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Abstract

We distinguish between faint, weak, strong and strict localizations of cate-

gories at morphism families and show that this framework captures the different

types of derived functors that are considered in the literature. More precisely,

we show that Kan and faint derived functors coincide when we use the classical

Kan homotopy category, and when we use the Quillen homotopy category, Kan

and strong derived functors coincide. Our comparison results are based on the

fact that the Kan homotopy category is a weak localization and that the Quillen

homotopy category is a strict localization.
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1 Introduction

There are a number of definitions of a localization of a category at a family of morphisms,

of definitions of a model category, the homotopy category and the derived functor in the

literature, and it is not easy to navigate this jungle of different concepts. In the present text

we unravel this tangle.

In Section 2 we define and liken four types of more or less tight localization of a category,

which turn out to provide the proper framework for the study and comparison of various

derived functors in model categories. We refer to these localizations at a distinguished class

of morphisms as the faint, weak, strong and strict localizations.

To define derived functors on homotopy categories most sources use the strong localization

of the model category at its weak equivalences given by the Quillen homotopy category (the

homotopy category for short) [10], [12], [13]; others work with the faint localization given by

the Kan homotopy category (the classical homotopy category to avoid ambiguity) [15], nLab.

Actually the Kan and Quillen homotopy categories are an example of a weak (hence a faint)

and a strict (hence a strong) localization, respectively. Although the strictness of the Quillen

localization implies immediately that it is also a weak localization and therefore necessarily

equivalent to the Kan localization, this property of the homotopy category is to the best of

our knowledge not mentioned in the literature. We deal with the preceding aspects in Section

3.
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In Section 4 we define derived functors as Kan extensions along localization functors (K

derived functors) and as factorizations through faint and strong localizations of the source

category at its weak equivalences (F and S derived functors). K derived functors can be defined

along every functor, in particular along the localization functor of the Quillen homotopy

category [10], [12], [20] and the localization functor of the Kan homotopy category, nLab. F

derived functors will be defined for the faint localization functor of the latter [15], nLab, and S

derived functors for the strong localization functor of the former [13]. The reader will observe

that the fact that these localization functors are actually weak and strict, respectively, does

not play any role in the derived functors’ existence and uniqueness results and he will notice

that the definitions of K, F and S derived functors differ in particular by the strength of their

‘commutation’ with the localization functor considered. We close Section 4 by proving that

in the case of the Kan homotopy category K and F derived functors coincide and that in the

case of the Quillen homotopy category K and S derived functors are the same. While the

weakness of the Kan localization has not been exploited so far, it is important for proving

the previous comparison theorem. Although nothing is really new, neither of the comparison

theorems seems to exist in the literature.

In the final section 5, we briefly describe the context that led to the need to compare K,

F, and S derived functors.

The proven comparison theorems should be of interest to any research problem that re-

quires results from sources using different definitions of derived functors. Applications can be

expected for instance in higher geometry and physics. Indeed, functors and their derivatives

are of importance in environments where there is no good notion of point, e.g., in superge-

ometry and in algebraic geometry: higher supergeometry [7, 8, 9, 19], homotopical algebraic

geometry [21, 22] and its generalisation that goes under the name of homotopical algebraic

geometry over differential operators, are completely based on the functor of points approach

[2, 3, 6].

Warning. In this text we identify objects that are connected by a unique or canonical

isomorphism.

2 Strict, strong, weak and faint localizations

If one looks at the details of the various definitions of derived functors of Quillen functors,

one sees that the authors essentially use two different definitions of localization of a category

at a family of morphisms. We will refer to the notion of localization that is used in [10], [12]
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and [13] as the strong localization and to the notion of localization that is used in [15] as a

faint localization. However:

Remark 1. There are two additional types of localization, a specific strong localization (called

strict localization) and a specific faint localization (called weak localization), which may rep-

resent better localization concepts, although their distinctive specificity is not needed in the

definitions of derived functors – on the other hand it is of fundamental importance in the

proofs of the comparison theorems of these definitions.

Definition 1. A faint localization of a category C at a family W of morphisms (called weak

equivalences) is a category C[W−1] together with a functor L : C → C[W−1] that sends weak

equivalences to isomorphisms, such that the pair (C[W−1]), L) is faintly universal in the sense

that:

(L1) If (D, F ) is another such pair, there exists a functor F̃ : C[W−1] → D such that the

resulting triangle commutes (not on the nose but) up to natural isomorphism η : F
∼=⇒

F̃ ◦ L .

C C[W−1]

D

F

L

F̃
η
∼=⇒

(1)

(L2) The pair (F̃ , η) is unique up to (!) unique natural isomorphism, i.e., if (F̃ ′, η′) is

another such pair, there is a unique natural isomorphism ε : F̃
∼=⇒ F̃ ′ such that the

obvious diagram commutes on the nose: (ε ? L) ◦ η = η′ , where ? denotes whiskering.

Definition 2. A weak localization of a category C at a family W of morphisms is a category

C[W−1] together with a functor L : C→ C[W−1] that sends weak equivalences to isomorphisms,

such that the pair (C[W−1]), L) is weakly universal in the sense that:

(L1) If (D, F ) is another such pair, there exists a functor F̃ : C[W−1] → D such that the

resulting triangle commutes up to natural isomorphism η : F
∼=⇒ F̃ ◦ L .

(L2’) The functor

− ◦ L : Fun(C[W−1], D)→ Fun(C, D)

from functors out of C[W−1] to functors out of C is fully faithful for every category D .
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Definition 3. A strong localization of a category C at a family W of morphisms is a

category C[[W−1]] together with a functor L : C → C[[W−1]] that sends weak equivalences to

isomorphisms, such that the pair (C[[W−1]]), L) is strongly universal in the sense that:

(L1’) If (D, F ) is another such pair, there exists a unique functor F̃ : C[[W−1]]→ D such that

the resulting triangle commutes on the nose: F = F̃ ◦ L .

Definition 4. A strict localization of a category C at a family W of morphisms is a

category C[[W−1]] together with a functor L : C → C[[W−1]] that sends weak equivalences to

isomorphisms, such that the pair (C[[W−1]]), L) is strictly universal in the sense that:

(L1’) If (D, F ) is another such pair, there exists a unique functor F̃ : C[[W−1]]→ D such that

the resulting triangle commutes on the nose: F = F̃ ◦ L .

(L2’) The functor

− ◦ L : Fun(C[[W−1]], D)→ Fun(C, D)

from functors out of C[[W−1]] to functors out of C is fully faithful for every category D .

As mentioned before, the concept of faint (resp., strong) localization is used in [15] (resp.,

[10], [12], [13]). The concept of weak localization can be found for instance in [14].

If CW denotes either C[W−1] or C[[W−1]] the fully faithfulness condition in Definitions 2

and 4 means that for every functors F,G ∈ Fun(CW, D) the map

(− ◦ L)F,G : HomFun(CW,D)(F,G) 3 ζ 7→ ζ ? L ∈ HomFun(C,D)(F ◦ L,G ◦ L) (2)

is bijective.

Proposition 1. Every strict localization is a weak localization.

Proof. Obvious.

Proposition 2. Every weak (resp., strict) localization is a faint (resp., strong) localization.

Proof. The second statement is obvious. Let now (C[W−1], L) be a weak localization and let

(D, F ) , (F̃ , η) and (F̃ ′, η′) be as in Definition 1. We must show that there is a unique natural

isomorphism ε : F̃
∼=⇒ F̃ ′ such that ε?L = η′◦η−1 . Since η′◦η−1 : F̃ ◦L

∼=⇒ F̃ ′◦L and similarly

for η ◦ η′−1 , it follows from the full faithfulness (2) of −◦L that there exists a unique natural
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transformation θ : F̃ ⇒ F̃ ′ such that θ ? L = η′ ◦ η−1 and a unique natural transformation

ϑ : F̃ ′ ⇒ F̃ such that ϑ ? L = η ◦ η′−1 . Hence the bijection − ◦ L maps ϑ ◦ θ : F̃ ⇒ F̃ to

(ϑ ◦ θ) ? L = (ϑ ? L) ◦ (θ ? L) = idF̃◦L = idF̃ ?L ,

so that ϑ ◦ θ = idF̃ . Similarly one gets that θ ◦ ϑ = idF̃ ′ , which completes the proof.

Let [C, D]W be the full subcategory of those functors of Fun(C, D) that send the morphisms

in W to isomorphisms in D . Observe that Condition (L1’) means that any functor of

[C, D]W

factors uniquely through L , and that in view of (2) Condition (L2’) means that any natural

transformation

ξ : F ◦ L⇒ G ◦ L

in

Hom[C,D]W (F ◦ L,G ◦ L)

factors uniquely through L . Hence a strong localization needs not be strict. Noticing that

Condition (L2) means that any natural isomorphism of the type

η′ ◦ η−1 : F̃ ◦ L
∼=⇒ F̃ ′ ◦ L

factors uniquely through L as isomorphism, we see that a faint localization needs not be weak.

Proposition 3. Let C be a category and W a family of morphisms of C .

1. A faint localization (C[W−1], L) is a weak localization if and only if for every D the

functor

− ◦L : Fun(C[W−1], D)→ [C, D]W (3)

is an equivalence of categories.

2. A strong localization (C[[W−1]], L) is a strict localization if and only if for every D the

functor

− ◦L : Fun(C[[W−1]], D)→ [C, D]W (4)

is an isomorphism of categories.
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Proof. Like every functor, the functor (3) yields an equivalence of categories if and only if it

is fully faithful and essentially surjective. As we are dealing with a faint localization every

object F ∈ [C, D]W is naturally isomorphic to some F̃ ◦L , so that −◦L is essentially surjective.

Hence it is an equivalence of categories if and only if it is fully faithful, i.e., if and only if it

is fully faithful as Fun(C, D)-valued functor, i.e., if and only if the localization considered is a

weak localization.

The functor (4) yields an isomorphism of categories if and only if it is bijective on objects

and on morphisms. Since the localization considered is strong, the functor −◦L is bijective on

objects. Hence it is an isomorphism of categories if and only if the localization is strict.

Proposition 4. If a faint (resp., strong) localization exists it is unique up to equivalence of

categories (resp., up to unique isomorphism of categories). Because of Proposition 2, this is

especially true for a weak (resp., strict) localization.

Proof. Let (C[W−1], L) and (C[W−1]′, L′) be two faint localizations of C at W . Using the faint

universality of the first pair with respect to the second, we get a functor

L̃′ : C[W−1]→ C[W−1]′

and a natural isomorphism η′ : L′
∼=⇒ L̃′ ◦ L . Dually we obtain a functor

L̃ : C[W−1]′ → C[W−1]

and a natural isomorphism

η : L
∼=⇒ L̃ ◦ L′ . (5)

Both pairs (L̃′, η′) and (L̃, η) are unique up to unique isomorphism. As the resulting functor

L̃ ◦ L̃′ : C[W−1]→ C[W−1]

and natural isomorphism

(L̃ ? η′) ◦ η : L
∼=⇒ L̃ ◦ L̃′ ◦ L

are unique up to unique natural isomorphism due to the faint universality of the first pair with

respect to itself, and as the identity functor of C[W−1] and the identity natural isomorphism

of L are a second pair of this type, there exists a unique natural isomorphism

L̃ ◦ L̃′
∼=⇒ idC[W−1] (6)
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such that the obvious diagram commutes. Dually we get a unique natural isomorphism

L̃′ ◦ L̃
∼=⇒ idC[W−1]′ . (7)

In the case of the strong localization the proof is the same, but all natural isomorphisms

are equalities and the inverse categorical isomorphisms L̃′ and L̃ are unique.

3 Weak and strict homotopy categories

3.1 Various replacements in a model category

We assume that the reader is familiar with model categories. Essentially a model category

is a category which comes equipped with three classes of morphisms: weak equivalences,

fibrations and cofibrations. A fundamental concept is homotopies between two maps between

the same objects. Whitehead’s theorem states that a weak equivalence between fibrant-

cofibrant objects can be inverted up to homotopy and more precisely that a map between

fibrant-cofibrant objects is a weak equivalence if and only if it is a homotopy equivalence.

Recall that a model category admits a cofibration - trivial fibration factorization (a, b)

(Cof - TrivFib factorization) and a trivial cofibration - fibration factorization (a′, b′) (TrivCof

- Fib factorization) [15]. Often this system of factorizations is required to be a functorial

factorization system (α, β), (α′, β′) [12].

Warning. In this text we use exclusively model categories that admit a functorial factor-

ization system.

Another variant of the definition of a model category not only requires the existence of a

functorial system, but fixes such a system and views it as part of the model structure; changing

the system leaving everything else unchanged, leads to an isomorphic model category in all

reasonable senses of ‘isomorphism of model categories’ [13].

Let M be a model category. We denote its initial and terminal objects by 0 and ∗ respec-

tively.

Let now (α, β), (α′, β′) be any functorial factorization system. For every object X ∈ M ,

the first factorization factors the map iX : 0→ X into a cofibration α(iX) followed by a trivial

fibration qX := β(iX) :

iX : 0� QX
∼
� X .
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Regardless of the factorization

iX : 0� CX
∼→ X

of iX : 0→ X into a cofibration followed by a weak equivalence cX considered, we refer to CX

as a cofibrant replacement of X . The object QX we call a cofibrant F-replacement of X (or

just a cofibrant replacement if we do not want to stress that qX is a fibration). From the fact

that the factorization (α, β) is functorial it follows that Q is an endofunctor of M . Moreover

qX : QX → X is functorial in X : q is a natural transformation q : Q⇒ idM from the cofibrant

replacement functor Q to the identity functor idM [13]. Instead of the cofibrant F-replacement

functor Q that is globally defined by the functorial factorization (α, β) , we will also use local

/ object-wise cofibrant replacements CX or local cofibrant F-replacements C̃X such that the

map cX in the factorization

iX : 0� C̃X
∼
� X

is idX if X is already cofibrant [20]. If for every X we choose such a local cofibrant F-

replacement and if f : X → Y , there is a lifting C̃f : C̃X → C̃Y, which will play an

important role.

0 C̃Y

C̃X X Y˜ cX
˜ cY

f

C̃f

(8)

The dual concepts of fibrant replacement FX , of fibrant C-replacement RX , fibrant re-

placement functor R with natural transformation r : idM ⇒ R , and of local fibrant C-

replacements fX : X
∼
� F̃X such that fX is identity if X is a fibrant object are defined

similarly using the functorial factorization (α′, β′) and the map tX : X → ∗ .

X Y F̃Y

F̃X ∗

f ˜ fY
˜ fX

F̃ f

(9)
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3.2 Homotopy categories of a model category

Let M be a model category. We denote its class of weak equivalences f : X
∼→ Y by

W . Further, we write f : X
∼=→ Y if f is an isomorphism and we write f '` g (resp.,

f 'r g, f ' g) if f, g : X → Y are left homotopic (resp., right homotopic, homotopic). The

homotopy class of a morphism f : X → Y will be denoted by [f ] . Recall also that the full

subcategory M fc ⊂ M of fibrant-cofibrant objects of M , the full subcategory M f ⊂ M of fibrant

objects and the full subcategory Mc ⊂ M of cofibrant objects are all three categories with weak

equivalences, whose weak equivalences W are the weak equivalences W of M between their

objects. Further M f (resp., Mc) inherits fibrations (resp., cofibrations) and is the prototypical

example of a fibration (resp., cofibration) category: fibration (resp., cofibration) categories

have a notion weak equivalences and of fibrations (resp., cofibrations), but none of cofibrations

(resp., fibrations). Hence M fc, M f and Mc are not full model categories. Finally, we will in the

following repeatedly use the canonical inclusion functor of Mc ⊂ M and will denote it i : Mc ↪→ M .

3.2.1 Weak homotopy category

Definition 5. The Kan homotopy category HoK(M) of a model category M is the cate-

gory whose objects are the objects of M fc and whose morphisms are the homotopy classes of

morphisms of M fc :

HomHoK(M)(X,Y ) := HomM(X,Y )/ ' (X,Y ∈ M fc) .

Theorem 1. The Kan homotopy category HoK(M) is a weak localization M[W−1] of M at

its class W of weak equivalences. The localization functor L : M → HoK(M) is defined by

LX := F̃ C̃X on objects X and on morphisms f : X → Y by Lf := [F̃ C̃f ] . Here F̃ refers to a

local fibrant C-replacement and C̃ to a local cofibrant F-replacement in the sense of Subsection

3.1.

The proof is based on homotopy lemmas. We recall that two M-morphisms f, g : X → Y

between the same M-objects are left (resp., right) homotopic and we write f '` g (resp.,

f 'r g) if f q g : X qX → Y (resp., (f, g) : X → Y × Y ) factors trough a cylinder object of

X (resp., a path object of Y ). A cylinder object Cyl(X) of X is a factorization

X qX � Cyl(X)
∼→ X

of the fold map idX q idX : XqX → X into a cofibration i followed by a weak equivalence w.

The left homotopy factorization of fqg now means that there is a morphism H : Cyl(X)→ Y
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such that

f q g = H ◦ i .

If we denote the morphisms that come with the coproduct X qX by φ1, φ2 : X ⇒ X qX ,

the left homotopy factorization reads

H ◦ i1 := H ◦ i ◦ φ1 = f and H ◦ i2 := H ◦ i ◦ φ2 = g .

Remember as well that left (resp., right) composition preserves left (resp., right) homotopies

and that left (resp., right) homotopic maps are also right (resp., left) homotopic if the source

(resp., target) object is cofibrant (resp., fibrant). Recall finally that if X is cofibrant and

γ : Y
∼
� Z is a trivial fibration, then left composition by γ induces a 1:1 correspondence

between left homotopy classes of morphisms:

γ ◦ − : HomM(X,Y )/ '` → HomM(X,Z)/ '` . (10)

The map γ ◦ − is indeed well defined given the homotopy conservation property of compo-

sition mentioned above. Further, it is obviously surjective due to the lifting axiom of model

categories. As for injectivity, let f, g : X → Y and assume that γ ◦ f, γ ◦ g : X → Z are left

homotopic, i.e., that there is a morphism H : Cyl(X)→ Z such that γ ◦ (f qg) = H ◦ i . Since

γ is a trivial fibration and i a cofibration, the lifting axiom gives a morphism H : Cyl(X)→ Y

such that f q g = H ◦ i . The dual result of (10) holds likewise.

X qX Y

Cyl(X) Z

fq g

i γ∼

H

H (11)

Proof. Since 0� C̃X
∼
� F̃ C̃X � ∗ , the value LX is fibrant and cofibrant and is therefore

an object of HoK(M) . As for Lf , notice that in view of (8) and (9) the liftings C̃f and F̃ C̃f

are any M-morphisms that render the following squares commutative:

X C̃X F̃ C̃X

Y C̃Y F̃ C̃Y

˜ cX ˜ fC̃X

˜ cY ˜ fC̃Y

f C̃f F̃ C̃f

(12)
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If C̃1f and C̃2f are two different liftings (8), we have

cY ◦ C̃1f = cY ◦ C̃2f ∈ HomM(C̃X, Y ) ,

so that C̃1f '` C̃2f . Similarly, if F̃1C̃1f and F̃2C̃2f are two different liftings (9), it follows

from

[F̃1C̃1f ◦ fC̃X ] = [F̃2C̃2f ◦ fC̃X ] ∈ HomM(C̃X, F̃ C̃Y )/ 'r

that

[F̃1C̃1f ] = [F̃2C̃2f ] ∈ HomM(F̃ C̃X, F̃ C̃Y )/ ' = HomHoK(M)(LX,LY ) .

It can be straightforwardly checked that L respects identities and compositions and is therefore

a well-defined functor. Moreover, it is clear from (12) that if f is a weak equivalence its lift

F̃ C̃f is a weak equivalence between fibrant-cofibrant objects, hence a homotopy equivalence,

which implies that Lf is an isomorphism.

To prove (L1) we must show that every functor F ∈ [M, D]W can be written up to a natural

isomorphism as the composite of L and a functor F̃ ∈ Fun(HoK(M), D) . We define F̃ on

X ∈ M fc by F̃X := FX ∈ D

and on

[f : X → Y ] ∈ HomM(X,Y )/ ' (X,Y ∈ M fc) by F̃ [f ] := Ff ∈ HomD(F̃X, F̃Y ) .

The image F̃ [f ] is well defined. Indeed, if f, g : X → Y are homotopic, there is a cylinder

object Cyl(X) or, more precisely, a factorization

w ◦ i1 = idX and w ◦ i2 = idX , (13)

where w is a weak equivalence and i a cofibration (see above) and a morphism H : Cyl(X)→ Y

such that

H ◦ i1 = f and H ◦ i2 = g . (14)

Applying F ∈ [M, D]W to the equalities in (13) we see that Fi1 = Fi2 as Fw is an isomorphism,

and applying it to the equalities in (14) we get that Ff = Fg , so that F̃ is well defined on

[f ] . Further F̃ respects identities and compositions since F does and is therefore a functor

F̃ ∈ Fun(HoK(M), D) . We now want to find a family indexed by X ∈ M of D-isomorphisms

ηX : FX
∼=→ F̃(LX) = F(F̃ C̃X) ,
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such that for every M-morphism f : X → Y we have

ηY ◦ Ff = F̃(Lf) ◦ ηX = F(F̃ C̃f) ◦ ηX .

Since if we apply F to (12) we get the commutative diagram

FX F(C̃X) F(F̃ C̃X)

FY F(C̃Y ) F(F̃ C̃Y )

(FcX)−1 F(fC̃X)

(FcY )−1 F(fC̃Y )

Ff F(C̃f) F(F̃ C̃f)

(15)

it suffices to define ηX as the isomorphism in the first line of (15).

It remains to check the fully faithfulness condition (L2’) or equivalently (2), i.e., that for

every G,H ∈ Fun(HoK(M), D) and every ξ : G ◦ L ⇒ H ◦ L there is a unique ζ : G ⇒ H such

that ζ ? L = ξ .

Recall that cX : C̃X
∼
� X (resp., fX : X

∼
� F̃X) is idX if X ∈ M is cofibrant (resp.,

fibrant). In view of (12) we have therefore F̃ C̃f ' f if the source and target of f are

fibrant-cofibrant.

Hence if ζ exists its components ζX (X ∈ M fc) are necessarily given by ζX = ζLX = ξX ,

so that ζ is unique.

Conversely, if we set ζX = ξX (X ∈ M fc) we get a family of D-morphisms ζX : GX → HX .

Since the transformation ξ is natural, i.e., satisfies the obvious commutation condition for

all f ∈ HomM(X,Y ) (X,Y ∈ M), the transformation ζ is natural as well, i.e., satisfies this

condition for all [f ] ∈ HomHoK(M)(X,Y ) (X,Y ∈ M fc):

H[f ] ◦ ζX = H(Lf) ◦ ξX = ξY ◦ G(Lf) = ζY ◦ G[f ] .

Further, by definition, we have ζLX = ξLX (X ∈ M) and get the needed result ζLX = ξX if X

is fibrant and cofibrant. To conclude if X is not necessarily fibrant-cofibrant we must prove

that ξLX = ξX for every X ∈ M . Using the naturality of ξ for f = fC̃X , we get

H(LfC̃X) ◦ ξC̃X = ξLX ◦ G(LfC̃X)

and using it for f = cX , we find

H(LcX) ◦ ξC̃X = ξX ◦ G(LcX) ,



Comparison theorems 14

where the images by G ◦ L and H ◦ L are isomorphisms. Therefore

ξLX = H(LfC̃X) ◦ (H(LcX))−1 ◦ ξX ◦ G(LcX) ◦ (G(LfC̃X))−1 . (16)

For f : X → Y equals fC̃X : C̃X → F̃ C̃X the lifting diagram (12) reads

C̃X C̃X F̃ C̃X

F̃ C̃X F̃ C̃X F̃ C̃X

˜ idC̃X ˜ fC̃X

˜ idF̃ C̃X ˜ idF̃ C̃X

fC̃X C̃fC̃X F̃ C̃fC̃X

so that

LfC̃X = [F̃ C̃fC̃X ] = [idF̃ C̃X ] = [idLX ] . (17)

Similarly, for f : X → Y equals cX : C̃X → X the lifting diagram (12) reads

C̃X C̃X F̃ C̃X

X C̃X F̃ C̃X

˜ idC̃X ˜ fC̃X

˜ cX ˜ fC̃X

cX C̃cX F̃ C̃cX

so that

LcX = [F̃ C̃cX ] = [idF̃ C̃X ] = [idLX ] . (18)

Combining (16)-(18), we get ξLX = ξX , which completes the proof.

The next result is important for one of the comparison theorems of Subsection 4.3.4.

Corollary 1. If i : Mc ↪→ M is the canonical inclusion functor, the pair (HoK(M),LM ◦ i) is a

weak localization of Mc at W . A similar result holds for M f .

Proof. In the following we write L instead of LM . It is clear that L ◦ i ∈ Fun(Mc, HoK(M))

sends weak equivalences to isomorphisms. We must show that for every functor F ∈ [Mc, D]W

there is a functor F̃ ∈ Fun(HoK(M), D) and a natural isomorphism η : F
∼=⇒ F̃ ◦ L ◦ i . We

define F̃ as in the proof of Theorem 1, but before applying F to the equalities in (13) and

(14), we have to check that the M-morphisms i1, i2 : X → Cyl(X) , w : Cyl(X) → X and
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H : Cyl(X) → Y have a cofibrant source and target, i.e., that Cyl(X) is a cofibrant object.

However, since cofibrations are closed under pushouts [10] and compositions, the coproduct

of cofibrant objects is cofibrant and so is the cylinder of a cofibrant object. The remainder of

the proof of Theorem 1 goes through without difficulty.

Notice that we denoted the localization functor by L instead of LF̃ C̃ since it is essentially

unique. Indeed, if (F̃ ′, C̃ ′) is of the same type as (F̃ , C̃) and if we denote L′ the induced local-

ization functor, the pairs (HoK(M),L) and (HoK(M),L′) are both presentations of (M[W−1], L) .

Using the unique isomorphisms (6) and (7) to identify the LHS and the RHS in (6) and in

(7), we conclude that L̃ : HoK(M) → HoK(M) is an automorphism of the homotopy category

HoK(M) . As the pair made of the categorical automorphism L̃ and the natural isomorphism η

is unique, we can in view of (5) identify L and L′ .

From what we said above it follows that the Kan homotopy category is characterized up

to equivalence of categories by the faint universal property of Definition 1.

3.2.2 Strong homotopy category

Definition 6. The Quillen homotopy category or just the homotopy category Ho(M) of a

model category M is the strong localization M[[W−1]] of M at its class W of weak equivalences.

We know that Ho(M) does not have to exist, but is unique up to a unique isomorphism if

it does.

Theorem 2. The Quillen homotopy category Ho(M) of a model category M does exist. The

objects of Ho(M) are the objects of M and its morphisms from X to Y are defined as

HomHo(M)(X,Y ) := HomM(F̃ C̃X, F̃ C̃Y )/ ' ,

where F̃ refers to a local fibrant C-replacement and C̃ to a local cofibrant F-replacement, or,

equivalently, as

HomHo(M)(X,Y ) := HomM(RQX,RQY )/ ' ,

where R and Q are the fibrant and cofibrant replacement functors that are defined by a func-

torial factorization system. The localization functor γ : M→ Ho(M) is defined on objects X by

γX := X and on morphisms f : X → Y by γf := [F̃ C̃f ], or, equivalently, by γf := [RQf ] .

Proof. See [13], [12].
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Actually γ(f) is an isomorphism if and only if f is a weak equivalence [13], [12].

There is a second description [11, 13] of Ho(M) . It starts from the free category F(M,W ) on

M and W , whose objects are the objects of M and whose morphisms from X to Y are the zigzags

from X to Y , i.e., are the finite strings of morphisms of M and formal reversals w−1 : V  U

of weak equivalences w : U → V in W that start at X and arrive at Y . Composition in

F(M,W ) is concatenation and the identity at X ∈ M is the empty string 1X at X . From this

free category F(M,W ) one then gets the homotopy category Ho(M) by identifying:

1. the identity string 1X : X → X with the identity map (string) idX : X → X at X in M

(identification of identities),

2. for any composable M-maps f : X → Y and g : Y → Z , the concatenation string

f, g : X → Y → Z with the composite (string) g ◦ f : X → Z in M (identification of

composites),

3. for any weak equivalence w : X → Y of M , the concatenation string w,w−1 : X → Y  

X with the identity idX : X → X ,

4. for any weak equivalence w : X → Y of M , the concatenation string w−1, w : Y  X →
Y with the identity idY : Y → Y .

The resulting quotient category is the homotopy category Ho(M) . We denote the class of a

string S by [S] .

The localization functor γ is defined by γX = X and γ(f : X → Y ) = [f : X → Y ] ∈
HomHo(M)(X,Y ) . As Ho(M) is a category, morphisms, i.e., classes of strings, can be composed

and, of course, the composite of two composable classes is the class of the concatenation;

moreover, there is an identity class at X ∈ Ho(M) which is obviously the class [idX ] = [1X ] . It

follows that γ respects identities and composition:

γ(idX : X → X) = [1X ] = [1γX ]

and

γ(g ◦ f) = [g ◦ f ] = [X → Y → Z] = [g] ◦ [f ] = γg ◦ γf .

The functor γ : M→ Ho(M) sends weak equivalences w to isomorphisms, i.e., the class γw = [w]

is an isomorphism, i.e., it has an inverse class [w−1] ; indeed

[w−1] ◦ [w] = [w,w−1] = [idX ] = [1X ] , (19)
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and similarly the other way round.

It is easy to check that if w : X → Y and ν : Y → Z are weak equivalences, we have

[ν−1, w−1] = [(ν ◦ w)−1] , so that any morphism of Ho(M) is an alternation [→  →  ...] or

[ → → ...] .

Finally, if (D, F ) is any category D together with a functor F : M → D that sends weak

equivalences to isomorphisms, and if there exists a functor Ho(F ) : Ho(M) → D such that

Ho(F ) ◦ γ = F , we have necessarily

Ho(F )(X) = F (X) and Ho(F )[f : X → Y ] = F (f : X → Y ) .

Further, since for a weak equivalence w : X → Y we get

Ho(F )[w−1] ◦ Ho(F )[w] = Ho(F )[w,w−1] = Ho(F )[idX ] = idF (X) ,

we also have necessarily

Ho(F )[w−1] = (F (w))−1 .

Conversely, when setting Ho(F )(X) = F (X) , Ho(F )(f : X → Y ) = F (f : X → Y ) and

Ho(F )(w−1 : Y  X) = (F (w))−1 , we obtain a functor Ho(F ) : F(M,W ) → D that descends

to the quotient category Ho(M) . Further, pre-composing Ho(F ) : Ho(M)→ D with γ , we get F .

Remark 2. The zigzag construction of (Ho(M), γM) as the strong localization (M[[W−1]], LM)

is also valid for subcategories S of a model category M with W being the S-morphisms that

are weak equivalences as M-morphisms [13]. As elsewhere in the literature, we will use in this

paper the notation (Ho(S), γS) although the correct notation is (S[[W−1]], LS) .

3.2.3 Comparison theorem

Theorem 3. The Quillen homotopy category Ho(M) of a model category M is a strict localization

M[[W−1]] of M at W .

Propositions 1, 2 and 4 show that the following comparison result holds:

Corollary 2. The Quillen homotopy category Ho(M) of a model category M is a weak localiza-

tion M[W−1] of M at W and is therefore equivalent to the Kan homotopy category HoK(M) .

We thus recover the well-known equivalence of Ho(M) and HoK(M) . Conversely HoK(M) is

a weak localization M[W−1] but it is not the strong localization Ho(M) = M[[W−1]]: it is a

different category.
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Lemma 1. Let F,G ∈ Fun(Ho(M), D) . A family θX : F (X) → G(X) of D-maps indexed by

the objects X of M is a natural transformation θ : F ⇒ G if and only if it is a natural

transformation θ : F ◦ γM ⇒ G ◦ γM .

Proof. The naturality condition for θ : F ◦γM ⇒ G◦γM requires the obvious square to commute

for all M-maps f : X → Y , i.e., it reads

G[f ] ◦ θX = θY ◦ F [f ] . (20)

The naturality condition for θ : F ⇒ G requires the square to commute for all Ho(M)-maps

[S] : X → Y , i.e., it reads

G[S] ◦ θX = θY ◦ F [S] , (21)

where [S] is an alternation of M-maps f and reversals w−1 of weak equivalences w ∈ W . Of

course (21) implies (20), but the opposite is also true. Indeed, assume (20) and consider the

case

[S] = [X
f→ Z

w−1

 Y ] = [w−1] ◦ [f ] .

In view of (19) we have F [w−1] = (F [w])−1 and similarly for G , so that (20) gives

θY ◦ F [w−1] = G[w−1] ◦ θZ . (22)

From (20) and (22) it follows that

G[S] ◦ θX = G[w−1] ◦G[f ] ◦ θX = G[w−1] ◦ θZ ◦ F [f ] = θY ◦ F [w−1] ◦ F [f ] = θY ◦ F [S] .

Proof of Theorem 3. We have to prove that (L2’) or equivalently (2) holds. Hence let F,G ∈
Fun(Ho(M), D) and let θ : F ◦ γM ⇒ G ◦ γM . If ζ : F ⇒ G such that ζ ? γM = θ exists, its

components are necessarily ζX = θX (X ∈ M), so that ζ is unique. Conversely, in view of

Lemma 1 the family ζX = θX : F (X) → G(X) of D-maps indexed by X ∈ M is a natural

transformation ζ : F ⇒ G such that ζ ? γM = θ .

4 Kan, faintly universal and strongly universal de-

rived functors

4.1 Left and right adjoint functors of the pullback by a functor

If P is a functor P ∈ Fun(C, C′) and D is a category, the pre-composition −◦P is a functor

P ∗ : Fun(C′, D)→ Fun(C, D) ,
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whose value P ∗η′ at a natural transformation η′ ∈ HomFun(C′,D)(F
′, G′) is the composition or

whiskering

η′ ? P ∈ HomFun(C,D)(P
∗(F ′), P ∗(G′)) .

If P ∗ has a left adjoint P ! (resp., a right adjoint P∗), this adjoint is called left Kan extension

operation along P (resp., right Kan extension operation along P ).

We will focus mainly on right extensions; left extensions are dual. The right adjoint P∗

exists if and only if P ∗ is a left adjoint functor.

The universal morphism definition of a left adjoint functor F : F→ E constructs both the

right adjoint G and the counit ε : F ◦ G ⇒ idE of the adjunction: a functor F : F → E is a

left adjoint if and only if for any object Y ∈ E there is an object GY ∈ F and a morphism

εY : F(GY )→ Y such that (GY, εY ) is universal, i.e., for any object X ∈ F and any morphism

ζ : FX → Y there exists a unique morphism f : X → GY such that εY ◦ F(f) = ζ . In this

case, there is a unique way to extend G to morphisms if one wants that ε becomes a natural

transformation.

From this definition it follows that the right Kan extension operation P∗ along P exists

if and only if P ∗ is a left adjoint if and only if for every F ∈ Fun(C, D) there is (a right

extension) P∗F ∈ Fun(C′, D) and a natural transformation εF : P ∗(P∗F ) ⇒ F , such that for

every F ′ ∈ Fun(C′, D) and every natural transformation ζ : P ∗F ′ ⇒ F there exists a unique

natural transformation θ′ : F ′ ⇒ P∗F such that εF ◦ P ∗θ′ = ζ .

C C′

D

F

P

P∗FεF
⇐

. (23)

As usual, a universal pair (P∗F, εF ) need not exist, but if it does, it is unique up to unique

natural isomorphism. The universal pair (P∗F, εF ) can exist locally, i.e., for specific objects

F ∈ Fun(C, D) , without P∗ existing globally as right adjoint functor of P ∗ . If (P∗F, εF ) exists

for a given F we refer to P∗F as the right Kan extension of F along P .

For instance, let D be a category, let C be a small category and C′ the terminal category [�]
(with one object � and one morphism id�). The unique functor P ∈ Fun(C, [�]) to the terminal

category is the constant functor at � , there is a canonical isomorphism Fun([�], D) ∼= D , and

the pre-composition P ∗ : D→ Fun(C, D) is the constant functor

−∗ : D→ Fun(C, D) ,
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which sends every object d ∈ D to the constant functor d∗ at d and every D-morphism g : d→ d′

to the constant natural transformation g∗ : d∗ ⇒ d′∗ with components g∗c = g (c ∈ C). If D

has all limits indexed by C , the limit

Lim : Fun(C, D)→ D

is a functor that is right adjoint to −∗ , i.e., Lim is the right Kan extension operation along

P . Indeed, the latter exactly means that for every F ∈ Fun(C, D) there is a functor LimF ∈
Fun([�], D) such that the diagram

C [�]

D

F

P

LimFε
⇐

(24)

commutes up to a natural transformation ε : (LimF )◦P ⇒ F , and that the pair (LimF, ε) is

universal; in other words, the functor Lim is the right Kan extension operation along P means

precisely that for every F ∈ Fun(C, D) there is an object LimF ∈ D and a family indexed

by c ∈ C of D-maps εc : LimF → F (c) such that for each C-morphism f : c → c′ we have

εc′ = F (f) ◦ εc , and that the pair (LimF, (εc)c∈C) is universal:

LimF

F (c) F (c′)

εc εc′

F (f)

. (25)

4.2 K and F derived functors on a category with a distin-

guished family of maps

Roughly speaking the derived functor of a functor from C to D is a functor from ‘the

localization’ of C to D.

Let C be a category with a family W of maps whose faint localization L ∈ Fun(C, C[W−1])

exists. If F ∈ Fun(C, D) , we have two possibilities to get a (left) derived functor

LF ∈ Fun(C[W−1], D) .
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First we can use the right Kan extension of F along L and set

LKF := L∗F ∈ Fun(C[W−1], D) ,

provided this extension exists, i.e., the universal pair (L∗F, ε) , where

ε : L∗F ◦ L⇒ F ,

exists. Of course if it does, it is unique (among universal pairs) up to unique natural isomor-

phism. Secondly, if F sends maps in W to isomorphisms, there exists in view of the

faint universality of (C[W−1], L) a universal pair (F̃ , ι), where

ι : F̃ ◦ L
∼=⇒ F ,

and we can set

LFF := F̃ ∈ Fun(C[W−1], D) .

This pair is by definition unique (among similar pairs) up to unique natural isomorphism.

The derived functors LKF and LFF are different, i.e., the pair (LKF, ε) is generally not a

universal pair in the sense of the faint universal property and (LFF, ι) is usually not a right

Kan extension, although this can be the case in specific situations (see Theorem 4).

If D is also a category with a distinguished family of maps, V say, whose faint localization

LD ∈ Fun(D, D[V −1]) exists, one mostly considers total derived functors

LF ∈ Fun(C[W−1], D[V −1])

of functors F ∈ Fun(C, D) . Since LD ◦ F ∈ Fun(C, D[V −1]) , it suffices to set

LKF := LK(LD ◦ F ) ,

provided the RHS exists. If F sends maps in W to maps in V , we can set as well

LFF := LF(LD ◦ F ) ,

where the RHS does exist.

Right derived functors RF and total right derived functors RF are defined dually.

Remark 3. Left and right derived functors differ by the direction of the natural transforma-

tion. Since this transformation is an isomorphism for F derived functors, the left and right F

derived functors coincide so far. Later we will work with F derived functors that we will call

left derived and others that we call right derived (see Remark 4).
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4.3 K, F and S derived functors in model categories

In this subsection we consider only total derived functors of functors between model cat-

egories.

Hence let F ∈ Fun(M, N) be a functor between model categories M, N . We denote the class

of weak equivalences of M (resp., N) by W (resp., V ). The localization (M[W−1], LM) (resp.,

(N[V −1], LN)) exists and admits the equivalent categories Ho(M) ≈ HoK(M) with their localiza-

tion functors γM and LM (resp., Ho(N) ≈ HoK(N) with γN and LN) as presentations.

In model categories there are a number of possible approaches to total derived functors.

For each of these types of derived functor, we give a precise definition, emphasizing in particu-

lar which localization and localization property we are using, we state existence and uniqueness

results under certain conditions, and we highlight the type of ‘commutation’ relation that the

type of derived functor considered satisfies.

4.3.1 K derived functors in model categories

In this section we mainly use the presentation (Ho(M), γM) of (M[W−1], LM).

Just as in general categories whose faint localization at a distinguished family of morphisms

exists, we choose the

Definition 7. Let M and N be model categories and let F ∈ Fun(M, N) . The K total derived

functor LKF ∈ Fun(Ho(M), Ho(N)) is the right Kan extension

LKF := LK(γN ◦ F ) = (γM)∗(γN ◦ F )

of γN ◦ F along γM provided this extension exists.

The following existence and uniqueness result holds:

Proposition 5. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects

to weak equivalences, the total left derived functor

LKF = LK(γN ◦ F ) = (γM)∗(γN ◦ F ) ∈ Fun(Ho(M), Ho(N))

exists and is unique up to unique natural isomorphism. More precisely (Subsection

4.2), the K derived functor of F comes with a natural transformation

ε : LKF ◦ γM ⇒ γN ◦ F , (26)

the pair (LKF, ε) is universal and it is this universal pair that is unique.
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We will prove Proposition 5 in Subsection 4.3.4.

The dual result holds for the total right derived functor RKF : Ho(M) → Ho(N). In

particular, if F : M→ N is a left Quillen functor, it respects trivial cofibrations, hence sends

trivial cofibrations between cofibrant objects to weak equivalences, and in view of Brown’s

lemma sends all weak equivalences between cofibrant objects to weak equivalences, so that

LKF exists.

Proposition 6. If F : M→ N : G is a Quillen adjunction, both functors LKF : Ho(M)� Ho(N) :

RKG exist and are adjoint functors.

Recall that a Quillen adjunction (‘morphism of model categories’) F : M→ N : G is a

Quillen equivalence (‘equivalence of model categories’) if and only if the (X,Y )-natural ad-

junction bijections

HomN(FX, Y ) 3 f ∼= f[ ∈ HomM(X,GY )

respect weak equivalences if X is cofibrant and Y is fibrant, i.e., f is a weak equivalence if

and only if f[ is a weak equivalence.

Proposition 7. If F : M→ N : G is a Quillen equivalence, then LKF : Ho(M)� Ho(N) : RKG

is an equivalence of categories.

A result similar to Proposition 5 holds for the presentation (HoK(M),LM) of (M[W−1], LM).

If i : Mc ↪→ M is the canonical inclusion functor, we have:

Proposition 8. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects

to weak equivalences, the total left derived functor

LKF = LK(LN ◦ F ◦ i) = (LM ◦ i)?(LN ◦ F ◦ i) ∈ Fun(HoK(M), HoK(N))

exists and is unique up to unique natural isomorphism. More precisely (Subsection

4.2), the K derived functor of F comes with a natural transformation

ε : LKF ◦ LM ◦ i⇒ LN ◦ F ◦ i , (27)

the pair (LKF, ε) is universal and it is this universal pair that is unique.

We will also prove Proposition 8 in Subsection 4.3.4.
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4.3.2 F derived functors in model categories

We will use the presentation (HoK(M),LM) of the localization (M[W−1], LM).

Again, just as in general categories with distinguished families of morphisms, we can define

the total derived functor

LF ∈ Fun(HoK(M), HoK(N))

using the faint universal property of HoK(M) . More precisely, let i : Mc ↪→ M be as usual

the canonical inclusion functor of the full subcategory of cofibrant objects. If F ∈ Fun(M, N)

sends weak equivalences between cofibrant objects to weak equivalences, the composite of

F ◦ i ∈ Fun(Mc, N) and LN ∈ Fun(N, HoK(N)) sends weak equivalences to isomorphisms. Hence

it factors up to a natural isomorphism through Mc[W
−1] thus leading to a functor

LF(LN ◦ F ◦ i) ∈ Fun(Mc[W
−1], HoK(N)) .

Let

ı : LF(LN ◦ F ◦ i) ◦ LM c

∼=⇒ LN ◦ F ◦ i (28)

be this natural isomorphism. From Subsection 4.2 we know that the pair (LF(LN ◦F ◦ i), ı) is

unique up to unique natural isomorphism, of course, provided the localization (Mc[W
−1], LM c)

exists.

However, in view of Corollary 1 the pair (HoK(M),LM ◦ i) is a presentation of the

localization (M c[W
−1], LM c) of the cofibration category Mc [15]. A similar result holds for

j : M f ↪→ M . Many authors denote these presentations by (HoK(Mc),LM c) and (HoK(M f),LM f
) ,

respectively.

The next proposition follows from what we just said.

Proposition 9. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects

to weak equivalences, the F total derived functor

LFF := LF(LN ◦ F ◦ i) ∈ Fun(HoK(M), HoK(N))

together with the natural isomorphism

ı : LFF ◦ LM ◦ i
∼=⇒ LN ◦ F ◦ i (29)

are unique up to unique natural isomorphism.
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Of course, if F : M� N : G is a Quillen adjunction, then F respects trivial cofibrations,

hence satisfies the previous condition, so that LFF : HoK(M) → HoK(N) exists. Dually, the

total right derived functor RFG : HoK(N)→ HoK(M) exists:

Proposition 10. If F : M� N : G is a Quillen adjunction, the functor LFF is left adjoint

to the functor RFG . The derived functors are an equivalence of categories if the Quillen

adjunction considered is a Quillen equivalence.

Remark 4. Notice that the left F derived functor LFF is defined by means of the inclusion

functor i : Mc ↪→ M , whereas the right F derived functor RFG uses the inclusion functor

j : M f ↪→ M . Therefore the distinction between left and right is important here (see Remark

3).

4.3.3 S derived functors in model categories

In model categories we have still another option for defining total derived functors. Indeed,

as mentioned before, the pair (Ho(M), γM) associated to any model category M is not only a

presentation of the faint localization (M[W−1M ], LM) of M at its weak equivalences WM , it is

also the strong localization (M[[W−1M ]], LM) . In view of Remark 2, the strong localization

(S[[W−1S ]], LS) of a subcategory S of a model category M at the class WS of S-morphisms that

belong to WM, is given by the zigzag construction used for the strong localization (Ho(M), γM)

of M and it is denoted a bit abusively by (Ho(S), γS) . Thus we can fall back for instance on the

strong localization (Ho(Mc), γM c) of Mc at the class WM c of morphisms in WM that act between

cofibrant objects. In the following we will denote both classes WM c and WM by W .

Hence, if F ∈ Fun(M, N) sends weak equivalences between cofibrant objects to weak equiva-

lences, then γN ◦F ◦ i ∈ Fun(Mc, Ho(N)) sends weak equivalences to isomorphisms and therefore

factors uniquely and on the nose through Ho(Mc) , i.e., there exists a unique functor

Ho(F ) := Ho(γN ◦ F ◦ i) ∈ Fun(Ho(Mc), Ho(N)) ,

such that

Ho(F ) ◦ γM c = γN ◦ F ◦ i . (30)

There is an equivalence of categories Ho(Mc) ≈ Ho(M) . The functor from Ho(Mc) to Ho(M)

is the unique factorization Ho(i) := Ho(γM ◦ i) through Ho(Mc) of γM ◦ i ∈ Fun(Mc, Ho(M)) . It is

well-known that the quasi-inverse of an equivalence of categories is unique up to isomorphism

(the quasi-inverse of an adjoint equivalence of categories is unique up to unique isomorphism).
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Definition 8. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects to

weak equivalences and if I ∈ Fun(Ho(M), Ho(Mc)) is a quasi-inverse of Ho(i) , we define

the S total derived functor of F by

LS
IF := Ho(F ) ◦ I ∈ Fun(Ho(M), Ho(N)) .

If J is another quasi-inverse, there is a natural isomorphism i : I
∼=⇒ J and κ := Ho(F) ? i

is a natural isomorphism κ : LS
IF

∼=⇒ LS
JF . Hence:

Proposition 11. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects to weak

equivalences, the total derived functor

LSF ∈ Fun(Ho(M), Ho(N))

exists and is essentially unique, i.e., whatever quasi-inverse of Ho(i) we choose to compute

the derived functor we get a representative in the same isomorphism class.

Remark 5. Let us emphasize very clearly that LSF is defined up to a natural isomorphism:

LSF stands for any of the LS
IF , where I is a quasi-inverse of Ho(i) .

For instance, every cofibrant F-replacement functor Q : M→ Mc induces a quasi-inverse of

Ho(i) . Indeed, as we interpret Q here as a functor to Mc and not to M as before in this text,

the natural weak equivalence q : Q
∼⇒ idM mentioned in Subsection 3.1 can be written

q : i ◦Q ∼⇒ idM (31)

and it restricts to a natural weak equivalence q ? i : Q ◦ i ∼⇒ idM c . It is now easy to see that

the unique factorization Ho(Q) := Ho(γM c ◦ Q) : Ho(M) → Ho(Mc) is a quasi-inverse of Ho(i) .

Hence:

Proposition 12. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects to weak

equivalences and if Q ∈ Fun(M, Mc) is a cofibrant F-replacement functor, the total derived

functor of F is given by

LSF
∼=⇒ LS

QF = Ho(F ) ◦ Ho(Q) . (32)

Moreover, we have the equality

LS
QF ◦ γM = γN ◦ F ◦Q . (33)
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Indeed, the unique factorization Ho(Q) satisfies

Ho(Q) ◦ γM = γM c ◦Q (34)

and the previous equality follows from (32), (34) and (30).

Let us mention that since the RHS of (33) can be written γN ◦F ◦ i ◦Q , we get from (32),

(33) and (31) a natural transformation

LSF ◦ γM ⇒ γN ◦ F . (35)

A similar observation can be deduced in the case of F derived functors from the whiskering

of the natural isomorphism ı in (29) with Q :

ı ? Q : LFF ◦ LM ◦ i ◦Q
∼=⇒ LN ◦ F ◦ i ◦Q .

Indeed, in view of (31) we have a natural isomorphism

LFF ◦ LM ◦ i ◦Q
∼=⇒ LFF ◦ LM

and a natural transformation

LN ◦ F ◦ i ◦Q⇒ LN ◦ F ,

and so get a natural transformation

LFF ◦ LM ⇒ LN ◦ F . (36)

The interesting equations are (29) and (33) which are stronger than the S and F counterparts

(35) and (36) of the K equation (27).

In order to compute total derived functors one usually pre-composes the original functor

with a cofibrant F-replacement functor Q .

Indeed, the functor γN ◦ F ◦Q ∈ Fun(M, Ho(N)) sends weak equivalences to isomorphisms,

so that there exists a unique functor

Ho(F ◦Q) := Ho(γN ◦ F ◦Q) ∈ Fun(Ho(M), Ho(N)) , (37)

such that

Ho(F ◦Q) ◦ γM = γN ◦ F ◦Q . (38)

In view of Equation (33) in Proposition 12 we get:
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Proposition 13. Under the assumptions of Proposition 12, the total derived functor of F is

given by

LSF
∼=⇒ LS

QF = Ho(F ) ◦ Ho(Q) = Ho(F ◦Q) . (39)

Remark 6. The results on S derived functors of Quillen functors are the same as in the case

of K and F derived functors.

4.3.4 Comparison theorems

Above we used the faint localization (HoK(M),LM) of M at W and considered K and F

derived functors, and we used the strong localization (Ho(M), γM) of M at W and looked at K

and S derived functors.

We will show that in both cases the two derived functors under consideration are equal,

and begin with the following refinement of Proposition 8.

Theorem 4. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects to weak

equivalences, the Kan extension derived functor

LKF = LK(LN ◦ F ◦ i) = (LM ◦ i)∗(LN ◦ F ◦ i) ∈ Fun(HoK(M), HoK(N))

exists and is given by

LFF = LF(LN ◦ F ◦ i) ,

where i : Mc ↪→ M is the canonical inclusion.

The usually different K and F derived functors coincide here since in view of Corollary 1

the pair (HoK(M),LM ◦ i) is not only a faint but a weak localization of Mc at W :

Proof. From Proposition 9 it follows that LFF ∈ Fun(HoK(M), HoK(N)) satisfies

ı : LFF ◦ LM ◦ i
∼=⇒ LN ◦ F ◦ i .

Hence LKF = LFF if for any functor G ∈ Fun(HoK(M), HoK(N)) and any natural transforma-

tion

ξ : G ◦ LM ◦ i⇒ LN ◦ F ◦ i ,

there is a unique natural transformation ζ : G⇒ LFF such that

ı ◦ (ζ ? (LM ◦ i)) = ξ .
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However, as (HoK(M),LM ◦ i) is a weak localization, the functor − ◦ LM ◦ i is fully faithful, so

that the natural transformation

ı−1 ◦ ξ : G ◦ LM ◦ i⇒ LFF ◦ LM ◦ i

reads ζ ? (LM ◦ i) for a unique ζ : G⇒ LFF .

We finally prove Proposition 5. More precisely, we show that if F ∈ Fun(M, N) sends

weak equivalences between cofibrant objects to weak equivalences, the Kan extension derived

functor

LKF ∈ Fun(Ho(M), Ho(N))

exists and is given by LS
QF = Ho(F ◦ Q) and by Ho(F ◦ C̃) , where Q and C̃ are defined as

usual.

Proof of Proposition 5. Let C̃ be a local cofibrant F-replacement as in Subsection 3.1 and

recall (see proof of Theorem 1) that C̃ is an endofunctor of M up to left homotopy, in the

sense that its value at an M-morphism f : X → Y is well-defined only up to left homotopy

and therefore it respects compositions and identities only up to left homotopy. Nevertheless

C := γN ◦ F ◦ C̃

is a well-defined functor from M to Ho(N) . Indeed, let T1 := C̃1f and T2 := C̃2f be two

different liftings. The fact that these M-morphisms from A := C̃X ∈ Mc to B := C̃Y ∈ Mc are

left homotopic means that T1 q T2 : A q A → B factors through a cylinder object Cyl(A) ,

i.e., means that there is a factorization

w ◦ i1 := w ◦ i ◦ φ1 = idA and w ◦ i2 := w ◦ i ◦ φ2 = idA , (40)

where φ1, φ2 : A→ AqA , i : AqA� Cyl(A) and w : Cyl(A)
∼→ A , as well as a factorization

H ◦ i1 = T1 and H ◦ i2 = T2 , (41)

where H : Cyl(A) → B (see proof of Theorem 1). As the cylinder of a cofibrant object is

cofibrant (see proof of Corollary 1), we get from w ◦ i1 = idA that i1 : A → Cyl(A) is a

weak equivalence between cofibrant objects. If we apply γN ◦ F ∈ Fun(M, Ho(N)) to (40) and

remember that γN(F (i1)) is an isomorphism, we see that γN(F (w)) is the inverse isomorphism

and that γN(F (i1)) = γN(F (i2)) . Hence it follows from (41) that

γN(F (C̃1f)) = γN(F (T1)) = γN(F (T2)) = γN(F (C̃2f)) ,
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so that Cf := γN(F (C̃f)) is well-defined. Moreover it is now easy to check that C respects

compositions and identities and is therefore a genuine functor C ∈ Fun(M, Ho(N)) . Finally the

diagram (8) allow us to see that C̃f is a weak equivalence between cofibrant objects if f is

a weak equivalence, so that C sends weak equivalences to isomorphisms and factors uniquely

through Ho(M) : there is a unique functor Ho(C) or

Ho(F ◦ C̃) ∈ Fun(Ho(M), Ho(N)) , (42)

such that

Ho(F ◦ C̃) ◦ γM = γN ◦ F ◦ C̃ . (43)

From Equations (37) and (38) we know that if Q is a cofibrant F-replacement functor, the

functor

LS
QF = Ho(F ◦Q) ∈ Fun(Ho(M), Ho(N)) (44)

satisfies the commutation relation

Ho(F ◦Q) ◦ γM = γN ◦ F ◦Q . (45)

In the following Q denotes both, the replacement C̃ and the replacement Q . We now show

that Ho(F ) := Ho(F ◦ Q) is the right Kan extension LKF of γN ◦ F along γM .

First we construct a natural transformation

ε : Ho(F ) ◦ γM ⇒ γN ◦ F ,

i.e., a family εX , X ∈ M , of Ho(N)-maps

εX : F (QX)→ F (X)

that is natural in X . Denoting the trivial fibration

cX : C̃X
∼
� X or qX : QX

∼
� X

by

ϕX : QX
∼
� X ,

we get a Ho(N)-map

γN(F (ϕX)) : F (QX)→ F (X)

and set

εX := γN(F (ϕX)) . (46)
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From the commutation of the lower triangle in (8) and the naturality of q it follows that

ϕY ◦ Qf = f ◦ ϕX , (47)

so that the transformation ε is natural.

It remains to prove that the pair (Ho(F ), ε) is universal. Let H ∈ Fun(Ho(M), Ho(N)) and

η : H ◦ γM ⇒ γN ◦ F be another such pair. We will show that there is a unique natural

transformation κ : H ⇒ Ho(F ) such that η = ε ◦ (κ ? γM) .

In order to define X-natural Ho(N)-maps

κX : H(X)→ Ho(F )(X) , where Ho(F )(X) = F (QX)

such that ηX = γN(F (ϕX)) ◦ κX , we consider the X-natural Ho(N)-maps

ηX : H(X)→ F (X)

and their naturality square for ϕX : QX → X :

H(QX) F (QX)

H(X) F (X)

ηQX

H(γM(ϕX))

ηX

γN(F (ϕX))
κX

(48)

Since ϕX is a weak equivalence, the map H(γM(ϕX)) is an isomorphism and we can define κX

by

κX := ηQX ◦ (H(γM(ϕX)))−1 . (49)

Of course, since the square commutes, the lower triangle also commutes, which means that

η = ε ◦ (κ ? γM) as already mentioned above.

In view of Lemma 1, the family (49) of Ho(N)-maps defines a natural transformation

κ : H ⇒ Ho(F ) if and only if it defines a natural transformation

κ : H ◦ γM ⇒ Ho(F ) ◦ γM , where Ho(F ) ◦ γM = γN ◦ F ◦ Q .

Let f : X → Y be an M-morphism. If we apply the naturality of the transformation η :

H ◦ γM ⇒ γN ◦ F to the morphism Qf : QX → QY , we get

Ho(F )(γMf) ◦ κX = γN(F (Qf)) ◦ ηQX ◦ (H(γM(ϕX)))−1 = ηQY ◦H(γM(Qf)) ◦ (H(γM(ϕX)))−1 .
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Since the commutation relation (47) gives

H(γM(ϕY )) ◦H(γM(Qf)) = H(γMf) ◦H(γM(ϕX)) ,

we finally find that

Ho(F )(γMf) ◦ κX = κY ◦H(γMf) . (50)

We still have to show that κ is unique. If κ : H ⇒ Ho(F ) such that ηX = εX ◦ κX =

γN(F (ϕX))◦κX exists and if X ∈ Mc , then γN(F (ϕX)) is an isomorphism and κX is necessarily

given by

κX = (γN(F (ϕX)))−1 ◦ ηX = ηQX ◦ (H(γM(ϕX)))−1 . (51)

If X /∈ Mc , Equation (50) applied to

(f : X → Y ) = (ϕX : QX → X)

gives

κX = γN(F (QϕX)) ◦ κQX ◦ (H(γM(ϕX)))−1 .

Equation (51) applied to QX leads to

κX = γN(F (QϕX)) ◦ ηQ(QX) ◦ (H(γM(ϕQX)))−1 ◦ (H(γM(ϕX)))−1 (52)

and the naturality equation of η applied to

(f : X → Y ) = (QϕX : Q(QX)→ QX)

shows that

γN(F (QϕX)) ◦ ηQ(QX) = ηQX ◦H(γM(QϕX)) . (53)

From (47) applied to

(f : X → Y ) = (ϕX : QX → X)

it follows that

H(γM(ϕX)) ◦H(γM(QϕX)) = H(γM(ϕX)) ◦H(γM(ϕQX)) ,

so that

H(γM(QϕX)) = H(γM(ϕQX)) . (54)

If we combine (52), (53) and (54), we finally get that

κX = ηQX ◦ (H(γM(ϕX)))−1 ,

which proves that κ is unique.
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The previous proof allows us to complete Proposition 5 as follows:

Theorem 5. If F ∈ Fun(M, N) sends weak equivalences between cofibrant objects to weak

equivalences, the Kan extension derived functor

LKF ∈ Fun(Ho(M), Ho(N))

exists and is given by Ho(F ◦ C̃) and by

LS
QF = Ho(F ◦Q) ,

where C̃ is a local cofibrant F-replacement and Q is a cofibrant F-replacement functor. This

means that

LKF = Ho(F ◦ C̃) = LS
QF = Ho(F ◦Q) (55)

and implies that

LKF ◦ γM = γN ◦ F ◦ C̃ = LS
QF ◦ γM = γN ◦ F ◦Q . (56)

If we denote

i : LSF
∼=⇒ LS

QF = Ho(F ◦Q) (57)

the natural transformation (39) in Proposition 13, Equation (57) and Equation (56) imply

that for every X ∈ M , the value at γMX = X ∈ Ho(M) of the derived functor is

LSF (X)
iX∼= LS

QF (X) = LKF (X) = γN(F (QX)) = γN(F (C̃X)) = F (QX) = F (C̃X) .

Further, for every f ∈ HomM(X,Y ) , the value at γMf ∈ HomHo(M)(X,Y ) of the derived functor

is

LS
QF (γMf) = LKF (γMf) = γN(F (Qf)) = γN(F (C̃f))

and

LSF (γMf) = i−1Y ◦ L
S
QF (γMf) ◦ iX .

5 Future directions

Since the discovery of general relativity, the prevailing tendency in mathematics has again

been to favor coordinate-independent approaches to problems, as was inevitable in the pre-

Descartes era. In particular, the Vinogradov school proposed a coordinate-free cohomological

analysis of partial differential equations (PDE-s) [23], an endeavor also promoted in the setting
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of algebraic geometry by Beilinson and Drinfeld [1]. Other authors, e.g., Costello and Gwilliam

[4], Schreiber... have investigated a covariant Batalin-Vilkovisky (BV) formalism for gauge

field theories. In a series of papers [5, 6, 18], Di Brino and two of the authors of the present

article have proposed a generalization to differential operators D of homotopical algebraic

geometry in the sense of [21, 22] as a suitable framework for the moduli space of solutions

of a system of PDE-s modulo symmetries. Indeed, the new geometry in particular provides

a convenient method of encoding total derivatives and leads to a covariant description of the

classical BV complex which arises as a specific case of general constructions. Further evidence

for this standpoint appears in [16, 17].

The mathematically rigorous implementation of the previous ideas requires that the tu-

ple (DGDM, DGDM, DGDA, τ,P) be a homotopical algebraic geometric context (HAGC) in the

sense of [22]. Here DGDM is the symmetric monoidal model category of differential graded

D-modules, the subcategory DGDA is the model category of differential graded D-algebras, τ

is a suitable model pre-topology on the opposite category of DGDA and P is a compatible class

of morphisms. We expect the proof of the HAGC theorem to be based on a generalization

of the concept of homotopy fiber sequence and of Puppe’s long exact sequence. In this de-

rived setting, different types of derived functors on model categories are used and need to be

compared. We are convinced that the present paper enables us to prove the HAGC theorem

and thus to take an important step towards the full implementation of the program described

above.
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