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Abstract
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Complex Networks in Manufacturing – Suitability and Interpretation

by Yamila Mariel OMAR

The fourth industrial revolution, and the associated digitization of the manu-
facturing industry, has resulted in increased data generation. Industry leaders aim
to leverage this data to enhance productivity, boost innovation and generate new
manners of competition. In this work, out of the many domains within the man-
ufacturing sector, production will be explored. To this end, the mathematical tools
of network science are utilized to characterize and evaluate production networks in
terms of complex networks.

In a manufacturing complex network, nodes represent workstations, and di-
rected edges abstract the material flow that occurs among pairs of workstations.
These types of complex networks are known as “material flow networks” and are
used to study issues associated with manufacturing systems in the domain of pro-
duction at the intra-enterprise level. While some research on the subject exists, this
work will demonstrate that the use of complex networks to describe and evaluate
manufacturing systems constitutes a nascent research field. In fact, the limited exist-
ing literature tackles a vast number of issues raising more questions than providing
answers.

This work aims to answer a number of those open questions. Firstly, which com-
plex network metrics are suitable in the context of manufacturing networks will be
determined. As a consequence, unsuitable metrics will be identified as well. To ac-
complish this, the flow underlying assumptions of popular complex network met-
rics is studied and compared to those of manufacturing networks. Furthermore,
other existing complex network metrics with more appropriate underlying assump-
tions, but not yet explored in the context of manufacturing, are proposed and eval-
uated. Then, the appropriate interpretation of suitable complex network metrics in
terms of Operations Research is provided. Finally, shortcomings of these metrics are
highlighted to caution practitioners regarding their use in industrial settings.

http://www.uni.lu
https://wwwen.uni.lu/fstm
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1

1 Introduction

In 2017, almost 1 in 10 enterprises (8.8%) in the EU-27’s non-financial business econ-
omy were classified to “manufacturing” according to Eurostat [1]. As shown in
Fig. 1.1, this represents almost 2 million enterprises corresponding to a vast range
of activities. It includes small-scale businesses where manufacturing follows tradi-
tional production techniques, as well as very large enterprises that require parts and
components from multiple suppliers to collectively manufacture a complex product.
Despite this heterogeneity, this sector is the second largest employment contributor
to the non-financial business economy, employing 28.5 million people in 2017. In ad-
dition, it is the largest contributor to the value added generated by the non-financial
business economy, which amounted to EUR 1820 billion in 2017 only.

2M enterprises

2
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e
o
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le
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EUR 1820 billion
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FIGURE 1.1: Infographic on the 2017 Eurostat figures for the manu-
facturing sector.

In contrast with these optimistic figures, the gross operating rate of the manufac-
turing sector was 9.8% in 2017, below the non-financial business economy average.
This means that this sector had the second lowest level of profitability within the
non-financial business economy for the EU-27 [1]. In fact, this underwhelming per-
formance has been reported previously by Omar et. al. [2] citing Eurostat figures
from 2013, indicating that the industry has been under pressure to reduce costs and
increase margins while competing with developing economies for a long time. Thus,
with the objective to increase profitability, manufacturing enterprises are evolving in
a process termed the “Fourth Industrial Revolution” and popularized as “Industry
4.0” [3–9].

1.1 Industry 4.0

“Industrie 4.0” or “Industry 4.0” was a 2011 German initiative [3–9]. In Luxem-
bourg, it was termed “The Third Industrial Revolution” according to Jeremy Rifkin’s
homonymous book [10], which later informed policy and strategy for the Luxem-
bourgish Ministry of Economy [11]. In the Anglo-Saxon world similar concepts are
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used, such as as the “Industrial Internet” [12–15] and “Smart Manufacturing” [16–
18]. All these different labels are characterized by partially overlapping concepts
and terminology.

Although there is a growing body of research in the subject, the definition of “In-
dustry 4.0” has not been agreed upon and thus, remains somehow dynamic. This is
justified, partly, because the phenomenon is in its infancy and subject to a rapidly
evolving technological landscape. Yet, Culot et. al. [9] explained that there is agree-
ment in a number of aspects:

• Industry 4.0 is enabled by key technologies associated to increased digitaliza-
tion and connectivity such as physical-digital interfaces, networks and data-
processing technologies. Cyber-physical systems, the Internet of Things and
Cloud Computing are often listed as Industry 4.0 enablers.

• Industry 4.0 has a number of characteristics consistent with the aforemen-
tioned key enabling technologies. These are virtualization, real-time informa-
tion sharing and autonomy. Typically, intra- and inter-enterprise process inte-
gration is expected as well, making interoperability a distinctive characteristic
and cyber-security an absolute need.

• Industry 4.0 is expected to increased profitability as a result of higher produc-
tivity and flexibility. Mass customization and new business models arise as a
result.

Both, the enabling technologies and the characteristics of Industry 4.0, point to
a differentiating factor with respect to previous industrial revolutions. Industry 4.0
enterprises are expected to generate massive amounts of data and utilize it to fulfill
their expectations. As a result, scientific output increasingly focuses on data analyt-
ics algorithms and methods for the manufacturing sector.

1.2 Data in Manufacturing

From all the aspects surrounding Industry 4.0, the massive amount of generated
data in manufacturing is a key ingredient for this work. Omar et. al. [2] explained
that the use of manufacturing data to derive insights can

... enhance productivity [19] and competitiveness, boost innovation [20]
and growth as well as generate new manners of competition [21] and
value capture [22] across organizations. [It] contributes to an organiza-
tion’s agility by providing timely and accurate information [23]. In addi-
tion, the prevalent use of data ensures transparency, aids the discovery of
market needs [24], uncovers process or service variability, improves per-
formance [19] and assists in the adoption of more sustainable practices
[25].
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Furthermore, Omar et. al. identified five manufacturing domains in which data
analytics can be a differentiating factor [2]. From these five domains, listed in Fig. 1.2,
this work centers on the manufacturing data generated by ubiquitous cyber-physical
systems in “production”. This should be of particular interest for industry prac-
titioners for several reasons. Firstly, they must leverage the data to guarantee the
necessary return on investments to justify the acquisition of these new technologies.
Secondly, the data generated by production lines through real-time monitoring of
operations has the potential to maximize yield, reduce waste [26], cut maintenance
and operational costs, optimize schedules [27] and support lean manufacturing en-
deavors [28].

R&D and 
product design

supply chain
management

production marketing, sales
& after sales

support

end-of-life or
reverse logistics

* Open innovation
 - Customer co-creation
 - Supplier involvement
* Time to market
* Operations, products
   and process design

* Supply/demand 
   match
* Logistics
* Inventories

* Resources/processes
* Asset utilization
* Scheduling
* Labor
* Inventories
* Quality

* Service/aftersales
* Marketing
* Sales

* Reverse supply chain 
   design
* Sustainability

FIGURE 1.2: Data domains in manufacturing according to the work
of Omar et. al. [2].

1.3 Potential of Complex Networks for Manufacturing

Manufacturing data analytics can take many different forms, such as machine learn-
ing [29–31] and big data analytics [32–34]. One promising yet rarely explored ap-
proach is “network science”. The National Research Council defines “network sci-
ence” as “the study of network representations of physical, biological, and social
phenomena leading to predictive models of these phenomena” [35]. In simple terms,
network science is an academic field that studies complex networks where actors
are represented as nodes and the relationship between them as edges. This field is
truly multidisciplinary: its theories and methods are rooted in other fields such as
mathematics (graph theory), physics (statistical mechanics), computer science (data
mining and data visualization), statistics (inferential modeling) and sociology (social
structure).

Advocacy for the use of “network science” in Operations Research dates back
to 2008 [36, 37]. And while Alderson [36] promoted complex networks as a way to
study network topology and associated statistical aspects, Nagurney [37] directed
attention to the importance of incorporating flow related aspects. Yet, the existing
literature within the domain of “production” in manufacturing is limited, as will be
shown in Chapter 3. One possible explanation for this lack of research, may be the
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tendency of network science to abstract away domain-specific functions that typi-
cally drive engineers and practitioners [36]. As Alderson noted, one must determine
which aspects of the problem are essential and which can be safely ignored [36].
Analogously, one must determine how to appropriately model the system under
study. Furthermore, he pointed out that special attention should be payed to the
underlying assumptions of the problem formulation and solution when utilizing
methods from network science.

Yet some of these apparent shortcomings may be used to the practitioner’s ad-
vantage. Analysis of manufacturing complex networks can aid production line de-
sign when the available data is limited. It can also be used to rapidly evaluate differ-
ent alternatives, reducing the solution space before using computationally expensive
simulations. After all, the majority of the algorithms and methods used to character-
ize complex networks are readily available and far less computationally expensive
than traditional simulations. Thus, evaluating the applicability of existing complex
networks metrics for Operations Research and appropriately interpreting results are
open (and seldomly transited) research avenues worth exploring.
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2 Preliminaries

2.1 Complex networks

A complex network, also called graph G, is composed of a finite set of nodes V
and a set of edges E. It is thus generally indicated as G(V,E). The set of nodes
V = {v0, v1, ..., vN}must not only be finite, but also cannot be empty, i.e. V 6= ∅. The
set of edges E is composed of pairs of nodes (vi, vj). These pairs indicate some kind
of relationship between nodes.

Two nodes joined by an edge are typically called adjacent or neighboring. When
the edges are unordered the graph is called undirected and, when the edges are or-
dered the graph is termed directed. Thus, in an undirected graph the edges (vi, vj)

and (vj , vi) are equivalent while in a directed graph they are not.
A graph G can be completely described using an adjacency matrix A. The ele-

ments of A have only two possible values: aij = 1 if there exists an edge between
nodes vi and vj and 0 otherwise. A graph that is fully described by an adjacency ma-
trix is known as binary or unweighted. Sometimes the edges carry a numerical value
abstracting a property of the edge. This property can be a distance, the strength of
a relationship, the number of transactions between pairs of nodes, etc. In this case,
graph G is better described by means of a weight matrix W of elements wij > 0.
These graphs are called weighted.

A graph G is called connected if, for every pair of distinct nodes vi and vj , there
is a path from vi to vj . When this requirement is not held, the graph is said to be
disconnected.

In directed graphs, a strongly connected component (SCC) can be defined. Thus,
a SCC in a directed G = G(V,E) is a maximal set of vertices C ⊆ V such that for
every pair of vertices u and v in C, there exists both a path u v and a path v  u.
Thus, u and v are reachable from each other.

2.2 Notation

Throughout this work, a notation convention has been chosen. Node notations vi
and i are considered equivalent, vi ≡ i, and used interchangeably. This is generally
the case to avoid multiple subscripts where necessary.
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2.3 Typology of centrality metrics

Much of this work deals with the calculation and interpretation of centrality metrics
for manufacturing networks. It is thus important to understand the underlying as-
sumptions that each metric entails. Some centrality metrics are only applicable to
undirected graphs, others to directed ones. Formulation modifications may be nec-
essary when dealing with a weighted graph instead of a binary one. Some metrics
require connectedness, others do not. Yet one of the most relevant assumptions has
to do with the type of network flow.

Borgatti [38] classified centrality metrics based on the way that the traffic flows
through the network. There are thus, two aspects of flow worth studying: the type
of route followed and the method in which the traffic propagates.

Types of routes in complex networks: According to Borgatti’s classification [38],
there are four possible routes that the traffic may follow. These are:

• Paths: sequence of linked nodes in which neither nodes nor edges are re-
peated. A path P of length n from node vi to node vj is an ordered sequence
of distinct nodes P = {v0, v1, ..., vn}with v0 = vi, vn = vj and (vt, vt+1) ∈ E for
t = 0, 1, ..., n− 1.

• Geodesics: shortest paths, i.e. the shortest sequence of linked nodes in which
neither nodes nor edges are repeated. The notation is analogous to paths, with
the caveat that P is the shortest path from vi to vj .

• Trails: sequence of linked nodes where the nodes can be repeated, however
each edge (vt, vt+1) can appear only once.

• Walks: sequence of linked nodes where both nodes and edges can be repeated.

Traffic propagation methods: Following Borgatti’s classification [38], there are three
possible ways in which the traffic propagates along the chosen route. These are:

• Parallel duplication: the traffic flows from a node vi to all its neighbors vj ∈
Γ(vi) simultaneously. A simple example is an e-mail message with multiple
recipients. The message is sent to all of them simultaneously.

• Serial duplication: the traffic flows from one node to another one at a time,
yet possibly occurring in multiple places. An example of serial duplication is
gossip.

• Transfer process: type of traffic flow where an item can only be one place at
a time and moves from node to node in the network. Money or any tangible
good flow through a network following a transfer process.
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TABLE 2.1: Centrality measures according to Borgatti’s typology.

Parallel Duplication Serial Duplication Transfer

Paths Freeman Closeness [39] Tutzauer Entropy [40]
Freeman Degree [39]

Geodesics Freeman Closeness [39] Freeman Closeness [39]
Freeman Betweenness [41]

Trails Freeman Closeness [39]
Freeman Degree [39]

Walks Freeman Closeness [39]
Freeman Degree [39]
Bonacich Eigenvector [42]
PageRank [43]

Each one of the centrality metrics discussed in this work makes assumptions
with respect to the flow, i.e. the route followed and the traffic type. A list of cen-
trality measures classified according to Borgatti’s typology is presented in Table 2.1.
It should be noted that in manufacturing networks, the flow is best described as
following paths and propagating via a transfer process.
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3 Literature Review

3.1 Introduction

The use of complex networks in manufacturing has been an enduring, albeit slow
moving, trend. This is easily observed in the systematic literature review presented
by Li et. al. in 2017 [44]. In their work, the authors investigated the application of
complex networks in advanced manufacturing systems. They classified the existing
literature in two main categories: manufacturing complex networks applied inside
the enterprise and those describing inter-enterprise relationships. In turn, several
sub-categories and specific issues were identified to further subdivide the literature,
as shown in Table 3.1.

TABLE 3.1: Areas of application of complex networks in advanced
manufacturing systems according to Li et. al. [44]

Category Sub-category Specific Issues

Intra-enterprise

Product design

Part & component
Product module
Product family & platform
Product design & development

Production
Manufacturing process
Production line
Manufacturing system

Inter-enterprises

Collaboration
Collaborative design & innovation
Collaborative manufacturing
Knowledge management

Services
Manufacturing grid
Service oriented manufacturing
Cloud manufacturing

Supply chain

Logistics

Organizational structure Enterprise network
Industry cluster

However, this classification criteria is not unique. Funke and Becker [45] ana-
lyzed manufacturing complex networks pertaining to material flows and identified
three “perspectives on material flow”: global production networks, supply chain
networks and material flow networks. For example, on a global production net-
work, companies are abstracted as nodes and contracts between them as edges. This
perspective shares elements of the “collaboration” and “organizational structure”
sub-categories presented in [44]. In the supply chain networks of Funke and Becker
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[45], nodes represent plants and edges, deliveries much like in the “supply chain”
sub-category in [44]. And in a material flow network, nodes are the abstract rep-
resentation of machines and edges indicate material flows, similarly to the special
issue of “manufacturing systems” in the “production” sub-category in [44].

In this work, “intra-enterprise” manufacturing networks constructed using “pro-
duction” data are studied. Nodes represent workstations and edges, material flows
among pairs of nodes. Thus, this work is concerned with the “manufacturing sys-
tems” special issue identified by Li et. al. [44], or equivalently, the “material flow
networks” described by Funke and Becker [45].

In the remainder of this Chapter, a comprehensive literature review of manufac-
turing complex networks is presented. The focus is on “intra-enterprise” networks
within the domain of “production”. More specifically, the literature pertaining to
complex networks for “manufacturing systems” and/or “material flow networks”
is discussed. The methodology followed for this systematic literature review is de-
scribed in Section 3.2, followed by some general observations and a narrative de-
scription of the state of the art. Finally, analysis and classification of the research
field makes it possible to determine the areas for further research explored in this
work.

3.2 Methodology

3.2.1 Sources

The sources consulted for this literature review include

• Web of Science (primary source),

• ScienceDirect,

• Google Scholar, and

• Others, mostly consisting of records referenced in those identified by the sources
indicated above.

3.2.2 Search criteria

The search criteria for Web of Science is reported in Table 3.2. Note that in all cases,
the indexes used are SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI and
the time-span chosen was “All years”.

A search in “TOPIC” looks for the search terms in the title, abstract, author key-
words, and Keywords Plus. A search in “TITLE” looks for the search terms in the
article title. The title refers to the title of a journal article, proceedings paper, book,
or book chapter.

The same terminology in Table 3.2 was used to search for records in the other
sources consulted. In ScienceDirect the search was conducted on title, abstract and
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TABLE 3.2: Search criteria utilized in Web of Science for the literature
review regarding complex networks in manufacturing.

Where Search terms # records found

TOPIC (manufacturing AND “degree centrality”) 15
TOPIC (manufacturing AND “strength centrality”) 0
TOPIC (manufacturing AND “betweenness centrality”) 18
TOPIC (manufacturing AND “clustering coefficient”) 8
TOPIC (manufacturing AND pagerank) 12
TOPIC (manufacturing AND “entropy centralilty”) 0
TOPIC (manufacturing AND “closeness centralilty”) 0
TOPIC (manufacturing AND “eigenvector centralilty”) 0
TOPIC (manufacturing AND “material flow network*”) 19
TITLE (manufacturing AND “complex network*”) 13
TITLE (manufacturing AND “social network analysis”) 7

keywords for all years. In Google Scholar, the search was conducted on the title only
for records in the year range 2010 to 2021.

3.2.3 Selection criteria

The systematic procedure followed to select relevant records is summarized in Fig. 3.1.
In short, once all records were located, duplicates were discarded. The remainder
records were filtered by title and then by abstract. In total 30 records were con-
sidered for full text analysis. For the fully reviewed records, the selection criteria
required the following:

Manufacturing complex networks described in the record must corre-
spond to the “intra-enterprise” category, “production” sub-category and
“manufacturing system” special issue in Li et. al. classification [44] or,
equivalently they must correspond to the “material flow networks” per-
spective of material flow from Funke and Becker [45]. In these types
of manufacturing networks, nodes represent workstations and edges are
the abstract representation of material flows.

As a result, 18 records have been included in the literature review presented in
this work. These are listed in Table 3.3 in chronological order.

It should be noted that the manufacturing networks under study share structural
and flow similarities with “supply chain networks”. However, these will not be
discussed here. Readers interested in supply chain networks were nodes represent
plants and edges describe deliveries should refer to [64–68] for practical examples.

3.3 General observations

The 18 records included in this literature review correspond to a time span of one
decade, from 2012 to 2021. However, there is no clear trend over said period of time
as shown in Fig. 3.2a. The research field is currently dominated by Becker’s research
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FIGURE 3.1: Methodology followed to select relevant records for the
literature review. This methodology shares similarities with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) method [46].

TABLE 3.3: Records included in the literature review.

Ref. Year Use case Metrics

[47] 2012 autonomous work system detection clique percolation method
[48] 2013 material flow anomaly detection other
[49] 2014 topological characteristics and dy-

namical behavior
other

[50] 2014 production characterization in-degree, out-degree, degree, be-
tweenness, clustering

[51] 2014 bottleneck detection degree, betweenness, pagerank
[52] 2016 quality assessment pagerank
[53] 2016 key machine identification in-degree, out-degree, PageRank,

TOPSIS
[54] 2016 clusters in production networks other
[55] 2017 generation of material flow net-

works
random walks

[56] 2018 synchronizability of the manufac-
turing network

ratio of the largest and first non-zero
eigenvalues of the laplacian matrix

[57] 2018 modeling dynamic manufacturing
networks

stochastic block model

[58] 2018 production characterization in-degree, out-degree, in-strength,
out-strength, betweenness, cluster-
ing, pagerank

[59] 2018 generation of material flow net-
works

random walks

[60] 2019 link prediction stochastic block model
[61] 2019 production characterization, bottle-

neck detection
flow network

[62] 2019 bottleneck detection combined
[45] 2020 material flow network prediction stochastic block model
[63] 2021 routing flexibility path-transfer entropy

team as shown in Fig. 3.2b, yet other authors have made noteworthy contributions.
Vrabič and Butala pioneered the field back in 2012 while Omar and Plapper’s work



3.4. State of the art 13

has expanded it in recent years. Finally, it is noteworthy that most of the relevant
literature appeared in CIRP associated journals, as shown in Fig. 3.2c, indicating
industrial interest.
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FIGURE 3.2: General observations drawn from the records included
in the literature review. (A) Number of records by year of publica-
tion. (B) Number of records by author last name. (C) Distribution of

records by journal.

3.4 State of the art

While complex networks had been used to describe a wide range of natural, so-
cial and engineered phenomena, it was Vrabič et. al. who first demonstrated the
potential of this mathematical construct for manufacturing [47]. In their work, the
authors identified “work systems” as nodes and explained that “work pieces” travel
between them while being transformed into products. They explained that complex
networks offer an objective view of the manufacturing system ignoring layout or
functional similarities between nodes. They also pointed out that the data required
could be easily extracted from the enterprise manufacturing execution system. In
addition, this work provided a number of characteristics typical of a manufacturing
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complex network. The authors described the graph both as directed, indicating the
direction of the material flow, as well as weighted, i.e. accounting for the number of
“work pieces” transferred between “work systems”. In fact, when furthering their
research [48], Vrabič et. al. provided the mathematical formalism G = (V,E,w)

for manufacturing networks. In this formalism, V were the network nodes (i.e. the
“work systems” or workstations), E were the connections among nodes created by
the flow of materials and w was the weight of said connections, i.e. the number of
transactions between “work systems”.

The research of complex networks in manufacturing was soon extended by other
scientists. Beber and Becker [49] focused on the analysis and characterization of
manufacturing systems modeled as binary directed graphs G = (V,E). They ex-
plained that the binary representation of the network was sufficient to describe the
topology of the system. Among the advantages of complex networks in manufactur-
ing, they cited the easy automation of the model generation and facilitated modeling
process. However, they also pointed out that modeling manufacturing systems as
complex networks suffers from a high level of abstraction.

Becker et. al. [50] were the first to apply traditional complex network topology
metrics with the aim to characterize a manufacturing system in terms of Operations
Research. The objective of their research was clear: they aimed “to investigate the
relation between structure and performance”. Thus, they studied binary, directed
manufacturing networks using topological metrics such as degree, betweenness cen-
trality and clustering coefficient as well as using traditional performance figures
such as throughput time, lateness and work in progress. The authors found that
manufacturing networks displayed distinct topological values when compared to
equivalent random networks. In addition, they determined that the relation between
topological metrics and performance indicators is not linear. The authors explained
that their work could be used in place of classical methods such as computationally
expensive simulation studies.

Blunck et. al. [51] proposed the use of complex network topological metrics as a
mean to identify workstations that correspond to production bottlenecks. They com-
pared the results of metrics such as degree, betweenness centrality and PageRank to
the existing bottleneck identification heuristic approach, considering two through-
put enhancement scenarios: capacity increase and batching. Under capacity increase
alleviation, the bottleneck heuristics approach outperformed complex network topo-
logical metrics. Under batching alleviation, the bottleneck heuristic produces similar
results to degree centrality. While the results of this work were underwhelming, a
very important conclusion was drawn by the authors: complex network topologi-
cal metrics cannot be universally applied. In fact, attention should be payed to the
underlying flow type of the network as explained by Borgatti [38]. Notably, this is
the first record in the research field to use Borgatti’s argument as an explanation for
poor results when compared to classical domain methods. Previously, Becker et. al.
[50] had only indicated that the shortest paths followed by betweenness centrality
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may not accurately describe a manufacturing network.
Ai-ming et. al. [52] proposed a node ranking method to evaluate quality control

networks. Their objective was to guide quality management activities which they
claimed are often carried out blindly. In their quality control network G = (V,E,w),
the nodes V are workstations, the directed edges E represent material flows of un-
qualified batches and, the edges weightw denotes the number of unqualified batches
traversing said edge. They then developed a node ranking algorithm based on
PageRank and used it in combination with hierarchical clustering. This methodol-
ogy allowed them to determine the workstations that should be prioritized in terms
of quality control and improvement efforts.

Becker and Wagner [53] hypothesized that, in the quest to equip manufacturing
systems with the necessary technology to be converted into cyber-physical produc-
tion systems, some machines should be prioritized given their position in the pro-
duction system. Thus, the authors aimed at identifying these key workstations from
the complex network representation of the manufacturing system. They used sev-
eral traditional topological metrics (degree, betweenness, closeness and eigenvector
centrality) in addition to structural hole metrics (effective size, efficiency, constraint
and hierarchy) and combined them using fuzzy analytic hierarchy process (FAHP)
and TOPSIS. Their results showed that PageRank does a better job than the proposed
combined metric. Just like Blunck et. al. [51], Becker and Wagner claimed that this
could be explained by Borgatti’s assertion [38], meaning that their proposed metric
does not accurately represent the underlying flow of manufacturing networks.

Wagner and Becker [54] is the first recorded instance where a manufacturing
system representation as a complex network is deemed a “material flow network”.
The authors specifically describe the components of these networks: nodes represent
workstations and directed, weighted edges are the material flow among nodes. In
their work, Wagner and Becker [54] aimed to identify clusters of workstations under
the assumption that nodes within a cluster have similar characteristics or functions,
similarly to [47]. For this purpose, they constructed manufacturing networks based
on data corresponding to different time slots varying between 1 week and 3 months.
They found that the statistical properties of the cluster structure in a production
network depends on the selected time slot. The authors concluded that short time
slots should be used when the objective is to identify autonomous acting clusters.

Wagner and Becker [55] noticed that the necessary data to build material flow
networks and conduct complex network analysis is limited, thus hindering the ad-
vancement of this research field. They proposed a random walk based method to
generate material flow networks that share similar structure and properties with
original manufacturing networks. The procedure involves the generation of an undi-
rected, unweighted network using either the Barabási-Albert (BA) model [69] or the
Directed Configuration Model [70]. Then random walks are taken on these networks
where the path length is chosen between 1 and |V |with uniform probability and the
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start and end nodes of the walk are chosen at random. Wagner and Becker [55] eval-
uated the generated networks considering three variables: path length, number of
random walks, and network topology. They concluded that shorter paths lengths
better match the properties of the original manufacturing network. They also ob-
served that the number of random walks has a greater effect on short path lengths,
and thus should be chosen large enough. Finally, their results indicated that BA
was better suited than Configuration Model for their objective. Later on, the authors
furthered their work in order to allow for the generation of artificial material flow
networks with specified cluster structures [59].

Chankov et. al. [56] studied the use of synchronizability of networks, a well
studied field, in material flow networks. This metric is calculated as the ratio be-
tween the largest and the first non-zero eigenvalues of the Laplacian matrix, where
the Laplacian matrix is obtained by subtracting the adjacency matrix from the de-
gree matrix. The authors found that synchronizability is dependent on connectivity
and the occurrence of linear elements (i.e. portions of production sequences with
no alternative paths). It should be noted that this research differs from others in
this literature review. This is because the synchronizability metric is well studied for
undirected graphs and its use in directed networks is still unclear. Thus, the directed
material flow network is transformed into an undirected graph in Chankov et. al.’s
work [56]. It is unclear from the study what are the effects, if any, of this choice of
representation.

Funke and Becker [57] evaluated the use of stochastic block model (SBM) and
degree-corrected stochastic block model (DC-SBM) in manufacturing networks cre-
ated with production data sliced weekly and monthly. The objectives were 1) to
evaluate if the inferred internal structure of the network is consistent over time and,
2) whether it is possible to distinguish a real material flow network between a num-
ber of randomly generated networks with similar properties. The internal structure
is found to be consistent over time. Furthermore, longer time scales have less fluc-
tuations and thus, the internal structure is more easily captured. Finally, the authors
found that DC-SBM can definitely identify true material flow networks, outperform-
ing the simple SBM.

Omar et. al. [58] studied complex network topological metrics in the context of
manufacturing aiming to provide the appropriate interpretation in terms of Oper-
ations Research. In a way, Omar et. al. furthered the work of Becker et. al. [50].
The authors interpreted the in-degree as the number of incoming links directly con-
nected to a specific workstation. They then concluded that it is simply the number
of upstream suppliers. The out-degree was interpreted as the number of outgoing
links, and thus measures the number of downstream processes of a specific work-
station. In this regard, they disagreed with Kim et. al. [64] and their analysis of
supply chain networks where the in- and out-degrees were defined as a measure of
“difficulty” in managing in-coming flows and customer needs respectively. Instead,
Omar et. al. [58] proposed the use of the in- and out-strengths as a measure of the
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supply and demand loads on a workstation [58]. Furthermore, they explained that
betweenness centrality determines structurally central workstations assuming these
stand on the geodesic path connecting pairs of workstations. Yet they pointed out
that shortest paths do not necessarily correspond to manufacturing paths, in agree-
ment with Becker et. al. [50]. They stressed that, for this reason, the underlying
assumptions of betweenness centrality may not hold for manufacturing networks.
The authors also evaluated the interpretation of the clustering coefficient and agreed
with previous research where the clustering coefficient was interpreted as a metric
of interconnectedness [50, 58]. Finally, Omar et. al. analyzed the PageRank algo-
rithm [58]. They explained that this algorithm is a probabilistic method that ranks
workstations by importance based on effective processing paths. However, it should
be noted that, in reality, the PageRank algorithm follows walks and not paths. The
authors claimed that “the node importance [obtained from PageRank] measures the
workload build-up of a node while accounting for inter-dependencies among pairs
of nodes”. While they suggested it could be used to determine bottlenecks, no indi-
cations as to how were provided.

Funke and Becker [60] proposed a link prediction method based on DC-SBM
for manufacturing networks. The objective was to advice production planning and
production control in situations where existing methods fail due to lack of data. The
proposed link predictor based on DC-SBM is used in ensemble learning to score
new links based on the material flow networks generated for the past two weeks of
data. The authors demonstrated that their method outperforms other existing link
prediction methods.

Omar and Plapper [61] proposed the use of the mathematical formalism of “flow
networks” for manufacturing systems, where “flow networks” should not be mis-
taken for the “material flow networks” defined by Funke and Becker [45]. The for-
mer are used to solve the optimization problem known as “maximum flow” under
two assumptions: steady state flow of materials and zero intermediate inventory
levels. The authors then obtain the theoretical maximum production rate and iden-
tify the bottleneck workstation based on capacity constraints.

Zhu et. al. [62] introduced a metric called “bottleneck degree index” to determine
the production bottlenecks. It should be noted that the complex network constructed
for this purpose has process operations as nodes and the relationship between nodes
as edges. It is unclear what this relationship is. The authors stated that associations
of processes, materials, machines and tools between nodes account as a relationship.
It can then be process sequence, the impact of an operation on upstream and/or
downstream processes or, other factors. The proposed “bottleneck degree index”
is calculated, among other things, from a combination of the degree, closeness and
betweenness centralities and, the clustering coefficient.

Funke and Becker [45] used the degree-corrected stochastic block model (SBM)
to analyze “material flow networks” and predict changes in material flow. Their
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research focused on determining the appropriate data temporal aggregation to ac-
curately represent a production system using SBM. They stressed that the “material
flow networks” under study correspond to “the material flow of a single or a selec-
tion of multiple products or components within plants”. This is noteworthy because
similar assertions were made by Omar and Plapper [61] where they stressed that cer-
tain methods should be “constrained to a single product family of a specific product
family mix and [results] are likely to differ from the values obtained for a different
product family or mix”.

Finally, Omar and Plapper [63] proposed the use of an entropy based metric
called path-transfer entropy centrality to determine routing flexibility in manufac-
turing networks. Specifically, the authors used the probability distribution needed
for the path-transfer entropy metric to evaluate manufacturing networks in terms of
routing flexibility. The authors explain that the probability distribution of the binary
representation of the network informs about routing flexibility potential while that
of the weighted network is related to how much said flexibility is exercised in prac-
tice. In fact, the use of the binary, directed representation of manufacturing networks
for structural analysis is shared by other authors [49, 50].

3.5 Discussion and outlook

The research field of manufacturing systems modeled as complex networks is rela-
tively new, spanning only a decade. The number of works is limited mostly due to
the difficulty in securing the necessary proprietary data, as noted by [55], but also
due to the limited number of research groups involved. Nonetheless, it has fueled
the interest of scientists and practitioners to tackle specific issues related to material
flow networks, as shown in Table. 3.4.

TABLE 3.4: Classification of the literature regarding manufacturing
systems modeled as complex networks.

Category Sub-category Specific Issues

Production

Characterization

Topological characterization
Key machine identification
Quality assessment
Routing flexibility
Clustering & autonomous work systems

Scheduling & forecasting Synchronizability
Link prediction

Troubleshooting Abnormal flow detection
Bottleneck identification

Artificial material
flow networks

The majority of the works are focused on the characterization of production net-
works. Yet, the specific issues tackled range from topological characterization [49,
50, 58] to identification of clusters [54] or key machines [53], quality assessment [52]
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or routing flexibility [63]. Regardless of how disparate these works are, they share
unique concerns:

• how to best model manufacturing systems as complex networks?

• which metrics are appropriate considering the underlying flow network?

• what is the correct interpretation of these metrics is terms of Operations Re-
search?

Some works explored aspects of production scheduling and forecasting, and thus
focused on network synchronizability [56] and link prediction [60]. Yet more re-
search is needed to consolidate their findings. Furthermore, it would be interesting
to evaluate how characteristics of the production line, such as routing flexibility [63],
could inform scheduling and forecasting.

Another set of records has been dedicated to production troubleshooting. In
particular, bottleneck identification [51, 61, 62] has raised interest because of the
potential to simplify the task by avoiding computationally expensive simulations.
Yet the usefulness of the many proposed metrics have yet to be confirmed by other
researchers.

Finally, some research focused on the issue precluding the field from advancing:
the lack of data. In this sense, mechanisms were proposed in order to generate ar-
tificial material flow networks sharing similar structure and properties to real ones
[55, 59]. Yet this field is nascent and in need for further development. Furthermore,
it suffers from the very same problem it is trying to solve: real material flow net-
works are necessary to evaluate the performance of algorithms designed to generate
artificial ones.
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4 Aims and Scope

4.1 Problem definition

The use of complex networks to describe and evaluate manufacturing systems con-
stitutes a nascent research field. As shown by the systematic literature review in
Chapter 3, there are at this time a limited number of works tackling a vast num-
ber of issues. Yet, some prevalent areas of open research have interested multiple
scientists. These are presented hereafter.

Mismatch between underlying network flow and centrality metrics: Several au-
thors recognized that blindly utilizing complex network metrics for manufacturing
networks does not produce the desired results [50, 51, 53, 58, 63]. In fact, when
Alderson advocated the use of complex networks in the field of Operations Research
[36], he warned the scientific community to consider the underlying assumptions of
the problem formulation and solution. It thus remains that clarification regarding
the circumstances in which each metric is applicable is needed.

Appropriate interpretation of complex network metrics in the context of manufac-
turing: Following the problem described above, the results obtained from utilizing
complex network metrics for manufacturing networks requires the appropriate in-
terpretation. This interpretation is domain specific, and thus cannot be borrowed
from other more developed research fields such as social network analysis. Taking
into account the research up to date and that of related fields such as supply chain
networks, the interpretation of complex network metrics in the context of manufac-
turing flow networks requires further research.

4.2 Objectives

Following the problem definition introduced in the previous Section, this work aims
to satisfy the following objectives:

1. Clarify the areas of applicability of popular existing complex network metrics
in the context of manufacturing networks.

2. Propose and exemplify the use of other existing complex network metrics whose
underlying assumptions better represent manufacturing networks.
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3. Consolidate the appropriate interpretation of these metrics within Operations
Research, and specifically in the domain of complex networks representing
manufacturing systems.

4.3 Structure of this work

The structure of this thesis is summarized in Fig. 4.1. After a general introduction to
the European manufacturing sector and Industry 4.0 in Chapter 1, preliminary com-
plex networks concepts are introduced in Chapter 2. A systematic literature review
of the state-of-the-art of complex networks in manufacturing follows in Chapter 3.
Then the aims and scope of this work are presented here, in Chapter 4. The data used
in this work and the methodology to construct the appropriate complex network is
detailed in Chapter 5, followed by five self-contained Chapters.

12. Conclusion

13. Future Work

6. Automated Product 
Family Selection

7. Traditional 
Topological Metrics

8. PageRank 9. Path Transfer Entropy 10. Flow Networks

11. Discussion

1. Introduction

2. Preliminaries

3. Literature Review

5. Methodology

4. Aims and Scope

FIGURE 4.1: Structure of the thesis.

In Chapter 6, the procedure to obtain product families automatically is detailed.
Chapter 7 describes the use of traditional complex network topological metrics in
the context of manufacturing and provides the appropriate interpretation in terms of
Operations Research. Chapter 8 explores the application of the PageRank algorithm
in manufacturing, highlighting usefulness and shortcomings. Chapter 9 introduces
the use of path-transfer entropy in order to determine the potential for routing flex-
ibility in manufacturing production networks, as well as the extent to which said
flexibility is exercised. Chapter 10 discusses the use of flow networks to determine
the theoretical maximum production rate that the manufacturing production net-
work can attain under the assumptions of steady state flow and zero intermediate
inventory levels.
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Chapters 6 to 10 are followed by three closing Chapters. A general discussion on
the suitability, interpretation and shortcomings of complex network metrics in man-
ufacturing systems is presented in Chapter 11. Conclusions are listed in Chapter 12.
Finally, avenues for future research are presented in Chapter 13.
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5 Methodology

5.1 The dataset

For this work, a dataset corresponding to a Bosch production line is used. The data
is hosted by Kaggle and was made available for the “Bosch Production Line Perfo-
mance Competition”[71]. This dataset was deliberately chosen as it is freely avail-
able and thus enables reproducibility and further development by the scientific com-
munity. Furthermore, it is an excellent example of the data produced by Industry 4.0
production lines.

The available data is anonymized. However, some general information regard-
ing the dataset is available. As indicated in Fig. 5.1, the data corresponds to all
manufactured parts during an unspecified period of time. The manufacturing facil-
ity consists of 4 manufacturing lines and 52 work stations. Furthermore, the data is
stored in separate files corresponding to their type:

• time-stamp data recorded by multiple sensors on each work station,

• numeric data measured by each of those sensors , and

• network communication failure data.

FIGURE 5.1: The Bosch manufacturing dataset is composed of time-
stamp data corresponding to manufactured items in 4 manufacturing
lines composed of 52 workstations for an unspecified period of time.
In addition, anonymized numeric sensor data and network commu-

nication failure data is available.
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5.2 From raw data to a complex network

In this Section, the step-wise procedure to generate a complex network from time-
stamp raw data is presented. A summary of said procedure is shown in Fig. 5.2.

raw data
train_date.csv

manufacturing paths

low weight edges removal

complex network

paths & edges recalculation

nodes, edges & weights

FIGURE 5.2: Step-wise methodology to obtain sets of nodes, edges
and weights from raw time-stamp data

5.2.1 Raw data

For this work only the data contained in the “train_date.csv” file is relevant. An
extract of said file is shown below:

1 Id,L0_S0_D1,L0_S0_D3,L0_S0_D5,L0_S0_D7,L0_S0_D9,L0_S0_D11,L0_S0...

2 4,82.24,82.24,82.24,82.24,82.24,82.24,82.24,82.24,82.24,82.24,8...

3 6, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

4 7,1618.7,1618.7,1618.7,1618.7,1618.7,1618.7,1618.7,1618.7,1618....

5 9,1149.2,1149.2,1149.2,1149.2,1149.2,1149.2,1149.2,1149.2,1149....

6 11,602.64,602.64,602.64,602.64,602.64,602.64,602.64,602.64,602....

7 13,1331.66,1331.66,1331.66,1331.66,1331.66,1331.66,1331.66,1331...

8 14, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,...

9 ...

The first line contains column headers, where Id represent the manufactured
item ID and Lx_Sy_Dz represents a time-stamp measurement registered in line x,
workstation y, and feature z associated with a sensor measurement saved in the
numerical features data file. The subsequent lines contain observations for individ-
ual manufactured items. Missing values indicate that the item was not processed
at the specific workstation. In total, the file contains 1156 distinctive time features
organized in columns, and close to 1.2 million observations (organized in rows) cor-
responding to manufactured items.

A full exploratory analysis was conducted on the raw data to gain further in-
sights. The interested reader can find those results reported in Appendix A.
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5.2.2 Manufacturing paths

A manufacturing path is understood as a sequence of visited workstations in chrono-
logical order. To obtain the manufacturing paths from the raw data shown in the
previous Section, the visited workstations y were identified for each manufactured
item. These visited workstations were ordered chronologically according to the
value of the anonymized time-stamp. Furthermore, given that multiple items follow
the same path, only unique paths and their frequency were stored. As an example,
a small subset of manufacturing paths are reproduced along with their frequency in
Table 5.1.

TABLE 5.1: A small subset of manufacturing paths and their fre-
quency.

Frequency Path

28137 {v24, v26, v29, v30, v33, v34, v36, v37}
8322 {v24, v26, v29, v30, v34, v33, v36, v37}
2370 {v0, v1, v2, v4, v6, v8, v9, v29, v30, v33, v34, v36, v37}
2287 {v0, v1, v2, v5, v7, v8, v9, v29, v30, v33, v34, v36, v37}
1005 {v12, v13, v15, v17, v18, v20, v22, v29, v30, v33, v34, v36, v37}

5.2.3 Nodes, edges & weights

From the manufacturing paths obtained in the previous Section, one can trivially
calculate the corresponding set of edges E, set of nodes V and the edges weights
wij :

• The set of nodes V corresponds to the workstations in the manufacturing net-
work. The union of all the path sets P gives rise to V .

• Each path P = {v0, v1, ..., vi, ..., vn} allows the identification of a set of edges
EP = {(v0, v1), ..., (vi−1, vi), (vi, vi+1), ..., (vn−1, vn)}. The union of all the EP

gives rise to the set of edges E.

• Finally, for each edge (vi, vj), the edges weight wij is the frequency with which
said edge appeared in the list of manufacturing paths.

This procedure identifies 52 nodes and 635 edges.

5.2.4 Removal of noisy data points

The removal of noisy data, corresponds to two steps in Fig. 5.2. The first step entails
the analysis of the set E. This procedure identifies a number of edges with very low
weight. Low weight edges are likely the result of noisy data recording. An arbitrary
weight threshold of 0.1% of the total manufactured items was chosen to filter out
“noisy” edges.
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Once the clean set of edges was identified, the next step required the recalcu-
lation of both manufacturing paths and edges weights. The manufacturing paths
were cleaned by removing those containing edges that were filtered out. The re-
sulting clean paths subset contains 95.77% of the original manufacturing paths. The
weight of the edges was recalculated from the clean paths dataset in the same fash-
ion described earlier. The result is a set of 307 edges which visit only 50 out of 52
original nodes.

5.2.5 Complex network

The step-wise procedure described in the previous Sections produces a complex net-
work comprised of 50 nodes, 307 edges and their corresponding weights. The full
manufacturing network is plotted in Fig. 5.3. The color of the nodes follows the
manufacturing line colors in Fig. 5.1.
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FIGURE 5.3: Complex network produced from the manufacturing
raw time-stamp data. The color of the nodes follows the manufac-

turing line colors in Fig. 5.1.
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5.3 Code

All the code used in this work was developed in Python 3 and is available in several
online repositories on GitHub. Readers are encouraged to download and re-utilize
it as needed, as long as the code is appropriately cited.

• The code for this Chapter can be found in [72]. Access request is necessary at
this time. To reproduce the complex network presented in this Chapter, the
reader should run the from_timestamp_to_paths.py script followed by
path_data_cleaning.py.

• The code for Chapter 6 is available in [73].

• To reproduce the results presented in Chapter 7, the reader is encouraged to
run the script traditional_topological_metrics.py in [72].

• The results presented in Chapter 8 can be reproduced by running the script
main_pagerank.py in [72].

• The code used in Chapter 9 is available in [74].

• The code necessary to reproduce the results in Chapter 10 is available in the
flow_networks directory in [72].





31

6 Automated Product Family
Selection

6.1 Introduction

In value stream mapping (VSM), product families are determined using the principle
of similarity. According to this principle, products with similar process sequences
are grouped into the same family, i.e.

“a product family [...] includes all products which are produced in simi-
lar production steps and on mostly identical machines” [75].

The procedure typically entails the visual identification of items that belong to a
product family by determining the production steps they undergo and the machines
in which they are processed. In the era of Industry 4.0, which is characterized by
at scale production in automated factories and massive data generation, this is not
ideal. In fact, this procedure is prone to human error. Thus, in this Chapter, an
algorithm that conducts product family identification automatically without human
intervention is developed.

6.2 High-level procedure for product family selection

In order to automate the product family selection process, the steps involved need
to be identified. The starting data corresponds to the clean manufacturing paths
obtained in Chapter 5. Note that each manufacturing path provides a set of work-
stations in which the item was processed in chronological order. Following the defi-
nition in [75], the high-level procedure is as follows:

1. Since the definition of product family does not constrain the manufacturing
process to always follow the same chronological order, “path sets” are con-
sidered instead of “paths”. A “path set” is simply the workstations visited
ignoring the chronological order.

2. In order to find the biggest product families, the path sets should be ordered by
decreasing number of frequency. Note that the frequency counts the number
of items that have this exact path set.

3. Determine family sets or bases, i.e. a set of workstations that are common for a
specific family.
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4. Allocate path sets to family sets using a similarity metric.

6.3 Jaccard similarity of sets

Step 4 in the previous Section requires the allocation of each path set Ps to a family
set Fs. Given the definition of product family, Ps must be a subset of or equal to Fs,
i.e. Ps ⊆ Fs. In such scenario, the Jaccard similarity of sets is an appropriate similarity
metric.

Definition: Given two sets S and T , the Jaccard similarity is J(S, T ) = |S∩T |/|S∪
T |, i.e. the ratio of the size of the intersection of S and T to the size of their union.

As a result, in order to allocate path sets to family sets, an arbitrary similarity
threshold must be decided upon. In Section 6.6, a heuristic approach is proposed.

6.4 Automating Product Family Selection

The entire automation procedure is summarized in Fig. 6.1. Steps 1 and 2 in Sec-
tion 6.2 are easily automated. The issue arises when a family set or base has to be
determined (Step 3).

clean manufacturing paths
(with frequency)

paths sets
(with frequency)

order path sets 
by decreasing frequency

initiate variables
 B =    , F = [], C = 0, U = []

loop through ordered 
list of path sets

is B =    ?
noyes

B = X  , F = [X  ], C = C  0 0 0 J(X , B) > J  ?thi

no yes

add (C  , X ) to UX ii

J(X , B    ) > J  
for all X  in F?

thj

j

new

no

yes

B = B    , F += [X ], C += C i Xinew

set B    = B U Xnew i

FIGURE 6.1: Procedure to obtained one product family in an auto-
mated fashion.
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In traditional VSM, the family set was determined as the union of the visited
workstations of family items. Items were grouped into families though a visual,
manual, error prone and labor intensive process. However, a key component was
the engineer’s a priori knowledge regarding the production line and the manufac-
tured items. The developed process does not have this a priori knowledge. Thus,
to automate the product family selection, a family set is initialized as an empty set.
Workstations are added to it as each path set is evaluated according to the similarity
criteria described in the previous Section. The procedure, summarized in Fig. 6.1, is
described as follows.

Starting with an ordered list L of path sets Xi in decreasing number of counts CXi ,
where L = [(CXi , Xi)]:

4. Initialize the following variables:

• an empty base set B = ∅,

• an empty list of family members F = [],

• a family count of zero C = 0,

• a list to save non-family path sets U = [].

5. Loop through the ordered list of path sets Xi (ordered in decreasing value of
counts):

(a) If B = ∅,

• set B = B ∪ X0 = X0, i.e. add the workstations of the first path set
X0 (the one with the highest count) to the base set B;

• set F ← X0, i.e. add the X0 path set to the list of family members F .

• set C = C + CX0 , i.e. add its count to the family count.

(b) If B 6= ∅,

i. verify if J(Xi, B) ≥ Jth. If the answer is yes,

ii. verify if, given a new family base Bnew = B ∪ Xi, the following in-
equality J(Xj , Bnew) ≥ Jth holds for all Xj ∈ F . If the answer is
yes,

iii. set Bnew = B ∪Xi, add Xi to F and CXi to C.

However, if either condition (i) or (ii) is not met, Step (iii) is ignored. In
that case, one must add the pair (CXi , Xi) to U .

The pseudo-code for this procedure is shown in Algorithm 1. The corresponding
Python 3 code is available in GitHub [73].
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Algorithm 1 Find product family from path sets list

1: function PRODUCTFAMILY(L, Jth)
2: SORT(L, reverse = True) . Sort L in reverse order
3: for (CXi , Xi) in L do
4: if B = ∅ then
5: B ← B ∪Xi

6: F = APPEND(Xi)
7: C = C + CXi

8: else
9: J = |B ∩Xi|/|B ∪Xi| . J = J(B,Xi) is Jaccard Similarity

10: if J ≥ Jth then
11: Bnew = B ∪Xi

12: if J(Bnew, fi) ≥ Jth∀fi ∈ F then
13: B ← Bnew

14: F = APPEND(Xi)
15: C = C + CXi

16: else
17: U = APPEND((CXi , Xi))
18: end if
19: else
20: U = APPEND((CXi , Xi))
21: end if
22: end if
23: end for
24: return B,F,C, U
25: end function

6.5 Resulting product families

The iterative application of the procedure described in Algorithm 1, produces the
results presented in Table 6.1 and Fig 6.2. In this case, a Jaccard similarity thresh-
old Jth = 0.63 was used. This number was determined using a heuristic approach
described in Section 6.6.

TABLE 6.1: Product families identified in the clean manufacturing
paths from the Bosch Production Line data using the automated fam-
ily search procedure described in Algorithm 1 with a threshold of
Jth = 0.63. In this table, the base set elements are indicated using

i for clarity. Note that i ≡ vi.

Family Base set Base size Count %

F1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 29, 30, 33, 34, 35,
36, 37 20 528657 46.66

F2 24, 25, 26, 27, 29, 30, 33, 34, 35, 36, 37 11 245225 21.64

F3
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 29, 30, 31,
33, 34, 35, 36, 37 20 184986 16.33

Total items accounted for 958868 84.62
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FIGURE 6.2: Graphs corresponding to the product families found au-
tomatically. The color of the nodes corresponds to the production line
colors in Fig. 5.1. A source and a sink nodes have been added to facili-

tate visualization.

6.6 Heuristic study to determine the best Jth

In order to determine the optimal Jaccard similarity threshold value of Jth = 0.63

reported earlier, a brute force method was applied.
Firstly, an arbitrary Jaccard threshold Jth = 0.7 was used to determine the three

biggest product families. For each family, the path set family member with the high-
est count was found. These are reported in Table 6.2.

Then, these high count path sets were used as a starting base (instead of the
empty set) for family searches using Jth values ranging from 0.5 to 0.9. For each
Jth considered, the fraction of manufactured items contained in each family was
recorded. The optimal Jth was chosen graphically, coinciding with the cumulative
curve (F1+F2+F3) inflection point. The fraction of items vs. threshold value curves
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TABLE 6.2: Path sets with highest count for each product family. In
this table, the path set elements are indicated using i for clarity. Note

that i ≡ vi.

F Path set with highest count Count

F1 {0, 1, 2, 5, 6, 8, 11, 29, 30, 33, 34, 36, 37} 10569
F2 {24, 26, 29, 30, 33, 34, 36, 37} 58375
F3 {12, 13, 15, 17, 18, 20, 23, 29, 30, 33, 34, 36, 37} 3866

for each family as well as the cumulative curve are shown in Figure 6.3.
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FIGURE 6.3: Results from the heuristic approach to Jaccard threshold
determination for product family selection.

In order to interpret the results in Figure 6.3, the accompanying Tables 6.3, 6.4
and 6.5 are of help. It can be observed that at very high threshold values, Jth = 0.9,
the family set is the starting base. As the threshold is decreased, i.e. the require-
ment of similarity is relaxed, the family set adds new workstations and the family
count increases. From Figure 6.3, it can be concluded that as the similarity require-
ment is relaxed and we approach a threshold of Jth = 0.63, the total number of
items accounted for (black line) increases steadily. At Jth = 0.63 there is an inflec-
tion point, and further relaxation of the threshold produces families that add new
workstations but do not incorporate an important fraction of items. This means that
at low threshold values, the obtained families deviate from the definition of product
family in Value Stream Mapping. Thus, further relaxation of the threshold below
Jth = 0.63 should be avoided.
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TABLE 6.3: Jaccard similarity threshold analysis for family F1. In this
table, the base set elements are indicated using i for clarity. Note that

i ≡ vi.

Jth Base set Fraction

0.5 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38} 0.55
0.55 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38} 0.53
0.6 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 27, 29, 30, 33, 34, 35, 36, 37} 0.5
0.63 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 29, 30, 33, 34, 35, 36, 37} 0.47
0.65 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 29, 30, 33, 34, 35, 36, 37} 0.25
0.68 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 26, 29, 30, 33, 34, 36, 37} 0.13
0.7 {0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 26, 29, 30, 33, 34, 36, 37} 0.12
0.75 {0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 26, 29, 30, 33, 34, 36, 37} 0.06
0.8 {0, 1, 2, 5, 6, 7, 8, 9, 11, 26, 29, 30, 33, 34, 36, 37} 0.04
0.9 {0, 1, 2, 5, 6, 8, 11, 26, 29, 30, 33, 34, 36, 37} 0.01

TABLE 6.4: Jaccard similarity threshold analysis for family F2. In this
table, the base set elements are indicated using i for clarity. Note that

i ≡ vi.

Jth Base set Fraction

0.5 {33, 34, 35, 36, 37, 24, 25, 26, 27, 28, 29, 30} 0.22
0.55 {24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37} 0.22
0.6 {33, 34, 35, 36, 37, 24, 25, 26, 27, 29, 30} 0.22
0.63 {33, 34, 35, 36, 37, 24, 25, 26, 27, 29, 30} 0.22
0.65 {33, 34, 35, 36, 37, 24, 25, 26, 29, 30} 0.16
0.68 {33, 34, 35, 36, 37, 24, 25, 26, 29, 30} 0.16
0.7 {33, 34, 35, 36, 37, 24, 25, 26, 29, 30} 0.16
0.75 {33, 34, 35, 36, 37, 24, 26, 29, 30} 0.11
0.8 {33, 34, 36, 37, 24, 26, 29, 30} 0.06
0.9 {33, 34, 36, 37, 24, 26, 29, 30} 0.05

TABLE 6.5: Jaccard similarity threshold analysis for family F3. In this
table, the base set elements are indicated using i for clarity. Note that

i ≡ vi.

Jth Base set Fraction

0.5 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38} 0.19
0.55 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38} 0.18
0.6 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 34, 35, 36, 37} 0.17
0.63 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 29, 30, 31, 33, 34, 35, 36, 37} 0.16
0.65 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 29, 30, 31, 33, 34, 35, 36, 37} 0.09
0.68 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 29, 30, 31, 33, 34, 35, 36, 37} 0.06
0.7 {12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 29, 30, 31, 33, 34, 35, 36, 37} 0.06
0.75 {12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 29, 30, 31, 33, 34, 36, 37} 0.03
0.8 {12, 13, 15, 17, 18, 19, 20, 21, 23, 29, 30, 31, 33, 34, 36, 37} 0.01
0.9 {12, 13, 15, 17, 18, 20, 23, 29, 30, 31, 33, 34, 36, 37} 0.004
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6.7 Summary

In this Chapter,

• a simple algorithm to automatically determine product families was presented.

• the Jaccard similarity of sets was proposed to identify product family mem-
bers.

• a heuristic approach was proposed for the definition of the similarity thresh-
old.

• the families obtained respect the definition of product family widely accepted
in VSM that says that “a product family [...] includes all products which are
produced in similar production steps and on mostly identical machines” [75].
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7 Traditional Topological Metrics

7.1 Introduction

The study of complex networks entails the analysis of the network structure, the
characteristics of the flow, the identification of clusters or group of nodes of special
significance, and much more. For these purposes, many metrics have been devel-
oped. While these metrics are used across scientific domains, their interpretation
tends to be domain specific. That is, the analysis of the metric underlying assump-
tions have to be evaluated against the system being abstracted as a complex net-
work. The result of this evaluation should determine the applicability of the metric
in the context under study. If indeed the metric is applicable, its interpretation will
be domain specific.

In this Chapter, a number of traditional structural metrics for complex networks
are discussed. Their application is demonstrated on the Bosch manufacturing net-
work produced following the methodology discussed in Chapter 5. The results are
then compared to other works available in literature. Furthermore, the metrics are
discussed with regards to the Borgatti typology [38] to which they belong to (see
Section 2.3). Thus, the goal of this Chapter is to determine the applicability of tradi-
tional topological metrics in manufacturing networks, as well as their interpretation
in terms of Operations Research.

7.2 Node degree

The node degree ki accounts for the number of direct neighbors of a node. It is
defined for undirected as well as directed graphs.

For an undirected graph, ki is simply the number of nodes j to which i is adja-
cent. The degree ki can be calculated directly from the adjacency matrix:

ki =
∑
j

aij =
∑
j

aji. (7.1)

For directed graphs, the in-degree kin
i and out-degree kout

i are defined. kin
i is the

number of in-going links while kout
i indicates the number of outgoing links. They

can also be calculated using the adjacency matrix:

kin
i =

∑
j

aji (7.2)



40 Chapter 7. Traditional Topological Metrics

kout
i =

∑
j

aij (7.3)

Even though it is seldomnly used, the degree ki of a node in a directed graph can be
calculated as the sum of these two components [76]:

ki = kin
i + kout

i =
∑
j

aji +
∑
j

aij . (7.4)

7.2.1 Application example

The in- and out-degree of all 50 nodes in the Bosch manufacturing network (see
Fig. 5.3) were calculated and are reported in Table 7.1. A number of observations
can be made:

• kin
i values fluctuate between 0 and 17.

• The nodes with the highest kin
i values are v30, v29 and v39 with kin

i = 17, 16 and
14 respectively.

• Nodes v24 and v25 have an in-degree of 0. This is an artifact of the calculation
since these two nodes are the starting workstations of product family F2 (see
Fig. 6.2). Thus, their incoming flow consists of raw materials. The value of
0 then indicates that they are not dependent on the work of any upstream
workstation.

• The starting nodes of product families F1 and F3 do not have an in-degree
value of zero because they form triangles among themselves (see Section 7.6).

• kout
i values fluctuate between 0 and 13.

• The nodes with the highest kout
i are v8 and v9 with kout

i = 13 and 11 respectively.
The third place is shared by 7 different nodes, with a value of 10.

• Node v38 has kout
i = 0. This is because node v38 is an end node (manufacturing

finalizes there). Other end nodes exist and they are evidenced when analyzing
the strength (see Section 7.3). End nodes are not evident from a degree per-
spective on this network because they form triangles among themselves (see
Section 7.6).

7.2.2 Interpretation

As explained in the literature review presented in Chapter 3, a number of authors
have demonstrated the use of the degree in manufacturing networks [50, 51, 53, 58,
62]. For example, Becker et. al. [50] explained that in a manufacturing network ab-
stracted as a directed graph, the in-degree indicates the number of upstream work-
stations that vi is directly connected to. Equivalently, the out-degree specifies the
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TABLE 7.1: Results obtained from calculating the in- and out-degree,
the in- and out-strength, the betweenness centrality and the clus-
tering coefficient of the Bosch manufacturing network reported in

Fig. 5.3

vi kin
i kout

i sin
i /tm sout

i /tm CB(vi) CD
C (vi) C̃D

C (vi)

0 3 8 0.18 0.57 1.0 0.28 0.0162
1 3 10 0.41 0.57 1.25 0.29 0.0123
2 2 9 0.28 0.29 0.25 0.3 0.0118
3 2 9 0.28 0.28 0.25 0.3 0.0116
4 9 6 0.28 0.28 3.42 0.28 0.0085
5 9 6 0.29 0.29 3.42 0.28 0.0086
6 9 7 0.29 0.29 8.66 0.27 0.0074
7 9 7 0.28 0.28 8.66 0.27 0.0072
8 7 13 0.57 0.57 46.27 0.19 0.0078
9 9 11 0.19 0.19 66.69 0.16 0.0039

10 9 10 0.19 0.19 33.18 0.17 0.0051
11 9 10 0.19 0.19 33.18 0.17 0.0051
12 3 5 0.05 0.2 1.0 0.28 0.0094
13 3 5 0.15 0.2 1.0 0.28 0.0101
14 2 7 0.1 0.1 11.36 0.21 0.0046
15 2 7 0.1 0.1 11.36 0.21 0.0047
16 9 6 0.1 0.1 20.38 0.23 0.0019
17 9 6 0.1 0.1 20.38 0.23 0.0019
18 6 6 0.1 0.1 2.0 0.33 0.0028
19 6 6 0.1 0.1 2.0 0.33 0.0028
20 7 10 0.2 0.2 31.1 0.24 0.003
21 7 10 0.07 0.07 53.81 0.16 0.0016
22 7 10 0.07 0.07 53.81 0.16 0.0016
23 7 10 0.06 0.06 53.81 0.16 0.0016
24 0 5 0.0 0.16 0 0.2 0.005
25 0 5 0.0 0.07 0 0.2 0.0035
26 10 3 0.19 0.19 11.0 0.13 0.0038
27 10 3 0.1 0.1 11.0 0.13 0.0028
28 3 2 0.01 0.01 0 0.2 0.0015
29 16 7 0.96 0.96 129.0 0.11 0.0065
30 17 7 0.96 0.96 112.57 0.11 0.0065
31 3 3 0.03 0.03 0 0.44 0.0128
32 3 4 0.02 0.02 0 0.39 0.0064
33 8 7 0.96 0.93 22.33 0.25 0.0228
34 8 6 0.96 0.89 48.33 0.26 0.0259
35 6 3 0.47 0.44 8.0 0.35 0.0297
36 6 3 0.49 0.45 8.0 0.35 0.0281
37 4 5 0.96 0.18 2.17 0.33 0.0371
38 2 0 0.02 0.0 0 0.5 0.0083
39 14 5 0.04 0.04 208.68 0.12 0.0006
40 4 5 0.04 0.04 5.73 0.36 0.0024
41 7 6 0.04 0.04 61.31 0.26 0.0016
43 4 5 0.02 0.02 26.24 0.32 0.0016
44 4 5 0.02 0.02 26.24 0.32 0.0015
45 6 7 0.04 0.04 84.91 0.25 0.0014
47 8 5 0.04 0.04 75.48 0.21 0.0011
48 5 4 0.04 0.04 18.17 0.28 0.0018
49 3 2 0.02 0.02 0 0.5 0.0028
50 3 2 0.02 0.02 0 0.5 0.0029
51 5 4 0.04 0.01 7.61 0.3 0.0016

number of downstream workstations that vi is directly linked to [50]. Blunck et.
al. [51] used the degree centrality as a means to identify bottleneck workstations.
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Their research indicated that under batching alleviation, the traditional bottleneck
heuristic produces similar results to degree centrality. Zhu et. al. [62] also aimed at
determining bottlenecks using a combined metric containing the degree centrality.
Becker and Wagner [53] used degree centrality in combination with other metrics
and TOPSIS with the objective to identify key machines that should be prioritized
when equipping a manufacturing network with cyber-physical systems. However,
they indicated that PageRank was better suited for said task. Finally, Omar et. al.
focused on appropriately interpreting degree centrality in terms of Operations Re-
search, agreeing with Becker et. al. previous interpretation [50].

While it was not discussed in the literature review, the degree centrality has also
interested authors studying supply chain networks, which are structurally related
to manufacturing networks. For example, Kim et. al. [64] linked the in-degree to the
degree of difficulty faced by a node when managing incoming flows. The authors
explained that the in-degree could be regarded as a metric of each node’s opera-
tional load coming from upstream suppliers. The out-degree, on the other hand,
was said to specify not only the size of the adjacent downstream tier, but also the
difficulty faced by each node in managing the needs of customer nodes [64]. How-
ever, it should be pointed out that the node degree does not take actual material flow
between neighboring nodes into consideration. This is because the node degree is
calculated from the adjacency matrix where all existing edges are weighted equally.
Thus, using the node degree as a metric of operational load is misleading [58].

According to Borgatti’s typology of centrality metrics described in Section 2.3
and Table 2.1, the degree centrality corresponds to the “parallel duplication” traf-
fic propagation method. In terms of routes, the degree is associated with “paths”,
“trails” and “walks”. Practitioners should thus exercise caution since the underlying
flow of manufacturing networks corresponds to the traffic type “transfer process”
following “paths”. In this work, it is proposed to limit the use of degree centrality to
the following:

In a manufacturing network where workstations are abstracted as nodes and
directed edges represent material flows, the in-degree is best interpreted as the
number of direct upstream suppliers. Equivalently, the out-degrees is inter-
preted as the number of direct downstream customers. The degree is not a metric
of operational load.

7.3 Node strength

The node strength is the natural generalization of the node degree for the case of
weighted graphs [58, 76]. In this case, it is calculated from the weight matrix. Sim-
ilarly to the node degree, it is defined for both undirected and directed graphs. For
undirected graphs it can be calculated as
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si =
∑
j

wij =
∑
j

wji. (7.5)

For directed graphs, the in- and out-strength are defined as follows

sin
i =

∑
j

wji (7.6)

sout
i =

∑
j

wij . (7.7)

7.3.1 Application example

The in- and out-strength of all 50 nodes in the Bosch manufacturing network shown
in Fig. 5.3 were calculated. In Table 7.1 the normalized values of the in- and out-
strengths are reported. Normalization is done by dividing the value of the in- or
out-strength by the total number of manufactured items tm, i.e. sin

i /tm and sout
i /tm.

Thus, a value close to 1 indicates that all manufactured items have been processed
by node vi.

A number of observations can be made when observing the results reported in
Table 7.1:

• As a general rule, sin
i = sout

i , i.e. material flow conservation laws apply. Thus
the material flowing into a workstation, leaves it after processing. However,
when sin

i − sout
i < 0, node vi acts as a source. In this case, node vi corresponds

to a “starting node” and thus receives raw materials from outside the network.
When sin

i − sout
i > 0, node vi acts as a sink. Thus, it corresponds to a “finishing

node”, manufacturing can conclude there and finished products are delivered
outside the network.

• The highest normalized in-strength value of 0.96 is shared by nodes v29, v30,
v33, v34 and v37. The next highest normalized in-strength value is 0.57 for node
v8 followed by 0.49 for node v36.

• The highest normalized out-strength value is of 0.96 for nodes v29 and v30,
followed by 0.93 (node v33) and 0.89 (node v34).

• From the results reported in the previous two bullet points, it is concluded that
nodes v29 and v30 are intermediate nodes since sin

i = sout
i . On the other hand,

nodes v33, v34 and v37 are finishing nodes, since sin
i − sout

i > 0.

7.3.2 Interpretation

The node strength is a rarely explored metric for manufacturing networks as demon-
strated by the literature review in Chapter 3. Only Omar et. al. proposed its use [58].
In their work, the authors explained that the strength is a measure of the workload
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that a node is subjected to [58]. Differently from the degree, the strength is based
on the weight matrix instead of the adjacency matrix. Thus material flows are ac-
curately accounted. As a result, this metric is a better measure of the workload to
which a workstation is subjected to than the degree. This holds specially true for
networks with highly heterogeneous material flows between sets of nodes, as is the
case of the Bosch manufacturing network.

As the natural generalization of the degree, the strength shares the same under-
lying flow according to Borgatti’s typology (see Section 2.3). Then the traffic prop-
agation type is “parallel duplication” and the route can be that of “paths”, “walks”
or “trails”. Practitioners are advised to use this metric with caution given that its
underlying assumptions do not appropriately match manufacturing networks. The
following interpretation is proposed:

In a manufacturing network where workstations are abstracted as nodes and
directed edges represent material flows, the in-strength is a measure of the in-
coming workload from suppliers. The out-strength is a measure of the difficulty
faced by the node to satisfy downstream customer needs.

In general, sin
i = sout

i . However, when the source of raw materials and the sink
for finished goods are not abstracted as nodes, differences between the in- and
out-strength can be used to identify starting and ending manufacturing nodes.
When sin

i −sout
i < 0, node vi acts as a source, and thus corresponds to a starting

node. When sin
i − sout

i > 0, node vi acts as a sink, and thus manufacturing can
conclude there.

7.4 Betweenness centrality

The betweenness centrality CB , typically attributed to Freeman [41], measures the
fraction of times in which a node vi appears on the geodesic (a.k.a. shortest) path σ
between any two other nodes s and t. It can be determined as follows:

CB(vi) =
∑
s,t∈V

σ(s, t|vi)
σ(s, t)

(7.8)

Its calculation is far from trivial. A matrix based calculation is described in
[77]. Yet, a faster algorithm was developed by Brandes [78] and later extended to
weighted networks [79]. The reader should note that “Algorithm 11” presented in
[79] for weighted networks contains an error. The accumulation part is missing. A
factor of w(v, w) should be applied to σ[v]/σ[w]. The erratum is available in [80].

7.4.1 Application example

The (not-normalized) betweenness centrality for all 50 nodes of the weighted, di-
rected manufacturing network in Fig. 5.3 was calculated. Results are reported in
Table 7.1. A few observations can be drawn:
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• The value of CB(vi) varies between 0 and 208.68.

• The highest values of CB(vi) correspond to 208.68, 129.0 and 112.57 for nodes
v39, v29 and v30 respectively. Note that, nodes v29, v30 and v39 also have the
highest kin

i , as shown earlier in Section 7.2.

• From the graph in Fig. 5.3, it can be observed that these nodes receive incoming
flow from multiple upstream nodes and, after processing, they conduct the
flow to downstream nodes. This is specially evident for node v39, which with
few exceptions, controls the downstream flow. On the other hand, nodes v29
and v30 share this gatekeeper quality with respect to their downstream tier.

7.4.2 Interpretation

Betweenness centrality was originally introduced to quantify the importance of an
individual in a communication network. In this case, importance is understood as an
individual’s potential to control information flows between pairs of other individu-
als [41]. Nodes with high betweenness centrality are typically termed “gatekeepers”,
since they can prevent the flow of information.

Following Borgatti’s typology of centrality metrics described in Section 2.3, the
underlying network flow for betweenness centrality is assumed to follow “geodesics”.
The traffic type is that of a “transfer process”. In this sense, it can be understood why
several authors have evaluated this metric for manufacturing networks [50, 51, 53,
58, 62]. This metric assumes the same traffic propagation method that manufactur-
ing networks follow. However, as noted by several authors [50, 51, 58] “geodesics”
do not accurately describe the route followed by the flow in manufacturing net-
works. “Paths” are considered more appropriate [58, 63].

The literature review presented in Chapter 3 demonstrated that available re-
search differs in the use and interpretation of betweenness centrality. Becker et.
al. described this metric as a measure of a node’s potential to impede or facilitate
material flows [50]. They explained that nodes deemed structurally central stand
between others exerting a high degree of control on the flow of materials. Accord-
ing to [50], these nodes could easily starve their downstream tier. Yet Blunck et.
al. determined that betweenness centrality performed poorly as a metric to iden-
tify bottlenecks [51], contradicting [50]. Yet, Zhu et. al. used a combined metric for
bottleneck identification that is based, among other metrics, on betwenness central-
ity with positive results [62]. Also in a combined metric but with the objective to
identify key machines, Becker and Wagner used betweenness centrality as well but
reported it underperformed compared to PageRank [53].

It follows that researchers have used betweenness centrality with varied de-
grees of success. As explained earlier, following Borgatti’s typology for central-
ity metrics [38], betweenness centrality is applicable to networks whose flow fol-
lows “geodesics” (a.k.a shortest paths) and where the propagation corresponds to
a “transfer process”. Since this underlying flow differs from that in manufacturing



46 Chapter 7. Traditional Topological Metrics

networks, Omar et. al. considers its applicability questionable [58]. Practitioners are
advised against using this metric given that its underlying assumptions do not ap-
propriately match manufacturing networks. The following conclusions are drawn:

Betweenness centrality can be used to identify nodes that may act as gatekeep-
ers when the flow follows shortest paths. However, in modern manufacturing
networks, it is possible that those nodes may be circumvented. Thus, at this
time, betweenness centrality is considered a poor choice for bottleneck and/or
key machine identification.

Note, however, that used in conjunction with a network graph as exemplified in
the previous Section, betweenness centrality may aid the identification of nodes
that may disconnect upstream suppliers from their downstream tier. More re-
search is this regard is encouraged.

7.5 Clustering coefficient

The clustering coefficient CC(vi) was firstly introduced by Watts and Strogatz [81]
in 1998. It measures the likelihood that two neighbors of a node vi are adjacent.
Equivalently, one can calculate the ratio between the number of triangles ti in which
vi is one vertex and the number of all possible triangles that vi could form, Ti, as
follows:

CC(vi) =
ti
Ti

=
2ti

ki(ki − 1)
. (7.9)

This formulation [81] is applicable to the case of binary undirected networks (BUN).
Multiple generalizations have been introduced to extend the application of this met-
ric to other types of graphs. The extension of the clustering coefficient to weighted
undirected networks was developed by Saramaki et. al. [82]. The appropriate formu-
lation for directed graphs, both binary (BDN) and weighted (WDN) was introduced
by Fagiolo [83].

The clustering coefficient of a BDN, CD
C (vi), is defined as the ratio between all di-

rected triangles that node vi forms in the network (tDi ) and the number of all possible
triangles that vi could form (TD

i ) [83]. Its formulation is:

CD
C (vi) =

tDi
TD
i

=

∑
j

∑
h(aij + aji)(aih + ahi)(ajh + ahj)

2[ki(ki − 1)− 2k↔i ]
(7.10)

where ki is the degree of node vi. As described in Section 7.2, the total degree in a
directed graph can be calculated as ki = kin

i + kout
i . k↔i is the number of bilateral

edges between vi and its neighbors (i.e. the number of nodes vj for which both
edges, vi → vj and vj → vi, exist). This can be calculated as k↔i =

∑
j 6=i aijaji.

Fagiolo [83] presented the straightforward extension of the clustering coefficient
of BDN to the case of WDN. The latter are characterized by a N × N weight ma-
trix W = {wij}. Note that it is required that all weights are in the range of 0 to
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1, wij ∈ [0, 1]. Thus, if some wij > 1, all weights in the network must be divided
by maxi,j{wij} in order to fulfill this requirement. Then, the clustering coefficient
C̃D
C (vi) for a WDN is calculated as:

C̃D
C (vi) =

t̃Di
TD
i

=

∑
j

∑
h(w

1/3
ij + w

1/3
ji )(w

1/3
ih + w

1/3
hi )(w

1/3
jh + w

1/3
hj )

2[ki(ki − 1)− 2k↔i ]
(7.11)

It is noteworthy that CC(vi), CD
C (vi) and C̃D

C (vi) give the local clustering coef-
ficient for node vi. In many applications however, a network clustering coefficient
CC(G) is of interest. Watts and Strogatz [81] proposed calculatingCC(G) as the aver-
age clustering coefficient for all networks. It thus follows that CC = N−1

∑
iCC(vi)

for BUN, CD
C = N−1

∑
iC

D
C (vi) for BDN, and C̃D

C = N−1
∑

i C̃
D
C (vi) for WDN.

Note that other averaging methods exist. For example, Borgatti et. al. [84] pro-
posed a weighted average approach, where the weights are the number of pairs of
nodes in each node’s ego network, ki(ki−1)/2. They called this the “weighted over-
all clustering coefficient”. However, in this work, that of Watts and Strogatz will be
utilized.

7.5.1 Application example

The local clustering coefficient for all 50 nodes in the directed manufacturing net-
work in Fig. 5.3 were calculated. For this, the network was considered first as bi-
nary and then as weighted. This is because there is agreement in literature [63, 85]
that, for certain graph metrics, the binary version provides information regarding
the structure of the network while the weighted version informs about the practical
implementation. The results are reported in Table 7.1, columns CD

C (vi) and C̃D
C (vi).

The following observations are drawn:

• The average clustering coefficient for the BDN is CD
C = N−1

∑
iC

D
C (vi) =

0.263, indicative of modest structural connectedness.

• Local clustering coefficients CD
C (vi) for the BDN climb up to 0.5 for nodes v38,

v49 and v50. Yet it can be as low as 0.11 for nodes v29 and v30.

• The average clustering coefficient for the WDN is C̃D
C = N−1

∑
i C̃

D
C (vi) =

0.007� 1, pointing to very low connectedness in practice.

• The local clustering coefficients for the WDN is also C̃D
C (vi) � 1 for all 50

nodes. The highest values recorded are C̃D
C (v37) = 0.0371, C̃D

C (v35) = 0.0297

and C̃D
C (v36) = 0.0281. Yet, it can be as low as 0.0006 for node v39.

7.5.2 Interpretation

The clustering coefficient metric developed by Watts and Strogatz [81] had the ob-
jective to capture the extent to which a network had areas of high and low density.
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In fact, CC(vi) measures the density of ties for node vi ego network, i.e. the density
of connections among nodes connected to vi [84]. The individual clustering coef-
ficient is averaged among all nodes in the network to obtain the graph clustering
coefficient. This value is typically interpreted as a measure of connectedness, and
it ranges from 0 for a network composed of isolated nodes to 1 for fully connected
network.

The use of the clustering coefficient in the literature corresponding to manufac-
turing networks is limited, as shown in Chapter 3. Becker et. al. used the binary
undirected formulation of the clustering coefficient [50]. They claimed that CC(G)

describes the network under study in terms of connectedness. They regarded high
values as indicative of highly interconnected nodes as would be the case of worksta-
tions in cellular manufacturing. On the other hand, low clustering coefficient values
were associated with serial manufacturing plants. Omar et. al. proposed the use of
the weighted directed formulation of the clustering coefficient instead [58]. Yet the
authors agreed with the previous interpretation proposed by Becker et. al. [50].

Following the agreed interpretation [50, 58], the Bosch manufacturing network
studied here is indicative of mostly serial manufacturing. However, observation of
Fig. 5.3 shows groups of nodes that seem highly interconnected. Further analysis in-
dicates that these groups of nodes generally belong to the same strongly connected
component (see Appendix B). In order to determine the level of connectedness in
these strongly connected components, the sub-graph clustering coefficient is calcu-
lated.

Subgraph clustering coefficient

The SCC corresponding to the manufacturing network depicted in Fig. 5.3 were cal-
culated and are reported in Appendix B. The subgraph S corresponding to each
SCC can be easily identified. S contains all nodes and edges within a specific SCC.
Edges connecting nodes in the SCC with other network nodes are not considered.
An example corresponding to the SCC containing nodes v0, v1, v2 and v3 is shown
in Fig. 7.1. Note that edge weights have been scaled as required by the clustering
coefficient definition presented earlier.

The subgraph clustering coefficient is calculated considering the directed sub-
graph first as binary and then as weighted. Results are reported in Table 7.2. It can be
observed that the binary subgraph clustering coefficient CD

C (S) is in line with values
reported in literature [50] showing moderate structural connectedness. However, in
practical terms, even within the strongly connected components, manufacturing is
mostly serial as evidenced by the weighted subgraph clustering coefficient C̃D

C (S).
This work, thus proposes the use of the average clustering coefficient of SCC

instead of that of the full network for the case of manufacturing networks. Man-
ufacturing networks, regardless of their level of connectedness, fulfill the purpose
of transforming raw materials into finished goods. While certain flexibility can be
granted to groups of production steps, there is a generally prescribed order that
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FIGURE 7.1: Subgraph corresonding to the strongly connected com-

ponent composed of nodes v0, v1, v2 and v3.

TABLE 7.2: Subgraph clustering coefficient. In this table, the elements
in each SCC are indicated using i for clarity. Note that i ≡ vi.

Strongly connected component CD
C (S) C̃D

C (S)

[0, 1, 2, 3] 0.42 0.13
[4, 5, 6, 7, 8, 9, 10, 11] 0.34 0.04
[12, 13, 14, 15] 0.42 0.11
[16, 17, 18, 19, 20, 21, 22, 23] 0.34 0.02
[24]
[25]
[26]
[27]
[28]
[29, 30, 31, 32, 33, 34, 35, 36, 37] 0.35 0.02
[38]
[39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51] 0.35 0.05

must be followed. As a result, the average clustering coefficient of the full network
is expected to be low. But, in cases of cellular manufacturing, groups of produc-
tion steps will be exchangeable and thus produce highly interconnected subgraphs.
Thus, the subgraph average clustering coefficient is a better metric of connectedness
for manufacturing networks.

It can then be concluded that,

In a manufacturing network where workstations are abstracted as nodes and
directed edges represent material flows, the clustering coefficient is a measure
of connectedness. The average clustering coefficient should be calculated for the
subgraphs corresponding to each strongly connected component.

The average subgraph clustering coefficient obtained when modeling the sub-
graph as a binary directed graph provides information regarding the potential
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structural connectedness of the network. High values are indicative of high po-
tential flexibility of the production steps involved in the specific SCC. Alterna-
tively, low values are indicative of low potential flexibility.

The average subgraph clustering coefficient obtained when modeling the sub-
graph as a weighted directed graph is indicative of the level of connectedness
exercised in practice. Once again, high values represent high levels of flexibility
in production steps in practice; and low values represent the opposite.

7.6 Triangles in directed graphs

The calculation of the clustering coefficient entails the analysis of the triangles in a
directed graph. This analysis has not been carried in literature yet, as evidenced
in the literature review presented in Chapter 3. For the sake of completeness, the
analysis of the directed triangles in the Bosch manufacturing network of Fig. 5.3 is
presented hereafter.

In directed graphs, four patterns of directed triangles can be identified from node
vi’s perspective (see Figure 7.2). It should be noted that these triangles have edges
pointing in different directions and thus conduce to a completely different interpre-
tation in terms of the resulting flow pattern [83]. The four possible patterns are:

• cycle: a cyclical relationship among node vi and any two neighbors is observed.
There are two possible such triangles: vi → vj → vh → vi or vi → vh → vj → vi.

• middleman: one of vi’s neighbors, for example vj can reach a third node vh
directly (vj → vh) or using vi as intermediary (vj → vi → vh). There exist two
possible such triangles, one in which vj uses vi to reach vh and the other in
which vh uses vi to reach vj .

• in: node vi has two incoming edges. There are two possible in triangles: one
containing the edge vj → vh and the other containing edge vh → vj .

• out: node vi has two outgoing edges. There are two possible out triangles: one
containing the edge vj → vh and the other containing edge vh → vj .

7.6.1 Application example

The fraction of each type of triangle present in the network was calculated. Note that
the difference between the BDN and WDN is negligible. Thus, only the fractions for
the WDN are reported in Table 7.3. It can be observed that the out triangle type is
the most predominant, while the cycle type is encountered the least. This is expected
in a manufacturing network where items flow from source to sink. In addition, it is
a good sign that the fraction of middleman triangles is high. This indicates that there
are alternative routes that the flow can follow to surpass blocking nodes.
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FIGURE 7.2: Types of triangles in directed networks as defined in [83].

TABLE 7.3: Fraction of cycle, middleman, in and out triangles present
in the Bosch manufacturing network of Fig. 5.3.

Network cycles middleman in out

WDN 0.151 0.273 0.268 0.308

7.7 Summary

In this Chapter, a number of well known topological metrics for networks have been
presented. Their formulation is summarized in Table 7.4, considering variations for
different types of networks. The use of these topological metrics for manufacturing
networks was also explored. In particular, the metrics interpretation in literature
was contrasted with the flow underlying assumptions they are based on, leading to
a clear understanding of the information they provide in the context under study.
The following conclusions were reached:

• The in-degree is interpreted as the number of direct upstream suppliers. It
does not provide information about workloads.

• The out-degree is interpreted as the number of direct downstream customers.
It does not provide information about operational load.

• The in-strength is a measure of the incoming workload from suppliers.

• The out-strength is a measure of the difficulty faced by the node to satisfy
downstream customer needs.

• The betwenness centrality is considered a poor choice for characterizing man-
ufacturing networks. Its flow underlying assumptions do not match those of
manufacturing networks and thus, this metric should be avoided. It does not
appropriately identify bottlenecks and/or key machines.

• The clustering coefficient provides a measure of connectedness. For manu-
facturing networks the average clustering coefficient should be calculated for
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the subgraphs corresponding to each strongly connected component. While
applying this metric to a binary directed subgraph provides information re-
garding the potential flexibility of production steps within a SCC, using the
weighted directed version measures how much this flexibility is exercised in
practice.

TABLE 7.4: Summary of topological metrics

metric formulation applicability

degree ki =
∑
j

aij =
∑
j

aji BUN, WUN

in-degree kin
i =

∑
j

aji BDN, WDN

out-degree kout
i =

∑
j

aij BDN, WDN

strength si =
∑
j

wij =
∑
j

wji WUN

in-strength sin
i =

∑
j

wji WDN

out-strength sout
i =

∑
j

wij WDN

betweenness CB(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

(*)1

clustering coef. CC(vi) =
ti
Ti

=
2ti

ki(ki − 1)
BUN

clustering coef. CD
C (vi) =

tDi
TD
i

=

∑
j

∑
h(aij + aji)(aih + ahi)(ajh + ahj)

2[ki(ki − 1)− 2k↔i ]
BDN

clustering coef. C̃D
C (vi) =

t̃Di
TD
i

=

∑
j

∑
h(w

1/3
ij + w

1/3
ji )(w

1/3
ih + w

1/3
hi )(w

1/3
jh + w

1/3
hj )

2[ki(ki − 1)− 2k↔i ]
WDN

1(*) Different formulations and algorithms exist for different types of networks.



53

8 PageRank

8.1 Introduction

One of the big inventions of the 20th century was efficient and accurate Web search,
namely the “PageRank” algorithm that powers Google’s search engine [43, 86]. Be-
fore Google, many search engines existed. They worked by listing terms, i.e. words
or strings of characters, found in each crawled website in an inverted index (a data
structure that makes it easy, given a term, to find all the places where such term oc-
curs). When a search query was issued, the pages that contained the query terms
were presented to the user in decreasing order of relevancy and frequency of term
appearance. These deprecated search engines had a drawback: they could be easily
fooled by spammers by simply adding terms unrelated to the actual content of the
site, rendering them useless.

To counter “term spam”, Google introduced two innovations. Firstly, PageRank
simulates the behavior of common Web surfers by following links chosen at random,
and the importance of a website is determined by the number of surfers that visit it.
Secondly, the content of a page is not judged only by the terms appearing on it but by
the terms used in or in the vicinity of links pointing to that page, making it harder
for spammers to add unrelated terms. In other words, Google trusts what other
websites say about a specif site rather than the site itself.

Although PageRank was created for web ranking, it has been applied in multi-
ple disciplines, including vulnerability assessment of water supply networks [87],
ranking scientific publications [88] and evaluating logistics networks [89, 90]. In this
Chapter, the PageRank algorithm is adapted to determine workstation importance
in a manufacturing line. The objective is to determine this metric suitability and its
appropriate interpretation in terms of Operations Research.

8.2 Basic algorithm

The PageRank algorithm is a function that assigns a real number to each node. A
node can be a website if we study the World Wide Web, a company when analyzing
supply chain networks, or a workstation while dealing with a manufacturing net-
work. The objective is to determine the importance of a node by assigning higher
PageRank values to more significant nodes.
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PageRank is defined for directed graphs whose transition matrix M describes
what happens to a random walker after one step. M has N rows and columns corre-
sponding to the N nodes in the graph. Each element mij in row i and column j has
a value of 1/kout

j if node j has k outgoing edges, and one of them points to node i.
Otherwise, mij = 0. Thus, the transition matrix is an stochastic matrix, i.e. the sum
of each column equals 1 [91].

The PageRank is calculated iteratively. Initially, a random walker has an homo-
geneous probability distribution v0 where v0,i = 1/N . After one step, the probability
distribution is v1 = Mv0. After two steps, v2 = M(Mv0) = Mv1, and so on. Thus,
the probability distribution at the next step vt+1 = Mvt since the probability that a
random walker will be at node i in the next step is vt+1,i =

∑
j mijvt,j . As described

before, mij is the probability that a random walker at node j will move to node i in
the next step, and vt,j is the probability that the surfer was at node j in the previous
step t.

This process converges to v′ = Mv, i.e. further multiplying the probability dis-
tribution v by the transition matrix M does not change the result v′, provided that
two conditions are met. Firstly, the graph is strongly connected, meaning that it is
possible to get from any node to any other node. Secondly, there are no dead ends,
i.e. there are no nodes with zero outgoing edges. In practice however, these strong
assumptions are seldomly met.

To avoid such occurrences, the basic PageRank algorithm is modified to account
for taxation, where it is assumed that a random walker has a finite probability of
leaving the network at any step and new walkers are started at each page. The
PageRank algorithm considering taxation is as follows

v′ = βMv + (1− β)
e

N
(8.1)

where v′ and v are the probability distribution vectors at the new and previous steps,
M is a transition matrix, β is a chosen constant (usually in the range between 0.8 and
0.9) that accounts for the random walker’s finite probability of leaving the network,
e is a vector of all 1s and N is the number of nodes. The first term of the equation
βMv represents the probability β that the walker follows an outgoing edge from
the current node, while the second term (1− β)e/N represents the finite probability
(1− β) of a random walker to start at any given node.

8.3 Proposed modification for manufacturing networks

In order to calculate the PageRank of a manufacturing network, a few modifications
to the algorithm are proposed. Firstly, the transition matrix M should no longer be
based on degree values, but on material flows. Thus, each element mij represents
the fraction of items leaving node vi for node vj , and they are obtained by dividing
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the item count of edge (vi, vj) by the total number of items leaving vi to guarantee
stochasticity as required.

Secondly, taxation is modified to better represent manufacturing networks. While
semi-finished goods may leave the network at any step of processing, as is the case
with faulty items, raw materials do not start their journey at any random worksta-
tion. For that reason, the finite probability of a random walker starting at any given
node must be modified as follows:

v′ = βMv + (1− β)
eS
tm

(8.2)

where eS is a vector that contains item counts in the workstations where manufac-
turing can commence and 0s in the rest. tm is total number of manufactured items.

8.4 Results

Three different formulations of the PageRank algorithm were considered for the
manufacturing network of Fig. 5.3. These formulations, summarized in Table 8.1,
are:

• PR1: The original PageRank algorithm with taxation. No modifications con-
sidered.

• PR2: The PageRank algorithm with taxation where edge weights are consid-
ered, i.e. the transition matrix is based on material flows. However, the taxa-
tion portion (1 − β)e/N is not modified and thus, a random walker can jump
to any other node in the network.

• PR3: The PageRank algorithm with taxation considering all modifications
listed in the previous Section to better resemble the manufacturing process.
Thus, not only edge weights are considered, also the vector eS has values dif-
ferent from zero only on nodes corresponding to starting points in the manu-
facturing network. Thus, when a random walker “jumps”, new walkers can
only be initiated on nodes where manufacturing starts.

TABLE 8.1: Summary of PageRank formulations evaluated.

case formulation notes

PR1 v′ = βMv + (1− β) e
N

M is based on the out-degree. New walkers can be
initialized on all nodes.

PR2 v′ = βMv + (1− β) e
N

M is based on the out-strength. New walkers can
be initialized on all nodes.

PR3 v′ = βMv + (1− β)eS

tm
M is based on the out-strength. New walkers can
only be initialized on manufacturing start nodes.
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The results obtained from calculating the PageRank on the Bosch manufacturing
network of Fig. 5.3 are reported in Table 8.2 and Fig. 8.1. In all cases, the value of β
was set to 0.85.

TABLE 8.2: Results obtained from calculating the PageRank for
three different cases of the Bosch manufacturing network reported

in Fig. 5.3

vi PR1 PR2 PR3

0 0.004 0.005 0.077
1 0.004 0.007 0.07
2 0.004 0.006 0.031
3 0.004 0.006 0.031
4 0.009 0.008 0.026
5 0.009 0.008 0.026
6 0.01 0.011 0.02
7 0.01 0.011 0.02
8 0.011 0.021 0.035
9 0.01 0.009 0.011

10 0.01 0.008 0.013
11 0.01 0.008 0.013
12 0.005 0.005 0.027
13 0.005 0.007 0.024
14 0.005 0.006 0.011
15 0.005 0.006 0.011
16 0.012 0.007 0.009
17 0.012 0.008 0.009
18 0.01 0.01 0.007
19 0.01 0.01 0.007
20 0.012 0.02 0.012
21 0.011 0.008 0.004
22 0.011 0.008 0.004
23 0.011 0.008 0.004
24 0.003 0.003 0.024
25 0.003 0.003 0.011
26 0.011 0.008 0.021
27 0.011 0.006 0.01
28 0.005 0.003 0.001
29 0.027 0.051 0.06
30 0.042 0.049 0.053
31 0.018 0.004 0.001
32 0.018 0.004 0.001
33 0.055 0.079 0.065
34 0.054 0.086 0.067
35 0.036 0.047 0.034
36 0.036 0.051 0.037
37 0.038 0.09 0.064
38 0.017 0.011 0.005
39 0.028 0.006 0.002
40 0.015 0.009 0.002
41 0.021 0.011 0.001
43 0.017 0.007 0.001
44 0.017 0.007 0.001
45 0.029 0.015 0.001
47 0.058 0.031 0.002
48 0.032 0.041 0.002
49 0.03 0.025 0.001
50 0.03 0.028 0.001
51 0.049 0.052 0.002
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FIGURE 8.1: PageRank value for each node in the Bosch manufac-
turing network. Note that nodes v42 and v46 do not belong to the

network. See Chapter 5 for details.
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8.4.1 Analysis by case

PR1: In Fig. 8.1, the original PageRank formulation is denoted as PR1 and in-
dicated by big red dots. It can be observed that groups of upstream nodes have
roughly the same value of PR1. These groups corresponds to upstream strongly
connected components (see Appendix B). For example, note the upstream SCC con-
taining nodes [v0, v1, v2, v3], where all nodes have PR1 = 0.004. It follows that the
PR1 formulation assigns roughly the same PageRank value to the members of each
upstream strongly connected component.

This does not hold true, however, for downstream nodes which have much more
variable PageRank values. Note, for example, the SCC containing nodes [v29, v30, v31,

v32, v33, v34, v35, v36, v37], where the value of PR1 is highly variable within the range
of 0.018 to 0.055. In general, this formulation tends to boost ending nodes centrality
since their kin

i tends to be higher than their kout
i (see Table 7.1). It is worth remember-

ing that this was indeed the objective of the PageRank algorithm: to identify nodes
to which many other nodes point to and declare them important.

PR2: The first modification proposed to the original algorithm involves the use
of the out-strength (i.e. the actual material flows) in the transition matrix instead
of the out-degree. Then the transition matrix is normalized by column to fulfill the
stochasticity requirement. This formulation was denoted as PR2 and is indicated by
blue crosses in Fig. 8.1.

In general, this formulation does not seem to have a great effect on upstream
nodes. Note for example the nodes within the upstream SCC [v0, v1, v2, v3], where
the value of PR2 ranges from 0.005 to 0.007, compared to 0.004 for PR1. There
are however, the notable exceptions of nodes v8 and v20. These exceptions can be
explained by the fact that these nodes process a higher proportion of goods than the
other nodes within the same SCC (see sin

i /tm or sout
i /tm in Table 7.1).

The situation is different for downstream nodes. The PR2 formulation boosts the
PageRank of highly transited downstream nodes and reduces that of less frequent
ones. Note for example the nodes contained in the SCC [v29, v30, v31, v32, v33, v34, v35,

v36, v37]. Nodes v31 and v32 have a low workload (see sin
i /tm or sout

i /tm in Table 7.1)
and thus PR2 < PR1 for them. On the other hand, the rest of the nodes in this SCC
have a high workload (see sin

i /tm in Table 7.1)1and thus PR2 > PR1 for them.
In conclusion, while this formulation makes corrections accounting for actual

material flows, once again the highest centrality values is assigned to ending nodes.

1In this case, the reader should assess the workload looking into sin
i /tm in Table 7.1 given that nodes

v33, v34, v35, v36 and v37 are ending nodes. As a result, sin
i /tm > sout

i /tm for this nodes, and thus sin
i /tm

is a better metric of workload than sout
i /tm.
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PR3: In addition to using material flows for the transition matrix, a second mod-
ification to the original formulation was proposed. This entailed allowing random
walkers to be started only on nodes where manufacturing can begin. This formula-
tion, called PR3, is indicated as green triangles in Fig. 8.1.

The resulting PageRank is a very interesting. Starting nodes have their centrality
values boosted as a result of the newly formulated taxation term. However, not all
of them are boosted equally since eS/tm is based on the actual number of manufac-
tured items processed by each starting node. Its combination with a material flows
based transition matrix slashes the centrality values of nodes within the biggest, yet
least transited, downstream SCC [v39, v40, v41, v43, v44, v45, v47, v48, v49, v50, v51]. As a
result, the highest centrality values are held by a combination of frequent starting,
middle and ending nodes.

8.5 Discussion

As shown in the literature review presented in Chapter 3, a number of authors
have used the PageRank algorithm when studying manufacturing networks with
varied objectives. Blunck et. al. [51] used PageRank for bottleneck identification
under capacity increase and batching alleviation. However, the authors reported
that traditional methods for bottleneck identification outperformed PageRank. They
suggested that the underlying assumptions of PageRank may not properly abstract
manufacturing networks.

Other authors reported more positive outcomes. Ai-ming et. al. [52] modified
the PageRank algorithm to generate a ranking of workstations that should be prior-
itized in terms of quality control and improvement efforts. Becker and Wagner [53]
showed that the PageRank algorithm could be used to create a ranking of machines
in order to efficiently equip a production line with the appropriate technology to
be converted into a cyber-physical production system. Finally, Omar et. al. [58]
suggested that PageRank could rank workstations by importance based on effective
processing paths. They went on to claim that “the node importance [obtained from
PageRank] measures the workload build-up of a node while accounting for inter-
dependencies among pairs of nodes” [58].

As explained in Section 2.3, centrality metrics can be classified using Borgatti’s
typology (see Table 2.1). This typology evaluates two characteristics of the flow: the
routes followed and the propagation method. In the case of PageRank, it was clearly
stated in its definition that random walkers are followed on each time step. Thus,
the traffic flows through walks. In addition, the traffic propagates through parallel
duplication [92]. It can be noted that PageRank shares similarities with eigenvector
centrality. Not only, both PageRank and eigenvector centrality have the same Bor-
gatti typology, but also they are both obtained from matrix operations providing an
exact result. In fact, the PageRank creators, Brin and Page, explained that “PageRank
[...] corresponds to the principal eigenvector of the normalized link matrix” [43].
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As a consequence, PageRank is not very well suited to evaluate manufacturing
networks since these correspond to the paths and transfer process cell in Borgatti’s ty-
pology. Thus, practitioners are advised against using PageRank as a centrality metric
for the characterization and analysis of manufacturing networks where nodes repre-
sent workstations and (weighted) directed edges, material flows. Consequently, an
interpretation for this metric in terms of Operations Research is not provided.

8.6 Summary

In this Chapter, the use of the PageRank algorithm is exemplified and analyzed in the
context of manufacturing networks. It is concluded that, while the metric has been
applied in previous research in this domain, it is not appropriate. PageRank is a
centrality metric whose underlying flow follows walks and whose traffic propagates
by means of parallel duplication. As a result, PageRank occupies an entirely different
cell in Borgatti’s typology when compared to the underlying flow of manufacturing
networks. It is thus considered inappropriate for characterization of these networks
and consequently, no interpretation in terms of Operations Research is provided.
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9 Path-Transfer Entropy

The concept of information theory originated in the need to quantify the fundamen-
tal limits of signal processing. Typically attributed to Shannon [93], information
entropy quantifies the average number of bits needed to store or communicate a
message. A message with N different symbols cannot be stored or communicated
in less than log2N bits. Shannon’s entropy determines a lower limit below which
no message can be further compressed. In addition, Shannon’s information theory
has also been regarded as a measure to quantify uncertainty, or entropy, in a system
[94]. It allows to quantify the uncertainty involved in predicting the value of a ran-
dom variable, i.e. the amount of randomness or freedom of choice. It is defined as
follows:

Definition 1. For an ensemble X(R, pxi), where R is the set of possible outcomes (the
random variable), N = |R| and pxi is the probability of an outcome in R. The Shannon
information content or entropy of X is given by

H(X) = −
N∑
i=1

pxi log2 pxi (9.1)

where calculating H(X) requires the mass distribution probability of ensemble X .

9.1 Path-transfer entropy

Tutzauer [40] proposed an entropy centrality metric called “path-transfer entropy”.
Based on Shannon’s entropy [93], Tutzauer’s path-transfer entropy is valid under
the following assumptions regarding the network flow:

• The flow follows paths, where a path is a sequence of linked nodes in which
neither nodes nor edges are repeated.

• The flow progresses by means of a transfer process, that is an item can only be
in one place at a time and it moves from one node to another in the network
sequentially.

As a result, Tutzauer’s centrality metric occupies a specific cell in Borgatti’s ty-
pology (see Section 2.3).
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9.1.1 Formula derivation

To calculate Tutzauer’s path-transfer entropy, the mass probability distribution pxi

in Eq. 9.1 has to be calculated first. The procedure to derive the appropriate proba-
bility distribution, called pij in Tutzauer’s work, is described hereafter.

As noted in the previous Section, Tutzauer assumes the traffic progresses by
means of a transfer process [40, 95]. Thus, a node receiving the transfer can pass
the object to any adjacent node (that is to say, a neighboring node with which it
shares an edge). It must be noted that the chosen adjacent node must not have yet
appeared on the path up to this point, since paths do not allow for neither node nor
edge repetitions. Using the convention that both vt and v(t) are valid and equivalent
notations to represent a node, the following terms are defined:

Definition 2. For a given path P = {v0, v1, ..., vn}, a downstream edge of a vertex vt ∈ P
is any edge (vt, w) ∈ E with w 6= vs for s < t.

Definition 3. A downstream vertex of vt is any vertexw such that (vt, w) is a downstream
edge.

Definition 4. The downstream degree D(vt) of a vertex vt is the number of downstream
edges it has and can be calculated from the adjacency matrix as follows:

D(vt) =

N∑
j=1

av(t),j −
∑
s<t

av(t),v(s). (9.2)

The term
∑N

j=1 av(t),j counts the total number of edges incident with vt, i.e. its degree.
The term

∑
s<t av(t),v(s) subtracts from that total the number of edges incident with vertices

that have already appeared earlier in the path.

At any step of the process, the probability that a transfer is passed to a down-
stream node is equal to 1 divided by the downstream degree. Likewise, the proba-
bility that a node stops the flow is 1 divided by the downstream degree. Thus, the
transfer and stopping probabilities are defined as follows:

Definition 5. In general, there are K(i, j) paths from i to j. Let Pk be one of such paths,
assumed to be of length nk. The transfer probability of a vertex vt ∈ Pk is:

τk(vt) =
1

D(vt)
(9.3)

and the stopping probability is

σk(vt) =
1

D(vt)
. (9.4)

To obtain the single path probability, i.e., the likelihood that a flow beginning at
i = v0 ends at j = v(nk) by traveling along the path Pk = {v0, ..., v(nk)}, one must
calculate the product of the transfer probability of the first nk−1 nodes and multiply
it by the stopping probability of the last vertex in the path. Then,
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Definition 6. The overall probability that a flow starting at i ends at j is given by the
combined path probability:

pij =

K(i,j)∑
k=1

σk(j)

n(k)−1∏
t=0

τk(vt). (9.5)

Finally, the path-transfer centrality CH(i) of vertex i is then given by the entropy:

CH(i) = −
N∑
j=1

pij log2 pij . (9.6)

Furthermore, to put the centrality score on a zero-to-one scale, it must be divided
by the maximum entropy which is well known to be log2N . Hence the relative
centrality of vertex i is given by:

C ′H(i) =
CH(i)

log2N
. (9.7)

9.1.2 Generalizations

The formulae in the previous Section were derived for connected undirected, un-
weighted graphs. Here we present the generalizations to other types of networks.

Directed graphs. Non-symmetric relationships among nodes are represented as
directed graphs. However, the formulae for undirected graphs defined above carries
over to directed graphs with no changes.

Loopless vertices. In the original description, flow could be stopped in two ways:
the lack of downstream vertices and the vertex choosing itself as downstream ver-
tex. When nodes cannot elect to stop the flow, i.e. there are no (vt, vt) edges, vertices
are said to be loopless. In such a case, the appropriate transfer and stopping proba-
bilities are:

τk(vt) =

0 D(vt) = 0
av(t),v(t+1)

D(vt)
D(vt) 6= 0

(9.8)

σk(vt) =

1 D(vt) = 0
av(t),v(t)
D(vt)

D(vt) 6= 0
(9.9)

Weighted graphs. Using the convention that the adjacency matrixA = {aij}which
contains only zeroes and ones is replaced by the weight matrix W = {wij} which
contains the weights of the edges instead, the equations presented carry through
directly. It must be noted that the downstream degree D(vt) is now more of a mea-
surement of downstream strength since it is the sum of the weights of downstream
edges.
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Disconnected graphs. The entropy centrality is calculated for all non-zero com-
bined path probabilities, i.e. pij 6= 0. To extend the calculation to disconnected
networks, the centrality equation is updated to

CH(i) = −
∑
j∈V
pij 6=0

pij log2 pij . (9.10)

Summary of the most general entropy centrality equations

Downstream degree:

D(vt) =
N∑
j=1

av(t),j −
∑
s<t

av(t),v(s)

Transfer and stopping probabilities:

τk(vt) =

0 D(vt) = 0
av(t),v(t+1)

D(vt)
D(vt) 6= 0

σk(vt) =

1 D(vt) = 0
av(t),v(t)
D(vt)

D(vt) 6= 0

Probability of path pij :

pij =

K(i,j)∑
k=1

σk(j)

n(k)−1∏
t=0

τk(vt)

Path-transfer centrality:

CH(i) = −
∑
j∈V
pij 6=0

pij log2 pij C ′H(i) =
CH(i)

log2N

9.2 Path-transfer entropy and manufacturing

As explained above, Tutzauer’s path-transfer entropy occupies a specific cell of Bor-
gatti’s typology of centrality metrics [38] (see Section 2.3). It is then appropriate for
networks where the flow follows paths and progresses by means of a transfer pro-
cess. These underlying assumptions perfectly describe the flow in manufacturing
networks.
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The next pressing questions is “what does path-transfer entropy centrality tells
us about a network?”. The limited existing literature provides vague answers. Tutza-
uer claimed that “flow beginning at a highly central node will stop with nearly equal
probability at all other nodes, and a flow beginning at a less central node will have
a much more uneven distributions of probabilities” [40]. Similarly, Oggier et. al. [85,
96] described the spread of the flow as more even when originating from a highly
central node. This metric interpretation is simply the re-wording of one very well
know property held by the Shannon’s information entropy formulation: the entropy
increases as the probability values pxi in Eq. 9.1 become equal and reaches its max-
imum when all the pxi are exactly equal [93, 97]. Yet, these authors do not address
a pressing fact. As the number of nodes and edges in graph G increases, the num-
ber of paths grow combinatorially [97]. Consequently, utilizing methods that search
for all the paths in the network provides results with very little to no differenciation
between nodes in terms of centrality [98].

Given that literature seems to pay special attention to the probability distribution
pij instead of the node entropy centralityCH(i), this Chapter will focus on answering
the following questions:

• What is the meaning of pij in terms of Operations Research?

• How does pij change for binary and weighted manufacturing networks?

• What information does path-transfer entropy centrality provides in the context
of manufacturing networks?

9.3 Methodology

In this Chapter, the manufacturing complex network used was obtained following
the methodology presented in Chapter 5. In addition, one further step is required. To
account for the stopping probability on final manufacturing nodes, self-loops must
be added. These self-loops exist, in principle, only for the nodes where manufac-
turing can conclude. Their weight is determined by the frequency with which a
given node is the final node in the list of clean manufacturing paths. The resulting
network, shown in Fig. 9.1, contains 50 nodes and 319 edges.

In order to answer the questions posed in the previous Section, the probability
distribution pij will be calculated for two different representations of the graph:

Binary, directed graph: Firstly, a structural analysis of the network is conducted.
For this, the binary, directed network is used. In order to capture the effect of the
flow on the vertices, a mathematical artifact is needed. Thus, self loops are added to
all nodes [85]. The graph contains 50 nodes and 357 edges. Then, the corresponding
probability distribution pij is calculated and analyzed.
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FIGURE 9.1: Bosch manufacturing network including self-loops on
nodes where manufacturing can conclude only. The color of the

nodes follows the manufacturing line colors in Fig. 5.1.

Weighted, directed graph: Secondly, analysis of the original weighted network
with the added self-loops on ending nodes only is carried out. The graph, shown
in Fig. 9.1, has 50 nodes and 319 edges.

In both cases, the computation of all the paths in the network and the paths
probabilities was carried out using the UL High Performance Computer (HPC) Iris
Cluster [99]. For this work, a single node containing 28 cores running at 2.4 GHz
with 112 GB RAM was used. The code was implemented in parallel, i.e. each core
was assigned the task of obtaining all the pij values for node vi.

This work shares similarities with Omar et. al. [63]. The interested reader should
refer to the cited article and its associated code available in [74].
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9.4 Results

In this Section, the results obtained when calculating the probability distribution pij
for the binary and weighted networks are presented and discussed.

9.4.1 Binary, directed graph with self-loops on all nodes

The probability distribution pij for all the nodes in the network under study are
presented graphically in Fig. 9.2. In addition, the entropy centrality values for each
node vi are reported in Table 9.1. Hereafter, a number of observations are noted.
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FIGURE 9.2: Heat-map denoting the probability distribution pij ob-
tained for the binary directed network with self-loops on all nodes.
Note: the colorbar has been chosen to facilitate visualization. It should

be noted that p38,38 = 1.

Much as in the case of traditional serial manufacturing, upstream nodes can
reach downstream ones, yet the reverse is not possible. To better visualize this,
nodes where manufacturing can start were identified and are shown in the left graph
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TABLE 9.1: Entropy centrality values for the binary, directed network
with self-loops on all nodes.

vi CH(i) # nodes in SCC CH σCH

0 0.835

4 0.833 0.0011 0.834
2 0.832
3 0.832

4 0.815

8 0.810 0.004

5 0.815
6 0.811
7 0.811
8 0.806
9 0.807

10 0.806
11 0.806

12 0.851

4 0.848 0.00213 0.851
14 0.846
15 0.846

16 0.821

8 0.817 0.004

17 0.821
18 0.820
19 0.820
20 0.812
21 0.814
22 0.814
23 0.814

24 0.722 1

25 0.722 1

26 0.741 1

27 0.741 1

28 0.580 1

29 0.561

9 0.547 0.012

30 0.542
31 0.546
32 0.564
33 0.522
34 0.539
35 0.550
36 0.550
37 0.546

38 0 1

39 0.564

11 0.549 0.029

40 0.565
41 0.562
43 0.569
44 0.569
45 0.534
47 0.469
48 0.583
49 0.543
50 0.543
51 0.540
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of Fig. 9.3. Take for example vi = v0, which corresponds to the most frequent starting
node, and note from its pij in Fig. 9.2 that it can reach any node vj except for j val-
ues between 12 and 25 inclusive. On the other hand, nodes that act predominantly
as end nodes (see right graph in Fig. 9.3), can only reach a few nodes that are also
downstream. For example, taking vi = v37 means that only nodes vj with j between
29 and 37 inclusive can be reached.
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FIGURE 9.3: Left: Nodes that appear as start nodes in the clean man-
ufacturing paths with their corresponding fraction. Right: Nodes that
appear as end nodes in the clean manufacturing paths with their cor-

responding fraction.

It should also be noted that a great portion of pij = 0. These are depicted as white
cells in the heat-map of Fig. 9.2. From Eq. 9.5, it is clear that pij is different from zero
when the set of paths K(i, j) between nodes vi and vj is non empty. Thus pij 6= 0 if
and only if there is at least one path from vi to vj . Then, a great number of pij = 0 is
expected in a manufacturing network. Even in a highly flexible manufacturing line,
there is a source of raw materials and a sink of manufactured products. In addition,
not all processing steps can be interchanged. There is always some required order of
precedence [100].

Yet another aspect to notice in Fig. 9.2, is that groups of nodes that are reachable
from each other form clusters. These clusters are the strongly connected components
(SCC) described in Appendix B. Furthermore, all nodes within a SCC have similar
values in terms of entropy centrality as reported in Table 9.1. This similarity inCH(i)

has already been highlighted in literature and attributed to the fact that this entropy
metric requires searching for all paths in the network [98]. Note that the number
of paths in a network increases as the number of nodes and edges increases [97]
leading to a loss in metric sensitivity. This, in turn, traslates to increased difficulty in
differentiating nearby neighbors. As a result, nodes within a SCC have very similar
CH(i) values.

The existence of SCC and the similarity in entropy centrality values provides
valuable information regarding the structure of the manufacturing network in terms
of its operation and routing flexibility. One could argue that the ordering of process
steps within a SCC can be altered, yet the sequence in which the SCC are visited
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cannot. This points to a manufacturing network that shares properties of flexible
manufacturing [100]: the system can potentially alter the order of a number of man-
ufacturing operations, yet a required partial precedence structure exists.

Finally, the fact that the probability distribution pij for any node vi in the network
is uneven in j is mention worthy. This holds true within SCC as well. As a conse-
quence, entropy is not maximized and there is some certainty as to what the final
destination of the flow starting in node vi is [63]. Following the previous example
and from observation of Fig. 9.2, one can confidently say that flow starting on node
vi = v0 has a high probability of stopping on node vj = v37. And flow departing
from node vi = v37 will stop with high likelihood on node vj with j either 34, 35 or
37. Once again, this points to some predefined or likely path in this manufacturing
network. In fact, in literature [63], this uneven distribution of probability is said to
be accentuated for serial production lines.

9.4.2 Weighted, directed graph with self-loops on end nodes only

In the previous Section, the binary graph was considered. In this one, the weighted
network with self-loops on end nodes only will be utilized. While binary graphs
are used to study the network structure, weighted networks provide information
related to “the skew in strength of the relationships” [85]. Thus, if the binary graph
pointed towards the level of manufacturing flexibility attainable by this network,
the weighted graph will indicate the degree to which said flexibility is exercised.

The probability distribution pij for all the nodes in the network under study are
presented graphically in Fig. 9.4. Contrary to the structural analysis in the previ-
ous Section, the level of exercised flexibility is low. In fact, the following can be
concluded:

• For any node vi where i ≤ 37, manufacturing will likely conclude in node
vj = v37.

• For node vi = v38, manufacturing concludes with absolute certainty in node
vj = v38 since p38,38 = 1.

• For any node vi where i > 38, manufacturing will likely conclude in node
vj = v51.

9.5 Note on computational issues

The calculation of Shannon’s entropy entails a choice regarding the level of granu-
larity of the analysis [94]. This follows from it being a metric requiring the counting
of discrete elements or events. In other words, even though the formulae necessary
to calculate the entropy centrality value of a node is quite straight-forward, the com-
putation requires to find all paths emanating from the node under study [40]. In
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FIGURE 9.4: Heat-map denoting the probability distribution pij ob-
tained for the weighted directed network with self-loops on end
nodes only. Note: the colorbar has been chosen to facilitate visual-

ization. It should be noted that p37,37 = 0.8103 and p38,38 = 1.

order to rank nodes by means of their centrality measure, the entropy centrality of
each node must be calculated and thus, every path in graph G must be found. For
large and dense graphs (where the number of edges is close to N2), the number of
paths is exceedingly large and computationally prohibitive.

Tutzauer [40, 95] as well as several other authors [63, 85, 96–98] agree on the fact
that searching for all paths in a graph is computationally prohibitive, particularly for
moderate and large graphs. A commonly proposed solution is to calculate the path
probability as the path is found. Paths should then be pruned when their probability
falls below a user defined threshold, typically set to 10−6. The implementation in
this work does not make use of path prunning. Readers interested in path pruning
should request a working implementation from Oggier et. al. [96].

The implementation developed for this work, searches for all paths emanating
from node vi using a generator function [101] in Python 3 to guarantee speed and



72 Chapter 9. Path-Transfer Entropy

low memory usage. Furthermore, the probabilities pij are calculated in parallel for
each vi using the High Performance Computer (HPC) Cluster in the University of
Luxembourg [99]. Finally, the PyPy compiler [102] is chosen instead of CPython for
speed. Code profiling1 indicates that, in its current stage, the most time consuming
routine in the code is not the path search. It is the calculation of the downstream
degree as shown in Fig. 9.5.

9.6 Discussion

Tutzauer’s path-transfer entropy is the only metric thus far discussed whose under-
lying flow assumptions match the flow of manufacturing networks. In fact, Tutzauer
explicitly pointed out that his metric aimed at filling an empty cell in Borgatti’s ty-
pology table [38, 40]. Yet, while the path-transfer entropy formulation was derived
by Tutzauer in 2007 [40], its use to characterize manufacturing networks is quite
novel. In fact, in the literature review presented in Chapter 3, there is only one work
discussing it.

Omar and Plapper [63] studied the probability distribution necessary for Tutza-
uer’s path-transfer entropy as a metric of manufacturing flexibility. Similar to this
work, the authors concluded that analyzing the binary, directed graph provides in-
formation regarding the potential routing flexibility that the network could display.
In addition, they agreed with Oggier et. al. [85] with respect to the use of the
weighted, directed graph to evaluate the skew in the strength of the relationship
among nodes.

It should be noted, however, that this metric suffers from loss of sensitivity for
moderate to large graphs. As explained in Section 9.4, as the number of nodes and
edges grows, so does the number of paths in the network. Consequently, there is
little differentiation among the values of pij leading to many nodes having the same
(or quite similar) value of path-transfer entropy. As the results in Table 9.1 demon-
strated, this is specially true within strongly connected components.

It is also noteworthy that the path-transfer entropy formulation weighs all paths
in G equally. However, very short and very long paths may not be representative of
the flow in manufacturing networks. Note, for example, Wagner’s study of walks
on manufacturing graphs [55] which indicated that shorter walks were conducive to
graphs that better matched the properties of the original manufacturing network.
While currently outside the scope of this work, future research should consider
weighing paths according to their length.

Thus, while a conclusive interpretation of path-transfer entropy in terms of Op-
erations Research is elusive at this time, a number of aspects regarding this metric
are agreed upon:

1Note that code profiling was conducted on the weighted, directed manufacturing graph corre-
sponding to product family F2 when the code is run in series.
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FIGURE 9.5: Path-transfer entropy centrality code profiling.
How to read this graph? Each rectangle represents a function which
name is indicated in the first line. The second line contains the per-
centage of the total CPU time spent on that function and its children
functions. The third line contains the percentage of self time, that is
to say not accounting for the time spent on children functions. The
fourth line indicates the total number of calls to the function. The ar-
rows point to children functions and indicate the percentage of total
time transferred to the child function (first line) as well as the number
of calls (second line). Finally, the color of the rectangles and arrows is
associated with the percentage of time spent on them with red indi-

cating a high percentage and blue indicating low[103].
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In a manufacturing network where nodes represent workstations and directed
edges, material flows, the underlying flow follows paths and proceeds through
a transfer process. Tutzauer’s entropy centrality is the only centrality metric
whose underlying assumptions match those of manufacturing networks.

The probability distribution associated to the path-transfer entropy can be used
to evaluate routing flexibility. Calculating the probability distribution of the
binary, directed network indicates the potential level of flexibility that the man-
ufacturing network can attain. On the other hand, the probability distribution
of the weighted, directed graph speaks to the extent to which said flexibility is
exercised in practice.

Practitioners should consider a number of aspects before deploying this metric.
Firstly, this is a computationally expensive calculation, particularly for moder-
ate, large and dense graphs, because it requires the identification all paths in G.
Secondly, because all paths inGmust be identified, the metric suffers from a loss
of sensitivity that has yet to be addressed in literature. Finally, the formulation
weighs all paths equally disregarding their length.

9.7 Summary

This Chapter illustrated the use of Tutzauer’s path-transfer flow entropy centrality
metric. Tutzauer explained that “flow beginning at a highly central node will stop
with nearly equal probability at all other nodes, and a flow beginning at a less central
node with have a much more uneven distribution of probabilities” [40]. Therefore,
this metric was originally intended to rank nodes by importance. However, this
work demonstrated that there is potential for more informative uses. For example,
calculating the path probability distribution instead of the path-transfer entropy of
a binary representation of a directed graph provides valuable insights regarding the
network structure. Furthermore, the path probability distribution of the weighted
representation informs on the effect of the skew in the strength of the relationship
among nodes.

In the context of manufacturing networks, the path probability distribution of the
network binary representation measures the potential for manufacturing flexibility.
On the other hand, the path probability distribution of the network weighted rep-
resentation determines the level to which said potential flexibility is exercised. This
information is valuable in Operations Research and helps bridge the gap between
potential and practical flexibility. Furthermore, it can aid production line design
from the onset in order to ensure increased manufacturing flexibility [63].
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10 Flow Networks

In all work presented up until now, the Bosch manufacturing network under study
was abstracted as a directed graph with workstations as nodes and material flows
as edges. In this Chapter, the concept of ”flow networks” is explored in order to
answer questions about the material flow.

In a manufacturing flow network, goods with different levels of processing move
through the system. They depart from a source, such as the raw materials storage
room, and arrive to a sink, like a warehouse for finished goods. Two assumptions
are made regarding the flow. Firstly, the flow is at steady state, i.e. raw materials
leave the source at some steady rate, and finished goods arrive to the sink at the
same rate. The second assumption is that of zero intermediate inventory levels, i.e.
while directed edges act as conduits for material with a stated capacity, vertices act
as junctions where material flows without accumulating.

In this Chapter, the appropriate procedure to determine the theoretical maxi-
mum production capacity and the location of bottlenecks will be discussed. For
this purpose, the content will be organized as follows. Some key concepts of flow
networks and flow need to be introduced first, followed by some operational excel-
lence vocabulary. Then, the methodology followed to construct the flow network
from the Bosch manufacturing data is presented. Note that this methodology has
some important differences with that presented in Chapter 5. Finally, the optimiza-
tion problem under study is stated and results are presented, followed by a number
of conclusions.

This work shares similarities with that of Omar and Plapper [61].

10.1 Definitions

10.1.1 Flow networks

A flow network G = (V,E) is a directed graph in which each edge (vi, vj) ∈ E has a
non-negative capacity c(vi, vj) ≥ 0 [104]. The requirements of flow networks are as
follows:

• A source s and a sink t vertex are present. If such nodes are not present or
there existed more than one source or sink, a supersource and a supersink can
be added. In this case, the capacity values are c(s, vi) =∞ and c(vi, t) =∞.
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• IfE contains an edge (vi, vj), then there is no antiparallel edge. In other words,
the edge (vj , vi) is not present. In order to model a flow problem with antipar-
allel edges (vi, vj) and (vj , vi), the network must be transformed to an equiv-
alent one containing no antiparallel edges. This is achieved by removing the
edge (vj , vi) and adding a new vertex v′ and two edges (vj , v

′) and (v′, vi) with
capacities equal to that of the original edge.

• Graph G is connected, i.e. for each vertex vi there is a path s vi  t. There-
fore, |E| ≥ |V | − 1.

10.1.2 Flow

Given a flow network G = (V,E) with a capacity function c, a source vertex s and a
sink vertex t; the flow in G is a real-valued function f : V × V → R that satisfies the
following properties:

• The flow from one vertex to another must be non-negative and must not ex-
ceed the capacity of the edge. Formally, ∀v ∈ V , the flow f follows the capacity
constraint 0 ≤ f(vi, vj) ≤ c(vi, vj).

• The total flow into a vertex other than the source or sink must equal the total
flow out of that vertex. Formally, ∀vj ∈ V − {s, t}, it is required that

∑
vi∈V

f(vi, vj) =
∑
vi∈V

f(vj , vi). (10.1)

10.1.3 OR vocabulary

The Operations Research vocabulary refered to in this Chapter, is defined here.
These definitions were obtained from the APICS Dictionary [105].

Bottleneck: A facility, function, department, or resource whose capacity is less
than the demand placed upon it. For example, a bottleneck machine or work center
exists where jobs are processed at a slower rate than they are demanded. Synonym:
bottleneck operation.

Capacity: The capability of a worker, machine, work center, plant, or organization
to produce output per time period. In simpler words, the number of units that can
be filled per unit time.

Capacity utilization: Goods produced, or customers served, divided by total out-
put capacity. It is a measure of how much of the capacity of an operation is being
used.
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Work in progress (WIP): A good or goods in various stages of completion through-
out the plant, including all material from raw material that has been released for
initial processing up to completely processed material awaiting final inspection and
acceptance as finished goods inventory. Synonym: in-process inventory.

10.2 Complex networks vs. flow networks in manufacturing

As noted earlier, the type of directed graph representing a flow network differs from
the complex network representation used in previous Chapters. In this Section, this
difference is clarified.

From an Operations Research perspective, a manufacturing network is made of a
group of workstations that add value to goods. The objective is to transform raw ma-
terials into a finished product. This can be abstracted mathematically as discussed
in previous Chapters. Each workstation is represented by a node and, the material
flow between pairs of workstations, by a directed edge. This type of manufactur-
ing network was exemplified in Fig. 5.3. However, nodes and edges can also have
properties summarizing other information related to the manufacturing network in
question. For example, nodes can have capacity values (i.e. the manufacturing ca-
pacity of the workstation they represent). Edges, as seen before, have weight values
indicative of the fraction of the total manufactured products that flow between pairs
of workstations.

In this Chapter, however, manufacturing networks are represented in terms of
flow networks (defined in Section 10.1.1). Each directed edge in a flow network
acts as a conduit for material, an thus its capacity is known. In addition, each node
represents a conduit junction and, with the exception of the source and sink, ma-
terial must flow through nodes without accumulating in them. The reader should
note, however, that the capacity of the edges in a manufacturing flow network may
not necessarily have a one-to-one link to a property of the physical system [61]. If
the capacity of the transport between nodes is assumed infinite (or is much greater
than the capacity of all the workstations), then the effective capacity of the edges is
constrained by that of the nodes. In this case, the appropriate capacity distribution
method should be agreed upon in order to most accurately represent the physical
world (see Section 10.3).

Flow networks are used to solve an optimization problem known as “maximum-
flow”. The objective is to compute the maximum rate at which materials can travel
from the source to the sink without violating capacity constraints. In manufactur-
ing, this translated to determining the network theoretical maximum production
rate. As a reminder, this is done under two assumptions: steady state flow and zero
intermediate inventory levels.
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10.3 Capacity distribution

In a manufacturing network, the capacity of the workstations is known. In addi-
tion, the capacity of the transports between workstations is also known. When the
transports are the limiting factor, their capacity should be considered for the edges.
However, in cases where the capacity of the transport is much higher that that of the
workstations, a different approach needs to be taken. In this case the capacity of the
nodes is used. Yet, the definition of flow networks requires capacity values for the
edges, not the nodes. Thus, one must decide how to distribute the capacity of a node
to its out-going edges to best abstract the real manufacturing network as a flow net-
work. A number of possible alternatives are introduced hereafter and summarized
in Table 10.1.

TABLE 10.1: Summary of capacity distribution formulations.

based on formulation comments

out-degree c(vi, vj) =
Ci

kout
i

Suitable when all customer nodes vj are identical
and have the same capacity Cj .

material flow c(vi, vj) =
wij∑
j wij

Ci This method should be reserved for cases where
the only information available is the real material
flows through the network.

customer node c(vi, vj) =
Cj∑
j Cj

Ci Appropriate when all customer nodes vj perform
the same task but have different capacity Cj .

10.3.1 According to the out-degree

One possibility is to make use of the out-degree of a node kout
i , defined as kout

i =∑
j aij . This can be calculated from the adjacency matrix A as explained in Chap-

ter 7, Section 7.2. Then, the capacity of each out-going edge from node vi could be
calculated as

c(vi, vj) = Ci/k
out
i . (10.2)

Omar and Plapper [61] explained that this method is suitable when all customer
nodes vj are identical and thus have the same capacity Cj .

10.3.2 According to the actual material flows

A second option is to consider the actual material flow traversing edge (vi, vj). This
information is available in the weight matrixW . Then the capacity of a node would
be distributed as follows

c(vi, vj) =
wij∑
j wij

Ci. (10.3)

Omar and Plapper [61] suggested that this method should be reserved for cases
where the only information available is the real material flows through the network.
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The authors warn that this method should be used with caution. They explain that
edge capacities determined using the actual material flows must be constrained to
a single product family. In addition, these values are likely to differ from those ob-
tained for a different product family. Thus, the flow network obtained cannot be
utilized to determine the theoretical maximum production rate for a different prod-
uct family. The authors also recommend to generate the weight matrix utilizing data
from an extended period of time. This is done to circumvent bias due to day to
day variations in manufacturing outputs. In this way, one would average out daily
fluctuations.

10.3.3 Considering the capacity of customer nodes

A third option is to take the capacity of customer nodes into consideration. In this
case, the capacity of workstation vi is distributed as follows

c(vi, vj) =
Cj∑
j Cj

Ci. (10.4)

Omar and Plapper [61] explained that this method should be used when all customer
nodes vj perform the same task but have different capacity Cj . This occurs, for
example, when there are two different models of the same piece of equipment.

10.4 Methodology

In order to solve the optimization problem known as “maximum-flow”, the Bosch
manufacturing network under study must be converted into a flow network. The
appropriate procedure, summarized in Fig. 10.1 is described hereafter. Note that, in
this Chapter, the complex network corresponding to product family F2 is used in-
stead of the full Bosch manufacturing network. The reader should refer to Chapter 6
for details on how product families were identified.

nodes capacitycomplex network

edges capacity

fix antiparallel edges

add source and sink

flow network

FIGURE 10.1: Step-wise methodology to obtain a flow network from
a complex network when node capacity values are known.
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10.4.1 Complex network

Following the step-wise procedure described in Fig. 10.1, the starting point to obtain
the appropriate “flow network” for product family F2 is its “complex network”. The
graph for F2 is characterized by the weight matrix in Eq. 10.5. Note that two artificial
nodes, a supersource s and a supersink t, have been added for clarity. These provide
information regarding the nodes that act as starting points for manufacturing (v24,
v25, v26 and v27), and those where production can finalize (v33, v34, v35, v36 and v37).
In addition, the weight listed for the appropriate edges (s, vi) and (vi, t) indicate the
frequency with which manufacturing starts or finalizes in node vi respectively.

W =



s v24 v25 v26 v27 v29 v30 v33 v34 v35 v36 v37 t

s 0 0.690 0.308 0.0002 0.002 0 0 0 0 0 0 0 0

v24 0 0 0 0.472 0.171 0.037 0.010 0 0 0 0 0 0

v25 0 0 0 0.189 0.088 0.024 0.007 0 0 0 0 0 0

v26 0 0 0 0 0 0.557 0.105 0 0 0 0 0 0

v27 0 0 0 0 0 0.217 0.045 0 0 0 0 0 0

v29 0 0 0 0 0 0 0.813 0.139 0.035 0.005 0.003 0 0

v30 0 0 0 0 0 0.162 0 0.607 0.198 0.018 0.015 0 0

v33 0 0 0 0 0 0 0.018 0 0.642 0.150 0.143 0.015 0.031

v34 0 0 0 0 0 0 0.002 0.150 0 0.292 0.313 0.170 0.074

v35 0 0 0 0 0 0 0 0.017 0.042 0 0 0.392 0.042

v36 0 0 0 0 0 0 0 0.010 0.030 0 0 0.422 0.046

v37 0 0 0 0 0 0 0 0.077 0.053 0.027 0.035 0 0.807

t 0 0 0 0 0 0 0 0 0 0 0 0 0


(10.5)

10.4.2 Nodes capacity estimation

As stated, the objective is to obtain the appropriate flow network, where nodes vi are
the abstract representation of workstations and edges have a capacity value c(vi, vj),
or simply cij , in the appropriate units (for example, units/hour). Following the steps
shown in Fig. 10.1, in addition to the “complex network” corresponding to product
family F2, the “nodes capacity” is necessary. Note that the raw data from the Bosch
production line used for this work does not indicate the capacity of each worksta-
tion. Thus, these capacity values must be estimated from the raw data contained in
the “train_date.csv” file.

The original time-stamp data contained in the “train_date.csv” file was shown in
Chapter 5. In summary, it is a comma-separated-value file with headers in the first
line and observations in subsequent lines. Each observation provides a manufactur-
ing item anonymized ID followed by a number of anonymized time-stamps associ-
ated to the workstations in which the item was processed. Missing values indicate
that the item was not processed at the specific workstation. An extensive exploratory
data analysis was conducted and is available to the interested reader in Appendix A.

In this work, the capacity of each workstation is estimated from the time-stamp
data. It is assumed to be equal to the highest throughput of each workstation in units
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processed per unit of time. The reader should note that the assumption that such
time period corresponds to maximum (or nearly maximum) capacity may not hold
true for all networks. However, it is a good compromise to estimate workstation
capacity.

The procedure to obtain the estimated workstation capacity is summarized in
Fig. 10.2. The necessary steps are briefly described hereafter. The code necessary to
reproduce these results is available in the flow_networks folder in [72].

raw data
train_date.csv

node capacity

count # of processed items
in most productive time lapse

solve maximum-subarray 
problem

determine t  at each visited 
v for all manufactured itemsi

0

calculate # of items 
processed at each t

calculate change array

fo
r 

a
ll 

v i

FIGURE 10.2: Step-wise methodology to estimate the capacity of each
node.

1. The initial time-stamp of each manufactured item at each visited workstation
is determined.

2. The number of items processed at each time-stamp value (from 0.0 to 1718.48
with granularity of 0.01) is calculated for each vi. For example, the number of
units processed in node v0 for the time-lapse between 0.0 and 1.0 is shown in
the left graph of Figure 10.3.

The objective is the to find the time of maximum productivity for each work-
station. This is known as the “maximum sub-array problem”. To solve it, a trans-
formation is required. Instead of looking at the number of items processed at each
time-stamp value, the change in items processed from one time-stamp to the next is
more useful. The change at time-stamp ti can be calculated as the difference between
the number of items processed at time-stamp ti and those processed at time-stamp
ti−1. Thus,

3. Calculate the “change array” for all vi. As an example, the “change array” of
node v0 for the time-lapse between 0.0 and 1.0 is shown in the right graph of
Figure 10.3.
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FIGURE 10.3: Left: Number of units processed vs. time (in
anonymized units) for node v0. Right: Change array vs. time (in
anonymized units) for node v0. In both graphs, only the fraction of
data corresponding to time-stamps values between 0.0 and 1.0 is plot-

ted for clarity.

4. Find the nonempty, contiguous sub-array whose values have the largest sum.
The maximum sub-array problem has been widely studied and can be solved
in O(n) time using Kadane’s algorithm [106]. The result obtained is the time
lapse where the highest number of items were processed.

5. Estimate the capacity of vi by counting the number of items processed in the
most productive time lapse for each vi and normalizing by time. The estimated
capacity of each workstation is shown in Table 10.2.

TABLE 10.2: Capacity estimation (in units/day) for each workstation
based on their most productive time.

vi C vi C vi C vi C

v0 880 v13 364 v26 167 v39 42
v1 1058 v14 288 v27 210 v40 21
v2 535 v15 165 v28 12 v41 45
v3 438 v16 177 v29 1498 v42 4
v4 457 v17 185 v30 1633 v43 42
v5 353 v18 166 v31 272 v44 28
v6 532 v19 182 v32 38 v45 45
v7 527 v20 348 v33 1608 v46 0
v8 880 v21 122 v34 1608 v47 28
v9 295 v22 119 v35 757 v48 45
v10 298 v23 108 v36 759 v49 33
v11 327 v24 311 v37 1499 v50 26
v12 364 v25 132 v38 41 v51 51

10.4.3 Edge capacity estimation

In the previous Section, the “nodes capacity” was estimated from the original time-
stamp data. As noted in Fig. 10.1, the “nodes capacity” in conjunction with the
“complex network” for product family F2 are necessary ingredients to produce a
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“flow network”. The next step forward requires the calculation of the “edges capac-
ity”.

As discussed previously, for the production line under study, the capacity of the
transports can be assumed to be infinite. Thus, the factor limiting the theoretical
maximum production rate of the network is the capacity of the workstations. Con-
sequently, node capacities need to be distributed among the out-going edges of each
node vi to obtain the necessary “edge capacities”. In this work, node capacity is
distributed according to the material flow values available in the weight matrix, as
described in Section 10.3.2. This method is chosen given that no other information
regarding this production line is available.

10.4.4 Dealing with anti-parallel edges

As described in Section 10.1.1, a flow network must not contain anti-parallel edges.
If both edges (vi, vj) and (vj , vi) exist, the network must be transformed to an equiv-
alent one containing no anti-parallel edges. This is achieved by removing the edge
(vj , vi) and adding a new vertex v′ and two edges (vj , v

′) and (v′, vi) with capacities
equal to that of the original edge. This procedure constitutes the “fix antiparallel
edges” step in Fig. 10.1.

10.4.5 Adding source and sink nodes

From its definition in Section 10.1.1, it is known that a flow network requires two
special nodes: a source node s and and a sink node t. However, in the Bosch manu-
facturing network, production can start is several different nodes and end in a few
other nodes, as previously shown in Fig. 9.3. In fact, for product family F2, manufac-
turing can start in nodes v24, v25, v26 or v27, and finish in either node v33, v34, v35, v36
or v37 as shown in Eq. 10.5. Thus, a supersource and a supersink nodes are added
(step “add source and sink” in Fig. 10.1). The supersource contains out-going edges
to all possible starting nodes. Similarly, the supersink node contains only in-going
edges coming from nodes where manufacturing can conclude. The capacity of edges
associated to either the supersource or the supersink is assumed infinite.

10.4.6 Final flow network

Following the steps described in the preceding Sections and summarized in Fig. 10.1,
is a necessary precondition to obtain the “flow network” that will be used to solve
the maximum-flow problem. In Fig. 10.4, the original complex network for product
family F2 (left graph) can be compared with the corresponding flow network (graph
on the right). Note that, just like in Eq. 10.5, a source s and a sink t have been added
to the complex network graph to facilitate comparison with its corresponding flow
network.
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FIGURE 10.4: Left: Manufacturing network corresponding to product
family F2 where a source node s and a sink node t have been added
to facilitate visualization. The thickness of the edges is related to the
wij values in the weight matrixW . Right: Flow network correspond-
ing to product family F2. The thickness of the edges represents their

capacity cij and is thus, related to the capacity of the nodes.

10.5 Optimization problem

The flow network illustrated in Fig. 10.4 was constructed with the objective to solve
an optimization problem commonly known as the “maximum flow problem”. The
goal is then to “compute the greatest rate at which we can ship material from the
source to the sink without violating any capacity constraints” [104]. This problem
can be rephrased using manufacturing friendly vocabulary as follows [61]:

Given a manufacturing flow network of known edge capacities, determine the
theoretical maximum production rate that the network can attain under the as-
sumptions of steady state flow and zero intermediate inventory levels.
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The maximum flow problem can be solved using the Ford-Fulkerson method
[104, 107], described in Section 10.6.

10.6 The Ford-Fulkerson algorithm

In order to succinctly explain the Ford-Fulkerson algorithm [107], a number of defi-
nitions are introduced hereafter.

Definition 7. Given a flow network G = (V,E) with a source s and a sink t, let f be a flow
in G. Considering the pair of nodes u, v ∈ V , the residual capacity cf (u, v) can be defined
as

cf (u, v) =


c(u, v)− f(u, v) if (u, v) ∈ E

f(v, u) if (v, u) ∈ E

0 otherwise.

(10.6)

Following the definition of flow networks that does not allow the presence of anti-parallel
edges, exactly one case in this equation applies to each ordered pair of vertices.

Definition 8. Given a flow network G = (V,E) and a flow f , the residual network of G
induced by f is Gf = (V,Ef ), where Ef = {(u, v) ∈ V × V : cf (u, v) > 0}.

Definition 9. Given a flow network G = (V,E) and a flow f , an augmenting path p is a
simple path from source s to sink t in the residual network Gf .

The algorithm. In the Ford-Fulkerson method [104, 107], edges are initialized with
a flow value f(vi, vj) = 0. The flow is augmented iteratively. In each iteration of the
method, an “augmenting path” p is found in the associated “residual network” Gf .
As a result, the total flow from source s to sink t increases. However, the value of the
flow of each individual edge f(vi, vj) may increase or decrease as needed, as long
the overall flow from source s to sink t is increased. The algorithm terminates when
there is no “augmenting path” p available from source s to sink t. Upon termination,
this process yields the maximum flow.

The appropriate pseudo-code is summarized in Algorithm 2. A detailed descrip-
tion of different algorithms and running times can be found in [104].

It should be noted that the augmenting path used in the Ford-Fulkerson method
does not necessarily correspond to a manufacturing path. The method chooses
paths following a breadth-first-search, which gives shortest paths from source to
sink [108]. Despite this geodesic path search, the method correctly determines the
maximum production capacity. In addition, reverse engineering of the maxed out
edges allows the identification of limiting resources (bottleneck nodes).
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Algorithm 2

1: function FORD-FULKERSON(G, s, t)
2: for each edge (vi, vj) ∈ E do
3: initialize flow f(vi, vj) to 0
4: end for
5: while there exists a path p from s to t in the residual network Gf do
6: cf (p) = min{cf (u, v) : (u, v) is in p}
7: for each edge (u, v) ∈ p do
8: if (u, v) ∈ E then
9: f(u, v) = f(u, v) + cf (p)

10: else
11: f(v, u) = f(v, u)− cf (p)
12: end if
13: end for
14: end while
15: return f
16: end function

10.7 Results

Application of the Ford-Fulkerson method produces the following results. The max-
imum production capacity for the manufacturing network under study, bearing the
assumptions of steady state flow and zero intermediate inventory levels, is of 408
units/day. This can also be interpreted as 408 units should be scheduled for daily
production in order to guarantee steady flow of materials from source to sink with-
out accumulation and/or intermediate inventory.

Furthermore, the Ford-Fulkerson method returns the flow fraction graph shown
in Fig. 10.5. This graph indicates the fraction of the edge capacity that has been con-
sumed in order to reach the maximum production capacity. The flow fraction value
is always in the range between 0 (i.e. 0%) and 1 (i.e. 100%). Comparing the flow
fraction digraph in Fig. 10.5 against the original flow network in Fig. 10.4, allows
to make observations about the flow. For example, it is clear that workstations v26
and v27 must be used at 100% capacity to reach the calculated steady state maximum
production rate. Since the edges (v24, v29), (v24, v30), (v25, v29) and (v25, v30) are also
used at 100% capacity, that translates to workstations v26 and v27 blocking the flow
of any further WIP processed in workstations v24 and v25. Thus, it can be concluded
that workstations v26 and v27 are the bottleneck of this operation.

10.8 Discussion

The study of flow networks is hardly new. In fact, the work of Ford and Fulkerson
dates to 1962 [107]. Furthermore, recognition of the potential of flow networks in
Operations Research can be attributed to Alderson’s 2008 paper in which he advo-
cated for the use of network science in this field [36]. Yet, as indicated in Chapter 3,
flow networks have only been used once in recent research to study manufacturing
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FIGURE 10.5: Flow fraction digraph produced by the Ford-Fulkerson
method when applied to the flow network of product family F2

networks. Omar and Plapper [61] proposed the use of flow networks to solve the
maximum flow optimization problem in order to determine the maximum theoreti-
cal production rate. This is done under two assumptions: steady state flow and zero
intermediate inventory levels. In addition, the authors explained how to identify
limiting resources. The work in this Chapter is based on Omar and Plapper’s [61].

In this Chapter, the maximum flow problem was solved by means of the Ford-
Fulkerson method. The algorithm utilizes breadth-first-search to find the “augment-
ing paths”. This search method finds geodesic paths between pairs of nodes. As
a result, the Ford-Fulkerson method does not visit workstations following manu-
facturing paths. Instead shortest paths from source s to sink t are followed. Thus,
not all workstations in the manufacturing network are “visited” in order to calcu-
late the theoretical maximum production rate. However, this choice of path search
guarantees computational efficiency, determining the maximum production rate of
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the whole system quickly. Yet, one must be cognizant that the flow fraction graph
in Fig. 10.5 is not a representation of the manufacturing network under study. It
is only intended to graphically identify the workstations that would be utilized at
maximum capacity in the theoretical maximum production rate scenario.

These results are an exciting step towards the use of plant floor data for opti-
mization purposes. Yet, caution should be exercised. The assumption of zero inter-
mediate inventory levels can jeopardize throughput through blocking and starving
in serial production lines [109]. And while the manufacturing network under study
does not seem to be a serial production line at first sight, further analysis is required.
Note, for example, that the findings in Chapter 9 indicated that, while there is poten-
tial for flexible routing of operations, manufacturing steps are still followed mostly
in serial mode in practice. Thus, further research is necessary to determine the extent
to which zero intermediate inventory levels may affect throughput [61].

At this time, the following interpretation is proposed in terms of Operations Re-
search:

A manufacturing flow network is a graph G = (V,E) where nodes represent
workstations and directed edges indicate conduits for material flow with a stated
capacity value c(vi, vj). Flow networks are constructed with the objective of
solving an optimization problem known as “maximum-flow”. The solution pro-
vides the following information:

• The theoretical maximum production rate, i.e. the maximum number of
units that can be produced per unit of time under the assumptions of steady
state flow and zero intermediate inventory levels.

• The limiting resource(s). When the capacity of the edges is derived from
the capacity of the workstations, the limiting resources are workstations
that represent a bottleneck operation in the manufacturing network.

Practitioners should exercise caution, since the assumption of zero intermediate
inventory levels could potentially jeopardize throughput equivalently to serial
production lines. More research is encouraged in this regard.

10.9 Summary

This Chapter illustrated the use of flow networks as a tool to determine the maxi-
mum theoretical production rate that a manufacturing network can attain. This was
done under two assumptions: the flow is at steady state and there is no intermediate
inventory levels. In addition, the identification of limiting resources or bottlenecks
was demonstrated from analysis of the flow graph produced when solving the max-
imum flow optimization problem. Finally, the appropriate metric interpretation was
provided as well as a number of aspects to consider when applying it.
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11 Discussion

Throughout this work, several well-known complex network metrics were intro-
duced. Their use was illustrated using a manufacturing complex network con-
structed from time-stamp data that originated from a Bosch production line. The
results obtained were discussed in the context of existing research and an appro-
priate interpretation was proposed for those metrics deemed suitable. Indeed, the
objectives for this work, listed in Chapter 4, entailed

1. clarifying the areas where popular complex network metrics are applicable for
manufacturing networks,

2. proposing the use of other existing complex network metrics whose underly-
ing assumptions are more adequate for manufacturing networks, and

3. determining the appropriate interpretation of these metrics in terms of Opera-
tions Research, and specifically, for manufacturing networks.

To this end, Chapters 7, 8 and 9 focused on manufacturing networks in which
nodes represent workstations and directed edges, material flows. Additionally, the
number of transactions among pairs of workstations could be codified as an edge
weight and used to differentiate structural from practical characteristics of the net-
work. In Chapter 10, however, the manufacturing network under study was ab-
stracted as a flow network. In a manufacturing flow network, nodes represent work-
stations but edges act as conduits for material with a stated capacity value.

In this Chapter, all the metrics introduced in this work are discussed in terms of
three important aspects listed in Fig. 11.1. Firstly, their suitability is evaluated based
on whether their underlying assumptions match those of manufacturing networks.
Then, the metrics interpretation is re-instated, evaluated against said assumptions
and framed in the context of Operations Research. Finally, the shortcomings of appli-
cable metrics are discussed. A summary of the complex network metrics presented
in this work along with their suitability and interpretation is shown in Table 11.1.

suitability interpretation shortcomings

FIGURE 11.1: Aspects of the studied complex network metrics dis-
cussed in this Chapter.
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TABLE 11.1: Summary of studied metrics listing their suitability and
interpretation in the context of manufacturing networks.

Metric Chapter Suitable? Interpretation

in-degree 7 Yes Number of direct upstream suppliers
out-degree 7 Yes Number of direct downstream customers.
in-strength 7 Yes Measure of the incoming workload from suppliers.
out-strength 7 Yes Measure of the difficulty faced by the node to satisfy

downstream customer needs.
betweenness 7 No N/A
clustering 7 Yes Measure of connectedness.
PageRank 8 No N/A
entropy 9 Yes The associated probability distribution determines rout-

ing flexibility. From the binary, directed graph, the poten-
tially attainable level of flexibility is determined. From the
weighted, directed graph, the extent to which said flexi-
bility is exercised in practice is measured.

flow network 10 Yes Solving the maximum-flow problem provides the theoret-
ical maximum production rate under the assumptions of
steady state flow and zero intermediate inventory levels.
Limiting resources can be identified using the flow frac-
tion graph.

11.1 Metrics suitability

The main factor determining a metric suitability is its underlying assumptions. Specif-
ically, centrality metrics make assumptions regarding the route that the flow follows
on the network as well as the flow propagation method. As discussed in Section 2.3,
these two factors create a two-dimensional typology widely known as “Borgatti’s
typology” [38]. A suitable metric must share the same typology as the network it is
trying to describe.

The flow in manufacturing networks follows paths and progresses by means of
a transfer process. A path is defined as a sequence of linked nodes in which neither
nodes nor edges are repeated. In turn, a transfer process is a type of traffic flow
where an item can only be one place at a time and moves from node to node in the
network. Then, any metric utilized to characterize a manufacturing network should,
in principle, belong to the same Borgatti’s typology.

However, this rule could be defined as sufficient yet not always necessary. For
example, the in- and out-degree were deemed suitable to describe manufacturing
networks although their propagation method is parallel duplication, as indicated in
Table 2.1. The same can be said of the in- and out-strength. Yet, these metrics ap-
plication should be restricted to the domain specific interpretation provided, as dis-
cussed in the next Section.

Other metrics, like betweenness centrality and PageRank, were deemed unsuit-
able based on their underlying assumptions and the Borgatti’s typology to which
they belong. Betweenness centrality shares the propagation method of manufactur-
ing networks, but the routes followed are geodesics instead of paths. Indeed, this met-
ric was developed to identify information gatekeepers in communication networks. As
a consequence, this metric performs poorly when the objective is the identification of
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gatekeepers in manufacturing networks [51] where the flow could overcome a gate-
keeper following a different (lengthier) path. On the other hand, PageRank belongs
to a completely different Borgatti’s typology where the flow progresses following
walks by means of parallel duplication. Consequently, the underlying assumptions are
far removed from those of the networks under study.

Tutzauer’s path-transfer flow entropy is the only centrality metric developed
while explicitly stating that the flow follows paths by means of a transfer process.
This metric, is thus, suitable for manufacturing networks given that it shares the
same underlying assumptions. Yet, as discussed in Chapter 9 and in the following
Section, its interpretation is anything but straight-forward.

It should also be noted that not all the metrics studied are centrality metrics.
For example, the clustering coefficient and the maximum-flow problem in flow net-
works are not graph centrality metrics. They were deemed suitable based on their
objectives and how those matched problems associated to manufacturing networks.
The clustering coefficient, for example, is a metric of connectedness and thus, is
useful to characterize a manufacturing network as a whole (or on a by-subgraph ba-
sis). The objective is to determine whether the production line is serial or not. The
maximum-flow problem in flow networks was indeed developed with Operations
Research objectives in mind [36, 107]. Its objective matches OR interests in determin-
ing maximum theoretical production rates. Furthermore, this work and Omar and
Plapper’s [61] identified the flow-fraction digraph usefulness for the identification
of limiting resources.

In conclusion, practitioners should evaluate complex network metrics before
blindly applying them to characterize manufacturing networks. Firstly, the underly-
ing assumptions should be evaluated. In particular, a thorough analysis of similari-
ties and differences between the problem the metric originally intended to solve and
the current network under study must be made. Then, the characteristics of the flow
for a specific (centrality) metric should be determined and compared with those of
the network under study. While certain differences may coexist, they limit the met-
ric interpretation. Thus, the use of metrics where the underlying assumptions match
the flow characteristics of the network under study is encouraged.

11.2 Metrics interpretation

As indicated in Fig. 11.1, once a metric suitability has been determined, the appro-
priate interpretation must be agreed upon. The interpretations of all suitable met-
rics studied in this work are listed in Table 11.1. These were proposed following a
thorough literature review, analysis of the metrics Borgatti’s typology and under-
lying assumptions, and evaluation of the results when applied to manufacturing
networks. The objective was to provide a useful and actionable interpretation in
terms of Operations Research.
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From Table 11.1, it can be observed that simple metrics whose typology does not
perfectly match the underlying assumptions of manufacturing networks have a nar-
row interpretation. For example, the in- and out-degree are restricted to a mere ac-
counting of suppliers and customer nodes respectively; and the in- and out-strength
are circumscribed to the accounting of incoming and outgoing workloads. Practi-
tioners are warned against using these metrics with more far-reaching interpreta-
tions. Specifically, users should be well aware of these metrics weaknesses as listed
in the next Section.

When a metric underlying assumptions perfectly match those of manufacturing
networks, their use and interpretation widens. For example, the probability distri-
bution of the path-transfer flow entropy centrality was found to be useful in deter-
mining both potential and practical routing flexibility. In Chapter 9, it was shown
that the path probability distribution of the binary, directed graph aided practition-
ers in determining the potentially attainable level of manufacturing flexibility. On
the other hand, the path probability distribution of the weighted, directed graph
measures the extent to which said flexibility is exercised in practice.

The interpretation of non-centrality metrics is typically more straight-forward.
The clustering coefficient was developed as a measure of connectedness and that is
how it is interpreted in the context of manufacturing network. While the traditional
use of this metric was demonstrated in Chapter 7, some domain specific suggestions
were made. In a manufacturing network, centrain groups of workstations are highly
connected. This is because some flexibility is possible for certain production steps.
However, there is a generally prescribed order that must be followed. In the words
of Browne et. al. [100], “the system can potentially alter the order of a number of
manufacturing operations, yet a required partial precedence structure exists”. Thus,
the strongly connected component subgraph clustering coefficient was proposed as
a more appropriate metric of connectedness.

The maximum-flow problem solved with flow networks is another example of
a non-centrality metric. In this case, the optimization problem was originally de-
fined with Operations Research in mind. Thus, its interpretation is straight-forward.
Solving the maximum-flow problem is conducive to the theoretical maximum pro-
duction rate. It must be noted that two assumptions are made: the flow is on steady
state and there are zero intermediate inventory levels. In addition, it was demon-
strated in Chapter 10 that limiting resources can be identified using the flow fraction
graph.

As expected, no interpretation is provided for metrics deemed unsuitable in Ta-
ble 11.1. This is the case of betweenness centrality and PageRank. Note however,
that in Chapter 7, more research is encouraged regarding the use of betweenness
centrality in conjunction with the network graph to aid the identification of nodes
that may disconnect upstream suppliers from their downstream tier. Yet, practition-
ers are warned against using betweenness centrality and PageRank for bottleneck
and/or key machine identification.
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11.3 Metrics shortcomings

Once a metric suitability is determined and their interpretation agreed upon, the
only step left is to identify its shortcomings, as shown in Fig. 11.1. Indeed, under-
standing what a metric cannot do is as important to ensure it is appropriately used.
Thus, the limitations and weaknesses of the metrics studied in this work are listed
hereafter and summarized in Table 11.2.

TABLE 11.2: Summary of limitations suffered by the metrics pre-
sented in this work.

Limitations Affect

Loss of seasonality all metrics
Loss of historical changes

Computational efficiency path-transfer flow entropy
Loss of sensibility
All paths are weighted equally

Applicability due to far-reaching assumptions flow networks

A first aspect to consider is that, in all cases, these metrics were utilized to char-
acterize a network constructed using data from a two year long period of time. The
justification given was “to average out data seasonality”, which is typical of manu-
facturing. The drawback is the lack of a temporal component to this data. Take the
in- and out-strength for example. These values are the number of processed items
in a time lapse of two years. Thus, no information is available regarding peak and
down times, for example. In addition, any historical changes are also lost. For ex-
ample, the in- and out-degree may have changed over time. Some new connections
may have been added and others discontinued. Yet this information is no longer
available: all connection, regardless of when they occurred, are listed. The graph
constructed is static, it aggregates two years of data and does not provide any infor-
mation regarding variations in time. Some authors noticed this [45, 57] and proposed
methods to evaluate if the inferred internal structure of the network is consistent
over time. While this is outside the scope of this work, more research is encouraged
in this regard.

Some metrics also have intrinsic limitations and weaknesses. For example, the
path-transfer flow entropy discussed in Chapter 9 is computationally expensive.
This metric, an thus the associated probability distribution used to evaluate rout-
ing flexibility, requires the search for all possible paths in G. Since the number of
paths grows combinatorially as the number of nodes and edges increases [97], the
time required to find them all and to then evaluate their probability increases. While
some authors suggested path pruning as a possible solution [40, 85, 95, 96, 98], this
work indicated that the path search may not be the limiting computational routine
(see Section 9.5). In addition, the path-transfer flow entropy centrality suffers from
loss of sensibility as well. This means that neighboring nodes tend to have very
similar entropy values. As noted in Chapter 9, this still needs to be addressed in
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literature. Finally, all paths are weighted equally ignoring their length. Thus, more
research is needed to understand how these aspects affect entropy centrality.

Yet other metrics may have assumptions that are too far removed from the real-
ities of manufacturing. This is the case of the theoretical maximum production rate
calculated from the maximum flow problem in flow networks. Note that this theo-
retical production rate is calculated based on two strong assumptions: steady state
flow and zero intermediate inventory levels. As discussed in Chapter 10, the as-
sumption of zero intermediate inventory levels can jeopardize throughput through
blocking and starving in serial production lines [109]. Thus more research is encour-
aged to understand how zero intermediate inventory levels may affect throughput
in manufacturing networks.
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12 Conclusions

12.1 Summary

In this work, the mathematical tools of network science were deployed to character-
ize manufacturing networks. The literature review presented in Chapter 3 demon-
strated that a limited number of records exists on the subject. These are concentrated
on the past decade, from 2012 to the present, coinciding with the increased digitaliza-
tion and data generation of the fourth industrial revolution. However, most existing
literature fails to evaluate a number of important aspects regarding the suitability
and adequate interpretation of the network science machinery deployed.

In order to fill this research gap, this work pursued objectives aimed at consoli-
dating the use and understanding of network science in the context of manufactur-
ing networks. Listed in Chapter 4, these objectives entailed:

• determining a complex network metric suitability, and thus identifying areas
where popular existing complex network metrics can be applied in the context
of manufacturing networks;

• proposing the use of less popular metrics whose underlying assumptions are
better aligned with those of manufacturing networks, and thus make them
more suitable; and

• providing an adequate and actionable interpretation for suitable metrics in terms
of Operations Research.

While it was not explicitly listed as an objective, this work also stressed the shortcom-
ing of suitable metrics. Indeed, a complete interpretation cannot be provided unless
a metric limitations and weaknesses are fully understood.

In order to fulfill these objectives, this work used data corresponding to a Bosch
production line to construct the appropriate manufacturing network. The necessary
methodology was described in Chapter 5 and the full graph was shown in Fig. 5.3. In
addition, product families were identified in Chapter 6, and their respective complex
networks illustrated in Fig 6.2.

The rest of this work presented a number of self-contained Chapters where dif-
ferent complex network metrics were discussed. Chapter 7 was concerned with tra-
ditional topological metrics such as degree, strength, betweenness centrality and the
clustering coefficient. Chapter 8 discussed the famous PageRank algorithm used
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behind Google search engine. Chapter 9 proposed the use of path-transfer flow en-
tropy for manufacturing networks due to their matching underlying assumptions.
And Chapter 10 promoted the use of flow networks and the solution to the maxi-
mum flow problem as an alternative for bottleneck identification.

These four Chapters have a number of commonalities. In them, each metric is
defined and then exemplified on the Bosch production line network (or in a network
corresponding to a product family). Then, a thorough analysis of each metric flow
related assumptions was conducted. Special focus was drawn to whether the metric
underlying assumptions match those of manufacturing networks. Thus, the first
aspect considered is the suitability of each complex network metric for the problem
at hand. In this regard, it was stressed that complex networks metrics should never
be utilized blindly. Instead, the problem for which they were derived and the flow
they describe should be analyzed and compared to those of the network under study.
When proper agreement is found, the metric is considered suitable. Only suitable
metrics should be used to characterize manufacturing networks.

For complex network metrics considered suitable in the context of manufactur-
ing networks, an adequate and actionable interpretation was provided. The formula-
tion of said interpretation stemmed from

• a thorough literature review where the metric use in manufacturing complex
networks was evaluated;

• analysis of the results obtained when utilizing the metric on the Bosch manu-
facturing network; and

• the similarities between manufacturing networks and the problem for which
the metric was originally derived.

In this work, it was stressed that the interpretation of complex network metrics has
a strong domain-specific component. Caution was advised to practitioners. In fact,
this work strongly suggests against “borrowing” interpretations from other (more
developed) fields.

Along with each metric interpretation, the shortcomings of the suitable metrics
were highlighted. In each Chapter, practitioners were advised on limitations and
weaknesses that may have an effect on the applicability of the metrics in industrial
settings. It was stressed that understanding what a metric cannot do is as important
to ensure it is appropriately used.

Finally, these three aspects, suitability, interpretation and shortcomings, were
discussed in Chapter 11 for all metrics. It was highlighted that, while matching
underlying assumptions are sufficient to consider a metric suitable, exceptions do
exist. However, when the underlying assumptions of a metric are removed from
those of the complex network under study, the metric interpretation tends to be
circumscribed. In addition, several limitations are easily identified indicating that
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their applicability is restricted. On the other hand, metrics whose underlying as-
sumptions match those of manufacturing networks have a wider interpretation and
open a number of research avenues.

12.2 Evaluation of objectives fulfillment

This work fulfilled the objectives listed in Chapter 4 and re-instated in the previous
Section.

The suitability of popular existing complex network metrics in the context of
manufacturing networks was discussed in Chapters 7 and 8. In fact, it was deter-
mined that in- and out-degree, in- and out-strength and the clustering coefficient
were suitable while betweenness centrality and PageRank were not.

Other existing metrics whose underlying assumptions are better aligned with
those of manufacturing networks were proposed and exemplified in Chapters 9
and 10. The probability distribution associated with the path-transfer flow entropy
proved to be an interesting tool for evaluating routing flexibility in manufacturing.
In addition, the flow fraction graph associated with solving the maximum flow prob-
lem of flow networks is adequate to identify limiting resources. In both cases, av-
enues for future research were identified and are discussed in detail in Chapter 13.

Finally, the appropriate Operations Research centered interpretation was pro-
vided for each suitable metric in their respective Chapter. In addition, each metric
limitations and weaknesses were identified highlighting the shortcomings that prac-
titioners may experience when deploying the metrics in industrial settings.
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13 Future Work

This work has opened several avenues worthy of future research. These are listed
hereafter.

Path-transfer flow entropy and clustering coefficient correlation: As noted in Chap-
ter 7, the clustering coefficient is a measure of connectedness. It was proposed to use
the subgraph clustering coefficient in order to measure the connectedness of strongly
connected components, yet a local clustering coefficient for each node can also be de-
termined. On the other hand, the path probability distribution associated with the
path-transfer flow entropy centrality was used in Chapter 9 as a measure of routing
flexibility. It can be argued that these two metrics have goals that share similarities.
An interesting avenue for future research would entail the analysis of possible cor-
relations between these metrics and clarification on the aspects in which they differ.

Potential of betweenness centrality to identify nodes that disconnect upstream
suppliers from their downstream tier: As discussed in Chapter 7, in the Bosch
manufacturing network example, the “important” nodes according to betweenness
centrality were v29, v30 and v39. Observation of the manufacturing network graph in
Fig. 5.3 led to the conclusion that these nodes can potentially disconnect upstream
nodes from their downstream tier. Future research should determine whether this
proposition holds true for all manufacturing networks.

Betweenness centrality based on paths instead of geodesics: In Chapter 7, it
was explained that betweenness centrality measures the fraction of times in which
a node v appears on the geodesic path σ between any two other nodes s and t.
The metric was deemed unsuitable for manufacturing networks due to the fact that
geodesics do not accurately represent the flow in manufacturing networks. Other
authors have also recognized this shortcoming for other applications of the metric
[110, 111]. Thus, future research should focus on the development, suitability and
interpretation of a path-based betweenness centrality for manufacturing networks.

Path-transfer flow entropy - weighing paths considering their length: As noted
in Chapter 9, all the paths in graph G are weighted equally when determining the
path probability distribution pij between nodes vi and vj . However, this is unlikely
to be a realistic representation of manufacturing networks were very short and very
long paths are unlikely. In fact, in Appendix A it was shown that, for the Bosch
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manufacturing network, most manufactured items visited 8 or 13/14 workstations.
Thus, further research should evaluate possible modifications to Tutzauer’s formu-
lation to properly weigh manufacturing paths according to their length.
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A Exploratory Data Analysis on
Raw Time-Stamp Data

As introduced in Chapter 5, the time-stamp data available for the Kaggle competi-
tion titled “Bosch Production Line Perfomance Competition”[71] was used to pro-
duce the manufacturing network studied. In this Appendix, an exploratory data
analysis (EDA) on the raw data contained in the “train_date.csv” file is conducted.
It provides information regarding:

• which workstations were visited by each manufactured item;

• the total number of workstations required to transform raw materials into fin-
ished goods;

• the time-stamp pattern and granularity;

• total manufacturing time for each recorded instance;

• span of time spent on each manufacturing line for each manufactured item.

In the following sections, this information is further analyzed to draw conclu-
sions regarding the dataset studied.

A.1 Most visited workstations

Not all workstations are used at the same capacity. As observed in Figure A.1, while
workstations v29, v30, v33, v34 and v37 attend to approximately 95% of the manufac-
tured items, workstations v42 and v46 process well below 1% of them.

A.2 Average number of visited workstations

In addition, the number of workstations required to process each manufactured
good is not constant. As shown in Figure A.2, 71.2% of items require 13 or 14
workstations to be transformed from raw materials into finished goods, 19.5% pass
through 8 workstations, and the remainder require any number between 0 (no data
recorded) and 23 workstations.
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FIGURE A.1: Use frequency of each workstation in Bosch Production
Line shows great heterogeneity in terms of usage.

A.3 Time-stamp

All time-stamp values in the dataset are anonymized. A plot showing the start time
(itime) and the finish time (ftime) frequency is shown on Figure A.3. A few ob-
servations can be drawn:

• A periodic pattern seems likely.

• The time values vary between 0.0 and 1718.48 with granularity of 0.01.

• A gap can be observed in the mid-section of the plot.
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FIGURE A.2: Number of workstations required to transform raw ma-
terials into manufactured goods.

FIGURE A.3: Frequency graph for time-stamp values for both, itime
which corresponds to the first time-stamp value recorded for each
item (depicted in blue), and ftime which indicates the last time-

stamp recorded for each item (colored in red).

The periodic pattern is further evidenced by calculating the auto-correlation co-
efficient [112] between frequency values for all possible time-stamp values, i.e. be-
tween 0.0 and 1718.48 with granularity of 0.01. As observed in Figure A.4, seven
peaks can be counted between periodic maximums (indicated in red), whose period
is ≈ 16.75. Assuming each of the inter-maximums peaks corresponds to one day of
the week and periodic maximums account for weeks, the granularity of 0.01 would
represent a time-frame of ≈ 6 minutes. Furthermore, under this assumption, the full
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dataset would account for 102.6 weeks (≈ 2 years) of manufacturing data.
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FIGURE A.4: Auto-correlation vs. time (in arbitrary units) showing
periodic behavior. Given the existence of seven peaks between one
periodic maximum and the next (indicated in red), it can be assumed
that these periodic maximums account for weeks while intermediate
peaks account for days. Since weeks (periodic maximums) are sepa-
rated by a value of≈ 16.75 (in anonymized units), it can be concluded

that the granularity of the data (0.01) corresponds to ≈ 6 minutes.

A.4 Key performance figures

Some key performance figures are represented in Figure A.5 and Table A.1. The
following observations can be extracted:

• For all represented figures, the values spread on multiple decades.

• While the required processing time in lines L0, L1 and L3 is roughly equiva-
lent; it is considerably lower for line L2.

• The value adding time (VAT) is only a small portion of the total manufacturing
time (TT). Using the mean values presented in Table A.1, the average lead-time
is 10.72× 6 ≈ 64 minutes consisting of a value adding share of 5.4%.

1There are 357019 items processed in line L2. From these, only 301 were calculated to have spent a
time of at least 0.01 in the line. The mean time in line L2 is 0.002 (≈ 1.2 minutes), i.e. the processing
time is likely to be shorter than the data sampling time. Other possible explanation could be that the
sensors’ location is either at the beginning or end of the line and therefore, they do not appropriately
record permanence time.
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FIGURE A.5: Left: Boxplot representing manufacturing time in each
processing line. Right: Boxplot representing total manufacturing time

(TT), value adding time (VAT) and non-value adding time (nVAT)

TABLE A.1: Key performance figures for Bosch Manufacturing Line

Min 1st quantile Mean 3rd quantile Max

L0 0.0 0.03 0.08 0.04 298.60
L1 0.0 0.02 0.77 0.12 321.38
L21 0.0 0.00 0.00 0.00 42.80
L3 0.0 0.02 0.35 0.03 211.71

VAT 0.0 0.05 0.58 0.08 312.46
nVAT 0.0 1.61 10.14 10.93 662.27
TT 0.0 1.71 10.72 11.77 699.20

A.5 Conclusions

The EDA presented in this Appendix leads to the following conclusions:

• the time span of the dataset is of approximately 2 years;

• most items require either 8 or 13/14 workstations (out of 52 possible) to be
fully processed;

• the workload of different workstations is highly heterogeneous; and

• the VAT is only a small fraction of the total processing time.
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B Strongly Connected
Components

B.1 Strongly connected components

As explained in Chapter 2, in directed graphs, a strongly connected component
(SCC) can be defined as follows:

Definition 10. A SCC in a directed graphG = G(V,E) is a maximal set of vertices C ⊆ V
such that for every pair of vertices u and v in C, there exists both a path u  v and a path
v  u. Thus, u and v are reachable from each other.

B.1.1 Application example

The SCC of the Bosch manufacturing network presented in Fig. 5.3 are listed in Ta-
ble B.1.

TABLE B.1: Strongly connected components in the Bosch production
line network in Fig. 5.3. In this table, the elements in each SCC are

indicated using i for clarity. Note that i ≡ vi.

Strongly connected components

[0, 1, 2, 3]
[4, 5, 6, 7, 8, 9, 10, 11]
[12, 13, 14, 15]
[16, 17, 18, 19, 20, 21, 22, 23]
[24]
[25]
[26]
[27]
[28]
[29, 30, 31, 32, 33, 34, 35, 36, 37]
[38]
[39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51]
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