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Abstract

We distinguish between faint, weak, strong and strict localizations of cate-
gories at morphism families and show that this framework captures the different
types of derived functors that are considered in the literature. More precisely,
we show that Kan and faint derived functors coincide when we use the classical
Kan homotopy category, and when we use the Quillen homotopy category, Kan
and strong derived functors coincide. Our comparison results are based on the
fact that the Kan homotopy category is a weak localization and that the Quillen

homotopy category is a strict localization.
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1 Introduction

There are a number of definitions of a localization of a category at a family of morphisms,
of definitions of a model category, the homotopy category and the derived functor in the
literature, and it is not easy to navigate this jungle of different concepts. In the present text

we unravel this tangle.

In Section [2| we define and liken four types of more or less tight localization of a category,
which turn out to provide the proper framework for the study and comparison of various
derived functors in model categories. We refer to these localizations at a distinguished class

of morphisms as the faint, weak, strong and strict localizations.

To define derived functors on homotopy categories most sources use the strong localization
of the model category at its weak equivalences given by the Quillen homotopy category (the
homotopy category for short) [10], [12], [13]; others work with the faint localization given by
the Kan homotopy category (the classical homotopy category to avoid ambiguity) [15], nLab.
Actually the Kan and Quillen homotopy categories are an example of a weak (hence a faint)
and a strict (hence a strong) localization, respectively. Although the strictness of the Quillen
localization implies immediately that it is also a weak localization and therefore necessarily
equivalent to the Kan localization, this property of the homotopy category is to the best of
our knowledge not mentioned in the literature. We deal with the preceding aspects in Section
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In Section 4] we define derived functors as Kan extensions along localization functors (K
derived functors) and as factorizations through faint and strong localizations of the source
category at its weak equivalences (F and S derived functors). K derived functors can be defined
along every functor, in particular along the localization functor of the Quillen homotopy
category [10], [12], [20] and the localization functor of the Kan homotopy category, nLab. F
derived functors will be defined for the faint localization functor of the latter [15], nLab, and S
derived functors for the strong localization functor of the former [I3]. The reader will observe
that the fact that these localization functors are actually weak and strict, respectively, does
not play any role in the derived functors’ existence and uniqueness results and he will notice
that the definitions of K, F and S derived functors differ in particular by the strength of their
‘commutation’ with the localization functor considered. We close Section {4| by proving that
in the case of the Kan homotopy category K and F derived functors coincide and that in the
case of the Quillen homotopy category K and S derived functors are the same. While the
weakness of the Kan localization has not been exploited so far, it is important for proving
the previous comparison theorem. Although nothing is really new, neither of the comparison

theorems seems to exist in the literature.

In the final section [5] we briefly describe the context that led to the need to compare K,

F, and S derived functors.

The proven comparison theorems should be of interest to any research problem that re-
quires results from sources using different definitions of derived functors. Applications can be
expected for instance in higher geometry and physics. Indeed, functors and their derivatives
are of importance in environments where there is no good notion of point, e.g., in superge-
ometry and in algebraic geometry: higher supergeometry [7, 8, [9] [19], homotopical algebraic
geometry [21], 22] and its generalisation that goes under the name of homotopical algebraic
geometry over differential operators, are completely based on the functor of points approach
[2, 3, [6].

Warning. In this text we identify objects that are connected by a unique or canonical

isomorphism.

2 Strict, strong, weak and faint localizations

If one looks at the details of the various definitions of derived functors of Quillen functors,
one sees that the authors essentially use two different definitions of localization of a category

at a family of morphisms. We will refer to the notion of localization that is used in [10], [12]
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and [I3] as the strong localization and to the notion of localization that is used in [I5] as a

faint localization. However:

Remark 1. There are two additional types of localization, a specific strong localization (called
strict localization) and a specific faint localization (called weak localization), which may rep-
resent better localization concepts, although their distinctive specificity is not needed in the
definitions of derived functors — on the other hand it is of fundamental importance in the

proofs of the comparison theorems of these definitions.

Definition 1. A faint localization of a category C at a family W of morphisms (called weak
equivalences) is a category C[W 1] together with a functor L : C — C[W 1] that sends weak
equivalences to isomorphisms, such that the pair (C(W 1), L) is faintly universal in the sense
that:

(L1) If (D, F) is another such pair, there exists a functor F : C[W~] — D such that the
resulting triangle commutes (not on the nose but) up to natural isomorphism n : F =
FolL.

C

cw—1

Q

//ﬂ

TR

v
D

(1)

(L2) The pair (F,n) is unique up to (!) unique natural isomorphism, i.e., if (F',n') is
another such pair, there is a unique natural isomorphism ¢ : F = F' such that the

obvious diagram commutes on the nose: (e x L)on =1n', where x denotes whiskering.

Definition 2. A weak localization of a category C at a family W of morphisms is a category
C[W 1] together with a functor L : C — C[W 1] that sends weak equivalences to isomorphisms,
such that the pair (C[W 1)), L) is weakly universal in the sense that:

(L1) If (D, F) is another such pair, there exists a functor F : C[W~'] — D such that the

resulting triangle commutes up to natural isomorphism n: F = FolL.

(L2’) The functor
— o L : Fun(C[W™'],D) — Fun(C,D)

from functors out of C[W 1] to functors out of C is fully faithful for every categoryD.
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Definition 3. A strong localization of a category C at a family W of morphisms is a
category C[[W1]] together with a functor L : C — C[[W~!]] that sends weak equivalences to

isomorphisms, such that the pair (C[[W~]), L) is strongly universal in the sense that:

(L1") If (D, F) is another such pair, there exists a unique functor F : C[[W~']] = D such that

the resulting triangle commutes on the nose: F = Fo L.

Definition 4. A strict localization of a category C at a family W of morphisms is a
category C[[W Y]] together with a functor L : C — C[[W 1] that sends weak equivalences to
isomorphisms, such that the pair (C[[W 1)), L) is strictly universal in the sense that:

(L1") If (D, F) is another such pair, there exists a unique functor F : C[[W~1]] = D such that

the resulting triangle commutes on the nose: F = Fo L.

(L2’) The functor
— o L : Fun(C[[W™!]],D) — Fun(C,D)

from functors out of C[[W~1]] to functors out of C is fully faithful for every categoryD.

As mentioned before, the concept of faint (resp., strong) localization is used in [15] (resp.,

[10], [12], [13]). The concept of weak localization can be found for instance in [14].

If CW denotes either C[W 1] or C[[W~!]] the fully faithfulness condition in Definitions
and |4 means that for every functors F,G € Fun(CW,D) the map

(= o L)pe : Hompyycyp)(F, G) 2 ¢+ (x L € Hompypcpy(F o L,Go L) (2)
is bijective.
Proposition 1. Fvery strict localization is a weak localization.
Proof. Obvious. O
Proposition 2. Every weak (resp., strict) localization is a faint (resp., strong) localization.

Proof. The second statement is obvious. Let now (C[W ~!], L) be a weak localization and let
(D, F), (F,n) and (F”,7) be as in Definition [l We must show that there is a unique natural
isomorphism ¢ : F = F’ such that exL = non~t. Since f'on~ : FolL = F'oL and similarly
for non'~!, it follows from the full faithfulness of — o L that there exists a unique natural
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transformation 6 : F = F’ such that 6 x L = 1 o~ and a unique natural transformation

¥ : F' = F such that ¥ x L = non/~!. Hence the bijection —o L maps 906 : F = F to
(Wol)x L= (xL)o(*L)=1idp,, =idz*L,
so that ¥ o = id . Similarly one gets that o ¥ = idj, , which completes the proof. O

Let [C, D]y be the full subcategory of those functors of Fun(C,D) that send the morphisms

in W to isomorphisms in D. Observe that Condition (L1’) means that any functor of
[C, D] %%

factors uniquely through L, and that in view of Condition (L2’) means that any natural
transformation
E:FoL=GolL
in
HOm[C7D]W(F (¢} L, G ¢} L)

factors uniquely through L. Hence a strong localization needs not be strict. Noticing that

Condition (L2) means that any natural isomorphism of the type

FolL

Yie

nWont:FoL
factors uniquely through L as isomorphism, we see that a faint localization needs not be weak.

Proposition 3. Let C be a category and W a family of morphisms of C.

1. A faint localization (C[W 1], L) is a weak localization if and only if for every D the
functor
— oL : Fun(C[W™1],D) — [C,D]w (3)

is an equivalence of categories.

2. A strong localization (C[[W Y]], L) is a strict localization if and only if for every D the
functor
— oL : Fun(C[[W']],D) — [C,D]w (4)

s an isomorphism of categories.
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Proof. Like every functor, the functor yields an equivalence of categories if and only if it
is fully faithful and essentially surjective. As we are dealing with a faint localization every
object F' € [C, D] is naturally isomorphic to some FolL, sothat —oL is essentially surjective.
Hence it is an equivalence of categories if and only if it is fully faithful, i.e., if and only if it
is fully faithful as Fun(C,D)-valued functor, i.e., if and only if the localization considered is a

weak localization.

The functor yields an isomorphism of categories if and only if it is bijective on objects
and on morphisms. Since the localization considered is strong, the functor —o L is bijective on

objects. Hence it is an isomorphism of categories if and only if the localization is strict. [

Proposition 4. If a faint (resp., strong) localization exists it is unique up to equivalence of
categories (resp., up to unique isomorphism of categories). Because of Proposition @, this is

especially true for a weak (resp., strict) localization.

Proof. Let (CIW 1], L) and (C[W~1]’, L) be two faint localizations of C at W . Using the faint

universality of the first pair with respect to the second, we get a functor

e

oW = ewY

(=23

and a natural isomorphism 7/ : L' = L' o L . Dually we obtain a functor

[l

WY — W
and a natural isomorphism
n:L SLol. (5)

Both pairs (L',7') and (L, 7) are unique up to unique isomorphism. As the resulting functor

Lol : C[W_l] — C[W_l]

and natural isomorphism

(L*n’)on:LiioDoL

are unique up to unique natural isomorphism due to the faint universality of the first pair with
respect to itself, and as the identity functor of C[W~1] and the identity natural isomorphism

of L are a second pair of this type, there exists a unique natural isomorphism

[Nz o f// % idC[W—l] (6)
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such that the obvious diagram commutes. Dually we get a unique natural isomorphism

e

[7 (¢] E idC[Wfl]’ . (7)

In the case of the strong localization the proof is the same, but all natural isomorphisms

are equalities and the inverse categorical isomorphisms L’ and L are unique. ]

3 Weak and strict homotopy categories

3.1 Various replacements in a model category

We assume that the reader is familiar with model categories. Essentially a model category
is a category which comes equipped with three classes of morphisms: weak equivalences,
fibrations and cofibrations. A fundamental concept is homotopies between two maps between
the same objects. Whitehead’s theorem states that a weak equivalence between fibrant-
cofibrant objects can be inverted up to homotopy and more precisely that a map between

fibrant-cofibrant objects is a weak equivalence if and only if it is a homotopy equivalence.

Recall that a model category admits a cofibration - trivial fibration factorization (a, b)
(Cof - TrivFib factorization) and a trivial cofibration - fibration factorization (a’,") (TrivCof
- Fib factorization) [15]. Often this system of factorizations is required to be a functorial
factorization system (o, ), (¢, 5') [12].

Warning. In this text we use exclusively model categories that admit a functorial factor-

1zation system.

Another variant of the definition of a model category not only requires the existence of a
functorial system, but fixes such a system and views it as part of the model structure; changing
the system leaving everything else unchanged, leads to an isomorphic model category in all

reasonable senses of ‘isomorphism of model categories’ [13].

Let M be a model category. We denote its initial and terminal objects by 0 and * respec-

tively.

Let now (v, ), (¢, 8") be any functorial factorization system. For every object X € M,
the first factorization factors the map ix : 0 — X into a cofibration «a(ix) followed by a trivial
fibration gx := B(ix):

ix:0—QX > X .
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Regardless of the factorization
ix:0—>CX 55X

of ix : 0 — X into a cofibration followed by a weak equivalence cx considered, we refer to C X
as a cofibrant replacement of X . The object QX we call a cofibrant F-replacement of X (or
just a cofibrant replacement if we do not want to stress that ¢y is a fibration). From the fact
that the factorization («, ) is functorial it follows that @ is an endofunctor of M. Moreover
gx : QX — X is functorial in X : ¢ is a natural transformation ¢ : Q = idy from the cofibrant
replacement functor @ to the identity functor idy [13]. Instead of the cofibrant F-replacement
functor @ that is globally defined by the functorial factorization («, ), we will also use local
/ object-wise cofibrant replacements C'X or local cofibrant F-replacements CX such that the
map cy in the factorization
ix:0—CX > X

is idx if X is already cofibrant [20]. If for every X we choose such a local cofibrant F-
replacement and if f : X — Y, there is a lifting Cf : CX — CY, which will play an

important role.

(8)

The dual concepts of fibrant replacement F'X , of fibrant C-replacement RX , fibrant re-
placement functor R with natural transformation r : idy = R, and of local fibrant C-
replacements fx : X ~ FX such that fx is identity if X is a fibrant object are defined

similarly using the functorial factorization (o/, 3’) and the map tx : X — *.

f ~fr .
X Y > FY
~ fx /://
S
FX *
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3.2 Homotopy categories of a model category

Let M be a model category. We denote its class of weak equivalences f : X = Y by
W. Further, we write f : X S Y it f is an isomorphism and we write f ~f g (resp.,
~" g, f~g)if f,g: X — Y are left homotopic (resp., right homotopic, homotopic). The
homotopy class of a morphism f : X — Y will be denoted by [f]. Recall also that the full
subcategory Mg, C M of fibrant-cofibrant objects of M, the full subcategory My C M of fibrant
objects and the full subcategory M. C M of cofibrant objects are all three categories with weak
equivalences, whose weak equivalences W are the weak equivalences W of M between their
objects. Further M¢ (resp., M) inherits fibrations (resp., cofibrations) and is the prototypical
example of a fibration (resp., cofibration) category: fibration (resp., cofibration) categories
have a notion weak equivalences and of fibrations (resp., cofibrations), but none of cofibrations
(resp., fibrations). Hence Mg, Mg and M. are not full model categories. Finally, we will in the

following repeatedly use the canonical inclusion functor of M, C M and will denote it ¢ : M, < M.

3.2.1 'Weak homotopy category

Definition 5. The Kan homotopy category Hox (M) of a model category M is the cate-
gory whose objects are the objects of Mg. and whose morphisms are the homotopy classes of

morphisms of My :
Homy, , () (X,Y) := Homu(X,Y)/ ~ (X,Y €M) .

Theorem 1. The Kan homotopy category Hox (M) is a weak localization MW~ of M at
its class W of weak equivalences. The localization functor £ : M — Hox (M) is defined by
LX := FCX on objects X and on morphisms f : X =Y by Lf := [Fé'f] . Here F refers to a
local fibrant C-replacement and C' to a local cofibrant F-replacement in the sense of Subsection

(2.1

The proof is based on homotopy lemmas. We recall that two M-morphisms f,g: X — Y
between the same M-objects are left (resp., right) homotopic and we write f ~t g (resp.,
g if fllg: XIIX =Y (resp., (f,g9): X =Y xY) factors trough a cylinder object of
X (resp., a path object of Y). A cylinder object Cyl(X) of X is a factorization

XIIX — Cyl(X) 3 X

of the fold map idx Iidx : XII X — X into a cofibration ¢ followed by a weak equivalence w.
The left homotopy factorization of fI1g now means that there is a morphism H : Cyl(X) — Y
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such that
fOg=Hozi.

If we denote the morphisms that come with the coproduct X II X by ¢1,¢0 : X = X II X,

the left homotopy factorization reads
HOili:HOiOd)lzf and HOiQZ:HOiO¢2:g,

Remember as well that left (resp., right) composition preserves left (resp., right) homotopies
and that left (resp., right) homotopic maps are also right (resp., left) homotopic if the source
(resp., target) object is cofibrant (resp., fibrant). Recall finally that if X is cofibrant and
v:Y 5 Z is a trivial fibration, then left composition by + induces a 1:1 correspondence

between left homotopy classes of morphisms:
yo—:Homy(X,Y)/~" - Homy(X,Z2)/ ~* . (10)

The map v o — is indeed well defined given the homotopy conservation property of compo-
sition mentioned above. Further, it is obviously surjective due to the lifting axiom of model
categories. As for injectivity, let f,g : X — Y and assume that yo f,yog: X — Z are left
homotopic, i.e., that there is a morphism H : Cyl(X) — Z such that yo (fII1g) = H oi. Since
7y is a trivial fibration and 7 a cofibration, the lifting axiom gives a morphism # : Cyl(X) — Y
such that fII g = H o4. The dual result of holds likewise.

xux My

1
g g
Cyl(X) —— Z

Proof. Since 0 — CX = FCX — x, the value £X is fibrant and cofibrant and is therefore
an object of Hox(M). As for Lf, notice that in view of and @D the liftings C'f and FCf

are any M-morphisms that render the following squares commutative:

~CX L ~fox ..
X CX FOX
f cf FCf
Y <« CY > FCY
v Jey (12)
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If Cif and Caf are two different liftings , we have
cy o C1f = ¢y o Cof € Homy(CX,Y),

so that C1f ~ Cof . Similarly, if F1Cf and F2Csf are two different liftings (9)), it follows
from
[Flélf o fC’X] = [FQégf ¢} fC’X] S HomM(C’X, FGY)/ ~7

that
[F1C1f] = [F2Ca f] € Homy(FCX,FCY)/ ~ = Homyq, ) (LX, LY) .

It can be straightforwardly checked that £ respects identities and compositions and is therefore
a well-defined functor. Moreover, it is clear from that if f is a weak equivalence its lift
FCf is a weak equivalence between fibrant-cofibrant objects, hence a homotopy equivalence,

which implies that L£f is an isomorphism.

To prove (L1) we must show that every functor F € [M, D]y can be written up to a natural

isomorphism as the composite of £ and a functor F € Fun(Hok (M),D). We define F on
XeM, by FX:=FXeD
and on
[f: X - Y] € Homy(X,Y)/~ (X,Y €M) by F[f]:=FfcHomp(FX,FY).

The image F[f] is well defined. Indeed, if f,g : X — Y are homotopic, there is a cylinder

object Cyl(X) or, more precisely, a factorization
woi =idy and woiy =idx, (13)

where w is a weak equivalence and i a cofibration (see above) and a morphism H : Cyl(X) — Y
such that
Hoigz=fand Hoig=g. (14)

Applying F € [M, D]y to the equalities in we see that Fi; = Fig as Fw is an isomorphism,
and applying it to the equalities in we get that Ff = Fg, so that F is well defined on
[f]. Further F respects identities and compositions since F does and is therefore a functor
F € Fun(Hok (M),D). We now want to find a family indexed by X € M of D-isomorphisms

nx : FX S F(LX) = F(FCX)
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such that for every M-morphism f: X — Y we have

ny o Ff = F(Lf)onx = F(FCf)onx .

Since if we apply F to we get the commutative diagram

c —1 F(f~
x T rex (fCX)]-'(FC*X)
Ff If(é f) F(FCY)
FY F(CY F(FCY
(.FCY>71 ( ) f(féy) ( ) (15)

it suffices to define nx as the isomorphism in the first line of .

It remains to check the fully faithfulness condition (L2’) or equivalently (2), i.e., that for
every G,H € Fun(Hok(M),D) and every & : G o L = H o L there is a unique ¢ : G = H such
that (x L = €.

Recall that cx : CX — X (resp., fx : X . FX) is idx if X € M is cofibrant (resp.,
fibrant). In view of we have therefore FCf ~ f if the source and target of f are
fibrant-cofibrant.

Hence if ¢ exists its components (x (X € Mg.) are necessarily given by (x = (rx = £x,

so that ¢ is unique.

Conversely, if we set (x = {x (X € Mg.) we get a family of D-morphisms (x : GX — HX .
Since the transformation £ is natural, i.e., satisfies the obvious commutation condition for
all f € Homy(X,Y) (X,Y € M), the transformation ¢ is natural as well, i.e., satisfies this
condition for all [f] € Homy,, ) (X,Y) (X, Y € Myc):

H[flolx =H(Lf)olx =&y o G(LSf) = (y o G[f].

Further, by definition, we have (rx = {,x (X € M) and get the needed result (rx = &x if X
is fibrant and cofibrant. To conclude if X is not necessarily fibrant-cofibrant we must prove

that {rx = {x for every X € M. Using the naturality of £ for f = fz , we get

H(ﬁféx) 0 géX =&rx o g(‘cféx)
and using it for f = cx , we find

H(Lex)o&ay =Ex 0G(Lex)
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where the images by G o £ and H o L are isomorphisms. Therefore

€ox = H(Lfex) o (H(Lex)) ™ o €x 0 G(Lex) o (G(Lfax)) ™"

For f: X — Y equals fay : CX — FCX the lifting diagram reads

- - idéX - - CX . .
CX CX FCX
JféX CNYféX {Féféx
FCX = FCX FCX
~idpey ~idpax

so that
Lfex =[FCfax] = lidpax] = lidex]
Similarly, for f: X — Y equals cx : CX — X the lifting diagram reads

- idéX - ~fC’X -~
CX cX FCX

9'¢ {GCX FGCX
X <= OX By FCX

so that
Lex = [FCCX] = [idFC‘X] = [idcx] .

Combining —, we get {px = Ex , which completes the proof.

The next result is important for one of the comparison theorems of Subsection

14

(17)

(18)

Corollary 1. Ifi: M < M is the canonical inclusion functor, the pair (Hog (M), Ly o) is a

weak localization of M¢ at W . A similar result holds for Mg .

Proof. In the following we write £ instead of Ly. It is clear that £ o i € Fun(Mc,Hok(M))
sends weak equivalences to isomorphisms. We must show that for every functor F € [M¢, D]
there is a functor F € Fun(Hok(M),D) and a natural isomorphism 7 : F S FoLoi. We
define F as in the proof of Theorem [l but before applying F to the equalities in and
(L4), we have to check that the M-morphisms i1,i2 : X — Cyl(X), w : Cyl(X) — X and
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H : Cyl(X) — Y have a cofibrant source and target, i.e., that Cyl(X) is a cofibrant object.
However, since cofibrations are closed under pushouts [I0] and compositions, the coproduct
of cofibrant objects is cofibrant and so is the cylinder of a cofibrant object. The remainder of
the proof of Theorem [I] goes through without difficulty. O

Notice that we denoted the localization functor by £ instead of Lz since it is essentially
unique. Indeed, if (F”,C") is of the same type as (F, C') and if we denote £’ the induced local-
ization functor, the pairs (Hok (M), £) and (Hok (M), £') are both presentations of (M[W ], L).
Using the unique isomorphisms (6)) and (7)) to identify the LHS and the RHS in () and in
(@), we conclude that £ : Hok (M) — Hok (M) is an automorphism of the homotopy category
Hok (M) . As the pair made of the categorical automorphism £ and the natural isomorphism n

is unique, we can in view of identify £ and L'.

From what we said above it follows that the Kan homotopy category is characterized up

to equivalence of categories by the faint universal property of Definition

3.2.2 Strong homotopy category

Definition 6. The Quillen homotopy category or just the homotopy category Ho(M) of a

model category M is the strong localization M[[W =] of M at its class W of weak equivalences.

We know that Ho(M) does not have to exist, but is unique up to a unique isomorphism if

it does.

Theorem 2. The Quillen homotopy category Ho(M) of a model category M does exist. The
objects of Ho(M) are the objects of M and its morphisms from X to'Y are defined as

Homy, oy (X, Y) := Homy(FCX,FCY)/ ~ |

where F refers to a local fibrant C-replacement and C to a local cofibrant F-replacement, or,
equivalently, as
Homyouy (X, Y) := Homy(RQX, RQY)/ ~

-

where R and Q are the fibrant and cofibrant replacement functors that are defined by a func-
torial factorization system. The localization functor v : M — Ho(M) is defined on objects X by
X := X and on morphisms f: X — Y by yf = [FCf], or, equivalently, by vf := [RQf] .

Proof. See [13], [12]. O
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Actually v(f) is an isomorphism if and only if f is a weak equivalence [13], [12].

There is a second description [111, [I3] of Ho(M) . It starts from the free category F(M, W) on
M and W, whose objects are the objects of M and whose morphisms from X to Y are the zigzags
from X to Y, i.e., are the finite strings of morphisms of M and formal reversals w=! : V ~» U
of weak equivalences w : U — V in W that start at X and arrive at Y. Composition in
F(M, W) is concatenation and the identity at X € M is the empty string 1x at X . From this
free category F(M, W) one then gets the homotopy category Ho(M) by identifying:

1. the identity string 1x : X — X with the identity map (string) idx : X — X at X in M

(identification of identities),

2. for any composable M-maps f : X — Y and g : Y — Z, the concatenation string
fig: X =Y — Z with the composite (string) go f : X — Z in M (identification of

composites),

3. for any weak equivalence w : X — Y of M, the concatenation string w,w=!: X =Y ~
X with the identity idx : X — X,

4. for any weak equivalence w : X — Y of M, the concatenation string w™!,w: Y ~ X —
Y with the identity idy : Y — Y.

The resulting quotient category is the homotopy category Ho(M). We denote the class of a
string S by [S].

The localization functor 7 is defined by vX = X and y(f : X - Y)=[f: X - Y] €
Homyowy(X,Y). As Ho(M) is a category, morphisms, i.e., classes of strings, can be composed
and, of course, the composite of two composable classes is the class of the concatenation;
moreover, there is an identity class at X € Ho(M) which is obviously the class [idx] = [1x]. It

follows that v respects identities and composition:
’y(ldX X — X) = [1)(} = [l'yX]

and
Y(gof)=lgofl=[X =Y = Z]=[glo[fl=rgo~f.

The functor v : M — Ho(M) sends weak equivalences w to isomorphisms, i.e., the class yw = [w]

is an isomorphism, i.e., it has an inverse class [w™!]; indeed

w0 [u] = [w,w] = fidx] = [1x], (19)
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and similarly the other way round.

It is easy to check that if w : X — Y and v : Y — Z are weak equivalences, we have
[, w1 = [(vow)~!], so that any morphism of Ho(M) is an alternation [ ~» — ~» ...] or
Finally, if (D, F') is any category D together with a functor F' : M — D that sends weak

equivalences to isomorphisms, and if there exists a functor Ho(F') : Ho(M) — D such that

Ho(F') oy = F', we have necessarily
Ho(F)(X)=F(X) and Ho(F)[f: X =Y]=F(f: X —>Y).
Further, since for a weak equivalence w : X — Y we get
Ho(F") "] o Ho(F)[w] = Ho(F) w,w™"] = Ho(F)[idx] = idp(x) ,
we also have necessarily
Ho(F)[w™"] = (F(w)) ™.

Conversely, when setting Ho(F)(X) = F(X), Ho(F)(f : X - Y) = F(f : X - Y) and
Ho(F)(w™! : Y ~ X) = (F(w))™!, we obtain a functor Ho(F) : F(M, W) — D that descends
to the quotient category Ho(M). Further, pre-composing Ho(F') : Ho(M) — D with v, we get F.

Remark 2. The zigzag construction of (Ho(M),v) as the strong localization (M[[W 1], Ly)
is also valid for subcategories S of a model category M with W being the S-morphisms that
are weak equivalences as M-morphisms [153]. As elsewhere in the literature, we will use in this
paper the notation (Ho(S),vs) although the correct notation is (S[[W1]], Lg) .

3.2.3 Comparison theorem

Theorem 3. The Quillen homotopy category Ho(M) of a model category M is a strict localization
MW 1] of M at W .

Propositions and [] show that the following comparison result holds:

Corollary 2. The Quillen homotopy category Ho(M) of a model category M is a weak localiza-
tion MW 1] of M at W and is therefore equivalent to the Kan homotopy category Hox (M) .

We thus recover the well-known equivalence of Ho(M) and Hok(M). Conversely Hok (M) is
a weak localization M[W~!] but it is not the strong localization Ho(M) = M[[W~!]]: it is a
different category.
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Lemma 1. Let F,G € Fun(Ho(M),D). A family 0x : F(X) — G(X) of D-maps indezed by
the objects X of M is a natural transformation 0 : F = G if and only if it is a natural
transformation 0 : F oy = G o yy.

Proof. The naturality condition for 8 : F oyy = G o~y requires the obvious square to commute
for all M-maps f: X — Y, i.e., it reads

G[f]ob0x =0y o F[f] . (20)

The naturality condition for 6 : ' = G requires the square to commute for all Ho(M)-maps
[S]: X =Y, ie., it reads
G[S]o0x = 0y o F[S], (21)

where [S] is an alternation of M-maps f and reversals w™! of weak equivalences w € W . Of
course implies , but the opposite is also true. Indeed, assume and consider the
case
f w1 _
[S]=[X5Z% Y]=[w]o[f].

In view of we have F[w™!] = (F[w])~! and similarly for G, so that gives

Oy o Flw '] = Glw ol . (22)
From and it follows that

G[S]obx = Glw™ o G[f]obx = Glw™ ] 0bz 0 F[f] = 0y o Flw™ '] o F[f] = 0y o F[S] .
O

Proof of Theorem[5. We have to prove that (L2’) or equivalently holds. Hence let F,G €
Fun(Ho(M),D) and let 6 : Foyy = Gony. If ( : F = G such that ( x v = 0 exists, its
components are necessarily (x = fx (X € M), so that ¢ is unique. Conversely, in view of
Lemma [1] the family (x = 0x : F(X) — G(X) of D-maps indexed by X € M is a natural
transformation ¢ : F' = G such that ( xyw =6. O

4 Kan, faintly universal and strongly universal de-

rived functors

4.1 Left and right adjoint functors of the pullback by a functor

If P is a functor P € Fun(C,C’) and D is a category, the pre-composition — o P is a functor

P* : Fun(C’,D) — Fun(C,D) ,
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whose value P*n’ at a natural transformation 7" € Homgyy (e py(F”, G') is the composition or
whiskering
77/*P € HomFun(C,D) (P*(F/)7P*(G/)) .

If P* has a left adjoint Py (resp., a right adjoint P,), this adjoint is called left Kan extension

operation along P (resp., right Kan extension operation along P).

We will focus mainly on right extensions; left extensions are dual. The right adjoint P,

exists if and only if P* is a left adjoint functor.

The universal morphism definition of a left adjoint functor F : F — E constructs both the
right adjoint G and the counit ¢ : F o G = idg of the adjunction: a functor F : F — E is a
left adjoint if and only if for any object Y € E there is an object GY € F and a morphism
ey : F(GY) — Y such that (GY,ey) is universal, i.e., for any object X € F and any morphism
¢ : FX — Y there exists a unique morphism f : X — GY such that ey o F(f) = ¢. In this
case, there is a unique way to extend G to morphisms if one wants that € becomes a natural

transformation.

From this definition it follows that the right Kan extension operation P, along P exists
if and only if P* is a left adjoint if and only if for every F' € Fun(C,D) there is (a right
extension) P.F € Fun(C’,D) and a natural transformation ep : P*(P.F) = F', such that for
every F' € Fun(C’,D) and every natural transformation ¢ : P*F’ = F there exists a unique
natural transformation 6’ : F' = P, F such that ep o P*0' = (.

C (o

72
Er | P F

v

’ (23)
As usual, a universal pair (P.F,er) need not exist, but if it does, it is unique up to unique
natural isomorphism. The universal pair (P.F,cp) can exist locally, i.e., for specific objects
F € Fun(C,D), without P, existing globally as right adjoint functor of P*. If (P.F,ep) exists
for a given F' we refer to P.F' as the right Kan extension of F along P .

For instance, let D be a category, let C be a small category and C’ the terminal category [¢]
(with one object ¢ and one morphism id,). The unique functor P € Fun(C, [¢]) to the terminal
category is the constant functor at ¢, there is a canonical isomorphism Fun([¢],D) = D, and

the pre-composition P* : D — Fun(C,D) is the constant functor

—*:D — Fun(C,D) ,
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which sends every object d € D to the constant functor d* at d and every D-morphism g : d — d’
to the constant natural transformation ¢g* : d* = d* with components g¥ = g (¢ € C). If D

has all limits indexed by C, the limit

Lim : Fun(C,D) — D

is a functor that is right adjoint to —*

P. Indeed, the latter exactly means that for every F' € Fun(C,D) there is a functor Lim F' €
Fun([¢],D) such that the diagram

, i.e., Lim is the right Kan extension operation along

(24)

commutes up to a natural transformation ¢ : (Lim F')o P = F', and that the pair (Lim F,¢) is
universal; in other words, the functor Lim is the right Kan extension operation along P means
precisely that for every F' € Fun(C,D) there is an object Lim F' € D and a family indexed
by ¢ € C of D-maps ¢, : Lim F' — F(c) such that for each C-morphism f : ¢ — ¢ we have
ee = F(f)oec, and that the pair (Lim F) (¢.)cec) is universal:

Lim F
P
F(f)

F(c) F(d)

(25)
4.2 K and F derived functors on a category with a distin-

guished family of maps

Roughly speaking the derived functor of a functor from C to D is a functor from ‘the

localization’ of C to D.

Let C be a category with a family W of maps whose faint localization L € Fun(C,C[W ~1])
exists. If F' € Fun(C,D), we have two possibilities to get a (left) derived functor

LF € Fun(C[W~!],D) .
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First we can use the right Kan extension of F' along L and set
LXF := L.F € Fun(C[W™!],D),
provided this extension exists, i.e., the universal pair (L.F,¢), where
e:L,FoL=F,

exists. Of course if it does, it is unique (among universal pairs) up to unique natural isomor-
phism. Secondly, if F' sends maps in W to isomorphisms, there exists in view of the

faint universality of (C[IW '], L) a universal pair (F,¢), where
L:FoL=EF ,
and we can set
LYF := F € Fun(c[W1],D) .

This pair is by definition unique (among similar pairs) up to unique natural isomorphism.
The derived functors LXF and LY F are different, i.e., the pair (L¥F,¢) is generally not a
universal pair in the sense of the faint universal property and (L¥F,:) is usually not a right

Kan extension, although this can be the case in specific situations (see Theorem [4)).

If D is also a category with a distinguished family of maps, V' say, whose faint localization

Lp € Fun(D,D[V 1Y) exists, one mostly considers total derived functors
LF € Fun(c[W~!],D[V 1))
of functors F' € Fun(C,D). Since Lp o F' € Fun(C,D[V ~!]), it suffices to set
LEF .= LX(IpoF),
provided the RHS exists. If F' sends maps in W to maps in V', we can set as well
LYF =LY (IpoF),
where the RHS does exist.
Right derived functors RF and total right derived functors RF' are defined dually.

Remark 3. Left and right derived functors differ by the direction of the natural transforma-
tion. Since this transformation is an isomorphism for F derived functors, the left and right F
derived functors coincide so far. Later we will work with F derived functors that we will call
left derived and others that we call right derived (see Remark [4)).
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4.3 K., F and S derived functors in model categories

In this subsection we consider only total derived functors of functors between model cat-

egories.

Hence let F' € Fun(M,N) be a functor between model categories M, N. We denote the class
of weak equivalences of M (resp., N) by W (resp., V). The localization (M[W ], Ly) (resp.,
(N[V~Y, Ly)) exists and admits the equivalent categories Ho(M) ~ Hok (M) with their localiza-
tion functors qy and Ly (resp., Ho(N) ~ Hok (N) with 7y and Ly) as presentations.

In model categories there are a number of possible approaches to total derived functors.
For each of these types of derived functor, we give a precise definition, emphasizing in particu-
lar which localization and localization property we are using, we state existence and uniqueness
results under certain conditions, and we highlight the type of ‘commutation’ relation that the

type of derived functor considered satisfies.

4.3.1 K derived functors in model categories

In this section we mainly use the presentation (Ho(M),v) of (M[W 1], Ly).

Just as in general categories whose faint localization at a distinguished family of morphisms

exists, we choose the

Definition 7. Let M and N be model categories and let F' € Fun(M,N). The K total derived
functor LXF € Fun(Ho(M),Ho(N)) is the right Kan extension

LEF = L¥(wo F) = ()«(wo F)
of v o F' along v provided this extension exists.
The following existence and uniqueness result holds:

Proposition 5. If F' € Fun(M,N) sends weak equivalences between cofibrant objects

to weak equivalences, the total left derived functor
LYF =L%(wo F) = (y)«(w o F) € Fun(Ho(M), Ho(N))

exists and is unique up to unique natural isomorphism. More precisely (Subsection
, the K derived functor of F' comes with o natural transformation

e:LXFoy=mwoF, (26)

the pair (]LKF, g) is universal and it is this universal pair that is unique.
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We will prove Proposition [f] in Subsection [4.3.4]

The dual result holds for the total right derived functor RKF : Ho(M) — Ho(N). In
particular, if F': M — N is a left Quillen functor, it respects trivial cofibrations, hence sends
trivial cofibrations between cofibrant objects to weak equivalences, and in view of Brown’s
lemma sends all weak equivalences between cofibrant objects to weak equivalences, so that
LKF exists.

Proposition 6. If F : M — N : G is a Quillen adjunction, both functors LXF : Ho(M) = Ho(N) :

REG exist and are adjoint functors.

Recall that a Quillen adjunction (‘morphism of model categories’) F' : M — N : G is a
Quillen equivalence (‘equivalence of model categories’) if and only if the (X, Y )-natural ad-
junction bijections

Homy(FX,Y) > f = f, € Homy(X, GY)

respect weak equivalences if X is cofibrant and Y is fibrant, i.e., f is a weak equivalence if

and only if f, is a weak equivalence.

Proposition 7. If F: M — N : G is a Quillen equivalence, then LXF : Ho(M) = Ho(N) : RXG

s an equivalence of categories.

A result similar to Propositionholds for the presentation (Ho (M), Ly) of (M[W 1], Ly).

If i : M. < M is the canonical inclusion functor, we have:

Proposition 8. If F' € Fun(M,N) sends weak equivalences between cofibrant objects

to weak equivalences, the total left derived functor
LEF =L¥(Lyo Foi)= (Lyoi)(Lyo Foi)c Fun(Hoxk (M), Hok(N))

exists and is unique up to unique natural isomorphism. More precisely (Subsection
, the K derived functor of F' comes with a natural transformation

e:LXFoLyoi= LyoFoi, (27)
the pair (LXF,¢) is universal and it is this universal pair that is unique.

We will also prove Proposition [§ in Subsection [£.3.4]
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4.3.2 F derived functors in model categories
We will use the presentation (Hok (M), Ly) of the localization (M[W 1], Ly).

Again, just as in general categories with distinguished families of morphisms, we can define
the total derived functor
LF € Fun(Hok (M), Hok(N))

using the faint universal property of Hogk(M). More precisely, let i : M, < M be as usual
the canonical inclusion functor of the full subcategory of cofibrant objects. If F' € Fun(M,N)
sends weak equivalences between cofibrant objects to weak equivalences, the composite of
F oi € Fun(M,N) and Ly € Fun(N,Hok (N)) sends weak equivalences to isomorphisms. Hence

it factors up to a natural isomorphism through M.[IW ~!] thus leading to a functor
LY (Lyo Foi) € Fun(M.[W 1], Hog(N)) .
Let
1 L¥(LyoFoi)oLy, = LyoFoi (28)

be this natural isomorphism. From Subsection 4.2] we know that the pair (L¥(Lyo F 0i),1) is
unique up to unique natural isomorphism, of course, provided the localization (Mc[W 1], Ly,)

exists.

However, in view of Corollary [l the pair (Hok(M), Ly o i) is a presentation of the
localization (M [W 1], Ly_) of the cofibration category M. [I5]. A similar result holds for
J : Mg <= M. Many authors denote these presentations by (Hok (M¢), Lu.) and (Hox (M¢), Lu,) ,

respectively.

The next proposition follows from what we just said.

Proposition 9. If F' € Fun(M,N) sends weak equivalences between cofibrant objects

to weak equivalences, the F total derived functor
LYF := LY (Lyo Foi) € Fun(Hok (M), Hok (N))
together with the natural isomorphism

1:LYFoLyoi= LyoFoi (29)

are unique up to unique natural isomorphism.
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Of course, if FF: M2 N : G is a Quillen adjunction, then F' respects trivial cofibrations,
hence satisfies the previous condition, so that L¥F : Hox (M) — Hok(N) exists. Dually, the
total right derived functor R¥G : Hox (N) — Hox (M) exists:

Proposition 10. If F : M2 N : G is a Quillen adjunction, the functor LY F is left adjoint
to the functor R¥G. The derived functors are an equivalence of categories if the Quillen

adjunction considered is a Quillen equivalence.

Remark 4. Notice that the left F derived functor L¥ F is defined by means of the inclusion
functor i : M. < M, whereas the right F derived functor RFG uses the inclusion functor

j : Mg < M. Therefore the distinction between left and right is important here (see Remark

3).

4.3.3 S derived functors in model categories

In model categories we have still another option for defining total derived functors. Indeed,
as mentioned before, the pair (Ho(M), ) associated to any model category M is not only a
presentation of the faint localization (M[Wy '], Ly) of M at its weak equivalences Wy, it is
also the strong localization (M[[Wy ']], Ly) . In view of Remark [2| the strong localization
(S[[Ws '], Ls) of a subcategory S of a model category M at the class W of S-morphisms that
belong to Wy, is given by the zigzag construction used for the strong localization (Ho(M), )
of M and it is denoted a bit abusively by (Ho(S),7s) . Thus we can fall back for instance on the
strong localization (Ho(Mc), v, ) of M¢ at the class Wy, of morphisms in Wy that act between

cofibrant objects. In the following we will denote both classes Wy, and Wy by W.

Hence, if F' € Fun(M, N) sends weak equivalences between cofibrant objects to weak equiva-
lences, then vy o Foi € Fun(Mc, Ho(N)) sends weak equivalences to isomorphisms and therefore

factors uniquely and on the nose through Ho(M,), i.e., there exists a unique functor
Ho(F') := Ho(w o F o1i) € Fun(Ho(M.),Ho(N)) ,

such that
Ho(F)oyy, =mwoFoi. (30)

There is an equivalence of categories Ho(M.) ~ Ho(M). The functor from Ho(M.) to Ho(M)
is the unique factorization Ho() := Ho(yy o ) through Ho(M) of yy 0 i € Fun(M¢,Ho(M)) . It is
well-known that the quasi-inverse of an equivalence of categories is unique up to isomorphism

(the quasi-inverse of an adjoint equivalence of categories is unique up to unique isomorphism).
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Definition 8. If F' € Fun(M,N) sends weak equivalences between cofibrant objects to
weak equivalences and if Z € Fun(Ho(M),Ho(M)) is a quasi-inverse of Ho(i), we define
the S total derived functor of F' by

LPF := Ho(F) o Z € Fun(Ho(M), Ho(N)) .

If 7 is another quasi-inverse, there is a natural isomorphism i : 7 = 7 and k := Ho(F) =i

is a natural isomorphism « : ]L%—F = L%F . Hence:

Proposition 11. If F' € Fun(M,N) sends weak equivalences between cofibrant objects to weak

equivalences, the total derived functor
LSF € Fun(Ho(M), Ho(N))

exists and is essentially unique, i.e., whatever quasi-inverse of Ho(i) we choose to compute

the derived functor we get a representative in the same isomorphism class.

Remark 5. Let us emphasize very clearly that LSF is defined up to a natural isomorphism:

LSF stands for any of the L3F, where T is a quasi-inverse of Ho(i) .

For instance, every cofibrant F-replacement functor ) : M — M. induces a quasi-inverse of
Ho(i) . Indeed, as we interpret @ here as a functor to M. and not to M as before in this text,

the natural weak equivalence ¢ : Q = idy mentioned in Subsection can be written
q:i0Q = idy (31)

and it restricts to a natural weak equivalence ¢ xi : Q o = idy, . It is now easy to see that
the unique factorization Ho(Q) := Ho(y, o Q) : Ho(M) — Ho(M.) is a quasi-inverse of Ho(7) .

Hence:

Proposition 12. If F' € Fun(M,N) sends weak equivalences between cofibrant objects to weak
equivalences and if @ € Fun(M,M.) is a cofibrant F-replacement functor, the total derived
functor of F is given by

LSF = L5 F = Ho(F) o Ho(Q) . (32)

Moreover, we have the equality

LSFomw=mwoFoQ. (33)
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Indeed, the unique factorization Ho(Q) satisfies
Ho(Q) o =m0 Q (34)

and the previous equality follows from , and .

Let us mention that since the RHS of can be written yyo FoioQ, we get from ,
and a natural transformation

LSF o= wokF . (35)

A similar observation can be deduced in the case of F derived functors from the whiskering
of the natural isomorphism ¢ in with @ :

z*Q:LFFo[,MoioQ%ENoFoioQ.
Indeed, in view of we have a natural isomorphism
LFFOEMOiOQiLFFOEM

and a natural transformation
LyoFoio@Q = LyoF,

and so get a natural transformation
LYFoLly= LyoF . (36)
The interesting equations are and which are stronger than the S and F counterparts

and of the K equation .

In order to compute total derived functors ome usually pre-composes the original functor

with a cofibrant F-replacement functor @ .

Indeed, the functor 4y o F'o ) € Fun(M,Ho(N)) sends weak equivalences to isomorphisms,

so that there exists a unique functor
Ho(F o Q) := Ho(w o F' o Q) € Fun(Ho(M),Ho(N)) , (37)

such that
Ho(FoQ)ow=mwoFoQ. (38)

In view of Equation in Proposition [12| we get:
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Proposition 13. Under the assumptions of Proposition[13, the total derived functor of F is
given by
LSF = L3F = Ho(F) o Ho(Q) = Ho(F 0 Q) . (39)

Remark 6. The results on S derived functors of Quillen functors are the same as in the case

of K and F derived functors.

4.3.4 Comparison theorems

Above we used the faint localization (Hox(M),Ly) of M at W and considered K and F
derived functors, and we used the strong localization (Ho(M),~y) of M at W and looked at K

and S derived functors.

We will show that in both cases the two derived functors under consideration are equal,

and begin with the following refinement of Proposition

Theorem 4. If ' € Fun(M,N) sends weak equivalences between cofibrant objects to weak

equivalences, the Kan extension derived functor
LEF =L¥(Lyo Foi)= (Lyoi)s(Lyo Foi) € Fun(Hok (M), Hok (N))

exists and is given by
LYF=LY(LyoFoi),

where i : M¢ <> M s the canonical inclusion.

The usually different K and F derived functors coincide here since in view of Corollary

the pair (Hog (M), Ly 0 %) is not only a faint but a weak localization of M. at W:

Proof. From Proposition |§| it follows that LY F € Fun(Hox (M), Hok (N)) satisfies
Z:LFFOEMOiiﬁNOFOi.

Hence LXF = L¥ F if for any functor G € Fun(Hok (M), Hok (N)) and any natural transforma-
tion

E:GoLyoi=LyoFoi,

there is a unique natural transformation ¢ : G = LY F such that

10(C*(Lyoi))=¢.
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However, as (Hog (M), Ly o i) is a weak localization, the functor — o Ly o ¢ is fully faithful, so

that the natural transformation
z_loﬁzGoﬁMoi:HLFFoﬁmoi
reads ¢ * (Ly o) for a unique ¢ : G = LYF. O

We finally prove Proposition More precisely, we show that if F' € Fun(M,N) sends
weak equivalences between cofibrant objects to weak equivalences, the Kan extension derived
functor

L F € Fun(Ho(M), Ho(N))

exists and is given by LgF = Ho(F o Q) and by Ho(F o C), where Q and C are defined as

usual.

Proof of Proposition[5 Let C be a local cofibrant F-replacement as in Subsection and
recall (see proof of Theorem (1)) that C is an endofunctor of M up to left homotopy, in the
sense that its value at an M-morphism f : X — Y is well-defined only up to left homotopy

and therefore it respects compositions and identities only up to left homotopy. Nevertheless
C:=yoFol

is a well-defined functor from M to Ho(N). Indeed, let 77 := C’lf and Ty = C’gf be two
different liftings. The fact that these M-morphisms from A := CX € M, to B := CY € M, are
left homotopic means that 73 11Ty : AIl A — B factors through a cylinder object Cyl(A),

i.e., means that there is a factorization
woip:=woiogp =idy and woiy:=woiogpy =1idy, (40)
where ¢1,¢9 : A — AITA,i: AITA »— Cyl(A) and w : Cyl(A) = A, as well as a factorization
Hoii=T1 and Hoiy, =Ty, (41)

where H : Cyl(A) — B (see proof of Theorem . As the cylinder of a cofibrant object is
cofibrant (see proof of Corollary [1), we get from w o4 = ids that i1 : A — Cyl(A) is a
weak equivalence between cofibrant objects. If we apply 7y o F' € Fun(M, Ho(N)) to and

remember that yy(F'(i1)) is an isomorphism, we see that yy(F(w)) is the inverse isomorphism
and that w(F(i1)) = yw(F (i2)) . Hence it follows from that

W(F(CLf)) = w(F (1)) = w(F(T2)) = w(F(C2f)) ,
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so that Cf := w(F(Cf)) is well-defined. Moreover it is now easy to check that C respects
compositions and identities and is therefore a genuine functor C € Fun(M,Ho(N)). Finally the
diagram allow us to see that C'f is a weak equivalence between cofibrant objects if f is
a weak equivalence, so that C sends weak equivalences to isomorphisms and factors uniquely

through Ho(M) : there is a unique functor Ho(C) or
Ho(F o C)) € Fun(Ho(M),Ho(N)) , (42)

such that
Ho(FoC)oy=mwoFoC. (43)

From Equations and we know that if @ is a coftbrant F-replacement functor, the
functor
JL%F = Ho(F o Q) € Fun(Ho(M),Ho(N)) (44)

satisfies the commutation relation
Ho(FoQ)ow=mwoFoQ. (45)

In the following Q denotes both, the replacement C' and the replacement Q . We now show
that Ho(F) := Ho(F o Q) is the right Kan extension LXF of yy o F' along .

First we construct a natural transformation
e:Ho(F)omw = mwoF,
i.e., a family ex , X € M, of Ho(N)-maps
ex : F(QX) — F(X)
that is natural in X . Denoting the trivial fibration
cX:C‘X—N»X or qX:QX:»X

by
px QX > X,
we get a Ho(N)-map
W(F(px)) : F(QX) — F(X)

and set
ex = m(F(px)) - (46)
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From the commutation of the lower triangle in and the naturality of ¢ it follows that

pyoQf =fopx, (47)
so that the transformation € is natural.

It remains to prove that the pair (Ho(F'),e) is universal. Let H € Fun(Ho(M),Ho(N)) and
n: Hor = o F be another such pair. We will show that there is a unique natural
transformation x : H = Ho(F') such that n =co (k* ).

In order to define X-natural Ho(N)-maps
kx : H(X) — Ho(F)(X), where Ho(F)(X)=F(QX)
such that nx = w(F(¢x)) o kx , we consider the X-natural Ho(N)-maps
nx : H(X) = F(X)
and their naturality square for px : QX — X :

nox

H(QX) P(QX)
Homlex)| ™7 | (Plex))
H(X) " p(x)

(48)

Since px is a weak equivalence, the map H (7 (¢x)) is an isomorphism and we can define kx
by
kx = 1nox o (H(m(ex))) ™" - (49)

Of course, since the square commutes, the lower triangle also commutes, which means that

17 =¢co (k*) as already mentioned above.

In view of Lemma [l the family of Ho(N)-maps defines a natural transformation

k: H = Ho(F) if and only if it defines a natural transformation
k:Ho~yy=Ho(F)o~y, where Ho(F)oyw=ywoFoQ.

Let f : X — Y be an M-morphism. If we apply the naturality of the transformation 7 :
H o~y = 7y o F to the morphism Qf : QX — QY , we get

Ho(F)(yf) o ix = w(F(Qf)) onox o (H(m(ex)) ™" = noy o H(w(Qf)) o (H(m(ex)) "
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Since the commutation relation gives

H(m(py)) o H(m(Qf)) = H(mf) o H(m(px))

we finally find that
Ho(F)(yw/f) o kx = ky o H(wf) - (50)

We still have to show that x is unique. If k : H = Ho(F') such that nx = ex o kx =
Ww(F(px))orx exists and if X € M., then y(F (¢x)) is an isomorphism and kx is necessarily
given by

kx = (w(F(px)) " onx =nox o (H(m(px))) " (51)
If X ¢ M., Equation applied to

(f: X —=Y)=(px: 90X — X)
gives
rx = w(F(Qpx)) o rox o (H(m(px)) ™.
Equation applied to QX leads to

rx = mw(F(Qpx)) o noox) © (H(m(vax)) ™t o (H(m(px)) ™ (52)

and the naturality equation of i applied to
(f: X =Y)=(Qvx :9(QX) — 9X)

shows that
W(F(Qpx)) o ngax) = nox o H(m(Qypx)) - (53)

From applied to
(f: X =Y)=(px: 09X = X)

it follows that
H(w(px)) o Hwm(Qex)) = H(m(px)) o H(m(pox)) ,

so that
H(m(Qex)) = H(mlpax)) - (54)

If we combine , and , we finally get that
kx = nox © (H(m(ex))) ™",

which proves that x is unique. O
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The previous proof allows us to complete Proposition [5| as follows:

Theorem 5. If F € Fun(M,N) sends weak equivalences between cofibrant objects to weak

equivalences, the Kan extension derived functor
LXF € Fun(Ho(M), Ho(N))
exists and is given by Ho(F o C’) and by
L5F =Ho(FoQ),

where C is a local cofibrant F-replacement and Q is a cofibrant F-replacement functor. This

means that
LXF =Ho(FoC) =L3F = Ho(F o Q) (55)
and implies that
LKFO’YszNoFoC':L%FOfyM:nyoFoQ. (56)
If we denote
i:LSF S L3F = Ho(F 0 Q) (57)

the natural transformation in Proposition Equation and Equation imply
that for every X € M, the value at X = X € Ho(M) of the derived functor is

LSF(x) £ LHF(X) = LXF(X) = w(F(QX)) = m(F(CX)) = F(QX) = F(CX) .

Further, for every f € Homy(X,Y), the value at yuf € Homy,w) (X, Y") of the derived functor

1S
LSF (wf) = LXF(wf) = w(F(Qf)) = w(F(C))
and
LF(f) = iy! o LF(ef) oix -

5 Future directions

Since the discovery of general relativity, the prevailing tendency in mathematics has again
been to favor coordinate-independent approaches to problems, as was inevitable in the pre-
Descartes era. In particular, the Vinogradov school proposed a coordinate-free cohomological

analysis of partial differential equations (PDE-s) [23], an endeavor also promoted in the setting
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of algebraic geometry by Beilinson and Drinfeld [1]. Other authors, e.g., Costello and Gwilliam
[4], Schreiber... have investigated a covariant Batalin-Vilkovisky (BV) formalism for gauge
field theories. In a series of papers [5] 6, [I8], Di Brino and two of the authors of the present
article have proposed a generalization to differential operators D of homotopical algebraic
geometry in the sense of [2I), 22] as a suitable framework for the moduli space of solutions
of a system of PDE-s modulo symmetries. Indeed, the new geometry in particular provides
a convenient method of encoding total derivatives and leads to a covariant description of the
classical BV complex which arises as a specific case of general constructions. Further evidence

for this standpoint appears in [16] [17].

The mathematically rigorous implementation of the previous ideas requires that the tu-
ple (DGDM,DGDM, DGDA, 7, P) be a homotopical algebraic geometric context (HAGC) in the
sense of [22]. Here DGDM is the symmetric monoidal model category of differential graded
D-modules, the subcategory DGDA is the model category of differential graded D-algebras, 7
is a suitable model pre-topology on the opposite category of DGDA and P is a compatible class
of morphisms. We expect the proof of the HAGC theorem to be based on a generalization
of the concept of homotopy fiber sequence and of Puppe’s long exact sequence. In this de-
rived setting, different types of derived functors on model categories are used and need to be
compared. We are convinced that the present paper enables us to prove the HAGC theorem
and thus to take an important step towards the full implementation of the program described

above.
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