proof. We apply a fibrant C-replacement functor R to the commutative diagram (6.10) and

factor the morphism

R(C
κ→ F ) = RC

Rκ−→ RF = RC
∼→ F (Rκ)↠RF

into a weak equivalence followed by a fibration. Moreover, we set P := F (Rκ) ×RF RE and

Q := P ×RE RD and thus get the following commutative diagram:
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A B C

RA RB RC

Q P F (Rκ)

D E F

RD RE RF

RD RE RF

∼ ∼ ∼

∼

∼ ∼ ∼

(6.11)

As the universal arrow B 99K P (resp., A 99K Q) is the unique arrow B → P (resp., A→ Q)

that makes the corresponding triangles commutative, this arrow coincides with the composite

B
∼→ RB 99K P (resp., A

∼→ RA 99K Q). Since the right square of (6.10) is a model square,

the universal arrow B 99K P is a weak equivalence in view of Remark 6.1, and therefore the

universal arrow RB 99K P is a weak equivalence. In view of closeness of fibrations under

pullbacks the arrow P → RE is a fibration. From here it follows that the left square in (6.10)

is a model square if and only if

A 99K Q = P ×RE RD ∼= F (Rκ)×RF RD

is a weak equivalence, which is the case if and only if the total square of (6.10) is a model

square.

The next result is valid for homotopy fiber squares [21, Proposition 13.3.14] in a right

proper model category with an FFF. We prove that it holds also for model squares in an

arbitrary model category.

Proposition 6.4. Let ABCD and A′B′C ′D′ be two commutative squares in a model category

M . If there exist four M-morphisms from the vertices of the first square to the corresponding

vertex of the second such that the four resulting squares commute and if these M-morphisms

are weak equivalences, then the first square is a model square if and only if the second is.
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A′ B′

RA′ RB′

P ′ F (Rκ′)

C ′ D′

RC ′ RD′

RC ′ RD′

A B

RA RB

P F (Rκ)

C D

RC RD

RC RD

∼ ∼

∼

∼ ∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼ ∼

∼ ∼

(6.12)

Proof. First we apply a fibrant C-replacement functor R to the commutative parallelepiped,

which is described in the statement of Proposition 6.4. Then we factor the morphism

R(B
κ→ D) = RB

Rκ−→ RD = RB
∼→ F (Rκ)↠RD

into a weak equivalence followed by a fibration and proceed analogously for R(B′ κ′
→ D′) , using

a functorial factorization system. We also set P := F (Rκ) ×RD RC and P ′ := F (Rκ′) ×RD′

RC ′. Since the factorization system used is functorial, we get an arrow F (Rκ)
∼
⇝ F (Rκ′) ,

and thus a universal arrow P 99K P ′ . Finally, we have the commutative diagram (6.12) (see

above).
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The two commutative parallelograms with four red vertices in (6.12) are a weak equivalence

from the ReeI-fibrant cospan RC → RD ↞ F (Rκ) to the ReeI-fibrant cospan RC
′ → RD′ ↞

F (Rκ′) . Since the limit or pullback functor transforms weak equivalences between ReeI-fibrant

cospans into weak equivalences, the universal arrow P 99K P ′ is a weak equivalence. As the

square ABCD (resp., A′B′C ′D′) is a model square if and only if the universal arrow A 99K P

(resp., A′ 99K P ′) is a weak equivalence, it follows that ABCD is a model square if and only

if A′B′C ′D′ is a model square.

Remark 6.6. Proposition 6.3, Proposition 6.4 and the concept of model square are indis-

pensable building blocks of our papers [14] and [15], which in turn are part of a larger project

on PDEs and their symmetries (for more details, see Section 7).

7 Concluding remarks

Building on ideas from works by Beilinson, Costello, Drinfeld, Gwilliam, Schreiber,

Paugam, Toën, Vezzosi, and Vinogradov [1, 4, 32, 33, 37, 38, 39], Di Brino and two of the

authors of the present paper have introduced derived algebraic geometry over the ring D of

differential operators of an underlying affine scheme, as a suitable framework for investigating

the solution space of a system of partial differential equations up to symmetries [5, 6, 34].

The implementation of the associated research program requires in particular that the tuple

(DGDM, DGDM, DGDA, τ,P)

be a homotopical algebraic geometric context (HAGC) in the sense of [38], where DGDM is

the symmetric monoidal model category of differential graded D-modules, the subcategory

DGDA is the model category of differential graded D-algebras, τ is an appropriate model pre-

topology on the opposite category of DGDA and P is a compatible class of morphisms. The

(really) challenging proof of this ‘HAGC theorem’ is based on a new simplified perspective on

the concept of homotopy fiber sequence [36] and a generalization of the long exact sequence

of Puppe. Using the notion of model, model square or homotopy fiber square in any model

category, which we have introduced and studied in the present work so that it now stands on

a solid mathematical basis, we were able to develop a novel approach to model categorical

homotopy fiber sequences and to generalize Puppe’s sequence [14].

We now give some details on this application of models of homotopy pullbacks. In [14]

we work in a general pointed model category (M, 0) , we define a loop space functor Ω from an

arbitrary ‘dual cone functor’ and define homotopy fiber sequences as commutative M–squares
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(A,B,C,D) such that A is a model of the homotopy pullback of C → D ← B (in the sense

of the present work) and the map C → 0 is a weak equivalence. Further, for every morphism

f : F → F between fibrant objects we define its homotopy fiber Kf such that Kf → F → F
is a homotopy fiber sequence (in the sense of [14]). We get a universal connecting morphism

ΩF → Kf such that ΩF → Kf → F is also a homotopy fiber sequence. It turns out that

Quillen’s loop space functor ΩQ (see [36]) is a loop-space functor Ω in our sense. Furthermore,

an objectwise fibrant homotopy fiber sequence in our sense is a fibration sequence in the sense

of Quillen (see [36]) and our universal connecting morphism is the same as Quillen’s connecting

morphism (see again [36]) induced by an action of the group object ΩQF on Kf . Although

all of this shows that the two theories are closely related, the new approach to homotopy fiber

sequences or fibration sequences does not rely on the additional structure of an action. The

point is that we use the homotopy theory of the category M→ of M–morphisms, which contains

all relevant information about homotopy fiber sequences of M .

It follows that it is much easier to apply the new concept of homotopy fiber sequence.

For example, the proof of the ‘HAGC theorem’ mentioned above involves proving that in

our homotopical D-geometric environment, flat (resp., étale) morphisms are the same as

strongly flat (resp., strongly étale) ones. This proof not only requires a handy concept of

homotopy fiber sequence, but in addition it requires that Quillen’s Tor spectral sequence –

which connects the graded Tor functor in homology with the homology of the derived tensor

product of two differential graded D-modules over a differential graded D-algebra – is valid

in the derived D-geometric world. These partly subtle results were proved in [15] (the first

part of which is already available online). We expect being able to combine all the mentioned

results to complete the proof of the ‘HAGC theorem’, to prove that solid concepts of derived

stack and geometric derived stack do exist in homotopical D-Geometry, and thus to make

an important step towards the full implementation of the mentioned ‘PDEs and Symmetries

program’. Furthermore, we are convinced that our approach to model squares and homotopy

fiber sequences can explain the ‘(non-)functoriality of the cone’ in triangulated categories

resulting from model categories, without resorting to the theory of derivators [17, 19, 20, 18].
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[34] Pǐstalo D, Poncin N, Koszul-Tate resolutions and Sullivan models, Dissertationes Math-

ematicae, 531, 2018.

[35] Poncin N, Towards integration on colored supermanifolds, Banach Center Publ., 110,

2016, pp 201–217.

[36] Quillen D, Homotopical algebra, Lecture Notes in Mathematics, 43, Springer-Verlag, 1967.
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