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Abstract—Critical infrastructures have to withstand advanced
and persistent threats, which can be addressed using Byzantine
fault tolerant state-machine replication (BFT-SMR). In practice,
unattended cyberdefense systems rely on threat level detectors
that synchronously inform them of changing threat levels. How-
ever, to have a BFT-SMR protocol operate unattended, the state-
of-the-art is still to configure them to withstand the highest
possible number of faulty replicas f they might encounter, which
limits their performance, or to make the strong assumption that
a trusted external reconfiguration service is available, which
introduces a single point of failure. In this work, we present
ThreatAdaptive the first BFT-SMR protocol that is automatically
strengthened or optimized by its replicas in reaction to threat
level changes. We first determine under which conditions replicas
can safely reconfigure a BFT-SMR system, i.e., adapt the number
of replicas n and the fault threshold f, so as to outpace an
adversary. Since replicas typically communicate with each other
using an asynchronous network they cannot rely on consensus
to decide how the system should be reconfigured. ThreatAdaptive
avoids this pitfall by proactively preparing the reconfiguration
that may be triggered by an increasing threat when it optimizes
its performance. Our evaluation shows that ThreatAdaptive can
meet the latency and throughput of BFT baselines configured
statically for a particular level of threat, and adapt 30% faster
than previous methods, which make stronger assumptions to
provide safety.

I. INTRODUCTION

Cyber infrastructures, which are used in domains such as fi-
nance, public administration (e-government), social networks,
or e-health, as well as cyber-physical systems (CPS), such
as the power grid or autonomous vehicles, increasingly face
cyber attacks of various threat levels [1]. Some of these attacks
might successfully compromise a subset of the machines used
in an infrastructure, which imposes periodical verification of a
system’s integrity and protection measures. However, the na-
ture of cyber-physical systems, and the increasing complexity
of both cyber-physical and cyber-only systems prevent manual
attack surveillance and mitigation [2]. Instead, systems have
to operate through times of ongoing and possibly persistent
incidents autonomously and unattended.

Fluctuations in the threat a system faces naturally arise from
variations of environmental effects (e.g., radiation levels vary
while planes taxi on ground and during flight [3]), or when
it comes to attacks, from the number and skill of adversarial
actors having put their attention to a system and from the
sophistication of the tools they use. In practice, cyber systems
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rely on threat detectors [4] that indicate the level of threat they
are facing and that allows them to automatically adapt their
performance and resilience.

Byzantine fault tolerant state machine replication (BFT-
SMR) [5], combined with rejuvenation [6] and diversification
methods [7], [8] is a method that can be used to replicate
servers and tolerate powerful adversaries. BFT-SMR protocols
are typically configured with n> 3 f+1 replicas to tolerate the
largest number f of faulty replicas [5] it might encounter, and
require 2k additional replicas (i.e., n>3f+2k-+1) if up to k
replicas are simultaneously rejuvenated every Tr seconds [6].
However, the latency and throughput of BFT-SMR systems
deteriorate when f increases. Our work is the first to allow
BFT-SMR protocols to safely adapt to evolving threats by
leveraging threat detectors.

Traditional protocols [5] define a value for f once and for all
at deployment time, and therefore have a lower performance
than less resilient systems. Adaptive protocols [9] reclaim
some performance, but they also maintain f constant. To
some extent, dual mode and abortable protocols [10]-[13] can
optimize their performance by executing a protocol switch at
runtime, but they also keep the fault threshold f constant.
On the other hand, group membership protocols adjust the
system and quorum sizes using consensus [14]-[16]. How-
ever, group membership protocols cannot guarantee that the
system will enter a sufficiently resilient configuration before
it gets compromised, in particular when network synchrony
is lost. Finally, relying on an external reconfiguration service
introduces a single point of failure.

Fortunately, as we show in this paper, it is possible to
circumvent the limitations of these approaches by leveraging
threat detectors, which provide a lightweight trusted func-
tionality. Threat detectors issue warnings well in advance of
imminent increases of adversarial strength [17]-[20]. However,
threat detectors also report about threat level decreases, when
there is room for optimization.

We describe how to adapt to fluctuating adversarial threats.
We start by carefully analyzing the timing properties a threat
detector should have to allow the system to react in time
to adversarial strength increases. Building on those insights
we describe a reconfiguration protocol, ThreatAdaptive, which
allows the replicas of a system to: (i) use consensus to
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agree on and switch to a less resilient, but better performing
configuration that is still resilient enough when possible; and
(ii) return to a configuration that is strong enough, which
has been agreed upon during the optimization phase, when
the threat detector informs them about an imminent increase
of adversarial strength. ThreatAdaptive allows a BFT-SMR
protocol to save the resources it does not require to ensure
safety at a given moment in time while increasing its efficiency
by operating with fewer active replicas whenever possible.

Overall, this work makes the following contributions: (i) We
establish when and how it is safely possible to reconfigure BFT
protocols when the adversarial strength evolves over time. (ii)
We present ThreatAdaptive, a BFT reconfiguration protocol
that allows replicas to optimize its use of system resources and
increase its resilience threshold. with respect to the perceived
adversarial strength. (iii) We implement our Threat-Adaptive
system design and evaluate its performance.

This paper is organized as follows. §II surveys the related
work. SIII presents our system model and objectives. §IV
discusses threat detectors and presents the required conditions
for the safe reconfiguration of a BFT-SMR protocol that relies
on rejuvenation. §V describes our threat adaptive reconfig-
uration protocol for BFT-SMR protocols. §VI presents our
performance evaluation. §VII concludes this paper.

II. RELATED WORK

Dynamic performance optimization of BFT-SMR.
AWARE [9] periodically optimizes its performance by having
replicas evaluate the network latencies, and subsequently dis-
tribute among themselves voting weights and the leader role.
AWARE maintains constant the resilience parameters, namely
the number of replicas n, the fault threshold f, while we aim
at modifying these parameters depending on perceived threats
(along with the rejuvenation period T’r).

Speculative agreement. Several works strive for protocol
intrinsic (i.e., situation independent) optimization by relaxing
the state machine semantics to accept transactions optimisti-
cally [21], [22] or to execute requests without causality prop-
erties [23]. We believe that our threat adaptative mechanisms
could also be used in combination with these systems.

Adaptive BFT-SMR protocols. CheapBFT [10] and
ReBFT [11] operate through error-free phases using only
n—f replicas (e.g., 2f+1 for ReBFT), and do not adjust the
fault threshold f. They switch to n replicas to mask faults.
Abortable protocols [12], [13] switch between several algo-
rithms to improve performance. The maximum fault threshold
is also maintained constant in those protocols. Reconfiguration
services in crash or Byzantine settings [24], [25] are also
closely related to our work. These services rely on an external
and centralized reconfiguration system, while we rely on a
simpler and smaller threat detector. Kuznetsov and Tonkikh re-
cently described a framework to reconfigure BFT systems [26].
This interesting work did not consider the threat adaptivity
problem that we tackle in this work.

Group membership protocols. Group membership proto-
cols, closely integrated with replication management proto-

cols [27], can adjust the composition of the replica group, and
hence n and f. However, replicas have to reach consensus
to perform these adjustments or must do so one replica at a
time [15], [16] with payload consensus interleaved between
subsequent additions. When confronted with an increasing
adversarial strength, these protocols cannot ensure that the
system’s fault threshold will be reconfigured early enough to
be safe. In such a scenario, our mechanisms allow a system
to automatically transition to more resilient configurations.

Architectural hybridization. Architectural hybridiza-
tion [28] has been introduced to provide synchrony guarantees
in an otherwise partially synchronous system. Verissimo et
al. [29] show how to introduce such a notion, either locally or
in a distributed manner, with synchronously connected trusted-
trustworthy components, called wormholes. To adapt to an
increasing threat level, one could assume the existence of
a wormhole that would reconfigure the system and inform
replicas using synchronous communications. We assume a
smaller and simpler threat detector whose role is to inform
replicas synchronously of an increasing threat level.

III. SYSTEM MODEL AND PROBLEM STATEMENT
A. System Model

We assume a replicated service for which replicas coordi-
nate agreement using a payload BFT-SMR protocol. We use
PBFT [5] for illustration purposes, but our dynamic member-
ship protocol is generic and can be applied to other BFT-SMR
protocols, or even to reliable broadcast protocols [30]. Replicas
are interconnected by a partially synchronous network. We
assume the availability of strong cryptographic primitives and
abstract from the steps necessary to establish trust in replicas
and their key material, initially and after they have been
rejuvenated.

The configuration of a BFT-SMR system is captured by
a tuple (N, fi,qi, ki, Tr;), where N; is the set of active
replicas that execute the payload protocol, f; is the fault
threshold, g; is the quorum size, and, to support rejuvenation,
k; and Tg; respectively denote the number of replicas that
can be rejuvenated simultaneously and the time a proactive
rejuvenation of k; replicas takes. After a duration of % TR,
the system has proactively rejuvenated all n; replicas once, and
at most k; simultaneously. In general, the values of k; and T'g ;
can be freely chosen as long as one takes into account that
replicas cannot be rejuvenated arbitrarily quickly.

For simplicity, we focus here exclusively on homogeneous
payload protocols (i.e., there are no trusted components that
replicas can use for the payload protocol, but they rely on
a threat detector for reconfigurations), where ¢;<n;—f; and
2q;—n;>f;+1 must hold for safe and live configurations,
which implies that n;>3f;+2k;+1 and ¢;>2f;+k;+1. We
assume an initial set of replicas N,,,, and define a World
Conﬁguration Cmaz = (Nmaza fmamv dmaz kmara TR,mam) as
the initial system configuration. We require the world config-
uration to be safe, live and capable of masking faults and
rejuvenating replicas as this will be the configuration the



system returns to in the most severe circumstances. During
times when the system experiences synchrony, group member-
ship protocols can be used to adjust this world configuration.
Finally, we assume that the system is equipped with a threat
detector (TD), which we discuss in §IV.

B. Threat Adaptive Reconfigurations

We consider an adversary whose strength evolves over time.
We consider two ways in which this evolution can happen: i)
the adversary can corrupt less or more replicas overall (the
adversarial fault threshold f,4, evolves); and ii) the adversary
requires less or more time to corrupt f,4, replicas. We capture
those two aspects in the notion of adversarial strength, which
is a function T4 (¢, f) of time ¢ and fault threshold f. We do
not instantiate the strength function for our analysis (cf. §IV).

The system can be configured to run the payload protocol
either more efficiently or with more resilience. A replica
r transitions through configurations and into a passive but
responsive operation mode [10], [11], e.g., a deep sleep
mode with wake-on-LAN, if it is not involved in the current
configuration (i.e., if ¢ N;). We assume that passive replicas
are correct upon wake up and substantiate this assumption by
frequently rejuvenating passive replicas. Such a rejuvenation
is only limited by the rejuvenation time T and not by k;.
Passive replicas can be rejuvenated simultaneously.

Classically, system reconfigurations are decided by a system
administrator. We opt for an automatic and internal reconfig-
uration orchestrated by the replicas themselves. Assuming an
external reconfiguration service only relocates the problem we
tackle, since this service has to be safe at all times. In order not
to introduce a single point of failure, this service would also
need to be replicated and either configured to the maximum
fault threshold or have the capability to reconfigure itself.

Our goal is to define a resilient system able to automatically
react to evolving threats safely and rapidly enough to outpace
the adversary in its attempt to compromise the system. Repli-
cas reconfigure the system to counter imminent threats, or to
optimize its performance when it is safely possible, based on
a threat detector’s signal. We call reactions and optimizations
the adaptations in consequence of an increasing or decreasing
adversarial strength, respectively.

IV. THREAT DETECTORS AND REQUIREMENTS FOR
ADAPTING TO CHANGING ADVERSARIAL STRENGTH

This section first discusses threat detectors. We then present
our threat model, which encapsulates the notion of a changing
adversary, and state more precisely the threat detector require-
ments (i.e., how well in advance it should warn of a treat
change) using the proactive recovery threat model.

A. Threat Detectors

Threat detectors are fundamentally different from intrusion
detectors. Whereas the latter has to identify whether parts of
the system have been compromised, threat detectors merely
have to assess the risk of severe faults happening.

Threat levels have been defined by Singer as a product
of the estimated capabilities of malicious actors and their
intent [31]. Defense against cybersecurity threats requires
identifying such actors, their points of entry, attack vectors and
known vulnerabilities of the system to protect. The perception
of adaptive threats requires continuous monitoring of changes
of malicious actor capabilities (i.e., whether new, exploitable
vulnerabilities have been exposed or old ones patched), as
well as changes of a malicious actor’s intent (system in focus
of enemy military or intelligence actors, higher/lower black
market financial incentives for breaching the system).

The answer to this threat perception challenge lies in
implementing Cyber Threat Intelligence, which allows for
continuous and responsive cybersecurity information collec-
tion, dissemination and processing, and, as a result, enables
educated decisions on how to prepare the system to face
(perceived) threats [19]. Operational frameworks (STIX) and
standards of information exchange (TAXII) have been de-
signed to automatically evaluate threat levels [32]. Open threat
feeds [4], [33] are already available and the feasibility of such
systems is confirmed by their existence in notable institutions
like the Bank of England [20].

The threat detector (TD) generates and delivers indica-
tions of changes in the perceived adversarial strength T4 to
replicas. TD endpoints at each replica are connected through
a synchronous network, that is separated from the regular
partially synchronous network that replicas use for the payload
protocol. This separated network is a wormhole [29].

B. Adversarial strength

We now determine how much in advance replicas should
be informed of an increasing adversarial strength so that they
can reconfigure the system to maintain it safe. Sousa et al. [6]
assume that during any time interval of duration T4 the
adversary can compromise at most f replicas. A system with n
replicas is then said to be exhaustion safe if all faulty replicas
are repaired faster than T4. In the absence of perfect failure
detectors, this can be achieved by rejuvenating all n replicas
proactively faster than T4. For example, if k& replicas can
be rejuvenated simultaneously well within T'r, the system is
exhaustion safe if and only if [] Tx < T4. In this scheme,
the number of replicas should be at least n > 3f + 2k + 1 to
ensure safe and live quorums.

We extend Sousa et al.’s model and their exhaustion safety
notion by characterizing the combined adversarial strength T'4
as a function of time ¢. However, while their adversary model
faces systems with a constant fault threshold f, we strive
for systems that adapt f in response to changing adversarial
strength. Therefore, to understand how strong an adversary
of strength T'4(t) is against different configurations of the
systems, T'4(t) must itself be a function mapping each con-
figuration’s fault threshold f to the length of the time interval
during which no more than f replicas can be compromised.
That is, T'a(t, f) resembles Sousa et al.’s time interval for an
adversary with strength T4 (¢) at time ¢ when it faces a system
that is capable of tolerating up to f simultaneous faults.
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Fig. 1: Time to compromise before, during and after the
increase of adversarial strength at ¢;,,¢yeqse. During red-dashed
intervals, the adversary cannot compromise more than f repli-
cas. The length of intervals including %;,creqse 1S NOt known
precisely and hence requires careful consideration.

Definition 1 (Adversarial strength). Let T4 : R x N — R
be a function that maps every point in time t € R and
every [ € N to a duration Ty(t, ) such that at time t
the adversary cannot corrupt more than f replicas before a
duration Ty (t, f) has elapsed. We shall assume in this work
that Ty remains constant for extended periods of time and
that the duration of such a period P; = [t',t"T1) is larger
than Ta(t, f) for all involved fault thresholds f (e.g., when
the system transitions from f1 to fa). We call Ta(t, f) the
strength of the adversary during this period against a system
with fault threshold f.

In the following, for simplicity, we shall write T4, (f)
instead of T'a(t, f) where t € P; and Ty, (f) for Ta(t, f)
while ¢t € P;;1, to denote these noticeable changes in the ad-
versarial strength during subsequent periods of time P;, P; .
We say that the adversary becomes stronger relative to a given
f if it evolves from being characterized by T4, and is now
characterized by T4, , where T's,,, (f) < Ta,(f). We define
similarly a weaker adversary. We require 71’4, to be monotonic
(i.e., Ta,(fo) < Ta,(f1) for all fo < f1), but make no further
assumptions on T4, (such as linearity).

We define the time an adversary takes to corrupt f replicas:

Definition 2 (Time-to-compromise intervals). A time-to-
compromise interval [t;,t,) is any interval, between t; and t,.
such that the adversary cannot corrupt more than f replicas.
If Ty, remains constant between t; and t, it implies that
tr —t1 < T, (f)

The duration of time-to-compromise intervals that include
a change in the adversary’s strength requires careful consid-
eration. We denote by 7’4, 4,., (f) the adversarial strength
over such an interval and require only that Ta,(f) >
Ta, A, (f) = Ta,,, (f). Fig. 1 illustrates this point.

In the following, we discuss how a system can react to
an increasing adversarial strength, namely: i) by increasing
the rejuvenation rate; or ii) by activating additional replicas.
For each situation, we describe how the system should be
reconfigured, and obtain a temporal bound before which the
reconfiguration should be effective. We finally combine both
results to identify all possible reconfigurations of the system.
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Fig. 2: Increase of adversarial strength.

C. Accelerating rejuvenation

Let us assume an adversary that becomes stronger at time
tincrease, Characterized through the functions T4, and Ty,.
In particular, we have T4, (f) > T4, (f). We first study how
and when the rejuvenation parameters can evolve so that no
more than f replicas are simultaneously faulty. This situation
is illustrated in Figure 2.

Exhaustion safe systems allow up to f faults to happen
in any window of size T4,(f) that starts before ¢~40 =
tincrease — T4, (f), and in any window of size T4, (f) that
starts after ¢;,creqse, provided the system is as well exhaus-
tion safe with the adjusted rejuvenation rate and the strong
adversary. We now investigate what happens over the time
intervals where the adversary becomes stronger, i.e., those that
contain t;pcrease. 1hose intervals start at a time ¢ such that
t=40 < t < tinerease, and have a duration comprised between
T, (f) and T4, (f). We can therefore over-approximate the
adversary’s strength and state our first theorem:

t—Ao t'A] tincrease

fadv

e —--F----- - [ S > .
B T time
e >
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Fig. 3: More frequent rejuvenation to counter a stronger
adversary. A blue rectangle shows the rejuvenation of a replica.

Theorem 1 (Reacting by accelerating rejuvenation). From an
exhaustion safe configuration (N, f,q, ko, Tr,), if the adver-
sary’s strength evolves from Ty, to Ta, at time tipcrease, the
system remains safe if it is reconfigured to an exhaustion safe
configuration (N, f,q,k1,Tr,), where P%I—‘ Tr, < Ta,(f)

before‘ tincrease — TA1 (f)

Proof. We know that before ,,creqse, the additional adversary
strength has no effect. Therefore, there exists an interval
included in 77 = [t~ t=4 = tincrease — Ta, (f)] such
that the time-to-compromise windows that start in this interval
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Fig. 4: Adding replicas to counter a stronger adversary.

(e.g., at t € [t~Ao ¢+~41]) cannot compromise the system in
less than t,,creqse —t' because this window is entirely included
in the interval where the adversary is still weak.

The existence of this interval allows us to derive the point in
time when the system has to adjust its proactive rejuvenation
rate to counter the increase of adversarial strength. Having
over-approximated the adversary’s strength with T4, (f) for
any window that starts after £~“*, any attack launched during
any of these windows is countered by rejuvenatinf all replicas

in N faster than T4, (f) (i.e., after adjustment, ‘k—]\ﬂ Tr, <
T, (f) holds, which guarantees exhaustion safety for all
sliding windows after ¢=41).

The system does not have to switch to this rate before
t~41 because all time-to-compromise windows that start in the
interval T; contain interval [t=4%, ;pcrease] during which all
n replicas are rejuvenated. The time-to-compromise windows
that start earlier than ¢~4° find all replicas repaired before
tincrease Since we assume the weak system to be exhaustion
safe while the adversary is weak, and their possible overlap
with interval [t*Al , tincrease] Only speeds up rejuvenation. Fig-
ure 3 illustrates this point. It is important to note that despite
the change of rejuvenation parameters of the configuration
(from ko to k; and from Tr, to Tg,), the order in which
replicas are rejuvenated must be preserved. O

D. Adding replicas

Replicas cannot be rejuvenated arbitrarily fast. For example,
Garcia et al. found that rejuvenating a replica running Ubuntu
16.04 requires 40s [8]. Therefore, it might happen, that a
system is already rejuvenating replicas as fast as possible.
In this case, it will no longer be possible to react only by
accelerating the rejuvenation rate. Fortunately, the system can
also react to an increasing adversarial strength by increasing
its fault threshold, i.e., by adding replicas. Figure 4 illustrates
this strategy and Theorem 2 captures its effectiveness.

Theorem 2 (Reacting by adding replicas). From an exhaustion
safe configuration Cy = (No, fo, o, k,Tr), if the adversarial
strength evolves from T4, to Ta, at time tipcrease, the system
remains exhaustion safe if it is reconfigured before tincrease
to a configuration C1 = (Ny, f1,q1,k,Tr), such that C;

is exhaustion safe relative to the stronger adversary (i.e.,

P]le—‘ Tr holds), provided that Ta,(fo) < Ta,(f1), and

replicas continue to be rejuvenated in the same order.

Proof. The system starts with ng = |Np| replicas and fault
threshold fy, and is reconfigured to involve ny = | Ny | replicas
with fault threshold f;. Let ¢4y;cn, be the point in time where
the system starts reconfiguring itself, and ¢ ... the time when
the new configuration is operational and capable of tolerating
f1 faults. During a time-to-compromise window that starts
before tegect — T, (fo) the replicas in Ny are rejuvenated by
the rejuvenation scheme of the weak configuration. Similarly,
time-to-compromise windows that start after f.ge.; are ex-
haustion safe by our assumption that the strong configuration
fulfills this property.

We now consider the windows that overlap with t.gecs.
Let us assume that f; was chosen so that fy < f; and
T4, (fo) < Ta,(f1), and that the rejuvenation order of replicas
is maintained through the reconfiguration. In this case, any
window that starts before t.g..; and goes beyond tincrease
does not lead to the compromise of more than f; replicas.

The windows that start in [tegect — Ta, (fo), teffect]) OVerlap
with the new configuration. However, their length is larger
than T4, (f1), because the adversary’s strength over them
is sometimes lower than T'4,. However, since replicas that
get activated at {.g.; are correct, maintaining the same
rejuvenation order ensures that the replicas that were active
in the previous configuration, and which might be faulty,
are rejuvenated first. In fact one could regard such a correct
instantiation as a free simultaneous and instantaneous rejuve-
nation at t.g.¢. As a consequence, no more than f; replicas
get compromised within any window of size T, (f1) that
starts after tegec — Ta(fo), since all n; replicas in N; are
rejuvenated in such a window. O

E. Accelerating rejuvenation and adding replicas

We have seen that the system can adjust the rejuvenation
rate to T, (f1) before time ¢;pcrease — T, (f1) so that the | Ny
replicas are rejuvenated over all time-to-compromise windows
located before or containing ;,,creqse (Theorem 1). We have
also seen that replicas can be added so that they are active
before tincrease, SO that the |Np| replicas are rejuvenated
over all time-to-compromise windows that start after ¢;,,creqse
(Theorem 2). These results can be combined as follows.

Theorem 3 (Reacting by accelerating rejuvenation and
adding replicas). From an exhaustion safe configuration
(No, fo, 40, k0, TR, ), if the adversarial strength evolves from
Ta, to Ta, at time tincrease, the system remains safe
if it is reconfigured to an exhaustion safe configuration
(N1, f1,q1, k1, Tr,), where
1) fi is such that fo < f1 and Ta,(fo) < Ta,(f1)
2) the rejuvenation frequency is changed before t;pcrease —
TA1 (fl) so that ’7‘%11'—‘ TR1 < TAI (fl)
3) the passive replicas become active before tincrease
4) replicas that appear in both configurations are rejuve-
nated in the same order after tofect



Proof. by Theorem 1 and 2. O

FE. Consistent and Synchronized Information of Replicas

In addition to advance notice, consistency of the information
replicas receive and possible synchronization requirements
are further concerns to be considered in the threat detector
network. Clearly, if all replicas receive the same information
about imminent increases/decreases of adversarial strength at
the same time, no confusion can arise when some lagging
replicas are still reacting while others already optimize their
configuration. However, such a time synchronized response
introduces significant complexity and overhead in the threat
detector wormhole.

In Section V-D, we therefore show how our protocol avoids
this complexity, by first returning to the strongest required
configuration since the replica last reacted to increasing threats
before allowing this replica to advance with optimizations
since then. Threat detectors inform replicas about both the
strongest required configuration and whether it is safe to enter
the targeted configuration during optimization.

V. A THREAT-ADAPTIVE RECONFIGURATION PROTOCOL

Assuming the availability of a threat detector that reports
threat increases sufficiently in advance, as discussed in the
previous section, we now present our reconfiguration protocol
that replicas use to reconfigure the system.

A. Intuition

Receiving an adversarial strength decrease signal from the
threat detector allows replicas to optimize performance and
switch into a more efficient configuration that involves fewer
active replicas and possibly an adjusted rejuvenation scheme.
If threat detection gives replicas enough confidence that T4
remains constant for a period of time long enough to optimize,
execute the payload in the less resilient but more performant
configuration and return from there should threats increase,
replicas reach consensus about a less resilient configuration
and switch to it. Replicas involved in this configuration remain
active and return to the payload protocol after adopting the re-
juvenation scheme of this configuration. Replicas not involved
in this configuration passivate themselves, but remain attentive
to activation requests. In the mean time, they rejuvenate
themselves without coordinating with other replicas to remain
available (remember, in configuration C; active replicas are
limited to rejuvenate at most k; replicas at a time; passive
replicas are not constrained in this way).

After the threat-detector wormhole informs the replicas
about an imminent increase of adversarial strength, correct
replicas must react within a bounded amount of time (see Sec-
tion I'V-C), which, as we have seen, rules out using consensus.
Key to circumventing this impossibility is the observation that
the decision about how to react to a given threat can be already
taken well before the threat manifests itself. In this paper, we
will suggest preparing for the reaction to increasing adversarial
strength well ahead when reaching consensus about how to
optimize. Clearly, a first decision must be taken at this point

in time, but it is as well possible to revisit this decision several
times during the execution of the target configuration (e.g., to
compensate for permanent failure in passive replicas).

For simplicity, in this paper we shall only discuss reaction
by returning to the very same configurations from where the
system came from. That is, if the system, starting in the world
configuration C),,; progressed through a sequence of config-
urations C1, Cs, ... C;, where C; is the current configuration.
It will react by returning along this chain (i.e., from C; to
C;—1 to C;_o,...) until it has reached a configuration that
is capable of withstanding the currently reported adversarial
strength. Since any such chain starts with C,,,, which is by
definition the most resilient configuration, it is always possible
to find such a configuration, provided the system can withstand
an adversary of this strength in the first place.

B. Reaching Consensus for Optimizations

The goal of our reconfiguration protocol is to safely transi-
tion the system from its current configuration Cj to a proposed
new configuration C;, which is resilient enough to withstand
the current adversary of decreased strength. At the same time,
the protocol prepares for a later increase of adversarial strength
by creating the possibility to return to Cy and to previous
configurations in the chain without having to reach consensus.
In general, the replica set IV; of configuration C; does not
need to be a subset of the current configuration’s replica set
Ng. In particular, quorums formed in N; do not have to be
safe quorums in N and vice versa.

Our reconfiguration protocol has the following properties.
P.1 Replicas can prove to lagging replicas (and clients) that
C; is the next configuration.

P.2 If C; becomes active, enough replicas in this configuration
must know it so that they can report any progress made in C;
in case the system requires to return to Cs. Otherwise replicas
in Cs or in a previous configuration would wait forever for
the progress of C; and the system would not be live.

P.3 If C; becomes active, enough replicas in C's need to know
about this fact so that no quorum can be formed in Cs to
agree on a second configuration C]. Otherwise, both C; and
C} could become active simultaneously and the system would
not be safe (i.e., clients could receive inconsistent replies if
both C; and Cj return to the payload protocol).

We provide P.1 thanks to configuration certificates C;_,;,
which loosely resemble view-change certificates of PBFT. To
enforce P2 all n; = |INVy| replicas of the target configuration
C; need to participate in a configuration certificate such that
at least ny — f; correct replicas are able to report any progress
made in C}. The payload protocol liveness is guaranteed
despite waiting for a response from all n; replicas in CY,
as long as subsequent optimization attempts are interleaved
with minimal progress in the payload protocol. Note that
an optimization may never succeed if target configurations
continue to include non-responsive replicas, but the above
guarantees progress nonetheless. Property P.3 requires a quo-
rum of replicas in the source configuration C; to witness the
activation of C';. We shall return to this aspect in Section V-E.



reconfiguration (v,seq):
/l leader s; € Ng
compute C;
propose (PrePrepareCfg,l,v, seq,Cs, Ct)o(s))
/I backups s; € Ng
relay PrePrepareCfg as (PrepareCfg, i, v, seq, Cs, Ct)o(s,)
/I all replicas s;,s; € N
wait for g; matching Pre/PrepareCfg messages
9 if TD.is_valid (C})
10 send (CommitCfy,i,v, seq, Cst)o(s;)
11 to all replicas in NsU N
12 // new mode replicas s; € Ny
13 wait for g, matching CommitCfg messages
14 if Cs¢ is valid
15 send (ConfirmCfg, j,v, seq, Cs—t)o(s;)
16 to all replicas in N
17 // witnesses s; € N
18  wait for n; matching ConfirmCfg messages
19 send (AckCfg,i,v, seq, Cst)o(s,) to all replicas in Ny
20 if s; ¢ N, wait passively for C; to return
21 /I new mode replicas s; € N;
22 wait for gs matching AckCfg messages
23 resume payload in C; with view v + 1

00N AN N R W=

Fig. 5: Reconfiguration Protocol.

Fig. 5 shows the pseudocode of our optimization recon-
figuration protocol. Let s; be the current leader of the pay-
load protocol (i.e., the z!" replica in the set N, where
x = v mod |Ng|). We assume that the leader s; pro-
gressed in view v to request sequence number seq — 1
and proposes with seq the reconfiguration of the system as
(PrePrepareCfg, 1, v, seq, Cs,Ct)y(s,) (Ln 4). Here (...)q(s,)
denotes a message signed by replica s;. Cs, C; are the source
and target configurations. Proposing this configuration in view
v and with sequence number seq ensures that backups (i.e.,
non-leader replicas) will try to optimize the system at the
same relative point in time. Following PBFT, backups relay the
leader proposal as (PrepareCfy,i,v, seq, Cs, Cy)o(s,) (Ln 6)
before both leader and backups in Cy wait for g, match-
ing PrePrepageCfg and PrepareCfg messages from different
replicas (Ln 8). Forming configuration change certificate C;_,;
out of these g; messages, the replicas in C validate with their
threat detector TD, whether C is a valid configuration given
the current adversarial strength (Ln 9) and if so, they send
this certificate in a CommitCfg message to both the replicas
of the source configuration and all target configuration replicas
(Ln 10), which wake up passive replicas in NNV;.

Replicas of both configurations then proceed with a hand-
shake to transition the system to C}. Replicas of the target
configuration C; confirm the receipt of a valid configuration
change certificate (Ln 14) and the replicas in the source con-
figuration Cs acknowledge the receipt of such confirmations
from all replicas in Cy (Ln 18-19). We call witnesses the source
configuration replicas that have seen these confirmations.
Whereas target configuration replicas resume execution of the
payload protocol in view v + 1 (Ln 23), replicas that are not

24 on TD strength increase or reconfig timeout:
25 /I replica s; € Ny in view v at seq

26  stop payload protocol

27  create local history [h;

28 send (History, j,v, seq + 1,lh;)o(s;) to all replicas in N
29 stop processing view v messages

30 // replica s; € Ns

31  wait for g History messages

32 from different replicas (=Fig.4 Line 22)
33 combine [h; into global history gh

34 if C; is strongest visited

35 apply gh

36 resume in C with view v 4 1
37 else continue returning to the next config.
38 in the chain with [h; = gh

Fig. 6: Protocol to react to increasing adversarial strength, by
returning from C} to the configuration C that activated C}.

in the target configuration become passive but they can still
react to messages (Ln 20).

For better readability, we omit timeout handling in Fig. 5.
All participating replicas (i.e., all ;&N and after activation all
5;E€Ny) set a timer when engaging in the configuration change.
Timeouts cause replicas to abort their attempt to change to
configuration C}, which typically leads replicas in Cj to retry
the configuration change. However, there are two exceptions:
(i) having sent AckCfg witnesses wait for replicas from C}
to return, even if their timeout fires (Ln 31). This ensures
that progress in the target configuration C} is not lost; and
(ii) replicas in the target configuration C} return if the timeout
fires during the configuration change (see Figure 6 and Ln 24—
29). They will stop doing so after having received ¢s matching
AckCfg messages, which marks a successful reconfiguration.

C. Reacting to Increasing Adversarial Strength

Reaction closely resembles the switch protocol of
ReBFT [11] extended to traverse the chain of visited con-
figurations to the more resilient one(see Section IV).

Once in the targeted safe configuration, replicas resume
executing the payload protocol, possibly after catching up
with the progress their peers made relative to the history,
which has to be done using the synchronous wormhole. The
construction of local histories [h; and the application of the
global history gh depend on the payload protocol (Ln 27, 35).
For example, for PBFT, the latest checkpoint and the progress
made since then have to be reported. Prepared messages (i.e.,
those receiving g; matching PrePrepare or Prepare messages
from replicas in C}) are executed. Client requests not in
this state are proposed again by the leader of the current
configuration. The combined global history merely reports all
received local histories and confirms with the signature of s;
the transition if C; is not the strongest visited.

Notice that although the return may proceed through several
configurations in the chain, only the final configuration will
resume the payload protocol. Moreover, the replicas initiating



this process will continue being rejuvenated in the pattern of
their configuration while it is active. All other replicas and
those that become passive will undergo frequent reconfigura-
tions without first having to coordinate with others. Therefore,
between the moment where the reconfiguration starts tsy;tcn
and the moment t.g..; Where it is effective even if multiple
configurations are passed, Theorems 2 and 3 hold because
none of these transitionally passed configurations become
active in the sense of entering the payload protocol.

To prevent a client from ever accepting replies from a faulty
quorum of replicas, in particular after a threat increase, replicas
drop the private key they were using to interact with the
client when they receive a threat increase notification. Replicas
then generate a new set of keys to interact with the clients
and broadcast the public keys to other replicas. To identify
the currently active configuration, clients contact the world
configuration and successively walks down the optimizations.
Note that we could also rely on a forward-secure digital
signature scheme [26] to replace the keys of replicas.

D. Lagging Replicas and Successive Reconfigurations

One important detail concerns passive or lagging replicas
that have not been able to enter the current configuration
before the system optimizes to decreasing threats. Without
further precautions, faulty replicas could activate a configu-
ration with the lagging replicas while agreeing on a different
operation to activate with the replicas that aim to optimize the
system. To avoid this issue, replicas do not engage in optimiza-
tions before they have returned to the stronger configuration
that can withstand the increasing adversarial strength. (see
Section IV-F). From this configuration, lagging replicas follow
the configurations the system was reconfigured into until they
reach the currently active configuration or become passive in
the progress. Only in this active configuration will they resume
participating in potential optimizations.

E. Witnesses

To conclude the discussion of our protocol, let us give
further details on the witness role (Ln 17-20) and show how
it ensures property P.3, i.e., safety and liveness of the system.

Liveness. Replicas in the target configuration C; react to
increasing adversarial strength once they receive g5 matching
CommitCfg messages (Ln 13). However, they only start pro-
cessing the payload protocol after receiving the same number
of ¢s matching AckCfg messages (Ln 22). This step ensures
that replicas from C; will already return control to Cj, even
if they are not yet ready to advance to entering the payload
protocol. Conversely, witnesses in Cs will only acknowledge
the configuration transition if they are sure that enough replicas
in C; will report the progress C; might make (Ln 13ff).
This is the case after all n; replicas confirmed, because then
ng — ft > g correct replicas are guaranteed to communicate
back their progress. In combination, this ensures liveness, even
if the target configuration C; is only partially activated.

Safety. We have to ensure that no two configurations ever
execute the payload protocol (i.e., configurations may only be

simultaneously active as part of the above transition protocols).
Witnesses ensure this by refusing to participate in re-executing
the reconfiguration protocol in Figure 5 (e.g., for agreeing on
a different configuration in case the optimization failed) unless
the activated target configuration returned. For a partially
activated target configuration (i.e., one receiving only fewer
than ¢; acknowledgments from witnesses), this is the case
after the reconfiguration timeout expires. But in this case,
already n; replicas of C} confirmed, which guarantees that
those witnesses that have acknowledged C; receive a correct
history (although with no progress made since the payload
protocol did not restart). This refusal to participate in a re-
election before C; returns ensures safety.

Replay Attacks. Replay attacks would not lead to the
activation of two configurations. Key to preventing such replay
attacks is the fact that to obtain all messages required for the
activation (i.e., ¢s AckCfg messages), a quorum in C; must
confirm this configuration. From this moment onward, replicas
no longer react to messages with the confirmed view v after
replicas in C, returned (see Line 32 in Figure 6). Moreover,
correct witnesses do not produce AckCfg messages before they
receive confirmation from C}. Consequently, if the required
messages are available, C; can be activated only until the point
in time when C} returns, but such a return is necessary for the
witnesses to resume in the protocols of Fig. 5 and 6 and hence
to agree on a different configuration to activate.

VI. PERFORMANCE EVALUATION

Setup. We implemented our reconfiguration protocol, which
we name Threat-Adaptive, on top of BFT-SMaRt [25]. For our
experiments we use 4 Ubuntu 18.04+ desktops each equipped
with an Intel 17 6th generation processor and 8 GB of memory.
The desktops are interconnected with a Linksys WRT54G
router. For each experiment, replicas are evenly distributed on
the machines. We ran BFT-SMaRt’s microbenchmarks with
160 clients that send 100 Bytes requests every 150ms to keep
replicas continuously busy. Messages are delivered in batches
of 1024 and experiments start with fresh views. Our goal is
to demonstrate that despite the threat adaptation mechanisms
we described, the performance of the payload protocol is
maintained close to the respective native configurations.

Baselines. We compare the performance of Threat-Adaptive
to the following five baselines.

1) BFT-SMaRt-4 and BFT-SMaRt-10 are unmodified BFT-
SMaRT [25] deployments with n=4 (i.e., f=1) and
n=10 (i.e., f=3) without rejuvenation (i.e., k=0). BFT-
SMaRt-6 and BFT-SMaRt-12 are the equivalent config-
urations (i.e., f=1 or 3) with rejuvenation and k=1.

2) StoppableBFT stops the system execution before restart-
ing it in a new configuration. This protocol emulates the
unrealistic scenario where a sysadmin would immedi-
ately reconfigure the system before each threat increase.

3) GroupMembership is a consensus-based reconfiguration
protocol, similar to Rampart et al. [27].

4) ReBFT [11]is the optimistic mode of BFT-SMaRt where
the system runs with n — f replicas (here 7), but would



TABLE I: Safety conditions of the protocols considered.
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Fig. 7: Latency with increasing adversarial strength.
during transitions, and 2 otherwise (no rejuvenation).

need to return to a configuration with n = 10 replicas
to handle faults.

5) Speculative implements an optimization presented where
clients wait for 3f+1 replies [22]. Replicas rollback
and re-execute requests if these replies are not received
within a bounded time.

Metrics. We measure the throughput and latency of the
payload protocol, in particular when reconfigurations happen,
and the delay that is required to react to increasing threat
levels. We measure latency as the average time required to
process all client requests received within a one second interval
at the replica side. To improve the readibility of the graphs,
we plot the average of 11 measurements per sliding-window
and indicate the standard deviation o in the figure captions.

A. Reacting to Increasing Threat Levels

We first consider the situation where the threat level in-
creases. Fig. 7 illustrates ThreatAdaptive’s latency when the
threat level increases from f=1 to 2 at 110s, and from f=2
to 3 at 230s. ThreatAdaptive’s latency evolves from the one
of BFT-SMaRt-4 before 110s to the one of BFT-SMaRt-10 at
230s, while obtaining an intermediary performance between
110s and 230s, and remains stable despite the reconfigurations.
Protocols with a lower latency are those that do not guarantee
safety or that are executing without faulty replicas. To precise
this point, we summarize in Table I the safety conditions
for the baselines and ThreatAdaptive in that situation. The
GroupMembership and the BFT-SMaRt-4 baselines may no

Protocol Safety depends on System Recfg. increasing f (n=3f+1)

BFT-SMaRt-4 | #faults <1 1-2|2-53[3-24[4-5

BFT-SMaRt-10 | #faults <3 GroupMembership | 3561 3656 3825 3948

ke o B e A D

Grou, reaching consensus during attack (not ;

M emZe rship gu arantied) ¢ ( (T;:;:ﬁﬁi?ﬁgn)ve 2690 2856 3012 3379

ReBFT #faults<f (mode if #faults#0) . o ] ]

Speculative #faults < f (gracious execution if Eﬁiﬁf II: Reaction time (tegfect —tswitcn) in ms (n0 rejuve-
#faults=0) :

ThreatAdaptive | Safe if TD signal arrives early enough

(this work) so that Thm. 3’s conditions are verified. longer be safe in the scenario we consider, and StoppableBFT

would be safe only if the administrator reacts quickly enough.
GroupMembership replaces replicas using consensus, which
would always finish in time if consensus is provided as
a functionality of a synchronous wormhole. ThreatAdaptive
assumes a simpler synchronous wormhole whose task is to
inform replicas sufficiently in advance of a threat level increase
so that histories can be transmitted in time (through the
synchronous wormhole) to the replicas involved in the next
configuration. We now precise this condition.

B. Outpacing Adversaries

Table II shows the time required for ThreatAdaptive to
return to a safe configuration after the adversarial strength
increases. We evaluate two extremes supported by our witness
scheme: (i) inclusive returns from C; to an inclusive config-
uration Cs, where N; C Ng; and (ii) overlapping returns to
a configuration that activates passive replicas that have never
been active in previous configurations. The inclusive scheme
outperforms GroupMembership by 30% since the reconfigura-
tion decision is made in advance. As expected, replicas s; that
remain active in both configurations (i.e., s; € N; N N;) speed
up the reconfiguration process. These results precise condition
3 of Theorem 3 to indicate the time required for replicas
to transmit their histories and for passive replicas to become
active. For example, the threat detector would need to inform
replicas that the threat level evolves from f=1 to 2 only 3,561
ms in advance with the GroupMembership baseline, whereas
with our approach (with the inclusive witness scheme) only
2,404 ms would be required.

C. Optimization Reconfiguration

We now consider the case where the threat level decreases
from f=3 to 2 at 110s, and from f=2 to 1 at 230s. Fig. 8
shows that the throughput of ThreatAdaptive during two
optimization reconfigurations is similar to the two BFT-SMaRt
baselines (i.e., BFT-SMaRT-10 and BFT-SMaRT-4) when they
are configured for a similar threat level. In addition, between
110s and 230s ThreatAdaptive is able to use 7 replicas, which
provides a better latency and throughput than BFT-SMaRt-10
and is safe, contrary to BFT-SMaRt-4 in that interval.

For the same experiment, Fig. 9 illustrates the latency
of the protocols. ThreatAdaptive comes close to the BFT-
SMaRt baselines when the threat level allows it. In the second
phase, we see slightly higher latencies than StoppableBFT,
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Fig. 9: Latency of ThreatAdaptive and the 5 baseline protocols
(no rejuvenation, o < 3).

this is because outliers present in StoppableBFT reconfigura-
tions were averaged out (i.e., masked in the sliding window
average). StoppableBFT’s restart costs are much higher than
other protocols because the payload protocol has to be stopped,
reconfigured and relaunched, which is much slower than
executing view changes.

VII. CONCLUSION

In this paper, we established the conditions that allow a
BFT-SMR protocol, which potentially rejuvenates its replicas,
to safely reconfigure itself to tolerate an increasingly power-
ful adversary based on a threat detector that communicates
synchronously with replicas. We designed ThreatAdaptive, a
novel BFT-SMR protocol that proactively agrees on more
resilient fall-back reconfigurations before optimizing its con-
figuration. Our results allow a protocol to dynamically and
safely optimize its performance by reducing the number of
replicas that actively participate in the protocol’s execution.
ThreatAdaptive is the first protocol that guarantees safe re-
configurations directly executed by the replicas assuming that
a threat increase signal is received sufficiently in advance.
Our experiments showed that our threat adaptive protocol
achieves a throughput and latency comparable to the non-
adaptive baselines in stable phases, and that reconfigurations
are 30% faster than using previous methods, which make
stronger assumptions to provide safety. Future work includes
extending our methods to BFT protocols that use trusted
components and to consider weaker threat detector models.
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