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Abstract

In Chapter 1, it is shown how to use a smoothed empirical likelihood approach to
conduct efficient semi-parametric inference in models characterised as conditional
moment equalities when data are collected by variable probability sampling. Results
from a simulation experiment suggest that the smoothed-empirical-likelihood-based
estimator can estimate the model parameters very well in small to moderately sized
stratified samples.

In Chapter 2, a novel univariate conditional density model is proposed to decompose
asset returns into a sum of copula-connected unobserved ‘good’ and ‘bad’ shocks. The
novelty of this approach comes from two factors: correlation between unobserved shocks
is modelled explicitly, and the presence of copula-connected discrete jumps is allowed
for. The proposed framework is very flexible and subsumes other models, such as
‘bad environments, good environments’. The proposed model shows certain hidden
characteristics of returns, explains investors’ behaviour in greater detail, and yields
better forecasts of risk measures. The in-sample and out-of-sample performance of
the proposed model is better than that of 40 popular GARCH variants. A Monte Carlo
simulation shows that the proposed model recovers the structural parameters of the
unobserved dynamics. This model is estimated on S&P 500 data, and time-dependent
non-negative covariance between ‘good’ and ‘bad’ shocks with a leverage-like effect
is found to be an essential component of the total variance. Asymmetric reaction to
shocks is present almost in all characteristics of returns. The conditional distribution
of returns seems to be very time-dependent with skewness both in the centre and tails.
Continuous shocks are more important than discrete jumps for return modelling, at
least at the daily frequency.

In Chapter 3, the semi-parametric efficiency bound is derived for estimating finite-
dimensional parameters identified via a system of conditional moment equalities when
at least one of the endogenous variables (which can either be endogenous outcomes,
or endogenous explanatory variables, or both) is missing for some individuals in the
sample. An interesting result is obtained that if there are no endogenous variables
that are not missing, i. e. all the endogenous variables in the model are missing,
then estimation using only the validation subsample (the sub-sample of observations
for which the endogenous variables are non-missing) is asymptotically efficient. An
estimator based on the full sample is proposed, and it is shown that it achieves the semi-
parametric efficiency bound. A simulation study reveals that the proposed estimator can
work well in medium-sized samples and that the resulting efficiency gains (measured
as the ratio of the variance of an efficient estimator based on the validation sample and
the variance of our estimator) are comparable with the maximum gain the simulation
design can deliver.
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Chapter 1

Inference in conditional moment
restriction models when there is
selection due to stratification

This chapter is based on joint work with Antonio Cosma and Gautam Tripathi.
Citation: Cosma, A., Kostyrka, A. V. & Tripathi, G. (2019). Inference in conditional
moment restriction models when there is selection due to stratification. The Eco-
nometrics of Complex Survey Data: Theory and Applications, 39, 137–171. https:
//doi.org/10.1108/S0731-905320190000039010

https://doi.org/10.1108/S0731-905320190000039010
https://doi.org/10.1108/S0731-905320190000039010


1.1 Introduction
The gold standard for collecting data, at least for the ease of doing subsequent stat-
istical analysis, is simple random sampling, whereby each observation in the ‘target’
population, namely, the population of interest, has an equal chance of being chosen.
Consequently, the probability distribution of the chosen observation, regarded as be-
longing to a ‘realised’ population, is the same as the probability distribution of an
observation in the target population, which facilitates statistical analysis.

However, when estimating or testing economic relationships, economists often
discover that the data they plan to use is not drawn from the target population they
wish to study. Instead, the observations are found to be sampled from a related but
different population. Sometimes this is done deliberately to make the sample more
informative. E. g. when studying the impact of welfare legislation, it is desirable to
oversample minorities and low-income families. Similarly, if we want to examine
the effect of disability laws on demand for public transportation, it makes sense to
oversample households with disabled members. At other times, a distinction between
the target and realised populations can be created unintentionally. E. g. in sampling
the duration of unemployment at a randomly chosen time, economists are more likely
to observe longer unemployment spells than shorter ones. Using a dataset to answer
questions for which it was not originally designed, a typical situation in economics
where data is often costly to collect, may also lead to such a situation (Newey, 1993,
p. 419). For instance, if the reason for collecting data is to estimate mean income for
an underlying population, oversampling low-income and undersampling high-income
families can improve the precision of estimators. However, at some later stage, this
income data can be used by another researcher as the dependent variable in a regression
model without realising that the original sample was drawn from a distribution other
than the target population.

Whatever its cause, if the distinction between the target and realised populations is
not taken into account when analysing the data, statistical inference can be seriously
off the mark. This phenomenon is commonly called selection bias. Cf. Heckman (1976,
1979) and Manski (1989, 1995) for a classic exposition of the selection problem.

In this paper, we describe an efficient semi-parametric approach for conducting
inference in conditional moment restriction models when data is collected by a variable
probability sampling scheme such that the observations from the target population
have unequal chances of being chosen. In other words, we show how to efficiently deal
with the selection bias caused by the sampling scheme used to collect the data because
the sampling scheme induces a probability distribution on the realised population that
differs from the target distribution for which inference is to be made.

The remainder of the paper is organised as follows. In Section 1.2, we describe the
conditional moment restriction model and the variable probability sampling scheme.
Section 1.3 discusses how to do inference using the smoothed empirical likelihood
approach, and the finite-sample properties of the proposed estimator are examined
in Section 1.4. Section 1.5 concludes the paper. Related technical details are in the
appendices.
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1.2 The model

1.2.1 Conditional moment equalities

Let Z∗ def
= (Y ∗, X∗)(dimY ∗+dimX∗)×1 be a random (column) vector that denotes an observa-

tion from the target population, where Y ∗ is the vector of endogenous variables and X∗
the vector of exogenous variables. Assume that

H0 : ∃θ∗ ∈ Rdim θ∗ s.t. EP ∗
Y ∗|X∗

[g(Z∗, θ∗) | X∗] = 0 P ∗X∗-a.s., (1.2.1)

where g is a vector of functions known up to θ∗, the notation EP ∗
Y ∗|X∗

indicates that the
conditional expectation is with respect to the conditional distribution P ∗Y ∗|X∗

def
= Law(Y ∗ |

X∗), and P ∗X∗ denotes the marginal distribution of X∗. The conditional distribution
of Y ∗ | X∗ and the marginal distribution of X∗ are unknown.1 Throughout the paper,
random variables and probability measures associated with the target population
appear with the superscript ‘∗’. The parameter of interest θ∗ has an asterisk attached
to it because it is a functional of P ∗Y ∗|X∗.2

A large class of models in applied economics can be characterised in terms of
conditional moment equalities of the form (1.2.1). E. g. in linear regression models
where some or all of the regressors are endogenous, we have g(Z∗, θ∗)

def
= Y ∗1 − α∗ −

X∗1
′β∗ − Y ∗2 ′δ∗, where Y ∗ def

= (Y ∗1 , Y
∗

2 ) with Y ∗1 the outcome variable and Y ∗2 the vector
of endogenous regressors; X∗ def

= (X∗1 , X
∗
2 ) with X∗1 the exogenous regressors, i. e. the

‘included instruments’, and X∗2 the ‘excluded instruments’ for Y ∗2 ; and θ∗
def
= (α∗, β∗, δ∗).

If all the regressors are endogenous, then X∗1 is the empty vector and the definition of
θ∗ has to be adjusted accordingly by dropping β∗. Similarly, for non-linear regression
models, g(Z∗, θ∗)

def
= Y ∗1 − ψ(Y ∗2 , X

∗
1 , θ
∗), where the non-linear function ψ(Y ∗2 , X

∗
1 , ·) is

known up to θ∗. Multivariate extensions include systems of equations or transformation
models, linear or non-linear, of the form g(Z∗, θ∗) = ε∗, where g is a vector of known
functions and the identifying assumption is that EP ∗

Y ∗|X∗
[ε∗ | X∗] = 0 P ∗X∗-a.s.. Several

examples of econometric models defined via conditional moment restrictions may be
found in Newey (1993, Section 3), Pagan and Ullah (1999, Chapter 3), and Wooldridge
(2010).

1.2.2 Variable probability sampling
Instead of observing Z∗ directly from the target population, we possess a random
vector Z def

= (Y,X) that is collected by variable probability (VP) sampling, also known
as Bernoulli sampling. For more on VP and other stratified sampling schemes, cf.,
e. g. DeMets and Halperin (1977), Manski and Lerman (1977), Holt et al. (1980),
Cosslett (1981a, 1981b, 1991, 1993), Manski and McFadden (1981), Jewell (1985),
Quesenberry and Jewell (1986), Scott and Wild (1986), Kalbfleisch and Lawless (1988),
Bickel and Ritov (1991), Imbens (1992), Imbens and Lancaster (1996), Deaton (1997),

1 If X∗ is constant P ∗X∗ -a.s., then there is no conditioning and (1.2.1) reduces to a system of uncondi-
tional moment equalities. These models are studied in Tripathi (2011a, 2011b).

2 Similar notation, but without the ‘∗’ superscript, applies to the random variables and probability
measures in the realised population.
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Wooldridge (1999, 2001), Butler (2000), Bhattacharya (2005, 2007), Hirose (2007),
Hirose and Lee (2008), Tripathi (2011a, 2011b), and Severini and Tripathi (2013).

Let the support of Z∗, denoted by supp(Z∗), be partitioned into L non-empty disjoint
strata C1, . . . ,CL. In VP sampling, typically used when data is collected by telephone
surveys, an observation is first drawn randomly from the target population. If it lies
in stratum Cl, it is retained with known probability pl ∈ (0, 1]. If it is discarded, all
information about the observation is lost. Hence, instead of observing a random vector
Z∗ drawn from the target distribution P ∗ def

= Law(Z∗), we observe a random vector Z,
with supp(Z) = supp(Z∗), drawn from the realised distribution P def

= Law(Z) given by3

P (Z ∈ B)
def
=

L∑
l=1

pl
b∗

∫
B

1Cl(z) dP ∗(z), B ∈ B(RdimZ∗), (1.2.2)

where B(RdimZ∗) is the Borel sigma-field of RdimZ∗ , b∗ def
=
∑L

l=1 plQ
∗
l , and Q∗l

def
= P ∗(Z∗ ∈

Cl) > 0 denotes the probability that a randomly chosen observation from the target
population lies in the lth stratum.

Since Q∗l represents the probability mass of the lth stratum in the target population,
the Q∗l ’s are popularly called ‘aggregate shares’. The aggregate shares, which add up
to one, i. e.

∑L
l=1Q

∗
l = 1, are unknown parameters of interest to be estimated along

with the structural parameter θ∗. The parameter b∗ also has a practical interpretation;
namely, it is the probability that an observation drawn from the target population
during the sampling process is ultimately retained in the sample.

It is immediate from (1.2.2) that the density of P , with respect to any measure on
B(RdimZ∗) that dominates P ∗, is given by

dP (z)
def
=

L∑
l=1

pl
b∗
1Cl(z)dP ∗(z) (z ∈ RdimZ∗)

=
b(z)

b∗
dP ∗(z), (1.2.3)

where b(z)
def
=
∑L

l=1 pl1Cl(z). Following Imbens and Lancaster (1996, p. 296), b(·)/b∗ is
referred to as a bias function because it determines the selection bias due to stratified
sampling, i. e. the extent to which P differs from P ∗. For instance, it is easy to see that
if the sampling probabilities p1, . . . , pL are all equal, then there is no selection bias, i. e.
P = P ∗, because b(·)/b∗ = 1 irrespective of the values taken by the aggregate shares.

The marginal density of X is given by

dPX(x)
def
=

∫
y∈RdimY ∗

dP (y, x) (x ∈ RdimX∗)

=

∫
y∈RdimY ∗

b(y, x)

b∗
dP ∗Y ∗|X∗=x(y) dP ∗X∗(x) ((1.2.3))

=
γ∗(x)

b∗
dP ∗X∗(x), (1.2.4)

where γ∗(x)
def
= EP ∗

Y ∗|X∗
[b(Y ∗, x) | X∗ = x]. Throughout the paper, we maintain the

3 Cf. Severini and Tripathi (2013, Appendix H) for a short proof of (1.2.2).
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assumption that γ∗ > 0 on supp(X∗).4 Under this condition, the probability distributions
PX and P ∗X∗ are mutually absolutely continuous, which we denote by writing P ∗X∗ �
PX � P ∗X∗.

Since supp(Y,X) = supp(Y ∗, X∗) and γ∗ > 0 on supp(X∗), the conditional density of
Y | X is given by

dPY |X=x(y)
def
=
dP (y, x)

dPX(x)
((y, x) ∈ supp(Y ∗)× supp(X∗))

=
b(y, x)

γ∗(x)
dP ∗Y ∗|X∗=x(y), (1.2.5)

where (1.2.5) follows from (1.2.3) and (1.2.4).
By (1.2.5), dPY |X=x(y) = dP ∗Y ∗|X∗=x(y) if and only if b(y, x) = γ∗(x) for all (y, x) ∈

supp(Y ∗)× supp(X∗). However, as discussed subsequently, the condition b(y, x) = γ∗(x)
holds only in a special case. Therefore, in general, dPY |X 6= dP ∗Y ∗|X∗. Consequently,
estimating (1.2.1) using the realised sample without accounting for the fact that it was
obtained by stratified sampling, i. e. ignoring stratification, will generally not lead to a
consistent estimator of θ∗.

1.2.3 Identification
In contrast to some other stratified sampling schemes (Tripathi, 2011b, Sections 3.1
and 4.1), identification, i. e. uniqueness, of θ∗ cannot be lost because of VP sampling. To
see this, begin by recalling that the assumption that γ∗ > 0 on supp(X∗) implies that
the distributions PX and P ∗X∗ are mutually absolutely continuous. Hence,

(1.2.1) ⇐⇒ EP ∗
Y ∗|X∗

[g(Y ∗, x, θ∗) | X∗ = x] = 0 for P ∗X∗-a.a. x ∈ supp(X∗)

⇐⇒ γ∗(x)EPY |X
[g(Y, x, θ∗)

b(Y, x)

∣∣∣ X = x
]

= 0 for P ∗X∗-a.a. x ∈ supp(X∗) ((1.2.5))

⇐⇒ P ∗X∗
{
x ∈ supp(X∗) : EPY |X

[g(Y, x, θ∗)

b(Y, x)

∣∣∣ X = x
]
6= 0
}

= 0 (γ∗ > 0)

⇐⇒ PX

{
x ∈ supp(X∗) : EPY |X

[g(Y, x, θ∗)

b(Y, x)

∣∣∣ X = x
]
6= 0
}

= 0

(P ∗X∗ � PX � P ∗X∗)

⇐⇒ EPY |X
[g(Y, x, θ∗)

b(Y, x)

∣∣∣ X = x
]

= 0 for PX-a.a. x ∈ supp(X∗).

Therefore, we have that

(1.2.1) ⇐⇒ EPY |X
[g(Z, θ∗)

b(Z)

∣∣∣ X] = 0 PX-a.s.. (1.2.6)

Since b(Z) does not depend on θ∗, the equivalence in (1.2.6) reveals that θ∗ in (1.2.1)
is uniquely defined if and only if θ∗ in EPY |X [g(Z, θ∗)/b(Z) | X] = 0 (PX-a.s.) is uniquely
defined. That is, any condition that leads to the identification of θ∗ in (1.2.1) will also
ensure identification of θ∗ in the right hand side of (1.2.6) and vice-versa. To illustrate
this, assume that the columns of the partial derivative ∂θEP ∗

Y ∗|X∗
[g(Z∗, θ∗) | X∗] are

4 A sufficient condition for this is that P ∗Y ∗|X∗((Y ∗, x) ∈ Cl | X∗ = x) > 0 for each l and x ∈ supp(X∗).
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linearly independent P ∗X∗-a.s.. As shown in Appendix 3.B (in Chapter 3), this condition
is sufficient to ensure that θ∗ is locally identified.5 However, since b does not depend on
θ (which implies that γ∗ does not depend on θ), we have that

∂θEP ∗
Y ∗|X∗

[g(Z∗, θ∗) | X∗ = x]
(1.2.5)

= γ∗(x)∂θEPY |X
[g(Z, θ∗)

b(Z)

∣∣∣ X = x
]
, x ∈ supp(X∗).

Therefore, since γ∗ > 0 on supp(X∗), the columns of ∂θEP ∗
Y ∗|X∗

[g(Z∗, θ∗) | X∗] are linearly
independent P ∗X∗-a.s. if and only if the columns of ∂θEPY |X [g(Z, θ∗)/b(Z) | X] are linearly
independent PX-a.s. (because PX and P ∗X∗ are mutually absolutely continuous).

Since the identification of θ∗ cannot be lost because of VP sampling, for the remainder
of the paper, we maintain that θ∗ is identified.

1.2.4 Endogenous and exogenous stratification
As noted by Wooldridge (1999, p. 1385), VP sampling is employed when it is cheaper
to obtain information on a subset of variables in the target population. Hence, it may
happen that in certain datasets only Y ∗ is stratified (endogenous stratification),6 or
only X∗ is stratified (exogenous stratification), or both Y ∗ and X∗ are stratified. To
see how all these cases can be handled in a unified manner in our framework, let
the support of Y ∗ be partitioned into J non-empty disjoint strata A1, . . . ,AJ , and the
support of X∗ be partitioned intoM non-empty disjoint strata B1, . . . ,BM . Then, since
∪Jj=1Aj × ∪Mm=1Bm = ∪Jj=1 ∪Mm=1 Aj × Bm,

supp(Y ∗, X∗) =


∪Jj=1 ∪Mm=1 Aj × Bm if both Y ∗ and X∗ are stratified
∪Jj=1(Aj × supp(X∗)) if only Y ∗ is stratified
∪Mm=1(supp(Y ∗)× Bm) if only X∗ is stratified.

Therefore, if both Y ∗ andX∗ are stratified, then supp(Z∗) = ∪Ll=1Cl with L = JM and
each Cl = Aj × Bm for some (j,m) ∈ {1, . . . , J} × {1, . . . ,M}. This is the most general
case for which PY |X is given by (1.2.5).7

In contrast, simplifications occur if the stratification is endogenous or exogenous.
For instance, if only Y ∗ is stratified, then supp(Z∗) = ∪Ll=1Cl with L = J and Cl =
Al × supp(X∗), which implies that, for (y, x) ∈ supp(Y ∗)× supp(X∗),

b(y, x) =
J∑
l=1

pl1Al×supp(X∗)(y, x) =
J∑
l=1

pl1Al(y) =: bendog(y).

Hence, by (1.2.5), we have that, for (y, x) ∈ supp(Y ∗)× supp(X∗),

endogenous stratification =⇒ dPY |X=x(y) =
bendog(y)

γ∗endog(x)
dP ∗Y ∗|X∗=x(y), (1.2.7)

where γ∗endog(x)
def
= EP ∗

Y ∗|X∗
[bendog(Y ∗) | X∗ = x].

5 The same condition leads to global identification of θ∗ whenever g(Z∗, θ∗) is linear in θ∗.
6 In the econometrics literature, stratification based on a finite set of response variables is often

referred to as choice-based sampling.
7 Unless mentioned otherwise, it is assumed throughout the paper that both Y ∗ andX∗ are stratified.
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If only X∗ is stratified, then supp(Z∗) = ∪Ll=1Cl with L = M and Cl = supp(Y ∗)× Bl.
Consequently, for (y, x) ∈ supp(Y ∗)× supp(X∗),

b(y, x) =
M∑
l=1

pl1supp(Y ∗)×Bl(y, x) =
M∑
l=1

pl1Bl(x) =: bexog(x),

which implies that γ∗exog(x)
def
= EP ∗

Y ∗|X∗
[bexog(X∗) | X∗ = x] = bexog(x). Hence, by (1.2.5),

exogenous stratification =⇒ dPY |X=x(y) = dP ∗Y ∗|X∗=x(y) (1.2.8)

for (y, x) ∈ supp(Y ∗)× supp(X∗). Consequently, exogenous stratification can be ignored,
at least as far as consistent estimation is concerned. However, as the following ex-
ample demonstrates, ignoring endogenous stratification does not lead to a consistent
estimator.

Example 1.2.1 (Linear regression with exogenous regressors). Consider the linear
regression model Y ∗ = X̃∗′θ∗ + ε∗, where X̃∗ def

= (1, X∗). Assume that the regressors
are exogenous with respect to the model error in the target population, i. e. EP ∗

Y ∗|X∗
[ε∗ |

X∗] = 0 P ∗X∗-a.s..
Suppose that only Y ∗ is stratified. If we ignore the fact that the data were collected

by VP sampling and simply regress the observed Y on the observed X and the constant
regressor, then θ∗ cannot be consistently estimated by the least-squares (LS) estimator.
Indeed, letting θ̂LS denote the LS estimator obtained by regressing Y on X̃ def

= (1, X),
we have that

plim
n→∞

θ̂LS = plim
n→∞

(
n−1

n∑
j=1

X̃jX̃
′
j

)−1(
n−1

n∑
j=1

X̃jYj

)
= (EPX X̃X̃

′)−1(EP X̃Y )

= (EPX X̃X̃
′)−1
(
EPX X̃µ(X)

)
, (1.2.9)

where µ(X)
def
= EPY |X [Y | X]. But, EPX X̃X̃ ′

(1.2.4)
= EP ∗

X∗
γ∗endog(X∗)X̃∗X̃∗′/b∗ and

µ(x)
def
= EPY |X [Y | X = x] (x ∈ supp(X∗))

=
1

γ∗endog(x)
EP ∗

Y ∗|X∗
[Y ∗bendog(Y ∗) | X∗ = x] ((1.2.7))

=
1

γ∗endog(x)
EP ∗

Y ∗|X∗
[(X̃∗′θ∗ + ε∗)bendog(Y ∗) | X∗ = x]

= x̃′θ∗ +
1

γ∗endog(x)
EP ∗

Y ∗|X∗
[ε∗bendog(Y ∗) | X∗ = x]. (1.2.10)
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Hence, writing (1.2.9) in terms of P ∗X∗,

plim
n→∞

θ̂LS =

(
EP ∗

X∗

γ∗endog(X∗)

b∗
X̃∗X̃∗′

)−1(
EP ∗

X∗

γ∗endog(X∗)

b∗
X̃∗µ(X∗)

)
((1.2.9) & (1.2.4))

(1.2.10)
=

(
EP ∗

X∗

γ∗endog(X∗)

b∗
X̃∗X̃∗′

)−1

×
(
EP ∗

X∗

γ∗endog(X∗)

b∗
X̃∗
[
X̃∗′θ∗ +

1

γ∗endog(X∗)
EP ∗

Y ∗|X∗
[ε∗bendog(Y ∗) | X∗]

])
= θ∗ +

(
EP ∗

X∗
γ∗endog(X∗)X̃∗X̃∗′

)−1(EP ∗X̃∗ε∗bendog(Y ∗)
)

6= θ∗,

because EP ∗
Y ∗|X∗

[ε∗ | X∗] = 0 (P ∗X∗-a.s.) does not imply that EP ∗X̃∗ε∗bendog(Y ∗) = 0.
If, however, stratification is exogenous, then

µ(x) = EPY |X [Y | X = x]
(1.2.8)

= EP ∗
Y ∗|X∗

[Y ∗ | X∗ = x] (x ∈ supp(X∗))
= EP ∗

Y ∗|X∗
[X̃∗′θ∗ + ε∗ | X∗ = x]

= x̃′θ∗. (1.2.11)

Hence, ignoring exogenous stratification does not affect the consistency of θ̂LS because

plim
n→∞

θ̂LS = (EPX X̃X̃
′)−1
(
EPX X̃µ(X)

)
((1.2.9))

=
(
EP ∗

X∗

γ∗exog(X∗)

b∗
X̃∗X̃∗′

)−1(
EP ∗

X∗

γ∗exog(X∗)

b∗
X̃∗µ(X∗)

)
((1.2.4))

=
(
EP ∗

X∗

γ∗exog(X∗)

b∗
X̃∗X̃∗′

)−1(
EP ∗

X∗

γ∗exog(X∗)

b∗
X̃∗X̃∗′θ∗

)
((1.2.11))

= θ∗.

However, as shown subsequently (cf. Example 1.3.1), θ̂LS is not asymptotically efficient.
Hence, ignoring exogenous stratification does not affect the consistency of the LS
estimator,8 but it does affect its efficiency.

Example 1.2.2 (Implications of stratification, visualised). Consider the structural
model Y ∗ = δ0 + δ1X

∗ + δ2X
∗2 + U∗ with E(U∗ | X∗) = 0, where X∗ denotes the age of a

working individual, and Y ∗ denotes their monthly wage. This quadratic specification of
earnings as a function of time-related variables (such as age or experience) is arguably
the most popular version of the Mincer equation accounting for non-linear individual
wage change over time (Heckman et al., 2003). Let δ∗ def

= (δ0, δ1, δ2)
def
= (−5, 1,−0.01),

let X∗ be uniformly distributed between 18 and 65, and let U∗ | X∗ ∼ N(0, 9). Let the
strata of the endogenous income be defined as follows: A1 = (−∞, 15), A2 = [15, 19),
A3 = [19,+∞) (low-, middle-, and high-income individuals). Let the strata of the
exogenous age be defined as follows: B1 = [18, 30), B2 = [30, 55), B3 = [55, 65] (younger,
middle-aged, and older working individuals). Consider four sampling schemes devised
by a data collection agency:

8 Tripathi (2011b) shows that in unconditional-moment-restriction models, even exogenous stratifica-
tion cannot be ignored.
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1. Random sampling with probability 0.1;
2. VP sampling with middle-aged individuals over-sampled and young individuals

under-sampled ((pB1 , pB2 , pB3) = (0.0325, 0.1463, 0.0650));
3. VP sampling with lower-income individuals over-sampled and middle- and high-

income individuals under-sampled ((pA1 , pA2 , pA3) = (0.2913, 0.0324, 0.0324));
4. VP sampling with rich younger, middle-income younger, rich older, and poor

middle-aged individuals over-sampled 10 times compared to the remaining strata
(pC1 = 0.3160, pC2 = 0.0316, where C1

def
= (A2×B1)∪ (A3×B1)∪ (A1×B2)∪ (A3×B3)

and C2
def
= R2 \ C1).

In all four cases, numerical evaluation shows that b∗ ≈ 0.1 (up to three significant
digits), which means that the unconditional retention probability is the same. Thus,
on average, every 10th observation from the population is selected into the sample.
However, estimation results in these four samples are qualitatively different.

Figure 1.1: Impact of stratification on Law(Y | X)
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Four synthetic data sets with individuals’ ages (horizontal axis) and wages (vertical axis) were generated
according to the sampling schemes (1)–(4). Dotted lines delimit the strata. The dashed curve shows the
true Law(Y ∗ | X∗) (the same in all 4 cases). The solid curves shows least-squares model fits. The sample
size is approximately 200 in all cases. The darker the shade of a stratum, the higher the retention
probability.

Simulated data sets coming from schemes (1)–(4) are shown in Figure 1.1. If the data
are collected via (1), then P = P ∗, and simple least-squares estimation is consistent.
In the case of exogenous stratification (2), P 6= P ∗; however, dPY |X=x(y) = dP ∗Y ∗|X∗=x(y),
and the probability limit of the LS estimator is the same, which is evidenced by the
closeness of the true law and predicted regression line in panel (2). In the case of
endogenous stratification (3), due to over-sampling of low-income individuals, the
estimated E(Y | X = x) is strictly smaller than E(Y ∗ | X∗ = x), and the point estimates
are far away from the true values (the relative absolute bias is 23–25% for δ1 and δ2).
Finally, case (4) represents the most egregious case of distortion, in which the entire
joint distribution of (Y,X) is represented by the regions of R2 where the centres of
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mass of each vertical strip form a parabola branching upwards. Consequently, a model
estimated on data collected in this manner predicts the wrong sign of δ2, which changes
its economic interpretation. E. g. the researcher might mistakenly conclude that the
expected wage starts increasing after attaining the age of 27 and continues increasing
until retirement, instead of realising that the correct inference is ‘the estimated age of
peak expected wage is 50’, which may have implications for the pension scheme.

This example demonstrates that if Y ∗ or both Y ∗ and X∗ are stratified, then the
resulting data set will be primarily shaped by the sampling probabilities. In other
words, the distortions appearing in Law(Y | X) may obscure the true Law(Y ∗ | X∗) due
to the regression line gravitating towards over-represented strata depending on Y ∗.

1.3 Inference

1.3.1 Related literature and our contribution
There is a large literature on estimation and testing models using data collected by
various types of stratified sampling schemes; cf. the papers cited at the beginning of
Section 1.2.2, and the references therein. In this section, we briefly describe only some
of the works that consider VP sampling.

Earlier papers in the literature on estimating models with conditioning variables
assume that P ∗Y ∗|X∗ is known up to a finite-dimensional parameter; only P ∗X∗ is left
completely unspecified. E. g. a well-known application of VP sampling can be found
in Hausman and Wise (1981). Imbens and Lancaster (1996) extend the maximum
likelihood approach of Hausman and Wise to a moment-based methodology that allows
for VP sampling, mixed response variables, and stratification on exogenous covariates.
Regression under VP sampling and a parametric P ∗Y ∗|X∗ has also been investigated.
E. g. Jewell (1985) and Quesenberry and Jewell (1986) propose iterative estimators of
regression coefficients under VP sampling without imposing normality or independence,
though they do not provide any asymptotic theory for their estimators.

The papers described above impose strong conditions on the distribution of Y ∗ | X∗.
Exceptions include Wooldridge (1999) and Tripathi (2011b), who leave both P ∗Y ∗|X∗ and
P ∗X∗ completely unspecified. Wooldridge provides asymptotic theory forM -estimation
under VP sampling for a model defined in terms of a set of just-identified unconditional
moment equalities, whereas Tripathi considers optimal generalised method of moments
(GMM) estimation in unconditional moment restriction models that allow for the
parameter of interest to be over-identified. The major difference between (1.2.1) and
the models in the papers of Wooldridge and Tripathi is that (1.2.1) is a conditional
moment restriction, whereas the moment conditions in the aforementioned papers are
all unconditional. Therefore, (1.2.1) nests the moment conditions of Wooldridge and
Tripathi as a special case.

In this paper, we show how to efficiently estimate θ∗ and the aggregate shares using
a smoothed-empirical-likelihood-based approach. The results presented here answer
the question posed in Wooldridge (1999, p. 1402) by providing efficiency bounds for
models with conditional moment restrictions under VP sampling and showing that
these bounds are attainable.

Furthermore, the results in this paper are also directly applicable to a class of
‘biased sampling’ problems. To see this, recall that the phenomenon where the real-
ised probability distribution P differs from the target probability distribution P ∗ is
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generically referred to as selection bias.9 It is useful to note that the class of problems
that can be handled when selection is modelled using (1.2.3) includes more than just
those involving stratified sampling. For instance, consider the so-called ‘length biased
sampling’ problem where the probability of observing a random variable is proportional
to its ‘size’. E. g. economists are more likely to observe longer unemployment spells if
they are sampled at a randomly chosen time. Similarly, as Owen (2001, p. 127) points
out, if internet log files are sampled randomly, then longer sessions are likely to be
over-represented. It is useful to examine length biased sampling in the context of VP
sampling because in length-biased sampling, we have

dP (z)
def
=

‖z‖
EP ∗‖Z∗‖

dP ∗(z), z ∈ RdimZ∗ ,

where ‖ · ‖ is the Euclidean norm. That is, length biased sampling can be expressed
as (1.2.3) with b(z)

def
= ‖z‖ and b∗ def

= EP ∗‖Z∗‖. Therefore, with only minor notational
changes, the results obtained in this paper can be extended to length biased sampling
as well.

Length biased sampling has been extensively studied for the parametric case, i. e.
where dP ∗ is specified up to a finite-dimensional parameter. Cf., e. g. Patil and Rao
(1977, p. 1978), Bickel et al. (1993, Section 4.4), and Owen (2001, Chapter 6). As far
as a non-parametric treatment of length biased sampling is concerned, Vardi (1982)
deals with the case when P ∗ is unknown. Vardi assumes that both P ∗ and P can be
sampled with positive probability. Using two independent samples (one each from P ∗

and P ), he shows how to construct the non-parametric maximum likelihood estimators
(NPMLE) of P ∗ and P , and also obtains their asymptotic distributions. Vardi (1985)
and Gill et al. (1988) provide conditions for the existence and uniqueness of the NPMLE
of P ∗ in a general setup when more than two independent samples from F ∗ and F
are available. These papers concentrate on the distributions P ∗ and P ; there are no
other parameters to estimate. Qin (1993) uses the empirical likelihood approach to
construct a non-parametric likelihood ratio confidence interval for θ∗ def

= EP ∗Z∗, i. e. a
just-identified unconditional moment equality, using an independent sample from P ∗

and P . El-Barmi and Rothmann (1998) generalise Qin’s treatment to handle models
with over-identified unconditional moment restrictions of the form EP ∗g(Z, θ∗) = 0.
They also obtain efficient estimators of P ∗ and P . However, they do not consider the
testing of over-identifying restrictions.

1.3.2 Efficiency bounds
The efficiency bounds for estimating θ∗ and related functionals have been derived in
Severini and Tripathi (2013, Section 14.3). In this section, we describe some of these
bounds and discuss their salient features. Construction of estimators that achieve
these bounds is considered in the next section.

For the remainder of the paper, let ρ1(Z, θ)
def
= g(Z, θ)/b(Z). Since the right hand

side of (1.2.6) is a conditional moment equality with respect to the realised conditional
distribution PY |X , the efficiency bound for θ∗ follows from Chamberlain (1987). Namely,

9 Hence, for the LS estimator in Example 1.2.1, one can say that it is inconsistent because of selection
bias due to endogenous stratification, whereas exogenous stratification does not lead to any selection
bias.
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the efficiency bound for estimating θ∗ is given by10

l.b.(θ∗)
def
=
(
EPXD

′(X)V −1
1 (X)D(X)

)−1
, (1.3.1)

where D(X)
def
= ∂θEPY |X [ρ1(Z, θ∗) | X] and V1(X)

def
= EPY |X [ρ1(Z, θ∗)ρ′1(Z, θ∗) | X].

The efficiency bound in (1.3.1), given as a functional of the realised distribution P ,
can be used to determine whether an estimator of θ∗ is semi-parametrically efficient
by comparing its asymptotic variance with l.b.(θ∗). However, as the moment condition
model (1.2.1) is specified in terms of the target distribution P ∗, in order to answer
questions such as how the efficiency bound for θ∗ changes if stratification is purely
endogenous (or purely exogenous) or if the error term in a regression model is condi-
tionally homoskedastic in the target population, it is helpful to rewrite (1.3.1) in terms
of P ∗. To do so, observe that, by (1.2.5), we have

D(x) =
1

γ∗(x)
∂θEP ∗

Y ∗|X∗
[g(Z∗, θ∗) | X∗ = x], x ∈ supp(X∗),

V1(x) =
1

γ∗(x)
EP ∗

Y ∗|X∗

[g(Z∗, θ∗)g′(Z∗, θ∗)

b(Y ∗, x)

∣∣∣ X∗ = x
]
.

(1.3.2)

Hence, by (1.2.4) and (1.3.2), the efficiency bound in (1.3.1) can be written as

l.b.(θ∗) = b∗
(
EP ∗

X∗

(
∂θEP ∗

Y ∗|X∗
[g(Z∗, θ∗) | X∗]

)′
V ∗b
−1(X∗)

(
∂θEP ∗

Y ∗|X∗
[g(Z∗, θ∗) | X∗]

))−1

,

(1.3.3)
where V ∗b (X∗)

def
= EP ∗

Y ∗|X∗
[g(Z∗, θ∗)g′(Z∗, θ∗)/b(Z∗) | X∗].

We can use (1.3.3) to determine the efficiency bound for estimating θ∗ if stratification
is purely endogenous or purely exogenous. For instance, the efficiency bound when
only Y ∗ is stratified follows from (1.3.3) on replacing b(Z∗) in the definition of V ∗b (X∗)
with bendog(Y ∗). Similarly, the bound when only X∗ is stratified follows from (1.3.3) on
replacing b(Z∗) in the definition of V ∗b (X∗) with bexog(X∗).

If there is no conditioning in (1.2.1), i. e. X∗ is constant P ∗X∗-a.s., and dim g ≥ dim θ∗,
then (1.3.3) reduces to the efficiency bound for estimating θ∗ in unconditional moment
restriction models when observations are collected by VP sampling (Severini & Tripathi,
2013, Section 14.2.1). At the other extreme, if there is no stratification, i. e. L = 1 = p1

and C1 = supp(Z∗), so that Z∗ = Z and P ∗ = P , then the efficiency bound in (1.3.3)
becomes(

E
(
∂θE[g(Z∗, θ∗) | X∗]

)′(E[g(Z∗, θ∗)g′(Z∗, θ∗) | X∗]
)−1(

∂θE[g(Z∗, θ∗) | X∗]
))−1

,

which is Chamberlain’s 1987 bound for estimating θ∗ in the absence of any selection.
The next example uses (1.3.3) to determine the efficiency bound for θ∗ under various

scenarios.

Example 1.3.1 (Example 1.2.1 contd.). Here, g(Z∗, θ) = Y ∗ − X̃∗′θ and the efficiency
10 The abbreviation ‘l.b.’ stands for ‘lower bound’, because the efficiency bound is the greatest lower

bound for the asymptotic variance of any n1/2-consistent regular estimator.
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bound for estimating θ∗ is given by

l.b.(θ∗ in Example 1.2.1)
(1.3.3)

= b∗
(
EP ∗

X∗

X̃∗X̃∗′

V ∗b (X∗)

)−1 (1.2.4),(1.2.5)
=

(
EPX

X̃X̃ ′

γ∗2(X)V1(X)

)−1

.

(1.3.4)
If stratification is endogenous, then

l.b.(θ∗ in Example 1.2.1)
∣∣
endog. strat.

(1.3.4)
=

(
EPX

X̃X̃ ′

γ∗2endog(X)V1,endog(X)

)−1

,

where V1,endog(X)
def
= EPY |X [(Y − X̃ ′θ∗)2/b2

endog(Y ) | X].
In contrast, if stratification is exogenous then

l.b.(θ∗ in Example 1.2.1)
∣∣
exog. strat.

(1.3.4)
=

(
EPX

X̃X̃ ′

V1,exog(X)

)−1

, (1.3.5)

where V1,exog(X)
def
= EPY |X [(Y − X̃ ′θ∗)2 | X].

Recall from Example 1.2.1 that, under exogenous stratification, the LS estimator
consistently estimates θ∗. Since n1/2(θ̂LS − θ∗) is asymptotically (as n → ∞) normal
with mean zero and variance VLS,exog

def
= (EPX X̃X̃ ′)−1

(
EPX X̃X̃ ′V1,exog(X)

)
(EPX X̃X̃ ′)−1,

an application of a matrix version of the Cauchy-Schwarz inequality reveals that

l.b.(θ∗ in Example 1.2.1)
∣∣
exog. strat. ≤L VLS,exog,

where ≤L is the usual (Löwner) order on the set of symmetric matrices.11 Therefore,
under exogenous stratification, the LS estimator is consistent but not asymptotically
efficient. However, if stratification is exogenous and ε∗ is conditionally homoskedastic
in the target population, then (1.3.5) and (1.A.3) imply that the LS estimator is asymp-
totically efficient.

Even under endogenous stratification, it is not difficult to obtain an estimator of θ∗
that is consistent but asymptotically inefficient. To see this, assume that only Y ∗ is
stratified. Then,

EP ∗
Y ∗|X∗

[Y ∗−X̃∗′θ∗ | X∗] = 0 P ∗X∗-a.s.

⇐⇒ EPY |X
[Y − X̃ ′θ∗
bendog(Y )

∣∣∣ X] = 0 PX-a.s. ((1.2.6) & (1.2.7))

=⇒ EP X̃
[Y − X̃ ′θ∗
bendog(Y )

]
= 0.

Hence, it is straightforward to show that the GMM estimator

θ̂GMM,endog
def
=

( n∑
j=1

X̃jX̃
′
j

bendog(Yj)

)−1( n∑
j=1

X̃jYj
bendog(Yj)

)
11 Namely,M1 ≤L M2 for symmetric matricesM1,M2 means thatM1 −M2 is negative semidefinite.
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is consistent for θ∗.12 However, θ̂GMM,endog is not asymptotically efficient because its
asymptotic variance is

VGMM,endog
def
=
(
EP X̃X̃ ′/bendog(Y )

)−1(EPX X̃X̃ ′V1,endog(X)
)(
EP X̃X̃ ′/bendog(Y )

)−1

but
l.b.(θ∗ in Example 1.2.1)

∣∣
endog. strat. ≤L VGMM,endog.

Analogous to θ̂GMM,endog, the GMM estimator under exogenous stratification is

θ̂GMM,exog
def
=

( n∑
j=1

X̃jX̃
′
j

bexog(Xj)

)−1( n∑
j=1

X̃jYj
bexog(Xj)

)
,

which is also not asymptotically efficient because its asymptotic variance is VGMM,exog
def
=(

EPX X̃X̃ ′/bexog(X)
)−1(EPX X̃X̃ ′V1,exog(X)/b2

exog(X)
)(
EPX X̃X̃ ′/bexog(X)

)−1 but

l.b.(θ∗ in Example 1.2.1)
∣∣
exog. strat. ≤L VGMM,exog.

Constructing efficient estimators requires more effort. For instance, suppose that
stratification is purely exogenous. Then, following Robinson (1987), it can be shown
that the asymptotic variance of θ̂Robinson

def
=
(∑n

j=1 X̃jX̃
′
j/σ̂

2(Xj)
)−1(∑n

j=1 X̃jYj/σ̂
2(Xj)

)
equals (1.3.5), where σ̂2 denotes a consistent estimator of V1,exog. Hence, θ̂Robinson is
an asymptotically efficient estimator of θ∗ under exogenous stratification. A general
approach, which can be used to construct efficient estimators irrespective of whether
stratification is endogenous, exogenous, or both, is discussed in Section 1.3.3.

Since the aggregate shares add up to one, it suffices to determine the efficiency
bound for estimating Q∗−L

def
= (Q∗1, . . . , Q

∗
L−1)(L−1)×1 ∈ (0, 1)L−1. The aggregate shares are

identified in the realised population by the moment condition

EP
[s(Z)−Q∗−L

b(Z)

]
= 0, (1.3.6)

where s(Z)
def
=
(
1C1(Z), . . . ,1CL−1

(Z)
)

(L−1)×1
. The moment conditions in (1.3.6) modify

accordingly if stratification is endogenous or exogenous; namely,

endog. strat. =⇒

EPY
[
sendog(Y )−Q∗−L

bendog(Y )

]
= 0

sendog(Y )
def
=
(
1A1(Y ), . . . ,1AJ−1

(Y )
)

(J−1)×1

exog. strat. =⇒

EPX
[
sexog(X)−Q∗−L

bexog(X)

]
= 0

sexog(X)
def
=
(
1B1(X), . . . ,1BM−1

(X)
)

(M−1)×1
.

(1.3.7)

Let ρ2(Z,Q∗−L)
def
=
(
s(Z)−Q∗−L

)
/b(Z), and Σ12(X)

def
= EPY |X [ρ1(Z, θ∗)ρ′2(Z,Q∗−L) | X] be

the conditional (on X) covariance between ρ1(Z, θ∗) and ρ2(Z,Q∗−L). Then, under (1.2.1),
12 The estimator θ̂GMM,endog is an example of an inverse probability weighted (IPW) estimator, which

uses the weights 1/bendog(Y1), . . . , 1/bendog(Yn) to correct the selection bias due to stratification by down-
ward weighting the strata that are oversampled and upward weighting the strata that are undersampled.
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the efficiency bound for estimating Q∗−L is given by

l.b.(Q∗−L)
def
= b∗2

[
VarP

(
ρ2(Z,Q∗−L)

)
−
(
EPXΣ′12(X)V −1

1 (X)Σ12(X)
)

+
(
EPXΣ′12(X)V −1

1 (X)D(X)
)(

l.b.(θ∗)
)(
EPXD

′(X)V −1
1 (X)Σ12(X)

)]
, (1.3.8)

where l.b.(θ∗) is the efficiency bound for estimating θ∗ given in (1.3.1).
In the absence of (1.2.1), the efficiency bound forQ∗−L is given by b∗2 VarP

(
ρ2(Z,Q∗−L)

)
,

which follows from standard GMM theory applied to (1.3.6). Hence, estimating the
aggregate shares in the presence of (1.2.1) leads to efficiency gains under endogen-
ous stratification. There are no efficiency gains for estimating Q∗−L under exogenous
stratification because

exog. strat. =⇒ Σ12(X) = EPY |X
[ g(Z, θ∗)

bexog(X)

(
sexog(X)−Q∗−L

)′
bexog(X)

∣∣∣ X]
= EP ∗

Y ∗|X∗

[ g(Z∗, θ∗)

bexog(X∗)

(
sexog(X∗)−Q∗−L

)′
bexog(X∗)

∣∣∣ X∗] ((1.2.8))

= EP ∗
Y ∗|X∗

[g(Z∗, θ∗) | X∗]
(
sexog(X∗)−Q∗−L

)′
b2

exog(X∗)

= 0 P ∗X∗-a.s. ((1.2.1))
= 0 PX-a.s.. (P ∗X∗ � PX � P ∗X∗)

1.3.3 Efficient estimation
The estimation and testing techniques demonstrated here extend Kitamura et al. (2004)
and Tripathi and Kitamura (2003). These papers, which are based on a generalisation
of the empirical likelihood approach of Owen (1988), develop an asymptotically efficient
methodology for estimating and testing models with conditional moment restrictions
when the data are collected by random sampling.

In the papers of Kitamura, Tripathi and Ahn, and Tripathi and Kitamura, kernel
smoothing is used to efficiently incorporate the information implied by conditional
moment restrictions into an empirical likelihood, which is henceforth referred to as
the ‘Smoothed Empirical Likelihood’ (SEL). As shown in these papers, maximising the
SEL leads to one-step estimators which avoid any preliminary estimation of optimal
instruments. It also yields internally studentised likelihood ratio-type statistics for
testing H0 and parametric restrictions on θ∗ that do not require preliminary estimation
of any variance terms. Moreover, the resulting estimation and testing procedures are
invariant to normalisations of H0. Simulation results presented in the aforementioned
papers suggest that the SEL-based approach can work very well in finite samples.

The advantages of the SEL approach described above extend to the case when the
observations are collected by VP sampling. Furthermore, it leads to a unified approach
of estimating and testing models using stratified samples, which should appeal to
applied economists and practitioners in the field. Therefore, we now demonstrate how
to use the SEL approach to construct asymptotically efficient estimators, i. e. estimators
with asymptotic variance equal to the efficiency bounds in Section 1.3.2.

If the focus is on the efficient estimation of θ∗ alone, then the equivalence in (1.2.6)
reveals that replacing the moment function in Kitamura, Tripathi, and Ahn (Equa-
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tion 2.1) with ρ1(Z, θ∗) will deliver an asymptotically efficient estimator of θ∗.
But what about Q∗−L? Although the aggregate shares Q∗−L

(1.3.6)
= EP [s(Z)]/EP [1/b(Z)]

can be simply estimated by their sample analogues, this estimator will not be efficient
because it does not take (1.2.1) into account; cf. the discussion after (1.3.8). To construct
an estimator of Q∗−L that accounts for (1.2.1), we have to jointly estimate θ∗ and Q∗−L,
which we do using the SEL approach.

For the remainder of the paper, assume that we have independent observations
Z1, . . . , Zn collected by VP sampling. Hence, these are IID draws from the realised
density dP in (1.2.3). Our estimation approach relies on a smoothed version of empirical
likelihood. This smoothing, or localisation, is carried out using positive kernel weights
wij

def
=

Kbn(Xi −Xj)∑n
k=1 Kbn(Xi −Xk)

, i, j = 1, . . . , n, where K is a second-order kernel, Kbn(·) def
=

K(·/bn), and bn the bandwidth.
For i, j = 1, . . . , n, let pij denote the probability mass placed at (Xi, Zj) by a discrete

distribution with support (X1, . . . , Xn) × (Z1, . . . , Zn). The collection of probabilities
(pij)

n
i,j=1 can be thought of as a set of nuisance parameters that includes the empirical dis-

tribution of the data. Using the kernel weights (wij) and the distribution (pij) construct
the smoothed log-likelihood

∑n
i=1

∑n
j=1 wij log pij. Then, given (θ,Q−L), concentrate out

(pij) by solving the following optimisation problem:

max
(pij)

n∑
i=1

n∑
j=1

wij log pij

s.t. pij ≥ 0 for i, j = 1, . . . , n,
n∑
i=1

n∑
j=1

pij = 1,

n∑
j=1

ρ1(Zj, θ)p1j = 0, . . . ,
n∑
j=1

ρ1(Zj, θ)pnj = 0,
n∑
i=1

n∑
j=1

ρ2(Zj, Q−L)pij = 0.

(1.3.9)

If the convex hulls of {ρ1(Z1, θ), . . . , ρ1(Zn, θ)} and {ρ2(Z1, Q−L), . . . , ρ2(Zn, Q−L)} con-
tain the origin, then (1.3.9) can be solved by using Lagrange multipliers. In this case,
it can be verified that the solution to (1.3.9) is given by

p̂ij(θ,Q−L)
def
=

1

n

( wij
1 + λ′iρ1(Zj, θ) + µ′ρ2(Zj, Q−L)

)
, i, j = 1, . . . , n,

where the multipliers λi def
= λi(θ,Q−L) and µ def

= µ(θ,Q−L) solve
n∑
j=1

wijρ1(Zj, θ)

1 + λ′iρ1(Zj, θ) + µ′ρ2(Zj, Q−L)
= 0, i = 1, . . . , n,

n∑
i=1

n∑
j=1

wijρ2(Zj, Q−L)

1 + λ′iρ1(Zj, θ) + µ′ρ2(Zj, Q−L)
= 0.

(1.3.10)
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The smoothed empirical log-likelihood of (θ,Q−L) is given by

SEL(θ,Q−L)
def
=

n∑
i=1

n∑
j=1

wij log p̂ij(θ,Q−L)

=
n∑
i=1

n∑
j=1

wij log
( wij/n

1 + λ′iρ1(Zj, θ) + µ′ρ2(Zj, Q−L)

)
, (1.3.11)

where the multipliers solve (1.3.10).
The estimators of θ∗ and Q∗−L can, in principle, be defined to be the maximisers

of SEL(θ,Q−L). However, this leads to a constrained optimisation problem because
the Lagrange multipliers in SEL(θ,Q−L) have to satisfy (1.3.10). To ease computation,
we convert the constrained optimisation problem into an unconstrained optimisation
problem as follows. Begin by observing that, by (1.3.11),

SEL(θ,Q−L) =
n∑
i=1

n∑
j=1

wij log(wij/n)−
n∑
i=1

n∑
j=1

wij log
(
1 + λ′iρ1(Zj, θ) + µ′ρ2(Zj, Q−L)

)
.

Furthermore,13

λ1, . . . , λn, µ = argmax
λ̃1,...,λ̃n,µ̃

n∑
i=1

n∑
j=1

wij log
(
1 + λ̃′iρ1(Zj, θ) + µ̃′ρ2(Zj, Q−L)

)
. (1.3.12)

Therefore, the estimators of θ∗ and Q∗−L are defined to be

(θ̂, Q̂−L)
def
= argmax

θ,Q−L

SELT(θ,Q−L), (1.3.13)

where the ‘trimmed’ SEL objective function

SELT(θ,Q−L)
def
= − max

λ̃1,...,λ̃n,µ̃

n∑
i=1

Ti,n
n∑
j=1

wij log
(
1 + λ̃′iρ1(Zj, θ) + µ̃′ρ2(Zj, Q−L)

)
= −max

µ̃

n∑
i=1

Ti,n max
λ̃i

n∑
j=1

wij log
(
1 + λ̃′iρ1(Zj, θ) + µ̃′ρ2(Zj, Q−L)

)
.

(1.3.14)

The trimming indicator Ti,n def
= 1

(
ĥ(Xi) ≥ bτn

)
, where ĥ(Xi)

def
= (nbdimX

n )−1
∑n

j=1 Kbn(Xi −
Xj) and τ ∈ (0, 1) is a trimming parameter, is incorporated in (1.3.14) to deal with
the ‘denominator problem’, namely, the instability of the local empirical log-likelihood∑n

j=1wij log
(
1 + λ̃′iρ1(Zj, θ) + µ̃′ρ2(Zj, Q−L)

)
caused by the density of the conditioning

variables becoming too small in the tails. Since Ti,n
p−→ 1 as n → ∞, this trimming

scheme ensures that asymptotically no data is lost.
Following Kitamura, Tripathi and Ahn, it can be shown that, under some regular-

ity conditions, θ̂ and Q̂−L are consistent, asymptotically normal, and asymptotically
efficient, i. e. their asymptotic variances match the efficiency bounds.

13 To see this, compare the first-order conditions for (1.3.12) with (1.3.10).
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1.3.4 Testing
The empirical likelihood approach provides a convenient unified environment for testing.
For instance, suppose we want to test the parametric restriction H̃0 : R(θ∗) = 0 against
the alternative that H̃0 is false, where R is a vector of twice continuously differentiable
functions such that rank ∂θR(θ∗) = dimR. Let

(θ̂R, Q̂−L,R)
def
= argmax

θ,Q−L

SELT(θ,Q−L) s.t. R(θ) = 0.

A version of the likelihood ratio statistic for testing H̃0 is given by

LR
def
= 2[SELT(θ̂, Q̂−L)− SELT(θ̂R, Q̂−L,R)].

It can be shown that, under some regularity conditions, LR
d−−−→

n→∞
χ2

dimR whenever
H̃0 is true. This result can be used to obtain the critical values for LR. Although
a Wald statistic can also be constructed, it is less attractive than LR because the
latter is internally studentised. As in parametric situations, LR can be inverted to
obtain asymptotically valid confidence intervals. A nice property of confidence intervals
based on LR is that they are invariant to nonsingular transformations of the moment
conditions. They also automatically satisfy natural range restrictions.

Since inference based on θ̂ is sensible only if (1.2.1) is true, it is important to devise
a test for H0 against the alternative that it is false. As we are dealing with conditional
moment restrictions, any specification test which first converts (1.2.1) into a finite set
of unconditional moment restrictions will not be consistent for testing H0. However,
using the equivalence in (1.2.6), a consistent test of H0 is easily obtained by replacing
the moment function in Tripathi and Kitamura (2003, Equation 1.1) with ρ1(Z, θ∗).
Note that since (1.3.6) just identifies the aggregate shares, testing the specification
of (1.2.1) and (1.3.6) jointly is equivalent to testing (1.2.1).

1.4 Simulation study
We now examine the finite-sample behaviour of the LS, GMM, and SEL estimators
to illustrate the effects of estimating a simple linear regression model specified for
the target population when data is collected by VP sampling and stratification is
either endogenous or exogenous. Code for the simulations is written in R, and the
SEL estimator of the model parameters and aggregate shares defined in (1.3.13) is
implemented using the algorithm in Owen (2013); see Appendix 1.B for details.

1.4.1 Design
We consider the design in Kitamura et al. (Section 5), which has been used earlier by
Cragg (1983) and Newey (1993). The model to be estimated is

Y ∗ = β∗0 + β∗1X
∗ + σ∗(X∗)ε∗, (1.4.1)

where EP ∗
Y ∗|X∗

[ε∗ | X∗] = 0 P ∗X∗-a.s., θ∗
def
= (β∗0 , β

∗
1) = (1, 1), and (ε∗, logX∗)

IID∼ N(0, 1).
We consider two specifications for the skedastic function in the target population: a
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(conditional) heteroskedastic design, relevant for applications, with σ∗(X∗)
def
= (0.1 +

0.2X∗ + 0.3X∗2)1/2; and a (conditional) homoskedastic design, essentially of theoretical
interest, with σ∗(X∗) def

= 1.
The target population is partitioned into two strata. Under endogenous stratific-

ation, A1 = (−∞, 1.4) and A2 = [1.4,∞). Under exogenous stratification, B1 = A1 and
B2 = A2. The aggregate shares for the four configurations are given in Table 1.B.1.
The VP sampling probabilities are (p1, p2) = (0.9, 0.3); i. e. the first stratum is heavily
oversampled, irrespective of whether the stratification is endogenous or exogenous.
Since it is typically strata with small aggregate shares that are oversampled, this
sampling design focuses on endogenous stratification, which is the object of attention
in most applications.

Tables 1.B.2 and 1.B.3 reports the summary statistics averaged across 1000 Monte
Carlo replications for the LS estimator θ̂LS, the GMMestimators θ̂GMM,endog and θ̂GMM,exog,
and the SEL estimator θ̂.14 Three sample sizes are considered, namely, n = 50, 150, 500.
Tables 1.B.4 and 1.B.5, which summarise the simulation results for estimating Q∗1,
compare the GMM estimators based on the moment conditions in (1.3.7) with the SEL
estimator Q̂1.

1.4.2 Discussion
Recall that the LS estimator is inconsistent under endogenous stratification and
consistent but generally inefficient under exogenous stratification; the GMM estimators
are consistent but inefficient under endogenous and exogenous stratification; the
SEL estimator is consistent and asymptotically efficient irrespective of whether the
stratification is endogenous or exogenous. Tables 1.B.2–1.B.5 largely confirm these
results, at least as far as estimating the model parameters is concerned.

The inconsistency of the LS estimator of β∗1 under endogenous stratification is ap-
parent from Tables 1.B.2 and 1.B.3 because the bias of the LS estimator, as a fraction
of β∗1 , remains greater than 9% in magnitude under heteroskedasticity, and greater
than 6% under homoskedasticity, as the sample size increases from 50 to 500.15 In
contrast, in both designs, the LS and GMM estimators under exogenous stratification
are practically unbiased even when n = 50. Under exogenous stratification, the LS
estimator has a smaller sampling variance than the GMM estimator for each sample
size. However, this finding can be mathematically justified only for homoskedastic
designs (recall from Example 1.3.1 that the LS estimator is asymptotically efficient
when stratification is exogenous and the error term in the regression model is condi-
tionally homoskedastic in the target population). Indeed, as shown in Appendix 1.A

14 The SEL estimator is implemented with Ti,n
def
= 1. To the best of our knowledge, how to choose

an optimal data-driven bandwidth for the SEL estimator remains an open problem. Consequently, we
naïvely chose the bandwidth by repeating the simulation experiment on a grid of bandwidths and picking
the one that minimised the average (across the simulation replications) RMSE of the SEL estimator
of β∗1 . The naïvely chosen bandwidth, labelled cn, is reported in Tables 1.B.2–1.B.5. For the sake of
comparison, we also report the SEL estimator when the bandwidth is chosen using Silverman’s rule of
thumb, namely, bn = 1.06 ŝd(X)n−1/5. Since ŝd(X) depends on the data, the bn reported in the tables is
the value averaged across the simulations.

15 This is even more so for the LS estimator of the intercept because, under endogenous stratification,
the bias of the LS estimator of β∗0 is ≈18% (resp. ≈41%) in magnitude for the heteroskedastic (resp. ho-
moskedastic) design even when n = 500. For the remainder of this section, however, we only discuss
the simulation results for the slope coefficient because it can be interpreted as an average partial effect.
Results for the intercept, which is a pure level effect, are qualitatively very similar.
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(cf. Example 1.A.1), counterexamples can be constructed to show that in heteroske-
dastic designs, the LS estimator can have higher sampling variance than the GMM
estimator when stratification is exogenous.16 Under endogenous stratification, the
GMM estimator of the slope coefficient exhibits some bias (≈2–4% in both designs)
when n = 50, but the bias is very close to zero when n = 500. This is true whether
the design is homoskedastic or heteroskedastic, although the magnitude of the bias is
higher under heteroskedasticity.

Tables 1.B.2–1.B.5 reveal that the SEL estimator using the naïvely chosen band-
width (cn), described in Footnote 14, behaves very similarly to the SEL estimator using
the Silverman’s rule of thumb bandwidth (bn). Hence, subsequent discussion regarding
the SEL estimator is based on its implementation using the naïvely chosen bandwidth.

The SEL estimator of β∗1 is consistent whether stratification is exogenous or endo-
genous. In the heteroskedastic design, the SEL estimator exhibits some bias (≈1%)
under endogenous stratification when n = 500, although its bias under exogenous strat-
ification is close to zero. Moreover, in the heteroskedastic design, the SEL estimator
beats the GMM estimator in terms of the RMSE under each stratification scheme and
for each sample size. Not surprisingly, the contrast between the two is most pronounced
when n = 500; e. g. irrespective of the stratification scheme, the RMSE of the GMM
estimator is at least 65% larger than the RMSE of the SEL estimator.

In the homoskedastic design, even though it exhibits some bias under endogenous
and exogenous stratification when n = 50, the bias of the SEL estimator is close to
zero for n = 500. However, its RMSE is larger than that of the GMM estimator even
when n = 500. This finding, which corroborates the simulation results in Kitamura
et al. (p. 1682), is likely due to the fact that the SEL estimator internally estimates
the skedastic function non-parametrically to achieve semi-parametric efficiency and is
thus unable to take advantage of conditional homoskedasticity in small samples.

Tables 1.B.4 and 1.B.5 reveal that the GMM estimator of Q∗1 is consistent whether
stratification is endogenous or exogenous. It exhibits some upward bias (≈1–2%) in
both designs and for both types of stratification when n = 50, but the bias is very
close to zero when n = 500.17 In both designs, the RMSE of the SEL estimator of Q∗1
is always slightly larger than the RMSE of the GMM estimator under endogenous
stratification, implying that in small samples, there appears to be no efficiency gain in
estimating Q∗1 jointly with the model parameters. As can be seen from Tables 1.B.4
and 1.B.5, the increase in the RMSE of Q̂1 is due to its bias because RMSE ≈ SE
whenever the bias is small. This becomes clear on comparing the bias of Q̂1 under
endogenous and exogenous stratification: the latter is always larger. The higher bias
of Q̂1 under exogenous stratification is likely a design effect.

16 It is shown in Appendix 1.A, cf. (1.A.1), that AVar
(
n1/2(θ̂GMM,exog−θ∗)

)
−AVar

(
n1/2(θ̂LS−θ∗)

)
= A+B

holds under exogenous stratification, where the matrix A is positive semidefinite and the matrix B is
negative semidefinite. Therefore, in general, it is not clear which estimator has a smaller asymptotic
variance. However, since B = 0 under conditional homoskedasticity, cf. (1.A.4), AVar

(
n1/2(θ̂LS − θ∗)

)
≤L

AVar
(
n1/2(θ̂GMM,exog − θ∗)

)
holds under exogenous stratification and conditional homoskedasticity. Al-

ternatively, under conditional homoskedasticity, the Gauss-Markov theorem implies the same result
because θ̂GMM,exog and θ̂LS are both linear and unbiased when stratification is exogenous.

17 In Tables 1.B.4 and 1.B.5, the results under exogenous stratification are almost identical for
the heteroskedastic and homoskedastic designs because P ∗(X∗ ∈ B1) is not affected by conditional
heteroskedasticity in Y ∗ (cf. Table 1.B.1).
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1.5 Conclusion
When estimating or testing economic relationships, economists often discover that the
data they plan to use is not drawn randomly from the target population for which they
wish to draw an inference. Instead, the observations are found to be sampled from a
related but different distribution. If this feature is not taken into account when doing
statistical analysis, subsequent inference can be severely biased. In this paper, we
show how to use a smoothed empirical likelihood approach to conduct efficient semi-
parametric inference in models characterised as conditional moment equalities when
data is collected by variable probability sampling. Results from a simulation experiment
suggest that the smoothed-empirical-likelihood-based estimator can estimate the model
parameters very well in small to moderately sized stratified samples.
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Appendix

1.A Comparing the asymptotic variance of LS and
GMM estimators under exogenous stratification

We begin by proving the assertion in Footnote 16, namely, that, under exogenous
stratification, AVar

(
n1/2(θ̂GMM,exog − θ∗)

)
− AVar

(
n1/2(θ̂LS − θ∗)

)
= A + B, where the

matrix A is positive semidefinite, the matrix B is negative semidefinite, and B = 0
under conditional homoskedasticity.

Recalling the expressions for VGMM,exog and VLS,exog in Example 1.3.1, we can write

AVar
(
n1/2(θ̂GMM,exog − θ∗)

)
− AVar(n1/2(θ̂LS − θ∗))

=
(
EPX

X̃X̃ ′

bexog(X)

)−1

Ω
(
EPX

X̃X̃ ′

bexog(X)

)−1

,

where

Ω
def
=
(
EPX X̃X̃

′V1,exog(X)

b2
exog(X)

)
−
(
EPX

X̃X̃ ′

bexog(X)

)
(EPX X̃X̃

′)−1
(
EPX X̃X̃

′V1,exog(X)
)
(EPX X̃X̃

′)−1
(
EPX

X̃X̃ ′

bexog(X)

)
.

Next, letting a1
def
= X̃

√
V1,exog(X)/bexog(X) and a2

def
= (EPX X̃X̃ ′)−1X̃/

√
V1,exog(X), we have

Ω = EPXa1a
′
1 − (EPXa1a

′
2)
(
EPX X̃X̃

′V1,exog(X)
)
(EPXa2a

′
1)

= EPXa1a
′
1 − (EPXa1a

′
2)(EPXa2a

′
2)−1(EPXa2a

′
1)

+ (EPXa1a
′
2)
[
(EPXa2a

′
2)−1 −

(
EPX X̃X̃

′V1,exog(X)
)]

(EPXa2a
′
1).

Consequently, under exogenous stratification we can write

AVar
(
n1/2(θ̂GMM,exog − θ∗)

)
− AVar

(
n1/2(θ̂LS − θ∗)

)
= A+B, (1.A.1)

where

A
def
=
(
EPX

X̃X̃ ′

bexog(X)

)−1

[EPXa1a
′
1 − (EPXa1a

′
2)(EPXa2a

′
2)−1(EPXa2a

′
1)]
(
EPX

X̃X̃ ′

bexog(X)

)−1
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and

B
def
=
(
EPX

X̃X̃ ′

bexog(X)

)−1

(EPXa1a
′
2)

×
[
(EPXa2a

′
2)−1 −

(
EPX X̃X̃

′V1,exog(X)
)](

EPX
X̃X̃ ′

bexog(X)

)−1

(EPXa2a
′
1).

It remains to show that A is positive semidefinite and B is negative semidefinite. To
do so, recall the matrix version of the Cauchy-Schwarz inequality (Tripathi, 1999),
namely,

(EGH ′)(EHH ′)−1(EHG′) ≤L EGG′, (1.A.2)

where G and H are random column vectors. Then, letting G def
= a1 and H def

= a2, it is
immediate from (1.A.2) that A is positive semidefinite. Next,

(EPXa2a
′
2)−1 = (EPX X̃X̃

′)
(
EPX

X̃X̃ ′

V1,exog(X)

)−1

(EPX X̃X̃
′)

≤L EPX X̃X̃
′V1,exog(X)

follows from (1.A.2) on letting G def
= X̃

√
V1,exog(X) and H

def
= X̃/

√
V1,exog(X). Hence,

B is negative semidefinite. Consequently, as A is positive semidefinite and B is negat-
ive semidefinite, it is not clear from (1.A.1) which estimator has smaller asymptotic
variance.

However, if conditional homoskedasticity holds in the target population, then

VarP ∗(Y
∗ | X∗) = σ∗2 P ∗X∗-a.s.

for some constant σ∗2 > 0. Moreover, under exogenous stratification,

VarP ∗(Y
∗ | X∗ = x)

(1.2.8)
= VarP (Y | X = x), x ∈ supp(X∗).

Hence, since P ∗X∗ � PX � P ∗X∗ , conditional homoskedasticity and exogenous stratifica-
tion together imply that

V1,exog(X) = VarP (Y | X) = σ∗2 PX-a.s.. (1.A.3)

Therefore, under conditional homoskedasticity and exogenous stratification,

(EPXa2a
′
2)−1 − EPX X̃X̃

′V1,exog(X)

= (EPX X̃X̃
′)
(
EPX

X̃X̃ ′

V1,exog(X)

)−1

(EPX X̃X̃
′)− EPX X̃X̃

′V1,exog(X)

= σ∗2[EPX X̃X̃
′ − EPX X̃X̃

′] ((1.A.3))
= 0.

It follows from the definition of B that

conditional homoskedasticity and exogenous stratification =⇒ B = 0. (1.A.4)

Hence, AVar
(
n1/2(θ̂LS − θ∗)

)
≤L AVar

(
n1/2(θ̂GMM,exog − θ∗)

)
holds under exogenous strati-
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fication and conditional homoskedasticity.
However, as demonstrated in the following example, this result may not hold under

conditional heteroskedasticity.

Example 1.A.1. Consider (1.4.1) with β0
def
= 0, i. e. a simple linear regression through

the origin. As before, EP ∗
Y ∗|X∗

[ε∗ | X∗] = 0 P ∗X∗-a.s.. Assume that only

X∗
def
=

{
c w. p. 1− r
d w. p. r

is stratified with L = 2, where B1 = (−∞, 0) and B2 = [0,+∞).
Under exogenous stratification,

AVar
(
n1/2(β̂1,LS − β∗1)

)
=

EPXX2V1,exog(X)

(EPXX2)2
=

EPXX2σ∗2(X)

(EPXX2)2

AVar
(
n1/2(β̂1,GMM − β∗1)

)
=

EPX [X2V1,exog(X)/b2
exog(X)]

(EPXX2/bexog(X))2
=

EPX [X2σ∗2(X)/b2
exog(X)]

(EPXX2/bexog(X))2
.

Let r = 1/3, c = −1, d = 2, σ∗2(c) = 1, σ∗2(d) = 4, p1 = 0.2, and p2 = 0.8. Note that
bexog(c) = p11B1(c) + p21B2(c) = p1 because c < 0, and bexog(d) = p11B1(d) + p21B2(d) = p2

because d > 0. Then, it can be verified that

EPXX
2σ∗2(X) = 6, EPXX

2 = 2, EPX [X2σ∗2(X)/b2
exog(X)] = 25, EPX [X2/bexog(X)] = 5.

Consequently,

AVar
(
n1/2(β̂1,LS − β∗1)

)
= 1.5 > AVar

(
n1/2(β̂1,GMM − β∗1)

)
= 1.

This shows that the LS estimator may be asymptotically inefficient compared to the
GMM estimator under conditional heteroskedasticity and exogenous stratification.

1.B Computation
In this appendix, we describe how the SEL estimator was implemented by adapting the
code of Owen (2017). The R function cemplik in Owen (2017) was originally written for
count random variables, allowing for ties in the data. Let Zj def

= (Yj, Xj) be IID draws
from the realised density dP , and assume that each of the n distinct values of Zj can be
taken by cj distinct draws, so that the total sample size is N def

=
∑n

j=1 cj. If we impose
on the data the vector of unconditional moment equalities EPm(Z, θ) = 0, then Owen
(2017, p. 2) shows that the empirical log-likelihood, as a function of θ, and modulo
constants not depending on θ, is obtained by solving (in our notation)

−max
λ̃

n∑
j=1

cj log
(
1 + λ̃′m(Zj, θ)

)
. (1.B.1)

Note how in (1.B.1) the original sample size N has disappeared, and only the number
n of distinct values of Zj remains. The function cemplik asks for m def

=
(
m(Z1, θ), . . . ,

m(Zn, θ)
)
and a vector c def

= (c1, . . . , cn) as inputs and delivers three outputs:
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1. The empirical log-likelihood (EL) for a given value of θ, computed at the vector
λ(dimm)×1 of Lagrange multipliers that maximise (1.B.1), i. e.

ELm(θ; c, λ)
def
= −

n∑
j=1

cj log(1 + λ′m(Zj, θ)).

2. The vector λ used to compute ELm(θ; c, λ).
3. The unconditional empirical probabilities

pj
def
=
cj
n

1

1 + λ′m(Zj, θ)
, j = 1, . . . , n.

We now describe how to compute SELT(θ) when only the conditional moment re-
striction EPY |X [ρ1(Z, θ) | X] = 0 is imposed on the data. In the following, we do not deal
with ties in the data.18 Instead, we take advantage of the formal resemblance of the
optimisation problem in (1.B.1) with the one that leads to the smoothed empirical log-
likelihood. Indeed, obtaining SELT(θ) only under EPY |X [ρ1(Z, θ) | X] = 0 is equivalent
to solving (1.3.14) with ρ2

def
= 0, i. e.

SELT(θ)|ρ2=0

def
= − max

λ̃1,...,λ̃n

n∑
i=1

Ti,n
n∑
j=1

wij log
(
1 + λ̃′iρ1(Zj, θ)

)
. (1.B.2)

From the first order conditions, it is clear that themaximisers in (1.B.2) can be recovered
as solutions to n independent maximisation problems, namely,

λi
def
= argmax

λ̃i

n∑
j=1

wij log
(
1 + λ̃′iρ1(Zj, θ)

)
, i = 1, . . . , n. (1.B.3)

The elements of c in (1.B.1) are not constrained to be integers, but are only supposed to
be positive. Hence, comparing (1.B.1) with (1.B.3), we can obtain each λi by invoking
cemplik n times with ci

def
= (wi1, . . . , win) as the weights and m replaced with ρ1

def
=(

ρ1(Z1, θ), . . . , ρ1(Zn, θ)
)
. Consequently,

SELT(θ)|ρ2=0 =
n∑
i=1

Ti,nELρ1(θ; ci, λi) (1.B.4)

with ELρ1(θ; ci, λ)
def
=
∑n

j=1wij log
(
1 + λ′ρ1(Zj, θ)

)
. The R commands used to imple-

ment (1.B.4) are as follows. Let rho1 denote
(
ρ1(Z1, θ), . . . , ρ1(Zn, θ)

)
, sel.weights be

the n× n matrix whose elements are the kernel weights wij, and trim the trimming
vector Ti,n. Then, SELT(θ)|ρ2=0 is obtained with the following code:

emplik.list <- apply(sel.weights, MARGIN = 1, function(w) cemplik(rho1, w))
SEL <- trim %*% unlist(lapply(emplik.list, "[[" , "logelr" ))

Finally, we show how to impose a conditional and an unconditional moment restric-
tion on the data, i. e. compute the objective function SELTi,n(θ,Q−L) defined in (1.3.14).

18 In our setup, all the components of Z are continuous random variables, so that ties in the data
occur with probability (P ) zero.
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We treat the optimisation problem in (1.3.14) as a two-step maximisation. In the first
step, we fix µ̄ and solve the n independent maximisation problems

max
λ̃i

n∑
j=1

wij log
(
1 + λ̃′iρ1(Zj, θ) + µ̄′ρ2(Zj, Q−L)

)
, i = 1, . . . , n. (1.B.5)

To carry out the maximisations in (1.B.5), we need to slightly modify Owen’s cemplik.
We wrote a function cemplik2 which receives an extra argument µ̄′ρ2(Zj, Q−L). The new
function cemplik2 evaluates the logarithm in (1.B.3) at 1 + λ̃′iρ1(Zj, θ) + µ̄′ρ2(Zj, Q−L)
instead of 1 + λ̃′iρ1(Zj, θ). The second step needed to compute SELTi,n(θ,Q−L) is a
maximisation over µ̄ as shown in (1.3.14), which can be carried out by a standard
optimisation routine as follows:19

SmoothEmplik <- function(mu, rho1, rho2, sel.weights) {
smooth.emplik.list <- apply(sel.weights, MARGIN = 1, function (w)

cemplik2(rho1, mu*rho2, w))↪→

SEL <- trim %*% unlist(lapply(smooth.emplik.list, "[[" , "logelr" ))
return(SEL)

}
muopt <- optim(0, SmoothEmplik, rho1, rho2, sel.weights, method = "Brent" ,

lower = -10, upper = 10)$value↪→

The finite-sample performance of the SEL estimator, implemented as described
above, is discussed in Section 1.4. The simulation experiments in Section 1.4 were car-
ried out on the high-performance computing clusters at the University of Luxembourg.
Table 1.B.6 gives some idea about the average time taken to complete one Monte Carlo
replication for the heteroskedastic design (the execution times under endogenous and
exogenous stratification are very similar).

19 This is a simplified but working version of the code we actually used. The complete code is available
from GitHub at https://github.com/Fifis/SELshares.
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Table 1.B.1: Aggregate shares for the simulation study.

Stratification Design Q∗1

endogenous homoskedastic 0.27
heteroskedastic 0.28

exogenous homoskedastic 0.63
heteroskedastic 0.63

Table 1.B.2: Simulation summary: Estimated β∗0 , β∗1 under heteroskedasticity.

Intercept Slope
Stratification n Estimator Bias SE RMSE Bias SE RMSE

LS −.1595 .4417 .4694 −.1076 .4868 .4983
50 GMM .0307 .5165 .5171 −.0408 .4757 .4772

SEL (cn = 0.3) −.0033 .2909 .2910 −.0329 .3845 .3859
SEL (bn ≈ 0.46) .0015 .3916 .3916 −.0213 .4140 .4146
LS −.1714 .3489 .3885 −.1025 .3514 .3658

endogenous 150 GMM .0234 .3980 .3985 −.0248 .3325 .3332
SEL (cn = 0.4) .0202 .1880 .1891 −.0332 .2394 .2417
SEL (bn ≈ 0.39) .0224 .2313 .2324 −.0296 .2543 .2560
LS −.1805 .2894 .3410 −.0906 .2641 .2790

500 GMM .0043 .3304 .3302 −.0061 .2456 .2456
SEL (cn = 0.8) .0107 .1316 .1321 −.0130 .1486 .1492
SEL (bn ≈ 0.31) .0096 .1242 .1246 −.0131 .1454 .1460
LS .0038 .3435 .3434 −.0032 .4275 .4273

50 GMM .0080 .4863 .4861 −.0041 .4791 .4789
SEL (cn = 0.3) −.0161 .2518 .2523 .0250 .3754 .3762
SEL (bn ≈ 0.29) −.0098 .3547 .3549 .0117 .4225 .4227
LS .0021 .2609 .2608 −.0063 .3062 .3061

exogenous 150 GMM .0042 .3838 .3836 −.0070 .3364 .3363
SEL (cn = 0.4) .0010 .1562 .1562 −.0026 .2326 .2326
SEL (bn ≈ 0.24) .0020 .1910 .1910 −.0034 .2472 .2472
LS −.0012 .2189 .2188 .0014 .2323 .2322

500 GMM −.0023 .3354 .3352 .0012 .2540 .2539
SEL (cn = 0.8) .0006 .1200 .1200 .0017 .1530 .1530
SEL (bn ≈ 0.19) .0003 .0988 .0988 .0017 .1425 .1425
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Table 1.B.3: Simulation summary: Estimated β∗0 , β∗1 under homoskedasticity.

Intercept Slope
Stratification n Estimator Bias SE RMSE Bias SE RMSE

LS −.4576 .2855 .5392 .0991 .2156 .2372
50 GMM −.0431 .3389 .3415 .0158 .2231 .2236

SEL (cn = 0.3) −.0790 .4180 .4255 .0379 .3501 .3521
SEL (bn ≈ 0.42) −.0559 .3766 .3807 .0255 .2793 .2805
LS −.4273 .1480 .4522 .0708 .0906 .1149

endogenous 150 GMM −.0053 .1680 .1680 −.0011 .0902 .0902
SEL (cn = 0.4) −.0160 .2028 .2034 .0070 .1364 .1366
SEL (bn ≈ 0.35) −.0135 .1914 .1919 .0069 .1235 .1237
LS −.4142 .0845 .4227 .0626 .0453 .0772

500 GMM −.0005 .0938 .0938 .0000 .0427 .0427
SEL (cn = 0.8) −.0047 .1026 .1027 .0031 .0577 .0578
SEL (bn ≈ 0.28) −.0061 .1053 .1055 .0037 .0590 .0591
LS −.0039 .2432 .2431 .0031 .1984 .1983

50 GMM −.0022 .2622 .2621 .0022 .2084 .2083
SEL (cn = 0.3) −.0184 .3153 .3159 .0230 .3214 .3222
SEL (bn ≈ 0.29) −.0077 .2958 .2959 .0078 .2787 .2788
LS −.0007 .1260 .1260 −.0022 .0843 .0843

exogenous 150 GMM .0011 .1314 .1314 −.0024 .0863 .0863
SEL (cn = 0.4) .0001 .1502 .1502 −.0007 .1261 .1261
SEL (bn ≈ 0.24) .0001 .1516 .1516 −.0012 .1199 .1199
LS .0027 .0703 .0703 −.0006 .0410 .0410

500 GMM .0040 .0755 .0756 −.0008 .0416 .0416
SEL (cn = 0.8) .0053 .0785 .0787 −.0029 .0554 .0555
SEL (bn ≈ 0.19) .0033 .0801 .0802 −.0012 .0595 .0595
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Table 1.B.4: Simulation summary: Estimated Q∗1 under heteroskedasticity.

Stratification Sample size Estimator Bias SE RMSE
50 GMM .0132 .0890 .0900

SEL (cn = 0.3) .0178 .0939 .0956
SEL (bn ≈ 0.46) .0209 .0940 .0963

endogenous 150 GMM .0047 .0504 .0506
SEL (cn = 0.4) .0096 .0532 .0540
SEL (bn ≈ 0.39) .0126 .0534 .0549

500 GMM .0014 .0278 .0278
SEL (cn = 0.8) .0106 .0294 .0313
SEL (bn ≈ 0.31) .0092 .0293 .0307

50 GMM .0133 .1070 .1078
SEL (cn = 0.3) .0384 .1102 .1167
SEL (bn ≈ 0.29) .0550 .1032 .1169

exogenous 150 GMM .0050 .0633 .0635
SEL (cn = 0.4) .0414 .0655 .0775
SEL (bn ≈ 0.24) .0523 .0620 .0811

500 GMM .0009 .0347 .0347
SEL (cn = 0.8) .0719 .0364 .0806
SEL (bn ≈ 0.19) .0471 .0344 .0583
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Table 1.B.5: Simulation summary: Estimated Q∗1 under homoskedasticity.

Stratification Sample size Estimator Bias SE RMSE
50 GMM .0135 .0873 .0883

SEL (cn = 0.3) .0204 .0909 .0931
SEL (bn ≈ 0.42) .0266 .0924 .0962

endogenous 150 GMM .0042 .0492 .0493
SEL (cn = 0.4) .0129 .0515 .0531
SEL (bn ≈ 0.35) .0176 .0519 .0548

500 GMM .0013 .0262 .0263
SEL (cn = 0.8) .0180 .0284 .0337
SEL (bn ≈ 0.28) .0150 .0284 .0321

50 GMM .0133 .1070 .1078
SEL (cn = 0.3) .0380 .1088 .1153
SEL (bn ≈ 0.29) .0561 .1020 .1164

exogenous 150 GMM .0050 .0633 .0635
SEL (cn = 0.4) .0420 .0654 .0777
SEL (bn ≈ 0.24) .0530 .0619 .0815

500 GMM .0009 .0347 .0347
SEL (cn = 0.8) .0720 .0364 .0807
SEL (bn ≈ 0.19) .0473 .0344 .0585

Table 1.B.6: Running time (in minutes) to estimate the parameters.

n (β∗0 , β
∗
1) (β∗0 , β

∗
1 , Q

∗
1)

50 0.036 16.17
150 0.129 45.70
500 0.523 149.4
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Chapter 2

The good, the bad,
and the asymmetric:
Evidence from a new conditional
density model

This chapter is based on joint work with Dmitry Igorevich Malakhov. A current version
is available as a working paper: Kostyrka, A. V. & Malakhov, D. I. (2021). The good,
the bad, and the asymmetric: Evidence from a new conditional density model. DEM
Discussion Paper 2021-09. https://hdl.handle.net/10993/47435
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2.1 Introduction
One of the most well-known stylised facts about the stock market is the asymmetric
relation between volatility and prices. The most popular explanation for this phe-
nomenon is the so-called leverage effect (Black, 1976; Christie, 1982): a reduction
in stock prices affects the debt-to-equity ratio, making a company riskier and thus
increasing its volatility.20 However, the leverage effect per se yields a rather weak
explanation of the observed asymmetric relation (Bollerslev et al., 2006), and volatility
feedback can also play a role: if the relation between volatility and expected returns
is positive and volatility is persistent, then positive shocks also create an anticipated
rise in volatility that increases the risk and lowers the price, dampening the impact of
the original change. Negative shocks following the aforementioned mechanism should
amplify the impact of the initial effect (Bekaert & Wu, 2000). Conversely, asymmetry
can also be hidden in price movements due to investors’ loss aversion: losses cause a
more significant change in utility than gains of the same size (Tversky & Kahneman,
1991). In such a setting, ‘bad’ and ‘good’ news of the same magnitude have different
effects on prices. Anatolyev and Petukhov (2016) show that in addition to volatility,
there is also an asymmetric reaction of the third moment, skewness, to shocks in the
S&P 500. Additionally, Engle and Manganelli (2004) argue that negative returns affect
value-at-risk values more strongly than positive returns. Therefore, both moments
and quantiles of return distributions have different empirical reactions to positive and
negative shocks. In general, the problem of asymmetry in financial economics and
econometrics is of present interest: beginning with the pioneering work of Markowitz
(1959), to date, researchers have been trying to introduce different types of asymmetry
into their models to make them more realistic and accurate.21

In this paper, we consider a novel univariate conditional density model, which
considers the heterogeneity of ‘bad’ and ‘good’ shocks. We begin the analysis with two
simple observations. First, within each trading period, both negative and positive
shocks occur, letting one interpret price changes as a sum of positive and negative
shocks. Second, agents react differently to positive and negative news. Based on these
facts, we decompose returns into a sum of correlated unobserved positive and negative
shocks, both continuous and discrete, thus yielding up to 4 distinct shocks. We call
such an approach the opposite-sign-shock model. For simplicity, later in the text, we
use the terms approach and model interchangeably, and call negative shocks ‘bad’ and
positive shocks ‘good’. With the opposite-sign-shock model, it is possible to construct
a general parametric non-Gaussian distribution of returns by combining different
time-varying copulæ (because the shocks can be correlated) and different marginal

20 Many variants of asymmetric GARCH models have been proposed to account for this asymmetric
reaction of volatility to positive and negative shocks (see EGARCH by Nelson (1991), TARCH by Zakoian
(1994), GJR-GARCH by Glosten et al. (1993), APARCH by Ding et al. (1993), ATGARCH by Crouhy
and Rockinger (1997), β-GARCH by Guégan and Diebolt (1994), ANST-GARCH by Nam et al. (2002),
DAGARCH by Caporin and McAleer (2006), ANM-GARCH by Alexander and Lazar (2009) and many
others). Comparison and discussion of different asymmetricmodels are in Engle andNg (1993), Hentschel
(1995), and Alberg et al. (2008).

21 See, for example, Ang, Chen et al. (2006), Barndorff-Nielsen et al. (2010), Bekaert and Engstrom
(2017), Bekaert et al. (2015), Bollerslev et al. (2020), Bollerslev et al. (2019), Bollerslev et al. (2006),
Carr and Wu (2007), El Babsiri and Zakoian (2001), Feunou and Okou (2019), Kiliç and Shaliastovich
(2018), Palandri (2015), Park (2016) and Patton and Sheppard (2015), Pelagatti (2009), Tauchen and
Zhou (2011).
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distributions of ‘good’ and ‘bad’ shocks.22 We show that such an approach is empirically
reasonable by comparing its out-of-sample (value-at-risk, variance forecasts) and in-
sample (information criteria and specification tests) performances with a large set of
standard GARCH models. Justifying the accuracy of this approach, we then try to
show unobserved characteristics of return behaviour.

It is common knowledge that the classical normality assumption in popular GARCH-
like models simplifies estimation and guarantees that, under several assumptions that
are somewhat restrictive from the real-world perspective (e. g. correct specification
of conditional mean and variance processes), estimators will be consistent (Newey &
Steigerwald, 1997). However, it is believed that the true conditional and unconditional
distributions of returns are far from normal.23, and forecasting accuracy is higher for
non-Gaussian GARCH extensions due to better finite-sample performance. We take
into account these phenomena; however, there are complexity costs: it is not possible to
obtain analytical expressions for the conditional density for the proposed model. In such
a situation, one has to resort to numerical methods to obtain estimates and compute
risk measures. In general, the numerical approach seems reasonable in the context of
asset returns because the true data-generating process is extremely sophisticated, and
as mentioned by Strebulaev, Whited et al. (2012), ‘. . . there exists a tension between
realism and the sorts of models that can produce closed-form estimating equations.
Bettermodels that can explainmore phenomenamay not lend themselves to closed-form
solutions. . . ’.24

Sophisticated models often suffer from stability issues that may stem from ill-
conditioning (e. g. the model Jacobian being nearly rank-deficient) or insufficient nu-
merical precision (e. g. integration, optimisation, and root-finding routines stopping
too early). To make the proposed model useful for practical purposes, we propose
several tricks to standard optimisation and numerical integration approaches that
can be helpful for many other non-trivial conditional density models.25 These tricks
include proper rescaling of all functions to be integrated and ensuring that numerical
integration routines do not converge prematurely. In addition, we use a two-step optim-
isation procedure to minimise the chances of obtaining a local optimum, which employs
stochastic and gradient-based optimisers, as well as warm-start rolling re-estimation.

Bekaert et al. (2015) developed a somewhat similar model independently, named
‘Good environment, bad environment’ (or BEGE), and our framework allows one to
obtain it as a special restricted case when the shape parameter is dynamic and the scale
is constant. The proposed approach is much more general: correlation between shocks,
potentially non-zero means of shocks, and discrete jumps. The last two points are
discussed in more detail below. Using the proposed numerical integration techniques

22 We induce another channel of asymmetry by allowing variances and correlations of shocks to react
asymmetrically to bad and good news.

23 See a discussion of the causes of observed skewness in returns in J. Chen et al. (2001), Engle and
Mistry (2014), Epstein and Schneider (2008) and Hong et al. (2007) Bollerslev and Wooldridge (1992)
present evidence of leptokurtosis.

24 A good example would be Bekaert et al. (2015), which is a special case of our approach with centred
gamma distributions and without copulæ and jumps: in spite of the fact that an analytical solution
involving hypergeometric functions exists, the authors instead use numerical techniques in their code.

25 Often, complicated models are not seriously discussed in the literature due to some sort of a
bias-variance trade-off: although the population version of a more complex model should give better
forecasts, the disproportional estimation noise can worsen forecast quality in finite samples; therefore,
a misspecified but simple and robust model can be of greater practical usability (Clark & McCracken,
2015).

43



and optimisation routine, we also obtain a higher log-likelihood value of the BEGE
model on a full sample of the original data (an increase from 1724.3, as reported in
that paper, to 1917.8). We show that although Bekaert et al. (2015) provide convincing
results for monthly data, most BEGE-like model specifications are rejected when
considering daily-frequency results based on VaR tests, including generalisations to
variants with other marginal distributions and copulæ. However, certain BEGE-like
models with copulæ achieve the lowest AICs, while certain models with copulæ have
AICs higher than that of the base BEGE model.

We consider two variants of the proposed models: with non-zero-mean and zero-
mean shocks. To interpret the shocks and their influence correctly, we first assume
that both types of shocks have non-zero means. In the non-zero-mean case, we also
consider loss aversion and risk aversion, allowing dynamic parts of the volatilities
of the signed shocks to affect expected returns differently. However, the dynamics of
returns’ mean are complex, and simple constant-mean models with zero-mean shocks
approximate the data well in terms of predicting risk measures (Anatolyev & Tarasyuk,
2015). Therefore, the zero-mean approach can be useful in practice. For the zero-mean
case, ‘good’ shocks can have negative values, and ‘bad’ shocks can have positive values.

Because discrete jumps are important for risk management, option pricing, portfolio
construction and asset pricing (Ait-Sahalia, 2004; Andersen et al., 2007; Jorion, 1988;
Kapadia & Zekhnini, 2019; Maheu & McCurdy, 2004), we model both continuous and
discrete changes in prices. However, in the literature, there is no consensus about
the extent of the jump impact on total volatility. Earlier studies found that jumps
explain a significant part of the variation (see Christensen et al. (2014) for a review);
however, recent data analyses show that discrete changes can only be attributed to
a small part of total volatility because sudden bursts of continuous volatility can be
misleadingly interpreted as discrete jumps (Bajgrowicz et al., 2015; Christensen et al.,
2014). In the proposed model, discrete changes can also be separated into negative and
positive components by following the same logic as in the continuous case. Thus, in
its most general form, the proposed model in its most general form incorporates the
following stylised facts: (1) heterogeneous impact of ‘good’ and ‘bad’ shocks on returns;
(2) volatility clustering; (3) possibility of a negative risk-return relation in a model with
non-zero-mean shocks; (4) discrete jumps in the return process; and (5) asymmetric,
highly non-linear and possibly stepped reactions of moments to positive and negative
shocks. We find that return dynamics are non-trivial, and asymmetries play a critical
role in all studied aspects of return behaviour. Therefore, investors and regulators
should consider such patterns to prevent heavy losses.

Our approach has four important advantages compared to realised volatility pa-
pers. First, the realised-variance approach, in general, is sensitive to the number of
trades and market frictions (Barndorff-Nielsen et al., 2008), which primarily limits its
application to popular and liquid assets. Second, in the realised volatility literature,
estimation is often multi-step, where the output of one estimation procedure is fed
into a different procedure, which leads to less efficient estimators. Third, a continuous
component of the realised variance cannot be separated into negative and positive parts
(Patton & Sheppard, 2015). Fourth, certain news information can be interpreted in two
ways: for example, new excellent macroeconomic statistics increase asset prices but
may also indicate economic overheating, which in turn may make market participants
believe that the central bank will increase the interest rate, which can cause price
drops. Therefore, it is nearly impossible to directly decompose shocks from observed
returns even at tick frequency.
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Using 19.5 years of daily U.S. market return data for estimating (15 years) and
backtesting (4.5 years), we compare specifications with different distributions and
copulæ and provide insights into the latent characteristics of market returns. We show
that the proposed model without jumps with dynamic scale parameters is generally
superior to the 40 well-established GARCH variants (4 distributions and 10 variance
dynamics formulæ) in terms of VaR out-of-sample forecasting (based on Christoffersen
(1998), Christoffersen and Pelletier (2004) and Engle and Manganelli (2004) tests) and
in-sample explanatory power (based on Vuong’s test for likelihood and AIC, and gener-
alised residual tests). The proposed opposite-sign-shock model also has comparable
variance forecast quality based on QLIKE and RMSE loss functions. Because we use
long training and test samples and several distinct criteria for model comparison (e. g.
quantile forecast, moment forecast, information criteria), we believe that the results of
this study are not spurious. In general, the opposite-sign-shock model with dynamic
copulæ, centred shocks and a more heavy-tailed distribution performs better. The
model without jumps with a conditional return distribution using the assumption of
centred log-logistic shocks and Clayton copula with a dynamic parameter is ‘the best-
choice model’ because it does not fail the VaR tests, achieves a violation ratio near unity
(ratio of observed VaR exceedances to their expected value, which asymptotically tends
to 1 for the true model), accurate variance forecasts and good in-sample fit according
to Vuong’s tests for information criteria and tests for generalised residuals.

As a robustness check, we estimate the same set of specifications on IBM stock
return data for the same time period (15 years of estimation sample, 4.5 years of
test sample). We show that the models that performed well on the S&P 500 data set
also performed well on IBM data in terms of VaR and variance forecast quality and
in-sample fit quality. This indicates that the set of best-performing models for daily
stock return data is likely to perform well on similar data sets.

We also provide results for the proposedmodel with static unified (arbitrarily signed),
dynamic unified, static opposite-sign, and dynamic opposite-sign jumps; jump sizes are
assumed to be normally distributed for unified jumps and chi-squared or exponential
for opposite-sign jumps. The model structure provides a natural explanation for the
following observed empirical fact: upward jumps of the VIX index are more important
than downward jumps (Park, 2016). In the proposed framework, negative and positive
jumps in returns can create only positive jumps in volatility;26 therefore, the VIX index
should have the same property. As the base model, we select the best-performing
specification without jumps, and results show that for the model with unified jumps
(both static and dynamic intensity cases), the jumps represent rare negative return
changes because their mean is negative, and they appear approximately once per day
on average. The model with opposite-sign jumps shows that ‘bad’ and ‘good’ jumps have
different behaviour. ‘Bad’ jumps appear more frequently, and their size is greater in
absolute value, based on most specifications. We find that the introduction of jumps
does not improve even the in-sample performance of models. The AICs in specifications
with opposite-sign dynamic jumps are somewhat lower than those in models with
unified jumps; therefore, such a sign decomposition of jumps may marginally improve
the performance. However, the AIC for the best specification without jumps is lower
than the AIC of all specifications with jumps.

The results obtained in this paper can be enumerated as follows:
26 However, if covariances between shocks are negative and experience discrete changes, then the total

variance can also have negative jumps.

45



1. ‘Good’ volatility is extremely persistent, and ‘bad’ volatility has a more variable
behaviour. ‘Bad’ volatility is marginally greater inmagnitude than ‘good’ volatility,
and the leverage effect is more pronounced in the dynamics of ‘bad’ volatility.

2. A sizeable correlation between shocks exists, is time-varying, and has a leverage-
like effect. During calm periods, the correlation remains near 0.7, which is high,
and decreases to nearly zero during turmoil. Therefore, during normal times,
shocks amplify one another, and during crises, there is barely any connection
between them. Therefore, we can expect the U.S. market to have, on average,
a propensity for bull trends and a lower possibility of bear trends during crisis
times. There is a mean reversion in the dynamic parameter of the copula.

3. ‘Good’ variance, ‘bad’ variance and covariance (multiplied by 2) form nearly equal
shares of total variance; ‘bad’ variance has the largest share of 38%. Both volatil-
ities and the correlation between shocks also determine the conditional skewness
of returns. Thus, a covariance between shocks is critical for correct modelling.

4. In general, specifications with zero-mean shocks are preferred over non-zero-
mean versions; therefore, the relation between returns and volatility is either
very non-linear, which cannot be caught by our model, or insignificant.

5. The overall volatility depends on total shocks (unexpected part of returns) in a
highly non-linear manner: if the total shocks are negative, then the volatility
increases steadily; however, with strongly positive returns, it stays constant or
can even drop marginally.

6. The dependence of skewness on total shocks is also non-linear: positive total
shocks increase skewness, and negative shocks have the opposite effect. However,
even small negative shocks drive the skewness downwards at a higher rate than
positive shocks drive it upwards. However, for both positive and negative values
of shocks, the skewness impact curve is convex.

7. Conditional skewness switches its sign: during crisis periods, it is positive, leading
to a higher probability of extreme positive returns, and during normal times, the
skewness has a negative sign. Such counter-cyclical behaviour, combined with
typical patterns of prices and volatility behaviours during crisis/normal times,
hints at investors’ proclivity for lottery-like behaviour27 with stocks during poor
times (‘too-bad-to-be-true’ situation) and unceasing waiting of the end of growth
during good times (‘too-good-to-be-true’ situation), thus showing the naïveté of
investors’ expectations.

8. Tails of the conditional distribution exhibit asymmetry. During good times, the
probability of extreme negative returns is higher than the probability of extreme
positive returns with the same absolute value. For crisis periods, the opposite is
true. The probability of positive returns is only slightly higher than the probability
of negative returns throughout the entire time period. Therefore, asymmetry
mostly comes from the tails, not from the centre of the distribution.

9. At least for daily frequency, the inclusion of jumps with normal or exponentially
decaying size densities does not improve even the in-sample performance of
the model. Therefore, we can conclude that if the model has rich dynamics of
continuous shocks, jumps are not so relevant.

Therefore, asymmetry is present nearly everywhere: in the reaction of ‘bad’ volatility
to positive and negative shocks, in the reaction of correlation between ‘bad’ and ‘good’
shocks to positive and negative shocks, in volatility and skewness news impact curves,

27 Stocks with low prices, high volatility and high skewness are often called lotteries (Kumar, 2009).
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in the dissimilarity of the dynamics of ‘bad’ and ‘good’ volatilities, and in signed jump
behaviour.

This paper is organised as follows. Section 2.2 describes the proposed model in its
simplest form; in Section 2.3, we describe the full version of the model with jumps;
Section 2.4 suggests an estimation procedure of said model; Section 2.5 contains a
small simulation study that shows the behaviour of the proposed model under a known
data-generating process; Section 2.6 provides a description of market return data
and competing GARCH variants that we benchmark the proposed models against;
Section 2.7 yields forecasting and inference results; Section 2.3 describes estimation
results with jumps; Section 2.9 provides final conclusions. The appendices contain
more details on the replication of Bekaert et al. (2015), a brief description of the method
we use to improve numerical stability, and a modification of Vuong’s test for model
selection.

2.2 Opposite-sign-shock model
Consider the logarithmic returns, rt, for certain assets. The dynamic process for rt can
be naturally described in the following form:

rt = µ+ ψt, t = 1, . . . , T, (2.2.1)

where µ is the constant part of returns and ψt is the dynamic process. We can separate
ψt into two parts, ‘good’ and ‘bad’:

ψt = ε+
t + ε−t ,

where ε+
t is a random variable bounded from below and ε−t is a random variable bounded

from above. Assume that both ε+
t and ε−t have continuous cumulative probability

functions from the scale-shape family of distributions, F̃ε+t (x | Ωt−1) and F̃ε−t (y | Ωt−1)
(with conditioning on Ωt−1, all returns prior to and including t− 1). We assume that
the scale parameters are dynamic:

ε+
t =

√
σ2
ε+t
· e+

t , ε−t =
√
σ2
ε−t
· e−t ,

where e+
t are IID random variables with scale 1 bounded from below, supp e+

t = [e+
t ,+∞),

and e−t are IID random variables with scale 1 bounded from above, supp e−t = (−∞, e−t ].
We consider two cases: strictly positive ‘good’ and negative ‘bad’ shocks (e+

t = e−t = 0 ∀t)
or zero-mean shocks with centred distributions, such that e+

t < 0 and e−t > 0.
The conditional scale parameters σε+t and σε−t are defined in a GJR-GARCH-like

manner (Glosten et al., 1993) (see formula (2.2.6) below). The baseline shocks e+
t and e−t

have continuous CDFs F̃e+t (x) and F̃e−t (y). We name e+
t ‘good’ shocks and e−t ‘bad’ shocks,

while
√

Var ε+
t and

√
Var ε−t represent ‘good’ volatility and ‘bad’ volatility, respectively.

Using such a decomposition, we can consider rt as a weighted mixture of ‘good’ and
‘bad’ stochastic shocks with volatilities as weights. These shock weights depend on
the information from the previous periods, creating non-linear inertia in returns. If
conditional scales have disparate dynamics, then shocks of different signs have different
impacts, and the model can exhibit asymmetric properties. To replicate the results of
Bekaert et al. (2015), we also estimate specifications with dynamic shape and constant
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scale parameters in the same manner: formula (2.A.1) (identical to Bekaert et al.,
2015, eq. (3) up to scaling) generates dynamic shape series. If one considers such
a specification with conditional shape, then the aforementioned shock weights will
be constant; however, the shocks themselves will have time-varying properties. We
refer to the dynamic-scale version as the default version due to its better tractability.
Additionally, if one assumes non-zero-mean shocks, then such a decomposition obtains
an intuitive and straightforward interpretation because each of the shocks can have
only one sign.

The conditional expectation of returns follows:

Et−1rt = µ+
√
σ2
ε+t
µe+ +

√
σ2
ε−t
µe− ,

where µe+ is the unconditional expectation of ‘good’ shocks and µe− is the unconditional
expectation of ‘bad’ shocks. We do not provide a deep qualitative interpretation of e+ and
e− because certain news information (e. g. news about better economic prospects) can
negatively affect the price of counter-cyclical companies because stock buyers and sellers
have directly opposite preferences for the future performance of firms. Bartram et al.
(2012) provide a discussion of the ‘bad’ and ‘good’ parts of the idiosyncratic volatility
of American firms. The higher idiosyncratic volatility of returns of American firms
compared to foreign firms is associated with factors positively affecting welfare: investor
protection, stock market development, innovation, and growth opportunities. Therefore,
volatility is not ultimately a bad thing, but can also represent growth potential and
entrepreneurial inventiveness. Therefore, we simply treat e+ as the shocks that drive
returns upwards and e− as the shocks that decrease returns, and their fundamental
interpretation strongly depends on the situation. Because µe− and µe+ can take values
of arbitrary magnitude, such models combine loss-aversion and risk-aversion effects
because the dynamic scale parameters of the signed shocks, which approximate risk,
have a different impact on expected returns. Therefore, the market interprets the
downward and upward risk in different ways, and the dynamics of expected returns
become richer.

If shocks have non-zero means, their unexpected parts determine corresponding
volatilities, and their means relate expected returns to these volatilities. Negative
values of µe− lead to the possibility of a negative risk-return trade-off, diminishing the
effect of volatility feedback and assisting in the creation of bear trends. Beginning
with the ICAPM of Merton (1973), it is assumed that expected returns have a positive
connection with variance; however, modern literature often finds a negative risk-return
relation (Ang, Hodrick et al., 2006, 2009; Atilgan et al., 2019; Babenko et al., 2016;
Campbell et al., 2008; Ghysels et al., 2014; Glosten et al., 1993; Hou & Loh, 2016;
Stambaugh et al., 2015). As can be inferred from recent empirical findings (Adrian
et al., 2019; Ghysels et al., 2014), the risk-return relation can be negative during crisis
periods and positive during good times. In the proposed case, we obtain a similar
picture: when a crisis begins, the influence (volatility) of bad news is heavier; therefore,
an overall negative risk-return relation can occur. In the proposed models, the sign of
the impacts of ‘bad’ and ‘good’ volatilities on expected returns also typically coincides
with the findings of Kiliç and Shaliastovich (2018, Table 3), who show that ‘bad’ realised
variance has a negative effect on future returns, and ‘good’ variance has a positive
effect. Therefore, the ambiguity with the coefficient sign in classical GARCH-in-mean
models (Engle et al., 1987) can be caused by the aggregation of shocks.

In the standard approach, expected returns are restricted to be positive, and rational
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agents should expect an upward trend in prices even during crises when the bear trend
on the price graph is clear. Over the course of the last 25 years, approximately 46%
of S&P 500 daily returns have been negative. In this case, investors should admit
the possibility of negative returns. Finally, with strictly positive expected returns,
it is unclear why investors would use short selling; our framework yields a natural
statistical argumentation why the conditional expectation of returns can be negative.

The zero-mean assumption for shocks is common in GARCH modelling due to
the problem of correct specification of the mean process and insensitivity of variance
forecasting accuracy to the mean process specification (Anatolyev & Tarasyuk, 2015).
A zero-mean approach can overcome the problems associated with situations where
complex specifications turn out to be incorrect and cause more problems than expli-
citly incorrect but simple specifications. However, in the case of zero-mean shocks,
the interpretation of the decomposition is less trivial because a large portion of the
probability mass of positive (negative) shocks will be shifted to negative (positive)
values; therefore, both shocks can have positive and negative values. In such cases,
the marginal distribution of zero-mean ‘bad’ shocks does not fully determine the shape
of the left part of the joint distribution, and ‘good’ shocks do not fully determine the
right part.

It is reasonable to assume that ‘good’ and ‘bad’ shocks correlate. To model this
assumption, one should use a copula function (Sklar, 1959) to connect the marginal
distribution functions of the shocks. The bivariate conditional joint cumulative distri-
bution function of shocks can be written as

Fε+t ,ε−t (x, y | Ωt−1) = S
(
F̃ε+t (x | Ωt−1), F̃ε−t (y | Ωt−1)

∣∣ Ωt−1

)
, (2.2.2)

where F̃ε+t (x) is the marginal cumulative distribution function of weighted ‘good’ shocks,
F̃ε−t (y) is the marginal cumulative distribution function of weighted ‘bad’ shocks, and
S(· | Ωt−1) is the conditional copula function (Patton, 2006). Because we use continuous
marginal distributions, the copula function is unique for certain joint distributions
(Sklar, 1959). This structure of the joint distribution function allows for greater
flexibility in parameterisation because different cumulative probability functions for
‘bad’ and ‘good’ shocks can be chosen; and using various conditional copulæ, one
can account for non-trivial dependence and construct and test a general and flexible
model (2.2.1) in the manner conditional density models are designed (Anatolyev &
Petukhov, 2016; Hansen, 1994; Harvey & Siddique, 1999; Rockinger & Jondeau, 2002).

Because shocks can be centred (zero-mean shocks) or non-centred (non-zero-mean
shocks), we use f̃ε+t (x) to denote the PDF of weighted ‘good’ shocks,ε+

t , in the general
case:

f̃ε+t (x)
def
=

{
fε+t (x), no centring,
fε+t (x− σε+t µe+), centring.

The PDF of weighted ‘bad’ shocks is defined similarly.
Let Sab(x, y)

def
= ∂a+b

∂xa∂yb
S(x, y) denote the mixed partial derivative of the copula func-

tion. Using (2.2.2), one obtains the following conditional joint probability density
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function:

fε+t ,ε−t (x, y | Ωt−1) =
∂2

∂x∂y
Fε+t ,ε−t (x, y | Ωt−1)

= f̃ε+t (x | Ωt−1) · f̃ε−t (y | Ωt−1) · S11
(
F̃ε+t (x | Ωt−1), F̃ε−t (y | Ωt−1)

∣∣ Ωt−1

)
.

(2.2.3)

The probability density function of ψt follows from the formula for the density of a
sum of two random variables:

fψt(z | Ωt−1) =

∫
supp ε−t

fε+t ,ε−t (z − v, v | Ωt−1) dv. (2.2.4)

The density of returns themselves can be formulated trivially via the density of
shocks:

frt(z | Ωt−1) = fψt(z − µ | Ωt−1). (2.2.5)
Now we specify the particular distributions, copulæ, and dynamics of parameters.

We use the following GJR-GARCH formula for dynamic scale parameters because they
can capture volatility clustering and asymmetry effects:σ

2
ε+t

= α0 + α1σ
2
ε+t−1

+ α2r̃
2
t−1 + α−2 r̃

2
t−1I−t−1,

σ2
ε−t

= β0 + β1σ
2
ε−t−1

+ β2r̃
2
t−1 + β−2 r̃

2
t−1I−t−1,

(2.2.6)

where r̃t def
= rt if there is no de-meaning or r̃t def

= rt − Et−1rt if the returns are de-
meaned (in this case, r̃t can be interpreted as the ‘unexpected’ part of returns), and
I−t−1

def
= I(r̃t−1 < 0) is the indicator function equal to 1 if the returns on the previous

day (original or de-meaned) were negative and 0 otherwise. To save space, we present
results only for specifications with de-meaning; those without de-meaning yielded
similar or marginally worse results. We also used VAR-type specifications of volatility
and included shock scale parameters in the dynamics of the copula parameter. However,
those specifications yielded nearly identical results; thus, we also omit them from the
discussion.

We choose two distributions for e+
t and e−t , gamma and log-logistic, each of which

is either centred or not centred.28 The gamma distribution exhibits the property of
an exponential law of tail decay; thus, both tails of the modelled distribution will be
relatively light, and for large values of θ, it will be similar to a Gaussian distribution.
The tail of the log-logistic distribution, however, is extremely heavy for small θ, exhib-
iting a power law of decay. Log-logistic distribution with shape θ has finite moments
of order k < θ. With large values of θ, the log-logistic distribution can also be used to
model the return distribution with light tails because its excess kurtosis tends to 6/5
as θ → ∞, and the distribution tends to simple logistic with infinitesimal variance.
Estimation of the shapes of underlying log-logistic distributions will thus show whether
the tails of the return distribution are heavy or not. The distributions of ‘good’ and ‘bad’
shocks have different shape parameters, θ+ and θ−, which allows the distribution of

28 The PDF of the gamma distribution is xθ−1 exp
(
− x
σ

)
/(Γ(θ)σθ) for x ≥ 0. The PDF of log-logistic

distribution is θ
σ (x/σ)θ−1/(1 + (x/σ)θ)2 for x ≥ 0, where θ denotes the shape parameter, σ denotes the

scale parameter, and Γ denotes the gamma function.
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‘bad’ shocks to have a tail thickness different from that of ‘good’ shocks.29 For simplicity,
we assume that both shocks come from the same family of densities.

To make the proposed model parsimonious, we consider copula functions S with only
one parameter governing the strength and direction of dependence (see Table 2.2.1 for
the list). Using the results from Anatolyev and Petukhov (2016), it is natural to assume
that the copula dependence parameter κt, which determines the correlation of weighted
shocks and affects higher moments of the joint distribution, follows a specification
similar to that of the dynamic scale parameters:

κt = γ0 + γ1κt−1 + γ2r̃
p
t−1 + γ−2 r̃

p
t−1I−t−1. (2.2.7)

In this study, the returns are raised to powers p = 2 or 3 because the latter transforma-
tion preserves the sign of the shocks while amplifying the differences between shocks
with large and small absolute values. Naturally, specifications with a static copula
(where κt = γ0) can also be considered.

Table 2.2.1: Copula functions used in this paper

Copula C(G,H) Range
Independence G ·H —
Plackett 1+(κ−1)(G+H)−

√
[1+(κ−1)(G+H)]2−4κ(κ−1)F ·G

2(κ−1)
κ > 0

Cubic G ·H[1 + κ(G− 1)(H − 1)(2G− 1)(2H − 1)] −1 ≤ κ ≤ 2
AMH G·H

1−κ(1−G)(1−H)
−1 ≤ κ ≤ 1

Clayton (G−κ +H−κ − 1)−1/κ κ > 0

G and H denote marginal distribution functions.

As mentioned previously, the return density function in the proposed model is
quite general due to the choice of underlying distribution functions. However, shocks
with gamma or log-logistic distributions with large shape parameters can potentially
generate densities that are similar to Gaussian densities. The copula function and
the differences in shape and scale parameters determine the skewness in return
distribution; thus, one can directly infer that volatilities and correlation between the
shocks affect the skewness of returns.

We assume that the model is correctly specified (the proposed density is the true
density of returns) and that the standard conditions for weak consistency and normality
of the maximum likelihood estimator hold (Wooldridge, 1994, Theorems 5.1 and 5.2).
The presence of copulæ does not have any implications for identification because we
assume that the conditional joint density in Eq. 2.2.3 containing the chosen copula is
the true density; therefore, there are no partial-identification-related problems, such
as those described in Fan et al. (2014), stemming from the lack of information on the
joint distribution.

29 For the log-logistic distribution, the moments of order k exist only if the shape parameter is greater
than k; however, in our estimation, they turned out to be greater than 4. Thus, we obtained finite values
of conditional volatility, skewness, and kurtosis.
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Figure 2.2.1: Conditional density of the shock sum used in this paper
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The left panel shows how the proposed model with a non-centred gamma distribution of signed shocks
can produce return distributions similar to a Gaussian distribution. Clayton copula is used. The
parameter κ = 0.1 corresponds to weak positive dependence, and κ = 5 to strong positive dependence.
Shape parameters: θ+ = θ− = 20, scale parameters: σε+ = σε− = 0.0017.
The right panel shows how the proposed model with a non-centred log-logistic distribution of signed
shocks can produce asymmetric heavy-tailed return distributions. Plackett copula is used. The parameter
κ = 0.1 corresponds to strong negative dependence, and κ = 5 to strong positive dependence. Shape
parameters: θ+ = 5, θ− = 10. Scale parameters: σε+ = 0.030, σε− = 0.025.
Grey lines correspond to the Gaussian (left) and skew-t (right) distributions with densities closest to the
proposed ones. Skewness is introduced into the t distribution according to formula (2.6.1).

2.3 Adding jumps to the model
Because discrete changes are important for return dynamics (Ait-Sahalia, 2004; An-
dersen et al., 2007; Bollerslev et al., 2016; Bollerslev et al., 2019; Kapadia & Zekhnini,
2019; Maheu & McCurdy, 2004; Maheu et al., 2013; Patton & Sheppard, 2015), we in-
troduce arbitrarily signed (unified) and opposite-signed (separate positive and negative)
jumps into the model.

2.3.1 Unified jumps
We re-specify (2.2.1) as follows:

rt = µ+ ψt, ψt = ε+
t + ε−t + νt,

νt =

{
0, P(nt = 0),∑nt

i=1 ξi;t, P(nt = i),

nt ∼ Pois(λt),

ξ1;t, . . . , ξi;t
IID∼ N(µξ, σ

2
ξ ),

where ξi;t are the magnitudes of jumps (continuous IID random variables), and nt is
their number (conditionally dependent Poisson random variables). For simplicity, the
following notation will be used: νi;t def

=
∑i

k=1 ξk;t. We thus use the normality assumption
to simplify the model and be consistent with the existing literature (e. g. Maheu and
McCurdy (2004)). Additionally, such a setting is important because we can analyse
whether the model can separate continuous fat-tailed shocks from discrete jumps from
thin-tailed distributions. In many cases, it is difficult to say whether an abrupt price
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change is caused by a discontinuous jump or by a realisation from the tail region of a
fat-tailed continuous shock.

Due to a property of Gaussian random variables, νi;t ∼ N(i · µξ, i · σ2
ξ ). Therefore,

jumps in return dynamics create discrete changes in volatility, making the volatility
process less smooth, which corresponds with empirical findings (Todorov & Tauchen,
2011). Although centred or non-centred jumps can be used for modelling these discrete
changes, the case of non-centred jumps is more important because jumps affect the
risk premium, and the expected jump size determines the sign of the return-jump
relation. As mentioned in Bollerslev et al. (2016), investors can treat jump risk in a
different manner compared to smooth risk because it is more difficult to hedge from
jumps. Compared to the approach in the literature, where jumps must be rare and
large (e. g. Tauchen and Zhou (2011)), such strong assumptions are unnecessary with
the proposed parametric settings, where both types of shocks exhibit a different nature.

Following the approach from the previous section, we use copula functions to model
the dependence between ‘bad’ and ‘good’ shocks and between continuous shocks and
jumps. To avoid considering models with sums of many random variables requiring
the computation of quadruple, quintuple, and more multiple integrals, we use nested
copulæ. We model the continuous shocks with copula S and then connect the copula S
and jumps with the outer copula C. The joint cumulative distribution function becomes
a weighted sum, and we drop the ‘| Ωt−1’ conditioning notation, which is implied:

Fε+t ,ε−t (x, y, u | Ωt−1) = S
(
Fε+t (x), Fε−t (y)

)
· P(nt = 0)

+
∞∑
i=1

C
(
S
(
Fε+t (x), Fε−t (y)

)
, Fνi;t(u)

)
· P(nt = i),

(2.3.1)

where C is the outer bivariate copula for connecting jumps and continuous shocks and
S is the bivariate copula connecting shocks.

Let S denote the copula for shocks; C the outer copula; S
def
= S

(
Fε+t (·), Fε−t (··)

)
,

where the arguments (·) and (··) are the arguments of fε+t and fε−t preceding in the
same product, respectively; and Ci

def
= C(S, Fνi;t(···)), where (···) is the argument of fνi;t

preceding in the same product. The arguments of S and C are omitted to maintain the
expression concise. With these settings, we have a copula between continuous shocks
and the overall jump change in the returns. Like previously, let the superscript of the
copula function denote the order of the mixed derivative. The density function for the
overall stochastic part is

fψt(z) =

∫
supp ε−t

fε+t (z − y) · fε−t (y) · S11 dy · P(nt = 0)

+
∑
i∈N

∫
R

∫
supp ε−t

fε+t (z − y − w) · fε−t (y) · fνi;t(w) ·

· (S11C11
i + S01S10C21

i ) dy dw · P(nt = i),

(2.3.2)

where P(nt = k) is the probability that a Poisson random variable equals k (i. e.
λkt e

−λt/k!). We assume the same distributions and copulæ as in the model without
jumps.

The first apparent problem is the fact that nt can take arbitrarily large integer
values; therefore, the number of summation terms in (2.3.2) will be infinite. For
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practical purposes, we assume that the market cannot experience more than m jumps,
where m is sufficiently high, at any point in time. We thus restrict the summation
limit in (2.3.2) to a finite number.30 Because the distribution of the number of jumps
is truncated at m, the probabilities P(nt = 0), . . . ,P(nt = m) are re-normalised so that
they add up to one:

P̃m(nt = i) =
P(nt = i)

P(nt ≤ m)
.

Finally, we introduce dynamics into the parameter of the number of jumps distribu-
tion:

λt = δ0 + δ1λt−1 + δ2πt−1,

where πt−1 is the intensity residual as defined by Maheu and McCurdy (2004):

πt−1 = E(nt−1 | Ωt−1)− λt−1 =
∞∑
j=0

jP(nt−1 = j | Ωt−1)− λt−1. (2.3.3)

The probability in the formula above is equal to

P(nt = j | Ωt) =
frt(rt | nt = j,Ωt−1)P(nt = j | Ωt−1)∑
j frt(rt | nt = j,Ωt−1)P(nt = j | Ωt−1)

. (2.3.4)

2.3.2 Opposite-sign jumps
Jumps of opposite signs can have a different influence on returns and volatility dynamics
(Park, 2016; Patton & Sheppard, 2015; Tauchen & Zhou, 2011). Therefore, to take
this phenomenon into account, we consider a specification with distinct ‘good’ and ‘bad’
jumps, which yield up to 4 latent variables in the return dynamics:

rt = µ+ ψt, ψt = ε+
t + ε−t + ν+

t + ν−t ,

ν+
t =

{
0, P(nt = 0),∑nt

i=1 ξ
+
i;t, P(n+

t = i),
ν−t =

{
0, P(nt = 0),∑nt

i=1 ξ
−
i;t, P(n−t = i),

{
n+
t ∼ Pois(λ+

t ),

n−t ∼ Pois(λ−t ),

where ξ+
i ∼ IID and ξ−i ∼ IID are the ‘good’ and ‘bad’ jumps that are bounded from below

and from above, respectively. We consider exponential and Rayleigh distributions31 for
the intensity of signed jumps to maintain the number of parameters low and possibly
account for the presence of zero (exponential) or non-zero (Rayleigh) modes in the
jump intensity. We do not centre these distributions, so the expectations of jump sizes
determine the sign of the return-jump relationship. We thus do not make assumptions
similar to those in Tauchen and Zhou (2011), where a jump dominates the overall daily
price change; therefore, the jump sign determines the return sign. This model variant
is extremely sophisticated, and the dynamics of this model are rich and can consider
many stylised facts about asset returns.

Again, we omit all conditioning from the following notation for simplicity. In prin-
ciple, ‘good’ and ‘bad’ jumps can be connected by completely different copulæ; thus, the

30 Following the results from Maheu and McCurdy (2004), we use m = 6.
31 The PDF of exponential distribution with rate 1/σ (inverse scale) is exp(−x/σ)/σ. The PDF of

Rayleigh distribution with scale σ is x · exp[−x2/(2σ2)]/σ2.
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joint distribution function can be written as
S
(
Fε+t (x), Fε−t (y)

)
w. p. P(n+

t = 0, n−t = 0),

C
(
S
(
Fε+t (x), Fε−t (y)

)
, Fν+i;t(u)

)
w. p. P(n+

t = i, n−t = 0),

C
(
S
(
Fε+t (x), Fε−t (y)

)
, Fν−j;t(v)

)
w. p. P(n+

t = 0, n−t = j),

C
(
S
(
Fε+t (x), Fε−t (y)

)
, J
(
Fν+i;t(u), Fν−j;t(v)

))
w. p. P(n+

t = i, n−t = j),

where i, j ∈ N.
We obtain the density of the sum of random variables by integrating the joint

density function. Similar to the previous section, let S def
= S

(
Fε+t (·), Fε−t (··)

)
, where the

arguments (·) and (··) are the arguments of fε+t and fε−t preceding in the same product,
respectively; let J def

= J
(
Fν+t (···), Fν−t (····)

)
, where the arguments (···) and (····) are the

arguments of fν+i;t and fν−j;t preceding in the same product, respectively; and finally, let
C

def
= C(S, J), Ci· def

= C
(
S, Fν+i;t(···)

)
, C·j def

= C
(
S, Fν−j;t(····)

)
. Then,

fψt(z) =

∫
supp ε−t

fε+t (z − y) · fε−t (y) · S11 dy · P(n+
t = 0, n−t = 0)

+
∑
i∈N

∫
supp ν+t

∫
supp ε−t

fε+t (z − y − u) · fε−t (y) · fν+i;t(u) ·

·
(
S11C11

i· + S01S10C21
i·
)

dy du · P(n+
t = i, n−t = 0)

+
∑
j∈N

∫
supp ν−t

∫
supp ε−t

fε+t (z − y − v) · fε−t (y) · fν−j;t(v) ·

·
(
S11C11

·j + S01S10C21
·j
)

dy dv · P(n+
t = 0, n−t = j)

+
∑
i∈N

∑
j∈N

∫
supp ν−t

∫
supp ν+t

∫
supp ε−t

fε+t (z − y − u− v) · fε−t (y) · fν+i;t(u) · fν−i;t(v) ·

·
[
J11(C11S11 + S01S10C21) + J01J10(S11C12 + S01S10C22)

]
dy du dv · P(n+

t = i, n−t = j).

(2.3.5)

Because i and j take integer values up to infinity because n+
t and n−t are Poisson

random variables, we must apply truncation and re-normalisation of probabilities.32
We again assume that the parameter of the Poisson distribution of the number of

jumps might vary over time for both ‘good’ and ‘bad’ jumps, and dynamics similar to
those of unified jumps can be introduced:{

λ+
t = δ+

0 + δ+
1 λ

+
t−1 + δ+

2 π
+
t−1,

λ−t = δ−0 + δ−1 λ
−
t−1 + δ−2 π

−
t−1,

where the intensity residuals π+
t−1 and π−t−1 are computed separately based on (2.3.3)

and probabilities P(n+
t = i | Ωt) and P(n−t = j | Ωt) based on (2.3.4) with parameters

governing positive and negative dynamics separately, assuming independence of n+
t

32 This version of the model is computationally intensive; thus, we use i = 0, . . . , 3 and j = 0, . . . , 3.
The resulting expression for fψt(z) in this case contains 1 single, 6 double, and 9 triple integrals.
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and n−t for computational simplicity.

2.4 Estimation
In the most general model without jumps, the parameters to be estimated are the 4 of
the ‘good’ scale dynamics (α0, α1, α2, α−2 ); 4 of the ‘bad’ scale dynamics (β0, β1, β2, β−2 );
2 shapes (θ+, θ−); 1 mean (µ), and the copula parameters, of which there is just 1 in
the static case, γ0, and 3 more, γ1, γ2, and γ−2 , in the dynamic case;33 thus, there are
15 parameters in total to estimate. Following Bekaert et al. (2015), if a dynamic shape
is used instead of a dynamic scale, nothing changes fundamentally.

The addition of jumps also does not change the following estimation procedure if the
researcher adjusts the definition of frt . However, the number of parameters increases
dramatically, while, due to the recurrence relation in (2.3.3), it becomes impossible
to parallelise computations efficiently, so estimation routines for models with jumps
(including inference) take more time.

Because the likelihood function is a product of conditional densities, its maximisa-
tion problem is

max
{α},{β},{γ},
θ+,θ−,µ

T∑
t=1

log frt(z | Ωt−1) = maxL(α0, . . . , β0, . . . , γ0, . . . , θ
+, θ−, µ), (2.4.1)

where the expression for the conditional density at time t is that in (2.2.5). The number
of integrals being evaluated for one value of the parameter vector is equal to the
number of time periods. Such likelihood functions require certain precautions during
optimisation, which we discuss below. As mentioned earlier, Bekaert et al. (2015)
provide an analytical solution but still use numerical integration techniques; therefore,
the proposed approaches are also comparable in terms of estimation accuracy, and in
Appendix 2.A, we show the replication and improvement of original estimation results
from Bekaert et al. (2015). We do not use data other than the return series, such as
realised volatility measures, in model estimation.

For certain copula functions, the parameter κt must belong to a specific range.
However, large absolute values of rt severely limit the admissible range of γ2 and γ−2 , and
values of κt near the boundary make the joint density near-degenerate. This problem
can be addressed by applying a transformation (e. g. a sigmoid or a strictly increasing
non-negative function) to the series from Equation (2.2.7). We use a dampened version
of the κt series obtained after applying slow-growing Lipschitz-continuous functions,
even if the copula allows any parameter from R (see Appendix 2.B in Table 2.B.1).

We directly integrate densities that appear in the likelihood function. At this step,
we use four techniques to improve numerical stability. First, we normalise the integrand
by
√
σ2
ε+t

+ σ2
ε−t

to ensure that the region where the function should be evaluated is

33 As mentioned earlier, all distributions in this paper come from a scale-shape family. Should a
baseline distribution that does not have an explicit scale parameter governing the variance be chosen,
the volatility can be incorporated into it via multiplication: f̃ε+t (x) = f̃e+t

(x/σε+t
)/σε+t

, and similarly for
f̃ε−t

(x).

56



always captured by the built-in quadrature.34 Second, when the integrand has limited
support, we set the limits explicitly instead of relying on integration from −∞ to +∞,
which has good coverage only in a narrow region (e. g. the integral in (2.2.4) is evaluated
from −∞ to σε−t e

−
t ). Third, we use a small relative tolerance (10−10 for specifications

without jumps and 10−7 for specifications with jumps) as the minimum requested
accuracy of the Gauss-Kronrod quadrature to eliminate the chance of premature
convergence. Finally, during the computation of log-likelihood derivatives, we compute
the entire series of numerical derivatives for individual log frt prior to summation in
Eq. (2.4.1) for multiple difference steps, and then take the median numerical derivative
for each t. We use medians of two-sided numerical derivatives across 5 difference steps
equally spread on a logarithmic scale (e. g. 10−6 · (0.25, 0.5, 1, 2, 4)).

Derivative-based optimisation techniques can yield accurate results but require a
good starting point. Because the target function is highly non-linear in parameters
and might have multiple local optima, we use the following approach. In the first step,
we use a method of derivative-free meta-heuristics called differential evolution global
optimisation. The implementation of differential evolution is based on Ardia et al.
(2011), is reasonably fast, and in simulations, outperforms other methods, such as
particle swarm and generalised simulated annealing, in terms of speed and convergence.
Differential evolution is a smart brute-force approach that randomly generates an initial
population of parameter values inside a multidimensional hypercube with sufficiently
wide boundaries in each dimension and produces further parameter populations based
on the function values that target the global optimum using stochastic merging. This
procedure is robust to the existence of multiple local optima. We choose appropriate
hyperparameters of the differential evolution, such as strategy, crossover probability,
and differential weighting, based on simulation results with a known DGP. After a good
initial value has been found, we search for the optimum using the BFGS method.35 All
coefficients should be properly scaled during optimisation tomake numerical derivatives
more reliable. For forecasting purposes, we use rolling-window re-estimation. In the
first sub-sample, we maximise the likelihood in two steps. For subsequent sub-samples,
we use the warm start of the BFGS algorithm from the optimum in the previous window
and update the estimates. Re-estimation from the previous optimum is rather fast and
can be run on a daily basis on a standard computer.

For inference, we compute the QML standard errors numerically (White, 1982). We
use the first technique described above to evaluate the Hessian, using 3 differences at
each step of repeated differencing, which indicates that the final result is the median
difference of median differences; thus, the breakdown point of this approach is high.

34 If the computed value of an individual likelihood function is below the machine epsilon and there is
possible premature convergence (frt < 1.49 · 10−8), then we make two more attempts of integration, with
scaling factors equal to unity and the median of all (σε+t

, σε−t
)—and retain the maximum value of the

three integration procedures.
35 Constraints do not need to be applied as long as the likelihood function is defined to be zero if any

of the shape or scale parameters is negative or if the copula parameter lies outside the admissible range
because no damping is applied.
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2.5 Simulation
To check the finite-sample performance of the proposedmodel and ensure that the global
optimum can be attained and the true values recovered, we simulate a known DGP
and then estimate the structural parameters of the model and check the distribution
of the estimates. We simulate a process with independent shocks with non-centred
gamma distribution, dynamic scale, and returns with de-meaning. The parameters of
the true DGP are based on the estimates of one of the specifications, specifically, from
the one with non-centred gamma shocks:σ

2
ε+t

= 2.5 · 10−7 + 0.9σ2
ε+t−1

− 0.004r̃2
t−1 + 0.03r̃2

t−1I−t−1,

σ2
ε−t

= 6.0 · 10−7 + 0.9σ2
ε−t−1

− 0.008r̃2
t−1 + 0.05r̃2

t−1I−t−1,
θ+ = 2.5, θ− = 2, µ = 0.0004.

(2.5.1)
In this simulation, we generate independent shocks but estimate a specification

with a static AMH copula, for which the independence corresponds to γ0 = 0; thus, the
distribution of γ̂0 should be centred around zero. We show that even if one estimates a
more general model, it recovers the parameters of the simpler underlying model, which
verifies its robustness. However, in real estimation, the copula matters in most cases;
thus, the probability of a false positive is low.

We generate synthetic returns per the following algorithm:
1. Initialise the series: draw e+

1 ∼ Γ(θ+, 1) and e−1 ∼ −Γ(θ−, 1), r1 = µ, σ2
ε+1

= 2e+
1 µ

2,
σ2
ε−1

= −3e−1 µ
2.

2. In a loop for t = 2, . . . , b1.1T c, at every step, compute σ2
ε+t

and σ2
ε−t

based on (2.5.1),
draw e+

t ∼ Γ(θ+, 1) and e−t ∼ −Γ(θ−, 1), compute ε+
t =

√
σ2
ε+t
e+
t and ε−t =

√
σ2
ε−t
e−t ,

and compute rt = µ+ ε+
t + ε−t .

3. Discard the first 10% of observations to eliminate the initial-value effect.
We generate 100 samples of length T = 10,000 based on the aforementioned DGP

and estimate the model using the BFGS optimiser.36 We use the true family of densities
in estimation, and the distribution of estimates is shown in Figure 2.5.1.

The plots show that the estimator is centred around the true parameter values, the
median bias is near zero, and its distribution is near normal, which indicates that the
asymptotic properties of the ML estimator hold for n = 10,000. Therefore, we conclude
that it is possible to recover the true parameters using a large sample, even if a more
general model was estimated.

2.6 Data and competing models

2.6.1 Data
We use daily price data of ETF on S&P 500 (SPDR) from Bloomberg (2000-01-03 to
2019-05-31). The models are estimated using the data from between 2000-01-03 and
2014-12-31 (3773 observations, 15 years) and tested using data from between 2015-01-
02 and 2019-05-31 (1110 observations, 4.5 years). We use a rolling-window forecasting
procedure and re-estimate the parameters every two observations. We select an ETF

36 We use the true parameter vector as the starting value.
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Figure 2.5.1: Simulation results
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The box plot on the left shows the distribution of centred (i. e. with the true value subtracted) ML
estimates divided by their Monte Carlo standard deviations. The bottom, middle, and top lines of each
box denote the 25%, 50%, 75% percentiles of the distribution. The whiskers show the last value within
1.5 interquartile ranges of the box edges. The circles show any values more extreme than the endpoints
of the whiskers. Parameter names correspond to formulæ (2.2.6)–(2.2.7).
The Q-Q plot on the right compares the quantiles of the standard normal distribution (horizontal axis)
with the quantiles of the centred ML estimator divided by its Monte Carlo standard deviations (vertical
axis). The diagonal line has a slope of 45◦ and goes through the origin.

on the index because its volatility approximates systematic risk; therefore, we can
better understand the behaviour of one of the primary driving forces of returns. We
use a rather large estimation sample to obtain more accurate estimates of the deep
parameters, such as those in copula dynamics. Because many specifications are present,
false positives can occur. It is difficult to control the type I error probability using
the procedure from Romano and Wolf (2005) because the amount of time required for
bootstrapping of the proposed model is large; however, we believe that the proposed
results are accurate and reliable due to both different in-sample and out-of-sample
comparisons and large sample size.

2.6.2 Competing models
We compare the proposed model with 40 popular symmetric and asymmetric GARCH
models that can be written using a general all-in-family GARCH formula. We use
specifications without external regressors, as in Ghalanos (2020), and a constant mean
of returns:

σλt = ω +

p∑
i=1

βiσ
λ
t−i +

q∑
j=1

αjσ
λ
t−j
(
|zt−j − η2j| − η1j(zt−j − η2j)

)δ
,

where zt def
= (rt − µ)/σt are normalised returns, αj are the ARCH parameters, βi are the

GARCH parameters, and other Greek letters correspond to the following variants:
1. The standard GARCH: λ = δ = 2, η1j = η2j = 0;
2. GJR-GARCH: λ = δ = 2, η2j = 0;
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Figure 2.6.1: U.S. market data series used for the main analysis

The left panel shows daily closing prices for the SPDRS&P 500 ETF. The right panel shows corresponding
logarithmic returns. The vertical lines denote the split between the train and test samples.

3. EGARCH: δ = 1, λ = 0, η2j = 0;
4. APARCH: δ = λ, η2j = 0, |η1j| ≤ 1;
5. TGARCH: λ = δ = 1, η2j = 0, |η1j| ≤ 1;
6. AVGARCH: λ = δ = 1, |η1j| ≤ 1;
7. NGARCH: δ = λ, η1j = η2j = 0;
8. NAGARCH: λ = δ = 2, η1j = 0;
9. Full family GARCH, or ALLGARCH: λ = δ.
Another model that we also use for benchmarking that is not a case of the general

formula above is component GARCH (CSGARCH): σ2
t = qt +

∑q
i=1 αi(ε

2
t−i − qt−i) +∑p

i=1 βi(σ
2
t−i − qt−i), qt = ω + ρqt−1 + ϕ(ε2

t−i − σ2
t−i).

We investigate four distributions for the density of baseline shocks: normal, skew-
normal, Student, and skew-Student. Skewness is introduced via a technique described
in Fernández and Steel (1998): if a density fX(x) is symmetric and unimodal around
zero, then its skewed generalisation is defined piecewise with one side stretched and
the other side shrunk by a factor s:

f skew
X (x) =

2

s+ 1/s

(
fX(x/s)I(x ≥ 0) + fX(sx)I(x < 0)

)
. (2.6.1)

We use the implementation of various GARCH estimators due to Ghalanos (2020)
and specify the same rolling estimation windows and warm-start method as we do in
the proposed model.

2.7 Results for models without jumps

2.7.1 Out-of-sample and in-sample performance on S&P 500 data
We begin with out-of-sample forecasting as the most important performance measure
of GARCH-like models and compare the specifications by the accuracy of out-of-sample
predictions of two primary risk measures: VaR and variance. As an initial check, we
calculate the violation ratio, which is the number of observed VaR exceedances divided
by their expected number; for the true model, this proportion is equal to 1. Additionally,
we use three statistical tests for VaR. The conditional coverage (CC) test (Christoffersen,
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1998) simultaneously checks the equality of a proportion of VaR exceedances among all
testing periods to a confidence level and the clustering of VaR exceedances by testing
the equality of conditional probabilities of a two-state Markov chain to unconditional
probabilities. The dynamic quantile (DQ) test of Engle and Manganelli (2004) checks
the same properties using external predictors. Lastly, the duration test (Christoffersen
& Pelletier, 2004) is based on the idea that the number of days between VaR violations
should not be clustered.

Next, we compare the proposed models with well-established GARCH variants
in terms of variance forecast quality. To evaluate the relative performance of the
forecasts between the two groups of models, we use the Diebold-Mariano test (Diebold
& Mariano, 2002) and report percentages of models better, equivalent, or worse in
terms of forecast quality in Table 2.7.2. We use two popular loss functions for this test,
RMSE and QLIKE, to compare predicted variances with realised variances from the
‘Oxford Realised Library’ (Heber et al., 2009). We choose these two functions because
Patton (2011) shows that these loss functions are robust to noise in the variance proxy.
Additionally, the QLIKE loss is more robust to extreme observations in the sample. The
results are shown in Table 2.7.2 (left panel). Then, we compare all specifications using
the Vuong test (Vuong (1989) with a HAC correction based on Calvet and Fisher (2004))
to compare differences in likelihood and Akaike criteria (Table 2.7.2, right panel). For
details of the modified Vuong test, see Appendix 2.C.

Table 2.7.1: Out-of-sample model tests

Model Distrib. VR pCC pDQ pdur

CSGARCH skew-N 0.855 0.260 0.061 0.079
GJR-GARCH skew-t 0.818 0.102 0.107 0.737
APARCH skew-N 0.782 0.326 0.117 0.404
APARCH skew-t 0.764 0.263 0.070 0.292
TGARCH skew-t 0.745 0.263 0.070 0.294
ALLGARCH skew-N 0.727 0.395 0.196 0.741
TGARCH skew-N 0.727 0.360 0.118 0.186
EGARCH skew-t 0.727 0.354 0.398 0.335
GJR-GARCH skew-N 0.727 0.263 0.109 0.743
AVGARCH skew-t 0.673 0.236 0.098 0.239
EGARCH skew-N 0.673 0.610 0.498 0.274
NAGARCH skew-N 0.655 0.294 0.109 0.884
AVGARCH skew-N 0.655 0.600 0.314 0.149

Distrib. Copula Dyn. VR pCC pDQ pdur

c-log-log Clayt. r̃3 0.964 0.628 0.233 0.807
log-log Clayt. r̃3 0.855 0.080 0.185 0.465
c-log-log Plack. r̃3 0.855 0.203 0.059 0.833
c-log-log Plack. stat. 0.818 0.112 0.136 0.822
c-log-log Plack. r̃2 0.818 0.112 0.093 0.469
gamma Plack. stat. 0.782 0.126 0.345 0.321
c-gamma AMH r̃3 0.782 0.055 0.062 0.733
log-log Plack. stat. 0.782 0.126 0.263 0.884
log-log Plack. r̃3 0.782 0.126 0.346 0.776
log-log cubic r̃3 0.782 0.126 0.252 0.884
gamma Plack. r̃2 0.764 0.088 0.282 0.382
logl-log indep. — 0.764 0.088 0.198 0.591
logl-log cubic stat. 0.764 0.088 0.199 0.591

The left table represents all well-established GARCH models (13 specifications) that do not fail any
of the three VaR out-of-sample tests. The right table represents the top 13 opposite-sign-shock model
specifications. The results are sorted based on violation ratio values.
Distrib.: ‘c-’ is used for centred distributions, ‘log-log’ for log-logistic, t for Student’s t, and N for Gaussian.
Dyn.: variable used in the dynamics of the copula parameter (r̃3 for cubes of centred returns, r̃2 for
squares of centred returns).
VR: violation ratio (the ratio of exceedances and their expected number).
pCC: p value of the conditional coverage test (Christoffersen, 1998).
pDQ p value of the dynamic quantile test (Engle & Manganelli, 2004) with 4 lags of VaR exceedances, lag
of squared returns, and predicted VaR as regressors.
pdur: p value of the no-hit duration test (Christoffersen & Pelletier, 2004).

The out-of-sample performance is discussed next (Table 2.7.1). To save space,
we present only the top 13 of the proposed specifications that did not fail any of
the three VaR tests and all well-established models that did not fail the same tests
(13 specifications), ranked based on the violation ratio. The specifications that have
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violation ratios greater than 1 fail all three VaR out-of-sample tests. The full results of
Christoffersen (1998) and Engle and Manganelli (2004) tests are shown in Figure 2.A.2
in Appendix 2.A and provide the full picture for the relative performance of opposite-
sign-shock models and well-established models. We should mention that specifications
with dynamic shapes (BEGE models) have poor out-of-sample performance: only 2 out
of 39 specifications have p values for all VaR tests greater than 0.05. Consequently,
they are not shown in Table 2.7.1.

Regarding the VaR tests among the 40 well-established GARCH models, 43% do
not fail the conditional coverage test, 38% do not fail the dynamic quantile test, and
98% do not fail the duration test at the 5% significance level. For the proposed model,
the fractions of all specifications (out of 50 variants) that do not fail those tests at the
same level of significance are 46% (CC), 54% (DQ), and 96% (duration). Therefore,
the opposite-sign-shock model has higher rates of non-rejection on average, and the
violation ratios are also much closer to 1. For the well-established GARCH models,
the skewed distributions explicitly dominate symmetric distributions; however, heavy
tails are not important for the S&P 500 data (which is rather expected for the market
returns). There is no clear pattern in the preferred variance processes; it is impossible to
select the best variance specification for the S&P 500 data. However, the overwhelming
majority of well-established models have an asymmetric reaction of variance to the
previous shocks; therefore, the leverage effect is critical for the correct modelling of
S&P 500 variance.

Among the specifications of the opposite-sign-shock model, the most striking pattern
is the fact that only models containing a copula take the top positions, which indicates
that the independence assumption is not correct for the U.S. market. The Clayton
and Plackett copulæ (particularly the latter) provide more accurate results than other
ones. The Clayton copula has stronger left-tail dependence for marginal probabilities
and assumes only positive correlations; however, the Plackett copula has a symmetric
dependence and yields correlations of any sign. Therefore, it is difficult to determine
the most appropriate dependence structure for shocks in the U.S. market. However,
dynamic copula parameter specifications are preferred over static ones; therefore,
the correlation between shocks is likely to be time-dependent. Specifications with a
heavy-tailed (log-logistic) distribution are marginally better than those with gamma
distribution, which can be explained by the fact that in opposite-sign-shock models,
the right and left tails have distinct behaviour. Therefore, such a discrepancy between
the results is a signal that the left and right parts of the return distribution are not
equal. There are fewer opposite-sign-shock specifications with centred distributions;
however, they take the top positions in the table. Therefore, the appropriate risk-return
relationship is either highly non-linear and complex or simply insignificant. However,
these results also indicate that in any case, the influence of volatility on returns is
rather heterogeneous.

Regarding variance forecasting, we compare the top 13 proposed models sorted
according to the violation ratio based on the QLIKE criterion in Table 2.7.2. Specifica-
tions with centred log-logistic distributional assumptions outperform other models in
terms of loss functions in general. Specifications with dynamic Plackett and Clayton
copulæ provide the most accurate results. Model performance based on RMSE loss
function has similar patterns: the performance of our models is marginally worse
according to this criterion. However, the best model for VaR forecasts also has the best
variance forecasting accuracy here.

From the out-of-sample results, we can determine a set of the most accurate specific-
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Table 2.7.2: Percentage of competing models beaten in terms of quality indicators by
opposite-sign-shock models

Distrib. Copula Dyn. RMSE QLIKE
+ = − + = −

c-log-log Clayton r̃3 24 76 0 88 12 0
log-log Clayton r̃3 0 35 65 6 41 53
c-log-log Plackett r̃3 0 100 0 94 6 0
c-log-log Plackett static 6 94 0 94 6 0
c-log-log Plackett r̃2 0 88 12 47 53 0
gamma Plackett static 0 53 47 6 0 94
c-gamma AMH r̃3 0 88 12 29 65 6
log-log Plackett static 0 71 29 29 53 18
log-log Plackett r̃3 0 88 12 47 53 0
log-log cubic r̃3 0 53 47 18 29 53
gamma Plackett r̃3 0 59 41 18 29 53
log-log indep. — 0 71 29 29 53 18
log-log cubic static 0 88 12 29 53 18

Distrib. Copula Dyn. Vuong (LL) Vuong (AIC)
+ = − + = −

c-log-log Clayton r̃3 100 0 0 100 0 0
log-log Clayton r̃3 94 0 6 88 0 12
c-log-log Plackett r̃3 94 0 6 94 0 6
c-log-log Plackett static 94 0 6 94 0 6
c-log-log Plackett r̃2 94 0 6 94 0 6
gamma Plackett static 65 0 35 65 0 35
c-gamma AMH r̃3 100 0 0 100 0 0
log-log Plackett static 88 0 12 82 0 18
log-log Plackett r3 100 0 0 94 0 6
log-log cubic r̃3 82 6 12 82 0 18
gamma Plackett r̃3 100 0 0 94 0 6
log-log indep. — 88 0 12 82 0 18
log-log cubic static 88 0 12 88 0 12

In these tables, we compare the top 13 opposite-sign-shock model specifications that do not fail any
VaR tests, sorted based on violation ratio in descending order to the pool of well-established GARCH
models that did not fail the same tests. The numbers show a percentage (%) of competing GARCH
variants beaten (+), matched (=), or outperformed (−) by opposite-sign-shock models. The left sub-table
compares out-of-sample performance with Diebold-Mariano tests for variance forecast quality using the
RMSE and QLIKE loss functions. The right sub-table compares in-sample performance using Vuong’s
(1989) LR-based test for the equivalence of Kullback-Leibler (or pure log-likelihood, denoted by LL) and
AIC criteria of non-nested models with Calvet-Fisher (2004) HAC with Bartlett kernel and Newey-West
lags. For a rigorous definition of the Vuong test statistic, see Appendix 2.C.
We use annualised realised variances for comparison, as in Heber et al. (2009), with 252 days in a year.
These variances are equal to 252 times the daily variance.
Only models with dynamic scales are presented.
Distrib.: ‘c-’ for centred distributions, ‘log-log’ for log-logistic.
Dyn.: variable used in the dynamics of the copula parameter (r̃3 for cubes of centred returns, r̃2 for
squares of centred returns).
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ations. From the opposite-sign-shock models, the best-performing model is that with a
centred log-logistic distribution and a Clayton copula with cubed de-meaned returns in
parameter dynamics. This specification has consistent results, high p-values for all VaR
tests, and a violation ratio near one, which is arguably the critical result because the
true model should generate 5-percent VaR values that would be exceeded on average
5% of the time, and clustering of the VaR can occur purely by chance. This model
accurate variance forecasting according to QLIKE and RMSE loss functions. It is more
difficult to select the best specification from the well-established GARCH family due to
the instability of their performance. Those models with a high violation ratio (CSG-
ARCH with skew-normal distribution, GJR-GARCH with skew-Student distribution) or
high p-values for VaR tests (EGARCH with skew-normal distribution, EGARCH with
skew-Student distribution, AVGARCH with skew-normal distribution, ALLGARCH
with skew-normal distribution, NAGARCH with skew-normal distribution, etc.) do not
provide precise variance forecasts in either metric. An ALLGARCH specification with
skew-normal distribution is that with the most stable results, perhaps because that
this model is the most general.

Now, we turn to in-sample performance (we use the same models as before). We use
the Vuong test based on likelihood and AICs for comparisons.37 In terms of in-sample
performance, opposite-sign-shock models clearly dominate well-established GARCH
models according to both tests.38 The centred log-logistic distribution model with
the Clayton copula with a dynamic parameter containing cubed de-meaned returns,
while being the most accurate one in the out-of-sample results, has the best in-sample
performance too. Therefore, our results hold both in-sample and out-of-sample. Small
modifications of this specification, such as assuming non-centred log-logistic distribu-
tion instead of centred log-logistic, or changing Clayton copula to Plackett, does not
significantly affect the fit quality or out-of-sample forecast quality.

To test the correctness of the specification of the best opposite-sign-shocks model
mentioned above, we use a test due to González-Rivera and Sun (2015). It is based
on the idea from Diebold et al. (1998) that the probability integral transform (PIT)
of the data-generating process realisations with respect to the predictive density is
uniformly distributed under the null hypothesis that the predictive density coincides
with the true density. These predicted values of the conditional distribution function
are called generalised residuals. As the authors notice, a rejection of the null based on
a simple Kolmogorov-Smirnov test for the uniformity of F̂rt(rt | Ωt−1) is not informative
because it can occur due to either dependent observations or non-uniform observations
(or even both), which is further elaborated on by Kheifets (2015). González-Rivera
and Sun (2015) propose a generalised-autocontour-based (G-ACR) test for generalised
residuals that verifies that (F̂rt(rt | Ωt−1), F̂rt−k(rt−k | Ωt−k−1)) are bi-variate uniform
by constructing generalised autocontours ([0,√α]2-squares, where 0 < α < 1) and
checking if the empirical share of observations (F̂rt(rt | Ωt−1), F̂rt−k(rt−k | Ωt−k−1))Tt=k+1

falling within the area defined by the autocontour is close to α. This should hold for
any integer value of the lag k. Under the null hypothesis, the difference of sample

37 We also tested the equivalence of Bayesian information criteria for the subsets of opposite-sign-shock
and well-established models but are not including it as extra columns of Table 2.7.2; the test statistic is
described in Appendix 2.C. On average, opposite-sign-shock models dominate 90% of the well-established
models by log-likelihood, 87% by AIC and 72% by BIC. These results demonstrate that even with a
heavy penalisation for over-parametrisation, the proposed models yield a better in-sample fit on average.

38 In Table 2.A.2, we provide results for Bekaert et al. (2015)-like models, and some of these specifica-
tions have excellent in-sample performance.
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proportions and theoretical square size is normally distributed with mean 0 and a
known variance. Since this statistic depends on two parameters (lag k and square size
α), the authors propose two more statistics for testing joint hypotheses: multiple lags
at once (denoted by P2(1, . . . , k;α) ∼ χ2

k since it comes from Proposition 2 in the article)
or multiple square sizes at once (denoted by P3(k;α1, . . . , αc) ∼ χ2

c) in order to better
distinguish between the IID assumption violation and uniformity assumption violation.
The results for uniformity testing of F̂rt(rt | Ωt−1) are given in Table 2.7.3. In multiple
tests, there were no rejections of the null hypothesis even at 10% level, which backs
up the idea that the proposed density is rather close to the true density. This result
indicates that there is no significant correlation or orders 1 and 2 in the generalised
residuals, implying no persistence in conditional distribution forecast errors and no
significant deviation from uniformity, implying no substantial structural change in the
data-generating process.

Table 2.7.3: Specification tests based on predictive densities

Test KS G-ACR P2 G-ACR P3

Lag used (k) — 1 1 and 2 1 2
In sample (t = 1, . . . , 3773) 0.480 0.718 0.455 0.361 0.658
Out of sample (t = 3774, . . . , 4883) 0.102 0.137 0.327 0.108 0.287
Full sample (t = 1, . . . , 4883) 0.171 0.300 0.320 0.332 0.890

This table contains the p-values of several tests of the null hypothesis: the PIT of rt is IID uniform
on [0, 1]. KS: Kolmogorov-Smirnov test. G-ACR: generalised-autocontour-based test (P2: multiple lags
at once, P3: multiple autocontour sizes at once). P2 uses α = 0.5, as in González-Rivera and Sun (2015).
P3 uses α = {0.05, 0.10, . . . , 0.95} (19 autocontours). The results of the G-ACR test are similar when
a different set of contours is used: we tried {0.15, 0.20, . . . , 0.85} and {0.3, 0.4, . . . , 0.7}, and all p-values
were greater than 0.1 in these cases.

2.7.2 Estimation results on IBM data
To verify that the best models described above perform well for other stock returns and
our results are not false-positive given the high time necessary for the procedure of
Romano and Wolf (2005), we used a different data set for estimation and testing as a
robustness check. We chose 15 years of daily IBM stock returns from between 2000-01-
04 and 2014-12-31 for estimation (3772 observations) and from between 2015-01-02
and 2019-05-31 for testing (1110 observations) because it is one of the most popular
stocks in such studies, and the time frames are the same as those of our S&P 500
ETF data. We estimated the same family of models and conducted the same battery
of out-of-sample tests to compare opposite-sign-shock models and 40 well-established
models.

As in the case with S&P 500 ETF data, the opposite-sign-shock specifications
yielding violation ratios near one and not failing conditional coverage and dynamic
quantile tests at the 5% level are the specifications with log-logistic and centred log-
logistic distributions, and Clayton, Plackett, and Frank copulæ with r̃2 and r̃3 in
dynamics, or static copulæ. Their violation ratios range from 0.982 to 1.018. The
specification with centred log-logistic distribution and static Clayton copula yielded
the best in-sample fits (lowest AIC values), and the specifications with centred log-
logistic distribution, Clayton copula and dynamic copula parameter (with r̃2 in its

65



dynamics) provided variance forecasts with the lowest QLIKE and RMSE criterion
values. Therefore, our results hold for this asset as well.

We conclude that applied researchers should consider the log-logistic distribution
(centred or non-centred) of unobserved ‘good’ and ‘bad’ shocks, and assume that they
are connected with Clayton copula with squares or cubes of de-meaned returns in
dynamics because the results for this family of specifications seem to be stable in many
aspects of out-of-sample forecasting.

2.7.3 Results on the return characteristics
In this section, we examine the proposed best specification in greater detail: centred
log-logistic distribution of shocks with a dynamic Clayton copula.

We begin by drawing inferences for the model coefficients (Table 2.7.4). Due to the
model structure, these parameters are not directly comparable to those from standard
GARCH models. Additionally, insignificance at a given level should not be interpreted
as equality of the true parameter to zero, and rather describes estimation uncertainty
(high estimate/standard error ratio) because the support of certain parameters, such
as distribution shape, is bounded and often in a non-trivial manner. The conditions
generating strictly positive σ2

ε+t
and σ2

ε−t
given {rt}Tt=1 are difficult to verify.

In the equation for ‘good’ variance, only its lag, σ2
ε+t−1

, is significant at the 5% level.
However, in the ‘bad’ variance equation, all coefficients except the constant are sig-
nificant. Inertia in the ‘good’ variance is extremely high (i. e. the estimate of α1 is
near 1); however, the autocorrelation of the ‘bad’ variance, β1, is lower. Both volatilities
are positively related to the asymmetric term; however, only the ‘bad’ variance has a
significance dependence (β−2 ). Even small negative total shocks, which is another name
for de-meaned returns, can lead to serious variance increases because both volatilities
have high coefficients on asymmetric terms compared to coefficients on ARCH terms.
However, positive shocks can decrease volatilities due to the positive coefficients on
ARCH terms. This phenomenon becomes more apparent when one compares the mag-
nitude of the coefficients on the asymmetric term: β−2 is nearly 6 times larger than α−2 ,
which indicates that ‘bad’ variance reacts in a much more sensitive manner to poor
news than ‘good’ variance does. In such a case, the standard GARCH models with the
leverage effect can misrepresent the asymmetric dependence between volatility and
previous shocks due to the oversimplified structure.

Both α2 and α−2 appear individually insignificant according to the p-values. However,
the standard errors as a Gaussian asymptotic approximation may be inaccurate or
accurate only in the epsilon-neighbourhood around the optimum, and conclusions about
insignificance should not be made based solely on those standard errors. It is common
in non-linear models that estimation uncertainty about parameter values is higher
in one direction than the other. A Wald test of the joint hypothesis (α2, α

−
2 ) = (0, 0) is

not suitable in this case because if both parameters are equal to zero, then there are
no dynamics in the equation for positive variance, and α1 is not identified. Hansen
(1996) gives the null hypothesis of no ARCH effect as an example since under this null,
the variance process becomes static, depending on one parameter, and the GARCH
effect is not identified, and standard inference fails. Therefore, it is more reasonable to
conduct LR tests in order to evaluate significance because they do not require standard
errors (Pawitan, 2001, Section 2.7). We test the hypothesis α−2 = 0, which is the most
natural simplification of the model (no asymmetry in the positive scale dynamics). The
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LR statistic for this hypothesis is equal to 11.62 (p = 0.0007); therefore, it should be
rejected, and we make a conclusion that omission of the ostensibly insignificant α−2 , i. e.
ignoring the asymmetry in the ‘good’ variance dynamics, yields a substantially inferior
fit. Under this restriction, the estimate of α2 is equal to 0.233, which corresponds
to the logic that both positive and negative returns increase the volatility by a small
amount. The LR-based 95% confidence interval for α2 under the null is [0.035, 1.27],
which is highly asymmetrical, which illustrates the point that using standard errors
for conclusions about insignificance can be misleading.

From the plot of the volatility dynamics (Figure 2.7.1),39 the ‘bad’ volatility is
marginally greater than the ‘good’ volatility. However, a comparison of crisis periods
versus normal periods shows that, as can be expected, the ‘bad’ volatility is much
higher during crises than the ‘good’ volatility. The shape parameter of ‘good’ shocks is
marginally greater than that of ‘bad’ shocks; therefore, the left tail of the distribution
has a lower rate of decay. This fact can be interpreted as extreme negative events
occurring with a higher probability compared to positive events. Additionally, ‘good’
variance constitutes 30% of the total variance on average, and ‘bad’ variance makes up
38%; thus, 32% of the total variance is explained by the covariance (multiplied by 2)
between shocks, meaning that the connection between shocks should be modelled as
well. ‘Bad’ volatility seems to have the strongest influence on total volatility, which
supports the findings from (Patton & Sheppard, 2015). The shape parameter for ‘good’
shocks, θ+, has higher standard errors, which implies more uncertainty about the exact
parameter value.

Table 2.7.4: Estimates and standard errors for the best-performing specification

Coefficient Estimate t-stat p QML t-stat QML p

α0 −1.12 · 10−6 −0.30 0.762 −0.35 0.730
α1 0.978 >10 0.000 >10 0.000
α2 −0.201 −0.74 0.461 −0.86 0.391
α−2 1.28 1.05 0.292 1.29 0.198
β0 3.75 · 10−5 1.92 0.054 1.92 0.054
β1 0.810 >10 0.000 >10 0.000
β2 −0.744 < −10 0.000 < −10 0.000
β−2 7.79 > 10 0.000 > 10 0.000
γ0 3.35 1.77 0.076 1.97 0.048
γ1 −0.310 < −10 0.000 < −10 0.000
γ2 −1.36 · 106 −1.95 0.051 −2.10 0.036
γ−2 3.27 · 106 1.96 0.050 2.5126 0.033
θ+ 16.53 2.67 0.008 3.53 0.000
θ− 11.81 > 10 0.000 > 10 0.000
µ 9.38 · 10−5 0.70 0.482 0.70 0.483

Specification: centred log-logistic distribution with Clayton copula with dynamic parameter containing
r̃3t . Estimation sample: 2000-01-03 to 2014-12-31.

The constant parameter in the mean process, µ, is insignificant, leading to a zero-
mean process in returns. For the correlation between shocks, the Clayton copula has

39 We present only 8 years of data to highlight the most tumultuous period while keeping the lines
legible.
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Figure 2.7.1: ‘Good’ and ‘bad’ volatility visualisation

Specification: centred log-logistic distribution with Clayton copula with dynamic parameter containing
r̃3t .

stronger dependence for negative realisations of both shocks; therefore, during a bear
market, the model with such copulæ may fit the data rather well. In the dynamics of the
copula parameter, only γ1 is significant and negative according to Fisher-information-
based standard errors, showing some sort of mean reversion in the covariance between
shocks, which indicates that a higher correlation today implies a lower correlation
tomorrow on average. According to QML standard errors, both the ARCH effect and
the asymmetric term are significant at the 5% level, which justifies the inclusion of the
dynamic part in the copula specification. However, in the correlation plot (Figure 2.7.2),
the average level of correlation is approximately 0.7, which is rather strong, and there
is pronounced asymmetry. Due to the correlation being positive for this type of copula,
if ‘good’ shocks go arbitrarily high, then ‘bad’ shocks also become greater. Therefore,
U.S. market returns have a propensity for bull trends if we assume that good news
dominates bad news on average. After strong negative shocks, the correlation nearly
drops to zero, leading to no linear dependence between shocks. Thus, during crises,
returns have a lower possibility of a bear trend. Regardless of the type of standard
errors used (simple or QML), the coefficients seem to have concordant significance in
most cases, which indicates that potential misspecification does not have a large impact
on the interpretation of uncertainty about the model.

Now, we analyse how previous shocks affect the volatility and conditional asymmetry
of the return distribution. Because it is cumbersome to get closed-form solutions for
the second and third conditional moments, we use numerical integration to obtain
them. In the opposite-sign-shock model, both types of shocks can affect future mo-
ments; therefore, we can plot a news impact surface. Analysing the volatility surface
(Figure 2.7.3, left panel),40 we see that if both ‘good’ and ‘bad’ shocks are in the negative
zone, then the volatility rises dramatically, which matches the previous results on the
volatility behaviour. However, if both shocks have positive values, then the conditional
volatility is rather low.41 Shifts between extreme empirical quantiles of unexpected
part of returns or total shocks, e. g. from 50% to 1%, tend to lead to much more dramatic
changes in volatility levels compared to the case when we move from 25% to 75%; thus,

40 We choose the conditional return distribution on the 19th of January, 2010, as an example.
41 The total volatility in this model includes the covariance between ε+t and ε−t .
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Figure 2.7.2: Dynamics of the conditional correlation in the best specification

Specification: centred log-logistic distribution with Clayton copula with dynamic parameter containing
r̃3t . The top grey line shows the dynamics of the S&P 500 ETF price.

extreme events have significant and prolonged effects on future volatility dynamics. If
one plots the dependence of volatility on the total shock (unexpected part of returns),
which is the standard news impact curve (Figure 2.7.3, right panel), we clearly see
that if the total shock has a negative sign, then volatility will monotonically increase,
while if the overall shock is positive, the volatility does not react or can even decrease;
therefore, good news can even decrease uncertainty in the market. Thus, volatility
behaviour is extremely complex and is typically not captured by many standard models.

In Figure 2.7.4 in the left panel for the impact surface for conditional skewness, we
see that the skewness is almost always negative for the chosen parameters, meaning
that strong negative shocks are more common than positive shocks. If ‘good’ and ‘bad’
shocks have negative values, then the skewness is the largest in absolute value. If
both shocks have unusually high positive values, then the skewness is the closest
to zero. We see that dependence between empirical quantiles and skewness is far
from linear and has a pronounced asymmetry. The right panel of Figure 2.7.4 shows
that the negative overall shock yields stronger negative future conditional skewness;
however, the positive overall shock clearly causes an increase in conditional skewness.
Asymmetry in the skewness news impact curve follows the logic that a strong prior
negative shock increases the probability of rare negative events, and vice versa, which
agrees with the general logic behind the proposed model that ‘bad’ shocks occurring
due to increased ‘bad’ volatility increase the weight of the left tail of the distribution,
bearing greater skewness. Therefore, the asymmetrical behaviour of ‘good’ and ‘bad’
shocks and their connectedness explain such behaviour of skewness.

The volatility news impacts curve is similar to Bekaert et al. (2015). The skewness
news impact curve is similar to Bekaert et al. (2015) for positive values of shocks and
has distinct behaviour for negative news because in the proposed case, negative shocks
lead to lower values of skewness. The proposed skewness news impact curve is similar
to Anatolyev and Petukhov (2016); however, in Anatolyev and Petukhov (2016), this
graph is convex on the negative part and concave on the positive part, while for the
proposed model, the graph is piecewise convex for the positive and the negative parts.

Figure 2.7.5 shows the dynamics of volatility and conditional skewness. The left
panel shows the typical process of volatility that increases during crisis periods (the
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Figure 2.7.3: News impact surface and curve for volatility

The left panel shows the volatility news impact surface for the best specification (centred log-logistic
distribution with Clayton copula with dynamic parameter containing r̃3t ). The right panel represents
the news impact curve for volatility. Both plots rely on the parameter values for the date 2010-01-19.
The lines in the 3D plot correspond to the empirical (0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99)-quantiles of
the returns. The ranges for e−t and e+t are [−1.01, 0.09] and [−0.09, 1.01], respectively, and they produce
values of total shocks r̃t = σ+

t e
+
t + σ−t e

−
t ∈ [−0.044, 0.041], i. e. the theoretical returns correspond to the

middle 99% of the values observed in S&P 500 data.

dot-com bubble, the Great Recession, and the European debt crises) and decreases
during normal times, highlighting the well-known asymmetric dependence between
price and volatility. The right panel displays more interesting patterns in conditional
skewness. During the same crisis periods, conditional skewness becomes positive,
which is rather unintuitive at first glance because positive skewness indicates a higher
probability of extreme positive events, which is not expected during turmoil. However,
considered from a different perspective, skewness becomes positive not immediately
after the beginning of crises, but closer to its middle, and in such situations, investors
can view stocks as ‘cheap beats’ (Kumar, 2009): in the middle of a crisis, the market
has lower prices, higher volatility, and yields negative average returns. Therefore, if
investors expect the market to bounce, which should be due to the mean-reversion
pattern in prices and economic recovery, then positive skewness may arise. Additionally,
investors can also put more money in stocks with lottery-like behaviour wishing to
recoup; thus, the prices of such assets affect the index to a greater extent. Conditional
skewness becomes negative when prices approximately return to their pre-crisis levels;
therefore, during times of stability, traders expect rare negative returns, although
not as strong, compared to the magnitude of the positive returns during crisis periods
because volatility is much lower. Such counter-cyclical, sign-switching behaviour of
the conditional skewness shows investors’ naïve expectations: during good times, they
are expecting the end of growth (‘too-good-to-be-true’ situation), and during bad times,
they are expecting recovery (‘too-bad-to-be-true’ situation).

Since we forecast the conditional density of returns for the next day, it is possible
to compute certain probabilities for decision-making. For example, the probability of
positive and negative returns on the next day can be used to decide whether to buy or sell
on the next day or not. However, due to the market efficiency, it is almost impossible to
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Figure 2.7.4: News impact surface and curve for skewness

The left panel shows the skewness news impact surface for the best specification (centred log-logistic
distribution with Clayton copula with dynamic parameter containing r̃3t ). The right panel represents
the news impact curve for skewness. Both plots rely on the parameter values for the date 2010-01-19.
The lines in the 3D plot correspond to the empirical (0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99)-quantiles of
the returns. The ranges for e−t and e+t are [−1.01, 0.09] and [−0.09, 1.01], respectively, and they produce
values of total shocks r̃t = σ+

t e
+
t + σ−t e

−
t ∈ [−0.044, 0.041], i. e. the theoretical returns correspond to the

middle 99% of the values observed in S&P 500 data.

Figure 2.7.5: Dynamics of the volatility and skewness

These two panels show the dynamics of volatility (on the left) and conditional skewness (on the right)
for the best specification (centred log-logistic distribution with Clayton copula with dynamic parameter
containing r̃3t ). The grey line shows the dynamics of the S&P 500 ETF price.
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reliably predict market movements: the middle 95% range for the predicted probability
of negative returns (2.5- and 97.5-percentiles of the dynamic series) is 0.453–0.492,
which implies that the markets are expected to slowly grow every day, and agrees with
the fact that on 46% of trading days, the returns were negative. On the other hand, it is
more useful to examine the ratio of the left and the right tail as the odds ratio of large
negative and large positive returns. Since the left tail of the distribution has a slower
decay rate (θ̂+ ≈ 16.5, θ̂− ≈ 11.8, and the baseline distribution is centred log-logistic),
P̂(rt < −r∗)/P̂(rt > r∗) → ∞ as r∗ → ∞. For reasonable values of r∗, however, this
ratio shows how relatively more likely substantial losses are, compared to substantial
gains. For every trading day, we predicted the ratio of left- and right-tail probabilities
of the returns for cut-offs r∗ ∈ {0, 0.01, 0.02, 0.03}, which is shown in Figure 2.7.6. The
median ratios for the chosen tail cut-offs are 0.87, 1.02, 2.17, and 4.90, and the middle
95% ranges of these predicted ratios are [0.83, 0.97], [0.86, 3.3], [0.91, 41] and [0.90, 202],
respectively. On average, per 1 day with returns greater than 0.02, 2 days with returns
less than −0.02 are expected, and per 1 day with returns greater than 0.03, 5 days
with returns less than −0.03 are expected. During good times, the ratio is greater than
1, and, at the bottom of crises, it is near one or even smaller. This matches with the
‘too-good/bad-to-be-true’ logic discussed above. During good times, investors expect
that a trend can change and a crisis can begin; therefore, the probability of extreme
negative returns is higher than the probability of large positive ones. At the deepest
points of crises, investors expect that the markets should bounce back. Therefore, the
practical conclusion following from this model is slightly larger probabilities of positive
returns every day with high left-to-right-tail ratios, and advisability of becoming a
long-term investor in this asset.

Figure 2.7.6: Dynamics of the left-to-right-tail ratio in the best specification

Specification: centred log-logistic distribution with Clayton copula with dynamic parameter containing
r̃3t . The top grey line shows the dynamics of the S&P 500 ETF price.

Because the conditional density itself provides many useful insights, we show its
evolution over time in Figure 2.7.7. The conditional density shown in the plot has rich
dynamics: during crises, the distribution becomes flatter; however, during good times,
it is concentrated around zero more tightly. Our model also generates tail behaviour
with different rates of decay; however, asymmetry in the centre of distribution is not
very pronounced; therefore, asymmetry of the distribution is mostly caused by the tail
difference.
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Figure 2.7.7: Evolution of conditional return distribution in time

Specification: centred log-logistic distribution with Clayton copula with dynamic parameter containing
r̃3t . The surface conditional return density in different time periods. The line above the surface represents
daily returns.

2.8 Results for models with jumps
As it was mentioned, jumps can be important for the return process. For models with
jumps, we take the best-performing opposite-sign-shock specification without jumps
for S&P 500 data (centred log-logistic shocks connected by a Clayton copula with r̃3 in
dynamics) and introduce jumps with different forms. First, we use S&P 500 ETF data
to estimate specifications with static unified jumps and a static outer copula.42 Then,
we consider specifications with dynamic unified jumps (Equation (2.3.3)) with static
outer copula. Finally, we analyse static and dynamic opposite-sign jumps with static
jumps and outer copula. The results for these models are shown in Table 2.8.1.

We begin with the model with static unified jumps. The expected value of jump
size µξ is negative and large in absolute value (Table 2.8.1, upper section), which
indicates that primarily discrete downward changes are anticipated. Moreover, ap-
proximately one jump is occurring per day on average. The same situation occurs with
jumps with dynamic unified jumps (Table 2.8.1, bottom section): the expected jump
size µξ is negative, and approximately less than 1 jump per day occurs. For these
specifications, the expected number of jumps is calculated as the expectation of an
AR(1) process (Maheu & McCurdy, 2004). Based on the in-sample AICs for the last
estimation period (from 2005-09-28 to 2019-05-31, which contained more periods of
turmoil with potentially more jumps than the first estimation sample, 2000-01-03
to 2014-12-31), the specification without jumps has the lowest values. Therefore, if
continuous shocks have a fat-tailed distribution, then jumps are not so critical because
many return changes that are thought to be jumps, in reality, turn out to be bursts in
continuous volatility, which coincides with the results from Bajgrowicz et al. (2015)

42 Introducing dynamics into the outer copula parameter leads to severe over-parametrisation. Certain
models with a static outer copula connecting the jumps and the shock copula exhibited convergence
problems, which restricts the degree of flexibility a researcher has in modelling the dynamic correlation
between shocks and jumps.
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and Christensen et al. (2014). Additionally, we highlight the differences between the
estimates from the models with and without jumps. If we analyse a model with a static
distribution of the number of jumps, the parameters of ‘good’ volatility are affected
by the introduction of jumps, typically leading to an increase in the intercept, ARCH
coefficient (in absolute values), and leverage coefficient. ‘Bad’ volatility is, in fact, not
so much affected by the introduction of jumps, as well as the shock copula. The most
noticeable change is that of the constant mean parameter, which is likely caused by
non-zero-mean jumps. The copula parameters for the jump copula and outer copula lie
in the range corresponding to medium correlation. The models with no copula between
discrete jumps and continuous shocks and with cubic copula give on average results
different from all other models.

For the model with opposite-sign jumps (Table 2.8.2), we use two distributions of
jump sizes: exponential and Rayleigh. Both for dynamic and static cases with both
distributions, results are concordant with one another: the intensity of ‘bad’ jumps
En− is higher than the intensity of positive jumps En−. In most models, the average
size of ‘bad’ jumps Eξ− is marginally greater in magnitude than the average size of
positive jumps Eξ−. Therefore, ‘bad’ jumps occur more often and are stronger than
positive jumps. Specifications with Rayleigh jump size have marginally lower AICs
than those with exponential jumps except for the FGM copula, where both distributions
yield nearly identical values. Dynamic opposite-sign jump models, which are the most
detailed specification, have marginally lower AICs than models with unified jumps;
therefore, there is marginal evidence that real-world jumps might have ‘good’ and ‘bad’
parts, and for static jumps, the effect is opposite. Adding dynamics of jump intensity
into the specification did not yield any substantial improvement.

In several models with dynamic unified and opposite-sign jumps, the outer copula
parameter estimates were so large in absolute value (for copulæ with κ ∈ R) or close to
the boundary that it caused degeneracy of the joint distribution, indicating that the
most general specification suffers from over-parametrisation and more parsimonious
models are preferred. Because the tails of exponential and Rayleigh distributions decay
more slowly than those of Gaussian distribution, the poor in-sample performance of
models with jumps cannot be explained by the normality assumption for unified jump
sizes. Other parameters of the models show, in fact, a similar change as in the case with
unified jumps (the AMH copula for the static case also shows some substantial changes).
Therefore, the inclusion of jumps, unified or opposite-signed, static or dynamic, does
not improve even the in-sample performance, and it is impractical to analyse the
out-of-sample predictive power of the models with jumps.

Our model explains the results of Park (2016), where it is shown that upward jumps
in the VIX index price are more important than downward jumps. As the VIX index is,
roughly speaking, the expected level of volatility for the S&P 500 index, the fact that
upward changes in volatility are more important can be explained by the structure of
the proposed model, where jumps in returns can cause only upward discrete changes
in volatility (it is only the correlations between elements that can be negative, which
leads to lower overall volatility). Because the negative jumps are stronger and more
frequent, they contribute more to discrete changes in overall volatility.
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Table 2.8.1: Estimates of specifications with unified jumps

Static α0 α1 α2 α−
2 β0 β1 β2 β−

2 γ0 γ1 γ2 γ−
2 θ+ θ− µ κjump µξ σξ En AIC

Magnitude 10−4 1 10−1 1 10−4 1 10−1 1 1 1 106 106 1 1 10−3 1 10−1 10−1 1

No jumps−0.01 0.98 −2.05 1.26 0.37 0.81 −7.25 7.48 3.34−0.31−1.34 3.20 15.84 11.75 0.09 −264.08
Indep. −0.13 0.94−11.33 13.02 0.99 0.93−14.65 11.45 14.71 0.32−1.91 1.81 20.38 14.30−0.02 −0.94 0.18 1.09−193.90
AMH 0.38 0.92 −5.53 3.34 0.72 0.96 −5.64 5.63 14.57 0.16−1.72 1.55 15.46 15.07 2.16 0.52 −0.13 0.19 0.87−248.81
Clayt.−0.22 0.97 −1.86 1.74 0.60 0.85 −7.02 7.32 3.97 −0.15−2.71 2.69 17.41 15.59 1.88 0.62−0.22 0.06 0.61 −257.18
Cubic 0.11 0.90−12.79 11.33 0.54 0.96 −2.41 2.89−0.07 0.03 6.56 12.23 16.95 16.38 2.40 0.38−0.45 0.12 1.16−235.45
FGM −0.15 0.96 −5.74 4.15 0.74 0.85 −7.56 6.98 0.63 0.19−2.51 2.97 16.48 15.27 2.04 0.65 0.23 0.32 1.20−258.30

Dynamic α0 α1 α2 α−
2 β0 β1 β2 β−

2 γ0 γ1 γ2 γ−
2 θ+ θ− µ κjump µξ σξ Ent AIC

Magnitude 10−4 1 10−1 1 10−4 1 10−1 1 1 1 106 106 1 1 10−3 1 10−1 10−1 1

Indep. −0.04 0.88 −12.82 12.24 0.72 0.94 −12.65 11.35 14.17 0.02 −1.19 1.48 21.46 14.23 −0.35 −0.70 0.29 3.22 −158.96
AMH −0.30 0.99 −1.50 0.31 1.33 0.85 −15.06 11.38 8.18 0.09 −0.51 0.65 16.39 15.53 2.12 0.36 −1.03 0.82 0.26 −231.90
Clayt. 0.02 0.98 −2.52 0.71 0.20 0.82 −7.81 8.61 3.50 −0.26 −2.91 3.32 16.01 16.32 1.91 0.45 −0.06 0.14 0.27 −250.43
FGM −0.34 0.97 −5.01 2.36 0.48 0.85 −7.33 5.19 0.35 0.17 −1.79 2.31 16.95 14.62 1.99 0.62 0.63 0.04 0.91 −241.55

In these tables, we compare the coefficients for the best-performing specification without jumps to its
static and dynamic unified jump extensions. The copula connecting the shock copula and the jump
distribution (with parameter κjump) is shown on the left. µξ and σξ are the mean and the standard
deviation of the jump size (assumed to be normally distributed), respectively; λ governs jump intensity
in static jump specifications; and λ0, λ1, λ2 govern the jump intensity in dynamic jump models. The
coefficients are given for the period from between 2005-09-28 and 2019-05-31 (re-estimation after every
20 points). Because these estimates span multiple orders of magnitude for various parameters, the
reported values must be multiplied by the magnitude. The dynamic specification with cubic jump copula
exhibited convergence problems and is omitted from the second table. Standard errors are not reported
because, as we showed in Section 2.7.3, they are a poor approximation of parameter uncertainty in these
models. To save space, we report AIC values plus 24 000.

2.9 Conclusion
In this paper, we propose a new conditional density model with copula-connected ‘good’
and ‘bad’ shocks. The proposed model considers potentially different tail behaviours
and asymmetries of stock return distributions. Due to its generality, the model unveils
additional inner workings of an asset pricing process. Out-of-sample and in-sample
comparisons on the S&P 500 data show that a sub-set of specifications of the proposed
model outperforms the entire pool of 40 well-established GARCH models analysed.
The correlation between ‘good’ and ‘bad’ shocks appears to be important for model
performance, is time-variant, positive, and has a leverage-like effect. ‘Bad’ and ‘good’
volatilities have rather distinct dynamics, and the ‘bad’ volatility is greater than the
‘good’ volatility. The reaction of the total volatility to shocks is extremely asymmet-
ric: negative total shocks can only increase volatility; however, positive shocks can
even marginally decrease it. Positive total shocks increase the conditional skewness,
although negative shocks have the opposite effect on it. Conditional skewness has
positive/negative signs during bad/good regimes and, coupled with other stylised facts
about prices and volatility, shows that investors have naïve expectations: during crises,
they wish for recovery, and during good times, they invariably expect losses. During
good times, extreme negative returns are more probable than extreme positive returns.
During crisis peaks, strong positive and negative returns are approximately equally
likely. Throughout the entire sample period, the probability of positive daily returns is
marginally greater than 0.5, without substantial fluctuations.

These findings indicate that the behaviour of returns is asymmetric and more
complex than previously surmised. In addition, we found that the same family of
specifications provides the best in-sample and out-of-sample fits on S&P 500 and IBM
stock data.
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Table 2.8.2: Estimates of models with opposite-sign jumps

Static α0 α1 α2 α−
2 β0 β1 β2 β−

2 γ0 γ1 γ2 γ−
2 θ+ θ− µκjump κouter Eξ+ Eξ− En+ En− AIC

Magnitude 10−4 1 10−1 110−4 1 10−1 1 1 1 106 106 1 1 10−3 1 110−1 10−1 1 1

No jumps−0.010.98 −2.05 1.26 0.370.81 −7.25 7.48 3.34−0.31−1.34 3.2015.84 11.75 0.09 −264.08

Exponential jump distribution
Indep. 0.240.87−13.1412.86 1.210.89−13.3711.29 14.79 0.00−1.39 0.9130.4115.78−0.01 0.44−0.57 0.17 0.64−192.85
AMH 0.150.98 −0.97 0.33 0.960.85−14.91 11.10 8.33 0.12 0.42 1.9716.0814.49 2.21 0.43 0.35 0.30−0.44 0.20 0.39−235.85
Clayt.−0.37 1.00 −1.94 2.62 0.450.80 −7.13 6.50 2.66−0.23−1.40 3.1218.0014.81 2.02 0.48 1.66 0.42−0.41 0.25 2.40−252.75
Cubic 0.310.86−13.4210.93 0.010.96 −2.15 2.15−0.66 0.18 5.3043.62 17.1616.82 1.91 0.63 0.53 0.36−0.50 0.37 0.57−226.63
FGM 0.000.97 −4.14 3.49 0.380.83 −6.95 4.90 0.90 0.21−2.40 3.4216.9015.48 2.07 0.69 0.75 0.32−0.56 0.21 0.62−247.40

Rayleigh jump distribution
Indep.−0.080.84−13.19 11.75 0.860.90−13.1911.20 13.03 0.18−2.14 1.08 21.89 14.13 0.35 0.08−0.01 0.35 0.62−196.26
AMH−0.210.92 −0.84 0.32 1.100.85−16.03 11.10 8.74 0.02−1.26 2.0816.56 15.16 2.06 0.47 0.77 0.02−0.16 0.51 0.76−235.92
Clayt.−0.060.95 −1.92 1.70 0.100.79 −6.85 5.83 3.53−0.34−0.50 3.2415.9413.69 2.08 0.66 2.69 0.20−0.49 1.37 2.20−254.03
Cubic 0.450.87−12.57 11.19 0.010.95 −4.19 3.40 0.31 0.11 6.9643.4715.9214.92 2.15 0.72 0.58 0.19−0.40 0.11 0.42−232.23
FGM−0.240.95 −5.73 3.97 0.530.87 −6.74 4.91 0.74 0.21−3.12 1.1715.4714.96 2.15 0.50 0.31 0.22 0.07 0.34 0.54−247.37

Dynamic α0 α1 α2 α−
2 β0 β1 β2 β−

2 γ0 γ1 γ2 γ−
2 θ+ θ− µκjump κouter Eξ+ Eξ− En+ En− AIC

Magnitude 10−4 1 10−1 110−4 1 10−1 1 1 1 106 106 1 1 10−3 1 10−1 10−1 1 1 1

Exponential jump distribution
Indep. 0.250.88−12.8111.69 1.190.90−13.1811.65 14.18 0.01−1.660.7931.4516.56−0.41 0.03 0.02 0.48−0.65 0.96 1.94−189.22
Clayt.−0.190.99 −1.57 1.89 0.430.81 −6.96 6.43 4.28−0.25−0.144.0318.0015.38 1.93 0.51 1.24 0.60−0.64 0.28 0.54−249.94
FGM 0.080.97 −4.52 5.01 0.460.84 −6.53 4.95 1.44 0.22−2.802.5216.0515.47 1.57 0.72 0.75 0.40−0.65 1.39 0.70−244.09

Rayleigh jump distribution
Indep.−0.150.86−14.0712.67 0.890.91−12.9012.2914.37 0.18−1.691.4623.0314.48−0.50 0.02−0.10 0.22−0.14 1.20 1.84−192.38
FGM−0.130.95 −4.63 4.15 0.570.84 −6.85 5.65 1.82 0.25−2.632.2714.8014.93 1.94 0.61 0.05 0.39 0.00 1.18 1.63−245.10

In these tables, we compare the coefficients for the best-performing specification without jumps to its
static and dynamic opposite-sign jump extensions by assuming different distributions of signed jumps:
exponential (top) and Rayleigh (bottom). λ+ and λ− govern jump intensity in static jump specifications;
λ+0 , λ

+
1 , λ

+
2 , λ

−
0 , λ

−
1 and λ−2 govern jump intensity in dynamic jump models. The coefficients are given

for the period from between 2005-09-28 and 2019-05-31 (re-estimation after every 20 points). Because
these estimates span multiple orders of magnitude for various parameters, the reported values must
be multiplied by the magnitude. Several specifications with copulæ exhibited convergence problems
and are omitted from the second table. Standard errors are not reported because, as we showed in
Section 2.7.3, they are a poor approximation of parameter uncertainty in these models. To save space,
we report AIC values plus 24 000.
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Specification of the proposed model with dynamic scales performs better than
their counterparts with dynamic shapes (BEGE models). Despite the solid in-sample
goodness of fit and small Akaike criterion values, and their previously good performance
on monthly data in the existing literature, the latter did not perform well on daily
return data. Adding copulæ also did not improve those results much, which is why we
believe that models with dynamic scale and copulæ should be used.

The results for models with jumps indicate that unified jumps have a negative
mean and intensity below one per day. Models with opposite-sign jumps show that
‘bad’ jumps occur more often and have a greater mean in absolute value than ‘good’
jumps. However, the introduction of jumps, both unified and opposite-sign, does not
improve even in-sample performance; therefore, jumps are not very important at daily
frequencies, and continuous shocks that come from a tail of their distribution tail
can explain the observed phenomena better. The proposed framework also provides a
natural explanation for the observed phenomenon of upward jumps in the VIX index.
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Appendix

2.A Replication and improvement of Bekaert et al.
(2015)

The numerical accuracy of the original Bekaert et al. (2015) BEGE model can be
improved using original densities, as in equation (2.2.4), and applying integration with
stabilising techniques, thus increasing the required precision at the cost of a longer
computation time. Since the BEGE model is a particular case of the proposed model,
its parameters can be converted into equivalent parameters used in this paper. We
ensure that the series-generating function returns similar dynamic shape series for the
values from the article (Figure 2.A.1, dotted lines).43 However, the differences shown
in Table 2.A.1 are too large to attribute them to rounding or small data discrepancies.

We begin by observing that if the ‘good’ dynamic shape in Bekaert et al. (2015)
follows the expression

θ+
t = p0 + ρpθ

+
t−1 +

φ+
p

2σ2
p

r̃2
t−1I+

t−1 +
φ−p
2σ2

p

r̃2
t−1I−t−1, (2.A.1)

and in this article:
θ+
t = α0 + α1θ

+
t−1 + α2r̃

2
t−1 + α−2 r̃

2
t−1I−t−1.

We thus find equivalence between parameters:

α0 ≡ p0, α1 ≡ ρp, α2 ≡
φ+
p

2σ2
p

, α−2 ≡
φ−p − φ+

p

2σ2
p

.

The same applies to the β parameters and θ−t for the ‘bad’ shape dynamics.
Table 2.A.1 shows the optima and corresponding likelihood values from Bekaert

et al. (2015, Table 2, corresponding to their original monthly data). We convert their
parameter values into ours using the equivalence formula above. The original log-
likelihood value of 1724.26 in Bekaert et al. (2015) appearsmarkedly different due to the
rough numerical approximation of the density.44 We obtain a much higher likelihood
value when using their estimates and then apply a gradient-based improvement to the
first stage of all models (BFGS with 10−8 relative tolerance as a stopping criterion).

43 The series look similar, but not the same due to rounding errors in the parameter estimates or the
fact that there might be slight discrepancies between the monthly return data we use (Shiller, 2015)
and those which Bekaert et al. (2015) use (CRSP).

44 Bekaert et al. (2015) use only 100 grid points for integration, whereas we rely on adaptive Gauss-
Kronrod cubature with thousands of points where the function is evaluated until the relative difference
is smaller than 10−10.
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Figure 2.A.1: Replicated and improved dynamic shape series (Bekaert et al., 2015, Figure 3,
p. 266)

0
50

10
0

15
0

1930 1950 1970 1990 2010

Original pt

Improved pt

0
10

20
30

40

1930 1950 1970 1990 2010

Original nt

Improved nt

The values before and after refinement are similar for most parameter values; however,
certain parameters, such as α0, α2, β2, or σ2

−, change by more than 40%, which explains
the substantial likelihood gains. Finally, the null hypothesis that the 11 parameters of
the model are equal to those reported in Bekaert et al. (2015) is rejected based on the
LR test (the LR statistic is equal to 58.1, p(χ2

11 < 58.1) ≈ 2 · 10−8).

Table 2.A.1: Bekaert et al. (2015) result improvement

Article Article BFGS Magnitude
(reported values) (our evaluation) optimised multiplier

α0 0.0890 0.0890 0.0325 1
α1 0.9099 0.9099 0.9665 1
α2 0.9298 0.9298 0.4827 103

α−2 −0.8063 −0.8063 −0.5146 103

β0 0.2204 0.2204 0.1614 1
β1 0.7822 0.7822 0.8110 1
β2 −0.0495 −0.0495 −0.0052 103

β−2 0.2721 0.2721 0.3513 103

σ2
+ 0.0518 0.0518 0.0435 10−3

σ2
− 0.7969 0.7969 0.4669 10−3

µ 1.0000 1.0000 0.6252 10−2

Log-lik. 1724.3 1888.7 1917.8

The first column represents estimates and log-likelihood value from the original Bekaert et al. (2015)
model. The second column represents the case when estimates from the original article converted into
their exact equivalents from the proposed specification and inserted into the log-likelihood function.
The third column describes the case when BFGS optimiser uses the estimates of Bekaert et al. (2015)
as initial values. The last column shows the multipliers by which all estimates should be multiplied to
have the original magnitude.

Then, we estimate the original model and its variants with copulæ with the S&P 500
ETF daily data and report the results in Table 2.A.2. All of these specifications fail
the conditional coverage and dynamic quantile tests. For a more general picture,
the p-values of these two tests are plotted against one another in Figure 2.A.2 with
opposite-sign specifications with dynamic scales on the left and dynamic shapes on
the right. The latter do not pass conditional coverage and dynamic quantile tests
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regardless of the copula and its dynamics. Therefore, the dynamic-shape specification
is not appropriate for VaR forecasting. However, dynamic-shape specifications perform
well in the sample and often return low AICs. E. g. the 6 extensions of Bekaert et al.
(2015) have the lowest AICs out of all specifications, with the lowest being −24275.2,
compared to −24264.1 of the best dynamic-scale variant. The results with non-centred
gamma and centred log-logistic distributions are nearly identical; however, we do not
report them in this appendix to save space.

Figure 2.A.2: p-values for two VaR quality tests by distribution
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Forty popular GARCH variants are compared to all opposite-sign model specifications with dynamic
scales (left panel) and extensions of Bekaert et al. (2015) (right panel); all models are using de-meaned
returns. The original BEGE model is shown with a black dot. The specifications that did not fail either of
the exceedance tests are in the upper right quadrant. Point characters correspond to various distribution
functions of baseline shocks.

2.B Particularities of numerically stable optimisa-
tion

2.B.1 Initial value selection for dynamic scale parameter series
The problem of the initial values, σ2

ε+1
and σ2

ε−1
, required to compute the entire dynamic

series {σ2
ε+t
, σ2

ε−t
}Tt=2, might be solved in multiple ways. The easiest is taking plausible

values, generating the series iteratively, and discarding the first point. However, we
improve the initial value guess using σ2

ε+1
= σ2

ε−1
= 0.5 Var rt, generating the first part of

the dynamic series (bT/10c points), and plugging the medians of those series as the
initial values, making them dependent on the model parameters as well.

2.B.2 Copulæ with restrictions on parameter space
The dynamic series for the copula parameter might contain values outside the admiss-
ible range depending on the γ parameters and extreme values of observed returns, and
values near the boundary of this range can cause numerical instability during integra-
tion (i. e. the density becomes nearly degenerate). The use of slowly decaying damping
functions is therefore highly advocated. Table 2.B.1 contains the damping functions
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Table 2.A.2: Bekaert et al. (2015) original model and its extensions

Copula Dyn. VRi piCC piDQ pidur AIC VRo poCC poDQ podur

— — 0.973 0.054 0.292 0.001 −24244.8 0.673 0.003 0.011 0.411
Plackett static 1.000 0.000 0.266 0.007 −24226.7 0.691 0.005 0.019 0.441
Plackett r̃2 1.043 0.796 0.271 0.014 −24274.8 0.782 0.018 0.036 0.282
Plackett r̃3 1.043 0.796 0.408 0.007 −24275.2 0.782 0.018 0.041 0.368
cubic static 0.883 0.012 0.175 0.001 −24244.1 0.709 0.009 0.031 0.551
cubic r̃2 0.915 0.016 0.166 0.002 −24218.2 0.618 0.000 0.002 0.358
cubic r̃3 0.984 0.050 0.099 0.000 −24274.5 0.727 0.015 0.048 0.596
AMH static 0.995 0.031 0.122 0.002 −24222.9 0.691 0.005 0.005 0.356
AMH r̃2 0.995 0.200 0.740 0.001 −24230.3 0.709 0.009 0.028 0.551
AMH r̃3 0.968 0.309 0.781 0.008 −24228.4 0.709 0.009 0.030 0.551
Clayton static 1.043 0.146 0.232 0.003 −24208.1 0.636 0.001 0.001 0.176
Clayton r̃2 1.000 0.000 0.748 0.001 −24236.0 0.673 0.003 0.002 0.263
Clayton r̃3 0.952 0.155 0.353 0.000 −24213.0 0.600 0.001 0.014 0.519

This table describes Bekaert et al. (2015)-like models (centred gamma distribution) with various copula
specifications. All specifications in the table have centred gamma shock densities.
The superscript i denotes in-sample performance indicators, and o denotes out-of-sample indicators.
Dyn.: variable used in the dynamics of the copula parameter (r̃3 for cubes of centred returns, r̃2 for
squares of centred returns).
VR: Violation ratio (the ratio of the number of realised exceedances to their expected number).
pCC: p value of the conditional coverage test (Christoffersen, 1998).
pDQ: p value of the dynamic quantile test (Engle & Manganelli, 2004).
pdur: p value of the no-hit duration test (Christoffersen & Pelletier, 2004).

used in the paper; however, other functions can be used if they prevent extreme values
of the copula parameter from being generated. Furthermore, to prevent degeneration
of densities, the researcher may impose additional restrictions to force the parameters
away from the boundary (e. g. defining the joint density to be zero if θ 6∈ (−0.99, 0.99)).

Table 2.B.1: Damping functions for the dynamic copula parameter κt

Copula Transformation

Plackett
{√

κt + 0.25 + 0.5, κt ≥ 0
2
π

arctan(π
2
κt) + 1, κt < 0

Cubic 3
π

arctan(κt) + 0.5
AMH 2

π
arctan(κt)

Clayton
{√

κt + 0.25 + 0.5, κt ≥ 0
2
π

arctan(π
2
κt) + 1, κt < 0

2.B.3 Numerically stable integration
The numerical integration used for conditional density evaluation in the proposed
model must be used cautiously. Because the density fψt(z) corresponds to de-meaned
returns and the function being integrated from minus infinity to the upper limit is
fε+t ,ε−t (z − v, v), it is natural to assume that most function mass lies in the region where
‘bad’ shocks take typical values similar to negative daily market returns (e. g. 99%
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returns in the S&P 500 sample are higher than −0.034, and the lowest daily return is
−0.104). Outside the natural range for ε−t , fε+t ,ε−t (z − v, v) takes small values even for
fat-tailed distributions; thus, as a consequence, the default integration routines might
converge prematurely because the estimated modulus of the integration error does not
exceed the requested tolerance. The principal cause for such behaviour is a combination
of two factors: (1) the function primarily concentrating in a very narrow range and
(2) the standard 15-point Gauss-Kronrod rules for an unbounded interval not capturing
the function mass where it lies, summing only near-zero values, and not going into the
next adaptive step. The following example illustrates this phenomenon: if one attempts
to numerically integrate the normal density with mean −0.2 and standard deviation
0.005 from minus infinity to 0, the most likely result will be a severe underestimation
(e. g. the returned value could be approximately 10−5, although it should be near 1).

Thus, the integrand should be transformed to be properly ‘sampled’ by the quadrat-
ure rules in the standard evaluation region. If a researcher requests integration from
−∞ to 0, 15 points of the quadrature are taken by default between −102.37 and −10−2.37.
The standard solution in such cases is scaling the argument of the integrand and the
integrand itself by a measure of the function scale; no centring is required because the
upper limit is 0. One such measure could be the conditional standard deviation of rt;
however, its computation requires evaluation of frt itself, creating a vicious circle. A
good feasible value for the scaling argument that we use in all integration routines is√
σ2
ε+t

+ σ2
ε−t

(i. e. the true standard deviation if the shocks were independent). Another
solution that prevents false convergence in the numerical integration routine is using
a tighter relative tolerance as the stopping criterion. We found that requiring the
relative error to be below 10−12 solves the false convergence issue without producing
another (i. e. non-convergence due to the round-off error and impossibility of reaching
the required tolerance).

2.C Vuong-like tests for likelihood-based criteria
This appendix describes a version of the likelihood ratio test developed by Vuong
(1989). It is assumed that the pseudo-true value θ∗ specifies the model in a family with
conditional density f : θ∗ def

= arg maxθ E ln f(zt; θ). Similarly, let γ∗ define the model with
a different conditional density g(zt; γ

∗). Note that both f and g may not be the density
corresponding to the true DGP, and the models in the comparison may be nested,
overlapping, or strictly non-nested. Under the null hypothesis that the models defined
by densities f and g are equivalent (i. e. their distances from the true conditional
density measured by the Kullback-Leibler information criterion, KLIC, are the same),

V̂KLIC
def
=

1√
T

T∑
t=1

[ln f(zt; θ̂)− ln g(zt; γ̂)]
d−−−→

T→∞
N(0, σ2

∗),

where θ̂ and γ̂ are the maximum likelihood estimators. Values of V̂KLIC/
√
σ2
∗ exceeding

the chosen (1 − α)-quantile of the standard normal distribution imply that the two
models are not observationally identical at the significance level α, and the one with
conditional density f should be preferred. Calvet and Fisher (2004) suggest that σ2

∗
should be estimated with a HAC estimator due to potential serial correlation in the
difference of the log-likelihood series.

82



This test will asymptotically choose the ‘best’ model (closest to the true distribution
in terms of KLIC) with probability 1 if the conditions given in Calvet and Fisher (2004,
Appendix A2) are met. Following the discussion in Vuong (1989, Section 5), we adjust
the test statistic to penalise both models for the dimensions of the parameter vectors.
For a model with density f , the Akaike information criterion is defined as

AIC
def
= −2

T∑
t=1

f(zt; θ̂) + 2 dim θ̂ = −2
T∑
t=1

[f(zt; θ̂)− dim θ̂/T ].

The adjusted test statistic for Akaike information criteria equivalence testing is defined
as

V̂AIC
def
=

1√
T

T∑
t=1

(
[ln f(zt; θ̂)− dim θ̂/T ]− [ln g(zt; γ̂)− dim γ̂/T ]

) d−−−→
T→∞

N(0, σ2
∗),

The asymptotic variance of V̂AIC is the same as that of V̂KLIC because the addition of
a fixed penalty acts as a shift by a constant. The penalty terms dim θ̂/T and dim γ̂/T
can be replaced with 0.5 lnT · (dim θ̂)/T and 0.5 lnT · (dim γ̂)/T to compare the models
by their Bayesian information criteria.
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Chapter 3

Missing endogenous variables
in conditional moment restriction
models

This chapter is based on joint work with Antonio Cosma and Gautam Tripathi.



3.1 Introduction
Let Y ∗i , Zi, Xi be random (column) vectors corresponding to individual i in a sample
of size n, i. e. i = 1, . . . , n. The vector Y ∗i consists of endogenous variables (outcomes
or explanatory), all of which are simultaneously not observed for some individuals in
the sample. In contrast, the vector Zi consists of endogenous variables (outcomes or
explanatory variables) observed for each individual in the sample. Similarly, Xi is a
vector of exogenous variables observed for each individual in the sample. We refer
to the coordinates of Y ∗ as being ‘missing’ (for some individuals). Analogously, the
coordinates of (Z,X) are referred to as being ‘non-missing’ (for all individuals).

For each i, we also observe the dummy variable

Di
def
=

{
1 if all coordinates of Y ∗i are observed,
0 if all coordinates of Y ∗i are missing.

If all coordinates of Y ∗ are observed for individual i, then we let

Yi
def
= DiY

∗
i + (1−Di)m (3.1.1)

denote the observed version of Y ∗i , where m denotes missing values. The symbol m can
be thought of as a vector of pre-specified numbers, e. g. m def

= (99999, . . . , 99999)(dimY ∗)×1,
used to code missing values. This facilitates mathematical analysis because, e. g., then
0×m = 0(dimY ∗)×1. Note that Di = 1(Y ∗i 6= m), where Y ∗i 6= m holds coordinate-wise to
indicate that each coordinate of Y ∗i is observed. Similarly, 1−Di = 1(Y ∗i = m), where
Y ∗i = m coordinate-wise to indicate that each coordinate of Y ∗i is not observed.

The econometric models we consider are characterised as a system of conditional
moment equalities, namely,

∃θ∗ ∈ Θ s.t. E[g(Y ∗, Z,X, θ∗) | X] = 0 PX-a.s., (3.1.2)

where g is a vector of functions known up to θ∗ ∈ Θ ⊂ Rdim θ∗.45 The conditional
distribution of (Y ∗, Z | X) and the marginal distribution of X, denoted by PX , are both
unknown. The objective is to use the data (Di, Yi, Zi, Xi), i = 1, . . . , n, to efficiently
estimate θ∗.

The researcher chooses the vector-valued function g to model a system of relation-
ships between the missing and the non-missing variables. The missing variables Y ∗ and
the non-missing variables Z are classified to be endogenous, i. e. the variables inside g
that are pairwise correlated with g, because they do not appear in the conditioning set
in (3.1.2). The non-missing variables X are classified as exogenous, i. e. explanatory
variables that are mean independent of g. In many applications, X def

= (Xin, Xex), where
Xin denotes the ‘included’ instrument variables (IV) and Xex the ‘excluded’ IV. Included
instruments refer to the exogenous variables appearing in g, whereas the excluded
instruments are those exogenous variables that may not be in g due to exclusion restric-
tions imposed by economic theory but, based on external considerations, may appear
in the conditioning set to ensure the identification of θ∗. Excluded instruments are not
necessary if the included instruments suffice to identify θ∗, in which case Xex is the

45 If there is no conditioning, then (3.1.2) reduces to a system of unconditional moment equalities with
some variables missing. E. g. these models are studied in X. Chen et al. (2008) and Graham (2011). For
more on this, cf. Example 3.3.4.
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empty vector. However, if there are no included instruments—e. g. when all explanatory
variables are deemed to be potentially endogenous, in which case Xin is the empty
vector—then excluded instruments are necessarily required to identify θ∗.

A large class of models in applied economics can be written as (3.1.2).
Example 3.1.1 (IV regression with missing outcome). The canonical example of (3.1.2)
is the linear IV regression model Y ∗ = α∗ +X ′inβ

∗ + Z ′γ∗ + U , where only the outcome
variable Y ∗ is missing for some observations, Z is the vector of endogenous regressors,
and U is mean-independent of X, i. e. E[U | X] = 0 PX-a.s. In this example, θ∗ def

=

(α∗, β∗, γ∗), g(Y ∗, Z,X, θ∗)
def
= Y ∗ − α∗ − X ′inβ

∗ − Z ′γ∗, and Y ∗ is a scalar. If all the
regressors are endogenous, then Xin is the empty vector, X def

= Xex, and the definition of
θ∗ is adjusted accordingly by dropping β∗. The case where all endogenous variables in
the linear regression model can be missing is handled by letting Z be the empty vector
and g(Y ∗, X, θ∗)

def
= Y ∗1 − α∗ −X ′inβ∗ − Y ∗2 ′γ∗ with Y ∗ def

= (Y ∗1 , Y
∗

2 ). Note that Y ∗ is now a
vector.
Example 3.1.2 (Linear regression with missing endogenous explanatory variables).
The linear regression model where the outcome variable is non-missing but the right-
hand side endogenous variables may be missing can be handled by letting g(Y ∗, Z,X, θ∗)
def
= Z − α∗ −X ′inβ∗ − Y ∗′γ∗, where the outcome variable Z is now a scalar.

Multivariate extensions of Examples 3.1.1 and 3.1.2 include systems of equations,
linear or non-linear, that can be written as g(Y ∗, Z,X, θ∗) = ε with E[ε | X] = 0 PX-a.s.;
cf., e. g., Newey (1993, Section 3), Powell (1994, Section 2.1), Pagan and Ullah (1999,
Chapter 3), and Wooldridge (2010).

3.2 Identification
To identify, i. e. uniquely define, θ∗ in the presence of missing observations without
modelling how the missingness is created, we make a standard ‘selection on observ-
ables’ assumption that conditional on the non-missing variables (Z,X), the missing
observations on Y ∗ are missing at random (MAR); i. e.
Assumption 3.2.1 (MAR). For all individuals, D ⊥⊥ Y ∗ | Z,X, where the symbol ‘⊥⊥’
denotes stochastic independence.

We can use MAR to evaluate E[g(Y ∗, Z,X, θ) | X], θ ∈ Θ, even when Y ∗ is missing.
Indeed,

E[g(Y ∗, Z,X, θ) | X]
PX -a.s.

= E
[
E[g(Y ∗, Z,X, θ) | Z,X] | X

]
(tower property)

=
[
E[g(Y ∗, Z,X, θ) | Z,X,D = 1] | X

]
(MAR)

= E
[
E[g(Y, Z,X, θ) | Z,X,D = 1] | X

]
(D = 1

(3.1.1)⇐⇒ Y ∗ = Y )

= E
[
E
[Dg(Y, Z,X, θ)

π(Z,X)

∣∣∣ Z,X] ∣∣∣ X]
= E

[Dg(Y, Z,X, θ)

π(Z,X)

∣∣∣ X], (3.2.1)

where
π(Z,X)

def
= E[D | Z,X] = Pr(D = 1 | Z,X) (3.2.2)
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is the propensity score function. To emphasise the non-parametric nature of the
propensity score function, we assume that

Assumption 3.2.2. The functional form of (Z,X) 7→ π(Z,X) is fully unknown.

The propensity score function, although unknown, is identified from the data as
the conditional expectation of D | Z,X because D,Z,X are non-missing. Since, under
MAR,

E[g(Y ∗, Z,X, θ∗) | X]
PX -a.s.

= 0
(3.2.1)⇐⇒ E

[Dg(Y, Z,X, θ∗)

π(Z,X)

∣∣∣ X] PX -a.s.
= 0, (3.2.3)

any condition that leads to the identification of θ∗ in (3.1.2) will also ensure identification
of θ∗ in the moment condition on the right-hand side of (3.2.3), which does not contain
any missing observations. To illustrate this, assume that the columns of

J
def
= J(X, θ∗)(dim g)×(dim θ∗)

def
= ∂θE[g(Y ∗, Z,X, θ∗) | X]

def
= ∂θE[g(Y ∗, Z,X, θ) | X]

∣∣
θ=θ∗

are linearly independent PX-a.s. As shown in Appendix 3.B, this is sufficient to ensure
that θ∗ is locally identified.46 Hence, as π does not depend on θ (Assumption 3.2.2),

J
(3.2.1)

= ∂θE
[Dg(Y, Z,X, θ∗)

π(Z,X)

∣∣∣ X] PX-a.s.

Therefore, the columns of J are linearly independent PX-a.s. if and only if the columns
of ∂θE[Dg(Y, Z,X, θ∗)/π(Z,X) | X] are linearly independent PX-a.s. Since the identific-
ation of the parameters of interest in the missing data problem is not lost under MAR,
for the remainder of the paper, we maintain that

Assumption 3.2.3. θ∗ is identified.

3.3 Efficient estimation under MAR
Henceforth, we liberally use functional notation, suppressing the arguments taken
by functions whenever there is no danger of confusion. In particular, we let π def

=

π(Z,X) and g
def
= g(Y ∗, Z,X, θ∗). Note that Dg = Dg(Y ∗, Z,X, θ∗)

(3.1.1)
= Dg(Y, Z,X, θ∗).

The moment condition on the right-hand side of (3.2.3) is based on the subsample of
observations with D = 1. Adopting the terminology of Robins et al. (1994, p. 848), we
henceforth refer to the subsample of observations with D = 1 as the ‘validation sample’;
i. e. the validation sample is obtained from the original sample (Di, Y

∗
i , Zi, Xi : 1 ≤ i ≤ n)

by discarding the observations (Di, Y
∗
i , Zi, Xi) for which Di = 0. We let L2(Z,X) denote

the set of real-valued functions of Z,X with finite second moments.

3.3.1 Efficiency bounds
The equivalence in (3.2.3) reveals that under MAR, θ∗ can be estimated from the
validation sample alone. In practice, however, it may not be a good idea to estimate
θ∗ using the validation sample alone because of the efficiency loss resulting from
discarding the observations on (Z,X) even though they are not missing. It is, therefore,

46 The same condition leads to the global identification of θ∗ whenever g is linear in θ∗.

88



important to know the efficiency bound for estimating θ∗ in (3.1.2) under MAR. Loosely
speaking, the efficiency bound for θ∗ is the smallest asymptotic variance of an estimator
that best uses the information from all non-missing observations.

We motivate the efficiency bound for estimating θ∗ using Hristache and Patilea
(2017, Theorem 1), which extends the results in Graham (2011, Theorem 2.1) to condi-
tional moment restrictions. Although Hristache and Patilea consider a very general
model with infinite-dimensional parameters, unlike us, they do not consider efficient
estimation of the parameters of interest. Instead, they focus on showing that a mo-
ment condition with missing observations and the MAR assumption are equivalent to
the moment condition in the validation sample implied by the MAR and the moment
condition defining the propensity score function.

Consider the system of (dim g + 1) equations

E
[Dg
π

∣∣∣ X] = 0 PX-a.s. (3.3.1a)

E
[D
π
− 1

∣∣∣ Z,X] = 0 PZ,X-a.s. (3.3.1b)

Since Dg (3.1.1)
= Dg(Y, Z,X, θ∗), the moment conditions in (3.3.1) do not contain any

missing observations. Note that (3.3.1a) identifies θ∗ using the validation sample alone,
whereas (3.3.1b) is the definition of π. Remarkably, by Theorem 1 of Hristache and
Patilea, the moment conditions in (3.3.1) are equivalent to (3.1.2) and MAR, i. e.

(3.3.1) ⇐⇒ (3.1.2) & MAR . (3.3.2)

The equivalence in (3.3.2) reveals that, under MAR, the efficiency bound for θ∗ in (3.1.2)
is equal to the efficiency bound for estimating θ∗ in (3.3.1), which is a system of condi-
tional moment restrictions with increasing conditioning sets. Following Ai and Chen
(2012, Section 2), and Hristache and Patilea (2016, Section 4.1), we convert the se-
quential system in (3.3.1) into a conditional-on-X moment restriction whose moment
functions are orthogonal to the moment function in (3.3.1b), by considering the residual
from an orthogonal projection of the moment functions in (3.3.1a) onto the ‘L2(Z,X)-
span’ of the moment function in (3.3.1b). This residual, which is free from the influence
of (3.3.1b) in the sense that it is orthogonal to D/π − 1, satisfies a conditional-on-X
moment restriction, which is then used to estimate θ∗.

For the remainder of the paper, let

µ
def
= µ(Z,X, θ∗)

def
= E[g(Y ∗, Z,X, θ∗) | Z,X] (3.3.3)

and

ρ
def
= ρ(A, θ∗, π, µ)

def
= ρ(A, θ∗, π(Z,X), µ(Z,X, θ∗)) (A def

= (D, Y, Z,X))
def
=
Dg(Y, Z,X, θ∗)

π(Z,X)
− µ(Z,X, θ∗)

[ D

π(Z,X)
− 1
]
. (3.3.4)

The functions π and µ appearing in the definition of ρ are estimable because, under
MAR, µ is just the best non-parametric imputation of g(Y ∗, Z,X, θ∗) based on (Z,X),
i. e.

µ
MAR
= E[g(Y, Z,X, θ∗) | Z,X,D = 1]. (3.3.5)
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Define the L2(Z,X)-span of D/π − 1 to be A
def
= {a(D/π − 1) : a ∈ L2(Z,X)}. It is

shown in Appendix 3.C that (3.3.1) implies that ρ is the residual from the coordinate-
wise projection ofDg/π onto the linear spaceA, and that ρ satisfies the conditional-on-X
moment restriction

E[ρ(A, θ∗, π, µ) | X]
PX -a.s.

= 0. (3.3.6)
Therefore, estimation of θ∗ can be based on (3.3.6).

In fact, (3.3.6) can also deliver an efficient estimator. It is shown in Appendix 3.C
that

(3.3.1) =⇒


∂θ∗E[ρ(A, θ∗, π, µ) | X]

PX -a.s.
= J

∂πE[ρ(A, θ∗, π, µ) | X]
PX -a.s.

= 0

∂µE[ρ(A, θ∗, π, µ) | X]
PX -a.s.

= 0.

(3.3.7a)

(3.3.7b)

(3.3.7c)
Hence, by Ai and Chen (2003, Theorems 4.1 and 6.1), it is straightforward to verify
that the efficiency bound for estimating θ∗ in (3.3.6) is given by (EJ ′Ω−1

ρ J)−1, where
Ωρ

def
= E[ρρ′ | X]

(3.3.6)
= Var[ρ | X]. Furthermore, as demonstrated subsequently in

Lemma 3.3.1, (EJ ′Ω−1
ρ J)−1 is also the semi-parametric efficiency bound for estimating

θ∗ in (3.1.2). Therefore, efficient estimation of θ∗ can be based on (3.3.6). Consequently,
the moment function ρ (which can be written as a weighted sum of g and µ with weights
D/π and 1−D/π respectively) may also be interpreted as the optimal linear combination
of g and its best non-parametric imputation µ.

Let σ2
g

def
= σ2

g(X)
def
= E[g′g | X], and ‖ · ‖∞ denote the supremum norm, e. g. ‖σ2

g‖∞
def
=

supsupp(X) σ
2
g . The efficiency bound in Lemma 3.3.1 is obtained under the following

conditions.

Assumption 3.3.1. (i) infsupp(X,Z) π > 0; (ii) E tr J ′J < ∞ and ‖σ2
g‖∞ < ∞; (iii) The

matrix EJ ′Ω−1
ρ J exists and is nonsingular, and the matrix E[J ′Ω−1

ρ (1− π)π−1µµ′Ω−1
ρ J ]

exists.

(i) is necessary for θ∗ to be n1/2-estimable. In (ii), E tr J ′J < ∞ implies that each
element of J has finite second moment. Consequently, span(J), which denotes the set of
all linear combinations of the column vectors of J , i. e. the column space of J , is closed
in L2(X)× dim g. The condition ‖σ2

g‖∞ <∞ uniformly bounds the skedastic function for
each coordinate of g. (i) and (ii) are used in the proof of Lemma 3.C.1. (iii), which
implies that the efficiency bound in (3.3.8) is well-defined, is also necessary for θ∗ to be
n1/2-estimable.

Lemma 3.3.1. Let Assumptions 3.2.1, 3.2.2, 3.2.3, and 3.3.1 hold. Then, the efficiency
bound for estimating θ∗ in (3.1.2) is given by47

l.b.(θ∗)
def
= (EJ ′Ω−1

ρ J)−1. (3.3.8)

The efficiency bound for θ∗ does not decrease if π is known to be parametrically specified
up to a finite-dimensional parameter, or even if π is fully known.

Since Lemma 3.3.1 does not require θ 7→ g(Y ∗, Z,X, θ) to be differentiable, the
efficiency bound in (3.3.8) remains valid for non-smooth moment functions arising, e. g.
in quantile regression models. The result in Lemma 3.3.1 that the efficiency bound

47 The abbreviation ‘l.b.’ stands for ‘lower bound’ because the semi-parametric efficiency bound is the
greatest lower bound for the asymptotic variance of any n1/2-consistent regular estimator.

90



for θ∗ remains the same irrespective of whether π is fully unknown, or fully known, or
known up to a finite-dimensional parameter, can be interpreted as the propensity score
function being ancillary to θ∗ (Hahn, 1998, p. 319). This is not surprising because π
does not enter the moment condition (3.1.2) through which θ∗ is defined. As noted in
X. Chen et al. (2008, Section 4.2, p. 822) and Graham (2011, p. 439, and the references
cited therein), ancillarity of π implies that, in order to obtain an asymptotically efficient
estimator of θ∗, the propensity score function should be non-parametrically estimated
even if it is parametrically specified, or, indeed, even if it is fully known.48

To get an idea about the efficiency gains obtained when all non-missing obser-
vations are used to estimate θ∗ (and not just those in the validation sample), the
efficiency bound in Lemma 3.3.1 can be compared with the efficiency bound for estim-
ating θ∗ using the moment condition based on the validation sample alone, i. e. the
right-hand side of (3.2.3). Let l.b.(θ∗)

∣∣
VS

denote the efficiency bound for θ∗ based on
E[Dg(Y, Z,X, θ∗)/π(Z,X) | X]

PX -a.s.
= 0. By Ai and Chen (2003, Theorems 4.1 and 6.1),

l.b.(θ∗)
∣∣
VS = (EJ′$∗Σ

−1J$∗)
−1, (3.3.9)

where Σ
def
= E[

Dgg′

π2
| X], and $∗ def

= ($
(1)
∗ , . . . , $

(dim θ∗)
∗ ) ∈ L2(Z,X)× dim θ∗ is a (dim θ∗)× 1

vector of real-valued functions chosen such that EJ′$∗Σ
−1J$∗ ≤L EJ′$Σ−1J$ for all

$
def
= ($(1), . . . , $(dim θ∗)) ∈ L2(Z,X)× dim θ∗,49 where

J$
def
=

[
J1 + E

[Dg
π2
$(1)

∣∣∣ X] · · · J(dim θ∗) + E
[Dg
π2
$(dim θ∗)

∣∣∣ X]]
(dim g)×(dim θ∗)

and Jk is the kth column of J . Clearly, EJ′$∗Σ−1J$∗ ≤L EJ ′Σ−1J from the definition of
$∗. Moreover, MAR and (3.3.12) imply that

Σ = Ωρ + E
[1− π

π
µµ′

∣∣∣ X]. (3.3.10)

Consequently, Ωρ ≤L Σ from which it follows that

(EJ ′Ω−1
ρ J)−1 ≤L (EJ′$∗Σ

−1J$∗)
−1 ⇐⇒ l.b.(θ∗) ≤L l.b.(θ∗)

∣∣
VS. (3.3.11)

Equation (3.3.11) reveals that, in general, an asymptotically efficient estimator of
θ∗—which necessarily uses all the observations and not just those in the validation
sample—beats any estimator constructed using the validation sample alone.

The special case l.b.(θ∗) = l.b.(θ∗)
∣∣
VS, namely, when using the validation sample alone

leads to an efficient estimator, arises when there are no non-missing endogenous vari-
ables, i. e. when Z is the empty vector (denoted by Z = ∅). In this case, the propensity
score is a function of X alone so that J (3.2.3)

= J , and µ def
= E[g | Z,X]

Z=∅
= E[g | X]

(3.1.2)
= 0

PX-a.s., which implies that Σ
(3.3.10)

= Ωρ PX-a.s. Consequently, l.b.(θ∗)
∣∣
Z=∅ = l.b.(θ∗)

∣∣
VS.

In other words, if all endogenous outcomes and endogenous explanatory variables in
the model are missing, then estimating θ∗ using the validation subsample alone is

48 A similar issue arises in estimating models with stratified samples when the stratum shares are
known (Tripathi, 2011a, Section 2).

49 The symbol ‘≤L’ denotes the usual (Löwner) order on the set of symmetric matrices. Namely,
M1 ≤L M2 for symmetric matricesM1,M2 means that the matrixM1 −M2 is negative semidefinite.
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asymptotically efficient.50 This result, which generalises the findings in Hristache
and Patilea (2016, Section 4.2) and Hristache and Patilea (2017, p. 740) for missing
outcomes, is worth stating separately.

Corollary 3.3.1. The efficiency gains in estimating θ∗, measured by the coordinate-wise
ratio l.b.(θ∗)

∣∣
VS
/l.b.(θ∗), are due to the presence of the non-missing endogenous variables.

Corollary 3.3.1 can be interpreted as a result about imputing the values of missing
endogenous variables, which may be appealing to applied researchers. Recalling that ρ
is the optimal linear combination of g and its best non-parametric imputation µ (cf. the
discussion after (3.3.7)), Corollary 3.3.1 says that the efficiency gains in estimating
θ∗ using all of the non-missing observations—and not just those in the validation
sample—arise only when µ 6= 0. Since µ PZ,X -a.s.

= 0 ⇐⇒ E[g(Y ∗, Z,X, θ∗) | Z,X]
PZ,X -a.s.

= 0,
we have that

µ
PZ,X -a.s.

= 0 =⇒ E[g(Y ∗, Z,X, θ∗) | X]
PX -a.s.

= 0 & E[g(Y ∗, Z,X, θ∗) | Z]
PZ -a.s.= 0

=⇒ E[g(Y ∗, Z,X, θ∗) | X]
PX -a.s.

= 0 & Z is exogenous or empty.

Therefore, if the model (3.1.2) is correctly specified, then µ 6= 0 only when Z is endogen-
ous and non-empty, i. e. when the information used to impute g (the conditioning set
in (3.3.3)) is strictly larger than the information used to estimate θ∗ (the conditioning
set in (3.1.2)); equivalently, when the conditioning set in (3.3.1b) is strictly larger than
the conditioning set in (3.3.1a).

The following example illustrates that imputing missing outcomes in linear regres-
sion models can lead to efficiency gains only when non-missing endogenous regressors
are present.

Example 3.3.1 (When should missing outcomes be imputed?). Consider the linear
regression model Y ∗ = α∗0 + X ′inβ

∗
0 + U with E[U | Xin]

PXin
-a.s.

= 0, where the outcomes
may be missing, and there are no non-missing endogenous regressors and excluded
instruments. In this model, g def

= U ; hence, µ def
= µ(Xin, α

∗
0, β

∗
0) = E[Y ∗ − α∗0 − X ′inβ∗0 |

Xin]
PXin

-a.s.
= 0. Consequently, the validation sample alone can be used to construct a

semi-parametrically efficient estimator of (α∗0, β
∗
0). Indeed, Lemma 3.3.1 shows that the

efficiency bound for estimating (α∗0, β
∗
0) is given by (Eπ̃J ′Ω−1

g J)−1, where π̃ def
= E[D | Xin],

J = −[ 1 X′in ], and Ωg
def
= E[gg′ | Xin]. By (3.3.9), this coincides with the efficiency

bound using the validation sample alone; moreover, based on the moment condition
E[D(Y − α∗0 − X ′inβ

∗
0) | Xin]

PXin
-a.s.

= 0, which holds only in the validation sample, the
estimator proposed in (3.3.15) attains the bound. In this model, imputing the missing
Y ∗ usingXin (as no other non-missing endogenous/exogenous variables are present) and
employing the imputed values to estimate (α∗0, β

∗
0) does not lead to any efficiency gains.

This is easily seen for the least-squares (LS) estimator, which is not semi-parametrically
efficient but serves to illustrate the point. Since E[Y ∗ | Xin, D = 1]

MAR
= E[Y ∗ | Xin] =

α∗0 +X ′inβ
∗
0 , the missing Y ∗ can be replaced by their imputed value Ŷ def

= α̂0VS +X ′inβ̂0VS,
where (α̂0VS, β̂0VS)

def
= argminα,β

∑
i : Di=1(Yi−α−X ′in,iβ)2 is the estimator of (α∗0, β

∗
0) from

50 If there is no missingness at all, i. e. Y ∗ = Y with probability 1, then ρ = g and (3.3.8) becomes
(EJ ′Ω−1g J)−1, which is the well-known efficiency bound for estimating θ∗ in the model E[g(Y,Z,X, θ∗) |
X] = 0 PX -a.s.
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the validation sample alone. The LS estimator of (α∗0, β
∗
0) from the full sample, obtained

by replacing the missing outcomes with their imputed values, is then

(α̂0LS, β̂0LS)
def
= argmin

α,β

n∑
i : Di=1

(Yi − α−X ′in,iβ)2 +
n∑

i : Di=0

(Ŷi − α−X ′in,iβ)2

= argmin
α,β

n∑
i : Di=1

(Yi − α−X ′in,iβ)2 +
n∑

i : Di=0

(α̂0VS +X ′in,iβ̂0VS − α−X ′in,iβ)2

︸ ︷︷ ︸
= 0 if (α, β) = (α̂0VS, β̂0VS)

= (α̂0VS, β̂0VS).

Therefore, imputing the missing outcomes in linear regression models that have no
non-missing endogenous regressors does not lead to efficiency gains.

Next, suppose that in the previous specification, we allow for non-missing endo-
genous regressors and excluded instruments, i. e. now Y ∗ = α∗ +X ′inβ

∗ + Z ′γ∗ + ε with
E[ε | X]

PX -a.s.
= 0 and X

def
= (Xin, Xex). Here, g def

= ε; hence, µ def
= µ(Z,X, α∗, β∗, γ∗) =

E[ε | Z,X] 6= 0. Consequently, no estimator of (α∗, β∗, γ∗) using the validation sample
alone is semi-parametrically efficient. Indeed, the efficiency bound for estimating
(α∗, β∗, γ∗) (cf. Example 3.3.2)—which is attained by the estimator in (3.3.15) with ρ
defined in (3.3.4)—is strictly smaller than the efficiency bound for estimating (α∗, β∗, γ∗)
from the validation sample alone because µ 6= 0. In this model, imputing the missing
Y ∗ using (Z,X) and employing the imputed values to estimate (α∗, β∗, γ∗) can lead to
efficiency gains. This is easily seen for the two-stage least-squares (2SLS) estimator,
which is not semi-parametrically efficient but illustrates the point fittingly. Since
E[Y ∗ | Z,X,D = 1]

MAR
= E[Y ∗ | Z,X] = α∗+X ′inβ

∗+Z ′γ∗+µ, the missing Y ∗ are imputed
by Y̌ def

= α̂VS +X ′inβ̂VS +Z ′γ̂VS + µ̂(Z,X), where (α̂VS, β̂VS, γ̂VS)
def
= argminα,β,γ

∑n
i : Di=1(Yi−

α−X ′in,iβ − Ẑ ′VS,iγ)2 is the 2SLS estimator of (α∗, β∗, γ∗) in the validation sample, ẐVS

is the predicted Z from the first-stage obtained by estimating the reduced form equa-
tions for Z in the validation sample, and µ̂(Z,X)

def
= µ̂(Z,X, α̂VS, β̂VS, γ̂VS) is obtained by

non-parametrically regressing the second-stage residual ε̂VS
def
= α̂VS −X ′inβ̂VS − Z ′γ̂VS

on (Z,X). Letting Ẑ be the predicted Z from the first-stage reduced form equations for
Z in the full sample, the 2SLS estimator of (α∗, β∗, γ∗) in the full sample is then

(α̂2SLS, β̂2SLS, γ̂2SLS)
def
= argmin

α,β,γ

n∑
i : Di=1

(Yi − α−X ′in,iβ − Ẑ ′iγ)2 +
n∑

i : Di=0

(Y̌i − α−X ′in,iβ − Ẑ ′iγ)2

= argmin
α,β,γ

n∑
i : Di=1

(Yi − α−X ′in,iβ − Ẑ ′iγ)2

+
n∑

i : Di=0

(α̂VS +X ′in,iβ̂VS + Z ′iγ̂VS + µ̂(Zi, Xi)− α−X ′in,iβ − Ẑ ′iγ)2

︸ ︷︷ ︸
6=0

6= (α̂VS, β̂VS, γ̂VS).

Therefore, imputing the missing outcomes in linear regression models where non-
missing endogenous regressors are present can lead to efficiency gains.
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Before ending this section, we describe an alternative expression for Ωρ that is
useful in many applications. It is shown in Appendix 3.C that

πE[ρρ′ | Z,X] + (1− π)µµ′ = E[gg′ | Z,X]. (3.3.12)

Since Var[g | Z,X] = E[gg′ | Z,X]− µµ′,

(3.3.12) ⇐⇒ E[ρρ′ | Z,X] = π−1 Var[g | Z,X] + µµ′.

Consequently, since E[ρ | X]
(3.3.6)

= 0 PX-a.s.,

Ωρ = E[π−1 Var(g | Z,X) | X] + E[µµ′ | X]. (3.3.13)

Example 3.3.2 (Example 3.1.1 contd.). In the linear regression model where only the
outcome variable may be missing, g(Y ∗, Z,X, θ∗) = U = Y ∗ − α∗ −X ′inβ∗ − Z ′γ∗. Hence,
by Lemma 3.3.1, the efficiency bound for estimating θ∗ is given by (EJ ′J/Ωρ)

−1, where
J = −[ 1 X′in E[Z′|X] ], Ωρ

(3.3.13)
= E[π−1 Var(Y ∗ | Z,X) | X] + E[µ2 | X], and µ = E[U | Z,X] =

E[Y ∗ | Z,X]− α∗ −X ′inβ∗ − Z ′γ∗.

Example 3.3.3 (Example 3.1.2 contd.). In the linear regression model where the
outcome is always observed, but the right-hand side endogenous variables may be
missing, g(Y ∗, Z,X, θ∗) = Z −α∗−X ′inβ∗− Y ∗′γ∗. Hence, by Lemma 3.3.1, the efficiency
bound for estimating θ∗ is given by (EJ ′J/Ωρ)

−1, where J = −[ 1 X′in E[Y ∗′|X] ], Ωρ
(3.3.13)

=
γ∗′E[π−1 Var(Y ∗ | Z,X) | X]γ∗ + E[µ2 | X], and µ = Z − α∗ −X ′inβ∗ − γ∗′E[Y ∗ | Z,X].

Example 3.3.4 (Unconditional moment equalities). If there is no conditioning in (3.1.2),
then the efficiency bound in Lemma 3.3.1 reduces to the one obtained by X. Chen et al.
(2008, Theorem 1) and Graham (2011, p. 439) for estimating parameters defined via
unconditional moment equalities. Indeed, (3.1.2) can be formally converted into the
model of X. Chen et al. (2008, Eqn. 2) by applying the following two-step procedure
to (3.1.2): (i) First, let X def

= ∅ so that the conditioning disappears; (ii) Then, replace Z
by X. This leads to the propensity score π̃ def

= π̃(X)
def
= E[D | X] and the unconditional

moment restriction model
Eg(Y ∗, X, θ∗) = 0. (3.3.14)

in (3.3.14), assume that dim g ≥ dim θ∗ and that θ∗ is identified. Then, applying the
procedure in (i) and (ii) to the efficiency bound in Lemma 3.3.1, it follows that the
efficiency bound for estimating θ∗ in (3.3.14) is given by (J ′Ω−1

ρ J)−1, where, now, J =

∂θEg(Y ∗, X, θ∗), Ωρ
(3.3.13)

= E[π̃−1 Var(g | X)] + Eµµ′ with g = g(Y ∗, X, θ∗) and µ = E[g | X].
As discussed in X. Chen et al. (2008, Section 2.1), π̃ is ancillary to θ∗ in (3.3.14).

3.3.2 The smoothed empirical likelihood
If π and µ are fully known, then the smoothed empirical likelihood (SEL) estimator
of θ∗ (Kitamura et al., 2004) based on the conditional moment restriction (3.3.6) will
be asymptotically efficient, i. e. its asymptotic variance will equal the semi-parametric
efficiency bound in (3.3.8), because J (3.3.7a)

= ∂θE[ρ(A, θ∗, π, µ) | X] PX-a.s. In fact, the
asymptotic variance of the SEL estimator will not change even if π and µ are replaced by
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their non-parametric estimators.51 Therefore, we estimate θ∗ using the SEL approach,
which entails maximising the empirical likelihood of the data subject to (3.3.6). Smooth-
ing the empirical likelihood is required because (3.3.6) is a conditional restriction and
the coordinates of X are continuously distributed.52

By (3.2.2) and (3.3.5), π and µ can be estimated by the kernel estimators

π̂c(Z,X)
def
=

∑n
k=1DkKc(Zk − Z,Xk −X)∑n
k=1 Kc(Zk − Z,Xk −X)

µ̂d(Z,X, θ)
def
=

∑n
k=1 g(Yk, Zk, Xk, θ)Kd(Zk − Z,Xk −X)1(Dk = 1)∑n

k=1 Kd(Zk − Z,Xk −X)1(Dk = 1)
,

where Kc(·)
def
= K(·/cn) and Kd(·)

def
= K(·/dn) are kernel functions and c

def
= (cn) and

d
def
= (dn) the bandwidths. Hence, letting ρ̂(Aj, θ)

def
= ρ

(
Aj, θ, π̂c(Zj, Xj), µ̂d(Zj, Xj, θ)

)
,

j = 1, . . . , n, the SEL estimator of θ∗ is defined as

θ̂
def
= argmax

θ∈Θ
SELT(θ), (3.3.15)

where
SELT(θ)

def
= −

n∑
i=1

Ti,n max
λi∈Rdim ρ

n∑
j=1

wij log
(
1 + λ′iρ̂(Aj, θ)

)
,

and wij
def
= Kb(Xi − Xj)/

∑n
k=1 Kb(Xi − Xk) are the kernel weights, with bandwidth

b
def
= (bn), used to construct the local empirical likelihood

∑n
j=1wij log

(
1 + λ′ρ̂(Aj, θ)

)
.

The indicator Ti,n is a trimming function (defined subsequently) introduced to deal
with the instability of the local empirical log-likelihood caused by the density of the
conditioning variables becoming too small in the tails. Cf. Kitamura et al. (2004,
Section 2) for the derivation of the SEL objective function and the intuition behind it.

3.3.3 Inference
The empirical likelihood approach provides a convenient unified environment for testing
hypotheses about θ∗ based on the likelihood ratio (LR) statistic LR(θ)

def
= 2[SELT(θ̂)−

SELT(θ)]. E. g. the parametric restriction H0 : R(θ∗) = 0, where R is a vector of smooth
functions, is rejected for large values of LR(θ̂R), where θ̂R def

= argmaxθ∈Θ:R(θ)=0 SELT(θ).
The LR statistic is asymptotically pivotal because LR(θ̂R) is distributed as a χ2

dimR

random variable in large samples when H0 is true. Although a Wald statistic based on
θ̂ can also be constructed, it is less attractive than the LR statistic because the latter is
internally studentised. As in parametric situations, the LR statistic can be inverted
to obtain asymptotically valid confidence intervals. E. g. the lower level random set
{θ ∈ Θ : LR(θ) ≤ kτ}, where τ ∈ (0, 1) and kτ denotes the 1 − τ quantile of a χ2

dim θ∗

random variable, is a LR confidence region for θ∗ whose coverage probability approaches
51 This is because the effect of estimating a parameter is captured through its Jacobian, and the

Jacobians with respect to π and µ vanish by (3.3.7b) and (3.3.7c).
52 We assume for convenience that all coordinates of X are continuously distributed. Discrete coordin-

ates can be easily accommodated by smoothing them along with the continuous ones. If all coordinates of
X are discrete, then smoothing is not necessary, and it can be shown (cf. Section 3.4 and Appendix 3.D.2)
that a version of SELT constructed with Ti,n

def
= 1 and wij def

= 1(Xi = Xj)/
∑n
k=1 1(Xi = Xk) coincides

with unconditional empirical likelihood.
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1− τ as n→∞. A nice property of the LR confidence regions is that they are invariant
to nonsingular transformations of the moment conditions. Moreover, being subsets of
Θ by construction, they also automatically respect natural range restrictions on the
parameters.

3.4 Simulation study
In this section, we compare the small sample behaviour of θ̂ with the estimator con-
structed using only the validation sample.

3.4.1 Themeaning of ‘identification using the validation sample’
in applied research

Recall from (3.2.3) that, under MAR, (3.1.2) is equivalent to the moment condition

E
[Dg(Y, Z,X, θ∗)

π(Z,X)

∣∣∣ X] PX -a.s.
= 0, (3.4.1)

which only uses the validation sample. However, when applied researchers talk about
identifying (3.1.2) using the validation sample alone, they usually have in mind the
model

E[Dg(Y, Z,X, θ∗) | X]
PX -a.s.

= 0, (3.4.2)
i. e. the original moment condition (3.1.2) holds in the validation sample without being
scaled by the reciprocal of the propensity score. Since (3.4.1) reduces to (3.4.2) when
π(Z,X) does not depend on Z, in this section we assume that

Assumption 3.4.1. E[D | Z,X] = E[D | X] =: π̃(X).

Assumption 3.4.1, which is equivalent to the condition that D ⊥⊥ Z | X for all indi-
viduals, is also maintained in Hristache and Patilea (2017, p. 736), cf. their discussion
of the partially linear single-index model. Under MAR and Assumption 3.4.1, J$∗ = J

and Σ = Ωg/π̃, where Ωg
def
= E[gg′ | X]. Therefore,

MAR & Ass. 3.4.1 =⇒ l.b.(θ∗)
∣∣
VS

(3.3.9)
= (Eπ̃J ′Ω−1

g J)−1. (3.4.3)

Henceforth, the SEL estimator of θ∗ in (3.4.2) is denoted by θ̂VS.

3.4.2 Designs
We consider two designs with the same structural model, namely, a simplified version
of the linear IV regression in Example 3.1.1 given by Y ∗ def

= α∗+γ∗Z+Uσ(X), where the
outcome Y ∗ is missing for some individuals, the single regressor Z is endogenous, andX
is the sole excluded IV for Z, i. e.X satisfies E[U | X] = 0 PX-a.s. The difference between
the designs is in how Z andX are modelled. In Design 1, Z andX are both continuously
distributed, and the reduced form equation for Z is given by Z def

= ζ0 + ζ1X + V . In
contrast, in Design 2, Z andX are both dummy variables, and the reduced form equation
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for Z is given by Z def
= 1(ζ0 + ζ1X + V > 0).53 In both designs, [ UV ]

∣∣ X ∼ N([ 0
0 ], [

σ2
U σUV

σUV σ2
V

])

with σ2
U = 1, σ2

V = 2, σUV = 1, and α∗ = γ∗ = ζ1 = 1. The reduced form intercept ζ0

differs across the designs (ζ0 = 1 in Design 1, and ζ0 = 0 in Design 2) to ensure that EZ
is close to EX.

Throughout this section, Φ denotes the cumulative distribution function, and φ
the probability density function, of a N(0, 1) random variable. The results reported in
this section are based on 5000 Monte Carlo replications, and n = 500, 1000, 2000, 4000,
corresponding to ‘relatively small’, ‘small’, ‘medium’, and ‘large’ sample sizes. We call
n = 500 to be a relatively small sample because it includes the missing observations.
Indeed, if n = 500 then a validation sample of approximately 200 or fewer observations in
some draws can be reasonably considered to be relatively small in the semi-parametric
context.

Design 1

In this design, X ∼ Unif[0, 1]. The skedastic function σ2(x)
def
= |x − r|ν + 1/15, with

r = −1/3 and ν = 2, due to Cragg (1983), is popular with researchers to model
conditional heteroskedasticity (and is used by us as well). The parameter ν determines
the degree of heteroskedasticity (conditional homoskedasticity follows if ν = 0). The
regressor Z can be classified as being strongly endogenous in the heteroskedastic case
because corr

(
Z,Uσ(X)

)
≈ 0.66 when ν = 2. This poses a serious problem because the

bias of the slope coefficient, relative to its true value, when Y is regressed on Z in
the validation sample, is ≈ 42.1% (averaged across the simulations). There is no issue
with weak IV because corr(Z,X) ≈ 0.20 and in those Monte Carlo replications where
the first-stage F -statistics are < 10 new data were re-generated until the first-stage
F -statistics became ≥ 10 (≈ 57% of all replications for n = 500 and 0.4% for n = 2000).
The non-missingness indicator D is drawn from a Bernoulli distribution with success
probability π̃(X)

def
= l + (u − l)Φ

(
(X − rπ̃)/σπ̃

)
, where l = 0.25, u = 0.95, rπ̃ = 0.1, and

σπ̃ = 0.5, are chosen to make π̃ be bounded away from 0 and 1. As explained below,
the parameter rπ̃, which controls the horizontal shift of the propensity score function,
turns out to be more important than the degree of heteroskedasticity in determining
the maximum efficiency gain, as measured by the ratio l.b.(γ∗)

∣∣
VS/l.b.(γ

∗)
(3.3.11)
≥ 1, that

this simulation design can deliver.
Figure 3.A.1 plots l.b.(γ∗)

∣∣
VS/l.b.(γ

∗) as a function of the propensity score shift and
the heteroskedasticity parameter.54 It can be seen from Figure 3.A.1 that the shift of
the propensity score function determines how many values of Y ∗ are lost in the sample.
The percentage of non-missing observations as a function of rπ̃ is shown in black. If rπ̃
is too large or too small, then π̃ becomes almost constant on the support of X, which
resembles missing completely at random instead of MAR. In the simulations rπ̃ = 0.1,
which yields a retention rate of ≈ 42% (i. e. in ≈ 58% of observations the outcome Y ∗
is missing). The degree of heteroskedasticity does not appear to have a major impact
on the efficiency gains, which is not surprising because l.b.(γ∗) and l.b.(γ∗)

∣∣
VS are both

robust to the form of the skedastic function. Indeed, comparing ν = 0 (conditional
53 Designs where all regressors and instruments are discrete are not uncommon in microeconometric

applications. As in Robins et al. (1994, Section 2.5), efficiency gains in these designs are much more
apparent because no smoothing is required to implement the efficient estimator.

54 In both designs, the ratio l.b.(γ∗)
∣∣
VS/l.b.(γ

∗) was obtained by numerical integration on the simplified
expressions given in Appendix 3.D.
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homoskedasticity) with ν = 2, Figure 3.A.1 reveals that the maximum efficiency gains
are roughly the same (≈ 42%). Therefore, for both Design 1 and Design 2 (described
next), we generate data and report simulation results only for heteroskedastic errors
since that is the empirically relevant case.

Design 2

In this design, p def
= Pr(X = 1) = 0.6. Consequently,

(Z,X) =


(0, 0) w.p. Φ(−ζ0/σV )(1− p) = 0.200

(0, 1) w.p. Φ
(
−(ζ0 + ζ1)/σV

)
p = 0.144

(1, 0) w.p. Φ(ζ0/σV )(1− p) = 0.200

(1, 1) w.p. Φ
(
(ζ0 + ζ1)/σV

)
p = 0.456.

The non-missingness indicator D is drawn from a Bernoulli distribution with success
probability π̃(X)

def
= 0.9X + 0.25(1 − X), which yields an average retention rate of

ED = 64%. With this choice of π̃, observations corresponding to X = 0 are more
likely to be missing than observations corresponding to X = 1. The skedastic function
σ2(X)

def
= X + 16(1−X) creates higher dispersion, hence, more uncertainty, when there

is less data, which strengthens the case for using the efficient estimator. The maximum
efficiency gain l.b.(γ∗)

∣∣
VS/l.b.(γ

∗) that Design 2 can deliver is ≈ 31%. Compared to
Design 1, endogeneity of Z is even more of a problem in Design 2 because the relative
bias of the slope coefficient when Y is regressed on Z in the validation sample is ≈ 179%
(averaged across the simulations). In this design, X is not a weak instrument because
corr(Z,X) ≈ 0.27 and the average first-stage F statistic is ≈ 16.3 when n = 500.

3.4.3 Implementation

Code for the simulation experiment is written in R55, and the SEL estimator θ̂ def
= (α̂, γ̂)

is implemented by maximising the SEL objective function with Ti,n
def
= 1. Similarly,

θ̂VS
def
= (α̂VS, γ̂VS) is implemented by maximizing the SEL objective function with Ti,n

def
= 1

and ρ̂
def
= Dg, where g def

= Y ∗ − α∗ − γ∗Z. The LR confidence region for the slope
coefficient is obtained by treating the intercept as a nuisance parameter. Specifically,
let α̂(γ)

def
= argmaxα∈R SELT(α, γ), and denote by

LRp(γ)
def
= 2

[
SELT(α̂, γ̂)− SELT

(
α̂(γ), γ

)]
(3.4.4)

the profile LR statistic obtained by concentrating out the intercept. Then, the lower
level set {γ ∈ R : LRp(γ) ≤ kτ} is a (1 − τ)100% confidence region for γ∗. Whether
this confidence region is an interval or not depends on the shape of γ 7→ LRp(γ). If
γ 7→ LRp(γ) is quasi-convex, which appears to be the case in our simulation study
because in both designs γ 7→ SELT

(
α̂(γ), γ

)
seems close to being concave for the sample

55 The complete code is available from GitHub as an R package with estimation and simulation routines
at https://github.com/Fifis/smoothemplik.
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sizes we consider (Figures 3.4.4 and 3.4.6), then the confidence region is an interval.56
The endpoints of the LR confidence interval are obtained by numerically finding the
roots of the equation LRp(γ) = kτ using Brent’s method (the initialising points for the
root-finding algorithm are chosen to be the endpoints of the Wald confidence interval).
The same approach, mutatis mutandis, is used to obtain the LR confidence interval
based on θ̂VS.

Design 1

Here, wij is constructed using Gaussian kernels, and ˆ̃πc, µ̂d are Nadaraya-Watson
estimators with bandwidths c, d and Gaussian kernels. Before constructing ˆ̃πcn and
µ̂dn , an injective transformation is applied to map distinct elements of (Z1, . . . , Zn) and
(X1, . . . , Xn) into the interval (0, 1) such that the transformed observations become
more equispaced and do not fall into the boundary region. This procedure, motivated
by the discussion in Hall (1990, Section 3), is helpful in dealing with the bandwidth and
edge-effect issues; e. g. equispacing the observations is a simple device for improving
the performance of kernel estimators of conditional expectation functions because
the bandwidth does not have to be adaptive if the observations on the conditioning
variables are relatively equispaced. It is described in detail in Appendix 3.A as it may
be useful to other applied researchers.

To the best of our knowledge, how to choose an optimal data-driven bandwidth
when smoothing the empirical likelihood remains an open problem. Consequently, we
acted as the oracle to choose the optimal bn by repeating the simulation experiment
on a grid of bn and picking the bandwidth that minimised the average (across the
simulation replications) RMSE of the estimator of γ∗. In particular, since bn is the
only bandwidth required to smooth the empirical likelihood for implementing γ̂VS, for
every sample size, we estimated γ̂VS on a coarse grid of bandwidths, and the oracle
SEL bandwidth b∗n was chosen to minimise the RMSE of γ̂VS. The bandwidth b∗n was
also used to implement the efficient estimator γ̂. With this optimal b∗n, we chose (c∗n, d

∗
n)

via least-squares cross-validation on each individual simulated data set to implement
π̃c and µd. The oracle bandwidth b∗n, and the median of the cross-validated bandwidths
(c∗n, d

∗
n), are reported in Table 3.4.1, which contains the summary statistics for the

estimated slope coefficients γ̂ and γ̂VS averaged across the simulations. The manner in
which (b∗n, c

∗
n, d

∗
n) were chosen illustrates the following points: (i) Substantial efficiency

gains are possible if the bandwidths are chosen appropriately; (ii) the gains in efficiency
are not too sensitive to the choice of bandwidth; (iii) the bandwidths for estimating the
propensity score π̃ and the function µ required for non-parametric imputation can be
chosen by cross-validation.57

56 Quasi-convexity of γ 7→ LRp(γ) implies that its lower level sets are convex. Since convex sets are
connected, and the only connected sets in R are intervals, it follows that if γ 7→ LRp(γ) is quasi-convex,
then its lower level sets are intervals.

57 In a separate set of simulations, we also acted as the oracle for choosing (cn, dn) along with bn. The
efficiency gains in these simulations were marginally higher, e. g. 6% instead of 1% for n = 500, and 49%
instead of 44% for n = 2000. However, we only report the results for the cross-validated bandwidths
(cn, dn).
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Design 2

Discreteness of the conditioning variable exactly identifies θ∗ because

X ∈ {0, 1} =⇒ E[Y ∗ − α∗ − γ∗Z | X] = 0 w.p.1 ⇐⇒ E[Y ∗ − α∗ − γ∗Z]X̃ = 0,

where X̃ def
= [ 1

X ]. Hence, as shown in Appendix 3.D.2, if θ̂ solves
∑n

j=1 X̃j ρ̂(Aj, θ̂) =

0 then it also maximises the SEL objective function with weights wij def
= 1(Xi =

Xj)/
∑n

k=1 1(Xi = Xk). The same argument reveals that

θ̂VS =
( n∑
j=1

DjX̃jZ̃
′
j

)−1
n∑
j=1

DjX̃jYj

is the IV estimator obtained using the validation sample.

3.4.4 Results and discussion
We now describe the main findings of our simulation study, which follow our theoretical
results fairly closely.

Design 1

The distribution of the estimators appears to be centred around the true value and is
close to being normal (Figure 3.4.1). Since the mean and median biases are close to
zero (Table 3.4.1), the efficiency gains (whether measured by the ratio of the Monte
Carlo variances or the ratio of the Monte Carlo mean squared errors) range from
about 1.3% (when n = 500) to about 45% (when n = 4000). In comparison, as noted in
Section 3.4.2, the maximum efficiency gain the simulation design can deliver is about
42%. Figures 3.4.2 and 3.4.3 show that the RMSE of γ̂ is relatively insensitive to the
bandwidths bn and (cn, dn) over a large enough interval.

Table 3.4.2 contains the coverage probabilities for LR confidence intervals and their
median lengths (when the intervals are bounded) in the Monte Carlo replications. This
table emphasises the following key findings. Firstly, for small sample sizes, the LR
confidence intervals can be unbounded in one direction (Figure 3.4.4). E. g. the last
column of Table 3.4.2 shows that when n = 500 and nominal coverage probability is
90%, the LR confidence intervals based on γ̂VS are unbounded in 6.1% of the Monte
Carlo replications, and those based on γ̂, only in 0.4%. For samples of size 1000 or more,
the fraction of unbounded confidence intervals was less than 0.1% for all confidence
levels, whilst 0.9% of the intervals (with nominal coverage = 90%) based on γ̂VS were
unbounded. Secondly, although their coverage probabilities are close to nominal, the
LR confidence intervals based on γ̂ are much shorter than those based on γ̂VS. The
difference in the lengths of the confidence intervals is clear evidence of the efficiency
gains from γ̂. In large samples, the ratio of their lengths is close to the square root
of relative efficiency gains, as it should be, and in small samples, the gains are even
larger.

Design 2

The simulation results for Design 2 are summarised in Table 3.4.3. The increase in
MSE(γ̂VS) compared to the MSE(γ̂), i. e. [MSE(γ̂VS)−MSE(γ̂)]/MSE(γ̂), can be very large
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for small sample sizes, e. g. 533% when n = 500. This, however, is a sample size effect
reflecting how EX̃Z̃ ′, required in the implementation of θ̂VS, is estimated. Indeed, in
simulation results not reported here, we replaced θ̂VS with (

∑n
j=1 X̃jZ̃

′
j)
−1
∑n

j=1 DjX̃jYj,
which estimates EX̃Z̃ ′ using the entire sample (because Z and X are never missing),
and found that this led to significant improvement in the performance of γ̂VS; namely,
its average bias (resp. standard deviation) reduced by more than 1/4th (resp. 1/2) when
n = 500. The efficiency gains stabilise as the sample size increases. For n = 4000, they
are approximately 39%, which is close to the maximum that Design 2 can deliver. The
smoothed densities of γ̂ − γ∗ and γ̂VS − γ∗ are in Figure 3.4.5. Both estimators appear
to be Gaussian, with a larger dispersion for γ̂VS as expected. In small samples, the
efficiency gains for Design 2 are higher than those for Design 1 because, unlike Design
1, no non-parametric smoothing is required in Design 2.

Table 3.4.4 contains the coverage probabilities for LR confidence intervals and their
lengths (when the intervals are bounded), averaged across the Monte Carlo replications.
As with Design 1, we find that: (i) For small sample sizes, the LR confidence intervals
based on γ̂VS can be unbounded in one direction (Figure 3.4.6). E. g. the last column
of Table 3.4.4 reveals that when n = 500 and nominal coverage probability is 90%,
the LR confidence intervals based on γ̂VS are unbounded in 3.1% of the Monte Carlo
replications. In contrast, the LR confidence intervals based on γ̂ are bounded even
when n = 500 (except in one simulation sample when nominal coverage probability
is 99%). (ii) The LR confidence intervals based on γ̂ are much shorter than those
based on γ̂VS. Moreover, the empirical coverage probabilities are very close to nominal
since both estimators are empirical-likelihood-based. For small sample sizes, the high
accuracy of the empirical coverage probability in Design 2 is due to the absence of
any non-parametric smoothing, whereas the slightly more conservative behaviour of
confidence intervals in Design 1 is likely caused by non-parametric smoothing and
the fact that the estimation-optimal bandwidths used to implement the confidence
intervals need not be testing-optimal.
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Table 3.4.1: Simulation summary for the estimated γ∗ in Design 1.

n Est. b∗n c∗n d∗n Med. Bias Mean Bias Std. Dev. Med. AD(·)
Med. AD(γ̂)

MeanAD(·)
MeanAD(γ̂)

Var(·)
Var(γ̂)

MSE(·)
MSE(γ̂)

500 γ̂ 0.150 0.144 0.321 0.0871 0.0792 0.1473 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.150 – – 0.1040 0.0965 0.1379 1.0364 1.0138 0.8766 1.0130

1000 γ̂ 0.114 0.121 0.258 0.0198 0.0100 0.1269 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.114 – – 0.0249 0.0112 0.1355 1.0646 1.0652 1.1406 1.1412

2000 γ̂ 0.086 0.102 0.220 −0.0024 −0.0092 0.0967 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.086 – – −0.0014 −0.0168 0.1155 1.1301 1.1710 1.4277 1.4449

4000 γ̂ 0.065 0.086 0.189 −0.0003 −0.0041 0.0642 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.065 – – −0.0009 −0.0085 0.0771 1.1567 1.1831 1.4415 1.4529

The reported c∗n, d∗n are the medians (across all simulations) of the bandwidths chosen via cross-validation.
A ‘–’ indicates that γ̂VS does not depend on c∗n, d∗n. AD is short for Absolute Deviation.

Figure 3.4.1: Smoothed density of γ̂ − γ∗ (solid) and γ̂VS − γ∗ (dashed) in Design 1.

−0.6 −0.3 0 0.3 0.6 −0.2 −0.1 0 0.1 0.2

The left panel is for n = 500, and the right panel for n = 4000.
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Figure 3.4.2: RMSE of γ̂ (solid) and γ̂VS (dashed) as a function of bn in Design 1.
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Figure 3.4.3: RMSE(γ̂) as a function of (c∗n, d
∗
n) in Design 1.
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The left panel is for n = 500, and the right panel for n = 4000. The horizontal line is RMSE(γ̂VS).
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Figure 3.4.4: Shape of γ 7→ LRp(γ) in Design 1.
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In the left plot, the solid curve is the LR statistic defined in (3.4.4), whereas the dashed curve is the
Wald statistic W(γ)

def
= |(γ̂ − γ)/ se(γ̂)|2. The right plot shows the LR statistic based on γ̂VS (solid) and

the corresponding Wald statistic (dashed). The vertical line is the location of the true γ(= 1), whereas
the black point shows the location of γ̂ in the left plot and γ̂VS in the right plot. The horizontal lines are
the {.9, .95, .99}-quantiles of a χ2

1 random variable. The above plots were obtained using one simulated
dataset with n = 500 (220 observations in the validation sample). In this dataset, the 95%—hence,
the 99%—LR confidence interval based on γ̂VS is unbounded from the left. [Numerical evaluations
reveal that the line y = 3.81 is a horizontal asymptote to the graph of the γ̂VS-based LR statistic at −∞.
Therefore, the left branch of the graph of the LR statistic based on γ̂VS never exceeds the .95 quantile
(3.84)—hence, the .99 quantile (6.63)—of a χ2

1 random variable.]
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Table 3.4.2: LR confidence intervals for γ∗ in Design 1.

Coverage Probability
n Estimator Nominal Empirical Median length % bounded

0.90 0.916 0.646 100
γ̂ 0.95 0.968 0.828 100

500 0.99 0.995 1.354 99.6
0.90 0.920 0.698 100

γ̂VS 0.95 0.970 0.943 100.0
0.99 0.995 1.820 93.9
0.90 0.933 0.489 100

γ̂ 0.95 0.971 0.605 100
1000 0.99 0.996 0.879 100.0

0.90 0.942 0.584 100
γ̂VS 0.95 0.973 0.753 100.0

0.99 0.996 1.246 99.1
0.90 0.914 0.331 100

γ̂ 0.95 0.958 0.401 100
2000 0.99 0.993 0.551 100

0.90 0.911 0.398 100
γ̂VS 0.95 0.957 0.491 100

0.99 0.994 0.710 100
0.90 0.913 0.219 100

γ̂ 0.95 0.957 0.264 100
4000 0.99 0.993 0.353 100

0.90 0.912 0.258 100
γ̂VS 0.95 0.955 0.313 100

0.99 0.994 0.429 100

A ‘100.0’ in the last column (due to round-off rules) indicates that there are 99.95% or more bounded
intervals.
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Table 3.4.3: Simulation summary for the estimated γ∗ in Design 2.

n Estimator Median Bias Mean Bias Std. Dev. Med. AD(·)
Med. AD(γ̂)

MeanAD(·)
MeanAD(γ̂)

Var(·)
Var(γ̂)

MSE(·)
MSE(γ̂)

500 γ̂ 0.0418 −0.0316 2.0204 1.0000 1.0000 1.0000 1.0000
γ̂VS −0.0252 −0.6041 5.0498 1.1716 1.4167 6.2470 6.3349

1000 γ̂ 0.0269 −0.0266 1.3979 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.0042 −0.2288 1.8047 1.1067 1.1989 1.6668 1.6930

2000 γ̂ 0.0407 0.0193 0.9634 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.0150 −0.0808 1.1751 1.1572 1.1845 1.4877 1.4942

4000 γ̂ 0.0338 0.0136 0.6693 1.0000 1.0000 1.0000 1.0000
γ̂VS 0.0224 −0.0356 0.7884 1.1519 1.1608 1.3879 1.3901

Figure 3.4.5: Smoothed density of γ̂ − γ∗ (solid) and γ̂VS − γ∗ (dashed) in Design 2.
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The left panel is for n = 500, and the right panel for n = 4000.
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Figure 3.4.6: Shape of γ 7→ LRp(γ) in Design 2.
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In the left plot, the solid curve is the LR statistic defined in (3.4.4), whereas the dashed curve is the
Wald statistic W(γ)

def
= |(γ̂ − γ)/ se(γ̂)|2. The right plot shows the LR statistic based on γ̂VS (solid) and

the corresponding Wald statistic (dashed). The vertical line is the location of the true γ(= 1), whereas
the black point shows the location of γ̂ in the left plot and γ̂VS in the right plot. The horizontal lines are
the {.9, .95, .99}-quantiles of a χ2

1 random variable. The above plots were obtained using one simulated
dataset with n = 500 (320 observations in the validation sample). In this dataset, the 99% LR confidence
interval based on γ̂VS is unbounded from the left. [Numerical evaluations reveal that the line y = 6.47 is
a horizontal asymptote to the graph of the γ̂VS-based LR statistic at −∞. Therefore, the left branch of
the graph of the LR statistic based on γ̂VS never exceeds the .99 quantile (6.63) of a χ2

1 random variable.]
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Table 3.4.4: LR confidence intervals for γ∗ in Design 2.

Coverage Probability
n Estimator Nominal Empirical Median length % bounded

.90 .905 6.66 100
γ̂ .95 .952 8.17 100

500 .99 .991 11.51 100.0
.90 .897 8.43 96.9

γ̂VS .95 .949 10.77 94.1
.99 .990 16.67 84.2
.90 .903 4.59 100

γ̂ .95 .953 5.54 100
1000 .99 .993 7.54 100

.90 .900 5.53 100.0
γ̂VS .95 .952 6.83 99.8

.99 .992 9.91 99.2

.90 .898 3.19 100
γ̂ .95 .952 3.83 100

2000 .99 .990 5.12 100
.90 .897 3.73 100

γ̂VS .95 .947 4.53 100
.99 .991 6.23 100
.90 .904 2.24 100

γ̂ .95 .957 2.68 100
4000 .99 .991 3.55 100

.90 .903 2.59 100
γ̂VS .95 .948 3.11 100

.99 .991 4.18 100

108



Appendix

3.A Additional figures and implementation details

Figure 3.A.1: Heat map of l.b.(γ∗)
∣∣
VS/l.b.(γ

∗) as a function the propensity score shift (rπ̃) and
the degree of heteroskedasticity (ν) in Design 1.

The darker the shade, the larger the efficiency gain l.b.(γ∗)
∣∣
VS/l.b.(γ

∗). The solid line and the numbers
above it show the proportion of non-missing observations.

Additional implementation details for Design 1
Motivated by the discussion in Hall (1990, Section 3), before estimating π̃ and µ we
apply an injective transformation to (Z1, . . . , Zn) and (X1, . . . , Xn) to map their distinct
elements into (0, 1) in order to simplify the problem of bandwidth choice and deal
with edge effects in kernel estimators. We have found that doing so improves the
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performance of our kernel estimators. We now describe this procedure in detail as it
may be useful to other applied researchers as well.

Let the random variable A denote Z or X (if Z or X are vectors, the procedure
is applied coordinate-wise). There are no missing observations in A

def
= (A1, . . . , An)

because Z andX are observed for each i. LetMn
def
=
∑n

i=1 Di be the size of the validation
sample. Since the validation sample only contains those i for which Di = 1, we have
A = V ∪N , where V is the ordered array (keeping ties preserved) of observations in the
validation sample, and N is the ordered array (keeping ties preserved) of observations
not in the validation sample.58 Let AVS

(1) ≤ . . . ≤ AVS
(Mn) denote the ordered observations

in V , and define

N1
def
= ordered array of elements of N in (−∞, AVS

(1))

Nj
def
= ordered array of elements of N in (AVS

(j−1), A
VS
(j)) (j = 2, . . . ,Mn)

NMn+1
def
= ordered array of elements of N in (AVS

(Mn),∞).

If (AVS
(j−1), A

VS
(j)) is empty (e. g. when there are ties in V ), then Nj is the empty array.

Let F̂V (a)
def
= M−1

n

∑Mn

j=1 1(AVS
(j) ≤ a), a ∈ R, be the empirical cumulative distribution

function (cdf) of the observations in V , and define

T1
def
= set of tick marks in an equispaced grid on

(
0, F̂V (AVS

(1))−
0.5

Mn

)
with as many ticks as the number of distinct elements in N1,

Tj
def
= set of tick marks in an equispaced grid on

(
F̂V (AVS

(j−1))−
0.5

Mn
, F̂V (AVS

(j))−
0.5

Mn

)
with as many ticks as the number of distinct elements in Nj , j = 2, . . . ,Mn,

TMn+1
def
= set of tick marks in an equispaced grid on

(
F̂V (AVS

(Mn))−
0.5

Mn
, 1
)

with as many ticks as the number of distinct elements in NMn .

Note that Tj is empty if Nj is the empty array.
Now, for i = 1, . . . , n, map Ai → (0, 1) as follows:

Ψn(Ai)
def
=


F̂V (Ai)−

0.5

Mn

if Ai ∈ {AVS
(1), . . . , A

VS
(Mn)},

tick in Tj, repeated as many times as the
multiplicity of Ai ∈ Nj, such that the order
in which Ai appears in Nj is preserved

if Ai ∈ Nj (j = 1, . . . ,Mn + 1).

In words, Ψn makes distinct elements of (A1, . . . , An) equally spaced in the validation
and non-validation subsamples by placing observations from the validation sample
0.5/Mn units below their values under F̂V , whereas observations not in the validation
sample are placed equally apart in 0 < F̂V (AVS

(1))−0.5/Mn ≤ . . . ≤ F̂V (AVS
(Mn))−0.5/Mn < 1,

taking ties into account. Spacing the observations equally in each subsample mitigates
the problem of bandwidth selection in low-density regions of the conditioning variable,
and ensuring that the observations stay away from the boundary improves the small-
sample properties of the kernel estimators. As Ψn is injective by construction, the

58 Note that V and N may have elements in common (corresponding to different i).

110



information set used to estimate the conditional expectations remains unchanged.
The following numerical example illustrates how Ψn works.

Example 3.A.1. Let n = 11, Mn = 5, V = (1, 1, 3, 4, 6) and N = (0, 2, 2, 5.9, 7, 8).
In this dataset, AVS

(1) = 1, AVS
(2) = 1, AVS

(3) = 3, AVS
(4) = 4, AVS

(5) = 6. Hence, N1 = (0),
N2 = (∅), N3 = (2, 2) = (2multiplicity=2), N4 = (∅), N5 = (5.9), and N6 = (7, 8). Next, as
F̂V (a) = [21(1 ≤ a) + 1(3 ≤ a) + 1(4 ≤ a) + 1(6 ≤ a)]/5, we have

F̂V (AVS
(1)) =

2

5
=⇒

(
0, F̂V (AVS

(1))−
0.5

Mn

)
= (0, 0.3)

N1=(0)
=⇒ T1 = {0.15}

F̂V (AVS
(2)) =

2

5
=⇒

(
F̂V (AVS

(1))−
0.5

Mn

, F̂V (AVS
(2))−

0.5

Mn

)
= (0.3, 0.3)

N2=(∅)
=⇒ T2 = ∅

F̂V (AVS
(3)) =

3

5
=⇒

(
F̂V (AVS

(2))−
0.5

Mn

, F̂V (AVS
(3))−

0.5

Mn

)
= (0.3, 0.5)

N3=(2m-plicity=2)
=⇒ T3 = {0.4}

F̂V (AVS
(4)) =

4

5
=⇒

(
F̂V (AVS

(3))−
0.5

Mn

, F̂V (AVS
(4))−

0.5

Mn

)
= (0.5, 0.7)

N4=(∅)
=⇒ T4 = ∅

F̂V (AVS
(5)) = 1 =⇒

(
F̂V (AVS

(4))−
0.5

Mn

, F̂V (AVS
(5))−

0.5

Mn

)
= (0.7, 0.9)

N5=(5.9)
=⇒ T5 = {0.8}(

F̂V (AVS
(5))−

0.5

Mn

, 1
)

= (0.9, 1)
N6=(7,8)

=⇒ T6 = {28/30, 29/30}.

Consequently,

Ψ11(V ) =
(
F̂V (1)− 0.5

5
, F̂V (1)− 0.5

5
, F̂V (3)− 0.5

5
, F̂V (4)− 0.5

5
, F̂V (6)− 0.5

5

)
= (0.3, 0.3, 0.5, 0.7, 0.9);

Ψ11(N ) = (ticks in T1, . . . ,T6 preserving the multiplicity and order in N1, . . . ,N6)

= (0.15, 0.4, 0.4, 0.8, 28/30, 29/30).

The graph of Ψ11 is shown in Figure 3.A.2.

3.B Proofs for Section 3.2

3.B.1 Local identification in conditional moment restriction
models

Let ‖ · ‖ be the Euclidean norm and J(X, θ)(dim g)×(dim θ∗)
def
= ∂θE[g(Y ∗, Z,X, θ) | X]. Recall

that J def
= J(X, θ∗).

Definition 3.B.1 (Linear independence PX-a.s.). The columns of J are said to be
linearly independent PX-a.s. if, for all α ∈ Rdim θ∗, PX(Jα = 0) = 1 =⇒ α = 0.

In this section, we extend Rothenberg (1971) to show that θ∗ in (3.1.2) is locally
identified if the columns of J are linearly independent PX-a.s. We begin by defining the
notion of observational equivalence for the conditional moment equality E[g | X] = 0
PX-a.s.

Definition 3.B.2 (Observational equivalence). The parameters θ∗, θ† ∈ Θ are said to
be observationally equivalent if E[g(Y ∗, Z,X, θ∗) | X] = 0 = E[g(Y ∗, Z,X, θ†) | X] PX-a.s.
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Figure 3.A.2: The graph of Ψ11.
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The empty circles denote points in V , and the filled circles denote points in N . The larger circles
correspond to observations with multiplicity 2.

In other words, θ∗ and θ† are observationally equivalent if they satisfy the same con-
ditional moment equality. Next, we define what it means for θ∗ to be locally identified.

Definition 3.B.3 (Local identification). The parameter θ∗ ∈ Θ is said to be locally
identified if there exists an open ball centred at θ∗, say N∗ ⊂ Θ, such that the punctured
open ball N∗ \ {θ∗} does not contain any element observationally equivalent to θ∗.

We now prove the local identification result stated in Section 3.2. Although Lemma
3.B.1 below looks as if it should be well-known, we have been unable to find it in the
literature.59

Lemma 3.B.1. Let E[g(Y ∗, Z,X, θ∗) | X] = 0 PX-a.s. for some θ∗ ∈ Θ. Assume that
(PX-a.s.): (a) θ 7→ J(X, θ) is well-defined on an open (in Θ) ball centred at θ∗, and
(b) θ 7→ J(X, θ) is continuous at θ∗. If the columns of J are linearly independent PX-a.s.,
then θ∗ is locally identified.

Note that for (a) to hold, it is necessary that Θ has a non-empty interior.

Proof of Lemma 3.B.1. Suppose to the contrary that θ∗ is not locally identified.
Then, by Definition 3.B.3, each punctured open ball centred at θ∗ contains at least
one element different from θ∗ that is observationally equivalent to θ∗. This yields a
sequence (θj)j∈N ⊂ Θ such that (i) limj→∞ θj = θ∗, (ii) θj 6= θ∗ for each j ∈ N, and (iii) θj is
observationally equivalent to θ∗ for each j ∈ N. Letting m(X, θ)

def
= E[g(Y ∗, Z,X, θ) | X]

and q
def
= dim g, an element-by-element mean value expansion of m(X, θj) about θ∗

59 Identification of parameters defined via unconditional moment equalities is discussed in Newey
and McFadden (1994, Section 2.2.3).
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reveals that

m(X, θj)
(a)
= m(X, θ∗) +

d
′
1

(
X, θ∗ + λ1(θj − θ∗)

)
...

d′q
(
X, θ∗ + λq(θj − θ∗)

)
 (θj − θ∗) PX-a.s., (3.B.1)

where d′k denotes the kth row of J , and each λk ∈ (0, 1). Hence, by (iii) and Defini-
tion 3.B.2, d

′
1

(
X, θ∗ + λ1(θj − θ∗)

)
...

d′q
(
X, θ∗ + λq(θj − θ∗)

)
 (θj − θ∗) = 0 PX-a.s. (j ∈ N)

By (ii), rj def
= (θj − θ∗)/‖θj − θ∗‖ is well-defined for each j. Hence, we can write the

previous displayed equation asd
′
1(X, θ∗ + λ1rj‖θj − θ∗‖)

...
d′q(X, θ

∗ + λqrj‖θj − θ∗‖)

 rj = 0 PX-a.s. (j ∈ N)

Now, (rj) is a bounded sequence in Rdim θ∗ because ‖rj‖ = 1 for each j. Hence, by the
Bolzano-Weierstrass theorem, there exists a subsequence (sj) ⊂ (rj), and r∗ ∈ Rdim θ∗

with ‖r∗‖ = 1, such that limj→∞ sj = r∗. In particular, since (sj) is a subsequence of (rj),
we have that d

′
1(X, θ∗ + λ1sj‖θj − θ∗‖)

...
d′q(X, θ

∗ + λqsj‖θj − θ∗‖)

 sj = 0 PX-a.s. (j ∈ N)

Since each row of J(X, θ) is continuous at θ∗ (PX-a.s.) if and only if J(X, θ) is continuous
at θ∗ (PX-a.s.), letting j →∞ in the previous displayed equation, (b) and (i) imply thatd

′
1(X, θ∗)

...
d′q(X, θ

∗)

 r∗ = 0 PX-a.s. ⇐⇒ Jr∗ = 0 PX-a.s.

But, as r∗ 6= 0, this contradicts the assumption that the columns of J are linearly
independent PX-a.s. The desired result follows.

As mentioned in Footnote 46, Lemma 3.B.1 implies the global identification of θ∗
whenever g is linear in θ∗.60 This is easily verified for linear regression models.

Example 3.B.1. In Example 3.1.1, g def
= Y ∗ − α∗ − X ′inβ

∗ − Z ′γ∗. Hence, E[g | X] =
E[Y ∗ | X]− α∗ −X ′inβ∗ − E[Z ′ | X]γ∗. Consequently, it is straightforward to verify that
θ∗

def
= (α∗, β∗, γ∗) is globally identified if and only if the columns of

[
1 X ′in E[Z ′ | X]

]
are

linearly independent PX-a.s. The connection with Lemma 3.B.1 is apparent because,
in this example, J = −

[
1 X ′in E[Z ′ | X]

]
.

60 Because the mean value expansion in (3.B.1) is exact when g is linear in θ∗.
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3.C Proofs for Section 3.3
The following notation is used throughout this section. For a generic random vector
W , the set of real-valued functions of W with finite second moments is denoted by
L2(W ), and L2,0(W )

def
= {ψ ∈ L2(W ) : Eψ(W ) = 0} is the subset of functions of W whose

expectation is zero. If S ⊂ L2(W ), then S⊥ is the orthogonal complement of S in L2(W ),
and PS(a) denotes the orthogonal projection of a ∈ L2(W ) onto S using the inner
product 〈a1, a2〉

def
= E[a1a2]. The norm induced by the inner product is ‖a‖2

def
=
√
Ea2.

Proof that ρ is the residual from the coordinate-wise projection of Dg/π onto
A. Let (3.3.1) hold, which, by the equivalence in (3.3.2), implies that MAR holds. Let
α ∈ Rdim g be such that ‖α‖ = 1. Then, α′ρ = Dα′g/π − α′µ[D/π − 1]. Now,

E(α′µ)2 ≤ E‖µ‖2 (Cauchy-Schwarz)
= E

∥∥E[g | Z,X]
∥∥2 (defn. µ)

= E
[
(E[g(1) | Z,X])2 + . . .+ (E[g(dim g) | Z,X])2

]
≤ E

[
E[(g(1))2 | Z,X] + . . .+ E[(g(dim g))2 | Z,X]

]
(cond. Jensen)

= E[g(1)]2 + . . .+ E[g(dim g)]2 (iterated expectations)
= E‖g‖2

<∞. (Ass. 3.3.1(ii))

Consequently, α′µ ∈ L2(Z,X) =⇒ α′µ[D/π − 1] ∈ A. It remains to show that α′ρ is
orthogonal to A. Begin by observing that

α′ρ
(3.3.4)

=
Dα′g(Y, Z,X, θ∗)

π(Z,X)
− α′µ(Z,X, θ∗)

[ D

π(Z,X)
− 1
]

=
Dα′g

π
− α′µ

[D
π
− 1
]
. (Dg(Y ∗, Z,X, θ∗)

(3.1.1)
= Dg(Y, Z,X, θ∗))

Let a ∈ A so that a = a(D/π − 1) for some a ∈ L2(Z,X). Then,

E[α′ρa] = E
[
α′ρa

(D
π
− 1
)]

= α′E
[Dg
π
a
(D
π
− 1
)]
− α′E

[
µa
(D
π
− 1
)2]

.

Thus, we are done if we can show that E
[Dg
π
a
(D
π
− 1
)]

= E
[
aµ
(D
π
− 1
)2]

. Now,

E
[Dg
π
a
(D
π
− 1
) ∣∣∣ Y ∗, Z,X] = agE

[D
π

(D
π
− 1
) ∣∣∣ Y ∗, Z,X]

=
ag

π
E
[D
π
−D

∣∣∣ Y ∗, Z,X] (D2 = D)
MAR
=

ag

π
E
[D
π
−D

∣∣∣ Z,X] ((3.3.1) (3.3.2)
=⇒ MAR)

= ag
( 1

π
− 1
)
. (π def

= E[D | Z,X])

Hence, conditioning on (Z,X), we obtain that

E
[Dg
π
a
(D
π
− 1
) ∣∣∣ Z,X] = E

[
ag
( 1

π
− 1
) ∣∣∣ Z,X] = aµ

( 1

π
− 1
)
. (µ def

= E[g | Z,X])
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Consequently,
E
[Dg
π
a
(D
π
− 1
)]

= E
[
aµ
( 1

π
− 1
)]
.

Moreover,

E
[
aµ
(D
π
− 1
)2 ∣∣∣ Z,X] (D2=D)

= aµE
[D
π2

+ 1− 2
D

π

∣∣∣ Z,X] (3.3.1b)
= aµ

( 1

π
− 1
)
.

Therefore,
E
[
aµ
(D
π
− 1
)2]

= E
[
aµ
( 1

π
− 1
)]
.

The desired result follows.

Proof of (3.3.6). Let (3.3.1) hold, which, by the equivalence in (3.3.2), implies thatMAR
holds. Observe that E[ρ | X]

(3.3.4)
= E

[Dg
π

∣∣∣ X]−E[µ(D
π
−1
) ∣∣∣ X]. But E[Dg

π

∣∣∣ X] (3.3.1a)
= 0

PX-a.s., and

E
[
µ
(D
π
− 1
) ∣∣∣ Z,X] PZ,X -a.s.

= µE
[D
π
− 1

∣∣∣ Z,X] (3.3.1b)
= 0 =⇒ E

[
µ
(D
π
− 1
) ∣∣∣ X] PX -a.s.

= 0.

The desired result follows.

Proof of (3.3.7). Let (3.3.1) hold, which, by the equivalence in (3.3.2), implies that
MAR holds. Assume that derivatives with respect to (θ∗, π, µ) can be exchanged with
conditional (on Z,X) expectations. Then, since π def

= E[D | Z,X] does not depend on θ∗
(Assumption 3.2.2),

∂θ∗E[ρ(A, θ∗, π, µ) | Z,X]

(3.3.4)
= ∂θ∗E

[Dg(Y, Z,X, θ∗)

π(Z,X)

∣∣∣ Z,X]− E
[ D

π(Z,X)
− 1

∣∣∣ Z,X]∂θ∗µ(Z,X, θ∗)

(3.3.1b)
=

1

π(Z,X)
∂θ∗E[Dg(Y, Z,X, θ∗) | Z,X]

=
1

π(Z,X)
∂θ∗E[Dg(Y ∗, Z,X, θ∗) | Z,X] (Dg(Y ∗, Z,X, θ∗)

(3.1.1)
= Dg(Y, Z,X, θ∗))

MAR
=

1

π(Z,X)
E[D | Z,X]∂θ∗E[g(Y ∗, Z,X, θ∗) | Z,X] ((3.3.1) (3.3.2)

=⇒ MAR)

= ∂θ∗E[g(Y ∗, Z,X, θ∗) | Z,X].

Consequently, conditioning on X, and recalling that the tower property of conditional
expectations holds almost surely and J def

= ∂θE[g(Y ∗, Z,X, θ∗) | X], we have that

∂θ∗E[ρ(A, θ∗, π, µ) | X]
PZ,X -a.s.

= ∂θ∗E[g(Y ∗, Z,X, θ∗) | X] = J ;

i. e. (3.3.7a) holds.
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Next,

∂πE[ρ(A, θ∗, π, µ) | Z,X]

(3.3.4)
= −E

[Dg(Y, Z,X, θ∗)

π2(Z,X)

∣∣∣ Z,X]+ µ(Z,X, θ∗)E
[ D

π2(Z,X)

∣∣∣ Z,X]
(3.3.1b)

= −E
[Dg(Y, Z,X, θ∗)

π2(Z,X)

∣∣∣ Z,X]+
µ(Z,X, θ∗)

π(Z,X)

= − 1

π2(Z,X)
E
[
Dg(Y ∗, Z,X, θ∗)

∣∣∣ Z,X]+
µ(Z,X, θ∗)

π(Z,X)

(Dg(Y ∗, Z,X, θ∗)
(3.1.1)

= Dg(Y, Z,X, θ∗))
MAR
= − 1

π(Z,X)
E[g(Y ∗, Z,X, θ∗) | Z,X] +

µ(Z,X, θ∗)

π(Z,X)
((3.3.1) (3.3.2)

=⇒ MAR)

defn. µ
= 0.

Consequently, conditioning on X, and recalling that the tower property of conditional
expectations holds almost surely, we have that

∂πE[ρ(A, θ∗, π, µ) | X]
PZ,X -a.s.

= 0;

i. e. (3.3.7b) holds.
Finally,

∂µE[ρ(A, θ∗, π, µ) | Z,X]
(3.3.4)

= −E
[ D

π(Z,X)
− 1

∣∣∣ Z,X] (3.3.1b)
= 0.

Consequently, conditioning on X, and recalling that the tower property of conditional
expectations holds almost surely, we have that (3.3.7c) also holds.

Proof of (3.3.12). Observe that

E[ρρ′ | Z,X]
(3.3.4)

= E
[(Dg

π
− µ

[D
π
− 1
])(Dg

π
− µ

[D
π
− 1
])′ ∣∣∣ Z,X]

=
1

π2
E[Dgg′ | Z,X]− E

[
Dg

π
µ′
[D
π
− 1
] ∣∣∣ Z,X]

− E
[
µ
[D
π
− 1
]Dg′
π

∣∣∣ Z,X]+ µµ′E
[(D

π
− 1
)2 ∣∣∣ Z,X]. (3.C.1)

Now,
E[Dgg′ | Z,X]

MAR
= E[D | Z,X]E[gg′ | Z,X] = πE[gg′ | Z,X],

which implies that
1

π2
E[Dgg′ | Z,X] =

1

π
E[gg′ | Z,X].
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Next,

E
[
Dg

π
µ′
[D
π
− 1
] ∣∣∣ Z,X] = E

[
g

π
µ′
[D2

π
−D

] ∣∣∣ Z,X]
= E

[
Dg

π
µ′
[ 1

π
− 1
] ∣∣∣ Z,X] (D2 = D)

= E[Dg | Z,X]µ′
1

π

[ 1

π
− 1
]

MAR
= E[D | Z,X]E[g | Z,X]µ′

1

π

[ 1

π
− 1
]

= µµ′
[ 1

π
− 1
]
. (π def

= E[D | Z,X], µ
def
= E[g | Z,X])

Moreover, since E
[D
π
− 1 | Z,X

]
= 0,

E
[(D

π
−1
)2 ∣∣∣ Z,X] = Var

[D
π
−1

∣∣∣ Z,X] =
1

π2
Var[D | Z,X] =

π(1− π)

π2
=

1

π
−1. (3.C.2)

Hence,

E[ρρ′ | Z,X]
(3.C.1)

=
1

π
E[gg′ | Z,X]−2µµ′

[ 1

π
−1
]

+µµ′
[ 1

π
−1
]

=
1

π
E[gg′ | Z,X]−µµ′

[ 1

π
−1
]
,

which implies that

πE[ρρ′ | Z,X] + (1− π)µµ′ = E[gg′ | Z,X]. (3.C.3)

The desired result follows.

Remark 3.C.1. Applying the tr ◦ diag operator to both sides of (3.C.3), we get that

πE[ρ′ρ | Z,X] + (1− π)µ′µ = E[g′g | Z,X].

Hence,
E[ρ′ρ | Z,X] =

1

π
E[g′g | Z,X]− (1− π)

π
µ′µ ≤ 1

inf π
E[g′g | Z,X].

Consequently,

E[ρ′ρ | X] ≤ 1

inf π
E[g′g | X] ≤

‖σ2
g‖∞

inf π

Ass. 3.3.1(i,ii)
< ∞. (3.C.4)

This bound is used in the proof of Lemma 3.C.1.

Proof of Lemma 3.3.1. We use the approach of Severini and Tripathi (2001, 2013,
Section 12) to derive the efficiency bound for θ∗. Let I0

def
= [0, t0] for some t0 > 0.

With respect to an appropriate dominating measure, define the probability density
function v2 def

= pdfY ∗,Z|X . Let t 7→ vt be a real-valued function defined on I0 such
that vt

∣∣
t=0

= v, and, suppressing the dominating measure,
∫
v2
t (y, z | x) = 1 for all

(t, x) ∈ I0 × supp(X). The score corresponding to v̇, the tangent to vt at t = 0, is
Sv̇

def
= 2v̇/v ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥.
Let t 7→ θ∗t denote a Rdim θ∗-valued function defined on I0 such that θ∗t

∣∣
t=0

= θ∗ and
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∫
supp(Y ∗)×supp(Z)

g(y, z, x, θ∗t )v
2
t (y, z | x) = 0 for all (t, x) ∈ I0 × supp(X). Then, differentiat-

ing with respect to t and evaluating at t = 0, we have

Jθ̇∗ + E[gSv̇ | X] = 0 PX-a.s., (3.C.5)

where the vector θ̇∗ is the tangent to θ∗t at t = 0. Note that (3.C.5) restricts the tangent
vector Sv̇ to be such that

E[gSv̇ | X] ∈ span(J) PX-a.s. (3.C.6)

Let A def
= A(X) be a r × (dim g) matrix with r ≥ dim g such that B def

= E[AJ ] has column
rank dim θ∗,61 and let B+ denote the generalised inverse of B. Then,

(3.C.5) =⇒ θ̇∗ = −B+E[AE(gSv̇ | X)]. (3.C.7)

Since observations on Y ∗ can be missing, θ∗ has to be identified as a feature of
q2 def

= pdfD,Y ∗,Z,X , the joint density of D, Y ∗, Z,X. In particular, suppose that we want
the efficiency bound for estimating the functional η(log q2)

def
= c′θ∗, where c ∈ Rdim θ∗ is

arbitrary. Now,

q2 def
= pdfD,Y ∗,Z,X

= pdfD,Y ∗|Z,X pdfZ,X
MAR
= pdfD|Z,X pdfY ∗|Z,X pdfZ,X

= pdfD|Z,X pdfY ∗,Z,X

= pdfD|Z,X pdfY ∗,Z|X pdfX

= p2v2f 2,

where p2 def
= pdfD|Z,X and f 2 def

= pdfX . Hence, η(log q2)
MAR
= η(log p2 + log v2 + log f 2).

Let t 7→ pt and t 7→ ft be real-valued functions defined on I0 such that pt
∣∣
t=0

=

p, ft
∣∣
t=0

= f , and (suppressing the dominating measures),
∫
p2
t (d | z, x) = 1 for all

(t, z, x) ∈ I0× supp(Z)× supp(X) and
∫
f 2
t (x) = 1 for all (t, x) ∈ I0× supp(X) for all t ∈ I0.

Therefore, since log q2
t

MAR
= log p2

t + log v2
t + log f 2

t and θ∗t are related via the requirement
that η(log q2

t ) = c′θ∗t for all t ∈ I0, it follows that ∇η(Sq̇) = c′θ̇∗, where ∇η is the pathwise
derivative of η and Sq̇ def

= Sṗ + Sv̇ + Sḟ , with Sṗ
def
= 2ṗ/p ∈ L2(D,Z,X) ∩ L2(Z,X)⊥ and

Sḟ
def
= 2ḟ/f ∈ L2,0(X). Hence, by (3.C.7),

∇η(Sq̇) = −c′B+E[AE(gSv̇ | X)]. (3.C.8)

To show that ∇η is a linear functional of Sq̇, we also have to write the right-hand
side of (3.C.8) in terms of Sq̇. To do so, we now obtain an expression for E[gSv̇ | X] in

61 For instance, let A(X)
def
= J ′w(X), where w(X) is a (dim g)× (dim g) matrix that is positive definite

PX -a.s. Since the columns of J are linearly independent PX -a.s., so are the columns of the (dim θ∗)×
(dim θ∗) matrix J ′w(X)J . Hence, E[A(X)J ] has column rank dim θ∗.
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terms of Sq̇. Let µ def
= E[g | Z,X] and62

ρ
def
= ρ(D, Y ∗, Z,X)

def
=
Dg

π
− µ

[D
π
− 1
]
. (3.C.9)

Then, as shown after the proof of this lemma,

E[ρSṗ | Z,X] = 0, ∀Sṗ ∈ L2(D,Z,X) ∩ L2(Z,X)⊥,

E[ρSv̇ | Z,X] = E[gSv̇ | Z,X], ∀Sv̇ ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥,

E[ρSḟ | Z,X] = µSḟ , ∀Sḟ ∈ L2,0(X).

(3.C.10)

Hence, since Sq̇ def
= Sṗ + Sv̇ + Sḟ , we have that

E[ρSq̇ | Z,X]
(3.C.10)

= E[gSv̇ | Z,X] + µSḟ .

Consequently, as Sḟ ∈ L2,0(X) and E[µ | X] = E[g | X]
PX -a.s.

= 0,

E[ρSq̇ | X] = E[gSv̇ | X] + SḟE[µ | X] = E[gSv̇ | X]
(3.C.6)
∈ span(J) PX-a.s. (3.C.11)

With the restrictions on Sq̇ collected, it follows that

∇η(Sq̇)
(3.C.8)

= −c′B+E[AE(gSv̇ | X)]
(3.C.11)

= −c′B+E[AE(ρSq̇ | X)] (3.C.12)

is a linear functional defined on the tangent space

Ṁ
def
= {Sq̇ ∈ L2(D, Y ∗, Z,X) :Sq̇ = Sṗ + Sv̇ + Sḟ , where Sṗ ∈ L2(D,Z,X) ∩ L2(Z,X)⊥,

Sv̇ ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥, Sḟ ∈ L2,0(X),
and E[ρSq̇ | X] ∈ span(J) PX-a.s.} (3.C.13)

The tangent space is closed in the norm induced by the inner product 〈·, ·〉 (Lemma 3.C.1).
Note that

∇η(Sq̇)
(3.C.12)

= −c′B+E[AE(ρSq̇ | X)] = −c′B+E[AρSq̇] (Sq̇ ∈ Ṁ)
= 〈−c′B+Aρ, Sq̇〉
= 〈−c′B+Aρ,PṀ(Sq̇)〉
= 〈−PṀ(c′B+Aρ), Sq̇〉, (3.C.14)

where the last equality is due to the fact that projection operators are self-adjoint. Since
−PṀ(c′B+Aρ) ∈ Ṁ, it follows by (3.C.14) and the Riesz-Fréchet theorem (Luenberger,
1969, Theorem 2, p. 109) that if E[PṀ(c′B+Aρ)]2 < ∞, then ∇η is a bounded linear
functional on the tangent space with representer −PṀ(c′B+Aρ). This implies that η is
a pathwise differentiable functional, and the efficiency bound for estimating η is given
by the squared operator norm of ∇η, namely, E[PṀ(c′B+Aρ)]2.

To obtain PṀ(c′B+Aρ), we proceed as follows. Let

Ṡ
def
= {Ṡ ∈ L2,0(D, Y ∗, Z,X) : E[ρṠ | X] ∈ span(J) PX-a.s.}.

62 Since Dg (3.1.1)
= Dg(Y, Z,X, θ∗), the definitions of ρ in (3.3.4) and (3.C.9) are equivalent.

119



Then, Ṡ is closed in the norm topology (same proof as for Lemma 3.C.1), and Ṁ ⊂ Ṡ.63
Letting V def

= EJ ′Ω−1
ρ J , where Ωρ

def
= E[ρρ′ | X], we have that

PṠ(c
′B+Aρ)

Lemma 3.C.2
= ρ′Ω−1

ρ JV −1c.

But, as shown towards the end of this proof, ρ′Ω−1
ρ JV −1c ∈ Ṁ. Therefore,

PṀ(c′B+Aρ) = ρ′Ω−1
ρ JV −1c. (Ṁ ⊂ Ṡ)

Consequently, the efficiency bound for estimating η is given by64

E[PṀ(−c′B+Aρ)]2 = c′V −1E[JΩ−1
ρ ρρ′Ω−1

ρ J ]V −1c

= c′V −1E[JΩ−1
ρ E(ρρ′ | X)Ω−1

ρ J ]V −1c

= c′V −1c (3.C.15)
<∞. (Ass. 3.3.1(iii))

The desired result follows because c is arbitrary.
It remains to verify that ρ′Ω−1

ρ JV −1c ∈ Ṁ. Observe that

ṁ
def
= ρ′Ω−1

ρ JV −1c
(3.C.9)

=
(Dg
π
− µ

[D
π
− 1
])′

Ω−1
ρ JV −1c =: ṁ1 + ṁ2 + ṁ3,

where ṁ1
def
= −µ′Ω−1

ρ JV −1(D/π − 1)c, ṁ2
def
= Dg′Ω−1

ρ JV −1c/π, and ṁ3
def
= 0. Now,

Eṁ2
1 = c′V −1E

[
J ′Ω−1

ρ

(D
π
− 1
)2

µµ′Ω−1
ρ J
]
V −1c

= c′V −1E
[
J ′Ω−1

ρ E
[(D

π
− 1
)2 ∣∣∣ Z,X]µµ′Ω−1

ρ J

]
V −1c

(3.C.2)
= c′V −1E

[
J ′Ω−1

ρ

1− π
π

µµ′Ω−1
ρ J
]
V −1c

<∞ (Ass. 3.3.1(iii))

and
E[ṁ1 | Z,X] = −µ′Ω−1

ρ JV −1cE
[D
π
− 1

∣∣∣ Z,X] = 0 =⇒ ṁ1 ∈ L2(Z,X)⊥.

63 Let ṁ ∈ Ṁ. By (3.C.13), E[ρṁ | X] ∈ span(J) PX -a.s., and ṁ = Sṗ+Sv̇+Sḟ , where Sṗ ∈ L2(D,Z,X)∩
L2(Z,X)⊥, Sv̇ ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥, Sḟ ∈ L2,0(X), which imply that Eṁ = 0. Hence, ṁ ∈ Ṡ.

64 Since E[ρSṗ | Z,X] = 0 in (3.C.10) holds irrespective of whether π is fully known or known up to
a finite-dimensional parameter, and the argument leading to (3.C.15) does not depend on the form of
Sṗ, it follows that the efficiency bound for θ∗ does not decrease if π is fully known, or known up to a
finite-dimensional parameter.
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Thus, ṁ1 ∈ L2(D,Z,X) ∩ L2(X)⊥. In addition,

Eṁ2
2 = c′V −1E

[DJ ′Ω−1
ρ gg′Ω−1

ρ J

π2

]
V −1c

= c′V −1E
[J ′Ω−1

ρ

π2
E[Dgg′ | Z,X]Ω−1

ρ J
]
V −1c

MAR
= c′V −1E

[J ′Ω−1
ρ

π2
E[D | Z,X]E[gg′ | Z,X]Ω−1

ρ J
]
V −1c

= c′V −1E
[J ′Ω−1

ρ E[gg′ | Z,X]Ω−1
ρ J

π

]
V −1c

(3.3.12)
= c′V −1E

[
J ′Ω−1

ρ

(
E[ρρ′ | Z,X] +

1− π
π

µµ′
)

Ω−1
ρ J
]
V −1c

= c′V −1E[J ′Ω−1
ρ ρρ′Ω−1

ρ J ]V −1c+ c′V −1E
[
J ′Ω−1

ρ

1− π
π

µµ′Ω−1
ρ J
]
V −1c

= c′V −1c+ c′V −1E
[
J ′Ω−1

ρ

1− π
π

µµ′Ω−1
ρ J
]
V −1c (Ωρ

def
= E[ρρ′ | X])

<∞. (Ass. 3.3.1(iii))

Moreover, since π(Z,X)
def
= E[D | Z,X] and µ def

= E[g | Z,X],

E[ṁ2 | Z,X] = E
[Dg′Ω−1

ρ JV −1c

π

∣∣∣ Z,X]
=

1

π
E[D | Z,X]E[g′ | Z,X]Ω−1

ρ JV −1c

= µ′Ω−1
ρ JV −1c.

Hence, as E[µ | X] = E[g | X]
PX -a.s.

= 0,

E[ṁ2 | X] = E[µ′ | X]Ω−1
ρ JV −1c

PX -a.s.
= 0 =⇒ ṁ2 ∈ L2(X)⊥.

Therefore, ṁ2 ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥. Furthermore,

E[ρṁ | Z,X] = E[ρρ′Ω−1
ρ JV −1c | Z,X] = E[ρρ′ | Z,X]Ω−1

ρ JV −1c,

which implies that (recall Ωρ
def
= E[ρρ′ | X])

E[ρṁ | X] = JV −1c ∈ span(J).

Hence, ρ′Ω−1
ρ JV −1c ∈ Ṁ.

Lemma 3.C.1. Under Assumptions 3.2.1 and 3.3.1(i, ii), Ṁ is closed.
Proof of Lemma 3.C.1. The tangent vectors Sṗ ∈ L2(D,Z,X) ∩ L2(Z,X)⊥ =: Ṁ1,
Sv̇ ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥ =: Ṁ2, and Sḟ ∈ L2,0(X) =: Ṁ3 are pairwise orthogonal.
Indeed,

E[SṗSv̇ | Z,X]
MAR
= E[Sṗ | Z,X]E[Sv̇ | Z,X]

Sṗ∈L2(Z,X)⊥

= 0 =⇒ Sṗ ⊥ Sv̇.

Similarly,
E[SṗSḟ | Z,X] = SḟE[Sṗ | Z,X]

Sṗ∈L2(Z,X)⊥

= 0 =⇒ Sṗ ⊥ Sḟ .
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and
E[Sv̇Sḟ | X] = SḟE[Sv̇ | X]

Sv̇∈L2(X)⊥

= 0 =⇒ Sv̇ ⊥ Sḟ .

Pairwise orthogonality of Ṁ1, Ṁ2, Ṁ3 is used to show that cl(Ṁ) ⊂ Ṁ.
Let ṁ ∈ cl(Ṁ). Then, there exists a sequence (ṁj)j∈N ⊂ Ṁ such that limj→∞ ‖ṁj −

ṁ‖2 = 0. It remains to prove that ṁ ∈ Ṁ. Since ṁj ∈ Ṁ for each j, by (3.C.13) we have
that ṁj = ṁj1+ṁj2+ṁj3, where (ṁj1, ṁj2, ṁj3) ∈ Ṁ1×Ṁ2×Ṁ3 andE[ρṁj | X] ∈ span(J)

PX-a.s. Note that Ṁ1, Ṁ2, Ṁ3 are ‖ · ‖2-closed because L2-spaces, and the orthogonal
complements of their linear subspaces, are closed. Since Ṁ1, Ṁ2, Ṁ3 are also pairwise
orthogonal under MAR, PṀ1+Ṁ2+Ṁ3

= PṀ1
+ PṀ2

+ PṀ3
. Consequently,

ṁj − ṁ = ṁj1 + ṁj2 + ṁj3 − ṁ
= ṁj1 −PṀ1

(ṁ) + ṁj2 −PṀ2
(ṁ) + ṁj3 −PṀ3

(ṁ)− [ṁ−PṀ1+Ṁ2+Ṁ3
(ṁ)].

Since (ṁj1, ṁj2, ṁj3) ∈ Ṁ1 × Ṁ2 × Ṁ3, pairwise orthogonality of Ṁ1, Ṁ2, Ṁ3 and the
fact that ṁ−PṀ1+Ṁ2+Ṁ3

(ṁ) ⊥ Ṁ1 + Ṁ2 + Ṁ3 imply that

‖ṁj − ṁ‖2
2 = ‖ṁj1 −PṀ1

(ṁ)‖2
2 + ‖ṁj2 −PṀ2

(ṁ)‖2
2 + ‖ṁj3 −PṀ3

(ṁ)‖2
2

+ ‖ṁ−PṀ1+Ṁ2+Ṁ3
(ṁ)‖2

2.

Therefore, since lim
j→∞
‖ṁj − ṁ‖2 = 0, we have lim

j→∞
‖ṁj1 −PṀ1

(ṁ)‖2 = 0, lim
j→∞
‖ṁj2 −

PṀ2
(ṁ)‖2 = 0, lim

j→∞
‖ṁj3 −PṀ3

(ṁ)‖2 = 0, and ‖ṁ −PṀ1+Ṁ2+Ṁ3
(ṁ)‖2 = 0. The last

condition reveals that ṁ ∈ Ṁ1 + Ṁ2 + Ṁ3, which means that ṁ = ṁ1 + ṁ2 + ṁ3 for
some (ṁ1, ṁ2, ṁ3) ∈ Ṁ1 × Ṁ2 × Ṁ3. Hence, ṁ ∈ Ṁ follows if we can establish that
E[ρṁ | X] ∈ span(J) PX-a.s.

We show that E[ρṁ | X] ∈ span(J) PX-a.s. by demonstrating that limj→∞ ‖E[ρṁj |
X] − E[ρṁ | X]‖2 = 0 (recall that ‖b‖2

def
=
√
Eb′b if b is a random vector). Indeed,

limj→∞ ‖E[ρṁj | X]− E[ρṁ | X]‖2 = 0 implies that, PX-a.s., (E[ρṁj | X])j∈N is a conver-
gent sequence in span(J) because E[ρṁj | X] ∈ span(J) PX-a.s. for each j. Therefore,
PX-a.s., its limit E[ρṁ | X] ∈ span(J) because span(J) is ‖ · ‖2-closed (cf. the discussion
after Assumption 3.3.1).

To show that limj→∞ ‖E[ρṁj | X]− E[ρṁ | X]‖2 = 0, we proceed as follows. Let ρ(k)

denote the kth coordinate of ρ. Then,

‖E[ρ(ṁj − ṁ) | X]‖2
2 = E

dim g∑
k=1

(
E[ρ(k)(ṁj − ṁ) | X]

)2 (‖b‖2
def
=
√
Eb′b, dim ρ = dim g)

≤ E
dim g∑
k=1

E[(ρ(k))2 | X]E[(ṁj − ṁ)2 | X] (cond. Cauchy-Schwarz)

= E
(
E[ρ′ρ | X]E[(ṁj − ṁ)2 | X]

)
(3.C.4)
≤
‖σ2

g‖∞
inf π

E(ṁj − ṁ)2 (Ass. 3.3.1(i,ii))

−−−→
j→∞

0. (limj→∞ ‖ṁj − ṁ‖2 = 0)

The desired result follows.

122



Proof of (3.C.10). Observe that

E[ρSṗ | Z,X] = E
[Dg
π
Sṗ

∣∣∣ Z,X]− E
[
µ
(D
π
− 1
)
Sṗ

∣∣∣ Z,X]
(Sṗ ∈ L2(D,Z,X) ∩ L2(Z,X)⊥)

=
1

π
E[DgSṗ

∣∣∣ Z,X]− µE
[(D

π
− 1
)
Sṗ | Z,X

]
MAR
=

1

π
E[DSṗ | Z,X]E[g | Z,X]− µ

( 1

π
E[DSṗ | Z,X]− E[Sṗ | Z,X]

)
=
µ

π
E[DSṗ | Z,X]− µ

π
E[DSṗ | Z,X] (µ def

= E[g | Z,X], Sṗ ∈ L2(Z,X)⊥)

= 0.

Next,

E[ρSv̇ | Z,X] = E
[Dg
π
Sv̇

∣∣∣ Z,X]− E
[
µ
(D
π
− 1
)
Sv̇

∣∣∣ Z,X] (Sv̇ ∈ L2(Y ∗, Z,X) ∩ L2(X)⊥)

=
1

π
E[DgSv̇ | Z,X]− µE

[(D
π
− 1
)
Sv̇

∣∣∣ Z,X]
MAR
=

1

π
E[D | Z,X]E[gSv̇ | Z,X]− µE

[D
π
− 1

∣∣∣ Z,X]E[Sv̇ | Z,X]

= E[gSv̇ | Z,X]. (E[D
π
− 1 | Z,X] = 0)

Finally,

E[ρSḟ | Z,X] = E
[Dg
π
Sḟ

∣∣∣ Z,X]− E
[
µ
(D
π
− 1
)
Sḟ

∣∣∣ Z,X] (Sḟ ∈ L2,0(X))

=
Sḟ
π
E[Dg | Z,X]− µSḟE

[D
π
− 1

∣∣∣ Z,X]
MAR
=

Sḟ
π
E[D | Z,X]E[g | Z,X] (E[D

π
− 1 | Z,X] = 0)

= Sḟµ. (µ def
= E[g | Z,X])

The desired result follows.

Lemma 3.C.2. PṠ(c
′B+Aρ) = ρ′Ω−1

ρ JV −1c.

Proof of Lemma 3.C.2. Observe that ṁ def
= ṁ(D, Y ∗, Z,X)

def
= ρ′Ω−1

ρ JV −1c ∈ Ṡ because

Eṁ2 = c′V −1E[J ′Ω−1
ρ ρρ′Ω−1

ρ J ]V −1c = c′V −1c
Ass. 3.3.1(iii)

< ∞,

E[ṁ | X] = E[ρ′ | X]Ω−1
ρ JV −1c

(3.3.6)
= 0 =⇒ Eṁ = 0,

E[ρṁ | X] = E[ρρ′ | X]Ω−1
ρ JV −1c = JV −1c ∈ span(J).
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Next, let Ṡ ∈ Ṡ. Then, since E[ρṠ | X] ∈ span(J), which implies that E[ρṠ | X] = Jα for
some α ∈ Rdim θ∗, we have that

〈c′B+Aρ− ṁ, Ṡ〉 = c′B+E[AρṠ]− E[ρ′Ω−1
ρ JV −1cṠ] (defn. ṁ)

= c′B+E[AρṠ]− c′V −1E[J ′Ω−1
ρ ρṠ]

= c′B+E[AE(ρṠ | X)]− c′V −1E[J ′Ω−1
ρ E(ρṠ | X)]

= c′B+E[AJ ]α− c′V −1E[J ′Ω−1
ρ J ]α

= c′B+E[AJ ]α− c′α (V def
= E[JΩ−1

ρ J ])

= c′B+Bα− c′α (B def
= E[AJ ])

= c′α− c′α (B full column rank)
= 0.

The desired result follows because Ṡ was arbitrary.

3.D Efficiency gains in the simulation designs

Let Z̃ def
= (1, Z)2×1. The efficiency bound for estimating θ∗ = (α∗, γ∗)2×1 in the structural

model Y ∗ = Z̃ ′θ∗ + σ(X)U is given by l.b.(θ∗) = (EJ ′J/Ωρ)
−1, where, cf. Example 3.3.2,

J = −
[
1 E[Z | X]

]
Ωρ = π̃−1E[Var(Y ∗ | Z,X) | X] + E[µ2 | X]

µ = E[Y ∗ | Z,X]− Z̃ ′θ∗.

Furthermore, from (3.4.3), the efficiency bound for estimating θ∗ using the validation
sample alone is given by l.b.(θ∗)

∣∣
VS = (Eπ̃J ′J/Ωg)

−1, where

Ωg = E[(Y ∗ − Z̃ ′θ∗)2 | X] = E[σ2(X)U2 | X] = σ2(X)σ2
U ,

because U ⊥⊥ X. Hence, l.b.(θ∗)
∣∣
VS = σ2

U

(
Eπ̃J ′J/σ2(X)

)−1. We now obtain the efficiency
gain l.b.(γ∗)

∣∣
VS/l.b.(γ

∗) by simplifying the expressions for J and Ωρ in the two designs.
For notational convenience, let X̃ def

= (1, X)2×1 and ζ def
= (ζ0, ζ1)2×1, so that ζ0 + ζ1X = X̃ ′ζ.

3.D.1 Design 1
In this design, Z = X̃ ′ζ + V . Hence,

E[U | Z,X] = E[U | X, X̃ ′ζ + V ] (defn. of Z)
= E[U | X, V ] ((X, V ) 7→ (X, X̃ ′ζ + V ) is injective)
= E[U | V ]. ((U, V ) ⊥⊥ X)
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Therefore,

E[Y ∗ | Z,X] = Z̃ ′θ∗ + σ(X)E[U | Z,X]

= Z̃ ′θ∗ + σ(X)E[U | V ]

= Z̃ ′θ∗ + σ(X)
σUV
σ2
V

V. (U, V jointly normal)

Consequently,
µ = σ(X)

σUV
σ2
V

V =⇒ E[µ2 | X] = σ2(X)
σ2
UV

σ2
V

.

Next, as Var[U | X] = E[Var
[
U | Z,X] | X

]
+ Var

[
E[U | Z,X] | X

]
by variance decompos-

ition,

E
[
Var[U | Z,X] | X

]
= Var[U | X]− Var

[
E[U | Z,X] | X

]
= Var[U | X]− Var

[
E[U | V ] | X

]
= Var[U | X]− Var

[σUV
σ2
V

V
∣∣∣ X]

= Var[U | X]− σ2
UV

σ4
V

Var[V | X]

= σ2
U −

σ2
UV

σ2
V

. ((U, V ) ⊥⊥ X)

Consequently,

E
[
Var[Y ∗ | X,Z] | X

]
= σ2(X)E

[
Var[U | Z,X] | X

]
= σ2(X)

[
σ2
U −

σ2
UV

σ2
V

]
.

Combining these results, we get that

Ωρ =
1

π̃(X)
σ2(X)

[
σ2
U −

σ2
UV

σ2
V

]
+ σ2(X)

σ2
UV

σ2
V

.

Therefore, the efficiency bound for θ∗ in design 1 is

l.b.(θ∗) =
(
E
J ′J

Ωρ

)−1

=

(
E

[
1 X̃′ζ

X̃′ζ (X̃′ζ)2

]
σ2(X)
π̃(X)

[σ2
U −

σ2
UV

σ2
V

] + σ2(X)
σ2
UV

σ2
V

)−1

.

Furthermore, the efficiency bound for estimating θ∗ using only the validation sample
is

l.b.(θ∗)
∣∣
VS = σ2

U

(
E
π̃(X)

σ2(X)
J ′J
)−1

= σ2
U

(
E
π̃(X)

σ2(X)

[
1 X̃′ζ

X̃′ζ (X̃′ζ)2

])−1

.

Hence, the efficiency gain l.b.(γ∗)
∣∣
VS/l.b.(γ

∗) can be obtained from the expressions for
the 2× 2 matrices l.b.(θ∗)

∣∣
VS and l.b.(θ∗) by extracting their (2, 2) elements.

125



3.D.2 Design 2
In this design, Z = 1(X̃ ′ζ + V > 0). Hence,

J = −[1 E[Z | X]] = −[1 Pr(Z = 1 | X)] = −[1 Φ( X̃
′ζ

σV
)].

For d ∈ R, joint normality of (U, V ) implies that

E[U1(V ≤ d)] = E
[
E[U | V ]1(V ≤ d)

]
=
σUV
σ2
V

E[V 1(V ≤ d)] = −σUV
σV

φ
(X̃ ′ζ
σV

)
.

Hence, E[U1(V > d)] =
σUV
σV

φ
(X̃ ′ζ
σV

)
because EU = 0. Consequently,

E[U | Z,X] = (1− Z)E[U | Z = 0, X] + ZE[U | Z = 1, X] (Z ∈ {0, 1})

= (1− Z)
E[U1(Z = 0) | X]

Pr(Z = 0 | X)
+ Z

E[U1(Z = 1) | X]

Pr(Z = 1 | X)

= (1− Z)
E[U1(V ≤ −X̃ ′ζ) | X]

Pr(V ≤ −X̃ ′ζ | X)
+ Z

E[U1(V > −X̃ ′ζ) | X]

Pr(V > −X̃ ′ζ | X)

= −(1− Z)
σUV
σV

φ( X̃
′ζ

σV
)

Φ(−X̃
′ζ

σV
)

+ Z
σUV
σV

φ( X̃
′ζ

σV
)

Φ( X̃
′ζ

σV
)

((U, V ) normal and indep. of X)

=
σUV
σV

[
Z − Φ

(X̃ ′ζ
σV

)]
G
(X̃ ′ζ
σV

)
,

where G(t)
def
= φ(t)/[Φ(t)Φ(−t)], t ∈ R, is the probit weight function (Schumann &

Tripathi, 2018). Therefore,

E[Y ∗ | Z,X] = Z̃ ′θ∗ + σ(X)E[U | Z,X]

= Z̃ ′θ∗ + σ(X)
σUV
σV

[
Z − Φ

(X̃ ′ζ
σV

)]
G
(X̃ ′ζ
σV

)
.

Consequently,

µ = σ(X)
σUV
σV

[
Z − Φ

(X̃ ′ζ
σV

)]
G
(X̃ ′ζ
σV

)
.

Therefore, since E[µ | X] = 0,

E[µ2 | X] = Var[µ | X]

= σ2(X)
σ2
UV

σ2
V

G2
(X̃ ′ζ
σV

)
Var[Z | X]

= σ2(X)
σ2
UV

σ2
V

G2
(X̃ ′ζ
σV

)
Φ
(X̃ ′ζ
σV

)
Φ
(
−X̃

′ζ

σV

)
= σ2(X)

σ2
UV

σ2
V

G
(X̃ ′ζ
σV

)
φ
(X̃ ′ζ
σV

)
.
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Next, as Var[U | X] = E
[
Var[U | Z,X] | X

]
+ Var

[
E[U | Z,X] | X

]
by variance decompos-

ition,

E[Var
[
U | Z,X] | X

]
= Var[U | X]− Var

[
E[U | Z,X] | X

]
= σ2

U − Var

[
σUV
σV

[
Z − Φ

(X̃ ′ζ
σV

)]
G
(X̃ ′ζ
σV

) ∣∣∣ X] (U ⊥⊥ X)

= σ2
U −

σ2
UV

σ2
V

G2
(X̃ ′ζ
σV

)
Var[Z | X]

= σ2
U −

σ2
UV

σ2
V

G2
(X̃ ′ζ
σV

)
Φ
(
−X̃

′ζ

σV

)
Φ
(X̃ ′ζ
σV

)
= σ2

U −
σ2
UV

σ2
V

G
(X̃ ′ζ
σV

)
φ
(X̃ ′ζ
σV

)
.

Consequently,

E
[
Var[Y ∗ | X,Z] | X

]
= σ2(X)E

[
Var[U | Z,X] | X

]
= σ2(X)

[
σ2
U −

σ2
UV

σ2
V

G
(X̃ ′ζ
σV

)
φ
(X̃ ′ζ
σV

)]
.

Combining these results, we get that

Ωρ =
1

π̃(X)
σ2(X)

[
σ2
U −

σ2
UV

σ2
V

G
(X̃ ′ζ
σV

)
φ
(X̃ ′ζ
σV

)]
+ σ2(X)

σ2
UV

σ2
V

G
(X̃ ′ζ
σV

)
φ
(X̃ ′ζ
σV

)
.

Therefore, the efficiency bound for θ∗ in design 2 is

l.b.(θ∗) =
(
E
J ′J

Ωρ

)−1

=

(
E

[
1 Φ( X̃

′ζ
σV

)

Φ( X̃
′ζ

σV
) Φ2( X̃

′ζ
σV

)

]
σ2(X)
π̃(X)

[σ2
U −

σ2
UV

σ2
V
G( X̃

′ζ
σV

)φ( X̃
′ζ

σV
)] + σ2(X)

σ2
UV

σ2
V
G( X̃

′ζ
σV

)φ( X̃
′ζ

σV
)

)−1

=

(
E

[
1 Φ( X̃

′ζ
σV

)

Φ( X̃
′ζ

σV
) Φ2( X̃

′ζ
σV

)

]
(1−X)σ2(0)+Xσ2(1)
(1−X)π̃(0)+Xπ̃(1)

[σ2
U − p] + [(1−X)σ2(0) +Xσ2(1)]p

)−1

,

where p
def
=

σ2
UV

σ2
V
G( X̃

′ζ
σV

)φ( X̃
′ζ

σV
) and the last equality follows because X ∈ {0, 1}.

Furthermore, the efficiency bound for estimating θ∗ using only the validation sample
is

l.b.(θ∗)
∣∣
VS = σ2

U

(
E
π̃(X)

σ2(X)
J ′J
)−1

= σ2
U

(
E

(1−X)π̃(0) +Xπ̃(1)

(1−X)σ2(0) +Xσ2(1)

[
1 Φ( X̃

′ζ
σV

)

Φ( X̃
′ζ

σV
) Φ2( X̃

′ζ
σV

)

])−1

.

Hence, the efficiency gain l.b.(γ∗)
∣∣
VS/l.b.(γ

∗) can be obtained from the expressions for
the 2× 2 matrices l.b.(θ∗)

∣∣
VS and l.b.(θ∗) by extracting their (2, 2) elements.
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SEL in Design 2

Here, ρ̂j(θ) def
= ρ̂(Aj, θ) is scalar and θ̂ maximises the version of SELT with Ti,n

def
= 1 and

the weights given in Footnote 52, namely,

SEL(θ)
def
= −

n∑
i=1

max
λi∈R

n∑
j=1

wij log(1 + λiρ̂j(θ)),

where the redefined weights

wij
def
=

1(Xi = Xj)∑n
k=1 1(Xi = Xk)

= 1(Xj = Xi)
[
1(Xi = 0)

n(1− X̄)
+
1(Xi = 1)

nX̄

]
(3.D.1)

and X̄ def
=
∑n

j=1 Xj/n. The maximisers of the inner optimization problems in SEL(θ),
denoted by λ̂i, i = 1, . . . , n, satisfy the FOC

0 =
n∑
j=1

wij ρ̂j(θ)

1 + λ̂iρ̂j(θ)
(i = 1, . . . , n)

(3.D.1)
=

1(Xi = 0)

n(1− X̄)

n∑
j=1

1(Xj = Xi)ρ̂j(θ)

1 + λ̂iρ̂j(θ)
+
1(Xi = 1)

nX̄

n∑
j=1

1(Xj = Xi)ρ̂j(θ)

1 + λ̂iρ̂j(θ)

=



n∑
j=1

1(Xj = 0)ρ̂j(θ)

1 + l̂0ρ̂j(θ)
if Xi = 0

n∑
j=1

1(Xj = 1)ρ̂j(θ)

1 + l̂1ρ̂j(θ)
if Xi = 1,

(3.D.2)

where the real numbers l̂0, l̂1 solve (3.D.2). Consequently, λ̂i = l̂01(Xi = 0) + l̂11(Xi = 1),
i = 1, . . . , n, and we have

SEL(θ) = −
n∑
i=1

n∑
j=1

wij log
(
1 + λ̂iρ̂j(θ)

)
= −

n∑
i=1

n∑
j=1

1(Xj = Xi)∑n
k=1 1(Xi = Xk)

log
(
1 + l̂01(Xi = 0)ρ̂j(θ) + l̂11(Xi = 1)ρ̂j(θ)

)
= −

n∑
i=1

n∑
j=1

1(Xj = Xi)∑n
k=1 1(Xi = Xk)

log
(
1 + l̂01(Xj = 0)ρ̂j(θ) + l̂11(Xj = 1)ρ̂j(θ)

)
= −

n∑
j=1

log
(
1 + l̂01(Xj = 0)ρ̂j(θ) + l̂11(Xj = 1)ρ̂j(θ)

) n∑
i=1

1(Xj = Xi)∑n
k=1 1(Xi = Xk)

= −
n∑
j=1

log
(
1 + l̂01(Xj = 0)ρ̂j(θ) + l̂11(Xj = 1)ρ̂j(θ)

)
(3.D.3)

(3.D.2)
= − max

l0,l1∈R

n∑
j=1

log
(
1 + l01(Xj = 0)ρ̂j(θ) + l11(Xj = 1)ρ̂j(θ)

)
,
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where (3.D.3) follows from the fact that
n∑
i=1

1(Xj = Xi)∑n
k=1 1(Xi = Xk)

=
n∑
i=1

1(Xj = Xi)

1(Xi = 0)n(1− X̄) + 1(Xi = 1)nX̄

=
n∑
i=1

1(Xj = Xi)[1(Xj = 0) + 1(Xj = 1)]

1(Xi = 0)n(1− X̄) + 1(Xi = 1)nX̄

=
n∑
i=1

1(Xi = 0)1(Xj = 0) + 1(Xi = 1)1(Xj = 1)

1(Xi = 0)n(1− X̄) + 1(Xi = 1)nX̄

=
1(Xj = 0)

n(1− X̄)

n∑
i=1

1(Xi = 0) +
1(Xj = 1)

nX̄

n∑
i=1

1(Xi = 1)

= 1(Xj = 0) + 1(Xj = 1)

= 1.

Therefore, SEL(·) coincides with unconditional empirical likelihood because

SEL(θ) = − max
l0,l1∈R

n∑
j=1

log
(
1 + 1(Xj = 0)l0ρ̂j(θ) + 1(Xj = 1)l1ρ̂j(θ)

)
= − max

l0,l1∈R

n∑
j=1

log
(
1 + l0ρ̂j(θ) + 1(Xj = 1)(l1 − l0)ρ̂j(θ)

)
= −max

l∈R2

n∑
j=1

log
(
1 + l′X̃j ρ̂j(θ)

)
. (X ∈ {0, 1} =⇒ 1(X = 1) = X)

Consequently, if θ̂ solves
∑n

j=1 X̃j ρ̂j(θ̂) = 0, then it also maximises SEL(·).
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