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Abstract

Multiple-input multiple-output (MIMO) technology is an integral part of many current wire-
less communication systems that can drastically improve the data rates and the spectral
efficiency. One major performance limiting factor in MIMO communication is the inter-
channel interference (ICI) that adversely affects the transmission’s achievable rate, since the
receiver has to deal with multiple interfering symbol streams that are transmitted concur-
rently through a channel subject to random noise and interference. In the case when the
channel-state information (CSI) is known at the receiver, i.e., CSIR, it could be used by
the latter to compensate for the undesired effects of ICI. Although the problem of symbol
detection in MIMO systems — where the knowledge of CSIR is available — is a well stud-
ied problem with numerous classical detection methods, the complexity of optimal detection
methods increase prohibitively in systems with large dimensions, making them impractical
for real-time communication.

The problem of signal detection in precoded MIMO channels without explicit knowledge
of the CSIR is challenging and still being considered in recent research. In particular, this
problem is a common occurrence in systems where CSI at the receiver is not available, e.g.,
time-division duplex (TDD) systems. In this thesis, we investigate the problem of multi-
antenna signal detection in the case of a highly distorted received signal due to the ICI
effects. The core idea of this thesis is to use pilot data, without explicitly estimating the CSI,
to improve the detection performance at the receiver. Motivated by low-complexity signal
detection and given the accessibility to pilot data, which form an integral part of commu-
nications systems, in this thesis, we propose ML based techniques for MIMO detection in

systems where the downlink transmission is precoded using imperfect CSI at the transmitter.
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Firstly, in the context of a single-user MIMO system, we address the problem of MIMO
detection when the received signals are highly distorted, i.e., the case where the signal dis-
tortion is caused by signals being precoded with a highly degraded CSI at the transmitter
(CSIT). In this setting, we propose ML-based MIMO detectors robust to severe CSIT degra-
dation. The second and third contributions relate to a downlink multi-user multiple-input
single-output (MU-MISO) system, for which we propose ML-based detectors that are robust
to inaccurate CSIT for uncoded and coded systems, respectively. Herein, the proposed ML
detectors are presented as eavesdropping attacks, where, by using the proposed ML detectors,
an eavesdropper (Eve) is able to learn the symbol detection function based on precoded pi-
lots and to detect the transmitted symbols, intended for legitimate users, with high accuracy.
To counteract these attacks, six symbol-level precoding (SLP)-based countermeasures are
proposed with varying security, complexity, and power consumption trade-offs. Numerical
results validate the effectiveness of the proposed ML-based detectors and the robustness to

the harmful effects of ICI.
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Chapter 1

Introduction

This chapter introduces the context and the problems addressed in this thesis. The mo-
tivation, research gaps, contributions and organization of the thesis are presented in the

subsequent sections.

1.1 Background

Driven by the increasing demands of higher speeds and lower latency wireless communication
services, e.g., Enhanced Mobile Broadband (eMBB), Internet of Things (IoT), autonomous
driving, and Virtual Reality (VR), fifth generation (5G) cellular networks are currently being
provisioned worldwide, providing the basic infrastructure for these services. According to
the Cisco Annual Internet Report | |, by 2023, about two-thirds of the global population
will have Internet access with a 5.3 billion total users, nearly 29.3 billion devices will be
connected, accounting for more than three times the world population, and 5G connection
speeds averaging 575 Mbps, resulting in 13 times more than the average mobile network
connection speed. While 5G strives to meet these expectations, its successor generation,
named 6G wireless system, is being proposed to overcome several limitations in 5G [ ,
, .

Multiple-input multiple-output (MIMO) technology, i.e., the technology of transmit-
ting multiple data streams from multiple antennas and of performing detection of these
streams at a multi-antenna receiver, is an integral part of 5G communication systems that
can drastically improve the data rates and the spectral efficiency (measured in bits/s/Hz)

[ , , |. The use of multiple transmit and receive antennas helps address the



problem of scarcity of bandwidth resources, which is a big limiting factor in wireless communi-
cation systems, by simultaneously sending several data streams over the same time-frequency
resources through the MIMO wireless channel [ ]. In fact, MIMO technology has been
widely deployed in modern communication systems | ]; it is a necessary enabler to
help meet the increasing data rates demands in 5G and also for future cellular networks.
In this setting, we define downlink transmission from the transmitter to the receiver while
uplink transmission from the receiver to the transmitter.

One major performance limiting factor in MIMO communication is the inter-channel
interference (ICI) | ], also known as multi-user interference (MUI) in the context
of multi-user systems, that adversely affect the transmission’s achievable rate. Particularly,
in the MIMO spatial multiplexing (SM) configuration where several information streams
are sent in the same time-frequency resource, the receiver has to detect multiple interfering
symbol streams, transmitted concurrently through a channel subject to random noise and
interference | .

One approach to mitigate the harmful effect of ICI/MUTI is to compensate for interference
at the receiver. However, this method requires the knowledge of channel-state-information
(CSI) at the receiver, known as CSIR. CSI characterizes the wireless channel, i.e., the scatter-
ing and reflections patterns of the wireless signals from the transmitter to the receiver. The
CSI knowledge is usually acquired at the receiver through pilot-assisted channel estimation
and commonly represented in the complex domain. Herein, the transmitter sends pilot sym-
bols, also called reference symbols, that are known to all parties in wireless communications
standards, including the intended receiver that estimates the CSIR. Thus, the idea of MIMO
detection in this approach is to use this information at the receiver to compensate for the
undesired effects of ICI/MUI. The problem of symbol detection in MIMO systems where the
knowledge of CSIR is available and accurate is a well studied problem with numerous classical
detection methods [ .

For instance, the maximum likelihood detector (MLD) is the optimal detector that yields
minimum joint error probability of detecting all the transmitted symbols. However, it en-
tails exhaustive search with exponential runtime complexity and perfect CSI, which makes
it impractical in real time systems. Sphere decoding (SD) algorithms | ) | were
proposed to overcome the computational cost of the MLD, although the original SD was

optimal and exponential in complexity. SD algorithms employ lattice search and offer bet-



ter computational complexity with a rather a relatively lower accuracy compared to the
full search. Several other detectors have been proposed with varying accuracy-complexity
tradeoffs. Linear receivers | , |, i.e., matched filter (MF), zero forcing (ZF), and
minimum mean squared error (MMSE) detectors, are amongst the most common suboptimal
detectors which provide low computational complexity with good detection performance.
Non-linear receivers, such as decision feedback equalization (DFE), approximate message
passing (AMP) | ], and semidefinite relaxation (SDR) detectors | ) |, of-
fer better accuracy at the expense of higher computational complexity. What most of these
classical MIMO detectors share is the two-step-based detection, through which they first
estimate CSIR, and only then employ this knowledge for detection.

For large MIMO systems, CSI estimation is a huge issue due to the required signaling
overhead. Moreover, the complexity of these schemes increases prohibitively as the system
size increases, i.e., as the number of transmit/receive antennas and simultaneous data streams
grows. Thus, there is a need for one-shot detection, i.e., performing detection in one process
without estimating the CSIR, and low-complexity MIMO detection schemes that can perform
well in large system dimensions [ ]. In | |, a one-shot detection method was
proposed for the uplink of multi-carrier code division multiple access (MC-CDMA) systems,
that jointly performs detection and CSI estimation.

However, to address the low-complexity aspect in large MIMO systems, several machine-
learning (ML) based detectors have been proposed recently for MIMO signal detection. Unlike
classical MIMO detection schemes that are based on hypothesis testing [ ], ML solves
statistical problems using examples of input-output pairs. ML is a core subset of artificial
intelligence (AI), which is an ensemble of tools and algorithms intended for making predictions
or decisions through learning patterns from data | ]. ML is typically used when the
underlying distribution are not known but could be characterized from sample examples.
Particularly, in the last decade, ML witnessed a big revolution thanks to the deep learning
(DL), which usually involves neural networks with numerous operations and layers and can
theoretically solve hard and large problems | ]. DL have shown impressive results
in numerous fields, e.g., speech processing | ] and computer vision | |. For
communication systems, there is a growing interest in using ML/DL for different purposes,
including ML for channel estimation | ], error correcting codes | ], and end-to-end

detection over continuous signal | ].



For the MIMO detection problem where the ICI/MUI effect is mitigated at the receiver us-
ing CSIR, several ML-based techniques have been proposed that are based on the two-step ap-
proach [ , , , , ]. Specifically, the authors in [ ]
achieved excellent detection performance with a deep neural network architecture called Det-
Net, e.g., with a performance matching an SDR baseline for independent and identically
distributed (i.i.d.) Gaussian channels while running 30x faster. The work in [ | in-
troduced OAMPNet, a deep learning based scheme that mimics the orthogonal approximate
message-passing (OAMP) algorithm | |, which outperforms the OAMP algorithm in
both i.i.d and small-sized Kronecker model-based correlated channels. We note that DetNet
and OAMNet are both trained offline: using a single detector trained over several channel
matrices. On the other hand, MMNet in | | is an adaptive neural-network based de-
tection scheme tailored to realistic channels with spatial correlation and is suitable for online
training, where the training is performed for each coherence time instead of offline training
where the module could be trained in advance for a large number of coherence times by
generating random channel coefficients. In the same context of online training and motivated
by practical implementation, EPNet [ | was proposed to perform signal detection by
unfolding the expectation propagation (EP) algorithm and training the damping factors. To
support coded systems, a neural-network MIMO detector with impairments was proposed
in [ |, where the MIMO detection algorithm design is based upon projected gradient
descent iterations for orthogonal frequency-division multiplexing (OFDM) systems. Empir-
ical results show the robustness of the proposed detection scheme against several common
communication impairments, since the neural network (NN) does not assume any specific
model. Another approach to mitigate the ICI/MUI is to pre-compensate for its undesired
effect at the transmitter instead of at the receiver. This approach is commonly known as
transmit precoding [ ]

Similar to the aforementioned approach that requires CSIR, the precoding-based ap-
proach also requires the knowledge of CSI but at the transmitter side, i.e., CSIT. A common
methodology to obtain CSIT is through pilot-assisted channel estimation, where prior to
downlink transmission, the receiver sends pilots for the transmitter to estimate the CSIT.
This setting is common in a reciprocal channel, i.e., uplink and downlink CSI are the same.
For instance, this reciprocity applies to time-division duplex (TDD) communications sys-

tems | , , , ]. In such systems, CSIT can be available without explicitly



estimating it at the receiver CSIR. Thus, it is interesting to consider systems that can take
advantage of CSIT to mitigate the channel effect at the receiver when CSIR is not explicitly
available.

Using the CSIT knowledge, the transmitter can perform ICI/MUI mitigation/exploitation
processing to the intended data streams prior to transmission, thanks to the multiple antennas
capability which provides sufficient degrees of freedom to handle the interference effect. In
particular, the CSIT knowledge is used to precode the transmitted signal to attain several
goals: a) maximize the signal-to-noise ratio (SNR), which indirectly mitigates the interference
effect, b) minimize the ICI/MUI effect at the receiver, c¢) equalize/mitigate the effect of
fading, and/or d) exploit the ICI/MUI for power gains, where in all case the performance of
the precoder is directly affected by the quality of the CSIT. In this context, very recently,
in [ | a deep NN-based precoding technique was proposed for finite-alphabet inputs,
where the authors employ deep NNs to learn the input-output relationship of a nearly optimal
precoder for mutual information maximization.

Nonetheless, in systems with real-time constraints, it is extremely difficult to obtain
good CSIT. Channel estimation errors can occur due to several sources, for instance, pilot
length, Doppler effect, and hardware impairments | ]. Thus, MIMO detection robust to
CSIT imperfections should be investigated in order to support such systems with practical
limitations. Overall, the problem of one-shot detection in a fading MIMO channel with
imperfect CSIT was not explored. We note that, very recently, deep NN-based precoding

techniques were proposed

1.2 Motivation and Problem Definition

TDD MIMO communication systems, where data is transmitted periodically, e.g., 1/2 or 1/3
of the time, play an important role in modern communication systems. TDD systems are
particularly suitable for asymmetric transmission demands and also in cases where paired
frequency is not available. Frequency resources are limited and prohibitively expensive, thus
in cases where it not possible to secure paired spectrum, TDD systems are considered despite
their higher deployment and operating costs when compared to frequency-division duplex
(FDD) systems, as FDD requires fewer base stations for the same coverage. In addition,

TDD systems are also considered when the range and mobility are limited, due to propagation



delays and channel variations. In TDD mode, data is transmitted in both directions between
the transmitter and the receiver using the same frequency resource but in different time slots.
In this setting, one can exploit channel reciprocity | ] to exchange uplink and downlink
data in the same coherence time. In this thesis, to maintain reciprocity, we assume that the
channel does not have ferromagnetic materials and does not include the non-linear effects of
RF-chains. Reciprocity is based on the premise of wireless signals traveling in uplink and
downlink directions will undergo the same physical perturbations, i.e., reflection, refraction,
diffraction, etc.

In addition to the aforementioned advantages of reciprocity in TDD systems, this mode
of operations has some disadvantages as well. For instance, since the transmission in TDD
occurs in the whole bandwidth half of the time, the power amplifier is active in this time
only and the average radiated power is cut in half. As a result, if we transmit at maximum
peak power, the link budget will suffer a 3 dB loss in SNR when compared to FDD. Another
limitation is TDD systems is the necessity of guard periods to avoid the uplink-downlink
interference, which further limits the total bandwidth. In this mode, the users do not start
uplink transmission until cell edge users’ downlink transmission is done, where the guard
period, i.e., the waiting time, is defined by the base station. Another disadvantage of TDD
is due to the inter-cell synchronization, to avoid interference between the uplink and the
downlink among cells. Otherwise, the cell edge users might receive a downlink signal from
its associated BS and an uplink signal from a neighboring user belonging to another cell.
Despite these limitations, TDD is suitable for several technologies and use cases, amongst
which we find massive MIMO, that constitutes a core technology in 5G wireless systems and
works best in this mode.

Since in TDD the same frequency band is used in both directions, the impulse response
of the channel observed between any transmitter’s antenna and receiver’s antenna should be
the same regardless of the direction when the hardware if properly calibrated. Hence, CSIT
is acquired in the uplink channel, usually with pilot-assisted channel estimation using uplink
pilots, and used for downlink transmission (reverse channel). In this thesis, we consider
multi-antenna systems subject to ICI/MUTI effects, where between each transmit and receive
antenna, the wireless channel has fading and noise effects. To mitigate the harmful effects
of interference, we employ precoding, which requires the knowledge of CSIT. The quality of

the estimated CSIT depends mainly on the pilot sequence length, the SNR, the particular



channel estimation technique that is being employed, and the hardware impairments | ].

As mentioned in the previous section, the CSIT is employed by the transmitter to mitigate
the harmful effects of ICI/MUI. In cases where the CSIT quality deteriorates, the effect of
ICI/MUI will not be handled properly and thus the detection performance at the receiver will
be poor or at best limited. In this thesis, MIMO detection schemes robust to CSIT deteriora-
tion are proposed to support TDD systems with practical limitations. Specifically, we develop
one-shot ML-based MIMO detection schemes, that 1) perform MIMO detection without ex-
plicitly estimating the CSIR and 2) use ML to make the best use of prior information (pilot
sequences) for detection purposes.

In addition, we also study a similar problem to the aforementioned one, where we inves-
tigate multi-antenna eavesdropping in multi-user multiple-input single-output (MU-MISO)
systems. In such systems, a multi-antenna transmitter, commonly referred to as a base
station (BS), sends simultaneously different data streams to several single-antennas users,
known as legitimate users (LUs). In this context, the BS usually uses CSIT to precode the
transmitted data in order to mitigate the ICI/MUI at the LUs. We note that the employed
CSIT characterizes the propagation environment between the BS and the LUs. If the utilized
CSIT at the BS is precise enough, the harmful MUI effects are managed well, and hence
LUs can accurately detect the transmitted data. In parallel, given the broadcasting nature of
the wireless channel, unintended receivers, e.g., an eavesdropper (Eve), may detect sensitive
information [ |. Herein, Eve receives a distorted signal as the transmitted signal was
not intended for it. This is equivalent to the case where the BS used a completely inaccurate
CSIT to serve a multi-antenna LU. Thus, for the eavesdropping attack to be successful, Eve
needs to use MIMO detection schemes robust to highly deteriorated CSIT. Therefore, the
second problem investigated in this thesis is essentially MIMO detection schemes that are
robust to completely inaccurate CSIT, intended for eavesdropping purposes in the physical-
layer. In this framework, to counteract these eavesdropping attacks, we propose numerous
countermeasures that obstruct the detection process at Eve. In the subsequent section, we
discuss the relevant works to these problems and the underlying research gap. To this end,
we investigate systems with and without channel coding. Channel coding, also known as
forward error correction (FEC), is the mechanism through which bit-errors could be detected
and corrected in digital communication systems. We refer to “coded” systems for systems

that employ channel coding and “uncoded” systems otherwise.



1.3 Related Work

This section encompasses the relevant works to the aforementioned problems and the under-

lying research gaps, with a focus on one-shot MIMO detection.

MIMO Detection Schemes Robust to CSIT Deterioration for TDD Systems with

Practical Limitations

A few one-shot ML-based techniques have been proposed | , , , ]
for MIMO detection. MIMO detection schemes that do not use CSI, also known as blind
MIMO detection, and are clustering based were proposed in [ , |. A major
drawback to these approaches was identified by some ambiguity issues due to the underlying
unsupervised learning detectors. However, the approaches in [ , | employ super-
vised learning instead, where downlink pilot sequences are sent to train the proposed learning
frameworks by considering systems with low-resolution analog-to-digital converters (ADCs).
The key idea in [ | is to interpret the MIMO detection problem as a supervised classifi-
cation problem, where one-shot based MIMO detection schemes were proposed, that exploits
the knowledge of pilot sequences without explicitly estimating the CSIR. In | ], sim-
ilar detectors were proposed that employ more efficient learning methods and leverage the
knowledge of cyclic redundancy check (CRC) and the to-be-detected data to further assist
the training process. However, none of these works consider CSIT, which is, as previously
detailed, a common setting in TDD systems. Particularly, robust one-shot MIMO detection

to CSIT deterioration has not been investigated in the literature.

MIMO Detection Schemes Robust to Completely Inaccurate CSIT

By 2023, there will likely be 5.7 billion total mobile users (71% of the world population)
[ ]. In such a crowded environment, unintended receivers, e.g., an Eve, may decode
sensitive information given the broadcasting nature of the wireless channel | ]. Asa
result, security is of primary importance in next generation networks. In particular, PLS
stands out as a powerful technology to complement encryption-based methods | 1,
including application-layer encryption.

The essence of PLS is to exploit the characteristics of the wireless channel, i.e., fading,

noise, interference, and diversity, to attain an acceptable decoding performance at intended
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users while obstructing the correct decoding at Eve. Alternatively, the aim of PLS is to
increase the gap of correct decoding rates between intended users and Eve | ]. PLS
is foreseen to be used as a complementary layer of protection, in addition to the existing
cryptography-based security methods. As the rise of quantum computing | , ]
is threatening both symmetric and asymmetric cryptography, non-cryptographic-based meth-
ods such as PLS are needed | , , |. In this setting, the artificial noise
(AN) scheme | | and its extensions [ , , ) ] have been pro-
posed to improve PLS.

In the context of physical-layer eavesdropping LUs in MU-MISO system with CSIT-based
precoding, a smart Eve approach was proposed in | | that exploits the statistical infor-
mation learned from the precoded data. However, the proposed approach does not consider
eavesdroppers with multiple antennas, which is increasingly being deployed in sophisticated
devises, nor ML tools to learn from the precoded data, as ML algorithms are amongst the
most efficient approaches to learn from data. Hence, more realistic eavesdropping attacks that
take advantage of the recently available technologies in wireless devices, e.g., multi-antennas
and ML tools, should be developed and evaluated to assess security vulnerabilities in modern
communication systems. At a fundamental level, these attacks are basically MIMO detection

schemes robust to completely inaccurate CSIT.

1.4 Discussion on Leveraged Data and Machine Learning Tools

In this section, we discuss the utilized data and tools in the proposed MIMO detection

schemes.

1.4.1 Precoded Pilots as Training Data

In downlink transmission, pilot symbols, also known as reference signals, are known sequences
to all parties and constitute an integral part of communication systems. They are often
used to estimate parameters at the receiver to assist the detection process at the latter.
Sometimes, the estimated parameters are fed back to the transmitter to be used to improve
the communication performance. The downlink pilot sequences are commonly used for CSI
and signal-to-interference-plus-noise ratio (SINR) estimation. Specifically, non-precoded or

un-processed pilot symbols are typically used for CSIR estimation while precoded/processed
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pilot symbols are intended for SINR estimation at the receiver | ]. In this thesis, we
are interested in the latter case, precoded pilot symbols, which use the same modulation and
coding scheme (MCS) used for precoding the data.

In fact, pilot sequences are known entities to all parties. That is, the receiver knows
exactly which symbols constitute these pilot sequences and their placement in the frame.
In addition, the receiver also observes a signal during the transmission of these sequences,
which we denote by received pilot signals. Consequently, the receiver can collect this data in
input-output pairs, where during each symbol period (SP), the input represents the received
pilot signal while the output is the actual transmitted pilot symbols. Considering a frame
with N SPs dedicated for pilots, the receiver collects N examples of input-output pairs, that
we denote as the training data. In this thesis, we leverage the training data knowledge to

counteract the effect of CSIT imperfections in the detection process.

1.4.2 Learning from Data

As discussed earlier in Section 1.1, ML has been used to design low-complexity MIMO detec-
tors that can perform well in large systems. Motivated by the former and given the nature of
the training data we have access to, naturally, we employ ML to design MIMO detectors that
solve the aforementioned problems described in Section 1.2 in the context of online learning.
As opposed to offline learning where the training is performed in advance for a large number
of coherence times, in online learning, the detector is optimized for each channel realization,
i.e., the training is performed for each coherence time. ML algorithms are amongst the best
and most efficient tools to solve statistical problems using examples of inputs and their de-
sired outputs, with little or no prior information or assumptions on the functional relationship
between input-output pairs. Besides, since the same CSIT and MCS used for pilots are also
used for transmitting the data, consequently, the receiver can use ML to learn a function that
maps an input to an output from the training set and use it to infer the transmitted data
symbols. As the training data is labeled, we consider the supervised learning class of ML.
However, since the training data is very limited in each coherence time, we resort to non NN
based approaches [ |. Therefore, in this thesis, we propose ML-based frameworks that
leverage precoded pilots as training data for 1) MIMO detection robust to CSIT imperfections
and 2) multi-antenna eavesdropping attacks. To counteract these eavesdropping attacks, we

propose symbol-level precoding (SLP) schemes that enhance physical-layer security (PLS),
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by impeding the detection process at Eve.

1.5 Thesis Outline and Contributions

In the thesis, there are three main contributions, which are organized into five chapters. In
short, in systems with CSIT and no explicit CSIR, we address the problem of MIMO detec-
tion robust to CSIT deterioration in TDD systems with practical limitations as well as the
generalization to MIMO detection with fully inaccurate CSIT. We first start by highlighting
some previous work on signal design and MIMO detection in Chapter 2. Next, we present a
generic ML framework for MIMO detection which lays the foundation for the proposed three
main contributions in Chapter 3. The first contribution is presented in Chapter 4, in which
we address the first problem detailed in Section 1.2, where we study MIMO detection robust
to CSIT imperfections for TDD systems with practical limitations. The second problem in
Section 1.2 is studied in Chapters 6 and 5, for MU-MISO systems with and without channel
coding, respectively. More details about each chapter and the publications related to each

are presented below.

Chapter 2: Overview of Signal Design and MIMO Detection

In this chapter, we present a detailed literature review on the different signal design schemes,
with an emphasis on SLP and its application to PLS and classical MIMO detection methods.

Chapter 3: Generic ML Framework for MIMO Detection

This chapter introduces a generic ML-based framework for signal detection that employs the
available downlink precoded pilots as training data, laying down the basic structure for the

MIMO detection schemes proposed in the following chapters.

Chapter 4: Data-driven Precoded MIMO Detection Robust to Channel Estima-

tion Errors

In this chapter, we develop MIMO detection schemes robust to CSIT degradation, where
we study the problem of symbol detection in downlink MIMO systems with precoding and
channel coding but without explicit CSIR. To mitigate the effect of CSIT deterioration at

the receiver, we propose ML-based techniques for hard and soft detection that use downlink
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precoded pilot symbols — originally intended for SINR estimation — as training data. We
validate the approach by proposing a lightweight implementation that is suitable for online
training. Numerical results show that severe CSIT degradation impedes the correct detection
when a conventional detector is used, however, the proposed ML detectors can achieve good
detection performance even under severe CSIT deterioration. The findings of this chapter

appeared in the following journal paper:

[ | Abderrahmane Mayouche, Wallace A. Martins, Symeon Chatzinotas, and Bjorn
Ottersten, “Data-driven Precoded MIMO Detection Robust to Channel Estimation
Errors,” IEEE Open J. Commun. Soc., vol. 2, pages 1144-1157, 2021.

Chapter 5: Learning-Assisted Eavesdropping and Symbol-Level Precoding Coun-
termeasures for Downlink MU-MISO Systems

Herein, we leverage the proposed generic ML MIMO detection framework for eavesdropping
purposes in the context of a downlink MU-MISO systems without channel coding, where an
Eve is able to learn the symbol detection function based on precoded pilots and detects the
transmitted symbols, intended for legitimate users, with high accuracy. To counteract this
attack, we propose a novel SLP schemes that enhances PLS while guaranteeing a constructive
interference effect at the intended users. In the numerical results, we validate both the
eavesdropping attack as well as the countermeasures. The findings of this chapter appeared

in the following papers:

[ | Abderrahmane Mayouche, Danilo Spano, Christos Tsinos, Symeon Chatzinotas,
and Bjorn Ottersten, “Learning-Assisted Eavesdropping and Symbol-Level Precoding
Countermeasures for Downlink MU-MISO Systems,” IEEE Open J. Commun. Soc.,
vol. 1, pages 535-549, 2020.

[ | Abderrahmane Mayouche, Danilo Spano, Christos Tsinos, Symeon Chatzino-
tas, and Bjorn Ottersten, “Machine Learning Assisted PHYSEC Attacks and SLP
Countermeasures for Multi-Antenna Downlink Systems,” IEEE Global Commun. Conf.

(GLOBECOM), Waikoloa, HI, USA, pages 1-6, 2019.
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Chapter 6: Multi-Antenna Data-Driven Eavesdropping Attacks and Symbol-
Level Precoding Countermeasures for Coded MU-MISO systems

In this chapter, we extend the previous chapter’s work in two directions: 1) by extending the
ML attack to support channel coding, and 2) by proposing more sophisticated PLS schemes
in terms of security and low-complexity. In this setting, we exploit ML tools to design soft
and hard decoding schemes by using precoded pilot symbols as training data. Simulation
results validate both the ML-based eavesdropping attacks as well as the countermeasures,
and show that the gains in security are achieved without affecting the decoding performance

at the intended users. The findings of this chapter appeared in the following papers:

[ ] Abderrahmane Mayouche, Wallace A. Martins, Christos Tsinos, Symeon Chatzino-
tas, and Bjorn Ottersten, “A Novel Learning-based Hard Decoding Scheme and Symbol-
Level Precoding Countermeasures,” IEEE Wireless Commun. Netw. Conf. (WCNC),

Nanjing, China, pages 1-6, 2021.

[?] Abderrahmane Mayouche, Wallace A. Martins, Christos Tsinos, Symeon Chatzinotas,
and Bjorn Ottersten, “Multi-Antenna Data-Driven Eavesdropping Attacks and Symbol-

Level Precoding Countermeasures,” IEEE Open J. Vehicular Tech., under revision.

Chapter 7: Concluding Remarks and Future Work

This chapter concludes the thesis and suggests some possible future directions to the current

work.
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Chapter 2

Overview of Signal Design and

MIMO Detection

This chapter introduces the mathematical model and the underlying assumptions used in this
thesis and provides an in-depth literature review and preliminaries on signal design and signal
detection. For signal design section, we review block-level and symbol-level precoding, where
we discuss the application of the latter on PLS. Regarding signal detection, we start by dis-
cussing classical signal detection schemes, followed by an overview of ML for communications

and particularly a survey on ML-based detection schemes.

2.1 Signal Design

In this thesis, we consider two downlink communication systems, single-user (SU) MIMO
and MU-MISO systems, to address important problems in two scenarios. The former system
is considered in Chapter 4 while the latter is employed in Chapters 5 and 6. For the SU-
MIMO system, as depicted in Figure 2.1, a multi-antenna transmitter (Tx) sends concurrently
multiple data streams to a multi-antenna receiver (Rx), thus the interference in this case is
of type ICI. In the MU-MISO system, as depicted in Figure 2.2, the BS sends multiple data
streams simultaneously to several single-antenna users and the resulting interference is MUI.
To mitigate the adverse effect of ICI/MUI, precoding at the Tx/BS is commonly used and
is suitable for both systems. Precoding is a well-known technique to perform the downlink
transmission in such systems, which exploits the transmitter’s multi-antenna capability and

spatially multiplexes the independent data stream intended for each receive antenna.
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Figure 2.2: MUI in an MU-MISO system with K users.

To illustrate, let us consider an SU-MIMO with a Tx equipped with N; antennas and
communicates with an Rx with N, antennas, supporting NV, independent data stream with
Ny < Ng. If we assume K = N;, this MIMO configuration is equivalent to a downlink
MU-MISO system with a BS of N; transmit antennas and K single-antenna users supporting
single-stream transmission each. The main goal of the precoder is to map the IV, data symbols
onto N transmit antennas. Depending on the precoder design, this mapping achieves specific
objectives under particular considerations in order to improve one or several aspect(s) of the
system’s performance, as we shall detail it later.

Let d;[n] denote the discrete-time data symbol intended for the ith receive antenna during
the nth SP, where ¢ € {1,..., Ny} and E{d;[n]d;[n]*} = 1. We note that the precoder may
have a linear, i.e., the precoder is linear function of the data symbols {d; [n]}lN:‘ 1, or non-linear
structure, depending on the objectives and constraints of the underlying precoder design

problem. Considering a linear structure, the precoder could be expressed using the precoding
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W € CM*Nr matrix, which maps a linear combination of the data symbols {d; [n]}fvzrl onto
N transmit antennas. This precoding matrix could be constructed as W = [wiws ... wy.|T,
with w; € CNX1 denoting the precoding vector for the ith data stream intended for the
1th receive antenna. In particular, the precoding vector w; represents the complex weights
intended for the data symbol d;[n], which alters both the amplitude and the phase of d;[n]

for each antenna element. The precoded signal vector for all receive antennas during the nth

SP, xq[n], can be expressed as

xd[n] = Wd[n| = Zr:widi[n], (2.1)

where d[n] £ [di[n]da[n]...dn,[n]]T collects all receive antennas’ data symbols. Assuming
a frequency-flat fading channel between the Tx and the Rx, we define h; € CM*! as the
vector containing the complex coefficients that characterize the propagation environment,
i.e., channel gains and phases, between the N; transmit antennas and the ith receive antenna.
Thus, the received complex, baseband, and symbol-sampled signal at the ¢th receive antenna

can be expressed as

Nr
yi[n] = hyWd[n] + z;[n] = h; szdz[n] +zi[n], 1e€{l,...,N;}, (2.2)

where z;[n] ~ CN(0,0?) represents the additive circularly symmetric complex Gaussian noise
at the ith receive antenna. Considering all receive antennas, the overall received signal during

the nth SP can be written as

y[n] = HYWd(n] + z[n], (2.3)

where z[n] 2 [z1[n]za[n] ... 2. 0], y[n] £ [n1ln]ye[n] ... yn.[n)]Y, and H £ [hThi . ..hﬁr]
represents the channel matrix.

Given the aforementioned systems depicted in Figures 2.1 and 2.2 and w;d;[n]| as the
transmit signal intended for the ith receive antenna duing the nth SP, the received signal y;

could be decomposed into desired and interference components as
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yiln] = hywidi[n] + 0 > widj[n] +zi[n], i€ {1,..., N}, (2.4)
*’

J#i

ICI/MUI

desired

where the ICI/MUI is caused by simultaneous transmission to the remaining antennas other
than 4. Specifically, we can observe in (2.4) that the transmitted signal to the jth receive
antenna interferes with the received signal at the 7th antenna, resulting in the received signal
h;w;d;[n] contributing to the desired signal, in general in an undesired way that may degrade
the detection performance. Consequently, the average SINR at the ith antenna, SINR;, is
the ratio between the desired and undesired signal powers received from transmitting the ¢

data stream averaged over the SP, i.e.,

Pp;
Pr;+ Pxj;i’

)

SINR; = i€ {l,..., N}, (2.5)

where Py; = 022 represents the noise power at the sth antenna, and Ps; and Pj; denote
the average desired received signal power and the interference power for the ith antenna,

respectively, and are defined as

Pp,; £ E {hiw;d;[n]d; [n]w; h;' }
= hyw; E {d;[n]d;[n]} wi'hj' (2.6)

hi( i )H }
:hi(zj#ij{dj[ [n]} wil )b 2.7)

= Z h; iWiW; hH
J#i

and
ot

such that the symbols {d;[n ]} =, are mutually uncorrelated, i.e., E{s;[n]s}[n]} = 0 for all

i,j €{1,2,...,N;},i # j. As a consequence, (2.5) becomes

SINR,; = Lt . ie{l,...,N}. 2.8
el S e i e MY } (2:8)

From (2.8), we can observe that the precoder design directly influences the strength

of the ICI/MUI But in all cases, the ICI/MUI may degrade the system’s performance if
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not handled properly. Therefore, precoding techniques are of paramount importance for
interference management. As mentioned earlier, precoding techniques are employed at the
Tx/BS to properly manage the ICI/MUI, e.g., mitigate, eliminate, or convert the interference
into a usual signal contribution. As a prerequisite to closed-form based precoding techniques,

we start by reviewing cost-function based precoding.

2.1.1 Preliminaries in Block-Level Precoding

We start by reviewing some linear block-level precoding (BLP) schemes. We note that pre-
coder design is the same for both SU-MIMO as well as MU-MISO systems. Assuming a
separate design of the Tx and the Rx, i.e., where the precoding at the Tx and the detection
at the Rx are not designed jointly, these systems are equivalent from a transmitter perspec-
tive if we consider Ny = K. In the following, we set N; to denote the number of antennas
at the Rx for both systems for simplicity. Thus, we define the instantaneous channel ma-
trix H € CNt*Nt hetween the N; transmit antennas and N, receive antennas. A common
assumption in the following precoders’ derivations is: H is assumed to be known at the

Tx/BS.

MF Precoder

The MF precoder [ |, also known as conjugate beamforming and maximum ratio trans-
mission (MRT) | |, aims to maximine the power of the received signal without any con-

sideration of the ICI/MUI. The corresponding optimization problem can be expressed as

B {d"y} [
E{Jl2]"}

maximize
\Y\%

subject to (WE {ddH} WH) = p, (2.9)

where p is a fixed average transmit power. The solution to this optimization problem can

simply be obtained as

Wyr = HY (2.10)

ZF Precoder

The ZF precoder, as the name implies, attempts to fully cancel the power of the interference

such that HWzp = Iy, | ]. It is considered as an evolution of the MF precoder to limit
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the adverse effects of ICI/MUI. The interference cancellation property of this precoder comes
at the price of a slightly more complex precoder than the MF while lowering the received
power. The corresponding precoding matrix is derived by solving the following optimization

problem:

min\i{]nize E{||Wd|]*} subject to HW =1 (2.11)

The solution to (2.11) is given by

—1
Wi = (HHH) HI (2.12)

We note that Wyp is essentially the left pseudo-inverse of the matrix HY. One common
drawback of this precoding approach is its low power efficiency, as it suppresses the inter-
ference below the noise floor at the Rx, which is unnecessary. One way of handing this is

inefficiency is through regularization, as in the next scheme.

Regularized ZF Precoder

The regularized ZF (RZF) precoding main goal is to maximize the sum of the SINR. Although
this approach does not produce an optimal solution, it minimizes the interference while
optimizing the received power. It is considered as a precoding approach between the MF
and ZF precoders, which can be expressed as a linear combination of MF and ZF precoders
[ ]. Applying the regularized inversion method in [ |, the RZF precoding matrix

can be expressed as

H ~loH
Whor = (H H—i—aINt) H (2.13)

where « is a regularization parameter whose value is fixed during the transmission, often and
Iy, denotes the Ny x N; identity matrix. We note that, for all of the aforementioned linear
precoding schemes, in order to respect the power constraint E[|[W||?] = 1, we normalize W

W W
as follows: W = Wi
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Cost-Function Based Precoding

We revise that in wireless communications, a typical goal is to increase signal power at
each receive antenna while reducing the ICI/MUI that is caused by the energy leakages
from the transmit antennas. While it is feasible to design the precoder to minimize signal
power at a receive antenna, it is challenging to jointly minimize this power and simultaneously
minimize the interference leakage. In general, this optimization problem is a non-deterministic
polynomial-time (NP)-hard problem | ]. Nevertheless, a simple structure of optimal
linear precoding was introduced in | , ]. In the following, we present two common
structure for cost-function based precoding design.

Power Minimization with SINR Constraints: One common approach in designing
the precoder is by reducing the transmit power if the available resources allow, while simulta-
neously constraining the power minimization problem by some SINR requirements, targeted
for each receive antenna. In general, the power minimization approach usually a straightfor-
ward problem with a simple optimal solution structure [ , ]. This optimization

problem could be formulated as follows

Ny
minimize Y |lw;||> subject to SINR; > v, i € {1,..., Ni}, (2.14)
W1, ,WN, e

where ~; represents the target SINR for the ith receive antenna described in (2.8). We note
that the SINR constraints in (2.14) are not convex, however, they could be formulated as
convex constraints as follows. Using the SINR expression presented in (2.8), we can express

the SINR constraint in (2.14) as

Hy. H

5 > % (2.15)

Performing some straightforward algebraic steps on (2.15) lead to the following expression
1
h; ijwg»{ - —‘wiwzH hi' + 02 <0, (2.16)
J# !

which is a convex second-order cone (SOC) constraint. The advantage of having a convex
constraint is, when the objective function is also convex, consequently the corresponding

optimization problem will be convex as well and could be solved using convex optimization

22



solvers | ].

General Transmit Precoding Optimization: In the case when the transmit power
is restricted in the system, the aforementioned power minimization approach could not be
used. To address this limitation, another precoding design having the power restrictions
as constraint while maximizing some performance metric. Usually, the corresponding cost
function is a function of the receive antennas’ target SINRs. When the total transmit power

is upper bounded by p, the corresponding optimization problem could be formulated as

Ny
maximize f(SINRy,SINRy,...,SINRy,) subject to Y [wil* < p, (2.17)
W1,y WNy i1

where f(-) is strictly increasing in the target SINR; for all i € {1,2,..., N} }.

Contrary to power minimization problems, the power-constrained precoding design prob-
lems of the form of (2.17) are usually difficult to solve, or even NP-hard for some common
choices of the objective function f(-), e.g., the sum-rate function given as

Ny
f(SINRy,SINRy, ..., SINRy,) = ) logy(1 + SINR;).
i=1

In general, precoding techniques could be categorized depending on the switching rate,
i.e., how often the precoding coefficients are updated, into two categories: BLP and SLP.

BLP considers the ICI/MUI as harmful and should be mitigated | , , ,

]. In this situation, the precoding is limited to alleviate the interference along the whole
frame as it uses only the knowledge of CSI. This results in reducing the average amount of

interference in the frame.

2.1.2 Symbol-Level Precoding Survey

For BLP, in both closed-form linear precoding methods | | and optimization based
schemes | |, only the the CSI is used by the precoder and the interference is always
treated as detrimental. However, the non-linear precoding methods Tomlinson-Harashima
precoding (THP) | , , | and vector perturbation (VP) precoding [ ,

| exploit both the CSI and the data symbols in the symbol-by-symbol precoding design.
Nevertheless, the problem of these schemes is that they are difficult to implement in practical

communications systems due to the heavy encoding and decoding process. In | ], an
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enhanced THP-based precoding method was proposed for MIMO channels using lattice-
reduction-aided equalization strategies. To alleviate the computational shortcomings of THP,
in [ ], convex precoding was proposed using non-discrete alphabets. In | ],
convex precoding was introduced for MIMO channels in high dimensions. In the thesis,
we focus on the “constructive interference” (CI) [ | variation of SLP, however, for
simplicity, in the following we use SLP instead of Cl-based SLP.

In SLP, the interference can be controlled on a symbol-by-symbol basis. This way permits
to rotate each interfering signal to be in the correct detection region, thus eliminating the
inter-user interference at each symbol slot. Therefore, SLP techniques | ] manage
the ICI/MUI at the price of a higher switching rate at the precoder | , , ,

, , , |. That is, SLP implies that the interference can be controlled
on a symbol basis, i.e., interference is controlled from an instantaneous point of view. Namely,
SLP promotes a new way of handing interference where not all interference is harmful. Instead
of cancelling or mitigating interference, SLP aims to turn it into an additional source of power
that results in power gains at the Rx | , ]. Thus, constructive interference
(CI) is defined as the interference that pushes the received constellation points deeper into
their detection regions, leading to an increased received signal power. Therefore, SLP is by
default a Cl-based precoding.

Early work of SLP focused on CI exploitation through adapting linear precoding methods.
In | , ], CI and its counterpart destructive interference (DI) were introduced as
types of MUI for selective SLP precoding, where CI is preserved while DI is cancelled out
through ZF precoding. In [ ], instead of eliminating the DI, the SLP precoder aims to
align it with the intended data symbols in order to transform it into CI. In the literature, there
has been other work that aim to exploit CI using non-linear precoding methods. In | ],
a complex scaling-based approach for a single user was introduced to improve interfering
signals alignment with their corresponding intended symbols, which was further optimized
to minimize the transmit power. In | ], the complex scaling was extended for several
users.

Recently, the increase of computational power allowed for optimization to be used for
the Cl-based precoding to improve specific aspects of the system’s performance | ,

) ) . In | , |, regions where interference is constructive were

formally defined for phase-shift keying (PSK) constellations. This definition has relaxed the
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previous signal design approach where the interfering signals have to be strictly aligned to the
intended symbols, instead designing the signals to lie in the constructive regions, which further
improved the performance. This advanced CI approach was called non-strict phase rotation in
[ |, and was thereafter adopted in the SLP precoding designs in | , , ,
, , , ]. We note that most of the aforementioned work | ,
I : : I : : : I : |, the
precoding schemes were derived only for PSK modulations. However, in [ , ],
[ , , ] the symbol-scaling concept was introduced where CI exploitation
precoding was extended to multi-level modulations, such as quadrature amplitude modulation
(QAM). Besides, it was shown in | , , , , , ) )
, , , , , | that SLP could used to transmit more data
streams simultaneously than linear precoding. Generally, in linear precoding, the number
of supported data streams is constrained by the total number of transmit antennas Ni.
Contrarily, SLP enables more data streams than Ni. In [ |, SLP was developed
for OFDM MIMO systems one-bit digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs) at the Tx and the Rx, respectively, in order to reduce the transmit power.
For the same system, SLP was designed for constant envelope mode of transmission, where
the transmitted signals have constant amplitude regardless of the channel realization or the
information symbols | . In | ], propose an optimized SLP precoder for
downlink MU-MIMO systems in the finite block length regime based on discrete constellation
rotations. The authors in | | designed an SLP precoder for MU-MISO systems robust
to CSIT imperfections. SLP design for low complexity transmitter architecture for large-scale
antenna array systems was investigated in [ ).

Overall, SLP have clear advantages over conventional precoding as it achieves significant
performance gains in terms of bit/symbol-error rate (BER/SER) while maintaining a lower
transmit power. By exploiting both CSI and data symbols for CI precoding, interference can
be transformed into power gains at the Rx. Besides, in SLP the constraints are enforced
for each SP, as opposed to BLP where the constraints are met on average for a block of
symbols. In addition, SLP reduces the complexity at the Rx. In conventional BLP, the Rx
have to estimate the channel and compensate for the phase rotation induced by the channel
effect [ ]. SLP, on the other hand, the received symbols are placed in the constructive

areas of the intended detection regions, thus requiring no phase-compensation at the Rx. As
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a result, it eliminates the need for CSI estimation at the latter. This advantage is particularly
relevant for mobile users whose computational power is limited.

However, as any other technique, has disadvantages as well. The major downside of
SLP is computational complexity, which is higher than BLP. That is, in BLP, the precoder
is updated on a block basis, i.e., an ensemble of symbols that is defined by how often the
channel changes, in SLP, on the other hand, the precoder is updated for each SP, thus the
increase of the computational complexity. Further, as most of the literature on SLP where
the precoder design requires solving an optimization problem at a symbol rate, this leads to
an extra computational power when compared with BLP that usually supports closed-form
solutions and optimized the precoder on a block-level rate. In addition, SLP schemes are
designed mostly for un-coded communication systems; the optimality of the performance
could not be guaranteed unless SLP precoding is jointly designed with channel coding.

A typical SLP scheme is the constructive interference for sum power minimization (CISPM)
SLP scheme, which is designed to exploit the ICI/MUI for power gains. This scheme propels
the Rx’s received signals deeper into the correct detection region of the desired symbol for

each receive antenna. The CISPM precoded signal for the nth SP can be computed as

xq(d,H,~,0,)=arg m}in ||x]]? (2.18)
subject to
Re{h}'x} < 0.,/7;Re{d;}, Vj
Im{hj'x} < 0./~;Im{d;}, Vj,

where 7; > 0 is the target SINR for the jth receive antenna with v = [y1...yn,]T € RN!
representing the target' SINR for all Rx’s antennas, and the operator < guarantees that the
real/imaginary parts of received signal lie in the same detection region as the data symbols dy.
In the case of quadrature phase-shift-keying (QPSK) constellation, for instance, when dj =
1414, the operator < simplifies to > for both constraints. In the case of QPSK constellation,
for instance, when d; = 1 + 17, the operator < simplifies to > for both constraints.

As depicted in Figure 2.3, the optimization problem in eq. (2.18) takes inputs: the CSIT
H, the symbols to transmit d, the target SINR at the NV, antennas =, and the noise standard

deviation o,. The objective function’s aim is to minimize the transmit power subject to

We note that herein the target SINR is a parameter used in the CI constraints, not the SINR expression.
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Figure 2.3: Structure of the CISPM precoding scheme.

some constructive interference constraints that are applied to each receive antenna. The
constraints’ aim is to place the real/imaginary parts of the noiseless received signal at the
jth antenna, h?x, in the detection region corresponding to the real/imaginary parts of the
Jth intended symbols to transmit. Specifically, with a minimum value of o.,/7; to guarantee
a specific target SINR for each receive antenna. In other words, this scheme propels the Rx’s
received signals deeper into the correct detection region of the desired symbol.

Thus, the CISPM scheme minimizes the transmit power while guaranteeing a certain
target SINR at the Rx through constructive interference constraints. Contrary to the RZF
scheme where the precoding matrix Wgryr is used for the entire coherence time, in the SLP
approach, for each SP, the precoding module directly designs the transmitted signal vector

x4 based on both the CSIT H and the input data symbols d.

Application of SLP to Physical-Layer Security

In the context of PLS, SLP has been introduced as a new way for attaining PLS [ ,

, ]. Although not originally conceived as a PLS method, SLP is more secure
than BLP as the precoder is redesigned for each SP. In | , |, secure SLP pre-
coding schemes were proposed in the context of a MISO wiretap channel while considering
only a single-antenna Eve. The authors in | | proposed to use SLP to enhance the
security by increasing the symbol-error rate (SER) at a multi-antenna Eve. In this thesis, we
propose several SLP-based PLS schemes, which are presented in Chapters 5 and 6, with vary-
ing security, complexity, and power consumption requirements, that increase the BER/SER

at Eve.
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2.2 MIMO Detection

In the following, we start by revising preliminaries in MIMO detection, we then review the
literature for ML for communications as an introduction to ML-based techniques for MIMO

detection, which is one of the main topics of this thesis.

2.2.1 Preliminaries in MIMO Detection

MIMO technology has been widely deployed in modern communication systems, however,
most receivers rely heavily on accurate CSI in order to detect the data symbols sent by each
transmit antenna [ ]. Particularly, in the MIMO spatial multiplexing (SM) configura-
tion where several information streams are sent in the same time frequency resource, the Rx
has to detect multiple interfering symbol streams transmitted concurrently through a chan-
nel subject to random noise and interference | ]. In a communication system where the
Tx/BS sends different data streams from N transmit antennas to a multi-antenna Rx, or
equivalently to several single antenna users, the Rx observes a superposition of several trans-
mitted data symbols. From the Rx point of view, the problem of detection is to separate the
different transmitted symbols. The main challenge at the Rx is to counteract the effect of
ICI/MUI, by accurately separating the different data symbols. The goal of signal detection
is to infer the information data in signal vector x from the received signal vector y = Hx+z,
where H is the channel matrix between the transmitter and the receiver and z is Gaussian
noise. ICI and MUI are caused by the harmful effect of the channel matrix H.

We define y([n| as the received signals at the N, Rx’s antennas during the nth SP and
H as the channel matrix between the V; transmit antennas and the Rx with N, antennas,
where N, different data streams are sent simultaneously, i.e., one data stream for each receive
antenna’?. We note that the users herein refers to the case of an SU-MIMO system, which is
equivalent to NV, single-antenna users in a MU-MISO system. For illustration purposes, we
consider the SU-MIMO system notation: a Tx equipped with N; transmit antennas and a

Rx with IV, antennas. Thus, the received signal at all Rx’s antennas can be written as

y[n] = HHXd[n] + z[n], (2.19)

%We assume that the number of antennas at the Tx is greater than or equal to the number of antennas at
the Rx, Ny > N;.
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where x4[n] € XNex1 g the precoded transmitted signal with X denoting the finite set of

constellation points and z[n] € CN+*! collects the independent additive white Gaussian noise

2

2 each at all Rx’s antennas. In the following, for

(AWGN) components with variance o
simplicity, we drop the index n.

Most MIMO detection techniques have been developed for coherent detection, which
require the assumption of having estimated or perfect CSI at the Rx (CSIR). In this setting,

the goal of the Rx is to compute the maximum likelihood estimate X4 of x4, which could be

expressed as

%q =argmin [y — H"x||2. (2.20)
xeXNe

The optimization problem in (2.20) is NP-hard due to the final alphabet constraint x €
XN [ ]; the MLD can provide an optimal solution and involves an exhaustive search,
which makes it impractical in real time systems. To overcome the computational cost of the
MLD, several detectors with varying complexity-performance trade-offs have been proposed
in the last decades.

Linear MIMO detectors are based on a linear transformation of the received signal y.
There generally known for their low complexity, but incur a considerable loss in performance

when compare to the MLD. Their decision statistic could be expressed as

%4 =Ty (2.21)

where T is the linear transformation matrix that could be designed using various criteria.
Neglecting the noise term in (2.19) leads to a system of linear equations. The solution of

this linear is known as the ZF detector | | and is expressed as

%zr =(HIH)'THY y (2.22)

The linear transformation or filtering matrix T in (2.21) could also be designed using
the MMSE criterion [ |, by minimizing the mean-square error between the transmitted
signal x and the received signal after using the transformation matrix T. This detector is

commonly being referred to as the MMSE detector where T could be obtained by solving the
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following optimization problem

TyMsSE = arg;nin E(||lx — Ty]3. (2.23)

Using the orthogonality principle [ |, the MMSE detector’s decision statistic may be
derived as

Rvmse = TyuMsEy (2.24)

= (H'H + ¢2Iy,) 'Hy (2.25)

We note that herein we assumed perfect CSIR, i.e., the Rx knows perfectly the channel
matrix H. The main advantage of linear detection is its low complexity and ease of implemen-
tation, which make them attractive for practical implementations. However, they perform
substantially worse than the MLD. In the high accuracy regime, we find sphere decoding

(SD) algorithms [ ) ], that conduct a search over solutions x € X such that

ly —H"x|2 <r. (2.26)

where the larger the radius parameter r, the larger set of possible solutions, and consequently
the higher the algorithm’s complexity. We refer the reader to | ) ] for a compre-
hensive review of MIMO detection schemes that assume the knowledge of CSIR.

On the other hand, few works have been proposed for the case when CSIR is not available,

which is commonly being referred to as blind MIMO communication | ,

) )

, . In | , |, data detection techniques for blink MIMO commu-
nications were proposed, where [ | was developed specifically for space-shift-keying
modulation while [ | was developed particularly for phase-shift-keying modulation. Sev-

eral learning-based blind and semi-blind have been proposed, which will be discussed in the

ML-based MIMO detection subsection.

ML-based MIMO Detection

As mentioned in Chapter 1, several ML based approaches have been reported for MIMO

detection. In this thesis, we investigate the problem of one-shot symbol detection in a fading
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MIMO channel with CSIT, where we leverage the downlink precoded pilot symbols as training
data and proposed ML based frameworks for MIMO detection robust to CSIT degradation.
In the next chapter, we introduce a generic ML framework for the proposed ML MIMO

detection frameworks.
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Chapter 3

Generic ML Framework for MIMO

Detection

In this chapter, we present an overview of the proposed ML framework for MIMO detection,

that is generic and can function with any supervised learning algorithm.

3.1 Communication System Requirements

The idea in this chapter is to model the MIMO detection problem as a supervised learning
problem, where the ML model is trained using the received pilot signals and their correspond-
ing pilot symbols. Once the trained ML model is obtained, it can be used to infer the actual
data symbols using the received data signals. In this chapter, we propose a MIMO detection
framework that is generic and can function with any supervised ML algorithm and/or channel
coding scheme.

For this detection framework to function, the underlying communication system must
have: 1) precoded pilots in the downlink, to be used as training data, which are commonly
available in communication systems for SINR estimation purposes | , ], 2)
multi-antennas at the Rx, to have enough degrees of freedom to separate the IV, data streams,
3) enough computational and memory resources at the Rx to run ML algorithms. In the
following, we discuss how this framework could be model as a supervised learning classification
problem, and 4) the coherence time length should be long enough in order to have sufficient

pilots for the training to converge.
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3.2 Supervised Learning and Classification

The main task of supervised learning, which is a subset of ML, is to learn a function that
maps an input to an output based on input-output pairs examples. In the context of MIMO
detection, the inputs are the received pilot signals. In the ML nomenclature, these inputs
are commonly being referred to as features. The outputs, on the other hand, are the actual
pilot symbols, which as mentioned earlier, are known entities in communication systems’
standards. These outputs are referred to as labels. Thus, the input-output pairs in our
context are the received pilots signals with their corresponding pilot symbols.

Since we consider online training in this thesis, where the training is performed for each
coherence time, the training set contains N examples of (received pilot signals)/(actual pilot
symbols) pairs while the evaluation set consists of T'— N examples of received data signals.
We note that, for each example in the the training/evaluation set, the number of features
depend directly on the number of antennas at the Rx IV;. We also stress that, the nature
of the labels define the type of the supervised learning problem, either a classification or
a regression problem. That is, if the labels are of discrete value, the supervised learning
problem is a classification problem whereas the regression applies to cases where the labels
are continuous values.

Since in our case, the pilot symbols are discrete, i.e., drawn from a modulation constel-
lation, the ML problem is a classification problem. The size of the label-set is determined
by the modulation alphabet size, for instance, for QPSK modulation, there are 4 different
symbols, thus the label-set is of size 4. Using ML terminology, the label-set size equals the
number of classes in the classification problem. When the number of classes is 2, we refer
to binary classification, however, when the number of classes is greater than 2, the classi-
fication problem becomes multi-class. It is important not to confuse the number of labels
with the label-set size. For each example in the training set, the number of labels is equal
to the number of simultaneous data streams sent by the Tx, which equals to the number of
receive antennas in the MIMO system considered in this thesis. Thus for each antenna at the
Rx receives a different pilot symbol. When the label size . > 1, the classification problem
becomes a multi-label classification (MLC) problem.

Therefore, the nature of the classification problem depends on the label-set size, which

defines whether it is a single or multi class, and the number of labels associated with each
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example, i.e., one label leads to single-label classification else we refer to multi-label classifi-
cation. In our setting, the label size depends on the constellation size while the number of
labels for each example depends on the number of different pilot/data streams sent by the
Tx, which is assumed to be the same as the number of antennas at the Rx in this thesis.
Thus, the training set has IV examples while the evaluation set contains T'— N examples. The
number of features is the same in both training and evaluation sets and is directly dependent
on the number of antennas at the Rx. Herein, we emphesis that the labels are only part of
the training set and the number of labels equals the number of pilot/data streams sent, which
also equals the number of antennas at the Rx in this thesis.

Essentially, the training set provides data to the ML algorithm to learn the mapping
function between the input features and output labels pairs. This phase is referred to as
training phase, which will result in a trained ML model. The evaluation set, on the other
hand, is used as an input to the trained ML model to predict the labels, which represent
the transmitted data symbols. This prediction occurs during the inference phase. Next, we
present in details the training and inference phases of the proposed ML MIMO detection
framework. For a thorough explanation of the proposed ML-based detection framework,
in the following, we use RZF precoding as an example. However, the proposed decoding

frameworks are valid for any precoding technique used at the BS.

3.3 Training Phase

The training phase comprises of three steps: 1) pilots collection, 2) pilots pre-processing, and
3) model fitting. In this phase, for the nth SP, the Tx sends p[n] € CN+*! pilot symbols with
a transmit power of p,. Using RZF precoding, as per eq. (2.13), the transmitted pilot signals

during the nth SP, x,[n] € CNV**1  can be expressed as follows

xp[n] = /pp Wrzrp[n]. (3.1)

We note that the pilot symbols p[n] are pseudo-random sequences for each receive antenna.

3.3.1 Pilots Collection

In this step, the Rx constructs the training set using the received precoded pilots. We note

that precoded pilots are the downlink pilots that are transmitted after precoding that uses
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Figure 3.1: Overview of the proposed generic ML detection framework.

the CSIT. The CSIT is obtained through uplink pilots and used for downlink transmission,
exploiting the reciprocity in TDD systems. Thus, For the nth SP, the overall received pilot

signal at all Rx’s antennas, yP[n] € CV*! can be written as
yP[n] = Hxp[n] + 2, (32)
where x;, € CNex1 is the transmitted precoded pilot signal from the N; Tx’s antennas during
the nth SP. Thus, for N SPs, the received pilot signals are collected in YP € CN*Mr as follows
YP =yPn|,ne{l,...,N}, (3.3)

As depicted in Figure 3.1, for the N SPs of each coherence time, the Rx creates a single
set that collects together the received pilot signal YP with the corresponding pilot symbols
P, which constitutes the training set.

3.3.2 Pilots Pre-Processing

In this step, pre-processing on the training set is performed for two main purposes: a) for

the training set to be supported by the ML algorithms and b) to adapt the formatting of

35



the training set to the machine learning task, e.g., soft or hard detection. Concerning the
suitability aspect of ML, the features in YP are complex-valued and are not suitable for
common ML algorithms. This is generally addressed by considering real and imaginary parts
separately. Namely, each example, i.e., row, in the features set YP will have N, complex
values of the form a + bi. Consequently, the new features set YP will contain only the a and
b terms of each complex value, i.e., only real numbers. Thus, with this transformation, the
features set becomes YP € RV*2Nr,

Regarding the adaptation of the training set format to the ML task, for soft or hard
detection, we define two main representations, the bit and the decimal representations.
The bit representation, where the pilot symbols in p are represented in bits, e.g., p; €
{“00”, “01”7, “11”7, “10” } in the case of QPSK modulation, is used for soft detection because
the soft outputs, i.e., log-likelihood ratios (LLRs), are computed on a per-bit basis. The
decimal representation, however, is employed for hard detection, such that p; € {0,1,2,3} in
the case of QPSK modulation.

We note that more sophisticated pre-processing could be applied. For instance: convert-
ing the complex value features to polar coordinates, performing computing the mean and
standard deviation of all features and add them as features, or adding other relevant enti-
ties as features. This sub-field of data analysis is commonly being referred to as features

engineering.

3.3.3 Model Fitting

As depicted in Figure 3.1, the training set is fed to the fitting module to obtain the trained ML
model. Depending on the Rx’s intention, the number of labels and the label set size in each
example in the training set, P, determine whether the classification problem is single/multi
label and binary/multi-class, respectively. For any combination of these, we will have a
training set that we denote as D, = {YP, P}.

The goal of fitting is to generate a well-fitted model to accurately predict new features,
that are of similar nature to the ones used in the training phase by minimizing the bias.
A high bias leads to underfitting, i.e., the model is unable to predict well the labels in the
training phase, whereas overfitting manifests when the model predicts very well the training
data but poorly the data outside of the training set [ ]. The output of this phase is a

trained ML model that will be used subsequently in the inference phase.
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3.4 Inference Phase

The goal of this phase, as the name implies, it to infer the transmitted symbols from the
received data signals during the data transmission phase of the coherence time, that contains
T — N SPs. This phase comprises of: a) data collection phase where the evaluation set is
constructed using the data received signals, b) data pre-processing where the data is converted
to a form that is suitable for ML algorithms and the intended task, and c) signal detection

where the transmitted symbols, d, are inferred.

3.4.1 Data Collection

As depicted in Figure 3.1, the overall received data signals at all Rx’s antennas during the

nth SP, y4[n] € CNr*1  can be expressed as

yi[n] = H¥q[n] + 2[n]. (3.4)

where xq € CM*1 is the transmitted precoded data signal from the Ny Tx’s antennas during
the nth SP. As mentioned previously, the Rx collects all the T — N data signals into one, Y4,

that we refer to as the evaluation set.

3.4.2 Data Pre-Processing

In this step, we note that the same pre-processing performed in the training phase must be
performed too on the evaluation set, i.e., the obtained mapping function learned how to map
the pre-procesed features to the labels, thus the same pre-processing has to be applied to the
evaluation set. For instance, the features have to be transformed from complex-values into

real-value to be supported by ML algorithms.

3.4.3 ML-based Signal Detection

The last step in the inference phase is to infer the transmitted symbols d, where d denotes
an estimate of d. For that, the Rx first feeds the evaluation set Y¢ along with the trained
ML model to the classification inference module, which in return will outputs labels as well
as ranking scores. The labels are of the same nature as the labels in the training set, whereas
ranking scores are uncalibrated values that do not constitute probability densities, they signify

the confidence level of the inference. For example, if the labels are in the form of bits, that is,
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if s(bg) and s(by) represent the scores of the predicted bit’s possibilities by and by, respectively,
and if s(bp) < s(b1), then there are more chances that the inferred bit is by, i.e., the higher
the score, the higher the likelihood of the possibility associated with that score. As will be
demonstrated in Chapters 4 and 6, these scores could be used to obtain log-likelihood ratios
that are often needed for soft decoders when channel coding is employed in the system.
Once the labels and ranking scores are obtained, the final step is to perform post-
processing to obtain the estimated transmitted data symbols d. This processing includes, but
not limited to, demapping or conversion of the labels to symbols (and eventually bits) and
hard/soft decoding in case the transmitted bits were coded. The goal of this ML detection
framework is to maximize the inference accuracy, i.e., to have the inferred data symbols d
as close as possible to the actual sent data symbols d. The BER is often employed in this

thesis as a performance metric to assess the prediction accuracy of the proposed ML detection

framework.

3.5 Real-Time Considerations

As mentioned earlier, considering a coherence time of T SPs, a total of N SPs are dedicated
to pilots while T'— N SPs are allocated for informational data. In each SP, the Tx sends NV,
different streams simultaneously, thus the Rx has to detect Ny x (T'— N) data symbols within
each coherence time. In the proposed ML MIMO detection framework, in each coherence
time, before detecting the informational data, the ML has to be first trained using the N, x N
received pilot signals and their corresponding N, x N actual pilot symbols. We note that
the SPs dedicated to pilots are not necessarily placed at the beginning of the frame, they
are usually interleaved with data SPs. Regardless of their placement in the coherence time,
depending on the communication standard used, the Rx knows the pilots and data positioning
in each coherence time. Thus, the first step at the Rx is to collect the pilot signals and
construct the training set. This part is straightforward and does not require any specific
computation, thus could be performed in real time. In the same way, the Rx collects the
evaluation set using the received data signals.

Next, the Rx performs some pre-processing to the training and evaluation sets to adapt
the data type/format to the ML algorithm and the desired output as well. This step usually

involves simple data manipulations and hence does not increase much the complexity of
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the proposed ML detector. However, the training and inference phases, detailed in the
previous section, incur some computational complexity. Still, as will shall demonstrate in
the next chapter, the proposed ML detectors rely on lightweight implementations that make
the underlying detectors’ computational complexity only marginally higher than closed-form
based detectors such as the MMSE detector, making them suitable for real-time systems with

online learning.

3.6 Summary

In this chapter, we presented the proposed generic ML detection framework that leverages
the availability of downlink precoded pilots as training data. Given the nature of the MIMO
detection problem, the ML framework is modeled using as a supervised learning classification
problem. This chapter lays the foundation of the MIMO detection framework, which consti-
tutes the core of the ML detectors proposed in Chapter 4 and the eavesdropping attacks in
Chapters 5 and 6.

39



Chapter 4

Data-driven Precoded MIMO
Detection Robust to Channel

Estimation Errors

In this chapter, we study the problem of one-shot MIMO detection in downlink coded MIMO
systems robust to CSIT deterioration. In this context, we investigate the impact of imperfect
CSIT on the detection performance at a multi-antenna receiver. We first model the CSIT
degradation based on channel estimation errors to investigate its impact on the detection
performance at the receiver. To mitigate the effect of CSIT deterioration at the latter, we
propose learning-based techniques for hard and soft detection that use downlink precoded
pilot symbols as training data. We note that these pilots are originally intended for SINR
estimation. We validate the approach by proposing a lightweight implementation that is
suitable for online training using several state-of-the-art classifiers. We compare the BER
and the runtime complexity of the proposed approaches where we achieve superior detection
performance in harsh channel conditions while maintaining low computational requirements.
Specifically, numerical results show that severe CSIT degradation impedes the correct detec-
tion when a conventional detector is used. However, the proposed learning-based detectors
can achieve good detection performance even under severe CSIT deterioration, and can yield
4-8 dB power gain for BER values lower than 10~ when compared to the classic linear MMSE
detector.

The rest of the chapter is organized as follows: Section 4.1 introduces the system model,
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where we discuss CSIR estimation and downlink transmission. In Section 4.2, we propose our
novel learning-based detection frameworks whereas in Section 4.3 we present a lightweight
implementation of the proposed frameworks that is suitable for online training. Simulation

results are discussed in Section 4.4, followed by the conclusion in Section 4.5.

4.1 System Model

We consider a downlink MIMO system with N; antennas at the BS and N, at the user!.
Herein, the BS sends simultaneously N, different data streams to the multi-antenna user.
The transmission from the BS to the user (downlink) and the transmission from the user
to the BS (uplink) share the same frequency resource and operate in TDD. Each coherence
interval is divided into three phases: uplink training, downlink payload data transmission, and
uplink data transmission, however, in this work, we focus on the downlink data transmission.
Hence, for our case, we consider a coherence time with two phases: uplink training and
downlink data transmission. In the uplink training phase, the users send orthogonal pilot
sequences to the BS, one for every antenna so that the multiple channels can be estimated
simultaneously at the BS. The obtained channel estimates at the latter are used to precode
the transmit signals in the downlink. For simplicity, in the following, we refer to the BS by
“Tx” and the user by “Rx”.

The notation and assumptions adopted in this work are as follows:

e We let h;; denote the channel coefficient between the ¢th Tx’s antenna and the jth
Rx’s antenna. We assume that h;j,7 € {1,...,N¢},5 € {1,...,N;}, are i.i.d. random
variables (RVs). This assumption models the case wherein the Tx and the Rx are
distributed over a wide area, and hence, the set of scatterers is likely to be different for

each transmit/receive antenna.

e The channel matrix H € CM*Nr| with entries hij,i € {1,...,N¢},j € {1,...,N;},
embodies small-scale fading, which is assumed to be static during each coherence time
and changes independently from one coherence time to another. We consider Rayleigh
channel to reflect a rich scattering environment in an urban setting, where there is no

line-of-sight component between the Tx’s and the Rx’s antennas.

'We assume that the number of antennas at the BS is greater than or equal to the number of antennas at
the user, Ny > N;.
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Figure 4.1: Coherence time structure.

e We assume channel reciprocity, i.e., in each coherence time, the channel coefficients in
the uplink are the conjugate of those in the downlink. This assumption requires TDD

operation and appropriate calibration of the hardware chains.

e We consider a block-fading channel where the channel remains constant for 7" symbol
periods (SPs), i.e., the coherence time length. Since we operate in TDD, as depicted
in Figure 4.1, the coherence time is shared between uplink pilots for CSIT estimation,
downlink transmission, and uplink transmission, where 7%, 79 and T"P" represent

their allocated time in SPs, respectively.

e We let d; denote the data symbol associated with the jth data stream intended for the
jth Rx’s antenna, which satisfies E[|d;]?] = 1. In each SP, the Tx sendsd = [d; ...dn,]T

from the V; antennas, where the symbols dj, j € {1,..., N;}, are mutually independent.

4.1.1 CSIT Estimation through Uplink Training

The Tx computes the channel estimate H e CNoxMr using uplink pilots, as depicted in
Figure 4.1, that will be used subsequently to define the precoder for the downlink transmission
phase that encompasses 79 SPs. The quality of the channel estimate depends mainly on
the SNR level, the pilot length, the particular channel estimation technique that is being
employed, and the hardware impairments, e.g., uncalibrated hardware chains in this context
[ ]. In our work, we use the Gauss-Markov formulation to model H in order to reflect
these imperfections | |, ranging from perfect estimation to a completely inaccurate
estimation. In this setting, the channel estimate H is obtained using the actual channel H

as

H=7H+1-72E (4.1)
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where the scalar 7 € [0, 1] specify the quality/accuracy of the instantaneous CSI — 7 =
1 corresponds to perfect CSIT while 7 = 0 indicates that H is completely incorrect and
uncorrelated with the actual CSI —, and E € CM>*Mr represents the random error |

)

] where each term follows a circularly symmetric normal distribution CA/ (0, 1).

4.1.2 Downlink Transmission

Once the channel estimate H is obtained, the Tx uses it to precode pilot and data symbols
to transmit to the Rx during T, 1;“ and T 511 SPs, respectively, as depicted in Figure 4.1.

In each SP, the Tx sends IV, symbols to the Rx, which could be pilot or data symbols.
Hence, for the nth SP, the received data signal y; at the jth antenna of the Rx can be

expressed as

yjln] = h?xd [n] + zj[n] (4.2)

hj = [hy;...hy, |7 € CV*1 is the channel from the N; transmit antennas to the jth receive

antenna, xq[n] € CN*! is the precoded transmitted signal with power pq > 0, and z;[n] is

the AWGN at the jth receive antenna with variance o2.
The above model can be rewritten in a more compact form by collecting the received

signal at all Rx’s antennas:

yin| = Hx, [n] + z[n], (4.3)

where z[n] € CM*! collects the independent AWGN components of all antennas. Conse-
quently we define the transmit SNR as n = p‘;—évt.
In our work, we consider the case when the Tx uses the RZF | ], which is a linear
BLP, as well as the case of a conventional SLP, i.e., the constructive interference for sum
power minimization (CISPM) approach in | ].
The RZF precoding main goal is to maximize the sum of the SINR. It minimizes the
interference signal while optimizing the received power. It is considered as a precoding

approach between the MF and ZF precoders. The RZF precoding matrix can be expressed

as

N A ~ —1
W = H(HHH + ozINt> (4.4)
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Figure 4.2: CISPM precoding design for QPSK constellation.

where « is a regularization parameter whose value is fixed during the transmission and Iy,
denotes the Ny x Ny identity matrix.

We note that, in order to respect the power constraint E[||[Wd|*] = 1, we normalize W

as follows: W = ||V‘<’V||F‘ Hence, using this notation, the RZF precoded signal for the nth SP

can be expressed as

xa[n] = /paWd[n]. (4.5)

As for the CISPM SLP scheme, it is designed to exploit the MUI for power gains. This
scheme propels the noiseless Rx’s received signals deeper into the correct detection region of
the desired symbol for each receive antenna. To illustrate, as depicted in Figure 4.2, for a
QPSK constellation, the gray shaded regions represent the areas where the noiseless received
signal lays after precoding with the CISPM scheme and the black circles are the constellation
point placed at the target SINR value. The CISPM precoded signal for the nth SP can be

computed as
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xa(d, H, 7, 0.)=arg min | x| (4.6)
subject to
Re{hl'x} < 0. /7Re{d;}, Vj
Im{h!'x} < o.,/7;Im{d;}, Vj,

where flj € CMx1 is the channel estimate from the N; transmit antennas to the jth receive
antenna, y; > 0 is the target SINR for the jth receive antenna with v = [y .. AN, T € RNVix1
representing the target SINR for all Rx’s antennas, and the operator < denotes® the correct
detection region | ].

As depicted in Figure 4.3, the optimization problem in eq. (4.6) takes inputs: the esti-
mated CSIT H, the symbols to transmit d, the target SINR at the N, antennas -y, and the
noise standard deviation o,. The objective function’s aim is to minimize the transmit power
subject to some constructive interference constraints that are applied to each receive antenna.
The constraints’ aim is to place the real /imaginary parts of the noiseless received signal at the
jth antenna, ﬁ?x, in the detection region corresponding to the real/imaginary parts of the
Jth intended symbols to transmit. Specifically, with a minimum value of ¢,,/7; to guarantee
a specific target SINR for each receive antenna. In other words, this scheme propels the Rx’s
received signals deeper into the correct detection region of the desired symbol.

Thus, the CISPM scheme minimizes the transmit power while guaranteeing a certain
target SINR at the Rx through constructive interference constraints. Contrary to the RZF
scheme where the precoding matrix W is used for the entire coherence time, in the SLP
approach, for each SP, the precoding module directly designs the transmitted signal vector
xq based on both the CSIT H and the input data symbols d. Even though SLP schemes
are computed for every SP, an efficient implementation in hardware has been proposed in
[ .

2For further detailed information, the reader should refer to | , ].
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4.2 Learning-Based MIMO Detection Frameworks

In this section, we propose two ML detection frameworks, where the Rx uses the transmit-
ted precoded pilot symbols as training data to accurately hard/soft decode the transmit-
ted symbols. We note that these precoded pilots are already used in some communication
standards [ | for the purpose of SINR estimation. Thus, we propose to leverage this
existing knowledge at the Rx to train our learning-based detectors. Both of these frameworks
are comprised of training and inference phases. In the following, we use RZF precoding as an
example for a complete explanation. However, the proposed detection frameworks are valid
for any precoding scheme. We stress that in our work we propose to use machine learning
only at the Rx, whereas we assume conventional precoding where RZF is used as an example
for the precoding design. The proposed learning-based frameworks are generic and function
with any ML or channel coding algorithm, thus mathematical derivations of these algorithms

are omitted in this section.

4.2.1 Learning-Based Framework for the Proposed MIMO Soft Detection

Scheme

As pointed out earlier, the detection occurs at the Rx during the downlink part of the
coherence time T4, where the training phase takes place during the TSI SPs followed by the
inference phase in the remaining 7T éﬂ slots. We note that these pilots might be interleaved
with data and do not have to be sequential.

As depicted in Figure 4.4, our learning-based soft detector encompasses two steps: 1)
training phase, where the ML model is trained using the Tgl precoded pilot symbols, 2)
inference phase, where probability densities are estimated and employed to calculate the

LLRs which are then fed to a soft decoder. Below we detail each phase.

Training Phase

In each SP of Tgl, the Tx sends N; pilot symbols, p = [p;...pn,|T satisfying E[|p;|?] = 1,
which are pseudo-random sequences with each symbol corresponding to one Rx antenna. The
corresponding received pilot signal at the jth antenna during the nth SP, y;-) [n] € C, can be

written as
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Figure 4.4: Overview of the proposed learning-based soft detector.
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Y5 In] = hi'xp[n] + 2], (4.7)

where xp, € CNex1 js the RZF precoded transmitted pilot signal with power pp > 0 such that
Xp = /Pp WD.
Thus, collecting all of the received pilot signals at all antennas, the equivalent received

pilot signals during the nth SP, yP[n] € CV+*!, can be expressed as

yP[n] = B [n] + 2[n]. (4.8)

As depicted in Figure 4.4, for the nth SP, the Rx obtains yP[n] and p. The Rx creates
a single set that collects together the received pilot signal yP[n| and the pilot symbols py,
corresponding to the bit representation of p, for the LLRs to be computed on a per-bit basis.
Specifically, the subscript b in py, stands for “bit”, where the pilot symbols are represented
in bits, e.g., p; € {“00”, “01”, “11”, “10” } in the case of QPSK modulation.

As illustrated in Figure 4.4, to perform the training, the Rx first collects all the Tgl
received pilot signals yP with their pilot symbols py, in one set, which is referred to as the

training set, which can be written as
Dy = {YP, Py}, (4.9)

where YP € CT5 M are the received pilot symbols at the Rx during Tlf)“ SPs and Py, €
CT3'*Ne are the transmitted pilot symbols for Tg“ SPs. In the ML context, YP and Py
are referred to as features® and labels, respectively. This class of ML problems is named
supervised ML. Specifically, this ML problem is considered as a binary MLC problem [ ]
as more than one label is used for each example and the format of the label is binary; each
row in the training set D}, represents an example. In our case, an example is any received
pilot signal yP in a given SP.

Hence, as depicted in Figure 4.4, the training dataset is inputed to the MLC fitting
module that will output the so-called “trained ML model”. Our goal is to generate a well-
fitted model to accurately predict new features, that are of similar nature to the ones used

in the training, by minimizing the bias. A high bias leads to underfitting, i.e., the model is

3We note that the features in YP are complex-valued and are not suitable for common ML algorithms.
This is generally addressed by considering real and imaginary parts separately.
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unable to predict well the labels in the training, whereas overfitting manifests when the model

predicts very well the training data but poorly the data outside of the training set | ].

Inference Phase

This phase, on the other hand, takes place during the TG‘{H SPs of the downlink part of the
coherence time. In particular, as depicted in Figure 4.4, in each SP of T éﬂ, the Tx sends N,
data symbols. The overall received data signals at all antennas of the Rx during the nth SP,

y4[n] € CM*1 can be expressed as

yi[n] = Hx4[n] + z[n). (4.10)

As depicted in Figure 4.4, the Rx first collects the T 511 received data signals in one set
Da=Yde CT&"™*Nr | In ML terminology, the set Dy is the test/evaluation dataset.

Generally, the goal of classification is to predict labels. In this context, however, we
are not interested in the predicted labels (bits) but rather in the corresponding predicted
densities (soft outputs). These soft outputs are used subsequently to compute the (LLRs),
which indicate the reliability of the predicted bits.

Before tackling the computation of these LLRs, we first provide an overview of LLRs
computation by recalling some fundamental definitions in binary detection | ]. Let X
be a binary RV, acting as the correct hypothesis, with possible values {bp, b1} and a priori
probabilities pg and p;. Herein, X models one bit in a transmitted symbol. Let Y be an RV
with conditional probability density fy|x(y|bs) that is finite and non-zero for all y € R and
m € {0,1}. In our context, ¥ models the received signal at the Rx’s antenna for a given
SP. We note that the conditional densities fy|x (y|bm), m € {0, 1}, are called likelihoods. The
marginal density of Y is given by fy (y) = pofy|x (y[bo)+p1fy|x (y|b1). Hence, the a posteriori
probability of X can be expressed as

 pufyix(ylbm)

fX|Y(bm|y) = fy—(y)’ (4.11)

where m € {0,1}. To maximize the probability of correct detection, the maximum a posteriori

(MAP) rule can be written as
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pofy|x (ylbo) ngo p1fyix(ylb1)
ly) 5, Il

(4.12)

where X denotes the decision on the RV X. Rearranging (4.12) and canceling fy (y), we

obtain the likelihood ratio

_ Jyix(ylbo) ngo P1

~ fyix(ylb) fa po’

A(y) (4.13)

where the quantity %(1) is called the threshold and depends only on the a priori densities.
Hence, the log-likelihood ratio LLR(y) can be expressed as follows:

(4.14)

LLR(y) = In [fY'X(y’bO)} .

f Y|X(y’b1)

Therefore, in order to compute the LLRs, we need to first calculate the densities in eq.
(4.14).

As depicted in Figure 4.4, to obtain the densities in eq. (4.14), we feed the test dataset
to the binary MLC inference module along with the trained ML model. However, the binary
MLC inference module does not output densities, but rather predicted labels with their rank-
ing scores. These scores are uncalibrated values that do not constitute probability densities;
these scores signify the confidence level of the inference. That is, if s(bg) and s(by) represent
the scores of the predicted bit’s possibilities by and by, respectively, and if s(bg) < s(b1), then
fyix(ylbo) < fyx(ylbo). Fortunately, there are existing methods to convert these ranking
scores into densities [ ]. In Section 4.3, we discuss the details of an efficient implemen-
tation that estimates densities from ranking scores, which will be used subsequently in the
experiments.

Once the likelihoods fy|x (y|bm) are obtained, the LLRs can be computed using eq. (4.14),
after which the Rx can simply feed the computed LLRs to the soft decoder (e.g., a Viterbi

decoder | ]) to obtain the transmitted data.
4.2.2 Learning-Based Framework for the Proposed MIMO Hard Detection
Scheme

The proposed learning-based hard MIMO detector is also comprised of two phases: 1) training

phase, where the ML model is trained using the precoded pilot symbols as training data; 2)
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Figure 4.5: Overview of the proposed learning-based hard detector.

inference phase, where the module directly predicts the coded bits (in the form of decimals),
which are then mapped into bits to finally be fed to a conventional hard decoder to recover

the transmitted bits.

Training Phase

As illustrated in Figure 4.5, during the nth SP within T, 1;”, the Tx sends p[n] € CNr*1 which
becomes xp[n| € CNex1 after precoding. Subsequently, the Rx receives at all its antennas,
yP[n] € CN*1 ) as detailed in eq. (4.8).

In addition to the yP[n], the Rx also has the knowledge of the pilot symbols p[n]. We
denote the decimal representation of p[n| by pn[n], where the subscript h stands for “hard”;
e.g., p) €{0,1,2,3} in the case of QPSK modulation.

As illustrated in Figure 4.5, the Rx creates a single set that maps the received signal yP[n]

to the corresponding pilot symbols py[n]. Thus, the training set DII} is

Db = {Y", Py}, (4.15)

where Py, € CT5 *Nr are the the pilot symbols during T’ gl SPs. Since the labels are represented
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in decimals, considering a modulation order of M, for each label there are M classes. In the
case of non-binary modulations, this problem is a multi-class MLC problem [ ]. Thus, as
depicted in Figure 4.5, the training dataset D]S is fed to the multi-class MLC fitting module
that in sequence outputs a trained ML model, which will be used thereafter in the inference

phase.

Inference Phase

As depicted in Figure 4.5, for the nth SP, the Tx sends the data symbols d[n] to the Rx in the
form of the precoded signal x4[n|. The corresponding received signals at the Rx’s antennas
is y4[n], as detailed in eq. (4.10).

Therefore, for TS SPs, the overall received data signal is Y¢ = {y4[n]},n € {1,..., T{Y,
which constitutes the evaluation set. Thus, for the inference, we feed the set Y9 to the
multi-class MLC inference module. Contrary to the proposed soft detection scheme, herein
we are interested in predicting the labels, i.e., hard outputs. As depicted in Figure 4.5, to
obtain the labels, we feed the evaluation set as well as the previously trained model to the
multi-class MLC inference module. We note that the predicted labels are in the form of
decimals, i.e., the same nature of the labels used in the training phase. Once the labels are
predicted, they will be first mapped into bits to obtain the coded bits, which will then be fed

to a hard decoder to finally obtain the transmitted bits.

4.2.3 Scalability of the Proposed ML Detection Frameworks to Multi-User
MIMO Systems

Even though this work investigates the case of a single-user (SU) MIMO system, the proposed
detection frameworks can be extended to multi-user (MU) MIMO systems | . To
illustrate, let us consider an MU-MIMO system with N antennas at the Tx and K Rxs with
N; antennas each with N;K total downlink streams such that N; > N;K. For the nth SP,

the received signal at the ith Rx, y;[n] € CNix1 can be expressed as follows

yi[n] = Hixq[n] + z;[n], (4.16)

H; € CNo*Ni is the channel matrix from the Tx to the ith Rx and z;[n] € CYi*! collects

the independent AWGN components of all of the ith Rx’s antennas. For each SP, the ith
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Rx receives N; pilot symbols. Therefore, the ith Rx maps each received signal y;[n| with the
corresponding pilot symbols vector p; € CNi*!. Similarly to the SU scenario, the Rx first
collects the received signals with their corresponding pilots for the TSI SPs then construct the
training and evaluation datasets using the exact same approach in Sections 4.2.1 and 4.2.2.
All in all, the only difference with respect to the single-user case is the second dimension
of the matrices YP, Py, Py, Y9 constructing the training and evaluation datasets, having N;

for the ith Rx in the MU use case instead of N; for the single-user scenario.

4.3 Lightweight Implementation of the Proposed Detection

Frameworks

In this section, we first discuss our efficient implementation to solve the MLC problem for
both of the proposed soft and hard detectors. For the soft detector in particular, we propose
a fast algorithm to estimate the probability densities from the ranking scores, which will be
used for LLRs computation, and demonstrate its efficacy by plotting the distribution of the
predicted densities. Next, we discuss the considered state-of-the-art classifiers used to solve
the classification problem for each label. To clarify, the proposed efficient implementation
is hierarchical; we propose an implementation for the MLC problem as well as the specific
classifiers used for each label. This implementation is further detailed below. We note
that the chosen algorithms and approaches for the proposed learning-based detectors have
been carefully investigated in terms of suitability for online learning, where Rx optimizes its
detector for every coherence time.

We should mention that we did not use deep learning [ | in this context despite its
high performance in several areas mainly because it requires considerable amount of training
data, which is not available in our case. Indeed, in each coherence time, only a limited
portion of downlink transmission is dedicated to pilots. As we consider online learning, i.e.,
the detector is optimized for each coherence time, the pilots of one coherence time could not
be combined with the pilots of another coherence time, thus the limitation of the training
data. Besides, deep learning typically requires millions of parameters to train, which makes
it prohibitively expensive in our application scenario.

In the literature, the proposed methods for solving MLC problems can be grouped into

two main categories: a) problem transformation methods and b) algorithm adaptation meth-
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ods | |. Transformation methods are those that transform the MLC problem and decom-
pose it into multiple single-label classification (SLC) problem instances, whereas adaptation
methods are designed to solve MLC problems directly. Transformation methods are simple
and efficient, however, adaptation methods are designed for maximal efficiency, which usually
makes them more complex and more computationally intensive compared to transformation
methods.

Motivated by the online training approach, we adopt the transformation approach to solve
the MLC problem because of its sufficient efficiency and low complexity. In this setting, we
consider two transformation methods, binary relevance (BR) [ | and classifier chain
(CO) [ ]. BR is the most simple and efficient method to solve MLC problems, where
multiple SLC are trained independently and their individual outputs are combined to form the
multi-label output. Even though this method was designed for binary (two class) labels, as
the name implies, it is also implemented for multi-class SLC problems. Despite its popularity
and simplicity, its only drawback is that it does not consider label correlations. CC, on
the other hand, takes into account the correlation between labels by using the outputs of
the previously trained classifiers as features for the subsequent ones in the chain, except for
the first classifier. In CC, a chain of SLC is constructed where each classifier, in addition
to the related input label, also uses the inferences of other classifiers, thus considering the
correlation between labels. We refer to these transformation implementations by “BR” and
“CC” accordingly.

The time complexity of BR and CC algorithms is O (N; fe(|YP|, |Df)|h])) and O (N, fe(|YP|+
Ny, \D;lh])), respectively, where f.(-) is the complexity of the underlying classifier | .
fe(+) is heavily dependent on the classifier used and the solver used for its implementation,
which makes it challenging to obtain a closed-form big O representation of it. For a quantita-
tive analysis of the time complexity, we measure the total time it takes the algorithm to finish
(in milliseconds), which is commonly being refereed to as runtime | ]. Consequently,
we present the runtime complexity analysis in the following section.

Concerning the proposed soft detector, we adopt an efficient and fast method to ac-
curately estimate the densities fy|x(y|bm) from the outputted ranking scores of the MLC
module, namely, the Platt scalling approach in | ]. This method is used to transform
the uncalibrated scores generated by the classification module into densities. Platt scaling

works by fitting a logistic regression model to the classifier’s scores. The densities fy| x(y|bm)
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according to the Platt scaling algorithm can be computed as

1
" 1+ exp(Afy(bm) + B)’

fy1x (y]bm) (4.17)

where f,(by,) is the classifier ranking score and scalars A and B are the sigmoid parameters
[ | learned by the algorithm, which are calculated using a cross-entropy loss function and
an internal threefold cross-validation to prevent overfitting.

Regarding the implementation of the SLCs, we have experimented with several state-
of-the-art classifiers.* For the details about the classifiers’ hyper-parameters used in this
experiment, we have used the default parameters of the Python modules, where module
“scikit-learn” version “0.23.1” was used to implement the “CC” method as well as the “Max-
Ent”, “SVM”, “R_Forest”, “KNN”, “Decision_Tree”, and “Extra_Trees” classifiers, module
“scikit-multilearn” version “0.2.0” was used for the “BR” method, module “xgboost” version
“1.1.1” was employed for the “XGB” classifier, and module “lightgbm” version “2.3.1” was
used for the “Light GBM” classifier implementation. We note that the same implementation
is used in the following section.

To evaluate the performance of the employed ML algorithms, we use the prediction ac-
curacy metric, which is the ratio of number of correct predictions to the total number of
predictions. In Table 4.1, we compare the prediction accuracy of the proposed soft and hard
detectors using the proposed implementations, considering both RZF and CISPM precoding
schemes with QPSK modulation. For a fair comparison between these precoding schemes,
we set the transmit SNR 7 and the target SINR at the jth receive antenna ; to the same
value such that all the examined schemes have the same transmit power. For simplicity, we
set v; = v,j € {1,..., N;}. The parameters used for this experiment are: 7 = 0.8 (severe
CSIT degradation), Ny = N, = 8, n = 7; = 6 dB such that signal powers of pilot and data
signals is the same, p, = pq4, and a frame size of 300 symbols with Tp" = T;p. We note that
these results represent the averaged results over 100 different channel realizations. We also
note that this accuracy applies before channel decoding, i.e., by comparing the ML predicted
labels to the actual coded transmitted symbols.

As observed in Table 4.1, the prediction accuracy values are high despite the severe CSIT

degradation (7 = 0.8) and the relatively small SNR n = 6 dB employed. We also observe,

*We note that we did not experiment with neural-network based classifiers because of their relative high
complexity and the scarcity of the training data.
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Table 4.1: Prediction accuracy of the proposed learning-based detectors with several state-
of-the-art classifiers when using CIPSM and RZF precoding schemes.

CISPM RZF
Classifiers CC BR CC BR
Soft Hard Soft Hard Soft Hard | Soft Hard
MaxEnt 0.9439 | 0.9322 | 0.9398 | 0.9341 | 0.9096 | 0.8967 | 0.9058 | 0.8995
SVM 0.9015 | 0.8800 | 0.9011 | 0.8806 | 0.8792 | 0.8609 | 0.8793 | 0.8642
R_Forest 0.8419 | 0.8305 | 0.8440 | 0.8313 | 0.8337 | 0.8194 | 0.8376 | 0.8234
KNN 0.7874 | 0.7674 | 0.7888 | 0.7719 | 0.7712 | 0.7428 | 0.7754 | 0.7557

Decision_Tree | 0.7579 | 0.7334 | 0.7582 | 0.7364 | 0.7410 | 0.7169 | 0.7427 | 0.7192
Extra_Trees | 0.8207 | 0.8212 | 0.8577 | 0.8393 | 0.8116 | 0.8108 | 0.8467 | 0.8270
LightGBM 0.8667 | 0.8452 | 0.8673 | 0.8464 | 0.8500 | 0.8309 | 0.8495 | 0.8326

XGB 0.8611 | 0.8424 | 0.8611 | 0.8434 | 0.8450 | 0.8279 | 0.8456 | 0.8285
5004 mm ;=6dB
w5 =0dB
400 1
=
=
S 300
E
5]
= 200 -
100 -
0.
0.0 0.2 0.4 0.6 0.8 1.0
Predicted likelihoods

Figure 4.6: Histograms of the estimated likelihoods for the ML - Soft scheme using RZF
precoding with Ny = 15, N, =8, n € {0,6} dB, a frame size of 2000, and QPSK modulation.

for both of the precoding schemes, the CC approach achieves better results when using the
Soft scheme, however, the BR approach slightly outperforms the CC approach when using
the Hard scheme. Furthermore, MaxEnt classifier achieves the highest prediction accuracy
amongst all classifiers regardless of the precoding scheme employed and the detector used.
Therefore, in the numerical results, to achieve the highest detection performance, we adopt
the CC approach for the soft detector and the BR method for the hard one, where both of
them employ the MaxEnt classifier to solve the SLC problem for each label. In the numerical
results, we refer to these implementations by “ML - Soft” for the soft detection scheme and
“ML - Hard” for the hard detection one.

With regards to the employed likelihoods estimation method for the “ML - Soft” scheme,

Figure 4.6 depicts the distribution of the estimated likelihoods fy|x (y|bm) in the presence of
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Table 4.2: Channel coding parameters used for the simulations

Parameters Values
Code rate Yo
Decoder decision technique | Hard, Soft
Number of frames 100
Trace-back length 96
Constraint length 9

severe CSIT degradation (7 = 0.8). The parameters used for this simulation are: Ny = 15,
N, =8, 7€ {0,6} dB, a frame size of 2000 with QPSK modulation and RZF precoding. We
stress that a predicted probability of 0.5 indicates that the predictor is fully unsure of the
predicted bit, on the other hand, a value close to 1 means the predictor is very confident that
the predicted bit is a 1 whereas a probability close to 0 implies predictor is confident it is a
0. For a transmit SNR of 0 dB, we observe that the predicted likelihoods are spread around
0.5, which indicates a poor prediction performance. However, for n = 6 dB, the prediction
accuracy is high as evidenced by the likelihoods values distributed mostly around values 0

and 1, thus demonstrating the efficacy of the adopted likelihood estimation method.

4.4 Numerical Results

Herein, we demonstrate the performance of the proposed detection frameworks using Monte
Carlo simulations. We consider a Rayleigh flat-fading MIMO system with Ny = 15 and
N, = 8, with QPSK constellation with Gray mapping and channel coding, in which we use
convolutional coding | | and Viterbi decoding | ] with the parameters in Table 4.2
and the Python module “scikit-commpy” version “0.5.0”. Unless otherwise specified, we use
a frame size of 300 symbols, 75" = T*, pp = pa, and 02 = a = 1. Further, we consider
CISPM and RZF precoding.

To our knowledge, we do not have direct competitors that addressed the same problem
that we are investigating here. However, we compare our results with a conventional Rx that
directly detects the received signals without any processing, since in the considered system,
the Tx uses precoding to mitigate the channel effect. Subsequently, we refer to “Conv - Soft”
to indicate soft decoding and “Conv - Hard” for the hard decoding. We also compare with

another type of Rx that uses the downlink precoded pilot signals to estimate the effective
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channel and equalize the receive data signals accordingly. Specifically, for this benchmark Rx,
we adopt the least-squares (LS) method for the effective channel estimation and the linear
MMSE detector that applies the SNR-regularized channel’s pseudo-inverse and rounds the
output to the nearest constellation point. In the following, for this Rx, we refer to “MMSE -
Soft” to indicate soft decoding and “MMSE - Hard” for the hard decoding implementation.

In this work we consider several severity levels of CSIT degradation by varying the pa-
rameter 7 in eq. (4.1). We note that a value of 7 = 0.99 identifies an optimistic channel
imperfection, where even with such a small error in the CSI estimation, the degradation is
notable [RRZ19]. In this work, we consider three scenarios of CSIT imperfections: 7 = 1
for perfect CSIT, 7 = 0.9 to indicate a moderately degraded CSIT estimate, and 7 = 0.8
to reflect severe CSIT degradation. We first analyze the noiseless received signal in each of

these scenarios considering both RZF and CISPM precoding schemes.
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Figure 4.7: CISPM precoding - Noiseless received signal an Rx’s antenna.
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Figure 4.8: RZF precoding - Noiseless received signal an Rx’s antenna.

Figures 4.7 and 4.8 depicts the noiseless received signal at an Rx’s antenna when using
CISPM and RZF precoding, respectively, for different values of 7. The parameters used for
this simulation are: Ny = 15, N, = 8, and n = v = 6 dB. We start by evaluating the case

when the Tx uses CISPM precoding. Figure 4.7a plots the scatterplot of the noiseless received
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signal in the case of perfect CSIT (7 = 1). We can clearly see that the received constellation
points are positioned in the corresponding detection regions; this scheme is guaranteeing a
minimum target SINR value of v = 6 dB for some transmitted symbol while propelling the
rest deeper into the detection region. Therefore, we can conclude that the Tx was fully able
to mitigate the ICI effect when using perfect CSIT. In the case of a degraded CSIT (7 = 0.9),
as depicted in Figure 4.7b, we can observe that the constellation points that were mostly
lying at the edge of the guaranteed SINR in Figure 4.7a got deviated in all directions, which
is evidenced by the elliptic/circular shape cloud, due to the CSIT imperfections. However, in
the case of severe CSIT imperfections (7 = 0.8), as depicted in Figure 4.7c, we can no longer
straightforwardly map the received constellation points to the QPSK detection regions. This
is due to the ICI effect.

Similarly, when the Tx uses RZF precoding, we observe a similar phenomenon. Particu-
larly, in the case of perfect CSIT (7 = 1), as depicted in Figure 4.8a, the noiseless received
constellation also exhibits a clear separation between the 4 QPSK symbols. As opposed to
ZF precoding, RZF does not fully cancel out the ICI effect, we see the constellation points
forming a circular cloud in each detection region, where the cloud-effect is caused by the ICI
effect, thus, this is how RZF offers a trade-off between ZF and MF precoding. Figure 4.8b
shows the degraded CSIT case, where we can observe that the CSIT imperfections led to
deviations of the constellation points, causing the 4 “clouds” to get bigger and where their
edge is near the detection regions. This means after noise adds up, some of the constellation
points will cross into the opposite regions leading to detection errors. However, in the case of
severe CSIT degradation (7 = 0.8) in Figure 4.8¢, the “clouds” are fully merged and centered
at coordinates (0,0). The Tx in this case is not able to mitigate the ICI effect.

Figure 4.9 depicts the BER as a function of 1/ [dB] in low SNR regime in the case of
perfect CSIT (7 = 1). Figure 4.9a plots the BER as a function of n/vy. As expected, the
higher the n/~, the lower the BER, thus the better the detection performance. Conventional
detectors outperform the proposed learning-based detectors, where both converge as n/vy
increases. This is due to the fact that learning-based schemes loose some performance because
of the training and the inference phases. The MMSE detector, however, achieves the same
detection performance as the conventional detector, as the Tx have already mitigated all
the ICI effect possible. As expected, for all detectors, soft decoding always outperforms hard

decoding. The BER performance when using RZF precoding is depicted in Figure 4.9b, where
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Figure 4.9: BER vs. n/v [dB], with 7 = 1 (perfect CSIT).
the same observations apply to the RZF case as well. Overall, we note that all detectors can

achieve very low BER with very low n/~, which indicates the effectiveness of all detectors in

an unrealistic perfect CSI scenario, conventional, MMSE, and the proposed ones.
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Figure 4.10: BER vs. n/v [dB], with 7 = 0.9 (degraded CSIT).

Figure 4.10 plots the BER as a function of 1/v [dB] in the case of a moderately degraded
CSIT (7 = 0.9). In particular, Figure 4.10a plots the BER as a function of 7/ in the case
of CISPM precoding. Similarly, for all detectors, the higher the 7/, the lower the BER.
In particular, the conventional detector’s performance flattens in high SNR, which is due
to the ICI effect as depicted in Figures 4.7 and 4.8. Nonetheless, MMSE and the proposed
detectors’” BER decreases linearly with 1/ with the proposed ML detectors outperforming
MMSE ones in high SNR. And as expected, for all detectors, soft decoding always outperforms
hard decoding. When the Tx uses RZF precoding, as depicted in Figure 4.10b, we observe a
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similar behavior. In particular, the proposed ML detectors outperform the MMSE detector
as 1/~ increase. This implies that the ML approach can leverage better the knowledge of
the pilot symbols 1/, contrary to the MMSE detector where the detection performance that

improves linearly with the increase of /7.
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Figure 4.11: BER vs. n/v [dB], with 7 = 0.8 (severe CSIT degradation).

Figure 4.11 plots the BER as a function of 1/~ [dB] in the case of severe CSIT degradation
(7 = 0.8). In particular, Figure 4.11a plots the BER as a function of 7/ in the case of
CISPM precoding. As expected, the BER when using the conventional detector is high, even
in high SNR regime. However, the BER gets slightly lower as 1/ increases, but flattens
out in high SNR. The MMSE detector’s BER, on the other hand, improves linearly with
1/~ but attaining a limited detection performance in high SNR. Nonetheless, when using the
proposed learning-based detectors, the obtained BER drastically decreases as 7/ increases.
This is due to the learning aspect of the proposed ML-based detectors; even in high ICI effect
(induced by severe CSIT degradation), the ML detectors learns from the sent precoded pilots
the input-output relationships and use it effectively in the inference. When the Tx uses RZF
precoding, similar to Figure 4.11a, for all detection schemes, the higher the 7/~, the lower the
BER, with the proposed learning-based detectors immensely outperforming the conventional
and MMSE detectors and soft decoding achieving better detection performance than hard
decoding. In addition, severe CSIT degradation impede the correct detection when using
conventional detectors even in high SNR regime. Nonetheless, the proposed learning-based
detectors can achieve under 10~% BER values with 7/ as low as 8 dB. Overall, we observe

that RZF precoding leads to better detection performance than CISPM precoding.
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Figure 4.12: Runtime per SP [ms]| vs. N, using RZF precoding and n = 6 dB.

To quantitatively evaluate the time complexity of the different detectors, in Figure 4.12
we plot the runtime per SP as a function of N; with n = 6 dB and RZF precoding. As
expected, the higher the number of antennas at the Rx, Ny, the higher the runtime, with soft
detection consuming more computation time than hard detection for all schemes. We also
observe that “Conv” and “MMSE” detectors exhibit a comparable runtime, as both are based
on closed-form implementations. The runtime of the “ML - Hard” scheme is higher than the
“Conv/MMSE” hard detection ones but shows a similar performance to “Conv/MMSE” soft
detection methods. For the “ML - Soft” scheme, when N, = 1, it achieves the same runtime
as the soft implementation of ‘Conv/MMSE” schemes, whereas for N, > 1, the runtime
of the “ML - Soft” is higher than the one for the soft implementation of “Conv/MMSE”
schemes. This difference is due to the “CC” implementation of the “ML - Soft” scheme,
where the training and inference phases of the SLC modules are performed sequentially for
each received antenna/stream. Overall, the proposed ML detectors consumes marginally
higher runtime than the closed-form based implementations.

We conclude this section by summarizing the insights from the numerical results as follows:

e Soft decoding scheme always outperform hard decoding, i.e., soft values provide extra

information to the decoder that allow for better restitution of the original data.

e In the case of perfect CSIT, RZF and CISPM precoding schemes are almost equivalent

in performance.
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e Conventional and MMSE detectors outperform the proposed learning based detectors

in perfect CSIT, however, the former detectors are vulnerable to CSIT imperfections.

e The proposed learning-based detectors are much more robust to CSIT imperfections,
thanks to their learning aspect that exploits the availability of the precoded SINR pilots

in the downlink.

e Leveraging these precoded pilot symbols by using a classic detector like MMSE leads to
limited BER improvement with SNR increase, as opposed to drastic BER improvement

when using the proposed learning-based detectors.

e Overall, the proposed learning-based detectors achieve remarkable detection perfor-

mance in severe channel conditions while having low computational complexity.

4.5 Summary

In this paper, we studied the problem of one-shot ML-based MIMO detection robust to CSIT
deterioration. We investigated the impact of CSIT imperfections on coded MIMO detection
in systems with precoding and without explicit CSIR knowledge. We modeled the CSIT
imperfections using the Markov-Gauss formulation | | to reflect the degradation due to
channel estimation errors. In this setting, we proposed soft and hard learning-based detection
frameworks that leverage the availability of downlink precoded pilots, originally intended for
SINR estimation, as training data. Moreover, we proposed a lightweight implementation by
using fast and efficient ML algorithms and methods to support online training. Numerical
results showed that CSIT imperfections inhibits correct detection when using a conventional
MIMO detector. We showed that even when a conventional Rx exploits the downlink pre-
coded pilots to estimate the effective channel and uses the MMSE detector to compensate
for ICI, the resulting performance is not good under severe CSIT degradation. However,
the proposed learning-based detectors are substantially more robust to CSIT degradation,
where the proposed ML scheme can achieve 4-8 dB power gain for a BER value under 10~4
when compared to the MMSE receiver under severe CSIT degradation, while retaining low

computational complexity.
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Chapter 5

Learning-Assisted Eavesdropping
and Symbol-Level Precoding
Countermeasures for Downlink

MU-MISO Systems

In this chapter, we address the problem of one-shot MIMO detection robust to inaccurate
CSIT at a multi-antenna Eve in an MU-MISO system without channel coding. Particularly,
we introduce an ML based detection attack, where an Eve is able to learn the symbol detection
function based on precoded pilots. With this ability, an Eve can correctly detect symbols with
a high probability. To counteract this attack, we propose a novel SLP scheme that enhances
PLS while guaranteeing a constructive interference effect at the intended users. Contrary
to conventional SLP schemes, the proposed scheme is robust to the ML-based attack. In
particular, the proposed scheme enhances security by designing Eve’s received signal to lie at
the boundaries of the detection regions. This distinct design causes Eve’s detection decisions
to be based almost purely on noise. The proposed countermeasure is then extended to account
for multi-antennas at the Eve and also for multi-level modulation schemes. In the numerical
results, we validate both the detection attack and the countermeasures and show that this
gain in security can be achieved at the expense of only a small additional power consumption
at the transmitter, and more importantly, these benefits are obtained without affecting the

performance at the intended user.
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Figure 5.1: Downlink MU-MISO system comprised of: a BS with Ny antennas, K single-
antenna users, and one Eve with M antennas.

The rest of this chapter is organized as follows: Section 5.1 introduces the system model.
In Section 5.2, we present the proposed ML-based attack, whereas in Section 5.3 we propose
novel PLS schemes as a countermeasures. Simulation results are presented in Section 5.4 and

Section 5.5 concludes this chapter.

5.1 System Model

As depicted in Figure 5.1, we consider a single cell MU-MISO downlink system, where the
BS is equipped with N; transmit antennas serving K single-antenna users, with K < N,
and one multi-antenna eavesdropper with M antennas. We assume a block fading channel
h; € C'*Ne between the transmit BS antennas and the j-th user. The received signal at the

j-th user can be expressed as

yjln] = hyx[n] + z;[n] (5.1)

where y;[n] € C is the received signal at the j-th user in the symbol slot n, x[n] € CNe<1 is

the transmitted vector from the Ny transmit antennas, and z;[n] € C is the AWGN at the
2

j-th user with variance o%.
The above model can be rewritten in a matrix form by collecting the received signal at

all users in vector y[n] € CK*! as
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yln] = H"x[n] + z[n] (5.2)

where H = [hT...h%] € CN*E represents the system channel matrix and z[n] € CK*!
gathers the independent AWGN components of all users, with a variance of o each. We note
that H is assumed to be known at the BS through pilot-assisted channel estimation | -

Similarly, the received signal at an Eve with M antennas, y.[n] € CM*! can be expressed

as follows

yeln| = HeTx[n] + Ze[n] (5.3)

where He = [hg1 e th] € CNe*M represents the system channel matrix between the BS
and the multi-antennas Eve with he; € C™ Mt being the channel coefficients between the
BS and the i-th antenna at the Eve, and z.[n] € CM*! gathers the independent AWGN
components at all M antennas, with a variance of o2 each.

In conventional block-level precoding, the transmitted vector x[n] is modeled as Wd,[n],
with W being the precoding matrix and d,[n] € CX*! the data information intended for the
K legitimate users. Specifically, the precoding matrix W is designed depending only on the
CSI. For this reason, this type of precoding is commonly being referred to as channel-level or
block-level precoding | , |. Consequently, the precoder W changes only when
the CSI changes and remains constant for several symbol slots, making the relation between
x[n] and da[n] linear.

In symbol-level precoding approach, however, the precoding module directly designs the
transmitted signal vector x[n] based on both the CSI H and the input data symbols da[n],
hence the symbol-level nomenclature, i.e., the precoded signal x[n| changes at every sym-
bol slot | |. Therefore, this scheme optimizes the transmit vector x[n] without any
intermediate steps (such as designing W) while constructively exploiting the inter-user in-
terference. As a result, the relation between the transmit vector x[n| and the input symbol
vector d[n]| is no longer linear, as in the case of block-level precoding, and is inherently
embedded into the precoding module. We note that the data symbols, d,[n], are assumed
to be uncorrelated and drawn from a generic multi-level constellation having unit average
power. We also assume that the channel to the Eve is known at the BS and that Eve is part

of the system. The latter assumption provides Eve the advantage to know the modulation
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Figure 5.2: Summary of the ML-based attack.

and coding parameters used. For ease of notation, we drop the time index n in the remainder

of the chapter.

5.2 ML-Based Attack

In this section, we introduce the ML-based attack, where an Eve can detect another user’s
symbols with a sufficiently low BER. Specifically, Eve would know the precoded pilot symbols
used and their placement in the frame. This side information, which is usually publicly
available in standards, can be exploited by the Eve and used to eavesdrop another user via
the use of ML tools. This attack encompasses two phases 1) training phase and 2) inference
phase. An overview of the attack is provided in Figure 5.2. Alongside, we present the
two phases of the attack followed by a formulation of it. We then conclude this section by

presenting a practical example of the ML-based attack on a SLP benchmark scheme.

5.2.1 Training Phase

As shown in Figure 5.2, the BS sends multiple frames within one coherence time T, where
at the beginning of each frame, we find precoded pilots, x, € CNex1 for channel and SNR

estimation. The received pilot signals at the i-th antenna of the Eve, ygi € C, can be written
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as follows

Yoi = DeiXp + 2e (5.4)

where z.; € C is the AWGN at the Eve with variance Uii. The overall received pilot signal

at Eve at all antennas, y2 € C*M | can be written as

yo = Hexp + Ze. (5.5)

As ygi is Eve’s received pilot signal, it knows beforehand the corresponding pilot symbol p

that was transmitted. We note that the transmitted signal x;, is a function of all user symbols,
however the introduced attack targets a specific user, for which we know the transmitted pilot
symbols in advance. In other words, the Eve is not trying to decode the data of all the users, it
instead attempts to decode the data of a single user. As such, the Eve would create a mapping
between the received signal y5 and the corresponding labels p. Thus, the Eve can exploit
the knowledge of the precoded pilots, that are sent regularly according to communication
standards for SNR estimation, in order to improve its detection performance.
We note that, as the number of antennas at Eve, M, increases, the number of input features
increase accordingly, which often leads to better prediction accuracy. In essence, each antenna
at Eve receives a different distorted copy of the same transmitted signal x;,, the more different
copies of x;, received by Eve, the better the machine-learning model performance will be, thus
resulting in an improved symbol detection accuracy.

In the case of QPSK, there are only 4 possible pilot symbols, hence 4 classes. In the ML
world, these classes are commonly being referred to as labels. As such, the corresponding
machine learning problem is a supervised ML problem | ]. Meanwhile, since the labels
are discrete, i.e., constellation points, the problem is categorised as a classification problem.
Thus, the training set D contains N training points, i.e., {ybn,pn},n € {1... N}, where y&,
represents the n-th received pilot signal at Eve, while p,, is the corresponding constellation

point (label) associated with the observations y&,. We further define the training set D as

{y2n,0u} ~ fly,p);ne{l...N} (5.6)

where the operator ~ signifies that the pairs {y&,,pn},n € {1... N} are i.i.d with probability
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distribution f(y,p). The training set D can be written in a more compact form as below

D = {y?,p} (5.7)

where y& € CN*M s the received pilot symbols at Eve and p € CV*!

are the corresponding
transmitted pilot symbols.

For simplicity, we denote the real and imaginary parts of Y& as two real numbers,
called input features, while we represent each pilot symbol in p using four' decimal ¢ =
{0,1,2,3}, with each class corresponding to one QPSK symbol. Hence, the training set be-

comes {yb", yb™, cp} with y&" € RVXM heing the real part of Eve’s received pilot signals,

ye m e RNXM g jtg imaginary part, and ¢, € NV*1 are their corresponding classes. Based
on the training set D, we derive a predictor (the trained ML model) that predicts a class I

based on the observation ye.

5.2.2 Inference Phase

As depicted in Figure 5.2, the BS sends precoded data, xq4 € CM*1 to the users. The

received symbol at Eve in each symbol period, y¢ € CM*1  can be written as follows

yd = HIxg + 7. (5.8)

where xq € CNtX1 represents the transmitted precoded signal from the N; transmit antennas
intended for all the users during one symbol period. If we assume that there are L data
symbols in one coherence time, yd € C¥*M represents the collection of all received symbols
at Eve during one coherence time 7.

The goal of classification is to predict a label d for a new, usually unobserved, received
precoded signals, yg, that is outside the pilot signals. Therefore, a machine learning-based
detection can be performed over y¢ using the trained ML model, as shown in Figure 2. The
output of the ML-based detector block is the symbols vector d € C¥*!, which is an estimate
of d € C¥*! (symbols intended for a specific user). Then, we perform demapping over d to
obtain the corresponding bit-vector b. Finally, we compare b to b (the actual bits sent to a

specific user) to obtain the BER at Eve.

!The number of classes depends on the modulation order used. In the case of QPSK, the number of classes
equals four.
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5.2.3 ML Attack Formulation

As stated above, the idea of supervised learning classification is to find a robust mapping h
between the input features yb and the classes p using the training dataset D. To further
illustrate, we give the example of the support vector machine (SVM) classifier. The goal of
SVM classifier is to separate the four? classes using lines that are usually hyperplanes.

The hyperplanes can be described using the below equation

Wye+b=0 (5.9)

where w is the normal to the hyperplane and m is the perpendicular distance from the hy-
perplane to the origin. Support vectors, as their names imply, are the separating hyperplanes
and the goal of the SVM algorithm is to orientate the hyperplanes in such a way to be as far
as possible from the closest members of the different classes. Hence, implementing the SVM
classifier boils down to selecting the parameters w and b that best achieve the aforemen-
tioned goal through the use of the training data. Once these parameters are estimated, the

trained ML model can be used to directly predict the transmitted symbols from observing

any received signal at the Eve during the same coherence time T¢.

5.2.4 Attack Example on a Benchmark Scheme - CISPM

As a Benchmark, we use the approach in | ], the CISPM scheme. This particular
scheme is designed to exploit inter-user interference for power gains at the intended users,
in other words, this scheme propels the intended users’ received signals deeper into the
correct detection region of the desired symbol for each user. Although this scheme applies no
processing towards Eve’s received signal, it still provides security gains. Since the transmitted
signals are designed to have CI only with the intended users channels, Eve’s received signal
would in all likelihood fall in a different region than the correct one, as his channel is different
than the intended user’s one. Hence, the benchmark scheme is inherently secure against a

conventional eavesdropper. The corresponding optimization problem is defined as

2The number of classes depends on the modulation order. For QPSK, the number of classes equals four.

70



x(d, H, y)=arg min ||x||? (5.10)
subject to
Re{h;x} < o.,/7jRe{d;}, je{l...K}

Im{h;x} do.\/y;Im{d;}, je{l...K}

where 7; is the target SINR for the j-th user, v = [y1...vk] € RE*! represents the target
SINR for all users. This problem is convex as both objective function and constraints are
convex and can be solved efficiently using second order cone programming | ].

Although the CISPM scheme is secure against conventional eavesdropper, it can not stand
against a sophisticated Eve that employs machine learning for symbol detection. As we shall
demonstrate subsequently, the CISPM is vulnerable to the ML-based attack as it uses no
specific pre-processing for Eve’s received signal.

The setup of the experiment is as follows. We consider a BS using the CISPM scheme to
precode the transmit signal x intended to the K users. Particularly, both transmit signals x;,
and xq are designed using the CISPM scheme. In Table 5.1, we show the symbol detection
accuracy® of the different classifiers when the CISPM scheme is used. We note that, for
this simulation we used QPSK modulation, Ny = 10, K = 6, and a single antenna Eve. In
this particular experiment, we used 100 symbols as pilots and 1000 symbols as data. In this
setting, we used Matlab for data generation and Python for classification and performance
analysis. We should mention that we did not use deep learning | ] in this context despite
its high performance mainly because it requires considerable amount of training data that is
not available in our case. In fact, in each coherence time, only one portion of the frame is
dedicated to pilot symbols, which in turn serve as the training data, and since the channel
and data change in each frame, training could be done only within the frame itself, hence the
limitation of training data. We notice that the symbol detection accuracy is relatively high
when using such a scheme. This is due to the fact that at the BS, there was no particular
constraint or processing towards the received signal at Eve. Therefore, Eve is using the power
of ML tools to be able to still discriminate between the intended symbols for a particular
user, even though the precoded signal was specifically designed for channel vectors that are

considerably different than Eve’s one.

3This accuracy refers to the accuracy of the trained ML model, i.e., the learning block of the diagram in
Figure 5.2
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Table 5.1: Performance of different classifiers for SLP-based dataset.

Classifier Symbol detection accuracy
Support Vector Machines 0.7
Gradient Boosting Machine 0.63
Logistic Regression 0.71
K-Nearest Neighbors 0.66
XGBoost 0.68
Light GBM 0.67

5.3 Countermeasure - PLS Scheme

In this section, we first present a novel secure principle for designing secure precoding schemes
that counteract the ML-based Eve. Then, based on this principle, we propose a precoder
that yields high achievable BER at the Eve. Since the formulation of the latter scheme is
non-convex, we propose an equivalent convex formulation. As a tradeoff between security
and transmit power, we propose three other convex secure precoding schemes that are more

energy efficient.

5.3.1 Secure Design Principle

As presented in the earlier section, an Eve with multiple antennas can achieve a decent
detection performance that allows it to detect most of the received symbols by using the
power of machine leaning. In order to dramatically worsen its detection performance, we
propose a novel design principle of the precoded signal. We deliberately force the received
signal at the Eve to lie at the boundaries of the detection regions.

This specific design has two advantages 1) to increase PLS as the detection decisions at
the Eve will be mostly made depending on noise and 2) for energy efficiency purposes since

it involves only a small deviations of the received constellation point.

5.3.2 PLS Schemes

In this section, we introduce the SLP-based countermeasure, that we call subsequently PLS
scheme. Similar to | ], the idea is to design the transmitted signal x so as to have
constructive interference at the intended users, and at the same time, to confuse the Eve by

maximizing its detection uncertainty using the above secure design principle.
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Figure 5.3: Example of PLS scheme using QPSK modulation.

The PLS scheme is demonstrated in Figure 5.3. Herein, we adopt the example of QPSK
modulation for illustration purposes, where the dark circles represent the constellation points.
We design the transmitted signal in such a way to have constructive interference at the
intended users, that is represented by the grey shared regions. The goal here is to push
the received points deeper into the detection region in order to improve the intended users’
detection accuracy. However, we design Eve’s received signal to lie in the strapped region
(boundary of the detection region), whose width is controlled by the parameter . The lower
the value of 0, the sharper the strapped region, thus the higher the probability of falling into
a different region after noised adds up, resulting in higher BER at Eve. It is worth noticing
that this particular design makes Eve’s detection decisions to be mostly based on noise.

For a downlink MU-MISO system, with N; transmit antennas and K users, the afore-
mentioned precoder design problem can be formulated as a power minimization problem

as

73



x(d, H, H,, 7, 0)=arg min x| (5.11)

subject to

Re{h;x}<o, /7;Re{d;}, je{l...K} (5.12)
Im{h;x}<o,/~;Im{d;}, je{l...K} (5.13)
Re{he;x} S ¥6, ie{l...M} (5.14)
Im{h;x} S F6, ie{l...M} (5.15)

where h;x is the j-th user’s noiseless received signal, he;x is the noiseless received signal at
Eve’s i-th receive antenna, < denotes the correct detection region | ], 0 is the distance
parameter controlling the width of the strapped region, the operator ; F refers to < 4 and
> — simultaneously, while Re and Im denotes real and imaginary parts, respectively. The
above problem? is non-convex because of the non-convexity of target region of Eve’s received
signal. The physical meaning of constraints in the PLS scheme are of two types. CI at the
legitimate users, achieved by constraints (5.12) and (5.13). The CI effect results in increased
power gains at the legitimate users. However, constraints (5.14) and (5.15) are intended
to have destructive interference at Eve to increase the uncertainty during symbol detection.
Particularly, making his received signal lie at the boundary regions, so that the noise will
move it in either direction of the detection regions and hence increase the BER at the latter.
We note that the quality of service of the users, exhibited by constraints (5.12) and (5.13),
does not affect constraints (5.14) and (5.15) of the boundary regions.

Hence, in problem (5.11), the non-convex constraints are the ones related to the Eve, they

are as follows

Refh,;x} = F6,i € {1... M} (5.16)

Im{h;x} = F6,i € {1... M}. (5.17)

Given these constraints, the feasibility region of Eve’s received signal is non-convex, as

shown in Figure 5.3 (the strapped region). In the following, we propose four convex imple-

4We note that the formulation in (5.11) is valid for a generic multi-level constellation, such as M-QAM,
however it can be tailored to other constellations as APSK.
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mentations of the problem in (5.11), with varying security and energy efficiency trade-offs.

PLS - Square Scheme

Similar to the idea in [ |, we take the intersection of the vertical boundary region and the
horizontal one, characterized by constraints (5.16) and (5.17), respectively. The intersection
of the two form a square, hence the name. With this, the problem in (5.11) becomes convex
and could be solved efficiently using convex solvers such as CVX. This scheme designs Eve’s
received signal to lie in the square whose center is the origin and side is 2. When noise is
added, the received signal at Eve will lie on any of the 4 detection regions (in case of QPSK),
thus providing high security. Algorithm 1 explains the process of signal design of the PLS -

Square scheme.

Algorithm 1 PLS - Square scheme

Input: d,H, He, v, 02,5;
1: while solve problem (5.11) as follows:

2: Satisfy CI constraints in (5.12) and (5.13)
3: Satisfy constraints (5.14) and (5.15) simultaneously
4: end while

Output: x,

We note that Algorithm 1 is executed for every symbol slot.

PLS - Two-Steps Nearest Scheme

In this scheme, as its name implies, the transmit signal x is designed in two steps. In the
first step, we aim to determine the region in which Eve’s received signal would lie when
CISPM scheme is used (we name the transmit signal inhere xcy). Once we identify the
coordinates of Eve’s received signal, hexcy, we feed this information into the second problem
as an input. Herein, we execute problem (5.11) with the formulation of nearest. Namely,
depending on where Eve’s signal would land, we design it to fall into the nearest boundary
region, either vertical one or horizontal one. We note that, when considering Gray mapping,
the detection regions factorize when using this scheme, i.e., the bits are transmitted in real and
imaginary parts independently and are also detected in the same way, leading to probabilities
factorization due to the underlying statistical independence. Thus, this scheme is optimal
with respect to the BER.

The detailed steps of the procedure are found in Algorithm 2.
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Algorithm 2 PLS - Two-steps nearest

Input: d,H,~,0?; > Step 1
1: Solve problem (5.10)

Output: x¢7

Input: d, H,H,,v,02,§,xcr; > Step 2

2: while solve problem (5.11) as follows:

3: Satisfy CI constraints in (5.12) and (5.13)
4 if [Re{hc;xcr}| < [Im{he;xcr}| then

5 Satisfy constraint (5.14)

6 else

7: Satisfy constraint (5.15)

8 end if

9: end while

Output: x,

where condition |Re{he;xcr}| < [Im{h.;xcr}| implies that Eve’s received signal is closer to
the vertical boundary region, hence in this scheme we design Eve’s received signal to lie in
the vertical boundary region (constraint characterized by (5.14)). Otherwise, we design Eve’s
received signal to lie in the horizontal boundary region instead (represented by constraint

(5.15)).

PLS - Two-Steps Farthest Scheme

This scheme can be considered as opposite of the PLS - Two-steps nearest scheme, i.e.,
instead of picking the closest boundary region, it always chooses the farthest one. Intuitively,
this scheme would provide higher security gains than the nearest scheme (as it pushes the
constellation point even farther, leading to higher chances of falling into the wrong region),
however, it would consume more transmit power, the bigger the introduced deviation by the
constraint, the higher power required to move it. Below we formulate the algorithm for the

PLS - Two-steps farthest scheme.
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Algorithm 3 PLS scheme - Two-steps farthest

Input: d,H,~,0?; > Step 1
1: Solve problem (5.10)
Output: x¢7
Input: d, H,H,,v,02,§,xcr; > Step 2
2: while Solve problem (5.11) as follows:
Satisfy CI constraints in (5.12) and (5.13)
3: if |Re{h¢;xcr1}| > [Im{he;xcr}| then
Satisfy constraint (5.14)
4 else
5: Satisfy constraint (5.15)
6: end if
7: end while
Output: x;

where condition |Re{he;xcr}| > [Im{h.;xcr}| indicates that Eve’s received constellation
point is closer to the horizontal boundary region, and since this is farthest scheme, we design
Eve’s received signal to fall into vertical boundary region (constraint characterized by (5.14)).
However, if the condition is not fulfilled, we design Eve’s received signal to lie in the horizontal

boundary region instead (represented by constraint (5.15)).

PLS - Two-Steps 6-Lines Scheme

This scheme is also a two-step scheme, however, this particular scheme is designed for higher
order modulation such as 16-QAM, where the detection regions are numerous. Figure 5.4
depicts the six lines that define the 6 boundary regions (the region where Eve’s received signal
should lie) for this scheme. This scheme consist of designing Eve’s received signal to lie in
one of these lines by choosing the closest boundary region to it. Below we define the different

constraints characterizing the 6 boundary regions:

Refhe;x} S ¥6, ie{l...M} (5.18)
Re{hex} + thee = F6, i€ {l...M} (5.19)
Refhex} — thee = 76, i€ {l...M} (5.20)
Im{he;x} = F6, ic{l...M} (5.21)
Im{he;x} + thin = F6, i€ {l...M} (5.22)
Im{he;x} — thim = F0, i€ {l...M} (5.23)
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Figure 5.4: 16-QAM constellation showing the 6 lines boundary regions.

where thy and thi, denotes the threshold that determines the boundary regions of both real
and imaginary parts, respectively, as depicted in Figure (5.4).

Naturally, this scheme would require less power than all the aforementioned PLS schemes,
considering that it introduces the smallest deviation of the constellation point. Algorithm 4

shows the details of this scheme.

Algorithm 4 PLS scheme - Two-steps 6lines

Input: d,H,~,0?; > Step 1
1: Solve problem (5.10)
Output: x¢r

Input: d,H, He,v,02,8,X0r; > Step 2
2: while Solve problem (5.11) as follows:
3: Satisfy CI constraints in (5.12) and (5.13)
4: Determine the closest line to he ;xcr
5: Apply the corresponding constraint from (5.18,5.19,5.20,5.21,5.22, and 5.23)

Output: xg

We note that the above-mentioned implementations of the optimization problem in (5.11)

are convex, and thus their global optimum can be obtained using standard convex optimiza-
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Table 5.2: Performance of different classifiers for countermeasure SLP-based dataset.

Classifier Symbol detection accuracy
Support Vector Machines 0.28
Gradient Boosting Machine 0.3
Logistic Regression 0.28
K-Nearest Neighbors 0.26
XGBoost 0.28
Light GBM 0.27

tion tools | ].

5.3.3 Attack Example on PLS Scheme

As demonstrated in Section 5.2.4, a sophisticated eavesdropper that employs ML can predict
a precoded signal to a user with high accuracy. However, in the case of the PLS scheme (we
used Random scheme implementation in this experiment), the prediction accuracy is quite
low compared to the CISPM scheme. In fact, these values are close to i, which is the lower
bound when Eve has no side information and is randomly picking symbols out of the QPSK
set. The main reason for this behavior is because we are forcing Eve’s received signal to lie
at the boundary region. Hence the received signal at the latter will be randomly distorted
because of noise, thus making it very difficult for the ML algorithm to map the received
signals to the pilot symbols. Similarly, we compared many classifiers, where their prediction

accuracy is summarised in Table 5.2.

5.4 Simulation Results

In the numerical results, we define the considered performance metrics. First, the total
transmit power by the BS antennas is defined as Pyo¢ = ||x||?. In the simulations, we take the
average of the above quantity over a large number of symbol slots, i.e., Eq,, 7[P;ot], to obtain
the frame-level total transmit power, which is then averaged over a large number of channel
realizations. We also compute the effective BER at the Eve, by detecting the received signal
at the latter. In addition, we compute the BER at the intended users in order to investigate
the impact of the countermeasure scheme on the intended user performance. We note that

we employ Gray mapping in the numerical simulations.
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Consequently, we define the metric that we call effective rate, R,, that quantifies the

error-free part of the total rate, and can be written as

R, = WR.(|]1 — 2BER,|) (5.24)

where W is the bandwidth, R, is the rate (equals 2 in the case of QPSK), |- | is the absolute
value, and BER, is the effective BER, where “a” can be either intended user or Eve. Since
a BER value of 0.5 implies no information is communicated, it is verified in (5.24) that the
effective rate returns 0 when the BER equals 0.5 and full rate when the BER is 0.

Similar to the performance metric used in [ ], we define the secure rate as

Rsec = Eint - Reve (525)

where Rjy is the effective rate at the intended user and Reye is the one at the Eve.
Last but not least, we define a new metric that we call Energy Efficiency for Secure
Transmission (EEST) 7eest that combines both the secure bits transmitted and the transmit

power consumed, so it will be [secure bits/s|, and defined as

Reec[bit/s]

. 5.26
Fa, ulPo] (5:26)

Tleest =

We note that we have devised this metric to compare the overall performance of the PLS
schemes, by taking into account simultaneously security and transmit power. The EEST
increases either by increasing the secure rate and/or by decreasing the power consumption,
and thus, higher values of it indicate either better security and/or lower power consumption.
Therefore, if an A scheme provides higher EEST than another scheme B, then scheme A is
providing higher security with respect to its consumed power. We note that the metric for
secure transmission is the secure rate, in the numerator of the EEST, the higher the secure
rate, the more secure the scheme will be. Particularly, we can observe a very high EEST that
was due to very low power consumption and little security. As a result, there is no value of
it that can guarantee secure transmission.

In the below figures, we used the SVM classifier for the ML-based attack as it possesses
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one of the highest prediction accuracies, thus making the Eve as sophisticated as possible.
Moreover, all results have been averaged over 100 channel realisations and using 1000 sym-
bols in each realizations, in order to give an accurate performance analysis of the proposed
precoders. To train the SVM classifier, we have used the following parameters: “onevone
coding” without optimizing the hyperparameters and 1000 symbols for each constellation
point for training. The simulated MU-MISO system comprises of Ny = 15 antennas at the
BS, K = 6 single-antenna intended users, M = {1,3,6} number of antennas at Eve de-
pending on the simulation, 02 = 1Watt, the bandwidth W = 20Mhz, Gray mapping, and
02 ={0,0.2,...,1} depending on the figure. In the numerical results, we assume that the
users and Eve have the same coherence time length. Particularly, we use a coherence time
of 1000 symbols which is long enough for Eve to have sufficient pilots for training. However,
this does not apply to the intended users since they use conventional detection methods.
We note that Matlab was used as the main software for simulations, embedded with
CVX as the convex optimization solver. We note that since the proposed schemes and the

benchmark scheme pertain to the same class of optimization convex problems, they are of

comparable complexity.
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Figure 5.5: 16-QAM with Ny = 15, K = 6, 15 dB target SINR, and M = 1.

For the numerical results, a value for the thresholds th,, and th;, has to be chosen. For
that, we investigate the impact of the thresholds on both the total transmit power and the
BER at Eve. We note that these threshold values are relevant only for the Two-steps 6-lines

scheme, where we set thye = thi, because of the symmetry of the 16-QAM constellation. As
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shown in Figure 5.5, part (a) plots the total transmit power vs. the threshold while part (b)
depicts the BER at Eve vs. the threshold.

As expected, and in accordance with the SLP schemes behavior in this section, higher
security (BER at Eve) comes at the cost of higher power consumption. In Figure 5.5a, the
transmit power shows a minimum, corresponding to the position of the threshold close to the
original position of the received symbols, i.e., the constraints are not too stringent, hence the
consequent power saving. Before reaching this minimum, we observe a decrease of the power,
due to the constraints becoming less and less strict. However, after reaching the minimum,
the total power starts increasing because of constraints getting more stringent, but going in
the opposite direction. As for the behavior of the BER at Eve depicted in Figure 5.5b, the
stricter the constraints, the more distant are the boundary regions from the original position
of the received symbols, the more likely for Eve to make wrong detection decisions, hence the
increase in the BER at Eve.

Finally, we have picked the value of th,e = thy, = as a trade-off value between the

6
V)
total power consumed and security. But after all, varying the threshold barely affects the
performance, as shown in Figure 5.5, values of transmit power and BER vary slightly with
the change of the threshold. We note that the suggested fixed value of the threshold is for

the selected parameters used in this section.
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Figure 5.6: BER vs. number antennas at Eve, with Ny = 15, K =6, and § = 0.1

Figure 5.6 plots the BERs at Eve as a function of the number of antennas at Eve, for case

of QPSK and 16-QAM modulations. We compare the benchmark scheme, CISPM, with the
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PLS schemes. The parameters used in the simulation are Ny = 15, K =6, § = 0.1, and 10dB
of target SINR at intended user. In both QPSK and 16-QAM, all PLS schemes outperform
the CISPM one with PLS Square providing the highest security gains. We also observe that
the more antennas at Eve, the higher the prediction accuracy (more samples of same signal),
and ultimately the lower the BER. However, we notice that PLS - Square scheme is not
affected much by this increase in the number of antennas at Eve, and it is due to nature of
this scheme, in particular, it randomly assigns Eve’s received signal to either the horizontal
boundary region or vertical one, and hence making it super hard for the ML engine to find a
relationship, as it is practically impossible to predict something random, thus it provides the
highest security. On the other hand, the other PLS schemes still provide better security gains
than the CISPM one, but not as good as the Random one, mainly because in their design is
inherently deterministic, hence the ML engine would often find ways to find the relationship
between the observed precoded symbols and the actual symbols intended for a specific user,
thus the decrease of the BER as the number of antennas at Eve increase, i.e., more training

data. We also observe that in the case of 16-QAM.
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Figure 5.7: BER vs. target SINR, with N; =15, K =6, § = 0.1, and M = 3.

Figure 5.7 depicts the BERs at Eve as a function of the target SINR at the intended
user, that we set to the same value for all users for simplicity, for case of QPSK and 16-
QAM modulations. We compare the benchmark CISPM scheme with the PLS schemes. The
parameters used in the simulation are Ny = 15, K =6, § = 0.1, and M = 3. Similarly, for

all precoding schemes, the higher the target SINR at the intended user, the lower the BER
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at the Eve, except for the PLS - Square scheme, where its performance is not affected by the
target SINR due it its invulnerability to ML-based attack, given the employed randomness in
the design. We also observe that all PLS schemes outperform the CISPM one as they include

some Eve-related constraints in their formulation, with the same behavior in both QPSK and

16-QAM.
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Figure 5.8: BER at intended user vs. ~, with Ny =15, K =6, 6 = 0.1, and M = 3.

Fig 5.8 plots the BERs at intended user as a function of the target SINR at the intended
user, that we set to the same value for all users for simplicity, for case of QPSK and 16-
QAM modulations. We compare the benchmark CISPM scheme with the PLS schemes. The
parameters used in the simulation are Ny = 15, K = 6, § = 0.1, and M = 3. As expected,
for all the schemes and both modulations, the BER at the intended user decreases as the
target SINR at the latter increases. That is, higher target SINR implies higher transmit
power, hence better SNR at intended, that leads to an improved BER. We also note that
all the schemes have the same performance at the intended user, a match is observed among
all schemes, both PLS and CISPM, consequently, we can conclude that despite the security
gains offered by the PLS schemes, their use does not impact the performance at the intended
user.

Figure 5.9 show the total transmit power, in dB, as a function of the target SINR, that we
set to the same value for all users for simplicity, for case of QPSK and 16-QAM modulations.
We compare the benchmark CISPM with the PLS schemes. The parameters used in the

simulation are Ny = 15, K =6, § = 0.1, and M = 3. As expected, the power consumption
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Figure 5.9: Total transmit power vs. target SINR, with Ny = 15, K =6, § = 0.1, and M = 3.

increases linearly with target SINR, with benchmark scheme consuming a bit less power than
the PLS ones. In particular, the PLS - Square scheme consumes more than PLS - Twosteps-
farthest which consumes more than PLS - Twosteps-nearest. This is intuitive in the sense that
the Twosteps-nearest consumes less than the Twosteps-farthest as it incur a smaller deviation
of the target received signal. To illustrate more, this behavior is due to the fact that, the
more we constrain our signal design problem, the more power is required. Moreover, the
more antennas at the Eve, the higher the transmit power for the PLS schemes, i.e. number of
constraints increase with the number of antennas at Eve. For 16-QAM alone, the Twosteps-
6lines consuming the least among all PLS schemes, as it requires the smallest deviation of
the Eve’s received constellation point, i.e., it moves it to the closest line among the 6 lines
(boundary regions). We also observe that the power consumption difference between the two
scheme is only of 1 dB in the case of 3 antennas at Eve. Thus, only a small additional power
consumption is required to provide such high security.

Figure 5.10 plots the energy efficiency for secure transmission 7eest, in [Secure bits/s], as a
function of the number of antennas at Eve, for case of QPSK and 16-QAM modulations. We
compare the benchmark scheme with the PLS schemes. The parameters used in the simulation
are Ny = 15, K =6, § = 0.1, and 10 dB target SINR for QPSK and 20 dB for 16-QAM. In
the case of QPSK, it turns out that, when taking into account both total transmit power and
secure rate, PLS schemes still outperform CISPM scheme. This is due to the fact that the

difference in power consumption is relatively smaller than the difference in secure bits, hence
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Figure 5.10: Rate/power efficiency vs. number of antennas at Eve, with Ny = 15, K = 6,
and § = 0.1.

keeping the same ranking, with PLS Square scheme providing the highest efficiency. Similarly,
for the case of 16-QAM, we observe the same pattern, PLS schemes outpeforming the CISPM
scheme where the order of EEST performance amongst PLS schemes is maintained the same

as the order of BER performance in Figure 5.6 with PLS Square scheme achieving the highest

efficiency.
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Figure 5.11: Total transmit power vs. N, with K =6, 6 = 0.1, and M = 3.

Figure 5.11 depicts the total transmit power, in dB, as a function of the number of
antennas Ny, for a fixed target SINR of 5 dB for QPSK and 15 dB for 16-QAM. We compare

the CISPM scheme with the PLS schemes. The parameters used in the simulation are Ny =
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15, K =6,6 = 0.1, and M = 3. We observe that, for all the schemes, the power consumption
decreases with the number of antennas. As a result, increasing the number of antennas, Nt,
leads to higher power gains at the receivers, hence the less required power by the transmitter.
In other words, increasing N; leads to stronger inter-user interference, hence higher power
gains. On the other hand, PLS schemes consumes more power than CISPM scheme, where
increasing the number of antennas at Eve leads to even higher power consumption, i.e.,
more antennas at Eve imply more constraints given that the constraints are applied on a

per-antenna basis, hence the more power required.
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Figure 5.12: BER vs. §, with Ny = 15, K =6, and M = 3.

Figure 5.12 represent the BER at Eve, as a function of §, for a fixed target SINR of 5
dB for case of QPSK and 15 dB for 16-QAM. We compare the CISPM scheme with the PLS
schemes. The parameters used in the simulation are Ny = 15, K = 6, and M = 3. Similarly,
PLS schemes outperform CISPM scheme, with PLS Square providing highest security gains.
We observe that for all PLS schemes, the BER at Eve decreases as § gets smaller. This can
be explained intuitively as follows. The larger the 0, the thicker the boundary region, hence
the more chances for constellations points to fall into a deeper position inside the detection
region, in this case, noise will have a smaller chance on pushing this to the opposite region
as opposed to the case where the boundary region is very thin, thus the smaller the §, the
higher the BER (more security gains). We note that same pattern is observed for both
constellations, QPSK and 16-QAM.

In all of the below results, we considered a noisy channel of Eve. In the below simulation,
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however, we investigate the case where Eve has different SNR levels. For instance, in the case
where Eve is very close to the BS, the received signal at the later will be strong, and vice-versa
in the case when Eve is far from the BS. Similarly, if Eve uses sophisticated radio-frequency

(RF) hardware, then the noise variance at the latter might be negligible.

35 T T 4

——PLS - Square ‘ ‘ ——PLS - Square
=P~ PLS - Twosteps-farthest 38l =P~ PLS - Twosteps-farthest
PLS - Twosteps-nearest PLS - Twosteps-nearest
3l s-@--CISPM 36l =< PLS - Twosteps-6lines
---@-::GISPM

I
A4

R

EEST [Mbits/s]
EEST [Mbits/s]

28

1.5., .............. ..‘. .............. ‘. .............. PO f ............... p
0 0.2 0.4 0.6 0.8 B
(a) QPSK with v =10 dB (b) 16-QAM with v = 20 dB

Figure 5.13: Rate/power efficiency vs. o2,, with Ny =15, K =6, § = 0.1, and M = 3.

zer

Figure 5.13 plots 7jeest, in [Secure bits/s], as a function of the noise variance at Eve o2, for

the case of QPSK and 16-QAM modulations. We compare the benchmark scheme with the
PLS schemes. The parameters used in the simulation are Ny = 15, K =6, § = 0.1, and 10 dB
target SINR for QPSK and 20 dB for 16-QAM. For both QPSK and 16-QAM, it is observed
that,in the case where Eve has almost noiseless receive signal, the PLS - two-step-farthest
scheme outperforms the PLS - Square scheme in both BER and 7eest, and even consumes less
power. This behavior can be explained in the sense that the boundary schemes strength lies
in the assumption that the noise at Eve would push it to either detection regions with almost
equal probability, therefore in the case of noiseless Eve, noise is no longer there to move
the receive signal, and by design the PLS - two-step-farthest scheme feasible region is bigger
than the PLS - Square scheme, therefore it is harder for the ML algorithm to track the T'wo-
steps-farthest than the Square scheme. However, in the case of noisy Eve, the Square scheme
performs better in BER and 7eest because noise will push it not only to the opposite detection
region but also the other neighbouring ones, hence the increase in security. Concurrently, in
all schemes we observe that 7eest increases with the increase of age as a result of the noise

that further distorts Eve’s received signals away. More noise makes it harder for the ML
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algorithm to track the mapping, hence the higher BER at Eve and consequently higher neest.-

5.5 Summary

In this chapter, we investigated the problem of one-shot MIMO detection robust to inaccurate
CSIT in MU-MISO systems without channel coding. In this setting, we proposed a new ML-
based attack that permits a sophisticated eavesdropper to detect a message in a downlink
MU-MISO system with a decent accuracy. The Eve learns patterns from the sent precoded
pilots and predicts data symbols accordingly, where this sophisticated Eve employs several
antennas and has ability to detect multi-level modulation schemes. We showed that this
vulnerability is valid even when conventional SLP based precoding is employed. Still, these
conventional precoders, such as CISPM scheme, have the advantage of not requiring the
knowledge of Eve’s channel. As a countermeasure to this attack, we propose novel SLP-
based precoders. In general, the Square scheme provides the highest security gains and also
computationally wise, it consumes almost half of the computation time than the other two-
steps schemes, however it consumes the highest transmit power. However, as shown in the
numerical results, depending on the modulation used, the number of antennas at Eve and the
noise power at the latter, both Two-steps-farthest and nearest can outperform the Square
scheme. Therefore, the proposed PLS schemes provide different trade-offs between security,
computation time, and transmit power, which would give the BS options to choose the most
suitable scheme depending on level of security required and/or transmit power needed and
parameters used. Notably, despite all the security gains offered by the PLS schemes, their
use does not affect the performance at the intended user. Numerical results validate both
the attack as well as the countermeasures, where the proposed PLS precoders achieve drastic
security gains at the expense of only a small additional power consumption at the transmitter.
Future research topics would be to extend this chapter to the case of non-perfect CSI and

also where the channel to the Eve is unknown to the BS.
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Chapter 6

Multi-Antenna Data-Driven
Eavesdropping Attacks and
Symbol-Level Precoding

Countermeasures for Coded

MU-MISO Systems

In this chapter, we investigate MIMO detection at a multi-antenna eavesdropper robust to
CSIT deterioration in coded systems. Particularly, we consider secure communications in
wireless MU-MISO systems with channel coding in the presence of a multi-antenna Eve who
is part of the MU-MISO system. In this setting, we exploit ML tools to design soft and
hard decoding schemes by using precoded pilot symbols as training data. The proposed ML
frameworks allow an Eve to determine the transmitted message with high accuracy. We
thereby show that MU-MISO systems are vulnerable to such eavesdropping attacks even
when relatively secure transmission techniques are employed, such as SLP. To counteract
this attack, we propose two novel SLP-based schemes that increase the bit-error rate at
Eve by impeding the learning process. We design these two security-enhanced schemes to
meet different requirements regarding runtime, security, and power consumption. Simulation
results validate both the ML-based eavesdropping attacks as well as the countermeasures,

and show that the gain in security is achieved without affecting the decoding performance at
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the intended users.

The rest of the chapter is organized as follows: Section 6.1 describes the system model.
In Section 6.2, we introduce the ML-based attacks, whereas in Section 6.3, we propose our
novel SLP-based schemes as countermeasures to this attack. Simulation results are discussed

in Section 6.4, followed by the summary in Section 6.5.

6.1 System Model

We consider coded single-cell MU-MISO downlink system which channel coding, which, as
depicted in Figure 5.1, consists of a BS equipped with Vy transmit antennas, K single-antenna
users such that K < N, and one multi-antenna Eve with M antennas. The received coded

signal by the k-th user at the symbol slot n can be expressed as

yr[n] = hxxq[n] + zx[n], (6.1)

where x4[n] € CNex1 i the transmitted coded vector from the N; transmit antennas, hy €
C*Ne is the channel between the transmit BS antennas and the k-th user, and z;[n] € C is
the AWGN at the k-th user with variance o2.

The above model can be rewritten in a more compact form by gathering the received

signals at all users in vector y[n] € CK*1 as

y[n] = HTXd[n] + z[n], (6.2)

where H = [h ... h%] € CM*E defines the MU-MISO system channel matrix and z[n] €
CEX1 collects the independent AWGN components of all users.

Likewise, the received signal at Eve, yo[n| € CMx1 can be expressed as

ye[n] = HYx4[n] 4 zc[n], (6.3)

where H, = [h,;r’1 ...h1 ] € CN*M j5 the channel matrix between the BS and Eve with
h.; € C™Ne representing the channel between the BS antennas and Eve’s ith receive antenna,

and ze[n] € CM*! assembles the independent AWGN components at the M antennas of

2

2 each.

variance o

We note that the pilot symbols, also being referred to as reference signals, are an integral

91



part of communication systems that are known entities to all parties. In particular, they
are commonly used for CSI and SINR estimation. Specifically, non-precoded pilot symbols
are used for CSI estimation while precoded pilot signals are intended for SINR estimation
[ ]. In this work, we are interested in the latter case, precoded pilot symbols, which
uses the same MCS used for precoding the data. In this context, we define NV as the number
of precoded pilot symbols used within a frame. We also note that these N pilot symbols are
interleaved with data symbols in a frame that fits within the channel coherence time T'. In
this setting, we define the input data symbols intended for the K users as d € RE*! with
dj, being the symbol intended for user k.

In the case of block-level precoding, we define i as the mean power. For the SLP case, we
define ~; as the target SINR for the k-th user with v = [v1...vx] € RF*! representing the
target SINR for all users. For ease of notation, we drop the time index n in the remainder of

the chapter.

6.2 ML-Based Attacks

In this section, we will propose two ML eavesdropping attacks, where a multi-antenna Eve
uses precoded pilot symbols as training data to accurately hard/soft decode the transmitted
symbols. We start by presenting the motivation of our work along with the adversarial model.
Next, we present the ML frameworks for the proposed soft and hard decoding schemes. We
note that our proposed ML framework is valid in all cases where the transmitter sends also
pilot symbols, which is actually the case for a standard downlink MU-MISO system, the one

considered in this chapter.

6.2.1 Motivation

To motivate our work, we study the received signal at Eve when the BS sends precoded
pilot signals to the intended users. We investigate the case when the BS uses a conventional
block-level precoder, i.e., ZF | | as well as the case of a conventional SLP precoder, i.e.,
the CISPM approach in | ].

To that end, we first examine a special case scenario for illustration purposes. Afterwards,
we present a more general scenario that represents a typical downlink MU-MISO system.

In the illustrative special case scenario, we consider the following toy example: an MU-
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Figure 6.1: Symbols used in the two pilot signals intended for user k.

MISO system with Ny = 15, K = 6, 02 = 1, one channel realization, and QPSK as a
modulation scheme, where the BS sends to each user two precoded pilot signals of N = 150
symbols each. In this setting, a multi-antenna Eve attempts to eavesdrop a specific user k.

To better understand the example visually, the BS sends the same symbols to user k while
it sends pseudo-random sequences to the remaining users. The two symbols constructing the
two pilot signals intended for user k are plotted in Figure 6.1.

When the BS precodes the aforementioned pilot signals with ZF precoding of mean power
of 5 dB, the noiseless received signals at user k£ and the Eve are respectively given as in
Figure 6.2(a) and Figure 6.2(b), respectively. We note that the channel to the K users and
Eve were generated randomly.

As depicted in Figure 6.2(a), the received signal at user k shows no inter-user interference
as it was cancelled by the ZF precoder. However, the received signal at Eve is spread due to
the inter-user interference effect, as Eve’s channel is different from user’s k£ channel. Still, we
can observe a precoding pattern that applies to both received signals, i.e., the red squares
are mostly positioned on the top right of the blue circles.

A more inherently-secure precoding scheme, which does not depict patterns of the pre-
coding used, is SLP precoding [ ]. This particular SLP scheme is designed to exploit
the multi-user interference for power gains. In other words, this scheme propels the intended
users’ received signals deeper into the correct detection region of the desired symbol for each

intended user. The corresponding optimization problem is defined as
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Figure 6.2: Noiseless received signals at user k¥ and Eve when the BS uses ZF precoding with
a mean power of 5 dB.

xa(d, H, v)=arg min ||x]|| (6.4)
subject to
Re{h;x} < o.\/yxRe{dy}, Vk

Im{hyx} < o,/ Im{ds}, Vk,

where the operator < denotes! the correct detection region | ]. As shown in eq. (6.4),
the CISPM scheme minimizes the transmit power while guaranteeing a certain target SINR
at the intended users through constructive interference constraints.

Thus, the CISPM precoding takes inputs: the channel to the intended users, H, the input

data to be transmitted to the intended users, d, the target SINR for all intended users, ~,
2

and the noise variance at the users oz.
Now we consider the aforementioned toy example of transmitted pilot signals illustrated
in Figure 6.1, but with the BS using CISPM precoding with a target SINR value of 5 dB for
each user. The corresponding results of this example are illustrated in Figure 6.3.
Figure 6.3(a), represents the noiseless received signal at user k. As expected when using
SLP precoding, the inter-user interference is transformed into power gains, resulting in de-

viations of the received signal deeper into the detection region while guaranteeing a specific

target SINR value. The noiseless received signal at Eve when the aforementioned signals are

!For further detailed information, the reader should refer to | , ].
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Figure 6.3: Noiseless received signals at user &k and Eve when the BS uses CISPM precoding.
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Figure 6.4: Received signal at Eve when BS sends pseu-random sequences to every user.

transmitted is plotted in Figure 6.3(b). As opposed to Figure 6.2(b) where the blue circles
are always below and to the left of the red boxes, in Figure 6.3(b) there is no apparent fixed
pattern.

This discrepancy is due to the randomness of the input data to transmit d, which changes
at each symbol slot resulting in x4 to vary accordingly. Even though Eve is trying to eavesdrop
user k£ whose received symbols do not change, what Eve receives provides no apparent insights
about what was transmitted.

In a more general scenario representing a typical downlink MU-MISO system, the BS is

not constrained to send pilot signals where one user’s pilots are constructed with the same
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symbol. In this case, the received signal will exhibit even more apparent randomness, as
illustrated in Figure 6.4, since the actual pilots are pseudo-random sequences for all users.
Hence, since Eve does not know the CSI, using conventional detection techniques to directly
decode the received signals will result in a poor performance.

Thus, in this chapter we propose to use ML to model the non-linear mappings underlying
this apparent randomness, so that Eve can decode with an acceptable BER. Since the symbols
used for the precoded pilots are known in communication standards to all parties, we propose
to use ML to leverage this knowledge and decode the transmitted data to a particular user
with decent accuracy. To that end, we propose ML-based soft and hard decoding schemes
that can accurately decode the transmitted signal by using the precoded pilot symbols as

training data.

6.2.2 Adversarial Model

Contrary to the adversarial wiretap channel model proposed in | | that considers active
adversaries, herein, we consider a passive eavesdropper that can listen to the wireless medium
with fading and noise effects. Specifically, we consider a passive Eve in the sense that Eve
does not interfere with the communication channel, whereas an active Eve can jam as well
as eavesdrop.

Concerning Eve’s environment, Eve is part of the downlink MU-MISO system that com-
prises of the sender, i.e., the BS, intended users, and Eve. In this context, we assume that
the BS knows Eve’s CSI H,. However, we highlight that Eve does not know H, nor H. Since
Eve is a registered user of the MU-MISO system, she knows the pilot symbols transmitted,
the modulation scheme used, and the FEC parameters.

As for Eve’s profile and capabilities, we consider Eve to have: 1) unlimited computation
power, and 2) access to state-of-the-art machine-learning tools and algorithms. Contrary to
the intended users who are single-antennas receivers, Eve is equipped with M antennas.

Next we present our proposed ML-based soft and hard decoding schemes. For a thorough
explanation of our proposed ML-based decoding schemes, in the following, we use ZF precod-
ing as an example. However, the proposed decoding frameworks are valid for any precoding

techniques.
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6.2.3 ML Framework for the Proposed Soft Decoding Scheme

As illustrated in Figure 6.5, the ML framework for soft-decoding encompasses two steps:
1) training phase, where the ML model is trained by using the precoded pilot symbols; 2)
inference phase, where probabilities are estimated and employed to calculate the LLRs which

are consequently fed to a soft decoder.

@ Inference phase @ Training phase
| |
1T
. . - o ~

. H d 1 K
S \ et T T, ~. pilot symbol of user k
' . N M-
H ' . \ (in bits)
5 ZF precoder H
. .

. .

BS™. e

H

e Xp  Ze
yen]

' v
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' . '
' : '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
T '
' '
' '

i k
d
Soft decoder yf (]

N
e symbol periods

n-th symbol period 17‘C [n]

(features) Y? NN symbol periods p* (labels)

l

Multi-label classification (prediction) Trained Multi-label classification (fitting)
ML model
LLRs computation l ‘\\ /!
using eq. (4.14) N N e e e e e e e -’ Eve

Uncalibrated outputs

Likelihoods «————— Platt Scaling

Figure 6.5: Overview of the ML-based soft decoding scheme.

Training Phase

As pointed out earlier, the BS sends the pilot symbols p € CE*1 as training data, which are
pseudo-random sequences for all users. For one SP, the overall received pilot signal at Eve’s

all antennas, yo € CM*! can be written as

y? = Hlxp + 2, (6.5)

where x;, € CNex1 ig the transmitted precoded pilot signal from the N; BS’s transmit anten-
nas.

As depicted in Figure 6.5, the transmitted signal x;, depends on all the users’ symbols.
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Thus, Eve could target any user individually by retraining the ML model according to the
pilot sequences used for each user. Herein, Eve creates a mapping between the received
signal y& and the pilot symbols pf corresponding to the targeted user k. We note that
the subscript s in p¥ stands for “soft”, where the pilot symbols are represented in bits, i.e.,
pk e {4007, “017, “117, “10”} in the case of QPSK modulation.

We note that, the higher the M, the higher the number of received signals at Eve, and thus
the better is the detection performance. Basically, each antenna at Eve receives a different
distorted version of the same transmitted signal x,, the more received replicas of the same
transmitted signal, the better the decoding performance.

Hence, the training set D; is the collection of {y&[n],pF[n]},n € {1... N}, where y&[n]
represents the received pilot signal at Eve during the n-th SP, while p]; [n] is the corresponding
pilot symbol of user k. Therefore, the training set Dy can be written in a more compact form

as

Ds = {Y57p§}7 (66)

where YE € CVXM are the received pilot symbols at Eve during N SPs and p¥ € CV*!
are the corresponding transmitted pilot symbols to the k-th user. Using ML terminology,
Y? represents the features while p’§ represents the labels, where both constitute the training
dataset. We note that the input features in YY are complex-valued and cannot be directly
processed by ML algorithms in general. Usually, this is addressed by considering real and
imaginary parts separately. For non-binary modulation schemes, this ML problem is consid-
ered as a MLC problem | , | as more than 1 bit is required to encode the
symbols. MLC is a supervised learning problem where an observation, i.e, a scalar or a vector
of features, is associated with multiple labels. Hence, as depicted in Figure 6.5, the training
dataset is fed to the MLC fitting module which will in turn output a trained ML model, that

will subsequently be used in the inference phase.

Inference Phase

As depicted in Figure 6.5, in each SP, the BS sends the symbols d € CX*! to the K users
after precoding them using the same precoding scheme employed in the previous phase. The

received signals at Eve in each SP, yd € CM*! can be written as
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ye = Hlxq + 2, (6.7)

(CN@Xl

where x4 € represents the transmitted precoded data from the N; transmit antennas,

intended for all the users during one SP. If we assume that there are T" symbols in one

(T=N)xM represents the collection of all received signals at Eve

coherence time, Y¢ € C
during one coherence time of the transmitted (T' — N) data symbols. In ML nomenclature,
Y is commonly being referred to as the test/evaluation dataset.

In principle, the goal of classification is to predict labels. In this context, however, we
are not interested in the labels (hard outputs) but rather in the corresponding probabilities
(soft outputs) to be used subsequently for LLR computation, as previously described in
Section 4.2.1. As depicted in Figure 6.5, once the LLRs are computed, Eve can simply feed
the computed LLRs to the soft decoder to obtain the transmitted message to user k.

We note that, for the soft decoding scheme, the multi-antenna eavesdropping attack was
modeled as a classification problem, given the nature of the pilot data. However, since the
LLRs are continuous, using regression instead of classification to model the eavesdropping
attack might yield better detection performance. To evaluate this claim, in Chapter 8 we

re-reformulate the eavesdropping attack using regression and present the corresponding per-

formance evaluation results.

6.2.4 ML Framework for the Proposed Hard Decoding Scheme

The proposed ML-based hard decoding scheme also comprises of two phases: 1) training
phase, where the ML model is trained by using the precoded pilot symbols, 2) inference phase,
where the module directly predicts the transmitted symbols to a particular user, which are
in turn mapped into bits to finally be fed to a hard decoder to obtain the transmitted bits

to user k.

Training Phase

As depicted in Figure 6.6, for each SP, the BS first sends pilot symbols p € CX*! to the K
users, which after precoding become the signal x;, € CNtx1 Eve receives y&[n] € CM*1 from
all its antennas at the n-th SP, as in eq. (6.5).

For Eve to eavesdrop user k, it creates a mapping between the received signal y& and the

99



@ Prediciton phase (@ Training phase
! !

/S H d o7 |
/ \ It B RN pilot symbol
' : / H p 7 \ user k
' ZF precoding ' / \
\ A 1 1

BS~ _____________ ‘\‘
................................................ BS™..__ .
E bits (user k) E I"' \‘
: | H. x4 2 b He % z H
, Hard decoding : H E
E bits (coded) yg [n] E H yg [n] n-th SP pﬁ [n]
1 S ; E : I
| Y. (T-N)SPs . ' N SPs pf '
| | a |
H labels Multi-class classification ; : Trained Multi-class classification H
. (prediction) i ML model (fitting) i
Eve "~ =t N - Eve

Figure 6.6: Overview of the ML-based hard decoding scheme.

pilot symbols pﬁ corresponding to the targeted user k. We note that the subscript A in pﬁ
stands for “hard”, which defines the decimal representation of the pilot symbols, for instance,
pF €{0,1,2,3} in the case of QPSK modulation.

Thus, the training set Dy, is the collection of {y&[n],pi[n]},n € {1... N}, where pf[n] is
the pilot symbol of user k corresponding to the received pilot signal y&[n] at the n-th SP.
Thus,

Dy = {Y?,pt}, (6.8)

where Y2 € CN*M are the received pilot signals at Eve and p]ﬁ € CN*1 are the transmitted
pilot symbols, represented in decimals, to the k-th user, both during N SPs.

For non-binary modulation schemes, this problem is a single-label multi-class classification
(MCC) problem. MCC is a supervised learning problem where an observation, i.e, a scalar
or a vector of features, is associated with a single-label with multiple classes. Considering
a modulation order M,, the label space is {0... M, — 1} with M, total classes. Thus, as
depicted in Figure 6.6, the training dataset Dy is fed to the MCC fitting module that in

sequence outputs a trained ML model, which will be used thereafter in the inference phase.
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Inference Phase

As depicted in Figure 6.6, the BS transmits d € CKX*! data symbols to the K users in each
SP in the form of the precoded signal xq € CM*1. We note that the precoding at BS herein
uses the same precoding scheme employed in the training phase. The corresponding received
signals at Eve is yd € CM*! as detailed in eq. (6.7).

Considering a coherence time of 7" symbols, there are (T'— N) symbols dedicated to data
transmission. Thus Y& € CT=N)*M yepresents the collection of all received data signals at
Eve during one coherence time, which constitutes the test/evaluation dataset.

Contrary to the proposed soft decoding scheme, herein we are interested in predicting the
labels, i.e., hard outputs. As depicted in Figure 6.6, to obtain the labels, we feed the test
dataset and the trained ML model to the MCC prediction module. We note that the labels
are in the form of decimals, i.e., the same nature of the labels used in the training phase.
Once the labels are predicted, they will be first mapped into bits and then fed to the hard
decoder for decoding to finally obtain the bits transmitted to user k.

We note that the proposed soft and hard decoding schemes are also valid for other con-
stellations, including higher-order quadrature amplitude modulation (QAM). For instance,
in 16-QAM, 4 bits are needed to represent the symbols as opposed to 2 in the QPSK case.
Consequently, for the soft scheme in Figure. 6.5, the pilot symbols of user k£ will contain 4 bits
instead and the prediction module will generate 4 uncalibrated outputs as a result. However,
for the hard scheme in Figure. 6.6, the pilot symbols of user k£ will be represented using
16 classes, and therefore the prediction module will output a label in the set {0,1,...,15}.
Therefore, the proposed soft and hard decoding frameworks are valid for any constellation,
where the modulation order determines the number of bits used in pilot/data symbols and
also defines the number of labels/classes employed, all the rest of the processing remain

unchanged.

6.3 Countermeasure: PLS Schemes

In this section, we propose novel security-enhanced SLP schemes that yield high BER at
Eve. Similar to [ | and | ], the idea is to design the transmitted signal x4 to
have constructive interference at the intended users, while at the same time, increasing the

BER at Eve through destructive interference at the latter. We note that the CSI to Eve is
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available at the BS.2

6.3.1 PLS Random Scheme

We design this scheme to have constructive interference at the intended users and destructive
interference at Eve. To that end, we align the transmitted signal to the corresponding
detection regions of the intended users using their CSI while we force Eve’s received signal
to lie at the boundaries of the detection regions using Eve’s CSI.

In order to illustrate the idea, consider the QPSK constellation in Figure 5.3. The aim
here is to propel the received signals deeper into the detection regions, which are illustrated
by the gray squares (actually, those regions are unbounded).

On the other hand, we design Eve’s received signal to lie in the strapped region, which is
centered at the boundary of the detection regions. The strapped region’s width is governed
by the parameter §. The smaller the §, the tighter the strapped region, leading to higher
probability of landing into the opposite region when noise adds up, resulting in higher BER
at Eve.

Inspired by the boundary scheme presented in Chapter 5, Section 5.3.1, we propose to
embed randomness in Eve’s received signal by randomly selecting the boundary region, either
horizontal or vertical, as depicted in Figure 5.3. We decompose the non-convex strapped
region in Figure 5.3 into two convex regions: the vertical part and the horizontal one. And
at each SP and for each antenna at Eve, we randomly choose between the two regions, so
that on average, Eve’s received signals would lie evenly on both regions, assuming the symbol

distribution is equiprobable. We refer to this scheme as “PLS random scheme”.

The optimization problem for this scheme can be formulated as

xq(d, H,H,,~, §,b)=arg m)in||x||2 (6.9)
subject to
Re{h;x} < o, /7Re{dr}, Vk (6.10)
Im{hyx} < o,/yelm{dy}, Vk (6.11)
biRe{y}+(1—b;)Im{y.} =6, Vi (6.12)
2We follow the same methodology used in the relevant PLS work in | , , ], which assumed

the knowledge of Eve’s CSI at the transmitter. However, we intend to extend our work to a more general
eavesdropper, by considering no Eve’s CSI at the BS | ]
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where hyx is the k-th user’s noiseless received signal, y¢ = h¢ ;x is the noiseless received
signal at Eve’s i-th antenna, b; € {0, 1} is the realization of a binary RV that represents the
boundary region to use for Eve’s i-th antenna, b is the vector collecting the b; realizations,
which select the corresponding strapped sub-region in Figure 5.3 — either vertical (b; = 1)
or horizontal (b; = 0) —, of the M antennas at Eve, <I defines the correct® detection region,
and & > 0 is the distance parameter controlling the width of the boundary region. This
problem is convex and can be solved efficiently using standard optimization toolboxes such
as CVX | ]. Algorithm 5 details the process of signal design of the PLS random scheme,

which is executed for every symbol slot.

Algorithm 5 PLS random scheme

Input: d,H,H,,~, 02,0, b;
Solve problem (6.9) as follows:
Satisfy CI constraints in (6.10) and (6.11)
For Each antenna i at Eve,
If b; = 1, push ¢’ to the vertical boundary region
Else, push g’ to the horizontal boundary region
Output: x4 =0

As demonstrated in Algorithm 5, the PLS random scheme designs Eve’s received signal
to have no pattern as to which boundary region it will fall into, thus it will be extremely
difficult for a ML-based engine to find relationships between the known pilot symbols and
Eve’s received signals.

The advantages of this scheme are: 1) enhance PLS as the detection decisions at the Eve
will be mostly made on the basis of noise, and 2) save the transmit power since this scheme

involves only a small deviations of the targeted received constellation points at Eve.

6.3.2 PLS Eve-Min-Power Scheme

Targeting a computationally simpler scheme, herein we take the basic SLP scheme for con-
structive interference at the intended users, the CISPM, and change the cost function to
achieve PLS. Specifically, we do not include any PLS related constraints. To attain security
with the CISPM scheme, in addition to minimizing the transmit power, we also minimize
the power of Eve’s noiseless received signal simultaneously, hence the name “PLS Eve-min-

power”.

3For further detailed information, the reader should refer to [ , , ].
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Compared to the PLS random scheme that has the strict constraint of forcing Eve’s
received signal to lie in the boundary region, in the PLS Eve-min-power, we allow Eve’s
signal to lie anywhere in the plane but as close to zero as possible, whatever the degrees of

freedom at the transmitter allow. This scheme can be formulated as follows:

xq(d, H, H,, v)=arg n)l(in”de + || Hexal| (6.13)
subject to
Re{hyxq}<o.\/cRe{dy}, Vk (6.14)
Im{hyxq} <o,/ 7eIm{d}, Vk. (6.15)

As shown in (6.13), the PLS Eve-min-power scheme minimizes the sum of the transmit
power and the noiseless received power at Eve, while guaranteeing a certain target SINR at
the intended users through constructive interference constraints (6.14) and (6.15). Similarly,
this problem is convex and can be solved efficiently using standard optimization toolboxes.

We note that this PLS scheme leads to higher security than the CISPM, as it makes it
considerably harder for an ML-enabled Eve to correctly detect the low-power signal induced
by minimizing the power at Eve.

We note that, low-complexity and computationally efficient SLP design was developed
for practical and real-time implementations [ , |. For instance, an FPGA-
accelerated design of computationally efficient SLP for high-throughput communication sys-
tems was proposed in | ], which enables real-time operation and provides a high
symbol throughput for multiple receive terminals. In [ |, a low-complexity FPGA
design for SLP was proposed for MU-MISO downlink communication systems, by developing
an approximate yet computationally-efficient closed-form solution to alleviate the excessive
complexity incurred by the SLP design.

To validate the proposed schemes, we have conducted numerical simulations according to
the same methodology as | ]. Future extensions of our work include adapting and op-
timizing the SLP technique for real-time validation similar to | , |. To that
end, since the formulations of the proposed and benchmark SLP precoding schemes are con-
vex, in the numerical results we use the CVX modeling framework to solve the SLP precoders’
underlying optimization problems. CVX’s employed solvers rely on primal-dual interior point

methods to solve the problems. However, the time complexity analysis of the SLP precoders

104



employed in this paper depends heavily on the solver used and its implementation, which
makes it challenging to obtain a closed-form big O representation of it. Nevertheless, we
resort to runtime | | analysis of the implementations, where we measure the total time
it takes for the algorithm to solve the optimization problem (in milliseconds). We present

the runtime analysis of the proposed and benchmark schemes in the following section.

6.4 Simulation Results

To make this section more comprehensive, we split it into three parts: 1) Parameters, metrics,
and benchmarks where we defined the simulations’ setting, 2) selection of ML algorithms for
Eve attack in which we experiment with several algorithms and select the most performing,
and 3) comparisons and insights to assess the performance of our proposed schemes in terms

of security, power consumption, and runtime.

6.4.1 Parameters, Metrics, and Benchmarks

As a benchmark to the proposed SLP-based PLS schemes, we employed the CISPM | ]
and ZF precoding | | schemes. We note that in the following simulations, for a fair
comparison, we set 7 = 7 such that all the examined schemes have the same transmit
power.

Regarding the metrics used to evaluate the different schemes, we use the BER at Eve
to assess the security offered by a particular decoding scheme for a given precoding design.
The lower the BER at Eve, the lower the security and vice versa. In a similar way, we also
evaluate the frame-error rate (FER) at Eve since we have channel coding in the system,
which is defined as the ratio of frames in error (one altered bit suffices to make the entire
frame erroneous) to the total number of frames received. We also evaluate the BER/FER
at the intended user to examine the impact of using the PLS schemes on the intended user’s
performance. Finally, we define the total transmit power by the BS antennas as Pt = ||xq]|?.
In the simulations, we take the average of the above quantity over a large number of symbol
slots to obtain the frame-level total transmit power, which is then averaged over a large
number of channel realizations.

In the following simulations, we use QPSK modulation with Gray mapping. For the PLS

random scheme, we set 6 = 92/10 to make sure that the noise will push Eve’s received signal
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Table 6.1: Channel coding parameters used for the simulations

Parameters Values
Code rates Ya, Ya
Constraint length 7
Frame Size 150
Number of frames 100
Trace-back length 96
Decoder decision technique | Hard, Soft

to either of the neighboring detection regions, i.e., to cause higher error rates at Eve. For

2
2~

simplicity, we consider unitary noise variance oZ. As for the channel coding part, we use
convolutional coding | ] and Viterbi decoding | ] with the parameters in Table 6.1.
We note that low coding rates are chosen in order to consider a worst case eavesdropping
scenario, where Eve can take advantage of the redundancy to correct as much errors as

possible.

6.4.2 Selection of ML Algorithms for the Eve Attack

For the MLC modules used for the ML-based soft decoding scheme, in this simulation, we
adopt problem transformation methods that remodel our MLC problem into single-label
problem(s). Since our labels are bits, the MLC problem will be decomposed into k& binary
classifiers, where k = logy M, is the number of bits constructing each symbol.

Herein, we use two transformation methods, BR [ | and CC | ]. BRis
the most simple and efficient method to solve MLC problems, which trains the k binary
classifiers independently; its only drawback is that it does not consider labels correlation.
CC, however, takes into account the correlation between labels by using the outputs of the
previously trained classifiers as features for the subsequent ones in the chain, except for the
first classifier. We refer to these soft-decoding implementation by “Soft - BR” and “Soft -
CC” accordingly.

Concerning the MCC module used for the ML-based hard decoding scheme, it does not
require any transformation or specific approach. It can be solved using any classifier. We
refer to this scheme subsequently by “Hard”. It is worth mentioning that the ML-based
decoding schemes apply only to Eve, whereas the intended users employ conventional (not

ML-based) soft and hard decoding techniques.
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Table 6.2: Prediction accuracy of our proposed ML-based decoding schemes with several
classifiers when using ZF, CIPSM, PLS random, and PLS Eve-min-power precoding schemes.

Classifiers ZF CISPM PLS random PLS Eve-min-power
Soft - CC Hard Soft - CC Hard Soft - CC Hard Soft - CC Hard
Gaussian_NB 0.8338 0.8378 0.8271 0.8298 0.5431 0.5429 0.5708 0.5712
Log_-Reg blue!25 0.9375 0.9374 0.8935 0.8929 0.5427 0.5433 0.5732 0.5732
SVM 0.9370 0.9361 0.8925 0.8931 0.5429 0.5426 0.5697 0.5718
R_Forest 0.8831 0.8798 0.8538 0.8491 0.5382 0.5354 0.5669 0.5650
KNN 0.9047 0.8994 0.8623 0.8570 0.5265 0.5245 0.5474 0.5454
Decision_Tree 0.8101 0.7951 0.7738 0.7571 0.5178 0.5207 0.5372 0.5374
Extra_Trees 0.9017 0.8970 0.8669 0.8644 0.5387 0.5377 0.5670 0.5679
LightGBM 0.8998 0.8958 0.8655 0.8611 0.5359 0.5356 0.5645 0.5629
XGB 0.8983 0.8946 0.8633 0.8609 0.5326 0.5349 0.5598 0.5605

To make Eve as sophisticated as possible, we experiment with several state-of-the-art
classifiers and choose the one with the best performance. In Table 6.2, we compare the
prediction accuracy of the proposed soft* and hard decoding schemes, considering ZF and
CISPM precoding as well as the proposed PLS precoding schemes. The parameters used for
this simulation are: Ny =15, K =6, M =9, and n = 7 = 6 dB. We note that these results
represent the averaged results over 100 different channel realizations. We also note that this
accuracy applies before channel decoding, i.e., by comparing the ML predicted labels to the
actual coded transmitted symbols to user k.

As observed in Table 6.2, the logistic regression classifier achieves the highest predic-
tion accuracy among all the precoding and decoding schemes. Therefore, in the following

simulations, we use this classifier in our proposed ML-based decoding schemes.

6.4.3 Comparison and Insights

We note that a BER value of 0.5 indicates full confusion. Regarding the target FER values
at the intended users, it varies depending on the application scenario. For instance, eMBB
in 5G requires an FER on the order of 10~3 while massive machine-type communications
(mMTC) require only 107! | |. In this section, we will validate the eavesdropping
attacks by showing the FER at Eve to be in the order of the intended users’ FER values.
Figure 6.7 depicts the coded BER at Eve as a function of its number of antennas M.
We compare the proposed hard and soft decoding schemes. The parameters used in the
simulation are: r = 1/3, Ny = 15, K = 6, and n = v, = 6 dB. Figure 6.7(a) represents
the non-secure precoding schemes, ZF and CISPM. For our hard and soft decoding schemes,
we observe that the more antennas at Eve, the lower is the BER, i.e., the more antennas

at Eve, the higher the prediction accuracy (more versions of the same signal, hence more

4In the table, we did not show results for Soft - BR to avoid redundancy, as its results were almost the
same as Soft - CC.
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Figure 6.7: BER at Eve vs. number of antennas at Eve, with r = 1/3, Ny = 15, K = 6, and
n =y, =6 dB.

features used for training and inference), leading to lower BER. In addition, our Soft technique
outperforms the Hard one, where Soft - BR and Soft - CC are equivalent. Moreover, with
9 antennas at Eve, the BER at Eve is so low to the point that it could be compared to an
intended user’s decoding performance, leading to a big vulnerability in systems that use ZF
and CISPM precoding. In addition, as expected, CISPM is more secure than ZF as predicted
in Section 6.2. As for the case of the PLS random scheme in Figure 6.7(b), we observe the
same pattern as in Figure 6.7(a), the more antennas at Eve, the lower is the BER, with Soft
decoding outperforming the Hard one. However, when M values are lower or equal to 9, the
BER at Eve is at 0.5, indicating total equivocation. In fact, even for higher values than 9,
the BER at Eve is still very high compared to ZF and CISPM schemes, i.e., PLS random
scheme is offering a significant security gain when compared to the latter ones. Similarly, for

the PLS Eve-min-power scheme in Figure 6.7(c), we observe the same behavior as for PLS
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Figure 6.8: LLRs distribution of the Soft - CC decoding scheme with r» = 1/3 and M € {1,9}.

random scheme, with the PLS Eve-min-power scheme BER going lower than PLS random,
i.e., PLS Eve-min-power is less secure than PLS random. However, when compared to non-
secure precoding schemes, ZF and CISPM, PLS Eve-min-power still offers a drastic security
gain. To summarise, as shown in Figure 6.7, the BER at Eve when using the proposed PLS
schemes is close to 1/2 in the case when M < 9, which represents a worst-case reception
scenario where the interference and noise effects fully dominate the useful signal. However,
when Eve uses M = 13 antennas, the BER is close to 0.2 when using PLS random scheme.
Even in this case, if Eve does not have a reference to compare to, i.e., Eve does not have
any prior knowledge about the received data, then Eve does not know where this 20% error
occurred, thus it is extremely difficult to make sense of this data.

Figure 6.8(a) depicts the distribution of the estimated LLRs for Soft - CC decoding
scheme. We note that for this particular plot, we used 1000 symbols to obtain a smooth
histogram. We recall that a probability of 0.5 indicates that the predictor is not sure whether
the predicted bit should be 0 or 1; a value close to 1 means the predictor is very sure that
it is a 1, whereas a probability close to 0 indicates the opposite, i.e., it is very sure that it
is not a 1. As expected, the LLRs values for the case of 9 antennas at Eve are distributed
mostly away from 0, indicating high quality LLRs. Namely, the corresponding probabilities
are mostly different than 0.5, thus yielding a high prediction accuracy. Using a higher number
of antennas entails more features that can be employed in both training and inference phases,
therefore leading to higher accuracy when estimating the likelihoods. However, when Eve

uses only 1 receive antenna, the LLRs are close to 0 as their probabilities are close to 0.5,
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implying poor quality LLRs. Therefore, we conclude that higher number of antennas at Eve

leads to higher prediction accuracy, and therefore lower BER.
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Figure 6.9: BER at Eve vs. n/v [dB], with r =1/3, Ny =15, K = 6, and M = 11.

Figure 6.9 depicts the coded BER at Eve as a function of 7/v; [dB], which we set to
the same value for all users for simplicity. The parameters used in the simulation setup are:
r=1/3, Ny =15, K =6, and M = 11. Concerning ZF and CISPM schemes in Figure 6.9(a),
with the proposed soft and hard decoding approaches we notice that the higher the values
of n/vk, the lower the BER. Particularly, higher 7/~ values leads to higher transmit power,
which cause higher received power at Eve, thus better decoding performance. Moreover,
Soft decoding is outperforming the Hard one. Additionally, CISPM precoding is more secure
than ZF, i.e. BER at Eve for CISPM is higher than the one of ZF. As for the use of the
PLS random scheme, in Figure 6.9(b), we notice that, similarly, the higher the values of
n/7k, the lower the BER. We also observe that soft decoding is the most performing with

the difference being that using PLS random scheme offers much higher security compared to
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ZF and CISPM scheme, with high BER values at Eve even when using 11 antennas at Eve.
Concerning the PLS Eve-min-power scheme in Figure 6.9(c), it depicts the same behavior as
PLS random. However, the latter scheme is more secure because of its incurred randomness
in the precoding design, while PLS Eve-min-power scheme is designed with Eve’s channel in

the objective function that lowers the received power at Eve.
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Figure 6.10: FER at Eve vs. 0/, [dB], with r =14, Ny = 15, K = 6, and M = 11.

Figure 6.10 depicts the coded FER at Eve as a function of n/v; [dB]. The parameters
used in the simulation are: r = 1/4, Ny = 15, K = 6, and M = 11. In Figure 6.10(a), for ZF
and CISPM precoding, we notice that the higher the values of 1/7y, the lower the FER, which
is due to the increase of the transmit power. Particularly, soft decoding outperforms hard
decoding, with FER values decently low, which validates the eavesdropping attack for ZF
and CISPM precoding schemes, with CISPM being more secure. In Figure 6.10(b) however,
when we use the PLS random scheme, we notice that the higher the values of 7/, the lower

the FER. Particularly, the high FER values validate the security of the PLS random scheme.
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Figure 6.11: Total transmit power [dBW] vs. target SINR [dB], with N; = 15, K = 6, and
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Lastly, when using the PLS Eve-min-power scheme, in Figure 6.10(c), we observe the same
behavior as in the case of the PLS random scheme, with FER values at Eve lower than ones
for the PLS random approach. This validates the high security exhibited by the PLS random
scheme, which outperforms the PLS Eve-min-power scheme’s security performance. Yet,
the FER values for the PLS Eve-min-power are still very high compared to the non-secure
schemes, i.e., ZF and CISPM schemes.

Figure 6.11 shows the total transmit power P;ot, in dBW, as a function of 1/+x, which we
set to the same value for all users for simplicity. We compare ZF and CISPM schemes with
the PLS ones. The parameters used in the simulation are: Ny = 15, K = 6, and M = {1, 13}.
As explained above, the higher the 1/7; values, the higher is the transmit power, for all the
schemes. For the CISPM scheme, we observe that P, is lower than the target SINR at the
intended users, which is due to the constructive interference turning into power gains at the
receivers, hence less transmit power is required to attain the desired SINR value. However
for ZF precoding, as predicted, Pt is the same as the mean power 7, as it has been set.
As for the PLS schemes, P;,t depends on the number of antennas at Eve M, higher M
leads to higher P,.¢. This increase is due to the fact that more antennas at Eve imply more
constraints in the case of PLS random that result in the observed big increase in P for
M = 13. To elaborate more, this behavior is due to the fact that, the more we constrain our
signal design problem, the more power is required to solve it. However, in the case of PLS

Eve-min-power, the higher M, the higher the power consumption, i.e., the more antennas at
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Eve, the Eve-related part of the objective function tends to have higher values due to the
higher degrees of freedom at the Eve’s side, thus higher power consumption; even for M = 13,
PLS Eve-min-power does not consume as much power as PLS random, its consumption is in
fact equivalent to ZF scheme in Pi.. However, for M = 1, the two proposed PLS schemes
consume the same power.

Lastly, we investigate the impact of pilot overhead on our proposed ML-based attacks
and countermeasures. We refer to | | for some practical pilot overhead values. Figure 1
in | | shows the ergodic spectral efficiency as a function of pilot overhead in a high velocity
setting, i.e., where Doppler spectrum is Clarke-Jakes® with a maximum normalized frequency
fp = 0,02, e.g, the user/Eve is at 100 Km/h speed in a WiMAX system. We observe that
maximum spectral efficiency is achieved when using 0.1 pilot overhead. Thus, we evaluate
our proposed Soft - CC decoding scheme using such value and lower.

Figure 6.12 plots the coded BER at Eve using Soft - CC as a function of the pilot overhead.
The parameters used in the simulation are: r = 1/3, Ny = 15, K =6, M = 11, n = 7, = 6 dB,
and a frame size of 900 symbols. When the BS uses the non-secure schemes, ZF and CISPM,
we observe that the higher the pilot overhead, the lower the BER, in particular, with a pilot
overhead value of 0.1 the BER at Eve is as low as 1072, which is a sufficiently small BER
that threatens the communication security. Thus, this validates again our ML-based attack
even with pilot overhead values as low as 0.1. However, when the BS uses PLS schemes, the
BER at Eve remains high, which again validates our countermeasures.

Lastly, in Fig. 6.13 we plot the runtime per SP [ms] as a function of the number of
antennas at Eve M of the proposed and benchmark SLP schemes. The parameters used
in the simulation are: Ny = 15, K = 6, and v = 6 dB, and a frame size of 900 symbols.
We observe that for both PLS Eve-min-power and CISPM schemes, the runtime does not
depend on M because both schemes do not have Eve-related constraints. And as expected,
the PLS Eve-min-power scheme’s runtime is a bit higher than the CISPM’s one because of the
extra Eve-related term in the PLS Eve-min-power scheme’s objective function in eq. (6.13).
However, the runtime of PLS random increases with M and is higher than the runtime of
PLS Eve-min-power. This increase is due to the Eve-related constraints in eq. (6.12) of the

PLS random scheme, where in addition to the CI constraints in egs. (6.10) and (6.11), there

SWe note that Jakes-Clark model requires a uniform angular distribution of scattering objects around the
users in addition to rich scattering.
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Figure 6.12: BER at Eve using Soft - CC vs. the pilot percentage, with r = 1/3, Ny = 15,
K =6, M =11, n =~ =6 dB, and a frame size of 900 symbols.

will be M Eve-related constraints. Thus, the higher M, the more constraints in the PLS
random optimization problem, and therefore the higher the runtime.

We conclude this section by summarizing the insights from the numerical results.

e Soft decoding schemes always outperform hard decoding, i.e., soft values carry extra

information that is used by the decoder to better estimate the original data.

e Soft — CC and Soft — BR performance is the same because of the lack of label-correlation,

due to the random nature of data to be transmitted.

e Our proposed soft decoding schemes operates well with pilot overhead values as low as

0.1.

e CISPM precoding is more secure than ZF because the precoding pattern changes at

each symbol-period while ZF precoding is fixed throughout the whole coherence time.

e Proposed PLS schemes are much more secure than CISPM and ZF, with PLS random
being the most secure because of its induced randomness in the signal design that makes

it harder for Eve to learn the precoding pattern.

e Tremendous security gains are offered by the PLS Eve-min-power scheme when com-
pared to the benchmark SLP scheme, CISPM, at the expense of only a marginal extra

runtime.
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Figure 6.13: Runtime per SP [ms] vs. M of proposed and benchmark schemes with Ny = 15,
K =6, v = 6 dB, and a frame size of 900 symbols.

e PLS random scheme offers higher security than PLS Eve-min-power, however, its run-

time increases linearly with the number of antennas at Eve.

e Logistic regression is the most performing classifier amongst the tested state-of-the-art

classifiers.

e The system parameters that directly affect the BER/FER at Eve are: the number of

antennas at Eve, the total transmit power, and the coding rate.

e PLS schemes offer significant security gains compared to ZF and CISPM precoding

schemes at the expense of additional power consumption at the transmitter.

e More importantly, these security gains are achieved without affecting the performance

at the intended users.

6.5 Summary

In this chapter, we investigated one-shot ML-based MIMO detection for multi-antenna Eve
in coded systems. We proposed ML-based decoding schemes for a multi-antenna Eve in
the context of a FEC-enabled MU-MISO systems. The proposed eavesdropping attacks use
precoded pilot symbols as training data and enable an Eve to soft/hard decode a message
with high accuracy. As a countermeasure to these attacks, we proposed two novel security-

enhanced SLP precoders that seek to obstruct the learning process at Eve. Numerical results

115



validated both the attacks as well as the countermeasures, where the soft decoding scheme
always outperforms the hard decoding one. In addition, our proposed PLS schemes outper-
form ZF and CISPM precoding in security at the expense of additional power consumption at
the transmitter, with PLS random scheme offering the highest security. Thus, the proposed
PLS schemes provide different trade-offs between security, runtime, and power consumption,
which would give the BS the option to select the most suited scheme depending on the re-
quired criteria. Notably, despite all the security gains offered by our proposed PLS schemes,
their use does not affect the performance at the intended user. Future research topics would
be to extend this work to the case of imperfect CSI and also where the channel to Eve is

unknown to the BS.
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Chapter 7

Conclusions and Future Works

This chapter lists the main conclusions, discusses the underlying limitations of the proposed

schemes and methodologies, and proposes some future works.

7.1 Conclusions

This thesis addressed detection challenges in precoded MIMO systems, considering a variety
of scenarios and systems. In the context of SU-MIMO systems with channel coding, one-shot
ML-based MIMO detection schemes robust to CSIT deterioration were proposed. A similar
detection approach was developed for multi-antenna eavesdropping in coded and uncoded
MU-MISO systems. Specifically, in this thesis, two detection-related problems were investi-
gated: 1) MIMO detection robust to CSIT deterioration in SU-MIMO systems, and 2) MIMO
detection for eavesdropping attacks in MU-MISO systems. The proposed detection schemes
leverage ML tools and exploit the downlink pilots as training data. For the first problem,
under severe CSIT deterioration, the proposed ML-based MIMO detectors can achieve good
detection performance and outperform the two-step MMSE detector, i.e., that first estimates
the CSIR using the downlink pilots and then performs detection. For the second problem,
numerical results validated the effectiveness of the proposed eavesdropping attacks, where an
Eve can decode the transmitted data with good accuracy. To counteract these attacks, sev-
eral SLP-based schemes were proposed to enhance PLS. The proposed schemes were designed
to meet varying runtime, security, and power consumption trade-offs, to provide the BS with
options to choose the most suitable scheme depending on the desired criteria. Hence, the

title of this thesis, ML for MIMO detection and eavesdropping with SLP countermeasures.
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7.2 Limitations and Future Works

Finally, we provide some perspective on the obtained results by outlining some shortcomings

of the proposed MIMO detectors and suggest possible improvements.

7.2.1 Outlook for Online Learning

Although the proposed MIMO detection approaches function in the online regime, where
the detectors are optimized for each channel realization, this approach requires training the
ML-model for each coherence time. In particular, the detection performance of the online
approach is limited in the case when pilot data is scarce due to short coherence time. Thus,
one-shot MIMO detection in offline learning should be investigated in order to 1) support
scenarios where the coherence length is short and 2) when the computation power at the
receiver is limited and does not permit to re-train the MIL-model whenever the channel

changes.

7.2.2 Limitation of using Eve’s CSI at the BS

In the proposed countermeasures to the eavesdropping attacks, the underlying SLP-based
schemes are designed by assuming that the BS knows the channel to Eve, which is not the
case in general. Therefore, it is important to investigate the case when the BS does not
know Eve’s CSI. Particularly, to counteract the proposed eavesdropping attacks, precoding
schemes to enhance the PLS without requiring Eve’s CSI should be investigated to consider

a more general Eve.

7.2.3 Outlook for Deep Learning

The proposed ML-based detectors employ non-neural networks based algorithms, we did not
consider deep learning (DL) despite its high performance in several areas. The main reason
for not using DL-based approaches in our design are 1) DL requires considerable amount of
training data, which is not available in our case due to the limited pilots available in each
coherence time and 2) DL typically requires to train millions of parameters, which makes
it prohibitively expensive in our application scenario. Nevertheless, when offline learning
is considered, i.e., the detector is trained for a multitude of channel realizations at once,

the underlying pilot data might be large enough to train DL models. Thus, it might be
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interesting to consider DL algorithms for one-shot MIMO detection, especially in the offline

training regime.

7.2.4 Using Interleaving with Channel Coding

In this thesis, we employed channel coding without interleaving, where we used convolutional
coding and Viterbi decoding. Interleaving improves the detection performance further, thus
employing interleaving with channel coding will further enhance the eavesdropping attack’s

and the MIMO detection schemes’ performance.

7.2.5 Using ML Algorithms that Directly Process Complex Numbers

In the proposed ML frameworks for eavesdropping and MIMO detection, for the features em-
ployed for training and inference, we considered real and imaginary parts separately because
the employed ML algorithms’ implementations did not support complex-valued data. Never-
theless, there is a growing interest in building NN-based algorithms using complex numbers
and exploring the benefits of directly processing complex data | ]. Thus, it is interesting
to investigate complex-based ML and DL algorithms, which might bring better performance

due to the join processing.

7.2.6 Using More Benchmarks in Precoding and Detection

In this thesis, with regards to the proposed countermeasures, we have compared the proposed
SLP precoders’ performance to precoding schemes that are not secure by design. Therefore,
the next step of this work is to compare the proposed schemes to state-of-the-art secure
schemes in terms of security gains, power consumption, and complexity. In the same direction,
the benchmarks used for comparison with the proposed ML detectors are not robust by design,
thus it is interesting to compare the proposed ML detectors to robust detectors and assess

the resulting complexity-performance trade-offs.
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Chapter 8

Appendix: Regression-Based ML
Framework for Soft Decoding

In this chapter, we re-design the ML framework for soft decoding in Section 6.2.3 using
regression instead of classification.

We revise that supervised learning is applicable when the training set is labeled, i.e.,
the input data (X) is associated to an output label (Y), where the ML algorithm learns
the mapping function f from the input to the output, ¥ = f(X). The aim herein is to
approximate the mapping function, without underfitting nor overfitting, to predict well for
new input data (X). In our setting, the input variable (X) represents the Eve’s received
pilot signal yt, detailed in (6.5). In Section 6.2.3, we chose the variable (Y') to represent the
pilot vector p, which constitute discrete values, hence the use of classification. Motivated by
the numerical nature of LLRs, we convert variable (Y) to LLRs to train the model on the
estimated LLRs instead. This transformation results in the considered supervised learning
problem being regarded as a regression problem, as the output variable is of real /continuous
nature.

As illustrated in Figure 8.1, the regression-based ML framework for soft-decoding encom-
passes two steps: 1) training phase, where the ML model is trained by using the estimated
LLRs, and 2) inference phase, where the LLRs are directly predicted and used by the soft
decoder to obtain the transmitted bits.

In the training phase, the difference with the classification-based ML framework presented

in Section 6.2.3 is in training the ML model using LLRs instead of bits. As depicted in
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Figure 8.1: Overview of the regression-based ML framework for soft decoding.

Figure 8.1, the LLRs corresponding to the training set’s features are estimated by employing
the classification-based approach. In particular, via employing the bits-based ML model
in Section 6.2.3 to estimate the LLRs. The outcome of this phase is a trained multi-label
regression model for LLRs.

In the inference phase, as depicted in Figure 8.1, the trained ML model for LLRs is
employed by the multi-label regression prediction module to directly infer the LLRs, which
are fed to a soft decoder to obtain the transmitted bits to user k.

Similarly to Section 4.3, herein, we employ a lightweight implementations of the multi-
label regression algorithms, the support vector regression (SVR) [ | and the regressor
chain (RC) | | approaches. In fact, SVR is similar to the BR approach in the sense that

both methods train multiple single-label modules independently and combining the produced
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outputs into a multi-label output. On the other hand, RC is equivalent to the CC method
where both take into account the correlation between the labels, by using the outputs of the
previously trained modules as features for the next ones in the chain.

Using the same channel coding parameters in Section 6.4, in the following, we present
the BER/FER results at Eve that includes the SVR and RC approaches and compare their

performance to the CC method.
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Figure 8.2: BER at Eve vs. number of antennas at Eve, with » = 1/3, N; = 15, K = 6, and
n =y = 6 dB.

Figure 8.2 depicts the coded BER at Eve as a function of M. The parameters used in the
simulation are: r =1/3, Ny = 15, K = 6, and = 7 = 6 dB. Figure 8.2a represents the non-
secure precoding schemes, ZF and CISPM. Similar to Figure 6.7, we observe that the more
antennas at Eve, the lower is the BER. In particular, SVR and CC approaches depict the
same BER performance as the labels are random in nature, i.e., no label correlation between

them. Nevertheless, we observe that the CC technique outperforms both the SVR and RC
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approaches. This is due to the regression-based modeling that trains the model on LLRs that
are estimated, which incurs an additional loss in performance. However, the classification-
based approach in Chapters 4 and 6 performs training on the actual labels, thus the better
prediction accuracy. Moreover, with M = 10, the BER at Eve is so low that it could be
compared to an intended user’s decoding performance, leading to an important eavesdropping
vulnerability in systems that employ ZF and CISPM precoding schemes. Additionally, as
shown in Section 6.4, the ZF scheme leads to lower BER than the CISPM precoding, which
makes the CISPM scheme more secure. For the PLS random scheme in Figure 8.2b, we
observe the same behavior as in Figure 8.2a, higher M leads to lower BER, where SVR and
RC are equivalent while CC outperforming both. However, when M is lower than 10, the
BER at Eve is at 0.5, indicating full confusion at Eve. In fact, even when M > 10, the
BER at Eve is still very high when compared to ZF and CISPM schemes. Similarly, for the
PLS Eve-min-power scheme in Figure 8.2c, we observe that the PLS Eve-min-power scheme’s
BER values are lower than the PLS random values, making the latter scheme more secure.
However, PLS Eve-min-power scheme still offers considerable security gains when compared
to the non-secure precoding schemes, ZF and CISPM.

Figure 8.3 depicts the coded BER at Eve as a function of 1/4; [dB], which we set to the
same value for all users. The parameters used in the simulation setup are: r = 1/3, Ny = 15,
K =6, and M = 11. Regarding ZF and CISPM schemes in Figure 8.3a, similar to Figure 6.9,
we remark that the higher the values of /v, the lower the BER, as higher n/v; values
generate higher transmit power, which in turn results in higher received power at Eve, thus
better decoding performance. Similarly, the same observations remain: CISPM precoding
is more secure than ZF, SVR and RC lead to the same performance, and the CC approach
outperforms SVR and RC. For the PLS random scheme in Figure 8.3b, we witness the same
behavior with regard to /. In particular, the CC approach clearly outperforms the SVR
and RC techniques. Still, even with /v, = 9 dB and with such a high number of antennas
at Eve, M = 11, the BER values are still very high when using the PLS Random scheme.
In Figure 8.3c, the PLS Eve-min-power scheme depicts the same behavior as PLS random.
Even if the former scheme BER values are lower than the latter, the BER performance at
the former is still very poor, approximating 0.33 for the SVR and RC approaches even when
using M = 11 and /v, = 9 dB.

Figure 8.4 depicts the coded FER at Eve as a function of 7/~ [dB]. The parameters used
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Figure 8.3: BER at Eve vs. /v [dB], with r =1/3, Ny = 15, K = 6, and M = 11.

in the simulation are: r = 1/2, Ny = 15, K = 6, and M = 11. Figure 8.4a plots the FER
at Eve when using ZF and CISPM precoding schemes. Similar to Figure 8.3, we observe
that: 1) the higher the n/v, the lower the FER, 2) the CC achieves lower FER than the
SVR and RC approaches, and 3) the SVR and RC yield the same decoding performance.
The same behavior is noted in Figures 8.4b and 8.4c, for the PLS random and Eve-min-
power schemes, respectively, with the exception that the FER values are still very high even
when n/v, = 9 dB. Specifically, for the former scheme, FER values are above 0.94 but
0.7 for the latter. Again, this validates the security edge of the PLS random scheme over
the PLS Eve-min-power scheme. Though, the PLS Eve-min-power successfully obstructs the
eavesdropping attacks, i.e., Eve could correctly decode no more than 30% of the transmitted
data.

We conclude this appendix by summarizing the insights from the numerical results of

using the SVR and RC multi-label regression algorithms.
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Figure 8.4: FER at Eve vs. n/v; [dB], with r =1/4 , Ny = 15, K =6, and M = 11.

e The SVR and RC approaches apply only to the soft decoding ML framework, where

the LLRs are estimated and used to train the underlying multi-label regression models.

e These approaches are equivalent in performance because of the random nature of the
labels employed, i.e., there is no inter-label correlation to be exploited to further enhance

the accuracy of the RC approach.

e These approaches fall behind the CC method in BER/FER performance, as they both

rely on the estimated LLRs for training.

e The BER/FER values tend to 0 when employing the ZF and CISPM schemes at the

BS, however, the values remain very high when the BS uses the proposed PLS schemes.
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