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General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
sub-populations and to estimate, at the same time, a typical trajectory for
each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.

Finite mixture model
(
Daniel S. Nagin (Carnegie Mellon University)

)
mixture : population composed of a mixture of unobserved groups

finite : sums across a finite number of groups
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y .

Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable, taken at times
t1, ...tT for subject number i . Ai = {t1, ...tT}

πk : probability of a given subject to belong to group number k

⇒ πk is the size of group k.

⇒ P(Yi ) =
K∑

k=1

πkP
k(Yi ), (1)

where Pk(Yi ) is probability of Yi if subject i belongs to group k .
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The Likelihood Function (2)

Aim of the analysis: Find K groups of trajectories of a given kind, for
instance polynomials of degree 4, P(t) = β0 + β1t + β2t

2 + β3t
3 + β4t

4.

Statistical Model:

yit = βk0 + βk1 t + βk2 t
2 + βk3 t

3 + βk4 t
4 + εkit , (2)

where εkit ∼ N (0, σk), σk being the standard deviation, constant inside
group k.

We try to estimate a set of parameters Ω =
{
βk0 , β

k
1 , β

k
2 , β

k
3 , β

k
4 , πk , σk

}
which allow to maximize the probability of the measured data.
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Possible data distributions

count data ⇒ Poisson distribution

binary data ⇒ Binary logit distribution

censored data ⇒ Censored normal distribution
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Predictors of trajectory group membership
x : vector of variables potentially associated with group membership
(measured before t1).

Multinomial logit model:

πk(xi ) =
exiθk

K∑
k=1

exiθk

, (3)

where θk denotes the effect of xi on the probability of group membership
for group k .

L =
N∏
i=1

K∑
k=1

exiθk

K∑
k=1

exiθk

T∏
t=1

pk(yit), (4)

where pk(·) denotes the distribution of yit conditional on membership in
group k.
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Adding covariates to the trajectories

Let W be a vector of covariates potentially influencing Y .

The likelihood then becomes

L =
N∏
i=1

K∑
k=1

exiθk

K∑
k=1

exiθk

T∏
t=1

pk(yit |Ai ,Wi ,Θk).
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Basic Idea

We conjointly analysis the trajectories of J variables Y 1, ...,Y J .
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The constrained model

We suppose the existence of K unique groups representing the combined
development of Y j , 1 ≤ j ≤ J.

The conditional independence of the time measurements for the outcomes
for a given group is implies that

P(Y 1
i , . . . ,Y

J
i |Ai ,Wi ) =

K∑
k=1

πk

J∏
j=1

T∏
t=1

pk(y jit |Ai ,Wi ,Θ
j
k).
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The unconstrained model

We suppose the trajectories for a variable Y l can be linked to trajectories
for all other variables Y j , j 6= l . Then,

P(Y 1
i , . . . ,Y

J
i |Ai ,Wi ) =

∑
(k1,...,kJ)∈K1×···×KJ

πkJ |k1...kJ−1
× · · · × πk2|k1 × πk1

J∏
j=1

T∏
t=1

pkj (y jit |Ai ,Wi ,Θ
j
k),

where πkj |k1...kj−1
is the probability of belonging to group j conditional on

the membership to groups 1 to j − 1.
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Membership Probability

πk1 =
eθk1xi

K1∑
k1=1

eθk1xi

, πk2|k1 =
e
θ
k1
k2
w

k2
i

K2∑
k2=1

e
θ
k1
k2
w

k2
i

, . . . ,

πkJ |k1...kJ−1
=

e
θk1...kJ−1w

kJ
i

kJ
KJ∑

kJ=1

e
θ
k1...kJ−1w

kJ
i

kJ

.

One drawback of this method is the great expansion of the number of
parameters and the fact that the parameters are hardly interpretable.
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Group Membership Vector

Denote by Zi = (Zi1, . . . ,ZiJ) the vector containing the group membership
of individual i for the variables Y 1, . . . ,Y J . Zi ∈ [[1;K1]]× · · · × [[1;KJ ]].

Then,

P
(
Zij = k|zih for h 6= j ,X j

i

)
=

eBij,k∑Kj

h=1 e
Bij,h

,

where Bij ,k = αj ,k + βj ,kX
j
i +

∑
h 6=j

ψjh,kzih .

αj ,k is a choice specific intercept ;

βj ,k is a vector corresponding to the covariate X j
i ;

zih the group membership of the individual i for Y h ;

ψjh,kl is an association parameter between belonging to group k for
Y j and belonging to the group l for Y h.
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Number of parameters

The Hammersley-Clifford Theorem allows to write the conditional
probabilities as

P
(
Zij = k |zih for h 6= j ,X j

i

)
=

eBij,k∑Kj

h=1 e
Bij,h

where Bij ,k = αj ,k + βj ,kX
j
i +

∑
h<j

ψhj ,zihk +
∑
h>j

ψjh,kzih .

Proposition

The numbers of parameters is

J∑
j=1

(Kj − 1)× (ncol(X j
i ) + 1) +

∑
1≤j 6=j ′≤J

(Kj − 1)(Kj ′ − 1).
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Setup

We simulate trajectories for 200 individuals and 3 variables.

Y 1 (normal distribution) : β1,1 = (3.53,−2.25, 0.47),
β1,2 = (−1.62, 3.9,−0.65), β1,3 = (0.263, 0.036, 0.01),
σ1,1 = σ1,2 = σ1,3 = 1 ;

Y 2 (ZIP distribution) : β2,1 = (1.2, 2.3,−1.2, 0.5,−0.1), β2,2 = (2),
β2,3 = (−7.5, 0, 2.2,−.4), ν1 = (−2, 1), ν2 = (−1, 0.1), ν3 = (0,−1);

Y 3 (logit distribution) : β3,1 = (6.32,−5.8, 1), β3,2 = (−6.69, 1.92).

Furthermore, we choose all θj ,k = 0 and ψ = (−3, 3, 4, 0,−2, 5, 1, 0). We
launch trajeR for each variable separately and we use the results as as
initial values for the multi-trajectory model.
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Results
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Montreal Longintudinal Study

Example from D. Nagin. Compares the link between hyperactivity and
opposition score. The hyperactivity is measured on a scale between 0 and
4 and the opposition behavior on a scale between 0 and 10.
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