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Abstract

Patient-specific surgical simulations require the patient-specific identification of the constitutive parameters. The
sparsity of the experimental data and the substantial noise in the data (e.g., recovered during surgery) cause
considerable uncertainty in the identification. In this exploratory work, parameter uncertainty for incompressible
hyperelasticity, often used for soft tissues, is addressed by a probabilistic identification approach based on Bayesian
inference. Our study particularly focuses on the uncertainty of the model: we investigate how the identified
uncertainties of the constitutive parameters behave when different forms of model uncertainty are considered. The
model uncertainty formulations range from uninformative ones to more accurate ones that incorporate more detailed
extensions of incompressible hyperelasticity. The study shows that incorporating model uncertainty may improve the
results, but this is not guaranteed.

Impact Statement

Bayesian inference is increasingly discussed to identify the constitutive models’ parameters of soft tissue.
However, sometimes the obtained parameters cannot predict the behavior of soft tissues. Therefore, in this work,
the effect of incorporating “Model uncertainty” to reduce the mismatch between reality and model prediction has
been explored.

1. Introduction

Constitutive models of soft tissues are crucial for computer-aided surgery, surgical training simulators,
functional tissue engineering, and traumatic brain injury simulations (Humphrey, 2003; Madireddy et al.,
2015; Hauseux etal., 2018; Bui et al., 2019; Duprez et al., 2020; Magliulo et al., 2020). Although several
sophisticated constitutive models for soft tissues were proposed (Courtney et al., 2006; Guo et al., 2006),
soft tissues are still often described using incompressible hyperelasticity. The simplicity of incompress-
ible hyperelasticity has the advantage that few parameters need to be identified. The soft tissue models in
this contribution are limited to incompressible hyperelasticity.
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Parameter values of a soft tissue model identified during surgery may not be accurate, because the
experimental data are sparse and affected by a substantial amount of measurement noise (due to the
limitations of the type of observations and the sampling frequency of the observations). The uncertainties
of the parameter values are, therefore, important to consider. Although conventional probabilistic
identification frameworks can identify parameter uncertainties, they are traditionally not formulated to
account for the fact that the model itself'is limited to describe the data. To overcome this deficiency, model
uncertainty can be incorporated in probabilistic identification frameworks.

Model uncertainty can be defined as the uncertainty due to the inability of a model to describe
observations of the real world. Model uncertainty comes into play if a discrepancy between the model
and the experimental data is present that cannot be explained by the noise in the data. A well-accepted
approach to include the uncertainty of models in probabilistic identification settings was presented by
Kennedy and O’Hagan (KOH) (Kennedy and O’Hagan, 2001). This “KOH” framework was, for
instance, employed in (Arhonditsis et al., 2008; Higdon et al., 2008; McFarland and Mahadevan, 2008;
Sankararaman et al., 2011; Arendt et al., 2012).

In the present work, we develop a KOH framework (able to treat both the uncertainty of the data and the
uncertainty of the model) to identify uncertainties of the parameters of incompressible hyperelasticity. The
aim is to investigate how different formulations of model uncertainty influence the identified parameter
uncertainties. For this purpose, different model uncertainty formulations have been considered. These
formulations range from uninformative to probabilistically more advanced ones, and from input-inde-
pendent forms to formulations based on more advanced incompressible hyperelasticity. In this contribu-
tion, we consider synthetic data, so that we can make a quantitative comparison with the reference input.
As this study is exploratory, we limit ourselves to tensile and compression data for which the model
responses can be described by closed-form expressions.

1.1. Bayesian updating and its application in solid mechanics

Parameter identification is still largely performed in deterministic settings such as the method of least
squares (Loh and Das, 1986; Wu and Lee, 20006; Ortiz et al., 2011; Beex, 2019; Loew et al., 2020). The
result of a deterministic identification procedure, such as least squares, is a single set of parameter values.
This set is the most probable set of parameter values, assuming, for instance, that no discrepancy between
model and measurements exists and that the noise is symmetrically distributed.

Probabilistic identification approaches aim to identify not only the most probable set of parameter
values, but all sets of parameter values that may have produced the measured data. In other words, they
aim to determine the probability of each set of parameter values. This is accomplished by identifying a
probability density function (PDF) in terms of the model parameters. Instead of identifying material
parameters, a PDF must be evaluated.

One probabilistic identification approach is Bayesian inference (BI), which is based on Bayes’
theorem. In BI, an initial PDF in terms of the constitutive parameters must be defined by the user. This
initial PDF incorporates all a priori knowledge. This a priori knowledge can be relatively uninformative,
for example, by stating that Young’s modulus cannot be negative, but it can also be more informative. For
instance, if one knows that a cortical bone is considered, Young’s modulus is probably between 15 and
25 GPa.

In BI, the initial PDF (i.e., the prior) is updated by inferring the experimental data. This commonly
entails that the noise distribution must be identified beforehand (Rappel et al., 2020). However, the
parameters of the noise distribution may also be treated as parameters that are to be simultaneously
identified with the model parameters.

The final PDF that results from BI is called the posterior and is often so complex that the
associated cumulative distribution function cannot be analytically expressed—entailing that sets of
constitutive parameters cannot be randomly generated from the posterior. In those cases, the
posterior is typically explored by seeding numerous samples and evaluating the PDF for each
sample. Several numerical frameworks have been proposed in the past to limit the number of
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necessary samples (in order to decrease the computational cost of the numerical sampling). Well-
known examples are Markov chain Monte Carlo techniques (Higdon et al., 2002; Wang and Zabaras,
2004; Risholm et al., 2013; Lan et al., 2016) and hybrid Monte Carlo (HMC) methods (Beskos et al.,
2013; Betancourt, 2017).

One of the earlier works in which BI is exploited to identify parameter uncertainties in computational
mechanics is that of Isenberg (Isenberg, 1979), in which it was used to identify elastic parameters in 1979.
In other works, the framework was employed to identify elastic material parameters based on dynamic
responses (Alvin, 1997; Beck and Katafygiotis, 1998; Marwala and Sibisi, 2005; Mohamedou et al.,
2019). BI was also used to identify the elastic constants of composites (Lai and Ip, 1996; Daghia et al.,
2007; Nichols et al., 2010; Gogu et al., 2013). Spatially varying elastic parameters were, furthermore,
identified using BI by Koutsourelakis (2012) and Hussein et al. (2019). The Bayesian paradigm was also
used for the identification of parameter uncertainties of constitutive models (Rappel et al., 2018; Rappel
et al., 2019; Rappel and Beex, 2019; Teferra and Brewick, 2019).

Two works have previously applied BI for the parameter identification of hyperelastic models
(Madireddy et al., 2015; Madireddy et al., 2016). Madireddy et al. (2015) considered three hyperelastic
models for soft tissues and investigated the effect of the uncertainty on a quantity of interest. On the other
hand, Ritto and Nunes (2015) exploited BI not only to identify parameter distributions, but also to select
which hyperelastic model is most suited.

The difference between our contribution and the works of Madireddy et al. (2015) and Ritto and Nunes
is that we aim to investigate how the incorporation of different forms of model uncertainty affects the
identified material parameter distributions. The reason that model uncertainty is relevant is that although
probabilistic identification approaches identify the probability of all (meaningful) sets of material
parameters (instead of only the most probable set), they are commonly based on the same assumption
as deterministic identification approaches: the model is able to describe the observed data. Hence, even
probabilistic identification approaches must be extended in order to treat the possible uncertainty of the
model.

The structure of the study is as follows: in Section 2, we summarize the employed material models. In
Section 3, we discuss BI in more detail, as well as the different types of model uncertainty that are
investigated. Afterward, the results are presented, and finally, the study is closed with a conclusion.

2. Material Models

In the present work, BI is used to identify the parameters of arguably the simplest incompressible
hyperelastic model: the Neo-Hookean model. As the part of the Mooney—Rivlin model and the Yeoh
model that are not present in Neo-Hookean hyperelasticity are later considered as forms of model
uncertainty, we also discuss them.

2.1. A family of incompressible hyperelasticity models

The mapping of the location of a material point from the reference configuration, X, to the location in the
deformed configuration, x, is described by x = y(X). The deformation gradient tensor is defined as F = %.
The eigenvalues of the deformation gradient tensor are defined as principal stretches A;,k=1,2,3. The
right Cauchy—Green deformation tensor (Green’s deformation tensor) and its three invariants can then be
computed as follows:

C=F'F, (M
1,(C) = trace(C), @)
1
1,(C) 25(11 (C)? —trace(Cz)), 3

Downloaded from https://www.cambridge.org/core. 27 Jul 2021 at 05:50:11, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

€9-4 M. Zeraatpisheh et al.

Iy = det(C). @)

One family of incompressible hyperelastic models is given by the following set of strain energy density
functions:

> Gyl =3) (1, -3), )
i,j=0

where C;; denote material parameters and Cop = OPa. The Neo-Hookean material model is obtained by
setting n=1, Co; =0, and Cy; =0, so that only one parameter, C;(, remains. The standard Mooney—
Rivlin material model is also obtained by setting n =1, but C¢; # 0, so that two material parameters
govern its behavior: Cjp and Cp;. The Yeoh model is obtained by setting n=3 and
Cyi=Cpo=Cp3=C;1 =C13=C13=C3 = Cypy =Cy3 = C33 = C3, = C33 = 0Pa, so that three parame-
ters remain: Cq, Cag, and Csg.

2.2. Expressions for the measured stress during tensile tests

By differentiating the Neo-Hookean strain energy density with respect to the deformation gradient tensor
and converting the resulting stress tensor (the first Piola—Kirchhoff stress tensor) to the Cauchy stress
tensor, the nonzero component of the Cauchy stress in uniaxial tension/compression can be expressed as
follows:

O Cauchy — 2CIO (/12 - /171 ) P (6)

where A denotes principal stretch in the direction in which the tension/compression is applied. The
engineering stress that is observed in a uniaxial experiment then reads:

0=2Cp(A—272). ™

For the standard Mooney—Rivlin model, applying the same procedure as for the Neo-Hookean model
results in the following expression for the nonzero component of the Cauchy stress during a tension/
compression experiment:

OCauchy = 2C10 (/12 */1_]) +2Co; (/17/1_2), (8)
which results in the following engineering stress that is actually observed:
o=2C1(A-1")+2Co (1-27). )

Using the same procedure for the Yeoh model, we arrive at the following expression for the nonzero
Cauchy stress in case of uniaxial extension/compression:

Ocauchy =2C10 (A7 —A71) +4Co0 (2* =322 +2+3471 —247%) +

(10)

6C30 (20— 62 +37 +922 — 64— 927" + 12472 —4)77),

resulting in the following engineering stress observable during a uniaxial tensile test:
0=2C1(A—1"2) +4C (2 =3A+1+322-227%)+ an

6C30 (2> — 627 +312 +92—6—927>+ 12077 —417*).

It should be noted that in real application of using Bayesian paradigm, forward simulation are compu-
tationally expensive; therefore, data-driven model can be used to replace complex forward simulations
(Bigoni et al., 2020; Mendizabal et al., 2020; however, the forward simulations are out of scope of the
current contribution, as it is a subdomain in its own right).

3. Bayesian Parameter Identification

Bayes’ theorem provides a consistent way to quantify the probability of an event by incorporating both

one’s prior knowledge (described by a PDF, the prior) and observed measurements (also described by a
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PDF, the likelihood function). Suppose d’ = [di,....d,,] denotes the n, measurements, and o7 =
[6) Lsenes 9,1p] the n,, parameters (which are to be identified). Bayes’ theorem can then be written as follows:

R T

(12)
where P(8) denotes the prior distribution, the PDF that quantifies one’s assumed knowledge about
the parameters. As the prior distribution can be constructed before the measurements are made, it is
independent of the measurements. P(d|f) denotes the likelihood function and describes the prob-
ability of measurements d, given parameters 0. P(6|d) denotes the posterior distribution that
describes the plausibility of parameters 0, given measurements d. The posterior is our PDF of
interest: it quantifies the probability of each set of parameter values. P(d) is called the evidence, and
since it is independent of the model parameters (i.e., random variables), 6, it can be replaced by a
positive scalar (a€R™):
p(ola) ="OPEI0) a3)
a
Considering that the statistical summaries of the posterior distribution (e.g., the mean, the covariance
matrix, and the maximum-a-posteriori estimate) are only affected by the shape of the posterior distribution
and not by its magnitude, if the posterior is numerically sampled (which is the case here). Therefore, the
following expression can be used instead of Equation (13) (Rappel et al., 2020):

P(0ld) « P(0)P(d|0). (14)

To construct the likelihood function, we directly incorporate the fact that the discrepancy between the
measured stress (¢”") and the stress predicted by the model (o) is not only caused by a statistical error
governed by the experimental equipment (Qpise ), but also by an inability of the model to describe the
measurements. The term describing this inability, that is, the model uncertainty, is denoted by M and
depends on its own parameters, 8,,. Assuming an additive decomposition of the model and the model
uncertainty, we write the following expression for a stress measurement:

o" = U(A,Q) +M(QM) + Quoises (15)

wherever A denotes the input (the principal stretch in the direction in which tension is applied) for which
the output (¢™) was measured. o denotes the stress-principle stretch relation for Neo-Hookean hyper-
elasticity during uniaxial tension/compression (Equation (7)). Hence, the likelihood function for a single
measurement now reads:

P(di|Q’QM):Pnoise(di_o-(/lim)_M(QM))' (16)
As we know that:
1 -Q2.
Pnoise Qnoise = oIse s 17
( ) Znoise P ( 2Zﬁoise ) ( )

where we ignored /2 for the normalization, because the scaling in Equation (17) makes this constant
value irrelevant. We will also ignore this for all following likelihood functions.

In the present work, like in many other studies, the noise distribution is considered to be Gaussian with
a zero mean and a known variance, Zﬁoise. Often the parameters of the model uncertainty, 8,,, are unknown
and should be identified alongside the model parameters.

Considering Equations (15) and (16), the posterior distribution for one measurement reads:

P(0,0yd;) o< P(Q)P(Oy) Proise (di — 0(2:,0) — M (6y)), (18)

where P(8,,) and P(8) denote the prior for the model uncertainty parameters and the prior for the model
parameters, respectively. It should be noted that in Equation (18), the model uncertainty parameters and
the model parameters are assumed to be independent.
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The final likelihood function for n,, independent measurements is obtained by multiplying the
likelihood functions of each measurement:
P(d|0,0y) = | [ Proise(d:i — (2, 0) — M(6,)).- (19)
i=1

4. Model Uncertainty

In the previous section, we constructed the general expression of a likelihood function (and posterior)
including an unspecified model uncertainty. In this section, we present the general expressions of the
posteriors for different types of model uncertainty.

Six model uncertainty formulations are considered:

1. A random variable associated with a normal distribution with a constant mean and variance;

2. A random variable associated with a normal distribution with a linear input-dependent (stretch-
dependent) mean;

A random variable associated with a normal distribution with a quadratic input-dependent mean;
A random variable associated with the second term of Mooney—Rivlin hyperelasticity;

A random variable associated with the last two terms of Yeoh hyperelasticity;

A Gaussian process (GP) with a stationary covariance function.

A

4.1. Normal distribution with constant mean

In the first scenario, the model uncertainty is expressed as a normal distribution with mean m and variance
2 (ie., 0, = [m,Z]T). Hence, these two parameters should be identified alongside the model parameters.
The likelihood distribution for a single measurement, d; =" (Equation (18)), can now be written as
follows:

1 —(d; —(24,0) —m)?
P(d;]6.0)) = > S P < ( 2(22( _;)22> ) ) (20)
z“noise+2

noise

4.2. Normal distribution with a linear mean
The second case of model uncertainty is the same as the first case, except that the mean is linearly

dependent on the input. To this end, the likelihood function for a single measurement, d; = 7", is written as
follows:

—<di—o<zl~,g>—mo+mm>2>_ e

1
P(d;|9,0,,) = exp (
T 2(x2 32
z“goise +22 ( + )

noise

Clearly, 0,, = [mo,m;,2]".

4.3. Normal distribution with a quadratic mean

In the next case, the same model uncertainty is again considered, yet the expression of the mean is again
changed: a quadratic expression is used, resulting in the following likelihood function for a single
measurement:

—(di— 01, 0) — mo —m —mzz,?)z) | o)

2(2 e +2%)

noise

1
P(d;|0.0,) = exp (
X2 432

noise

Therefore, 0,, = [mo,ml,mz,Z]T.
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4.4. Mooney—Rivlin hyperelasticity

In the fourth case, model uncertainty is chosen in the same way as before, except that the mean
behaves according to the second term of standard Mooney—Rivlin hyperelasticity. As the stress—stretch
relation for standard Mooney—Rivlin hyperelasticity in a tensile/compression experiment is expressed
according to Equation (9), the likelihood function for a single measurement is now expressed as
follows:

—(di—0(2,0) = 2Co (1 %3))2>, 23)

1
P(d1|Q’QM) = eXp < B )
Zﬁoise + 22 2 (Enoise +Z )

where we repeat for clarity that the expression for ¢(/4;,0) is given in Equation (7). In this case,
0y =[Co1.5]".

4.5. Yeoh model

The fifth case is the same as the previous cases, except that the mean is now taken as the last two terms of
Yeoh hyperelasticity. This type of model uncertainty is of course chosen here, because we know that the
synthetic data are generated using Yeoh hyperelasticity, but also in a real-world scenario, it makes sense to
use a more advanced model than Neo-Hookean hyperelasticity (or Mooney—Rivlin hyperelasticity for that
matter as it gives almost the same response for uniaxial tension as Neo-Hookean hyperelasticity). This
yields the following likelihood function for a single measurement:

1 —(di—0(%,0) —2[2C20 (4] =34+ 14342~ 227 + ...
P(di|0,0y) = - zeXP< 2(Re +22)
z:noise +X o (24)
e+ 3Cs0+ (B =623 4322490 —6— 9272412273 —4374]))?
X
P 2 (Erzloisc + 22)

In this case, 8,, = [C20, C30,Z].

4.6. Gaussian process

In the last case, we consider model uncertainty in the form of a GP with a zero mean. GP provides a
solution to modeling arbitrary function by letting the data choose the complexity of the response. This
form of model uncertainty is inherently different from the previous ones, because it involves a correlation
between all the inputs. Consequently, the final likelihood function cannot be formulated as a multipli-
cation of different likelihood functions, each associated with a single measurement (i.e., Equation (20)
cannot be used). Instead, the final likelihood function must directly be expressed for all n,, measurements.
The final likelihood function reads:

P(d|6.6,) Ld—o(ro)" (Z+ Sl d—a(1.0))), (25)

1
=————¢exp| —
T |§ + 2noiseg P ( 2

where |*| denotes the determinant of a matrix, / an n,, x n,, diagonal identity matrix, and X the n,, X n,,
(symmetric) covariance matrix associated with the GP, of which the component at row i, column j is

formulated as follows:
2
—(hi—2;
(g) —Fexp <<2’)> . (26)
=/ 2y

Two model uncertainty parameters are, therefore, associated with the GP: 8,, = [c, 1//]T.
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5. Results

In this section, the results for the different forms of model uncertainty are compared to each other. The
measurement data are artificially generated (it is supposed that experimental data are not correlated) with
the Yeoh model with C1g = 1.2MPA, C9 = —0.057MPA, and C3y = 0.004MPA. The measurement noise
is generated using a normal distribution with a zero-mean variance of X,qse = 0.5SMPA. The model of
interest is Neo-Hookean hyperelasticity, entailing that we are interested in parameter Cj.

In the diagrams that follow below, both the posterior predictive (PP) check and the highest-posterior
density (HPD; also known as the credible interval) are presented. The PP check generates “new
observations,” although they are presented as bands in the diagrams below. The new observations can
be used to interpolate or extrapolate the model or to investigate whether or not the model is able to emulate
the (old) measurements that were used to identify its parameters and uncertainties. The former is
performed (i.e., assessing if the old measurements are within the same band as the new measurements).

In order to generate the new observations, the PP check uses the posterior distribution and the noise
distribution (i.e., the likelihood function) as follows:

p(ala) = [ [ p(di0.00)P.0y01d040, @)

where d denotes a new measurement.

To work out the integral in Equation (27), one can first take a sample for 0 and 8, from posterior
distribution P(8|d), and then use this sample in the likelihood function to obtain the new measurement, d.

The HPD interval is a commonly used method to explain the spread of the posterior distribution. The
smallest interval containing an X percent of the probability density is called the X% HPD. In the present
contribution, the 95% HPD is used to compare the influence of the different forms of model uncertainty.

It should be noted that in all parts of this study, an uninformative prior distribution (i.e., a uniform
distribution) with a wide interval is used, which implies that the posterior is effectively governed by the
inference of the experimental data.

It is also worth to note that in order to obtain the results of this section, all posteriors are numerically
sampled. Instead of a random walk sampler, such as the Metropolis—Hastings algorithm, an HMC sampler
is used. Where random walk samplers only require posterior evaluations, HMC samplers also require the
gradient of the posterior. Thanks to the gradient information, HMC samplers need less samples to evaluate
posteriors than random walk samplers, entailing that HMC samplers are an order of magnitude faster than
random walk samplers (Beskos et al., 2013; Betancourt, 2017).

5.1. Polynomial model uncertainty

Figure la presents the PP check for Neo-Hookean hyperelasticity without any model uncertainty. It is
clear that the previous measurements are not contained in the bands formed by the new measurements.
This stems from the fact that the synthetic data are generated from Yeoh hyperelasticity. Figure 1b, c
makes clear that incorporating model uncertainty as a normal distribution with a constant mean or a linear
input-dependent mean hardly changes the results. For the linear input-dependent mean, this can be
explained by the fact that the Neo-Hookean response itself also contains a linear dependency. If model
uncertainty consists of a normal distribution with a quadratic input-dependent mean, the results are
substantially better (Figure 1d). This can be explained by the fact that the quadratic dependency of the
model uncertainty is not present in the Neo-Hookean response.

We believe that it is interesting to reveal how much of the “work” to generate the new measurements
(according to the PP check) is performed by the model and how much by the model uncertainty. To this
end, Figure 2 presents the PP check by considering that only the model is used to generate the new
observations. In other words, even though the probabilistic identification is performed using model
uncertainty, Equation (27) is replaced by:

P(a.d)= [ p(d6)rieidas. (28)
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151 « Data * 151 + Data *
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(a) no model uncertainty. (b) constant mean.
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(¢) linear mean. (d) quadratic mean.

Figure 1. posterior predictive check for polynomial model uncertainty.

It is easy to see that in case of a constant and a linear input-dependent mean, the model uncertainty
hardly performs any work. In case of the quadratic input-dependent mean, on the other hand, the model
uncertainty can substantially improve the prediction.

5.2. Hyperelastic model uncertainty

In this part, we consider model uncertainty as a normal distribution with an input-dependent mean
where the input-dependency follows the response of more complex hyperelastic models than Neo-
Hookean hyperelasticity. We consider the mean to behave according to the parts of the Mooney—
Rivlin response and the Yeoh response that are not present in the Neo-Hookean response. Figure 3b
shows that the PP checks of Mooney—Rivlin model uncertainty and without model uncertainty are
practically the same. This can be explained by the fact that the uniaxial tensile/compression
responses of Neo-Hookean and Mooney—Rivlin hyperelasticity are similar. Consequently, a mean
according to the part of the Mooney—Rivlin response that is not present in the Neo-Hookean
response hardly improves the prediction. As the part of the Yeoh response for uniaxial loading that
is not present in the Neo-Hookean response is substantially different from the Neo-Hookean
response, Yeoh model uncertainty relatively accurately describes the mismatch between model
and measured data (Figure 3c).

In order to again reveal to which amount the new measurements of the PP check are due to the work of
the model and the model uncertainty, we present the PP check for the model alone (i.e., according to
Equation (28)). Figure 4 presents these results. Figure 4 shows that the improvement in Figure 3¢ is due to
the effect of model uncertainty terms and not the model itself.
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1591 + Dpata * 151 « pata *
—— Mean outcome * Mean outcome *
95% HPD 95% HPD
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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(a) no model uncertainty. (b) constant mean.
1591 « Dpata * 151 « Dpata *
—— Mean outcome * Mean outcome
95% HPD . 95% HPD
10 A 10 A
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Figure 2. Posterior prediction for polynomial model uncertainty functions without work done by model
uncertainty.

5.3. Gaussian process as model uncertainty

As the last case, model uncertainty is considered as a GP. In this model, no a priori shape (linear, quadratic,
or etc.) imposed on the model uncertainty, and we let the GP to decide its shape. Figure 5 shows the PP for
the GP model uncertainty. One can see that the results are completely in line with the measured data. In
addition, similar to previous cases, Figure 6 indicates that the performance of Neo-Hookean hyperelas-
ticity itself without considering the GP parameters are poor.

5.4. Marginal posteriors

Model uncertainty is often used to achieve a better fit between the PP check and the old measurements,
assuming one is solely interested in the responses of Figures 1, 3, and 5. In computational (bio)mechanics,
the aim is to use model uncertainty to make predictions for other models than the ones used to identify the
parameter uncertainties (e.g., to use the identified parameter uncertainty for finite element simulations). In
other words, we aim to employ model uncertainty not to make the PP check better fit the old measure-
ments, but to ensure that the uncertainty of Cy is better identified.

From this perspective, the aforementioned PP checks (Figures 1, 3, and 5) are not the main interest
(which is why we have also shown PP checks without the influence of model uncertainty in Figures 2, 4,
and 6), but the marginal posteriors with respect to Cjo. Figure 7 depicts the marginal posteriors with
respect to Cy for different types of model uncertainty. It is clearly visible that the marginal posterior for
the Yeoh model as model uncertainty incorporates the true value close to true value. Constant mean model
uncertainty estimates C1g similar to the based model prediction. Another interesting point is that although
quadratic mean was successfully passed the PP check, it cannot predict Cy.
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Figure 3. Posterior prediction for hyperelastic model uncertainty functions.

6. Conclusion

In this work, a Bayesian paradigm is employed to identify the parameter uncertainties of Neo-Hookean
incompressible hyperelasticity based on tensile/compression data. (Synthetic data were generated in order
to enable a quantitative comparison.) The aim of the work was to investigate the influence of different
forms of model uncertainties. To this end, we have studied six types of model uncertainties:

A random variable associated with a normal distribution with a constant mean and variance;

A random variable associated with a normal distribution with a linear input-dependent (stretch-
dependent) mean;

A random variable associated with a normal distribution with a quadratic input-dependent mean;
A random variable associated with the second term of Mooney—Rivlin hyperelasticity;

A random variable associated with the last two terms of Yeoh hyperelasticity;

A GP with a stationary covariance function.

N —

A

Two lessons can be learned from this study. First, the fact that old measurements fall well within the
bandwidth of the posterior predictions does not mean that the parameter uncertainties encompass the true
parameter value(s). This was the case for model uncertainty modeled as a GP and for model uncertainty
modeled as a random variable coming from a normal distribution with a quadratic input-dependent mean.

Second, incorporating model uncertainty does not guarantee that the parameter uncertainties encom-
pass the true parameter value(s) better. We have observed that of the six types of model uncertainties, only
two (model uncertainty as Yeoh hyperelasticity and model uncertainty as a random variable coming from
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Figure 4. Posterior prediction for hyperelastic model uncertainty functions without work done by model

uncertainty.
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Figure 5. Posterior prediction for considering Gaussian process as model uncertainty.

a normal distribution with a constant mean) encompass the true value better than ignoring model

uncertainty altogether.
The fact that, in most of the cases, model uncertainty yielded worse results shows, on the one hand, that

it should only be used in a careful manner. For incompressible hyperelasticity, it seems that a more
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Figure 6. Posterior prediction for Gaussian process without work done by model uncertainty.
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Figure 7. Marginal posteriors for Cig

sophisticated hyperelastic model than is to be identified can be a good form of model uncertainty. More
generally speaking, however, the results indicate the need for a framework that is able to decide by itself to
what extent model uncertainty must be applied.
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