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ABSTRACT

Muralidharan, Vivek. M.S.A.A, Purdue University, December 2017. Orbit Mainte-
nance Strategies for Sun-Earth/Moon Libration Point Missions: Parameter Selection
for Target Point and Cauchy-Green Tensor Approaches. Major Professor: Kathleen
C. Howell.

The libration point orbits in the Sun-Earth/Moon system are formed by concur-
rent gravitational influences by various celestial bodies, originating in a nonlinear
dynamical regime. Coupled with the unstable nature of the orbit, the impact of
any perturbations are expected to increase rapidly. The feasibility of a flow-based,
Cauchy-Green tensor control strategy for station-keeping is examined. An orbit con-
sistent with the mission objectives is selected for examination. The station-keeping
process is stochastic, thus Gaussian random errors are introduced for simulation. The
evolution of a velocity perturbation over time is monitored, beyond which the attain-
able state in the accessible region nearest to the target state is employed as a feedback
to compute the necessary full, three-component corrective maneuver. The applica-
tion and appropriateness of single axis control maneuvers for orbit maintenance are
also evaluated. The selection procedure for certain parameters such as tolerances and
weighting values are developed to incorporate the available dynamical information,
yielding a versatile and straightforward strategy. Weighting matrices within the tar-
get point approach are effective in influencing the station-keeping costs as well as
size and direction of maneuvers. Moreover, selection of appropriate tolerance values
in the application of the Cauchy-Green tensor exploits the dominant stretching di-
rection of the perturbation magnitude to inform the maneuver construction process.
The work is demonstrated in the context of the upcoming Aditya-1 mission to a Sun-
Earth/Moon L; halo orbit for solar observations and the James Webb Telescope to a
Sun-Earth/Moon L, halo orbit for astronomy.
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1. INTRODUCTION

The quest for scientific discovery throughout the universe has long been of focus of
human interest. It is only recently that humans gained the capability to venture into
the space with both crewed and robotic vehicles. One of the main challenges in de-
ploying a spacecraft for scientific exploration is delivering the vehicle to a wide variety
of destinations in support of ever-expanding and increasingly complex goals. Leverag-
ing multi-body dynamical environments has produced a much wider array of options
for space exploration. In particular, trajectories associated with the Lagrange points

or libration points in a wide range of systems are very beneficial for scientific discovery.

Ever since the successful launch of the International Sun Earth Explorer-3 (ISEE-
3) mission in 1978 to the Sun-Earth L; Lagrange point, interest has grown in missions
to the Sun-Earth libration points, especially L, and L, i.e., the libration points clos-
est to Earth. While ISEE-1 and ISEE-2 [1] were deployed to examine the dynamical
behavior within the Earth’s magnetosphere, ISEE-3 investigated the cosmic rays and
solar wind patterns. The launch of the WIND mission in 1994, the Solar Heliospheric
Observatory (SOHO) in 1995 and the Advanced Composition Explorer (ACE) in
1997 [2] followed ISEE-3 to support helio-physics research while positioned at the
Sun-Earth L; halo orbits. The Genesis spacecraft [3] collected samples of solar wind
maintaining itself along a halo orbit at the Sun-Earth L; libration point while the
Wilkinson Microwave Anisotropy Probe (WMAP) [4] spacecraft hovering in an orbit
about the Sun-Earth L, Lagrange point investigated the cosmic waves from the big
bang. Many such spacecraft have explored such areas and more missions have been
planned to utilize this location for scientific studies. Such investigations would not be
possible unless the spacecraft is maintained in a predefined orbit near the Lagrange

points. Orbits in the proximity of these libration points are highly unstable, therefore



robust low-cost station-keeping techniques are required to maintain the spacecrafts

in its predetermined orbit to enable scientific investigations.

The libration point orbits with potential benefits do pose a few challenges. The
libration points L; and Lo in the Sun-Earth system are about 1.5 million km from
the Earth. The circular restricted three body problem (CR3BP) does not take into
consideration the eccentricity of the Earth’s orbit around the Sun, therefore, it ne-
glects the oscillatory behavior of the L; and Ly distances. The Moon’s orbit is also at
a fairly close distance to these equilibrium points; as a result the Moon’s gravity acts
as a strong perturbing force, consequently, neither the uniform predictable behavior
of the orbits in CR3BP is preserved nor the existence of any equilibrium points are
guaranteed. Furthermore, the large distance from the Earth to the spacecraft in the
vicinity of such equilibrium points presents navigational challenges. The orbit main-
tenance strategies developed must be effective in maintaining the spacecraft close to
the baseline path by overcoming such challenges. The station-keeping algorithm must
be able to compute an effective maneuver despite the navigational limitations. The
algorithm must be able to incorporate the gravitational forces of other perturbing

bodies to simulate a real mission scenario.

1.1 Problem Definition

The scientific advantages of the two Sun-Earth collinear equilibrium points in the
vicinity of the Earth has motivated more missions in their vicinity. Scheduled to
launch in 2019-20, the goals for the Aditya-1 mission [4] to the vicinity of the Sun-
Earth L; Lagrange point includes examination of the Sun’s corona and the particle
flux emissions while the James Webb Telescope [5] to a Sun-Earth Ly Lagrange point
orbit is expected to be launched in October 2018 to observe distant events in the Uni-
verse including formation of stars, galaxies etc. The potential orbits for these missions

to the vicinity of L; and Lo libration points are highly unstable, therefore, an efficient



station-keeping algorithm is sought to successfully maintain the spacecraft close to
the reference orbits for the mission duration. Since the Aditya-1 mission is relatively
new, the exact orbit for this mission is not yet available, however, the overall mission
objectives are similar to that of ISEE-3 and SOHO mission, thus the orbit is assumed
similar to that used for these previous missions. Moreover, values from the literature
are used to analyze the results. Based on these factors, an orbit similar to ISEE-3

mission is used extensively throughout this work.

Station-keeping simulations are accomplished to estimate the orbit maintenance
cost of the Aditya-1 mission, using three different approaches, the target point, the
Floquet mode and the Cauchy-Green tensor approach. The aim of conducting station-
keeping using these approaches are not to distinguish these methods based on their
advantages and disadvantages, rather to understand their functioning and explore
the possibilities from modifying certain parameters based on dynamical information
rather than an arbitrary or heuristic selection. The focus of this research has been
to answer the following questions. The target point approach is a simple and robust
method but depends greatly on the weighting matrices to compute a low cost ma-
neuver. The Floquet mode approach on the contrary, uses qualitative information
from the eigenstructure of the monodromy matrix to compute a maneuver. Can the
qualitative information available from the Floquet Mode approach be leveraged to
find the right weighting matrices in the target point approach? Also, can the target
point approached be further tuned to obtain even lower costs? Moreover, instead of
selecting the weights by trial and error method, can range of probable weights be an-
alyzed to identify any orderly behavior, in terms of cost minimization and maneuver

direction.

The Cauchy-Green tensor approach is analyzed in the Sun-Earth/Moon system
as a potential station-keeping strategy for libration point orbits for the first time.

The feasibility of the CGT approach for such a highly unstable orbit in the Sun-



Earth/Moon system is worth examining. Would the CGT method yield station-
keeping costs of the same order of magnitude as that estimated using the target point
and the Floquet mode approach? Since the CGT approach is driven by design vari-
ables such as horizon time, minimum executable maneuver size and target tolerance,
their effect on the overall station-keeping costs and computational expense are worth
investigating. Further, can information based decision be made rather than a heuris-
tic based decision on the value of target tolerance, that affects the station-keeping
costs and computational expense? Finally, are there certain trends in the location of

the maneuvers? Are certain regions more prone to maneuvers than the others?

1.2 Previous Contributions
1.2.1 Multibody Dynamics

During the early seventeenth century, Johannes Kepler (1571 - 1630) postulated
his three laws, that govern a two body motion based on the heliocentric theory given
by Nicolaus Copernicus [6,7]. The work was only corroborated in 1687 after Sir Isaac
Newton (1642 - 1727) formulated the Universal Laws of Gravitation in Philosophice-
Naturalis Principia Mathematica [8] that explained Kepler's laws. Although a very
simplified model, the two body problem, in general, offered a good approximation of
the planetary motion around the Sun. Since each body in space applies a gravita-
tional force on the other, a model with a central gravitational body is not sufficient
to explain the complex nature of space. Despite the benefits of a two body problem,
a more comprehensive model was sought until Leonhard Euler (1707 - 1783) in 1767
formulated a simple restricted three body problem [9]. Joseph-Louis Lagrange (1736
- 1813) in 1772 computed the existence of equilibrium points based on the Euler’s
three body problem [10]. During the same time a lot of other astronomers and math-
ematicians offered in their theories and improvised the existing models. Carl Gustav
Jacob Jacobi (1804 - 1851) came up with the concept of energy-like constant that ex-

ists in CR3BP, that is now known as Jacobi Constant or Jacobi integrals [11]. Jules



Henri Poincaré (1854 - 1912) investigated the nature of various trajectories and came
up with a visualization technique using maps in 1899 [12], now denoted as Poincaré
Maps, to represent different dynamical behavior of the trajectories as noted by saddle,
focus, center or nodes. In 1967, Victor Szebehely‘s Theory of Orbits [13] summarizes
the improvements done in the circular restricted three body problem till then and

substantiates theories with appropriate numerical results.

With the ability to venture into space, the mathematical solutions of the three
body problem became an interest for practical applications. The launch of ISEE-3
mission in 1978 to the Sun-Earth L, Lagrange point, marked the new beginning in
the area of multi-body dynamics. With confidence in operating space missions and
the quest for scientific experiments that are otherwise not possible on the Earth has
boosted the research in the area of multi-body dynamics. A lot of research has been
done to explore different dynamical structures in the multi-body systems suitable for
space missions. Farquhar in 1968, describes a 3 dimensional halo orbit that exists
close to the collinear equilibrium points in his PhD thesis [14]. He endorsed it for a
communications station along the Ly halo orbit for its locational benefits. The orbit
is suitable for continuous communication with the Earth and the far side of the Moon
without being blocked by the Moon shadow. Later in 1973, Farquhar and Kamel, pro-
duced analytical solutions to represent quasi-periodic orbit using Lindstedt-Poincaré
approach [15]. In 1980, Richardson came up with an analytical solution to represent
halo orbits for ISEE-3 mission [16]. Howell in 1984 developed a numerical computa-
tion technique for precise halo orbit construction [17]. Howell and Pernicka extended
the research to determine Lissajous trajectory in CR3BP [18]. Recent work by Nath
and Ramanan also focuses on precise halo orbit design [19]. The close proximity of
the Sun-Earth L; and L, halo orbits to the Earth and continuous communication
possibilities makes it a favorable choice for a lot of space missions. The launch of
the WIND mission in 1994, the Solar Heliospheric Observatory (SOHO) in 1995 and
the Advanced Composition Explorer (ACE) in 1997 [2], the Genesis mission [3] and



the Wilkinson Microwave Anisotropy Probe [20] in 2001 have successfully followed
ISEE-3 to their respective libration point orbits.

1.2.2 Orbit Maintenance Strategies

The orbits close to the collinear equilibrium points are unstable in general, requir-
ing regular orbit maintenance maneuvers to keep the spacecraft in close vicinity to the
ideal path. Early orbit maintenance research was done by Farquhar et al. [1,21] over
the ISEE-3 mission during 1970-80s. Other prevalent research over station-keeping
of the ISEE-3 missions had been done by Heuberger [22] as well as Erickson and
Glass [23] during the same time. Other studies on ISEE-3 are found in [24-26]. With
more missions that followed ISEE-3, more researchers have worked on orbit mainte-
nance strategies. Rodriguez and Hechler [27] studies aspects of SOHO mission design
while Sharer et al. examined the WIND Trajectory design and control [28]. Few
other station-keeping studies in the Sun-Earth system is found in [29-31]. Some of
the early works in the Earth-Moon system is found in the studies done by Breakwell
et al. [32,33], Colombo [34], Euler and Yu [35]. Recent studies on orbit maintenance
for ARTEMIS mission were conducted by Folta et al [36-38] as well as Howell and
Pavlak [39].

Howell and Pernicka [24,25] incorporate statistical errors into the computation
of station-keeping costs in a numerical simulation. Their work is highly utilized to
generate large number of simulations especially with advancements in computational
technology. Their work also illustrates a new maneuver computation technique using
the target point approach. Later improvements to this method were made by Howell
and Gordon [40,41] as well as Howell and Keeter [42,43]. Williams et al. [30] used
a simplified version of the target point approach with single future position target-
ing for orbit maintenance of the Genesis spacecraft. Another noted station-keeping

technique using the Floquet mode was first seen in the works of Gomez et al [44, 45]



in 1985, that deals with removing the unstable component of the eigenvectors of the
monodromy matrix to maintain the spacecraft close to the nominal trajectory. The
method has been used successively by Simo et al. [46,47], Howell and Keeter [42,43]
Howell and Pavlak [39] and Meng et al. [48]. In 2017, Guzzetti et al. formulated a
method to perform station-keeping for missions along the Earth-Moon near rectilinear
halo orbits using the Cauchy-Green tensor method [49]. Many more research using
impulsive control methods for station-keeping has been seen in the works of Ghorbani
and Assadian [50], Howell and Barden [51], Lu et al. [52]. A summary of few orbit
maintenance techniques for libration point orbits has been provided by Shirobokov

et al. [53].

1.3 Present Work

In this research, well established station-keeping techniques like the target point
approach has been analyzed with the Floquet mode approach for performance tun-
ing. Besides, for the first time, application of a recently developed method using the

Cauchy-Green tensor has been analyzed in the Sun-Earth system.

The target point approach although being a simple and robust method, uses dif-
ferent weighting matrices in the cost function. It may become challenging to find
appropriate weights that produce a low-cost maneuver with minimal deviation from
the nominal orbit. The Floquet mode approach on the other hand uses rich informa-
tion about the flow, but is computationally intensive. In this work, the qualitative
information provided by the Floquet mode is utilized to find the corresponding weights
that gives a similar, cost-effective station-keeping budget. Further efforts have been
put to tune the target point approach to give lower station-keeping costs than the

Floquet mode approach.



The Cauchy-Green tensor method was previously analyzed in the Earth-Moon
near rectilinear halo orbit that has a very low stability index. The method for the
very first time has been analyzed in the Sun-Earth/Moon L; halo orbit that has sig-
nificantly larger stability index and larger stretching. The effects of other parameters
such as target tolerance and horizon time on orbit maintenance costs and computa-

tional time has been analyzed.

The applications of this research are not limited to the Aditya-1 or the James
Webb Telescope mission to the Sun-Earth Lagrange points, but applicable to many

other missions in future.

The study is summarized as follows.

e Chapter 2
The equations of motions in the circular restricted three body problem are
modeled based on a few fundamental assumptions. The equilibrium solutions
are calculated. Energy-like constant is defined, thus determining the accessible
regions. Behavior in close vicinity to a reference solution is examined using
linearization. A higher fidelity model using n-gravitational bodies is formu-
lated. Further, ways to transform different coordinate systems are derived in

this chapter.

e Chapter 3
The CR3BP is a nonlinear dynamical system; consequently, determining an
initial condition that would drive to a desired final state is non-intuitive. Dy-
namical systems theory provides tools to resolve this challenge using linear
state transition matrix (STM) over a chosen reference solution. Differential
correction techniques use the STM information for trajectory design as well as

station-keeping techniques investigated in this chapter. Likewise, single shoot-



ing and multiple shooting techniques for complex trajectory corrections are

derived. Application of this tool in a higher fidelity model is also discussed.

Chapter 4

Setup of a station-keeping algorithm is addressed in this chapter. Steps to
select a baseline solution and converting into a higher fidelity model are shown.
Ways to introduce stochastic errors for simulating an actual orbit maintenance
scenario is introduced. Insight into Monte Carlo simulations is provided with

explanation on impact of number of runs on confidence levels.

Chapter 5

Detailed explanation on the target point and the Floquet mode approach for
station-keeping has been included in this chapter. The two approaches are
correlated to explore the impact of weighting matrix in the target point approach
on station-keeping costs and amount of drift from baseline solution. Also, trends
in maneuver direction is studied. Feasibility of corrective maneuvers in a fixed

direction, for simplicity, is inspected.

Chapter 6

The concept of the Cauchy-Green tensor(CGT) and its application in orbit
maintenance is presented. Different parameters that could potentially affect
the station-keeping costs and computational time such as target tolerance and
horizon time are investigated. Dynamical information based selection of target
tolerance is proposed. Preliminary results are documented in this chapter. Fea-
sibility of z-direction controlled maneuver is surveyed. Magnitudes of maneuver
computed using the CGT approach are compared with those produces using a

single shooting differential correction process.

Chapter 7
The station-keeping budget computed using the Cauchy-Green Tensor is com-

pared with the other two well established methods to check for costs. Effort
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has been put to analyze the distribution of maneuver locations along the orbit.

Survey of libration point missions in the Sun-Earth/Moon system are provided.

e Chapter 8
The research developments on orbit maintenance strategies using the three
methods are summarized. Some peculiar observations are highlighted. Rec-

ommendations for future work are offered.
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2. SYSTEM MODELS

The “two body problem” represents the behavior of two particles under their mutual
gravitational attraction. The two body problem is expressed mathematically with
relatively straight forward simple differential equations and an analytical solution
is available. With additional gravitational bodies, the complexity increases and an
analytical solution ceases to exist. Some characteristics of the system behavior are
exposed by numerical propagation of the governing differential equations. Adding
only one additional gravitational source the three body problem is formulated and

serves well as a foundation for more complex motion.

2.1 Circular Restricted Three Body Problem (CR3BP)

Infinitely many gravitational bodies can influence the motion of every other body
in the solar system. The motion of one body influenced by ‘n — 1’ other bodies
in the solar system is modeled as the ‘the n-body problem.” To formulate the n
body problem define each of ‘n’ bodies as P; with mass m; where i = 1,2,...,n.
Assuming all the n bodies to be spherically symmetric, Newton’s Law of motion is
applied to compute the force acting on the particle of interest. Let orthonormal unit
vectors X ,f/, A represent the coordinates of the inertially fixed frame, I, with O as
the inertially fixed base point or the origin. The vector 7; describes the position of
body P, with respect to the base point O while the vector 7, describes the position of
body P; with respect to the body P, as shown in Figure 2.1. Therefore, as expressed
in [54], the total force acting on body P; as a result of all other bodies is

— ~ - m;m;
F,=-G Z L 7 (2.1)

3
j=1, j#i I
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such that, G is the dimensional scalar gravitational constant given by 6.67408 x

1071 m3kg~1s72 [55] and F; is the force vector acting on body P;.

~»

P, (mg)

P; (m;)

>

® Py (my)

N

Figure 2.1. Gravitational interactions between n bodies in space.

The motion of a body is well expressed in terms of kinematic quantities. Using
Newton’s second law of motion, equation (2.1) is expressed in terms of acceleration

of body P; in the inertial frame, I, as

_ . o T
F = mr: = — LA )
i =miri = —G Z S T (2:2)
j=1 7
J#i
such that,
s AN
T, = GZ 5 Tji (2.3)
j=L J
i

where 7; represents the acceleration of body P; due to gravitational forces due to all
other particles in the n-body system. It is the double derivative of the position vector

with respect to the dimensional time as observed in the inertial frame.
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For a system with more than two gravitational bodies, an analytical solution does
not exist. Hence, gaining some insight into the system behavior is a challenge but the
highest priority. For the n-body system, each of the bodies are sensitive to changes in
position, velocity and acceleration due to the influence of all other bodies in the solar
system hence a generic equation of motion cannot be formulated that is independent of
time. A multi-body problem can be analyzed with selected number of bodies about a
fixed epoch date and real time data describing the states, called the ephemeres model.
A less complex, time invariant mathematical model with three gravitational bodies is
formulated with certain assumptions making a reliable framework to understand the
characteristic behavior of the system. The Circular Restricted Three Body Problem,
CR3BP, is the most commonly used method of formulating the equations of motion of
one body influenced by two other bodies, independent of time, with some assumptions
stated in section 2.1.1. The solution obtained using the CR3BP model can be used

as an initial guess for the higher fidelity model.

2.1.1 Assumptions

The Circular Restricted Three Body Problem is a specific case of the n-body
problem where the total number of bodies are three. Equation (2.3) delivers the

expression of a n-body system, so for n =3

.. ~|m m
r3 =—-G Tl ri3 + Tszgg (24)
T3 23

where the position vectors 713 and 7,3 are given as
T13 = T3 — T (2.5)

To3 = T3 — T (26)

such that, 7; is the position vector of body ¢ with respect to the origin. To solve for the
differential equation, time history of 7; and 7, are to be known, but such information

is not available as states of P, and P, are themselves influenced by 73(¢). Hence to
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solve for the three body problem 18 integrals of motion are to be solved i.e. 6 states
(3 position and 3 velocity states) for each of the 3 bodies, but only 10 integrals are
known. A two body problem has a closed form solution but with addition of one more
gravitational body i.e. n = 3, a closed form solution ceases to exist. With certain
additional assumptions, a refined model is described that quite accurately illustrates

the behavior of a number of systems.

o my << My, My
Let the three bodies P;, P, and P; be point mass bodies with masses mq, ms
and ms, such that ms << mq, ms. The two bodies P, and P, are considered as
primaries that are massive in comparison to the third body, Ps, that is modeled
as infinitesimally small body like a spacecraft, a comet etc. The assumption is
further extended to m; < mgy to represent a larger primary body and a smaller

primary body.

e m3 does not influence the motion of m; and ms
When mj is modeled as infinitesimally small body in comparison to the pri-
maries it is assumed that the gravitational force due to mg does not influence
the motion of m; and msy. This results in an isolated two body system with
primary body m; and secondary body ms, for which solution is known to be a

conic. mg is known to coexist within the stable system of m; and ms.

e my and my move on circular orbits about its barycenter
Further it is assumed that the primaries move in a circular orbit about its
barycenter. This assumption is not necessary but simplifies the model from an
elliptic restricted three body problem. As a result, the barycenter is regarded as
inertially fixed and treated as the origin for developing the equations of motion

in the circular restricted three body problem.

Now that the circular restricted three body problem is defined, let the bodies be

~

oriented in as shown in Figure 2.2. Let orthonormal unit vectors X Y, Z represent
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the coordinates of the inertially fixed frame, I, with origin at the barycenter (B) of
the primaries. Since P, and P, have a conic solution, the motion of the primaries are
fixed in XY plane. The angular momentum vector of the motion of the primaries is

along the positive Z direction.

1’4

=

<

Figure 2.2. Three-body orientation in space.

2.1.2 Equations of Motion

Since the primaries move in a circular orbit about the barycenter observed in the
inertial frame, the angular velocity of its motion is fixed. Let 0 represent the angular
velocity or the mean motion. The motion of the primaries is defined in the inertial

fixed frame as a function of time, ¢, as
Ry =R [—cos(ét)X — sm(@t)f/} (2.7)

Ry = Ry [cos(ét)X + sm((%)f/] (2.8)

where R, an R, are the position vectors from the barycenter towards primaries P,
and P, respectively. The magnitude of each of the vectors R; and R, are displayed
as Ry and R, respectively. In this investigation, non bold italicized letters represents

the scalar magnitude of a quantity while the non bold italicized letters with a bar
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sign on top represents the vector quantity. The position vector of the third body Pj
denoted by Rj is free to change in all three spatial directions. Computing the states
R3 and ég in the inertial frame requires computation of the position and velocity
states of the primaries at all times. A rotating coordinate frame, R, that moves along
the primaries removes the necessity to evaluate the states of the primaries that are
explicit functions of time. The energy of the system in the rotating frame, R, remains
conserved as in the inertial frame, I. Define z, 7, Z as the unit vectors that define the
rotational frame of reference, such that z gives the direction from Primary P; to Ps.
z gives the direction of the angular momentum of the primaries aligned along the

positive Z axis. y completes the right hand coordinate system.

To further generalize the equations for different three body systems and minimize
the chances of round-off errors during numerical integration, all terms of the equations
of motion are non-dimensionalized by corresponding characteristic quantities. All
quantities of distance is reduced by characteristics length, all quantities of mass is
reduced using characteristics mass and quantities of time with characteristic time.
The characteristic length, [*, is defined as the constant distance between the two

primaries such as

I* =R, + Ry, (2.9)

the characteristic mass, m*, is the total mass of the system given as
m* =my + mo (2.10)

and the characteristic time is defined as the reciprocal of the mean motion,

t* =1/6 =7\/1"3/Gm> (2.11)

where the subscript 1 denotes the characteristic properties of primary P; while sub-
script 2 denotes properties of primary P,. Let the system mass ratio, y, be another

defining quantity, given as,

) mgy
St 2.12
a my + Mma m* ( )
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hence, my = um* and m; = (1 — pu)m*. The characteristic quantities and the system
mass ratio are sufficient to portray the nature of a system. The circular restricted
three body is therefore formulated in the non-dimensional units. The differential
equation that governs the motion of body P; as given by equation (2.4), is non-
dimensionalized as

. 1l—=p

_ Mmoo
rs = T13 + —5Ta3 (2.13)
7”%3 7“%3

where 73 is now expressed in the rotational frame as 73 = xZ 4+ yy + 22. The vectors

713 and 793 given as

Fi3=T3 =71 = (v — p)& +yg+ 22 (2.14)
To3 =T33 —To = (x — 1+ pu)T +yy + 22 (2.15)
depends on the location of the primaries along the z axis i.e. 7, = —uZz and

7o = (1 — ). The derivatives i.e. 73 and r3 are with respect to non-dimensional

time 7 where 7 = t/t*.

To formulate the equations of motion in the rotational frame, the derivative is
taken in the rotational frame, R, with respect to an inertial frame, 1. The Basic
Kinematic equation (BKE) relates derivatives in the rotational frame to the inertial
frame as

Tdrs  Bdirs

dr  dr + WXy (2.16)

where Twf = 62 gives the angular velocity of the rotational frame about Z axis. The

velocity of the body Pj therefore becomes

17y = &2 + g+ 22 4 [02] x |23 + yy + 23]
. . (2.17)
= (@& —0y)T+ (y+0x)y+ 22

in the rotational frame, R. The second derivative of the position vector 73, yields

Iy = (& — 20y — 0%2)3 + (§ + 202 — O%y)§ + 32 (2.18)
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where 773 is the instantaneous acceleration in the rotating frame. Substituting the
equations, (2.14), (2.15) and (2.18) into equation (2.13) along with non-dimensional
value of 6, that is 1 for CR3BP, yields three scalar equations of motion of Py purely

in the rotational frame, R, given by

. . — M H
P—2y—x=— e (x—i—,u)—ﬁ(x—l—k,u) (2.19)
A l—p M
j+20—y=——%ty— 3 (2.20)
. 1—p 15
T (2.21)
such that,
d= T13 :\/(l' + ,U)2 + (y)2 + (Z)2 (222)
r=ry =y/(z — 1+ )2 + ()2 + (2)2 (2:23)

where d represents the non-dimensional distance from P; to primary body P, and r

represents the non-dimensional distance from P; to smaller primary body Ps.

2.1.3 Jacobi Constant

The conservation of energy does not hold true for a non inertial system. A similar
quantity that is conserved in the rotational frame is of high significance. A potential
function (U) represents the work done to displace a unit mass from infinity to that
particular point. For CR3BP, this is given by,

1 —
SN Sy N

S 2.24
Tt (2.24)

such that, VU; = m,7; for a unit mass m;. Similarly a pseudo-potential function U*)
is defined such that,

* _ 1 2 oy _ L—p H 1 2 2
Ur=Us5(@+y)=——+-+5 @ +v) (2.25)
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where U and U* are both functions of only positions and give useful insights about
the motion of the spacecrafts. The scalar equations of motion in equations (2.19),

(2.20) and (2.21) when rendered as a function of pseudo-potential function, given by

oUu*
P — 2 = 2.2
—2j = (2.26)
ouU*
i+ 2% = 92.27
§+ 21 o (2.27)
oU*
5 — 2.2
3 P (2.28)

indicates that the acceleration in the x and y directions as in equations (2.26) and
(2.27) are decoupled from any out of plane components in the z direction. This im-
plies that the xy planar motion evolves independently of the out of plane motion and
vice-versa. Any motion in the orbit plane of primaries will remain in the same plane
unless any out of plane maneuver is applied. Both U and U* do not remain conserved

in the rotational frame.

An energy integral is computed by integrating the dot product of the velocity and
the acceleration components of the third body in motion due to the gravitational

forces exerted on it by the two primaries. In the rotational frame, this is given by

r3-r3 = [T3 +yy + 22] - (T3 + gy + ZZ]

= @7 + gl + 23
ou* . oU* . dU* (2.29)
- ax”” 8yy+ 8z
U
ot

which is the time derivative of the pseudo-potential function. The integration of the

partials in equation (2.29) yields,
s =v>=2U"~C — C =2U*—* (2.30)

here C' is the constant of integration and v is the velocity of the third body Ps in the

rotating frame. The constant C'; known as Jacobi Constant represents a conserved
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energy-like quantity in the rotational frame. An increase in energy of the system
relative to the rotating frame represents a decrease in the Jacobi constant and vice-
versa. Jacobi constant has various uses in the circular restricted three body problem.
It is used to determine accuracy of numerical integration by monitoring the change in
the value of (', to manipulate change in energy required for transfers, to understand

the energy limits of families of orbits and many more.

2.1.4 Equilibrium Solutions

Determining equilibrium solutions helps gain further insight into the CR3BP. The
equilibrium solutions correspond to the positions where the third body, free from
any initial acceleration or velocity remains stationary in the rotating frame for an
indefinite period of time. This implies that all time derivatives are zero i.e. & =
y =% =& =9 = %2 = 0. Substituting this relation into the equations (2.26)-
(2.28) indicates that the gradient of pseudo-potential function is zero i.e. VU* = 0.
Therefore, the equilibrium solutions are computed by solving the following factored
equations

ou* ou* oU*

= = = 2.31
ox Jy 0z 0 (2:31)

using numerical schemes. The equilibrium points are also commonly described as

Lagrange points or Libration points (L;). FEach Libration point L; is found by
numerically solving the equation (2.31) that yields,

oU* 1—pu i
oU* 1—pu 1
oU* 1—p
-7 _ . 0 2.34
92 d%l 2L ’I“%i 2L, ( )

where d} and r} are the distances from the libration point L; to each of the two

primaries while the coordinates of the equilibrium points are (xp.,yr,, z1,)-
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Each combination of (zr,,yr,, z1,) corresponds to one libration point. Equation
(2.34) is satisfied with zy, = 0, thus all libration points lie in the orbit plane of the
primaries. Similarly, y;, = 0, is a solution of equation (2.33), hence one or more
equilibrium solutions exists on the x-axis given by (z,,0,0) that satisfies equation

(2.32) as

1 —p Iz
() —
zn P s T T e TP

(xp, =14+ p)+ar, =0 (2.35)
but equation (2.35) has no closed form solution therefore roots are computed numer-
ically that yields three real solutions. Imaginary solutions are neglected as physical
locations cannot be represented by imaginary numbers. The three possible solutions
of equation (2.35) are represented in terms of the displacement from the nearest
primary using ;. Coordinates of the three collinear libration points are given as

(xL,,YrL,, 21;), such that,

Ly: (1—p—m, 0, 0) (2.36)
L2 : (1 — U + Y2, 0, 0) (237)
Ly: ( —p—2, 0, 0) (2.38)

where 7; indirectly depends on the value of u i.e. different values of ~; for different
three body systems. The values of 7; is solved by iterating the equation (2.35) at

each collinear L;, specifically

L—p p
_m—i_’y—%—i_l_ﬂ_,}/l:() (239)
L—p P
R R n T =0 2.40
1—
r =0 (2.41)

v (T4+9s)?
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for different system mass ratio . Libration point L, lies between the two primaries,
Ly lies to the right of smaller primary while Lj lies to the left of larger primary as
shown in Figure 2.3. Each of the libration points are numbered congruent to the

convention followed in most of the recent papers.

Besides the three collinear solution, two other equilibrium solutions exists in the
CR3BP. Equations (2.32) and (2.33) are also satisfied simultaneously for d = r = 1
that completes the equilateral triangle with the distance between the primaries as the
side of the equilateral triangle. This results in two equilibrium points on either side
of the x — z plane equidistant from both the primaries as shown in Figure 2.3. By
virtue of their location, these points are denoted as triangular or equilateral Libration

points. As per convention coordinates of the triangular libration points are

Li: (1— u V3 0) (2.42)

2 2
1 3
Ls: <§—u, —\/7_, 0) (2.43)

where L, is located in the positive y region while L5 is located in the negative gy

region.

2.1.5 Zero Velocity Curves

Within the CR3BP, the motion of P;, under the influence of the two primary
bodies, is bounded by the total energy it possesses. The value of the Jacobi Constant
along with the equilibrium solutions renders the boundaries of motion. Equation
(2.30), v* = 2U* — C, leads to the conclusion that the velocity of P3 will become
imaginary if C' > 2U* which is mathematically possible but physically absurd. The
region where the velocity becomes imaginary is physically inaccessible hence it is

termed as the forbidden region. The motion of the third body Pj is confined within
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Figure 2.3. Equilibrium solutions in CR3BP.

the region where C' < 2U*. The boundary occurs where Pj is theoretically stationary

with zero velocity or
(2.44)

2(1 — 2
=g = 2L B gy

where an infinitely many combinations of (x,y, z) satisfy the equation (2.44) generat-
ing a three-dimensional surface called the Zero Velocity Surface (ZVS). An example

of a ZVS in the Earth-Moon system is illustrated in Figure 2.4.

A two-dimensional curve formed out of cross section of the ZVS is called the Zero

Velocity Curves (ZVC). To examine a planar motion, a cross section of the Zero

Velocity Surface is considered along the z — y plane forming a Zero Velocity Curve

representing the boundary for the planar motion.
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Figure 2.4. Zero Velocity Surface in the Earth-Moon system for C' =
3.2. (Earth and Moon not to scale)

The Zero Velocity Curves for different energy levels (or different Jacobi values)
decides the range P3 can travel in the plane. Each equilibrium point corresponds to a
Jacobi Value (Cp,). As the ZVCs evolve for different Jacobi values, it becomes impor-
tant to monitor the changes in the ZVCs as it crosses each (.. Figure 2.5 illustrates
the evolution of ZVCs for different Jacobi values in comparison to the Jacobi values
at the Lagrange points mentioned as Cp, for the Earth Moon (EM) system, and its

impact on the accessible regions in space.

The Jacobi values at the Lagrange points, Cp,, are critical factors that decide the

shape of the ZVCs. The traits of the changing geometry is as explained

o CL1 <C
For an energy level less than at L; i.e. Cp, < C, the third body Ps is trapped in
the vicinity of either one of the primary as indicated in Figure 2.5(a). If initially
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present near main primary then it continues to remain in the vicinity of the main

primary. Similarly, if present near the second primary then it remains bounded

near the second primary. The energy level is not enough to cross the forbidden

region near the Lagrange point L, to travel from one primary body to the other.

CL2 <O<CL1

For ZVCs with Jacobi values intermediate of the Jacobi at L; and Ly it can be

seen from Figure 2.5(b) that, a gateway opens up near L; connecting regions
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near the two primaries. In this range of C, P53 can pass from one primary to
another, however, P; still does not possess enough energy to escape into outer

space.

o (1, <C <,
With increase in energy level more than Lo, gateway opens up near Lo allowing
Ps to escape into outer space near the second primary. Forbidden region still
persists towards the left of the main primary, thus access to outer space is

possible only along the positive x direction.

o U, <C<(y,
The ZVC splits near L3 at Jacobi level (', opening gateway to outer space
near L3 as well. In this range of Jacobi values, P; has enough energy to move
out of vicinity of both the primaries in either direction. The forbidden regions

eventually contracts towards Ly 5.

o O <(Cp,,
For lower Jacobi values less than at Ly, the ZVC ceases to exist in the z —y
plane. This does not imply that P; is now free to move anywhere, it just means
that it is free to move anywhere in the planar space and there are still out of
plane regions that are inaccessible. It is important to note that at this range
of Jacobi values the Zero Velocity Surface has split into two distinct surfaces
at Ly and L5 and is now no longer single surface, unlike at lower energy levels.
The two distinct Zero Velocity Surfaces continues to shrink with decrease in C'

values in the direction away from the principal plane of motion i.e. x —y plane.

The Zero Velocity Surfaces provides practicable information especially for mission
design. A maneuver is performed to increase the energy level to reach from one pri-
mary to another by opening a gateway near Ly, similarly a energy reducing maneuver
can capture the spacecraft in the vicinity of the primaries by closing the gateways

near Ly, and Ls.
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2.2 Linearized Model

Any nonlinear system is difficult to analyze directly. A linearized model thus
assists in understanding the behavior of the system in the local vicinity of equilibrium
solutions. The behavior of certain states in the nonlinear system close to an already
known solution is predicted using the linearized model without actually requiring to
propagate the selected states. With the same intention the equations of motion of

CR3BP is linearized about its equilibria.

2.2.1 Linearized Variational Equations of Motion

The motion in circular restricted three body problem is governed by coupled,
second order non linear differential equations that does not have closed form analyt-
ical solution. Linearized solutions is generated near the equilibrium points to realize
the local behavior. All the six states are perturbed about the equilibrium points
to develop the linearized equations of motion. Let (Zeq, Yeqs Zeq) represent the posi-
tion of the equilibrium points and (£, 7, () be the perturbations in (Z, 3, 2) directions

respectively such that,

T=Teq+E (2.45)
Y =Yeq + 1 (2.46)
2= Zeg +( (2.47)

where (z,y, z) are the new states in the vicinity of the equilibrium points. For any
state ¢, such that ¢ = g, + d¢, where dq is a small deviation from reference solution

eq, the derivative is expressed as

¢=flg1) (2.48)
which is approximated to the first order derivative term using Taylor Series. As a

result, equation (2.48) becomes,

. - 0
Qeq + 04 = f(Qeq + 00, 1) = f(Geqs t) + 8_1; dqg+ H.O.T.s (2.49)
Qeq
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where, H.O.T'.s represents the higher order terms that are neglected here for approx-
imating the integration to first order, assuming perturbations are very small. The
first order approximation yields

0§ =—=—| dq= A(t)oq (2.50)
Geq
where A(t) is known as the Jacobian Matrix and contains the partials of f with
respect to state ¢. Using equation (2.50), the time derivatives of the position and

velocity states near equilibrium points in CR3BP is also written in the same form,

&=t +E=¢ (2.51)
Y="Yeqg+n=1 (2.52)
b=+ (= (2.53)
e I (2.54)
i = feq + 11 = i (2.55)
F=3,+C=¢ (2.56)

SINCE [Zegy Yegs Zeqy Teqs Yeqs o). = 0, as the equilibrium points are stationary in CR3BP.
The variational equations are developed by taking the derivatives of the equations

(2.26), (2.27) and (2.28) and expressed in terms of pseudo potential function, U*, as

§— 2= Ul +Upn+ U, (2.57)

428 =Ure+Usn+ U (2.58)

C=ULE+ULn+ULC (2.59)

where each Uj; = 821—8; are the second order partials of U* with respect to the

directions expressed as the subscripts. For each i, € {x,y,z}, the partials are
expanded as
L—p  p 30 —p)(z+p)?  3u—1+np)?

==t e - — (2.60)
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V=1 Tt - B A 201
PR (262)
v 3(1— MZZ(;; +Ry | 3ule —T; Ty _ U, (2.63)
o NHE B ey
v = 3(1 ;5M)yz n 3!;32 —u, (2.65)

where d, r and p retain their original definitions.

In CR3BP, the natural motion is represented by 6 state variables, [£, 7, C, 5 .1, C]T
The linearized variational equations of motion are expressed in first order state space

form as

¢ 0 0 0 1 00)] ¢
7 0 0 0 0 10 n
g: o 0 0 001 g 2.66)
3 U Usy Uz, 020 3
i Uz, Uz Us =2 00 )
¢ U, Un, Uz 0 00 \¢

that is numerically integrated to determine the 6 states required to express the mo-
tion of a spacecraft uniquely. For ease of representation, if g denotes the states
[€.1,¢, €0, ], then 6§ = A(t)6q portrays equation (2.66), such that A(t) is the 6x6

Jacobian matrix that is reduced to smaller 3x3 submatrices as,

At) = (2.67)

where O, I, Uxx and Q are 3x3 submatrices of 6x6 Jacobian matrix in equation

(2.66). Always, O denotes a zero matrix while [ indicates an identity matrix.
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2.2.2 Stability of the Equilibrium Points

The motion of the spacecraft in the vicinity of the equilibrium solutions can not be
analyzed using linearized equations of motion unless the stability is properly defined.
There are multiple ways to define the stability of a solution, of which the most suitable
choice is made depending on the objective of the given problem. An equilibrium
point is considered stable if, the motion of a particle that is subjected to any small
perturbations remains bounded in the near neighborhood of the equilibrium point.
The definition of the stability in this case is in lieu with Lyapunov Stability Criteria.
Mathematically, an equilibrium point 1. is Lyapunov Stable if for all ¢ > 0 there exists
d > 0, such that if at time, t = 0, [[¢0(0) — || < §, then for t > 0, |[¢(t) — .|| < €.
Alternatively, if an initial perturbation ¢ is given about the equilibrium point then
subsequent motion should remain bounded within a defined e. Furthermore, the
solution is said to be asymptotically stable if, the solution satisfies the Lyapunov
Stability and, for an initial perturbation within some § > 0, i.e. at ¢t = 0, |[¢(0) —

|| < 0, there exists,
thm 14(0) — ¢l =0 (2.68)
— 00

indicating the convergent behavior.

The Lyapunov stability of a linearized system defined as, 6§ = Adg, is computed
by inspecting the eigenvalues of the Jacobian Matrix A (assuming A constant). The
eigenvalues \; are the roots of the characteristics equation of A for which the deter-
minant |[|[Al — A|| = 0 is evaluated. A system is classified as unstable, marginally

stable or asymptotically stable based on the eigenvalues. The criteria are

e Unstable: If at-least one of the eigenvalues have a positive real part i.e.
R(A;) > 0, then the linearized system is unstable. The corresponding nonlinear

system is also unstable.

e Marginally Stable: If all of the eigenvalues are purely imaginary i.e. R(\;) =

0, then the linearized system is marginally stable. A marginally stable linearized
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system is bounded but not asymptotically stable. No conclusions can be made

about the stability of the corresponding nonlinear system.

e Asymptotically Stable: If all of the eigenvalues have negative real part i.e.
R(A;) < 0, then the linearized system is marginally stable. The corresponding

nonlinear system is stable in the local vicinity.

The linearized equations of motion are computed about the equilibrium points to
assess the stability. The equilibrium points computed in section 2.1.4 indicates that
all of them lie in the plane of the primaries i.e. z = 0. Therefore, partials given in
equations (2.64) and (2.65) becomes Uy, = Uy, = U, = U}, = 0. The linearized

equations in (2.57) - (2.59) are simplified to three equations

§—2n=Ug,{+Uyn (2.69)
i+28 =UrE+ U n (2.70)
¢=Ui( (2.71)

with fewer number of partials. The linearized equations of motion about the equi-
librium solutions expressed in equations (2.69) - (2.71) indicates that the motion of
spacecraft in the out of plane direction i.e. z direction given in (2.71) is decoupled
from equations (2.69) and (2.70) that relate the inplane motion. Subsequently imply-
ing that the motion in the out of plane direction evolves independent of the motion

in the plane of primaries.

The fact that equation (2.71) is decoupled from equations (2.69) and (2.70), the
out of plane motion and the inplane motion are analyzed independently. For all
equilibrium points, U, < 0, hence out of plane motion in the vicinity of all equilibrium
points undergo simple harmonic motion like a spring mass system. Moreover, the
eigenvalues A\, = tiw, = +4/|U%,|, implying marginal stability with the frequency of
out of plane motion given by w, :\/@ . For Lagrange points L, and Ls, the value



32

of |Us,| =1, i.e. w, =1, hence the period of out of plane motion P = 27 /w, = 27 (in
non-dimensional unit) which is same as the period of the primaries. For variational
inplane motion about the equilibrium points the states are given by 6 = [£, 7, 5 ;1T
such that,

0q = Azy0q (2.72)

O X I X
Ay = | & (2.73)

UXX,2><2 QZX2

where A,, denotes the Jacobian matrix of the inplane motion, with submatrices as

| U Usy
Uxxax2 = ) ) (2.74)
| Upe Upy
0 2
QZ><2 - (275)
-2 0

while Ogys IS a 949 zero matrix and Ioys is a 2 X 2 identity matrix. The eigenvalues
of the inplane system near the equilibrium points are the roots of the characteristic

equations given by determinant ||\l — A,,|| = 0 i.e.

M+ (A-Us, —U; )N + (=205, + 22U )N+ (U Uy, — Uz, Ur) =0 (2.76)

Tz Yy Yy~ yx

where the values U*

wz> Uny and Uy, are different for different equilibrium points. Con-

sequently, each equilibrium point has different stability properties that are analyzed

separately.

2.2.3 Motion near the Collinear Equilibrium Points

The collinear equilibrium points Ly, Ls and L3 lie along the x-axis, which simplifies
the solution of the linearized model in their vicinity. Since yr, = 2z, = 0, some of the
terms in the linear variational equations of motion is nullified in the vicinity of the
collinear Lagrange points i.e. Uy = Uy, = 0. Thus, the characteristic equation for

the inplane motion as in equation (2.76) simplifies to
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M+ @-U, U )N+ (UnUs ) =0 (2.77)

with fewer variable. The eigenvalues corresponding to the system are the roots of the

characteristic equations that are given by,

Ao = R/~ + (82 + B3V (2.78)
Moo = B/~ — (B2 + )V (2.79)

where, for simplicity 5; and (B, are defined as

Upe + Uy,

b =2 5 (2.80)

By =-UrU: (2.81)

zz 2 yy
that are functions of pseudo-potential evaluated at corresponding equilibrium point

L;. Further, for additional simplicity, define

s =/ + (52 + B2 (2.82)
s+ Us
Bs = o5 (2.83)

as constants for representation. The analytical solution of variational equations in

terms of position along x and y directions near the equilibrium points are expressed

as A
=) At (2.84)

=1

4
n= Z Bi@)‘it (285)

=1

where A; and B; are coefficients corresponding to stimulated eigenvector with \; as

the corresponding eigenvalue. Here, A; and B; are related to each other as

2.
78 (2.87)

o =
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because of coupled zy motion. To expose the motion along a particular direction, the
linearized variational model is excited along the corresponding eigenvector direction.
It is important to note here that A3 4 = £is where s is as defined in equation (2.82)
implying that A3 4 are purely imaginary indicating marginal stability, while A\, 5 exists
as positive and negative real pair. A periodic solution in the linearized system may
exists only along the eigenvalues A3 4, demanding a suppression of eigenvalues \; o that
can potentially destabilize the system due to its unstable component. Henceforth,

conditions such that, A; = Ay = 0 are set to modify equations (2.84) and (2.85) to

£ = Aze™' + AgeM! (2.88)
n = Bye™! 4+ ByeM! = a3 Aze™t 4+ ag Agett (2.89)

resulting in a solution may potentially be periodic in the vicinity of the collinear
libration points. On evaluating, A3 and A, in terms of s, as, &y, 1o, the analytical
representation of the periodic behavior of the motion of the spacecraft in the vicinity

of the collinear equilibrium points are given by

Mo

€ =& cos(s(7 — 7o) + L sin(s(r — 7)) (2.90)

0 =y cos(s(r — 7)) — £oBs sin(s(r — o)) (2.91)

€ = —£os sin(s(r — 7)) + %s cos(s(r — 7)) (2.92)
1= —1nos sin(s(T — 70)) — &ofss sin(s(r — 7)) (2.93)

where, 7 represents the non-dimensional time. The linearized variational equations
of motion are developed given the initial positions (£, 1) and velocity (&, 7j) in the
x and y directions respectively at initial non-dimensional time 7y5. The periodicity of
formed orbit is given by

P== (2.94)

S

where, orbit time period P is expressed in non-dimensional time.
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2.2.4 Motion near the Triangular Equilibrium Points

Similar to collinear equilibrium points, analytical linearized variational equations
of motion are used to leverage the dynamics is close vicinity to the triangular equi-
librium points. The out of plane motion is decoupled from the inplane motion and
hence it evolves independently. As discussed in section 2.2.2, the period of out of
plane motion is same as the period of the primaries about the barycenter. While, the
inplane motion is represented by the characteristic equation given in equation (2.76).
For equilibrium points L, and L5, the partials of the pseudo-potential functions are

evaluated as

3
U: - 2.95
L=t (295)
.9
. . 3/3 1

where Uy, and Uy, is positive for Ly and negative for Ls. On substituting these in

equation (2.76), the characteristic equations for the inplane motion becomes,

27
>\4+>\2+Zu(1—u) =0 (2.98)

which is purely a function of the system mass ratio, u. The roots of the characteristic

equation are computed to be

ALz = (—1+Vg (2.99)

DN | —
N—

(—1 —/9) (2.100)

N | —

Aga =

such that,
g=1-27u(1—p) (2.101)

is a constant value defined for simplicity.
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The eigenvalues that determine the stability of the system depends on the value of
g which is a function of mass ratio p, hence stability characteristics of triangular libra-
tion points in different three body systems is different. The stability characteristics

change at certain critical system mass ratios as explained.

e 0<g<lor0<pu<0.03852
On careful inspection, it is seen that for all values of 0 < p < 0.03852, ;2 and
A34 are purely imaginary hence the motion of the third body about the triangu-
lar equilibrium points is periodic in linear sense. The eigenvalues are represented
in terms of their frequencies i.e. A\ 5 = Fiw; and A3 4 = Fiw,, where w; is the
smaller frequency that corresponds to long period motion (P = 27 /w;) and wy
is the larger frequency that corresponds to short period motion (P = 27 /wy).
The motion near the Lagrange points L, and Ls are a linear combination of
short period motion and long period motion. Stability in the nonlinear system
is however not determined. This case is same as 0.96148 < p < 1 except that

the positions of the primaries bodies are interchanged.

e g=0or u=0.03852
At this critical mass ratio, A\j o = A\34 = + (1/\/5) 7, which means that one of
the short period or long period motion is eliminated. Additionally in the linear

model, repeated imaginary eigenvalues results in an unstable system.

o g <0or0.03852 < pu
For any three body system with mass ratio p such that, 0.03852 < u (or p <
1 —0.03852 = 0.96148), the eigenvalues exists in the form

Mo — i\/% (=1 47) = i\/% (—1+5) (2.102)
Az a4 = i\/% (-1 —=yg) = ﬁ/% (=1 Fid) (2.103)
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where,/g = £id. The eigenvalues for this system exist in the form A\; = p + ig,
with two positive real and two negative real part, making the system unstable.
Still, initial conditions can be wisely selected in the direction of eigenvectors cor-
responding to negative real eigenvalues to generate a linear model which would
result in an asymptotically stable linear system in the local vicinity. This will
result in the body undergoing a spiral motion eventually approaching the tri-

angular equilibrium point.

g>lorpu<0,1<u
Such mass ratio indicates negative mass for either of the primary body. Such

system cannot exist physically.

Higher Fidelity Ephemeris Model

The circular restricted three body problem fundamentally captures details of the

motion of the spacecraft due to gravitational interaction with two main primary bod-

ies. The presence of other non finite gravitational bodies could substantially alter the

motion of the spacecraft. The higher fidelity model is a more accurate representation

of this complex dynamical regime, used to represent accurate trajectory designs and

compute orbit maintenance costs with reduced errors. DE405 planetary ephemerides

from NASA Jet Propulsion Laboratory (JPL) is used to identify the position and

velocity of different celestial bodies used in simulating in the higher fidelity model.

The inclusion of precise orbit eccentricities and inclination in the ephemeris model

improves the authenticity of the solutions unlike in the lower fidelity CR3BP model

where such parameters are either ignored or assumed constant.
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2.3.1 n-body Dynamical Model

For improved accuracy, the governing equations of motion of the object of interest
is derived in this n-body dynamical regime. The additional higher fidelity force terms
enhances the solution over a restricted three body problem. The objective of this
model is to study the motion of a body F; in an n-body gravitational model. In
section 2.1, the differential equations of motion of a n-body model were written with
respect to an inertially fixed base point. Since the DE405 planetary ephemerides data
provides relative location of a celestial body with respect to another, it is practically
convenient to formulate the equations of motion with respect to a central body P, as
portrayed in Figure 2.6. The central body is denoted by subscript ¢, the object of
interest or the spacecraft as ¢, while the remaining of the n bodies are labeled as j.

Tq represents the relative position of spacecraft with respect to the central body.

By (my)

P (my)

N

P; (my)

Figure 2.6. Geometry of the n-body problem.

The second order vector differential equation that governs the motion of the space-
craft with respect to the central body is derived upon the instantaneous position

vectors 7;; and 745, as demonstrated using the geometry in Figure 2.6, as
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. G(m; + my) . Tij  Tgj
goo Gt me) o aNT g (T T 2.104
! 3 ! ; T\ry Ty (2109
J#i,q

where the vector 7y, is directly obtained from DE405 ephemerides data while the

vector 7;; is obtained by vector operation i.e.

Tij = Tqj — Tqi (2.105)

where the vector 7, is the continuously monitored position of the spacecraft relative
to the central body. Additionally, 7;; = —7;; denotes the relative location of the

perturbing body P; with respect to the body of interest P;.

The n-body equation of motion as given in equation (2.104) is expressed in dimen-
sional units, however for practical use and computational ease for numerical integra-
tion, the terms are non-dimensionalized using corresponding characteristic quantities
of the most relevant CR3BP system. The accuracy of this model can be further im-
proved by additional force models such as Solar Radiation Pressure, J2 perturbation

etc. but it is beyond the scope of this work.

2.4 Coordinate Frame Transformations

The circular restricted three body problem is formulated in the coordinate frame
that rotates along with the primaries. With respect to the inertial frame this frame
appears to be rotating at the rate equal to the angular velocity of the primaries
about its barycenter, hence, commonly denoted as rotating frame. The trajectory of
the spacecraft with respect to the primaries may not be evident in the inertial frame,
on contrary the ephemeris data is given in the inertial coordinate frame. From the
designer’s perspective it becomes necessary to transform from one coordinate frame
to another to get useful information. The apparent motion in one frame may not

reveal its behavior in the other frame, therefore, regardless of the frame in which the
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trajectory is computed, for visual understanding coordinate transformation of the

states becomes necessary.

2.4.1 Correlating the Inertial and Rotating Coordinate Frames

The most straight forward way of correlating states in one frame to another is using
a transformation matrix that can be multiplied directly with the states in one frame
to get the states in other frame. Figure 2.2 indicates the relation between the rotating
frame and the inertial frame. The rotating coordinate frame, R, is indicated using
unit vectors ,7, Z (small letters) while the inertial coordinate frame, I, is indicated
using unit vectors X , 57, Z (capital letters). The angle that relates frame R to frame I
given by 6 that is a function of non-dimensional time such that, § = Or =7, as60 =1
for CR3BP in non-dimensional units. The Direction Cosine Matrix (DCM) defined

as ICR,

cos(d) —sin(f) 0
'C" = sin(8) cos() 0 (2.106)
0 0 1

transforms the position states in the rotational frame to the inertial frame as

rx Tz
ry | =1C% | r, (2.107)
rz T

where the superscript R on the right of /C* indicates that the column vector of
the states in rotating frame is multiplied to the DCM. Similarly, a direction cosine

matrix ®C7 is used to convert the states in inertial frame to rotating frame where

RO [IC«R}—{
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Since velocity components are derivatives of position with respect to time the con-
version from inertial frame to rotational frame requires an additional consideration.
Either using the equation (2.16) or by taking the derivative of equation (2.107) with

respect to non-dimensional time, the velocity between the two frames is related as

UX rx v:):
vy | =TCH |, | +7CT |, (2.108)
UZ rz UZ

where /C* indicates derivative of each element of /C® with respect to non-dimensional
time. A combined, total transformation matrix is established that converts both the

position and velocity states from the rotational frame to the inertial frame.

rx Ty
Ty ’I“y
IR
Tz C Osz3 Tz
= (2.109)
Tx ok ICR Uy
Ty Uy
Ty UV,

where Os,3 is a 3 X 3 zero matrix. Similarly, full states from inertial frame can be

converted to rotational frame using the inverse of 6 x 6 DCM used in equation (2.109).

2.4.2 Correlating the Inertial J2000 and Rotating Coordinate Frames

Transitioning from an Inertial J2000 frame to a rotating frame is comparable to
the transformation in section 2.4.1 except that planetary ephemerides information is
also incorporated while performing the transformation. Since the barycenter of the
two main primary bodies P; and P, is not inertially fixed, it is not possible to intro-
duce the rotation matrix with respect to the barycenter. Instead, it is convenient to

convert to primary centered rotational frame about the main primary body P;. The
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instantaneous position and velocity of the smaller primary with respect to the main

primary obtained from DE405 ephemerides data is used to convert the frame.

The rotating frame is derived from the available relative positions of primaries

from the ephemerides data. Let the vector

R=ri= | ry (2.110)

be the instantaneous position of smaller primary with respect to the main primary
obtained from DE405 in the primary centered inertial frame. In a rotating frame
the smaller primary is always directed to the positive x-axis of the rotating frame
while z-axis corresponds to the direction of angular momentum and y-axis completes
the dextral coordinate system. Using the same principle, the instantaneous rotating

frame is defined as

R R

5o BXV (2.112)
IR x V||

j=5x%4 (2.113)

where R and V' are the instantaneous position and velocity vectors of smaller primary
body P, with respect to the main primary P; expressed in the primary centered
inertial J2000 frame. The instantaneous transformation matrix to convert position in

primary centered rotational frame to inertial J2000 frame is given by
Cn Cra Ci3

o = [f Y 2}: Cor Co Co (2.114)
Cs1 Cz Css
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where each Cj; represents the (i,7) term of the transformation matrix ‘C*. IC%
transforms the position of a body represented in the primary centered rotational

frame to primary centered inertial J2000 frame as

Xpc Tpc
Yoo | ='C™ | ype (2.115)
Zpc 2pc

such that, the subscript PC' denotes that the vectors in rotational and inertial frame

of reference are with respect to primary center.

Contradictory to the circular restricted three body problem, the angular velocity
in an ephemeris model is not constant, instead, it is a time variant function. The
instantaneous angular velocity defined as
h RxV

= (2.116)

=2 -
IRIP (IR

is used to relate the velocity of the object of interest in the primary centered rotating

frame to primary centered inertial J2000 frame.

The Basic kinematic equation (BKE) is used to relate the velocity of the body
of interest Pj in the primary centered rotational frame to the velocity in the primary

centered inertial frame. It is mathematically expressed as

= — r 2.117
dr dr + W X T3 ( )

where subscript 1 denotes the primary body. For simplicity, this is denoted as primary
centered system where all measurements of the spacecraft are taken with respect to
this primary body, hence, 7pc = 713. Therefore, the Basic Kinematic equation is

expressed alternatively as

= P 2.118
dr dr + W X Tpo ( )




'drpc
dr

= (i‘pc — 9ypc)£% + (QPC + 91‘}30)3} -+ chf:
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(2.119)

where w® = 02 represents the angular velocity of the instantaneous primary centered

rotating frame to the primary centered inertial J2000 frame. Equation (2.119) is used

to correlate velocity in the inertial frame to the position and velocity states in the

primary centered rotational frame.

(2.119) becomes

Xpe 0C1a —0Cy 0 Cn Cip Cig
Yo | = | 0Cy —0Cy 0 Ciy Cyy Chs
Zpc 0Cs, —60Cs5 0 Cy3 Csy Ca

When expressed in the matrix form equation

(2.120)

where velocity states in inertial frame are now a function of both position and velocity

states in the rotating frame. Combining equations (2.115) and (2.120) provides a 6 X 6

transformation matrix that converts the three position and three velocity states of

the body of interest in primary centered rotational frame to primary centered inertial

J2000 frame in one step i.e.

i Xpc 1 Cn
Ypc Cia
Zpc | | Cus
Xpe N 0C,
Yre 0Cy;

i Zpc 1 | 0Cs:

(2.121)

where the transformation matrix is a function of C;; obtained from equation (2.114)

and 0 obtained from equation (2.116). Since the bottom left 3x 3 matrix is dimensional

due to the presence of 6 that is measured in rad /s, the entire transformation is done
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in the dimensional units. Once transformed, the vectors is non-dimensionalized for
convenience. Similar to the transformation procedure in the circular restricted model,
the states in primary centered J2000 inertial frame can be converted to primary

centered rotational frame by taking the inverse of the transformation matrix.
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3. DYNAMICAL SYSTEMS THEORY

From the mission perspective, it is vital to deduce an initial condition that drives
the spacecraft to the desired final states. The nonlinear equations of motion of the
Circular Restricted Three Body Problem does not provide the observability to esti-
mate the initial state to reach a particular target. The desired final state may be
close to observed final state along any baseline trajectory. The initial conditions can
be modified in infinite ways out of which only one true initial condition would drive
to the target, thus it is highly unlikely that a chosen starting condition drives to the
desired end. The Dynamical Systems theory provides intuitive schemes to predict the

right conditions that leads to the desired final states.

3.1 State Transition Matrix

The State Transition Matriz (STM) is a linear operator that correlates the initial
variation about the baseline solution to the variation at the end. It is a fundamen-
tal tool that predicts the changes in states at the final time due to certain minute
changes in initial condition contemplated in the linear sense. Similar to linearizing
the nonlinear equations of motions of CR3BP about its equilibria, linearization is
exercised along a fixed baseline/reference trajectory using Taylor series expansion to

develop the State Transition Matrix.

The State Transition Matrix is formulated by considering the flow of a trajectory
nearby a reference trajectory. Let the reference trajectory be represented by the
asterisks(*) symbol, the initial initial state vector Zj is propagated for time, ¢, to a
final state z*(t). Let a nearby varied trajectory, with isochronous correspondence, be

obtained by perturbing the initial states of the reference trajectory and propagating
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for the same time, ¢, as demonstrated in Figure 3.1. Let the initial condition of the

perturbed solution be denoted by
Ty = Ty + 0Tg (3.1)

where 0%, is the small perturbation applied at the initial time. The new initial

condition drives the solution to a new final state Z(Zg,t) such that,
z(Zo, t) = (T4, t) + 0% (t) (3.2)

where §Z(t) is the small variation about the reference solution at time, ¢, while the
elements within the brackets, (Zo,t) and (z§,t) are the initial state vector they were
propagated from, and the time of propagation. Since Ty = zj + dZo, equation (3.2)
becomes,

(T + 0o, t) = T*(Ty, t) + 0Z(t) (3.3)

where all the vectors are presented purely in terms of states of the nearby reference so-
lution and the corresponding perturbation at anytime ¢. First order Taylor expansion
applied to equation (3.3) as
—k [ =% aj — —k [ —% —
¥ (zg, t) + %(SI’U + HO.T.s =z"(T;,t) + 0z(t) (3.4)
0
to compute the linear State transition Matrix. Since approximation only up to first

oder is required, the higher order terms H.O.T's are neglected to yield

07 .
o5, 00 ~ 031 (3.5)

where the partial 8—; is the m X n sensitivity matrix or the State Transition Matrix
which is a linear Corr(()alation between the initial variation to the variation at the final
time computed along some baseline trajectory. The perturbation vectors 6z, and
dz(t) are n x 1 matrices that relates to the variation in the n states measured along

the reference trajectory at initial time ¢y and final time ¢ respectively.
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Figure 3.1. Baseline/Reference solution and isochronous variation.

Specifically for the circular restricted three body problem where there are 6 states
inclusive of 3 position and 3 velocity states, the State Transition Matrix is of the size
6 x 6. The partials in the STM is calculated by propagating the states along the
reference orbit for time, ¢, as

O Oz Oz Oa du a
drg Oyo Ozp Oxg OYyo 020

Oy Oy 9y Yy Oy 9y
Oxg Yo 0zp [/ JYo 029

o7 Oz 9z 0z 9z 9z Oz
¢(t tO) — 'Z‘(t> — Oxg dyo 0zp Ox0 Yo 020 (3 6)
’ 07y o 0 0&  0b  0b  0d ’

dxrg  Oyo 0zg Oxo dyo  0%o
Oro Oyo Ozp Oxg OYo OZo
0 9: 0 02 9: 05
Oxg dyo 020 5 Yo 020

where [z,y, 2, 1,7, 2]T are the final states along the reference orbit propagated from
[0, Yo, 20, T0, Yo, 20]. At time t = tg, since the initial and final states along the
reference trajectory is the same, the STM ¢(t, o) = Igxs, a six-dimensional identity

matrix, mathematically this describes the derivative of the initial states with respect
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to itself. The 6 x 6 STM can be written in a more compact form, by collectively

representing the position states r and velocity states v as

o(t,to) = brr Oro (3.7)
¢’UT‘ gbU’U

where ¢, is the partial of final position states to initial position states, ¢,, relates
final velocity states to initial position states, ¢, relates final position states to initial
velocity states and finally ¢,, is the partial of final velocity states to initial velocity

states.

To perform certain conditions, state correction process is performed with the help
of STM information. The partials of the state transition matrix is also integrated
numerically along with the equations of motion in the CR3BP model, and in higher

fidelity model. The differential equations that govern the partials of the STM are

. d 0% 0x

o(t,to) = 4t 070 Oz0 (3.8)

that is essentially the partials of the derivative of the final states with respect to the

initial states. From equation (2.50), z = A(¢)Z, hence equation (3.8) is reduced to

dtoto) = 2 — a2 39)
B(t,to) = A()o(t, to) (3.10)

that produces a 6 x 6 matrix é(t,to), producing 36 scalar partial differential equa-
tions. Combined with the 6 equations of motion, a total of 42 partial differential
equations are numerically propagated to get the time history of the actual states and

the partials of the final states with respect to the initial states.

The State Transition matrix being a linear operator, the accuracy substantially
depends on the initial variation, that is expected to be small. A large initial variation

may amplify the error in the final solution as the linear STM may no longer be capable
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of accurately predicting the flow. In general, when predicting the desired initial or
final states, the baseline trajectory is updated continuously to minimize variation
every successive step. The accuracy of the STM increases as variation diminishes.

The same principal concept is applied in the Differential Correction process

3.2 Differential Correction Process

Targeting a desired state is one of the most sought after tasks especially for tra-
jectory design and optimization. Differential correction process is a scheme that
facilitates targeting certain final conditions. Since STM is a linear operator that
estimates the final variation due to some initial variation about a baseline solution,
Differential Correction process involving the State Transition Matrix is exploited to
target the required end conditions for trajectory design in the CR3BP. Finally, an

iterative process is applied till demanded tolerance is reached.

Several schemes are available for implementing the Differential Correction Process.
Throughout this work, the method of free variables and constraints as carried out
by many other researchers have been used [56], [57], [58]. This method employs the
Newton-Raphson approximation technique which uses the truncated Taylor expansion
to the first order [59]. The method is formulated by considering a design variable
vector X with n free variables which are subjected to updates. Vector X is defined

as a column vector

X1
_ X5
X = (3.11)
Xn
where X, X, ... , X,, may be position states, velocity states, time and/or any other

relevant design variables. The constraint vector F'(X) defined as a column vector
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F(X)= (3.12)

is subjected to m different constraints F;(X), Fy(X) through F,(X) which may be
combination of continuity constraints, altitude constraints, energy constraint or any
other user defined constraint that are a function of the defined state variables X.

Taylor series expansion of F'(X) with free variable at initial time Xj results in

F(X)=F(Xo)+ DF(Xo) (X — Xo) + HO.T's (3.13)

where the higher order terms, H.O.T.s, are neglected as Newton-Raphson method
truncates the Taylor series expansion to only the first order term. Additionally, the
aim of this method is to update the free design variable till X drives the constraint

vector F((X) = 0. Hence equation (3.13) reduces to

0~ F(Xo) + DF(X) (X — X)) (3.14)

where DF(X,) is the Jacobian matrix of size m x n as

8F1 8F1
— = 0X1 90Xy
_ OF (X . .
DF(X,) = 3)<(0)0) = ST (3.15)
OF OFm,
X1 77 0Xn

that consists of the first order partials of each of the constraint vector F; with respect

to each of the state variables X, such that i € {1,...,m} and j € {1,...,n}.

For a linear problem a single step would have been suffice for Differential correction
process to update the free design vector that would drive the constraint vector to zero,
however, for a nonlinear problem, iterative approach is applied to drive the constraint

vector below the specified tolerance level. The updated design variable after every
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successive iteration is used as the new initial condition for the baseline solution upon
which the Newton’s method is applied again. To incorporate the iterative strategy

equation (3.14) is modified to
F(X;)+ DF(X;) (Xjs1 — X;) =0 (3.16)

where j is the number of iterations performed and X j+1 1s the updated free variable
after jth iteration that serves as the initial condition for the updated baseline solution.
If the number of design variables n and number of constraints m are equal i.e n = m,

then a unique solution exists for X,

Xjp = X; = [DF(X;)] 7 F(X;) (3.17)

such that, [DF (X ])} s perfectly invertible. If there are more design variables than
the number of constraints i.e. n > m the system is under-determined, infinitely many

solutions exits. A potential solution,

Xju1 = X; = DF(X,)" [DF(X;) DF(X;)"]"" F(X;) (3.18)
is computed using minimum norm solution. On the contrary, if there are less design
variables than the number of constraints i.e. n < m the system is over-determined, no
solutions exits. Using the least squares approach, a conceivable solution is computed
as

X;1 =X, — [DF(X,)" DF(X;)]” DF(X;)"F(X;) (3.19)
that produces the minimum error. Least squares approach is used in several other
places such as curve fitting and optimization where errors are to be minimized. Using

the Newton’s method, the solutions are likely to converge every successive iteration

and is continued till required tolerance is achieved.

3.3 Single Shooting

The State Transition Matrix is utilized to achieve various end conditions in the

CR3BP. As its name suggests, Single shooting technique implies correcting a single
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reference transfer arc to target a predefined end condition. Since the STM is not
self-starting, a baseline solution is generated upon some initial conditions over which
the STM is computed and single shooting algorithm is applied. The technique is

illustrated in detail involving a fixed time target and a variable time target scheme.

3.3.1 Fixed Time Position Target

The most common application of Single shooting technique involving the STM in
CR3BP is to target a desired position from an initial location. As in Figure 3.2, let
the initial position be defined as 7y and the predefined target position be ;. The
initial velocity v,,4 drives the reference trajectory to final position = at time T'. Since
this is a fixed time position target, the desired trajectory should take exactly ‘1"
time to travel from 7y to 74 with no constraint on the arrival velocity at the target
location. The initial position 7y being fixed, the aim is to determine the required

change in velocity components i.e. Av maneuver required to achieve 7, at time T

To apply the Differential Correction scheme, free variables and constraints have
to be defined distinctly. Let the free design variables be expressed as the three initial
velocity components i.e.

To
X=1 49 (3.20)

)

that will change over every iteration till it drives to desired state 7y at time T' with

some tolerance. Here, 7q = |14, Y4, 2z4)7. Similarly, the constraint vector F(X),

z(T) — x4
FX) = | o)~ o (3:21)
2(T) — 24

is defined as the difference between the positions at the end of the reference trajectory
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Figure 3.2. Single shooting technique with fixed time position target.

and the desired state. As the solution approaches the desired solution, F'(X) tends

to zero. The corresponding Jacobian matrix for the fixed time position target is

oF 0F  OF Ox(T)  0x(T) 9x(T)
0X1 0Xo 0X3 5% Yo 0%o
F(X) = | 0F2 0OF, OF, — | oy@) oy(T) 9yT)
DF(X) 0X1 0X2o 0X3 o5 Yo dZo (322)
OF; OF3 OF;s 02(1)  02(1) 092(T)
0X1 0Xo 0X3 5 Yo 0%p

where the partials for DF(X) constitute the STM defined in equation (3.6), therefore

14 P15 P16
DF(X) = P21 P25 P2 (3.23)
P31 P26 P36

where each ¢;; corresponds to the element in the ¢th row and jth column of the 6 x 6
STM. Here, DF(X) is same as the ¢,, matrix defined in equation (3.7). Once the free
design vector X, constraint vector F'(X) and the Jacobian matrix DF(X) is defined,
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the Newton’s equation is applied to find the required update. In this case, the number
of variables and the number of constraints are equal hence a unique solution exists.

The appropriate update to the reference solution is computed as 6.X,

X = —[DF(X)] 'F(X) (3.24)
from equation (3.17). After every successive iteration, the reference solution is up-
dated as

Xj+1 - Xj + (SX (325)

till the desired tolerance level is attained. The Differential Correction process com-
putes variation using linear approximation while CR3BP is a nonlinear problem,
therefore no matter how many iterations are performed, the reference trajectory will
never be exactly equal to the desired solution. With every successful iteration, con-
straint vector F'(X) diminishes hence the numerical process can be terminated once

the norm ||F(X)|| is within the permissible tolerance.

3.3.2 Variable Time Position Target

Unlike for fixed time position target, as shown in Figure 3.3, the time of flight
from the initial position to the desired position is not constrained to be the same as
the time of flight of the reference trajectory, hence this is a variable time position
target problem. The method only tries to find one possible trajectory that satisfies

both the initial and final position states.

For any targeting scheme, free variables and constraints are to be defined appro-

priately. The time of flight 7" becomes an additional design variable hence,

To

Yo

S
[

(3.26)

Zo

T
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Figure 3.3. Single shooting technique with variable time position target.

is defined as the new free variable vector. The goal is only to achieve the predefined
position states at the end hence the end conditions still remains the same. As a
result there is no modifications to the constraint vector F/(X). Nonetheless, DF(X)

is altered due to a different design vector X, thus

P P P P :
3@? gg()f) gg) E(TT) b1a 15 P16 (1)
DF(X) = | 20 o0 o 9 | = | gu o5 o §(1) | (3.27)
0z 0z 0z 0z .
89('6? ag('/? a,(z? 6(17:) O34 Gas O36 2(T)

where an additional column of the derivative of the position states with respect to
time are also included. DF(X) is no longer a square matrix. There are more design

variables than the number of constraints, hence, infinitely many solutions exists. One
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such solution can be found using the minimum norm approach. The update to the

reference can be computed to be,

0X = —DF(X)" [DF(X) DF(X)"]"" F(X) (3.28)
as mentioned in equation (3.18). The iterative process is continued till acceptable

tolerance is reached.

The single shooting technique is illustrated using position target scheme. The
application is not limited to just position target. The design vector, the constraint
vector and the corresponding Jacobian matrix can be modified to target any com-
binations of position, velocity and/or any other relevant quantity. The technique is
although restricted to only single target vector. To target multiple conditions, more

robust methods like multiple shooting technique is applied.

3.4 Multiple Shooting

A single shooting technique has vast applications, however, when the trajectory
passes through regions of higher sensitivities, this technique struggles to converge. In
such cases, few intermediate patch points are incorporated through which the trajec-
tories should traverse before reaching the desired end condition. Multiple shooting
is a strategy to cumulatively use single shooting technique to target two adjacent
patch points forming a sub-arc as described in Figure 3.4. The process is continued
till a transfer trajectory is created from the initial location to the final state that is
continuous in position and velocity at each of the updated patch points within some
acceptable tolerance. The patch points are free to move around in any directions in
the phase space. Similar to single shooting technique, the final state can be achieved

either through a fixed time target strategy or a variable time target strategy.
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Figure 3.4. Concept of multiple shooting target algorithm.

3.4.1 Fixed Time Multiple Shooting

Similar to a fixed time single shooting process where the time between the starting
point and the end point is fixed, in fixed time multiple shooting the time of flight
between any two successive patch points is fixed. Identical to formulating the single
shooting technique, free design variables and constraints are to be defined for the

multiple shooting target algorithm. The free design variables at all the defined patch
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points are accumulated into one stacked vector. It is considered that the states at
each of the patch points are free to be updated every iteration i.e. Z; according to

Figure 3.4(a). The design variable X is therefore a 6n sized vector,

S
I

(3.29)

where each Z; is a column vector with position and velocity states at that patch point.
The sub-arcs have to be continuous in position and time at the intermediate patch
points in order to achieve a smooth trajectory between the initial and final point as

the solution converges. Hence the constraint vector F/(X) is defined as

F(X) = _ ! (3.30)

T (Tpo1) — Tp

where each Zt

%11(Z;) are the states achieved by propagating state vector z; as the

initial condition for fixed predefined time. Since the trajectory originates at the
initial point there is no constraint at z;, so the length of the constraint vector is
6(n — 1). The corresponding Jacobian Matrix becomes
&-5) (3-8
9T, om %o 07»
DF(X) = (3.31)

ozl, ozl ozl, ozl
OTn_1 OTn_1 OTn OTn

that is reduced to more revealing form by correlating the partials to the STM, as

¢2,1 _[6><6
DF(X) = (3.32)

¢n,n—1 _]6><6
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where each ¢;11,, is the 6 x 6 State transition Matrix computed between ith patch
point to (i+1)th patch point. Newton’s method is used to update position and velocity

states the patch points and iterated till acceptable level of accuracy is obtained.

3.4.2 Variable Time Multiple Shooting with Additional Constraints

Alike variable time single shooting process, where the time between initial time
and the desired final state is not constrained, in variable time multiple shooting, the
time of flight between two successive patch points is not constrained. To consider a
time variable multiple shooting technique, let the time of flight between each patch
points be T; as in Figure 3.4(a), that can be considered as a design variable additional
to its position and velocity states. Hence a total of Tn — 1 design variable exists for

this case i.e.

S
[
$

(3.33)

where each T; represents the time of flight between ith patch point and (i + 1)th
patch point. To represent a more specific problem, like a trajectory with predefined
Jacobi constant, or trajectory with fixed starting point and/or fixed end point or any
other criterion, Multiple shooting technique provides the leverage to add additional

constraints to represent the same. Let ‘C’ denote any additional constraint besides
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the ones defined for fixed time multiple shooting, such that upon convergence C = 0.

Hence, the constraint vector F'(X) becomes

F(X) = : (3.34)

where C is an added constraint that is a function of the state variables at any one
or more patch points. The Jacobian matrix in this variable time multiple shooting

method with added constraints defined as DF(X),

¢1,2 —Igx6 fé
DF(X) = ' ' ' y (3.35)
On—1n —loxs Z,
oc o | oc _oc
. E g

contains additional partials that represents time derivatives with respect to free vari-
ables as well as partials of ‘C’ with the states at all patch points and corresponding
time of flights. The additional partials that x! represents the time derivative of z;
with respect to the time of flight from (i —1)th to ith patch point i.e. z¢ = 9z;/0T;_;.
For every iteration, the update can be computed by taking direct inverse or minimum

norm depending on the dimensions of the Jacobian Matrix.
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4. ORBIT MAINTENANCE OPERATIONS

The principal step of a mission design process is to determine a nominal orbit. The
actual spacecraft is expected to move along this reference path. Due to unmodeled
perturbations the spacecraft tends to drift away from the reference path, and the
unstable nature of most of the libration point orbits will amplify the deviation in
both position and velocity states. A station-keeping strategy is introduced to compute
timely maneuvers that can secure the spacecraft within an acceptable region defined
as a torus centered about the reference path. The algorithm computes impulsive
maneuver (both magnitude and direction) that potentially sustains the spacecraft
through the mission duration. Decreasing the maneuver magnitude for increased life

of the spacecraft is a principal part of the program.

4.1 Representation of Reference Orbit

To perform orbit maintenance, a precise nominal path must be known. Previous
studies have shown ways to compute precise halo orbits in the Circular Restricted
Three Body Problem [16-19,60]. The orbits are determined by propagating the non-
linear equations of motion and corrected using differential correction schemes [17].
Computing Lissajous orbits and quasi-halo orbits in the vicinity of the libration points
can be challenging as they are non-periodic. Howell and Pernicka [18] use a two-level
patching algorithm to join trajectories of arbitrary duration to form a continuous
trajectory. This technique can be used to patch trajectories other than the halo and

Lissajous orbits. The application is extended in higher fidelity model as well.

For a real mission scenario, the trajectory of choice may not be exactly periodic,

like a halo orbit in CR3BP, primarily due to other perturbing bodies in space that has
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non-periodic behavior. Considering a periodic halo orbit as the reference trajectory
for the station-keeping process may therefore not be the right choice if simulated in
the ephemeris model. A more accurate trajectory is generated by numerically con-
verging a continuous trajectory in the higher fidelity ephemeris model that acts as a

baseline trajectory.

In this work, India’s upcoming Aditya-1 mission to Sun-Earth L, libration point
is considered while designing the nominal trajectory and performing station-keeping
maneuvers. The scientific goal of this mission includes studying the solar corona,
solar flares and energy distribution. The reasons to choose this orbit as the reference
are due to its similarity with the ISEE-3 and the SOHO mission in its scientific
objectives [1] and that the orbit avoids the solar exclusion zone. As explained by
Howell and Pernicka [25], the solar exclusion zone is the region where the spacecraft
appears right in front of the solar disk as viewed from the Earth, causing radio
interferences that can potentially result in loss of communication link. Besides, a lot
of literature sources are available on the ISEE-3 and SOHO mission [24,25,40-43],
therefore, considering an orbit similar to ISEE-3 for the Aditya-1 mission would offer
an opportunity to compare results. Consequently, a halo orbit, similar to ISEE-3,
in the vicinity of the libration point L; of the Sun-Earth/Moon barycenter CR3BP
system is selected that is later corrected in the ephemeris model. A L; southern halo
orbit with approximate y-amplitude A, = 668700 km and out of plane amplitude
A, = 124680 km is chosen in the CR3BP. The orbit corresponds to a Jacobi constant
of 3.000826905620419 and an orbit period of 177.86 days. The chosen orbit is in close
proximity to L libration point in comparison to other orbits in the same family as
indicated in Figure 4.1. Typically the orbits in close proximity to the L; libration
points are highly unstable, analogous to the unstable nature of the L; libration point.
The unstable nature of the orbit can be mathematically represented as

1 1
7= = (A 41
v 2(! !+MW|> (4.1)
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where 7 is called the stability index and A4, is the largest eigenvalue (by magnitude)
of the monodromy matrix computed for the particular orbit. In the linear terms, a
marginally stable orbit will have 7 = 1 and as the value of 7 > 1, the unstable nature
of the orbit becomes increasingly dominant. The orbit in consideration here has a

stability index, 7 = 866.98, exhibiting very high unstable nature.

The dimensions of the chosen orbit is evident from the Figure 4.2, as it displays
the three planar projections and an isometric view of the reference halo orbit in
the Sun-Earth/Moon barycenter CR3BP. The z-axis is along the line joining the
primaries from the Sun to the Earth/Moon barycenter. The z-axis is along the
angular momentum vector and y-axis completes the dextral coordinate system. The

origin is shifted to the L, libration point.

The orbit’s initial conditions from the CR3BP when propagated in the higher
fidelity model will not result in a closed orbit, due to perturbations caused by un-
modeled forces including gravitational force of other celestial bodies. In fact, it is
likely that the trajectory will escape the halo orbit region and never return. To ob-
tain a near halo trajectory in the ephemeris model that better approximates a real
mission scenario, 20 patch points per orbit equally spaced in time from the CR3BP
solution is selected and a multiple shooting technique is incorporated to converge a
solution continuous in states and time. To model with improved accuracy, ephemeris
data of more planetary bodies can be added, but with more number of bodies added,
increases the computational challenges. It becomes important to select the right num-
ber of bodies, such that accuracy of the solution is not compromised at the expense
of computational time. Besides the forces due to other celestial bodies, the solar
radiation pressure (SRP) may also induce perturbations to the spacecraft. Figure
4.3 demonstrates the magnitude of net perturbing acceleration due to different celes-
tial bodies in the solar system as well as the solar radiation pressure acting at the

Sun-Earth/Moon libration point L; over the duration of 2 years with starting epoch
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Figure 4.1. Location of the nominal orbit in the family of southern
Ly halo orbit of the Sun-Earth/Moon barycenter system.

date chosen as January 13, 2020. Clearly the Sun, the Earth and the Moon are the
three dominant influencing bodies at the L, libration point. Therefore, gravitational

forces of the Sun, the Earth and the Moon are selected to model the higher fidelity



67

x 10
6
4
2
Eo
> To Sun
2
-4
6
5 0 5
X[km] X105
5 5
2x10 2x10
N N
25 0 5 25 0 5
x [km] x 10° y [km] x 10°

Figure 4.2. Planar projections of the nominal orbit modeled in the CR3BP.

solution. This model is identified as the SEM model, similar nomenclature used by
other researchers [24,25,40-43]. All other forces are neglected for the sole purpose of
computational speed; however, Jupiter and Venus may be added as other perturbing
bodies if increased accuracy is demanded. Similarly, based on the knowledge about
the actual spacecraft the impact of solar radiation pressure can also be taken into

consideration.

4.1.1 Effect of Solar Radiation Pressure on the Aditya-1 Mission

The Aditya-1 spacecraft as planned has an aluminum honeycomb structure of
dimensions 89 cm x 89 c¢m x 61.5 cm. In addition to the payload, the spacecraft
features two solar cell electric panels of dimensions 120 cm x 81 c¢m each. Overall
the spacecraft is expected to weigh about 400 kg [61]. Considering the dimensions of
the Aditya-1 spacecraft, the maximum surface area that is exposed to the Sun at any
time would be 2.7361 m?. Consequently, the area to mass ratio (AMR) is 0.00684025

m?/kg or the mass to area ratio (oyrar) is 146.1935 kg/m?. The additional perturbing
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force due to solar radiation pressure (SRP) acts on the spacecraft due to its surface,
that is otherwise trivial if modeled as a point mass. For a perfectly reflective surface,
the mass to area ratio, o}, 45 = 1.53 x 107 kg/m? is the critical value at which the
solar radiation pressure acting on the spacecraft is exactly equal to the gravitational
force acting due to the Sun. A dimensionless sail lightness parameter (s, (or sail
loading parameter) is defined as

o*
5sail = #ﬁz (42)

that is effectively the ratio between the solar radiation pressure acting on the space-
craft to the gravitational force due to the Sun [62,63]. The value of 4, = 0, represent
a point mass object. For the Aditya-1 spacecraft, the value of (4 is computed to
be 1.0466 x 107°. The acceleration due to the solar radiation pressure acting on the

spacecraft is given as

05 () Trqi (4.3)

. kE\ GM,
Tsrp = Bsail ( ) 5

where, « is the angle between the direction of incident photons and the normal to the
surface of the spacecraft, n,,; is the direction normal to the surface of the spacecraft,
G is the universal gravitational constant, Mg is the mass of the Sun, Rg_,/. is the
distance from the Sun to the spacecraft while k is a material parameter such that
0< k < 2 where k = 2 indicates perfectly reflective surface while k = 0 indicates
perfectly light absorbing surface [62,63]. The net perturbing acceleration due to
multiple celestial bodies is compared with the solar radiation pressure for the mission
duration of two years in Figure 4.3. It is assumed that the surface of the spacecraft
is perfectly reflective i.e. k = 2, and the maximum area of the spacecraft is projected
towards the Sun at all times i.e. a = 0°, to incorporate the maximum impact of the
solar radiation pressure. The net acceleration due to the SRP is of the order of the

net perturbing acceleration due to Venus and Jupiter. For spacecraft, such as the
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Aditya-1 with a very low value of (., the behavior as expected is similar to a point
mass object. The acceleration due to the SRP is extremely small in comparison to
the dominant acceleration due to the Sun, the Earth and the Moon; therefore, as
discussed, the gravitational forces due to the Sun, the Earth and the Moon are the
only forces incorporated for calculation in this work to save computational expense,
however for higher precision other forces can be incorporated. If the mass to area

ratio (opar) of the spacecraft is small, then the effect of the SRP is more prominent.
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Figure 4.3. Net perturbing acceleration due to various celestial bodies
acting at the Sun-Earth/Moon L; Lagrange point.

Considering that the impact of the solar radiation pressure is to be incorporated
while modeling the motion of the spacecraft and selecting an orbit that satisfies the
mission objectives, the acceleration due to the SRP is incorporated into the CR3BP
equations of motion making it the solar sail - circular restricted three body problem
(SS-CR3BP). Due to the change in dynamics due to additional acceleration com-

ponents, the equilibrium solutions of the equation of motions in the SS-CR3BP are
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different than the standard CR3BP, that are a function of sail lightness parameter
and orientation of the spacecraft. For the Aditya-1 spacecraft, with a solar light-
ness parameter [ = 1.0466 x 1075 and the spacecraft assumed to be projecting
maximum surface area to the Sun i.e. o = 0° with 100% reflecting surface (k = 2),
the L, libration point shifts 175 km towards the Sun. For the ISEE-3 mission with
kBsis = T7.65 x 1076 as derived from Bell [64], the L, libration point moves 127
km towards the Sun. Accordingly, considering a more practical value of k, for the
Aditya-1 mission, the libration point is expected to move much less than 175 km
towards the Sun. New periodic orbit families can be generated about the SS-CR3BP
libration point L; for different combinations of l%ﬂsm-l. Analytical solutions from the
linearized model in the vicinity of the equilibrium solutions are used as initial guess,
that is converged using differential correction scheme with the modified state transi-
tion matrix that incorporates additional SRP terms to generate periodic orbits. The
additional variables in the SS-CR3BP presents a wider range of solutions than the
standard CR3BP, however the desired halo orbit generated in the SS-CR3BP model
maintains approximately the same geometry as the CR3BP halo orbit, except that
the position and velocity states are marginally shifted. The new reference orbit in
the SS-CR3BP model is further converged in the ephemeris model to simulate with
increased fidelity based on real time. The deviation due to solar radiation pressure
for the Aditya-1 spacecraft is negligible, considering the characteristics distance in
the Sun-Earth/Moon system, to cause any significant change to the position and ve-
locity states of the spacecraft, however for future missions with effective solar sails, a
periodic halo orbit converged in the SS-CR3BP would serve as the baseline solution.

For this research, the SEM model is used wherever higher fidelity is addressed.

Using the SEM model, the patch points from the CR3BP halo orbit is converged
into a continuous trajectory for mission duration of 2 years which roughly corresponds
to 4 orbit periods. The epoch date at the halo orbit injection (HOI) is assumed to
be January 13, 2020 UT1: 00:00:00.0 (Julian Date: 2458861.5) which is comparable
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to the planned mission schedule for the Aditya-1 mission. The Figure 4.4 displays
the nominal trajectory converged in the SEM model for 2 years viewed in the Sun-
Earth/Moon L; rotating frame. The L equilibrium point may not exist in the SEM
model because of non-periodicity of the acting gravitational bodies, however for rep-
resentation, location of L; obtained from the circular restricted model can be used.
Additionally, the orbits no more possess periodic behavior, but they still retain quasi-

halo like behavior as observed in the CR3BP.

x 10
6
4 x 10°
— 25 R
2 g
T = 0{
x 0 -
=2 N -2 v\
2 To Sun 5 - 5
4 x 10° 0 5 . 0 o
- X
6 y km] x [km]
5 0 5
X[km] X105
2x1o5 2x105

z [km]
o
z [km]
o

-5 0 5 -5 0 5
x [km] x 10° y [km] x 10°

Figure 4.4. Planar projections of the nominal orbit converged in the SEM Model.

As per the mission plan the spacecraft is expected to sail along the nominal or-
bit converged in the SEM model, nevertheless, it may drift away from the nominal
path due to unmodeled error and the unstable nature of the orbit. It is crucial to
continuously track the spacecraft against this reference orbit, which is obtained from
converging in the higher fidelity system, in form of tabular listings of time, position
and velocity states. It is computationally expensive to store large data sets as well re-
trieve the large data every time to compare the true spacecraft states to the reference.

Howell and Pernicka [24,25] concluded that, data points spaced within 1.1 days pro-
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vides fairly accurate representation of the nominal path. When the data points were
spaced more than 1.1 days apart, the station-keeping costs seem to have risen dras-
tically. Since the computational ability at present is more advanced, it was therefore

decided to store data points at 2.5 hour spacing, so that accuracy is not compromised.

There has been substantial literature on the type of curve that could be used
to retrieve interpolated data accurately. Richardson [16] uses a complete 13th order
analytical Fourier series representation of the halo orbit. Howell and Pernicka [24,25]
use Akima cubic spline interpolation while Gordon in his dissertation [41] and Howell
and Gordon [40] analyzed different interpolating schemes and concluded that cubic
splines especially Akima cubic splines gave smoother representation. For estimating
intermediate states and times from the available data points placed interval of 2.5
hours, different methods such as linear interpolation, quadratic polynomial fit, cubic
spline and Akima cubic spline are investigated for their accuracies. Since the data
points were placed in a mere 2.5 hours interval, linear interpolation could present
fairly accurate results with errors well within 0.1 km and 1 mm/s, but it was still
inferior in comparison to other methods. The accuracies of other three methods
were comparable. Nevertheless, to not compromise on accuracy in any extreme case,
Akima cubic spline is selected as the primary interpolating technique throughout this

work.

4.2 Assumptions

A spacecraft experiences perturbations ever since its launch, due to several factors
like atmospheric drag, limitations of the measuring apparatus, additional gravita-
tional bodies, magnetic field of earth, charged particles, solar radiation pressure etc.
Besides, modeling errors can also result in the spacecraft‘s true path being different
from the reference path. Despite all these potential challenges, the primary focus

of a station-keeping process is restricted to sustaining the spacecraft to unmodeled
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errors post the orbit injection phase, which essentially depends on orbit injection er-
ror, tracking error and maneuver execution error. These errors are inevitable due to
limitations of the orbit determination apparatus and the engine thrusting abilities.
The magnitude of these errors can although be decreased by using better quality
and sophisticated instruments, but cannot be overcome perfectly. Some other errors
including the solar radiation pressure and gravitational effects of the unaccounted
bodies can be overcome by adding their effects into the model, however, for this re-
search, solar radiation pressure and gravity due to bodies other than the Sun, the
Earth and the Moon are not taken into consideration. These can be added in future

depending on mission demands.

Station-keeping maneuvers can be executed either as an impulsive maneuver or
a continuous thrust. Since the main aim of this research is to compare different
strategies and use the station-keeping process as a tool to sustain the spacecraft in
a desired orbit and not to focus on the abilities of different thrusters, no attempt
has been made to perform station-keeping using continuous thrusters. All maneuvers

executed are single impulse maneuvers.

For consistency throughout this work, the constants retrieved from Adaptive Tra-
jectory Design (ATD) software is used wherever Circular Restricted Three Body is
mentioned. Since the orbits are sensitive to the characteristic values they are rep-
resented in, even the minutest change in any of the constants can change the entire

course of the trajectory. The values are therefore summarized in table 4.1.

4.3 Unmodeled Orbit Determination Errors

Any uncertainty in the measurement of the position and the velocity states of
the spacecraft is called orbit determination errors. The station-keeping phase begins

post the injection of the spacecraft into its desired orbit. Therefore, the different
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Table 4.1. Constants used throughout CR3BP applications.

Standard Gravitational Parameter

fi = GM, km? /s>

Sun 132712197035.766
Earth 398600.432896939280908555
Moon 4902.800582147764544061

Characteristic quantities
Sun-Earth/Moon system
p [ndim) 3.040428955805986 x 10~°
I* [km] 149597886
t* [s] 5022640.66103807

types of orbit determination errors that can influence the motion of the spacecraft
are the orbit injection error, tracking or navigational errors and maneuver execution
errors. These errors are stochastic in nature, thus cannot be modeled into the system.
If not addressed, these errors can potentially destabilize the motion of a spacecraft.
From the simulation point of view, it is necessary to understand the evolution of
these errors and how can these stochastic errors be incorporated to estimate the
maneuvers required to maintain the spacecraft in the appropriate region. The orbit

determination errors are broadly classified into the three types.

4.3.1 Orbit Injection Errors

The orbit injection marks the beginning of the station-keeping process. At the
end of the transfer trajectory an orbit injection maneuver is applied to inject the
spacecraft into its orbit at the desired position with a desired velocity. Undoubtedly,

the injection would not be perfect due to limitations in the engine performance and
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tracking apparatus which measures the spacecraft location. Therefore, the resulting
position and velocity states immediately after the orbit injection would be different

from the reference states.

To incorporate this error, in the simulation, each component of the reference
position and velocity states are perturbed independently. A Gaussian random number
generator is used to perturb each of the states. The mean of the perturbation is
zero while the standard deviation is chosen based on the knowledge of the existing
hardware. The perturbed states are propagated in the SEM model to obtain the

actual trajectory or the true path of the spacecraft.

4.3.2 Tracking Errors

As the spacecraft traverses along the orbit about the libration point, the earth
based tracking stations determine the position and velocity states of the spacecraft
at discrete intervals, better known as tracking intervals. Due to limitations in the
orbit determination equipment, the states are never known to complete accuracy. A
station-keeping strategy should successfully compute a reasonable maneuver to main-

tain the spacecraft close to the reference solution despite of this tracking errors.

To simulate the tracking error, each component of the position and velocity states
determined at each tracking interval is purposefully perturbed with a Gaussian error
similar to orbit injection error. Again, the mean is set to zero and the standard
deviation is chosen depending on knowledge about the tracking instrument. Each
component is perturbed independently. The perturbed states are propagated in the
SEM model as usual.
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4.3.3 Maneuver Execution Errors

As the spacecraft deviates away from the reference solution, the station-keeping
algorithm computes a corrective maneuver to maintain the spacecraft back in a close
torus about the reference solution. But the computed maneuver and the implemented
maneuver is never exact, typically due to engine thrusting limitations. To incorporate
this inaccuracy, each of the components of the computed maneuver is perturbed using
Gaussian distribution, again with mean zero and some standard deviation known from

engine capabilities.

4.4 Station-keeping Algorithm

To replicate a real mission station-keeping scenario, different errors are introduced
on purpose. As soon as the spacecraft is injected in to the desired orbit the process
of station-keeping commences. The halo orbit injection (HOI) is assumed to be the
starting point of this process. Based on the knowledge of the thrusters, standard
deviation for the orbit injection error is introduced. The three position and the
three velocity states are perturbed with a random number generated using Gaussian
probability distribution corresponding to standard deviation of orbit injection error.
The spacecraft will naturally deviate from the desired orbit due to the errors in the
states, hence station-keeping algorithm should be performed to keep the spacecraft
within a specified torus about the nominal path. The exact states of the spacecraft is
never exactly known due to tracking errors, hence at every tracking interval the states
are intentionally perturbed corresponding to the tracking errors. From literature
studies, it was concluded that, for an SEM system tracking intervals of 2 days is
typical. The unmodeled errors and the unstable mature of the orbit may result in the
spacecraft drifting away from the nominal path. A corrective maneuver is calculated
to ensure the spacecraft is in close vicinity to the nominal path. As summarized in
Figure 4.5, certain constraints are taken into consideration to compute and implement

the maneuver, which includes
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Figure 4.5. Station-keeping decision making process.



78

1. A minimum length of time At,,;, must elapse between two successive maneu-
vers to provide ample time for orbit estimation, undergo attitude change and/or
payload constraints. A maneuver at current time, ¢, will be computed and/or
implemented only if t — tA7 > Atpnin, Where oy is the time at the last imple-

mented maneuver.

2. The spacecraft must deviate more than the minimum specified drift from the
nominal orbit, d,.;,, to consider a requirement for a corrective maneuver. A
maneuver is not calculated or executed if d < d,,;,, where d is the current

deviation of the spacecraft from the nominal path.

3. The spacecraft deviation from the nominal path must be increasing for a maneu-
ver to be computed and/or executed. Mathematically, d;11 > d;, where i and
1+ 1 are the measurements at two successive tracking intervals. In a continuous

system a positive rate of deviation is equivalent to d(d)/dt > 0.

4. Only if steps 1-3 are satisfied, a maneuver is computed. Concerning the engine
limitations, a maneuver will be implemented only if the computed maneuver is

larger than minimum executable maneuver defined as AV,,;, i.e. AV > AV,.,.

Due to inaccuracy in attitude change or due to engine performance limitations the
implemented maneuver cannot be exactly equal to the computed maneuver hence the
maneuver executed is altered based on the ciphered standard deviation of the maneu-
ver execution error. The current states are updated to get the new initial conditions
which is propagated further. After simulating till the end of mission duration, the
magnitude of all implemented maneuvers within the mission duration are considered
to estimate the station-keeping costs. For a stochastic process, multiple simulations

are conducted to estimate the mean and standard deviation.

For station-keeping algorithm used throughout this research, in addition to the

minimum drift condition, a maximum drift case is also considered. In case the space-
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craft drifts unacceptably far from the reference, the simulation is ceased immedi-
ately and the computed costs for that particular iteration is ignored. The termi-
nation distance is capped at 50000 km for this work. This value seems to be an
appropriate choice in the Sun-Earth/Moon system for many other researchers as
well [24,25,40-43]. A new set of random numbers are generated and the simulation

is continued.

Throughout this work, two different sets of orbit determination errors have been
used, Type A and Type B, the details of which are enumerated in Table 4.2. Type A
has low orbit injection, tracking and maneuver execution error sigma limits. While
Type B has comparatively larger error variance. Using two different but extreme
values, one low and another higher level of error would provide more dynamic range
to compare the performance of the station-keeping algorithms. Finally, comparison

is made with sources from literature with similar orbit determination errors.

4.5 Monte Carlo Simulation

Station-keeping algorithm uses random sampling errors to represents uncertain-
ties in orbit determination and maneuver execution which is then propagated using
a nonlinear regime. Computing the mean maneuver cost is not possible using an
analytical approach. Due to its stochastic nature, it is convenient to use Monte Carlo
simulation to determine the probabilistic mean. The quality of the solution obtained
using the Monte Carlo process can be considered high only if the computed solution

is close to the true solution. Hence sufficiently large sample size is required.

For problems, whose true solution is known, the sample size can be adjusted based
on the how close solution is required. But in the case of station-keeping, the true so-
lution itself is unknown. Hence, it is challenging to decide the sample size required

to estimate the mean value close to the true value. A sample size about 20 or 30 is
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Table 4.2. Selected orbit determination error and input parameters
for station-keeping simulation, Type A and Type B.

Type A B

Minimum time between 30 30

maneuvers, At,,;, [days]

Minimum drift from the | 0 0
nominal path for a correc-

tive maneuver, d,;, [km]

Maximum drift from the | 50000 50000
nominal path for termina-

tion, dpae [km]

Minimum magnitude of Variable Variable

executable maneuvers, 5, 10, 20, 50, 100 5, 10, 20, 50, 100

AV,in [cm/s]

Tracking interval [days] 2 2

Orbit injection & tracking

Error (10)
e Position [km] 1.5, 2.5, 15 3, 30, 30
e Velocity [mm/s] 1,1,3 15, 15, 30

Maneuver execution error

2.5% of planned

5% of planned

(lo) maneuver magnitude | maneuver magnitude

in each direction in each direction

Halo orbit injection epoch | January 13, 2020 January 13, 2020

generally too small to get a solution with high confidence level required for compar-
ison. On the other hand, having too many simulations, adds very little information

at high computational expense, which is ineffective. An appropriate sample size is
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desired that provides substantially high confidence level making comparison effective.

Many researchers in the past have used about 50, 100, 300, 500 or even 1000 Monte
Carlo runs without providing remarks on their confidence level. Few researchers have
used some approaches to compute the either the appropriate number of Monte Carlo
runs or specified the standard deviation at the end of the simulation [40-43, 65].
Sample size determination can be vital for Monte Carlo simulations. Muralidharan
[66] elaborates the process of determining the right sample size based on the accepted
confidence intervals. The strategy had been adopted by Gordon [41] for his station-
keeping application. For a trial that produces observations s, s, ..., 7,, the mean,

» and the standard deviation, S,,, of the samples can be computed by

S22 > G AP (45)

where n is the sample size. The mean computed from the samples may not be exactly
equal to the true mean, therefore, the variance of the computed mean, o2, is defined

x

as
2
Y

n

(4.6)

2 __
05 =

that is a function of the variance of the samples S2. A superior quality Monte
Carlo simulation will estimate the computed mean, 3, close to the true mean, u,,.
The confidence level of the computed mean determines if the true mean lies within a
certain bounded region about the computed mean. As demonstrated in Figure 4.6, let
the lower control limit and the upper control limit of the bounded region be denoted

as LC'L and UC'L respectively. Mathematically, LC'L and UCL can be defined as

[LCL, UCL| = %+ 2,05 = %+ zc& (4.7)

vn
where z. defines the percentage confidence level in terms of sigma limits that signifies

how confident should the user be that the true mean lies within LCL and UCL.
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The relation between percentage confidence level and the corresponding sigma limit
is provided in table 4.3 [66]. As the sample size increases, the gap between LC'L and
UCL becomes narrower. consequently, the true mean and the computed mean gets
closer. The half width, h, also referred to as ‘precision’ by some researchers, between
LCL and UCL can be a deciding factor on the number on Monte Carlo runs. The

precision or half width is defined as

_UCL-LCL _ S,
- =

that inversely depends on the number of iterations. Large number of iterations will

h (4.8)

produce a more precise result at the cost of immense computational time. The number
of simulations actually required is in fact a function of the preferred precision level.
The precision or the half width, h, desired may be an absolute parameter or a relative
parameter in comparison to the mean. The number of Monte Carlo runs can be

estimated in either case.

e Absolute Precision
Assuming that the precision of the required solution is given in terms of the
permissible absolute error, o. In other words, for the chosen confidence level,

true mean should be within 3z 4 «, thus

2
h=a= zcj—% - n= (ZCS%) (4.9)

e Relative Precision
If the precision of the required solution is given in terms of the permissible
relative error (a%). In other words, for the chosen confidence level, true mean
should be within > £ (a/100) 3, thus

o S, 2eS,, 2
h = — 2 pr— c o — = ]_ 4].
00 Z\/ﬁ — n < 00 > (4.10)

Either of equations (4.9) or (4.10) can be used to compute the required number

of Monte Carlo simulations that yields computed mean that would be close to the
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true mean within the accepted confidence level. The sample size, n, depends on the
accepted sigma limit, z., the permissible absolute or relative error, «, the present

computed mean, > and standard deviation of the samples tested, S,,.

X

LCL UCL

Figure 4.6. Precision in a stochastic process.

Table 4.3. Percentage confidence level and corresponding sigma limits.

Confidence Level (%) Sigma Limit (z.)

68.26 1
95 1.96
95.45 2
99 2.58
99.73 3
99.99 3.89

It was observed that few authors have used the estimate value of S, to predict the
desired number of runs. Making the right estimate of .S,, without any prior Monte
Carlo runs is however not possible, hence, the reason for their choice is uncertain. A
better method is sought to overcome this challenge. It was observed from different

Monte Carlo runs that at least 30 runs are required to stabilize the variance. It



84

is proposed in this research that the value of S,, after first 30 runs can be used to
substituted in equation (4.9) or (4.10) to compute the number of Monte Carlo runs
required. Besides continuous computation of required sample size using the value of
S, calculated every run beyond 30 is an effective method. The following scheme can

be adopted to compute the right number of Monte Carlo runs.
1. Perform 'z’ number of trials such that, i > 30.

2. Compute statistical information available from conducted trials. Mean 3 and

Standard deviation S,,.

3. Compute required number of trials/Sample size ‘n’. Use equation (4.9) or (4.10)

based on desired absolute precision or relative precision.

4. If required number of trials are more than the performed number of trials i.e.

n > 1 go to step 5 else go to step 6.
5. 1 =1+ 1, perform additional trial. Go to step 1.

6. More trials have been performed than the required. Simulation is terminated.

Computed mean is ;.

Standard deviation of the mean is S, A/i.

Monte Carlo method is a probabilistic mean computation technique based on
stochastic sampling hence no fixed number of runs or value of precision is defined.
The termination of a Monte Carlo process is based on the precision demanded by the
user to evaluate the data appropriately. Either based on predefined precision level,
the sample size can be estimated using the procedures discussed, or, the standard
deviation of the total number of runs must be specified along with the computed

mean to provide the essence of the actual distribution.
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5. CORRELATING TARGET POINT APPROACH WITH
FLOQUET MODE APPROACH

The target point and the Floquet mode approaches are two of the most popular
methods of station-keeping for libration point orbits in the Sun-Earth/Moon system.
The early use of the Floquet mode method for station-keeping are found in the work by
Gomez et al. [44,45] in 1985, and ever since, there has been substantial research on the
application of the Floquet mode approach for orbit maintenance of different missions.
The target point approach known for its simplicity was illustrated for station-keeping
along the libration point orbits for the first time by Howell and Pernicka [24,25] in
1990. Since then many studies have been conducted on various parameters within the
method to improvise. Keeter [42,43] analyzed the weighting matrices used in the cost
function of the target point approach to automate the selection process but observed
that the automation process although decreased manual effort, increased the station-
keeping costs. The effect of certain free parameters are analyzed to understand how
each parameter potentially alters the orbit maintenance costs. The concept of the
Floquet mode approach is used to evaluate the dimensions of the right weighting

matrix that should provide sufficiently low costs using the target point approach.

5.1 Target Point Approach

The fundamental principle of the target point approach (TPA) is minimizing the
predefined cost function, that is a combination of the applied maneuver and the
deviation in position and velocity states at all the targeted future times. Introduced
by Dwivedi [67] the approach is used to maintain spacecraft close to the nominal path
in interplanetary missions, by targeting future position states. Howell and Pernicka

[24,25] modified the algorithm to incorporate the strategy for libration point missions
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by introducing additional future velocity target conditions. Howell and Gordon [40,41]
and Keeter [42,43] get credits for enhancing the strategy to include more conditions.
In general, the target point approach tries to compute a maneuver at present time ¢,
that minimizes the cost function J defined as
n
J(po, €0, AV) = AVTQAV + >~ {m[Rym; + v Ry, v; } (5.1)
i=1
where AV is the maneuver computed, po and €, are the position and velocity devia-
tion from the nominal path measured at the present time. Here, n is the total number
of future target points while m; and v; are position and velocity deviation that would
result at the ith target point if the maneuver AV is implemented. The value of 7,

and v; are retrieved using the state transition matrix as

m; Do
U; e+ AV
o(ti, to) = v (5.3)
Cio Do

where A;g, By, Cijo and Dy, are the 3 x 3 submatrices of the STM, ¢(¢;,ty). The
weighting matrix () is positive definite while R; and R,, are positive semidefinite
weighting matrix corresponding to the position and velocity deviations at ¢th future
target point respectively. The equation (5.1) indicates an exact n combination of
position and velocity deviation for future target, however, only position deviation or
velocity deviation or any combination of the two can be considered as future targets.
To not consider a particular state as future target, either the term is ignored or the
corresponding weighting matrix is set to 0. The goal of TPA method is to compute a
maneuver that minimizes the cost function defined in equation (5.1) that is equivalent

of determining the root of the equation

0 _
EJ(]?Q,@),AV) =0 (54)



87

that correspond to the minima of the cost function, J. The maneuver computed is

therefore a function of the number and types of future target conditions selected.

Besides computing a low cost maneuver, one of the primary goals of a station-
keeping technique is to compute a maneuver that essentially secures the spacecraft
near the reference trajectory by performing maneuvers at regular intervals. Howell
and Pernicka [24,25] use two future position targets in equation (5.4) to predict the

maneuver as

AV = — [Q + BIR, Byy + BERyBay] 55)
[(B%RIBIO + BQTO]RQBzo) €o + (BITO]RlAIO + BZTO]RQAQO) ]30}

where, each A;y and B; are the corresponding submatrices of STMs ¢(t;,ty), as in

equation (5.3), computed to first target point and second target points. As usual, @ is

the wighting matrix corresponding to the maneuver while R; and Ry, matrices weigh

the first position and second position targets respectively. Howell and Gordon [40,41]

and Keeter [42,43] include more target points and weigh velocity states in addition

to position states as additional station-keeping constraints.

The target point approach is very robust and hence used for station-keeping for
orbits with wide range of stability properties. Computation of minimum maneuver
does not require any advanced mathematical operators making this method not com-
putationally expensive, however, the TPA approach uses a lot of weighting matrices
@, R; and Ry,. As more future target points are considered more weighting matrices
are included (each for position and velocity). Since there is no established way of
selecting the weighting matrix, trial and error approach is used to identify the co-
efficients of each weighting matrix, to compute a low cost maneuver. As a result,
the process can become tedious as more future targets are taken into consideration.
Serious examination is required to understand the effects of different free parameters

on the orbit maintenance costs and explore the range of appropriate weights.
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5.2 Floquet Mode Approach

The Floquet mode approach (FMA) utilizes the qualitative information about the
dynamical flow of the phase space along the periodic orbit, using the Invariant Man-
ifold Theorem [68], to compute a corrective maneuver. The state deviation vectors
are decomposed into its constituent linear combination of the Floquet modes utilizing
the eigenstructure of the monodromy matrix i.e. the state transition matrix over one
orbit period. The controller then computes an impulsive maneuver that cancels the
unstable component of the state deviation vector to maintain the spacecraft close to

the nominal path.

5.2.1 Floquet Theory

The state transition matrix provides a linear correlation of the flow of a deviation
vector at two different times. The direction of flow of a nearby trajectory is determined
by the linear combination of the Floquet modes that constitutes its states, evaluated
using properties of the state transition matrix computed upon the reference path.

Consider the differential equation that drives the STM,

6= A(t)o (5.6)

that is governed by a linear periodic Jacobian matrix A(t) as introduced in equation
(2.50). For a periodic coefficient linear system expressed as equation (5.6), the Floquet

mode, F'(t), provides a time variant solution of ¢ as
8(t,0) = F(£)e7 F1(0) (5.7

where J is a constant matrix that contains the Poincaré exponents of the monodromy
matrix along its diagonals. As the Jacobian matrix A(t) is periodic, so is the STM
and the Floquet mode F'(t) periodic with periodicity 7" = P, where P is the time

period of the chosen orbit. The monodromy matrix is thus expressed as

o(T,0) = F(T)e/TF~1(0) (5.8)



39

such that, F(t) is periodic with F(T') = F(0). Consequently, the eigenstructure at
the same location on the periodic orbit is the same. The columns of matrix F'(0)
are the eigenvectors of the monodromy matrix and columns of matrix e/7 are the
corresponding eigenvalues. Let w; be the Poincaré exponent along the diagonals of

matrix J. Therefore each

)\i = €wiT (59)

defines the eigenvalues of the state transition matrix. Using equation (5.9), each

Poincaré exponent is computed as

1
w; = Tln(/\,-) (5.10)

that are time invariant constants that represents the flow unlike the STM. The time
invariance of ww; provides better understanding of the flow and produces a superior
behavior in numerical propagation of the states unlike the STM. The six eigenvalues
of STM occurs in pairs of unstable-stable, two ones, and two complex conjugate pairs,

so the Poincaré exponents are also retrieved in similar pairs.

e Unstable and Stable eigenvalues
For unstable and stable eigenvalues, \; takes a value greater than 1 and smaller
than 1 respectively. The Poincaré exponents are computed from equation (5.9)
in the same form as
1

where the unstable eigenvalue corresponds to a positive Poincaré exponent while

a stable eigenvalue is denoted by a negative Poincaré exponent.

e Unit eigenvalues
For eigenvalues that are 1, the Poincaré exponents computed from equation

(5.9) by substituting A\; = 1 yields,

w; =0 (5.12)
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e Complex conjugate pairs of eigenvalues
The complex conjugate eigenvalues exists as \; = a & ib = Re®™, the Poincaré

exponents computed from equation (5.9) is in the form,

1 o1 |
w; = Tln (Re*") = T {In(R) £ iv} (5.13)

where, R =v/a? +0? and ¥ = tan™" (b/a).

The time invariant J matrix is used as a basis to describe the direction of flow at
any time using the Floquet modes. From equation (5.7), the Floquet modes at any
time, t, is represented as

F(t) = ¢(t,0)F(0)e™" (5.14)
where t = 0 corresponds to any chosen initial condition along the periodic orbit.
The Floquet modes F(t) exists as a six-dimensional column vectors, F;(¢), with non

orthogonal basis as
F(t) = [ﬁl(t)>ﬁ?(t%ﬁS(t>7ﬁ4<t)7ﬁ5<t)aﬁ6(t)] (515)
that are computed using equations (5.11), (5.12), (5.13) and (5.14) as

m(xg) (5.16)

Fi(t) = o(t, 0)«7'_—1(0) eXp

ot
—_
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Flt) = ot 0 F R {eos (07.) = isin (07 )

Fo(t) = o(t,0)Fs(0)RHT {cos (19%) +1sin (19%) } (5.21)
such that, F;(0) are the eigenvectors of the corresponding monodromy matrix. The
Floquet modes provide the flow dynamics of the spacecraft along the periodic orbit.
Any state in the vicinity of the periodic orbit can be modeled as a linear combinations
of the Floquet modes. The same principle is applied for orbit maintenance by filtering

out the unstable mode.
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5.2.2 Floquet Controller

The ability to filter a given state as a linear combination of its different constituent
Floquet modes are exercised to compute a station-keeping maneuver. The aim is to
calculate a maneuver that will cancel any component in the direction of the unstable
Floquet mode to prevent the spacecraft from deviating. Since the L libration point
orbit in the Sun-Earth/Moon system chosen for the mission is highly unstable, the
spacecraft will deviate from the nominal orbit due to perturbations along the way.
Any perturbation in position and velocity at any time, ¢, is modeled as a linear

combination of the six Floquet modes as

6z (t) = Z ¢; Fi(t) (5.22)

where ¢; are some coefficients and F; are the corresponding Floquet mode vectors.
Since the Floquet modes are modeled upon the eigenvalues, they too exists as unsta-

ble, stable and oscillatory modes. Rather, if equation (5.22) is represented as
OT(t) = 0T1(t) + 0To(t) + 0Z3(t) + 0Z4(t) + 0T5(t) + 0T (1) (5.23)

then, 07, (t) represents the unstable component of the perturbation, 6zs(t) is the sta-
ble component while components dz3_g(t) are oriented along the oscillatory Floquet
modes. Let vector JF(t) represent the unstable mode, so the component of pertur-
bation, 0% (t), in this direction will amplify over time. The controller in the Floquet
mode station-keeping method estimates a corrective maneuver AV that cancels the
component of perturbation oriented along the unstable Floquet mode. Mathemati-

cally, addition of a maneuver AV amends the equation (5.22) to

OT(t) + AV =)~ oi Fi(t) (5.24)

=2

that is void of any component along the unstable Floquet mode direction.

The addition of a maneuver AV alters only the components along the three ve-

locity states but equation (5.24) can be potentially satisfied by modification of linear
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combination of the five Floquet modes F(t) through Fg(t) by their coefficients s
through ag, hence there are infinitely many solutions possible. A possible solution is
the minimum norm solution, but several other possible solutions are considered based
on mission requirements. For a perturbation py in position and €, in velocity at time,

t = 0, the corrective maneuver computed satisfies

0
a2
(0%
Po _ _ _ _ _ Q3
| = (R0 F(0) Fi(0) Fs(0) Fo(0)] | au | = F(0) (5.25)
€0 AV Qy
Qs
«
Qg ’
Qg

where a; through ag are 5 free variables while AV can be up to 3 free variables. Each
Fi(0) is a 6 x 1 column vector. The value of AV can be computed as per the mission

requirement. Few potential constraints are as discussed.

e Single Axis Control
A maneuver AV is computed, such that it is aligned along one of the axis either
x, y or z. For example, consider maneuver along z-axis, therefore equation

(5.25) becomes

0 (6D)

0 (0%
]50 - — _ _ _ 0 Oy
| = [F(0) F5(0) Fu(0) Fs5(0) Fe(0) (5.26)
€0 —1 (673

0 (07

0 AV,

where [ag, ag, ay, s, ag, AVx]T are the 6 unknowns. There are 6 equations and

6 unknowns, hence a perfect solution can be computed. A unique maneuver

exists in a single axis controller.
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e Three Axis Control
A maneuver AV that is free to align itself along any 3D orientation can be

computed from

Qg
[ 0 0 0]/ a
0 0 0 0y
Pl R0 B0 A0 B0 A0 ]
€0 -1 0 0 Qg
0O -1 0 AV,
0 0 —1]]AY,
i "\

where [y, as, ag, as, ag, AV,, AV, AV,]T are the 8 unknowns. There are 6 equa-
tions and 8 unknowns, hence infinitely many solutions are possible, one such

solution is the minimum norm solution.

Similarly, a two axis maneuver, a planar maneuver or any other mission design con-
straints can be incorporated into computing a corrective station-keeping maneuver.
Maneuvers are computed and executed at regular intervals to maintain the spacecraft

within a close distance to the nominal orbit.

5.3 Correlation between Target Point and Floquet mode Approaches

The target point approach uses a cost function that is minimized to compute
a maneuver while the Floquet mode approach uses the qualitative information of
the flow of the reference trajectory using the eigenstructure to predict a maneuver
that cancels any unstable component at that location. To correlate the target point
approach to the Floquet mode approach, it must be expressed in a similar way as the
mode of operation of the later. The eigenvectors used in the Floquet mode approach
are the property of the monodromy matrix, the state transition matrix computed

over one time period. In the TPA method, targeting a base-point one time period
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beyond essentially provides similar information as that of the Floquet mode approach.
Additionally, let the computed maneuver result in a position deviation of m; and a
velocity deviation of v; at the end of future target time of one time period, P. The
monodromy matrix relates the value m; and v; due to current position deviation py,

velocity deviation &y and proposed maneuver AV as

_ _ A B _
my :¢(T,O) Po _ 10 10 Po (5.28)

o e+ AV Cyw Diol &g+ AV

where time T' = P while Ay, Big, C1o and Do are 3 X 3 submatrices of ¢(7,0). The
equation (5.28) is expressed in the same form as Delta V Controller type 1 by Gor-
don [41] with one future position state and one future velocity state target. Using a
combination of one position state and one velocity state targeting at a target time of
one time period, the effective mode of operation of the target point approach should
be similar to the Floquet mode approach. The similarity property is used to explore

behavior of certain weighting matrices used in the target point approach.

The cost function J in the target point approach for Delta V Controller type 1
that could potentially replicate the behavior of the Floquet mode approach is modeled
as

J(po, €0, AV) = AVIQAV + mTRm; + v Ryo, (5.29)

where @), R and Ry are weighting matrices. The positive definite matrix ) directly
controls the size of the maneuver AV while matrices R and Ry, weighs the position and
velocity deviation after one time period respectively. The maneuver that minimizes

the cost function J essentially satisfies the relation

0 o _
mj(po,eo,AV) =0 (530)

QAV = — [B{ORBH] + D?ORVDIO} (éO + AV) (5 31)
T T D, |
- 1
[B ORAll) + DmRvClo] Po
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resulting in an implicit relation. To compute the positive definite diagonal matrix @),
the values of AV obtained from each of the Floquet mode maneuver are substituted
into the equation (5.31) along with values of R and Ry that are taken as identity I, as
the Floquet mode approach is not biased to any position or velocity states, however,
R and Ry may be tuned if there seems to be a possibility of decreasing the maneuver
magnitude once the matrix () is tuned, but in general matrix ) seems to affect overall

costs the most.

One of the most applicable information procured by correlating the target point
approach with the Floquet mode approach is the dimensions of the () matrix. Since
the target point approach and the Floquet mode approach do not have one to one
correspondence, the elements of the matrix ) calculated using equation (5.31) may be
negative for some maneuvers computed by the Floquet mode approach. The equation
(5.30) satisfies both the maxima and minima, but to minimize the cost function the
value of () computed in equation (5.31) should necessarily represent the local minima.
The additional constraint to ensure a minima in equation (5.30) is

0? -

mj(ﬁo, €, AV)=Q >0 (5.32)

hence any solution for @) computed from equation (5.31) that results in negative value
represents the local maxima, as a result they are disregarded. Only positive values of

() that represent the local minima are used for tuning the matrix ). The purpose of

a positive definite matrix () used in the target point approach is thus justified.

5.4 Preliminary Results

5.4.1 Effect of Weighting Matrices on Station-keeping costs in the Target
Point Approach

The target point station-keeping approach computes corrective maneuvers that

corresponds to the local minima of the cost function. The weighting matrices govern
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the magnitude and the direction of the computed maneuver. The primary challenge
using TPA is that, as the number of future target points increases the number of
weighting matrices to be used. Since there is no specific method to select the weights,
applying trial and error to get the optimal solution from significantly large combina-
tions of weights is implausible. Furthermore, addition of many future targets does not
necessarily improve the solution. One of the aim of this research is to select relevant
number of future target conditions and explore effect of the weighting matrices on
the maneuver cost. It is studied in section 5.3 to establish a correlation between the
Floquet mode and the target point approach. Although the Floquet mode provides
explanatory solution it is computationally expensive. Tuning the target point ap-

proach with the right weights could make it more reliable.

The formulation of the cost function by itself reveals the effect of weighting matri-
ces on the corresponding free variables. The Floquet mode method closely matches
with Gordon’s Delta V Controller type 1 [41] with future velocity and position target

scheme at one time period downstream, for which, the cost function J is defined as
J = AVIQAV + mIRm, + v Ry, (5.33)

where the matrix @ directly controls the maneuver AV while R and Ry controls the
deviation in position and velocity at the future target point that is one period down-
stream in this case. Here, subscripts of R and Ry are ignored as only one position and
one velocity targets are considered. Since matrix () has direct and maximum influence
on the magnitude of the maneuver, it becomes the primary choice of improvement. If
the system is assumed to be one-dimensional then a large value of () would diminish
the AV magnitude and vice-versa, however, for a three-dimensional system making a
direct conclusion is not definite. A component wise analysis is mandatory to describe

the trend.

For consistency in analysis, the weighting matrices must be expressed in the right

units. If the cost function J is expressed in the non-dimensional units with matrix
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@, R and Ry defined as identity, for simplicity, then the matrix () in the dimensional
units would be scaled by the order of magnitude of ¢*? to obtain AV in in terms
of km/s. In the Sun-Earth/Moon barycenter system ¢*? is approximately equal to
2.52 x 1013 s%. Such large value of ) is comparable to the ones used by Howell and
Pernicka [24,25], Howell and Gordon [40,41] and Howell and Keeter [42,43]. Since @

is a 3 x 3 positive definite diagonal matrix, let it be represented as

q1
Q= q2 (5'34)

q3

such that, ¢, 2,93 > 0. Each of ¢, ¢2 and g3 weighs individual components of the
AV vector along z, y and z-direction respectively. At every location near the refer-
ence orbit where a maneuver of size AV,,;, is detected by Floquet mode approach, an
alternative maneuver is computed using TPA to explore the influence of each of the
¢; components within the TPA. The magnitude of AV is computed by varying each
of ¢; from 10'° to 10'® in dimensional units, equivalent to approximately 10~* to 10%
in the non-dimensional case. As a result, a four-dimensional array of various com-
binations of ¢, g2, g3 and corresponding value of AV are obtained, that is analyzed
to understand the effect of the weighting matrix ) on the cost of each individual

maneuver.

It was expected that a large value of ¢; would decrease the maneuver along the
corresponding direction, and vice-versa, but such a trend was found to be true only
for the cases where minimum possible AV was set to zero. The case suggests that
no matter how small the computed maneuver is, it will be executed (Even of the
order of mm/s or lesser). In no event, such small maneuver can be executed due
to engine limitations. Besides, the maneuver computed is smaller than the orbit
determination error making it impossible to even detect such small maneuvers. When

the minimum executable AV magnitude was altered to more practically feasible values
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like 5 cm/s, 10 cm/s, 20 cm/s, 50 cm/s or 100 cm/s, the trend was unlike the previous
case. To be certain about the trend, the four-dimensional array of combinations of
¢; and AV were computed at different maneuver locations, and for different AV,
conditions. For representation of this four-dimensional array, ¢, g2 and g3 are modeled
as the three axis while the fourth dimension, AV magnitude, is indicated with a color
scheme as demonstrated in Figure 5.1. An enlarged plot for an arbitrary maneuver for
AVyin = 10 em/s is shown in Figure 5.2. The plots in Figures 5.1 and 5.2 are in fact
a solid block with varying color scheme that represent the magnitude of computed
maneuver in a three-dimensional grid. For visual inspection, a solid block is not a
smart choice as it is not possible to examine the values not along the outside surface,
hence for better visual representation, parallel planes with fixed g3 values are chosen.
The specific reason why g3 was fixed instead of ¢; or ¢ is explained further. The plots
in Figure 5.1 only showcase patterns observed at majority of the maneuver locations,
without making a claim that all maneuvers exists in the same way. In fact at few
maneuver locations the trend was not similar especially for low AV,,;, values such
as b cm/s and 10 cm/s. Moreover, it was observed that with increase in AV,,;,, the

trend became more ordered.

The magnitude of maneuver computed at a particular location depends greatly
on the () matrix and it is certain from the color distribution indicated in Figure 5.2.
Based on knowledge about a one-dimensional cost function, it is expected that a large
weight diminishes the value of the corresponding free variable and vice versa. Using
the same intuition, it was expected that the lowest magnitude of computed velocity
would appear at higher values of ¢;, ¢o and ¢3 while the highest value of maneuver
magnitude would appear diagonally opposite to the lowest velocity case on the 3D
grid map i.e. at low values of ¢, g2 and g3, but the actual trend observed contradicts
this intuition. Indeed, the variations along the three axes q1, ¢2 and ¢3 are not similar.
Firstly, in most maneuver locations, fixing ¢; and ¢ and moving only along the g¢3

axis does not make any significant changes in the magnitude of maneuver computed.
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Figure 5.1. Variation in maneuver magnitude for different () matrix
combinations for different AV,,;, cases. Each individual plot corre-
sponds to an arbitrary maneuver location. The symbol ‘#’ indicates
sequential numbering for a particular AV,,;, case. For consistency,
color scheme is skewed to match AV,,;, with green color in all plots.
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AV [ecm/s]

Figure 5.2. Variation in maneuver magnitude for different ) matrix
combinations for AV,,;,, = 10 cm/s case at an arbitrary maneuver
location. For consistency, color scheme is skewed to match AV,
with green color.

This is precisely the reason why the four-dimensional solid block is displayed as a
combination of two parallel planes along the g3 direction. The trend indicates that
perturbations along the z-direction does not grow rapidly. thus, the necessity for a
maneuver aligned along the z-direction is non trivial for the obit selected for the mis-
sion. The asymmetric distribution of computed maneuver along the three-dimensional
grid implies maneuvers are not equal in all the three direction. Certain directions are
more sensitive that the others. For low values of ¢; in Figure 5.2, moving parallel
to g9 axis for fixed ¢q; and g3 show no notable change in maneuver magnitude. The
behavior implies that the change in y-velocity does not cause any substantial change
in the overall maneuver magnitude especially when x-maneuver is not constrained.
Only for large ¢; value (i.e. z-maneuver is forcefully restricted), change in y-velocity

affects the maneuver magnitude. Evidently, the maneuvers are dominant along the
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z-direction.

The algorithm when free to compute a maneuver in any spatial direction without
any constraint i.e. using low values of dimensional matrices ¢;, ¢2 and ¢3 (¢ =
2 = qz = 10'), the magnitude of maneuver computed is same as computed for
low value of ¢; with high values of ¢y and g3 (¢ = 10'° ¢o = ¢z = 10'®). The
maneuver is inclined almost along the z-direction, hence change in y and z-maneuvers
makes almost no significant impact on the overall maneuver cost. The behavior is
pictorially represented in Figure 5.3 as a plane with fixed low ¢; value indicating
the different combination of weights that has the same maneuver magnitudes. The
arrow represents directions of completely unrestricted maneuver (low values of ¢;)
and the direction of pure z-direction maneuver (low ¢; but high ¢, g3). For the
Sun-Earth/Moon L; Halo orbit chosen for the mission, the dominance of x-velocity
is highlighted. The behavior can equated to the presence of strong gravitational force

along the line joining the primaries that is along the rotational z-axis.

The trends observed were based on individual maneuver locations, however, the
general behavior remained same across all the maneuver locations. It can therefore
be concluded that, to purely capitalize the fixed z-direction maneuvers low value of
¢1 with high values of ¢» and g3 must be selected when performing station-keeping
using the target point approach. Ability to perform only z-direction maneuvers holds
beneficial from the mission attitude control perspective, as the orientation of the
engine thrusters need not be altered to any spatial directions every time a maneuver

needs to be executed.

5.4.2 Direction of Computed Maneuvers

The combinations of the weighting matrix () in the target point approach supports

the dominance of maneuvers along the z-direction, but needs to be measured in terms
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Figure 5.3. Almost constant maneuver magnitude for different g5 — g3
combinations for low ¢; values, reflective of dominance of z-direction
maneuvers computed using the target point approach.

of some explicit quantity to make reasonable comparisons. Let a quantity v, be

defined as
AV,

,UJ? = —
|AV]|
such that, AV, is the component along the 2-direction while ||AV|| is the magnitude

x 100% (5.35)

of the computed corrective maneuver. For simplicity ||AV|| can also be represented
as AV, i.e. without a vector symbol. At every maneuver location, the value of v,
is computed to quantify the z-dominance. For a maneuver perfectly aligned along
the z-direction will have v, = 100% while a maneuver with no component along the

z-direction will have v, = 0%.

A station-keeping scenario is simulated for a mission duration of 2 years with

parameters specified in Table 5.1. Both Type A and Type B orbit determination errors
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Table 5.1. Input parameters for Station-Keeping simulation to detect
direction of maneuvers.

Model SEM Ephemeris
Station-keeping algorithm Target point approach
Mission duration 2 Years
AVppin [cm/s] Variable
5, 10, 20, 50, 100
At pin [days] 30
Tracking interval [days] 2
Orbit determination errors Type A, Type B
Halo orbit injection epoch January 13, 2020
Q [dimensional] e Diag(10'°, 10'°, 10'9)
e Diag(10'°, 108, 10'®)
R I3x3
Ry I3x3

are used for simulation with two combination of () matrix, one for unrestricted spatial
maneuver and another for restricted x-direction maneuvers to make a reasonable
comparison on the dominance of maneuvers along the z-direction. At each maneuver
location v, is calculated and displayed as color gradient as demonstrated in Figure
5.4 and Figure 5.5 for Type A and Type B ODEs respectively. Both Figure 5.4 and
Figure 5.5 are records for 10 Monte Carlo iterations. For all plots on the left in Figure
5.4 and Figure 5.5, where ¢; = ¢» = g3 = 10 i.e. algorithm is free to compute a
maneuver is any spatial direction, but most maneuvers seem to be inclined towards
z-direction except in a very few cases where the AV/,,;, are small and for larger orbit
determination error as in Type B. Besides as AV}, increases from 5 cm/s to 100
cm/s, the maneuvers become more aligned towards z-axis. The number of blue and

yellow dots as in case of AV,,;,=5 cm/s reduces as AV,,;, increases for both Type
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A and Type B ODEs. As the major gravitational bodies are along the rotational -
axis, perturbations are more likely to amplify along the z-direction, hence x-control
maneuvers should be suffice for station-keeping. This is achieved by suppressing
maneuvers along y and z-direction to get pure x-control maneuvers. The weights
chosen as q; = 10'° and ¢, = g3 = 10'® satisfy the criterion. All the maneuvers thus
computed are essentially in the rotational z-direction. As indicated in the plots on
the right hand side in Figure 5.4 and Figure 5.5, the v, value computed for each

maneuvers for different AV,,;, cases are all almost 100%.

5.4.3 Search for Low Cost z-direction Control Maneuvers

The unconstrained spatial maneuver obtained through ¢ = ¢ = ¢35 = 10'° in
the target point approach being closely aligned in the x-direction indicates that con-
strained z-axis maneuver could be leveraged for the entire station-keeping process.
Constraining a maneuver in a particular direction using the target point approach
is done by providing corresponding asymmetric weights. Since maneuver is aimed
only in the z-direction, the corresponding coefficient ¢; is chosen small to vary be-
tween 10'° and 10'® in the dimensional units. Besides, no component of maneuver in
the y and z-direction is achieved by biasing ¢, and g3 to be extremely high. Ideally
¢2 = q3 = oo for a perfect x-direction maneuver, however, for computational purposes
¢2,q3 > 10'8. Increasing ¢, g3 much beyond 10'® have practically insignificant change
in maneuver cost. Figure 5.6 indicates that the possible combinations of () matrix
required for a x-control maneuver that is procured by moving along the marked edge.
The edge corresponds to varying ¢; value with a fixed large value of ¢ and ¢3. As
discussed, changing gs,q3 > 10 causes almost no meaningful change to maneuver

cost. For convenience go, g3 = 10?° is used for this work.

The possible domain of () matrix is essentially reduced to one dimension by vary-

ing only ¢; component and fixing ¢s, g3 = 10?° but the suitable range of values are
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Figure 5.4. Alignment of maneuvers with z-direction measured as v, %
for different AV,,;, cases computed using the target point approach.
Plot on left side within each sub figure corresponds to q; = g2 = q3 =
10'° while plot on right side within each sub figure corresponds to

@ = 109 ¢ = ¢3 = 10™.

determination error.

All figures correspond to Type A orbit
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Figure 5.5. Alignment of maneuvers with x-direction measured as v, %
for different AV,,;, cases computed using the target point approach.
Plot on left side within each sub figure corresponds to q; = q2 = q3 =
10'° while plot on right side within each sub figure corresponds to
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determination error.
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AV [ecm/s]

Figure 5.6. Potential domain of @) matrix for z-axis control maneu-
vers using the target point approach. The arrow represents possible
combinations of qi, g2, ¢3 that form diagonal elements of matrix Q).

however unknown to begin exploring for the minimal station-keeping cost. The Flo-
quet mode approach has the capability to find x-control maneuvers required for the
station-keeping process. The maneuvers from the Floquet mode approach are used to
make a selection of a range of possible weights to explore the target point approach.
Using the scheme discussed in section 5.3, each maneuver computed in the Floquet
mode approach can be equivalently produced by the target point approach using a
particular combination of () matrix. Therefore, a station-keeping process is simulated
using the Floquet mode approach and at every maneuver computed, an alternative
but correlating value of ¢; that essentially produces the same maneuver if used in the
target point approach, is recorded. Five different and practically likely cases of appli-

cable AV,,;, with two different sets of orbit determination and maneuver execution
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errors, Type A and Type B, are explored to find the correlating weighting matrix Q).

Table 5.2. Input parameters for station-keeping simulation using the

Floquet mode approach to estimate total maneuver costs and predict
equivalent ¢; value in the target point approach that would estimate

the same maneuver.

Model

SEM Ephemeris

Station-keeping algorithm

Floquet mode approach

Mission duration 2 Years
AVpin [cm/s] Variable
5, 10, 20, 50, 100
Atypin [days] 30
dymin [km] 0
Terminating distance, 50000
iaz (k]
Tracking interval [days] 2

Orbit determination errors

Type A, Type B

Halo orbit injection Epoch

January 13, 2020

At all locations where the maneuver is computed using the Floquet mode ap-
proach, an equivalent minimizing positive definite ) matrix is sought for. Since
¢2,q3 = 10?° is assumed for precise z-control maneuver the output obtained is just
the values of ¢;. Since the target point and the Floquet mode approach is mathemat-
ically different, same values of ¢; are not predicted throughout, instead it is spread
over a range of values as described in Figure 5.7 and Figure 5.8. The obtained range
of values marks the region to search for cost minimizing ) matrix. Figure 5.7 and
Figure 5.8 show the distribution of ¢; over 10 Monte Carlo simulations for different

AV, cases. Clearly the distribution is spread across values between 102 and 10%°
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with more concentration between 10'* and 10'®. Mean of the distribution can be
used as satisfying value of ¢; but it has no physical significance. Moreover, the mean
obtained for different AV,,;, condition is also different, hence, finding particular ¢,
that reduces the station-keeping costs for all the cases is hard to determine. Also, it
need not guarantee the best result. Instead the range of values obtained is used as a

test spectrum to explore for the ¢; that minimizes the station-keeping budget.

Station-keeping simulations conducted using different values of ¢; obtained from
the distribution in Figure 5.7 and Figure 5.8, requires a baseline solution to determine
whether the orbit maintenance costs produced by different ¢; values are comparable.
A baseline solution is determined by performing station-keeping simulation purely
using the Floquet mode approach. The results produced by different ¢; values is

compared with the Floquet mode solutions to make a conclusion.
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Figure 5.7. Potential range of ¢; values for the target point approach
estimated from every corrective maneuvers computed using the Flo-
quet mode approach. For all cases, Type A orbit determination error
is incorporated.
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log(a,)
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Time [days]
(e) AVipin = 100 cm/s.
Figure 5.8. Potential range of ¢; values for the target point approach
estimated from every corrective maneuvers computed using the Flo-

quet mode approach. For all cases, Type B orbit determination error
is incorporated.

Floquet Mode Station-keeping Budget

The Floquet mode leverages the natural dynamics of the flow in the libration point
orbits. The method computes a maneuver that cancels the unstable Floquet mode
thus driving the system along stable and oscillatory modes. The Floquet mode ap-
proach is used to estimate the station-keeping budget of the spacecraft in the desired
orbit for a span of two years. The mission duration selected is equivalent to about 4
complete revolutions. The annual cost can serve as a baseline if the mission duration

were to be scaled.

Since Monte Carlo technique is based on stochastic process, the number of iter-
ations required to have an appropriate solution is very vital. More the number of
iterations, better is the accuracy of the solution but performing too many iterations
adds very little information, hence, it is important to terminate the total number
of runs once the desired level of accuracy is obtained. Howell and Pernicka [24, 25]
and Howell and Keeter [42,43] use 100 simulation for their station-keeping process.
Gordon concludes that, 30 iterations are sufficient to get a result with 10 % relative

tolerance [40,41]. Pavlak [39] uses about 500 simulations in search of more precise
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results. In this work, choices of iterations are made depending on the required pre-
cision for each individual problem. The level of convergence is either mentioned in
terms of targeted value of relative precision or converged value of standard deviation
of the computed mean. For estimating the station-keeping cost using the Floquet
mode approach, 3500 iterations have been used. The cited works indicates that less
than 2% tolerance in the station-keeping costs is a good level of accuracy required for
comparing different cases. Equation (4.10) is used to calculate the required number
of iterations to have relative tolerance within 1%. Confidence level of 95% i.e. 1.96

sigma limit is assumed for the station-keeping problem.

A station-keeping simulation is performed using the Floquet mode approach using
parameters specified in Table 5.2 to estimate the total orbit maintenance costs for 2
year mission duration. A total of 3500 Monte Carlo simulations are performed for
estimating the cost and to study the convergence behavior. The mean station-keeping
cost is estimated by taking the average of all the simulations performed. It may not
always be feasible to compute 3500 Monte Carlo simulations due to computational
limitations, therefore a continuous estimation of the mean is desirable. A moving
mean is thus defined as the mean of all the previous simulations performed till that
iteration number. Figure 5.9 displays the actual observations (2 year total maneuver
cost) obtained for each of the 3500 Monte Carlo runs along with the moving mean.
It is apparent that the moving mean stabilizes after the first 50 to 100 iterations,
beyond which, it changes only marginally. The number of iterations used by the cited
researchers, would therefore provide similar values, but with a comparatively lower
confidence level. The mean station-keeping cost estimated for 2 year mission duration
for Type A ODE obtained after 3500 iterations for AV,,;, =10 cm/s case is 74.1 cm/s,

as demonstrated in Figure 5.9.

The authenticity of the computed mean in a stochastic process depends on how

close it is to the true mean. Unfortunately, for a station-keeping problem, the knowl-
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Figure 5.9. Mean station-keeping cost estimated from Monte Carlo
runs. Example shown for AV,,;,, = 10 cm/s case with Type A or-

bit determination error computed using the Floquet mode approach
(FMA).

edge about the true mean itself is unavailable. The standard deviation of the mean
is evaluated to measure the convergence, that is a function of the standard deviation
of the observations, produced in a Monte Carlo run. The dispersion of each observa-
tions about the mean, are indicated in Figure 5.10 in terms of standard deviation of
the observations. After 3500 iterations, the standard deviation of the observations is
13.0 em/s, indicating that if the station-keeping problem is assumed as a Gaussian
distribution, 68% (1o) of the observations lie within 74.1 £ 13.0 cm/s i.e. within 61.1
cm/s and 84.0 cm/s. The standard deviation of the observations obtained from Fig-
ure 5.10 is used to calculate the relative precision (or the half width) of the computed
mean using equation (4.10). With each additional iteration the mean becomes more
precise as the relative precision reduces as described in Figure 5.11. Clearly, there is
a sharp drop in the precision value in the first 50 iterations, beyond which the rate
of decrease is gradual. The abrupt change in precision level justifies the claim made
by Gordon [41] that at least 30 iterations are required to get a result with less than
10% relative tolerance. For 95% confidence or 1.96 limits, the half width or precision
as expressed in equation (4.10) would decrease gradually, rendering more proximity
between true mean and computed mean. If the desired precision (half width) is 1%,

then the number of iterations required is the abscissa corresponding to 1%.
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Figure 5.10. Variation in standard deviation of observations with
increase in the number of Monte Carlo iterations. Example shown
for AV, = 10 em/s case with Type A orbit determination error
computed using the Floquet mode Approach (FMA).
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Figure 5.11. Effect of the number of Monte Carlo iterations on rel-
ative precision (or half width) of estimated mean. Example shown
for AV, = 10 cm/s case with Type A orbit determination error
computed using the Floquet mode approach (FMA).

In most station-keeping cases, where the simulation is computationally expensive,
performing 3500 iterations to estimate the level of convergence may not be a wise
option. A continuous estimation of the required number of Monte Carlo runs is
preferable. Figure 5.12 illustrates the continuous prediction of required sample size
(number of Monte Carlo iterations) as explained in section 4.5. The three lines in
the Figure 5.12 denotes trials required for 1%, 0.75% and 0.6% relative precision.

The desired precision is achieved if the actual number of trials performed exceeds the
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predicted number of trials. For a precision of 1%, the number of Monte Carlo runs
required is 1170, for which, the true mean is expected to be within 73.7 4+ 0.7 i.e.
within 73.0 cm/s and 74.4 cm/s. Similarly, 2171 trials to achieve precision of 0.75%;
true mean is likely to be within 73.4 cm/s and 74.5 cm/s. Monte Carlo trials of 3270
yields 0.6% precision; true mean is likely between 73.8 cm/s and 74.6 cm/s. When a
computed mean of a Monte Carlo simulations is required to be expressed in terms of
a fixed relative or absolute precision, the method of predicting the desirable number
of iterations is useful. Alternatively, specifying the standard deviation of the mean

provides sufficient knowledge about the achieved convergence.

3500
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8 — +0.60 %
5 1000
©
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0 ' ' L
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Actual number of runs

Figure 5.12. Number of Monte Carlo iterations required for prede-
fined precision level. Example shown for AV,,;,, = 10 cm/s case with
Type A orbit determination error computed using the Floquet mode
approach (FMA). Precision is defined as a relative quantity with re-
spect to the estimated mean.

The station-keeping costs estimated with the Floquet mode approach serves as a
baseline solution for comparing with the target point approach with different weight-
ing matrix (), therefore precise estimation of the costs are desired. For computational

convenience, a standard 3500 Monte Carlo iterations have been used for all cases, re-
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sulting in precision within 0.75% for most cases (within 0.60% for some cases). For
comparative purposes, this is a suitable level of precision. The station-keeping costs
for 2 year mission are computed for different AV,,;, cases for both Type A and B

orbit determination errors and summarized in Table 5.3 and Table 5.4 respectively.

Table 5.3. Outcome of station-keeping simulation using the Floquet
mode approach for 2 year mission duration with Type A orbit deter-
mination error.

Total AV Std. dev. of Precision
AVinin Convergence
cost, {7} observations, {S,,} | (h/3x) x 100
[cm /] %]
[cm /] [cm /] K
5) 37.2 5.3 0.47 100
10 74.1 13.0 0.58 99.97
20 146.2 27.8 0.63 99.97
50 355.5 2.7 0.68 99.94
100 685.5 134.9 0.65 99.71

The station-keeping cost is one of the most vital data to analyze the mission.
The orbit maintenance costs increases with increase in the minimum applicable ma-
neuver, AV,,;,. The orbit determination errors have significant impact on the orbit
maintenance costs. As the ODE increases, as in Type B in comparison with Type A,
the station-keeping costs rises for all AV,,;, cases. For 3500 Monte Carlo iterations
to simulate the station-keeping process, relative precision for the results obtained is
lower than 0.7% for all cases providing very precise value of computed mean. For
almost 100% of the simulations, the spacecraft has successfully cruised through the
mission duration without deviating uncontrollably far from the reference orbit for
both the chosen orbit determination errors. The Floquet mode approach acts as an

effective algorithm for station-keeping.
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Table 5.4. Outcome of station-keeping simulation using the Floquet
mode approach for 2 year mission duration with Type B orbit deter-
mination error.

Total AV Std. dev. of Precision
AVinin Convergence
cost, {7} observations, {S,.} | (h/3x) x 100
[cm/s] 7]
[cm/s] [cm/s] K
) 65.37 9.04 0.46 100.00
10 102.76 13.52 0.44 99.97
20 188.76 24.56 0.43 99.94
50 454.53 72.91 0.53 100.00
100 893.47 159.77 0.59 99.94

Target Point Approach

The search span of the weighting matrix () that would reduce the station-keeping
cost using the target point approach has been streamlined based on potential ¢; values
obtained at each maneuver location computed using the Floquet mode approach.
Since the maneuver is planned only along the z-direction, the search region is reduced
to one dimension. The component of the weighting matrix that affects the maneuver
in the y and z-direction has been effectively chosen to be ¢y = g3 = 10%, to effectively
suppress any component of maneuver not directed along the line joining the primaries.
Furthermore, the value of ¢ is further curtailed from the range of possible ¢; values
obtained from the Floquet mode maneuver computation shown in Figure 5.7 and
Figure 5.8 for different AV,,;, cases. Different values of ¢; between 10'° and 10'® are
chosen and the station-keeping algorithm is performed using the target point approach
to estimate the total cost after 2 year mission duration. Parameters specified in Table

5.5 are used for the simulation.
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Table 5.5. Input specifications for station-keeping simulation using
the target point approach.

Model SEM Ephemeris
Station-keeping algorithm Target point approach
Mission duration 2 Years
AV,in [em/s] Variable
5, 10, 20, 50, 100
At i [days] 30
dyin, [km] 0
Terminating distance, 50000
dyaz (k]
Tracking interval [days] 2
Future position targets 1
Future velocity targets 1

Duration to future target point | 177.8645 (1P)

[days]
Orbit determination errors Type A, Type B
Halo orbit injection epoch January 13, 2020
() [dimensional] Diag (¢1, g2, q3)
e 1010 < ¢y <10
® g2, g3 = 10%
R JENE
Ry, I3x3

Precise station-keeping costs are sought for comparing the impact of each chosen
value of ¢;. As used for the Floquet mode approach, 3500 Monte Carlo runs are used
for the target point approach as well, to ensure that the precision in the costs obtained

are within 0.75%. For each value of ¢;, total costs for different AV,,;, conditions are
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computed for 3500 independent Monte Carlo iterations. The values obtained for each
combination of ¢; and AV,,;, are given in Table 5.6 and Table 5.7 for Type A and
Type B orbit determination errors respectively. A comparison of the values obtained
using the Floquet mode approach and each ¢; using the target point approach are
conducted and the results are displayed for Type A and Type B ODEs in Figure 5.13
and Figure 5.14 respectively.

An orderliness between ¢; component of the weighting matrix ) and the total
station-keeping cost is observed. When ¢; is between 10'© and 10'%, the cost com-
puted using the target point approach matches closely with the values computed using
the Floquet mode approach for all the AV, cases indicative of the efficiency of the
target point approach. The TPA method uses only simple computations yet finds
a value close to the one predicted by FMA method that utilizes the rich dynamics
of the system. For ¢; between 10'® and 10'®, the TPA method computes a station-
keeping cost lower than the FMA method initially and then increases rapidly. The
setup of the cost function signifies that a larger weight should effectively decrease
the individual maneuver cost, that is being applied in the case of TPA as well, as ¢;
varies between 10'° and 10'"?, the cost is being reduced consistent with the weights
and a decrease in the overall cost is observed. For Type A ODE, ¢; beyond 1075,
the algorithm does compute an extremely low maneuver at each individual location,
however, the maneuver executed is minuscule that the spacecraft it is not able to fully
recover from its deviated state, hence with time, the deviation increases exponentially
along the unstable orbit. With the rapid increase in the deviation, the corresponding
maneuvers computed also grows. Therefore, an overall growth in the total station-

keeping cost is observed for very large ¢;.

Figure 5.13 and Figure 5.14 suggests that ¢; between 10'¢ and 10'® is a poten-
tial region to identify the weighting matrix that may provide an efficient low cost

maneuver for the two types of ODE chosen for the simulation. The value of ¢; is
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Figure 5.13. Comparison of station-keeping cost estimated using the
Floquet mode approach (FMA) and different values of ¢; in the target
point approach (TPA) for different AV,,;, cases and Type A orbit
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Table 5.6. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type A orbit determination
error and ¢; between 10'° and 10*.

AV,in [em/s]
log(gq:1)
) 10 20 50 100
10 37.4 74.0 146.3 357.4 686.7
11 37.3 73.9 146.8 353.8 690.0
12 37.3 74.4 146.9 356.5 687.4
13 37.4 74.2 146.3 356.9 691.0
14 37.2 74.2 146.0 354.9 689.8
15 37.3 74.1 146.3 355.7 689.8
16 37.4 73.7 146.7 356.4 687.0
16.5 37.3 73.5 146.1 351.7 682.2
17 37.1 73.2 143.9 350.4 671.7
17.5 37.3 73.0 143.8 346.3 667.1
18 45.2 88.3 173.4 416.4 801.6

varied in multiples of 10°! to form 20 different intervals between 10'¢ and 10*® i.e.
10161 1062 ... 10'79 10'8°. Whether the step size should be further reduced to
have more conditions is determined based on the performance of multiples of 10%1.
Again, station-keeping simulations are conducted by performing 3500 Monte Carlo
simulations and the costs are estimated for different AV/,,;, cases for both Type A and
Type B ODE and the results are presented in Table 5.8 and Table 5.9 respectively.

The lowest recorded station-keeping cost for each AV,,;, case is underlined.

Investigation of Table 5.8 and Table 5.9 yields that the minimal value of station-

keeping costs for each AV,,;, case exists at distinct values of ¢;. No particular value of
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Table 5.7. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type B orbit determination
error and ¢; between 10'° and 10*.

AV,in [em/s]
log(gq:1)
) 10 20 50 100
10 65.2 102.6 188.5 453.1 893.0
11 64.7 102.8 188.0 452.7 893.3
12 65.1 103.2 188.5 452.1 896.9
13 65.0 103.1 188.7 450.2 897.0
14 65.3 103.0 188.8 453.0 895.6
15 65.2 103.0 188.2 453.4 895.2
16 65.1 102.8 188.6 451.4 890.3
16.5 64.8 102.8 188.1 448.1 890.8
17 64.5 102.9 187.8 449.5 882.7
17.5 64.5 101.6 184.7 440.5 866.6
18 67.2 107.6 194.0 451.1 878.5

q1, results in the minimal solution that satisfies all cases tested. Different curve fitting
methods are tested but none of them yields the same ¢; that satisfies the minimal
AV,,.in for all cases. The lowest case for each AV,,;, is underlined in Table 5.8 and
Table 5.9. Some better approach needs to be applied to select a right ¢; that would
deliver the lowest station-keeping costs for majority number of cases. The fundamen-
tal aim is to determine a ¢; that provides the least cost for the most number of cases.
Furthermore, an absolute decrease in the total cost is also as crucial as a relative
decrease in maneuver cost. The change in the total cost computed for most of the
values of ¢; vary not more than 1-2%. For example, consider case 1 where AV},;,=5

cm/s for Type A, the lowest maneuver cost of 36.9 cm/s is predicted for ¢; = 10171,
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Table 5.8. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type A orbit determination

error for refined values of 106 < ¢; < 10%8,

AViin [cm/s] Sum
log(q)

5 10 20 50 100 [cm/s]
16.1 37.2 73.7 146.3 350.5 684.5 1292.3
16.2 37.1 73.3 146.6 351.8 687.3 1296.1
16.3 37.3 74.1 144.8 355.3 685.9 1297.4
16.4 37.2 74.2 145.4 355.6 683.8 1296.2
16.5 37.3 73.5 146.1 351.7 682.2 1290.7
16.6 37.1 73.7 147.2 352.7 678.4 1289.0
16.7 37.1 73.7 145.3 352.0 682.0 1290.1
16.8 37.2 73.4 144.8 352.6 675.5 1283.4
16.9 37.1 72.5 146.4 348.8 676.4 1281.3
17.0 37.1 73.2 143.9 350.4 671.7 1276.3
17.1 36.9 72.8 144.7 349.1 675.2 1278.7
17.2 36.9 72.8 144.0 347.9 669.1 1270.8
17.3 37.1 2.7 143.7 344.3 666.6 1264.4
17.4 37.1 73.1 142.9 343.6 663.7 1260.3
17.5 37.3 73.0 143.8 346.3 667.1 1267.4
17.6 37.9 74.0 145.4 351.2 669.5 1278.0
17.7 38.8 75.8 149.3 356.5 687.9 1308.3
17.8 40.2 78.7 156.2 369.8 710.8 1355.6
17.9 42.2 83.0 162.6 390.6 747.1 1425.4
18.0 45.2 88.3 173.4 416.4 801.6 1524.9
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Table 5.9. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type B orbit determination

error for refined values of 106 < ¢; < 10%8,

AViin [cm/s] Sum
log(q1)

5 10 20 50 100 [cm/s]
16.1 65.0 103.4 188.4 450.7 895.0 1702.5
16.2 65.2 103.1 186.9 450.5 894.4 1700.1
16.3 64.7 102.7 189.0 448.6 892.1 1697.1
16.4 65.1 103.3 188.8 448.3 888.9 1694.4
16.5 64.8 102.8 188.1 448.1 890.8 1694.6
16.6 64.9 103.0 188.8 452.0 887.8 1696.4
16.7 65.2 102.9 186.9 450.4 889.7 1695.0
16.8 65.0 102.2 187.3 446.9 884.8 1686.3
16.9 64.9 102.7 187.8 449.1 886.1 1690.4
17.0 64.5 102.9 187.8 449.5 882.7 1687.4
17.1 64.8 102.1 187.3 446.2 873.9 1674.1
17.2 64.4 101.9 187.2 444.0 874.9 1672.3
17.3 64.3 101.9 184.5 440.5 870.8 1662.0
17.4 64.6 101.7 185.7 442.2 866.4 1660.6
17.5 64.5 101.6 184.7 440.5 866.6 1657.9
17.6 64.3 102.3 185.1 436.4 857.0 1645.0
17.7 64.4 102.2 186.3 436.2 849.0 1638.1
17.8 64.6 103.3 187.3 438.5 856.3 1650.0
17.9 65.6 104.5 188.9 441.8 859.8 1660.7
18.0 67.2 107.6 194.0 451.1 878.5 1698.4
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A marginal increase in cost is predicted for ¢; = 10'"* in comparison to the former
case. In absolute terms the increase is 0.2 cm/s and relatively this is 0.59%. Similarly,
case 2, where AV,,;,=100 cm/s for Type A, the lowest maneuver cost of 663.7 cm/s
is predicted for ¢; = 10'™*. A marginal increase in cost is predicted for ¢; = 1073
by 2.9 em/s i.e. 0.44%. Although relative change in case 1 was higher than in case
2, absolute change in case 2 is much larger than in case 1. Minimizing the absolute
value is a viable option. To have an absolute decrease in total maneuver cost, it is
better to identify a value of ¢; that diminishes larger station-keeping costs, typically
for larger AV,,;, cases. A simple technique is to compute the sum for all cases against
each ¢, that are provided in the last columns in Table 5.8 and Table 5.9. Although
the sum has no physical significance, bias is created towards the larger values than
the smaller values when performing summation. The ¢; corresponding to the overall
smallest sum potentially gives the best performance. The smallest sum in under-
lined for presentation. The plot between each ¢; value and the corresponding sum

is presented in Figure 5.15 and Figure 5.16 for Type A and Type B ODE respectively.

Total AV cost
[cm/s]

16 16.5 17 175 18
log(d,)

Figure 5.15. Comparison of station-keeping cost estimated for differ-
ent values of ¢; between 10'¢ and 10'° in intervals of 10%! using the
target point approach (TPA) for different AV,,;, cases and Type A
orbit determination error.
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Figure 5.16. Comparison of station-keeping cost estimated for differ-
ent values of ¢; between 10'® and 10'° in intervals of 10%! using the
target point approach (TPA) for different AV},;, cases and Type B
orbit determination error.

Clearly, ¢, = 10" provides the best station-keeping cost for Type A ODE while
q1 = 1077 provides the best station-keeping cost for Type B ODE but it is observed
that with increases in the value of ¢;, the maneuver magnitude in the corresponding
direction is reduced. Very small maneuvers are generally not capable of maintaining
spacecraft close to the nominal orbit for a longer duration as it experiences exponen-
tial drifting. The value of ¢, = 10'"* for Type A and ¢; = 10”7 for Type B can
only be considered if at such values, the spacecraft does not experience large drifting
away from nominal trajectory. Otherwise, by the end of the mission duration, the

spacecraft would have diverged uncontrollably.

The choice on further refining ¢; is analyzed from the values in Table 5.8 and Table
5.9, where the difference between the costs computed for any two successive ¢; value
separated by multiple of 10%! is not larger than 1% except in very few cases. Reducing
the step size for more intermediate values therefore, would not necessarily provide any
relevant information. Using more computation for finding intermediate values may

not be worth. If computational expense is not a concern, performing more Monte
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Carlo simulations would be a better choice at each of 1061 1062 ... 107 1080

to find more confident values, rather than finding lot of points with poor precision.

5.4.4 Drifting of Spacecraft from the Nominal Path

The cost function in the target point approach is defined, such that it accounts for
both the size of maneuver AV and the isochronous drift from the nominal trajectory.
The weighting matrix () has considerable but indirect impact on the drift. A smaller
value of () in general, allows the isochronous drift to be the more dominant term of
cost function. To reduce the cost function, the algorithm computes a maneuver to
minimize the drifting of spacecraft away from the nominal orbit. Alternatively, a large
value of () would effectively compute a low maneuver at the expense of less control on
the drift. The spacecraft is thus, highly likely to drift away from the nominal orbit,
primarily, because the maneuver computed is minute to be not able to overcome the

diverging effect caused due to uncertainties due the orbit determination error.

In the case of z-control maneuver scheme, ¢ and ¢3 i.e. the second and the third
diagonal elements that controls the maneuver in the y and z-direction are set to be
very high that almost no maneuver is computed in y and z-direction. Any errors
in the out of plane direction is unlikely to diverge as no perturbing bodies exists
along the out of plane direction. Additionally, the station-keeping maneuvers along
the z-direction is shown to effectively maintain the spacecraft throughout the mission
duration, hence the perturbations along the y-direction at any instant is believed to be
correctable using some x-direction maneuver at any later time. The only free variable
is q1, hence the divergence characteristics should depend greatly on ¢;. Besides, due
to the presence of large gravitational forces acting especially along the z-direction,
any untreated errors will cause the spacecraft to diverge. It is evident from the results
presented, that ¢; impacts the maneuver being applied, thus, controls the drifting.

At larger values of ¢;, as the maneuver magnitude is suppressed, the algorithm may
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struggle to efficiently overcome the drifting away of spacecraft, therefore, larger ¢

values for station-keeping may be inferior.

For Type A ODE, a low station-keeping cost was detected near values of ¢; = 1074
but the adoption of ¢; = 1074 depends greatly on the divergence behavior. Differ-
ent values of ¢; between 10'° and 10 are analyzed to understand the divergence
characteristics. The analysis is extended for different AV/,,;, cases. Same conclusion
is valid for Type B ODE. Continuous spacecraft tracking data reveals the deviation
characteristics of the spacecraft throughout the mission duration. A 100 Monte Carlo
simulation for each value of ¢; is performed and the isochronous deviation for dif-
ferent AV, cases for Type A and Type B ODE is plotted as a function of time in
Figure 5.17 and Figure 5.18 respectively. Each ¢; is color coded separately for visual
assistance. At high values of ¢; the deviations are larger. For few cases, for example,
AVppin = 100 cm/s, q¢; = 10, the deviation exceeds 50000 km that is the terminat-
ing drift, hence no converged solutions are obtained. For each ¢;, the trend in the
deviation are similar. It undergoes an oscillatory behavior that increases with time.
The peaks in the plot correspond to the x — z plane crossings where the magnitude of
velocity becomes higher in comparison to other regions of the periodic orbit, causing
more drift. Besides, for large ¢; values, the deviation is large, but clear depiction of
the deviation at the intermediate ¢; values are not distinct from Figure 5.17 and Fig-
ure 5.18. To overcome this challenge, the average deviation for each ¢; computed over
100 Monte Carlo simulations at the final time is presented. For better realization,
the deviation at the end of mission duration is presented in distinct color gradients

in Figure 5.19 and Figure 5.20 for Type A and Type B ODE respectively.

The effectiveness of different ¢; values for station-keeping is portrayed in Figure
5.17 and Figure 5.18 through the mean deviation at the end of the mission duration
i.e. 2 years for the two chosen ODE and different AV,,;, cases. For all the AV,

cases, ¢1 between 10! and 10 show divergence behavior of almost the same order,
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Figure 5.17. Deviation of the spacecraft from the reference orbit for
different values of ¢; using the target point approach (TPA) for dif-
ferent AV,,;, cases with Type A orbit determination error. Deviation
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Figure 5.18. Deviation of the spacecraft from the reference orbit for
different values of ¢; using the target point approach (TPA) for dif-
ferent AV},;, cases with Type B orbit determination error. Deviation
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Figure 5.19. Mean deviation at the end of mission duration estimated
for different values of ¢; using the target point approach (TPA), for
different AV,,;, cases and Type A orbit determination error. Mean
computed for 100 independent Monte Carlo iterations.
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Figure 5.20. Mean deviation at the end of mission duration estimated
for different values of ¢; using the target point approach (TPA), for
different AV,,;, cases and Type B orbit determination error. Mean
computed for 100 independent Monte Carlo iterations.
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that remains close to the nominal trajectory, while ¢; larger than 10 seems to be
inefficient in maintaining the spacecraft near the desired orbit, hence with time the
deviation grows rapidly. Since a slow divergence is predicted for ¢; = 10*74 for Type

A ODE and ¢; = 10'"7 for Type B ODE, that provided the least station-keeping

costs, the value of ¢; can be chosen for further enhancements or for final use.

5.4.5 Effect of Weights on Future Position and Velocity Targets

The target point approach for station-keeping is driven by the defined cost func-
tion that weighs the magnitude of maneuver and the deviation in position and velocity
states at some future time. Based on correlation between TPA and FMA, the future
target points are considered to be exactly one period downstream. The weighting ma-
trix ) that directly controls the magnitude of maneuver has been analyzed for both
the orbit determination errors chosen for the station-keeping simulation to identify
the values that yields in the lowest annual cost. Since the Floquet mode approach
weighs is not biased towards position deviation and velocity deviation states, the
matrix R and Ry that weights future position and velocity targets respectively, were
considered to be identity, I. Since R and Ry are technically free variables, there is
scope to analyze the effect of components of matrices R and Ry on the station-keeping
costs, by not considering /. Similar to the process adopted for analyzing matrix @,
grid search is performed at each of the maneuver location to identify a certain pat-

terns that can be utilized to further reduce station-keeping costs.

To analyze the weighting matrix R that accounts for the position deviation at

the future time, at every maneuver location, different combinations of R matrix are
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used to compute the maneuver keeping () and Ry, fixed. Let the positive semidefinite

matrix R be represented as

rn 0 O
R=10 7 0 (5.36)
0 0 75

where, 7, weights the position deviation along z-direction, 7y along y-direction and 73
along z-direction. The value of the selected @) matrix is diag(10'74, 1025, 10?°) for Type
A ODE and diag(10'77,10%,10%) for Type B ODE, in the dimensional units. Ex-
pressed in non-dimensionalized units,  matrix is diag(1.0 x 10*,4.0 x 10!, 4.0 x 10*)
for Type A ODE and diag(2.0 x 10%,4.0 x 10",4.0 x 10'!) for Type B ODE. The
matrix Ry is assumed to be I in non dimensional units, while performing the analysis
on the effects of matrix R. At every maneuver location, the value of R, that is a
non-dimensional unit by itself, is selected as a combination of 71, 7y and 73 that are
varied from 107° to 10° and the corresponding maneuver cost is recorded for different
AV, cases. The four-dimensional array consisting of 71, 79, 73 and AV are presented
as a three-dimensional space of 71, 75, 73 with the 4th dimension, AV color coded for
visual assistance. The results are presented in Figure 5.21 for different AV,,;, cases.
Unlike Figure 5.1 where the effects of () matrix was analyzed, no specific trend is
observable. The chosen range of values of 7; seems to be sufficient to include range
of maneuver magnitudes possible but the range of achievable maneuver magnitudes
are very narrow in comparison to the range of maneuver magnitudes achieved by
varying () matrix. Due to the lack of any specific pattern in the occurrence of low
maneuver magnitude region and the extremely narrow range of maneuver magnitudes
achievable, it may not be worth to spend intense computational resources to iden-
tify another value of R that may marginally alter the station-keeping costs predicted
using an identity matrix, which is indeed not guaranteed. The use of Monte Carlo
process results in uncertainty in the measurement of the mean station-keeping cost.
It is not guaranteed that altering the value of matrix R, from identity, will result in

station-keeping costs lower than the uncertainty in measurement. Therefore, for this
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work the value of R is allowed to remain as I, however, for other orbits if definite

pattern is observable then R can be analyzed and enhanced.

-
s 53 11.06
SIS 11.04
e 5.28 = :
Sessaaasen : =
S _— S 11.02
~ = = SRR R
© 526 = SSS==== 11 £
& £ Sesese e £
S S S S
K = S 10.98 =
=2 524 5 S =1
m—_—
“‘:‘:‘:’::‘:‘::‘:‘::‘:':" = 522 10.96
=
ST ' = B 10.94
S = %
= - == 102
= ’ :
=
log(iz) ° o X 109
5 5 log() 5 5 log(y) 5 .5 log(#,)
AVpin 5cm/s (#1) AVin 10 cm/s  (#1) AVin 10 cm/s  (#2)
13 e 109
SRS
22.05 SRS
- SO
=== g T L | g
= 5 5| = 1085 5
S 12955 | & 4 855
2 3 S & N
E S| - — S
SOCSSOSS
e 10.8
21.95 12.9 e 3 :
0 5
log(72)
21.9 = 12.85 10.75
55 log(7) 55 log(7) 55 log(f)
AVpin 20 cm/s  (#1) AVin 10 cm/s  (#3) AVin 10 cm/s  (#4)
56.4 103.6
5 548
103.4
~ 563 2| ~ 2| A 3
:;,: 0 g § 54.6 £ § 103.2 £
o =} i=}
< S| = > = 103 3
. < < <
562 54.4
5 102.8
5 56.1 542 1026
0 5 56 5 5 102.4
log(7y) log(#) 54 log(#)
2 0 2 : 0 102.2

55 log(#4)

AVin 50 cm/s  (#1)

5 5

log(#y)

AVin 50 cm/s  (#2)

S5 log()

AVpin 100 cm/s

Figure 5.21. Variation in maneuver magnitude for different R matrix
combinations for different AV,,;, cases. Each individual plot is for
an arbitrary maneuver location. The symbol ‘#’ indicates sequential
numbering for a particular AV,,;, case.

(#1)



140

Similar to analyzing the weighting matrix R, the wighting matrix Ry that accounts
for the velocity deviation at the future time is analyzed. At every maneuver location,
different combinations of Ry matrix are used to compute the maneuver keeping @)

and R fixed. Define the positive semidefinite matrix Ry as

rviy O 0
Ry=10 #yg O (5.37)
0 0 7ys

where, 7y weights the velocity deviation along z-direction, 75 along y-direction and
Tys along z-direction at the future target time. At every maneuver location, the
value of Ry, in non-dimensional units, is selected as a combination of 7y, Tyo and
T3 that are varied from 1075 to 10° and the corresponding maneuver cost is recorded
for different AV,,;, cases. Like the case of R, the four-dimensional array consisting
of Tv1, Fya, Tys and AV are presented as a three-dimensional space of with the 4th
dimension, AV color coded for visual assistance. The results are presented in Figure
5.22 for different AV,,;, cases. Although distinct patterns are visible, they are not
very prominent. Low values of 7y; within the domain indicates lower maneuver costs,
while larger values seem to increase the maneuver magnitudes. Although the chosen
domain for 7y; seems to be sufficient to cover most maneuver magnitudes possible
and present the distinct pattern, the range of achievable maneuver magnitude is very
narrow in comparison to the range of maneuver magnitudes achieved by varying @)
matrix. The selected value of ) already estimates station-keeping costs marginally
lower than that estimated using the Floquet mode approach, hence the chance of
decreasing orbit maintenance costs significantly lower is very slim. The fact is that the
overall cost may or may not change by altering the value of Ry, matrix, that produces
marginal change in individual maneuver cost, hence additional computational effort
only to have a probability of detecting a marginally smaller station-keeping cost, does
not seem appropriate. The value of Ry is therefore chosen as [ for this work. For

other cases, if the possible decrease in maneuver magnitude is significant and occurs in
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a specific pattern then it may be worth investing additional computational resources

to reduce the annual station-keeping cost.
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6. CAUCHY GREEN TENSOR STATION-KEEPING
STRATEGY

The concept of continuum mechanics deals with the flow of materials as a continuous
volume. Cauchy Green tensor is used commonly in the area of continuum mechanics
to portray the flow characteristics in different directions. To one’s advantage, Cauchy
Green tensor can also be used for station-keeping by utilizing the flow characteristics
of a reference trajectory. The dynamical flow in the vicinity of a reference or a
baseline trajectory depict the imaginary flow of a material volume in a given time
duration [49]. The local deformation or the strain generated in the material volume is
realized by the Cauchy-Green strain tensor (CGST) or commonly the Cauchy-Green
tensor (CGT).

6.1 Cauchy-Green Tensor

The Cauchy Green tensor as well as the state transition matrix yields the dynam-
ical flow characteristics in the vicinity of a reference solution. While the STM relates
the variation of each individual states over time, the CGT relates the transforma-
tion of perturbation emulated by a material volume over time. The state transition
matrix, ¢, relates the flow in the vicinity of a baseline trajectory by mapping initial

perturbation, 0%y, to the final perturbed states, 07, as a linear correlation i.e.
(Sff = ¢(tf, to)dfo (61)

where, ty and t; are initial and final epochs. The CGT, or for mathematically sim-

plicity represented as ‘C’,

(C(tfﬂ tO) - ¢T(tf7 t0)¢<tf= tO) (62)
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defines the deformation as product of transpose of the state transition matrix, ¢, with
itself. Physically, CGT renders the square of magnitude of final deformation to the

initial deformation as

1624||* = 0z} 0x = 679" (t5,t0)d(ts, t)0To 63)
— §ETC (¢, t0)5T0 '

obtained by squaring equation (6.1). The growth or decay of the quantity [|0z||?
describes the sensitivity of the trajectory to initial perturbation, 6zy, however, when
the size of an initial perturbation is undefined, the sensitivity information can be
directly extracted from CGT. The eigen-decomposition of CGT or the singular value
decomposition of STM yields details about direction and magnitude of stretching.
Moreover, in a multi-eigenvalue system, the positive definite matrix, CGT, indicates

a better behavior for numerical computation than a regular STM [69].

The flow of the perturbation, emulated by a material volume is characterized pri-
marily by magnitude and direction of elongation. The flow of any system can be
understood either using the eigendecomposition or singular value decomposition of
the corresponding matrices. The eigendecomposition of the CGT, yields eigenvalues
A; and eigenvectors V;. For a linear system, the contraction or expansion of the
local phase space is given by o; in the direction given by V;. Note that o; =+/A;.
The singular values decomposition (SVD) of the STM, reveals the same critical de-
tails about the flow in the phase space but with additional direction information.

Mathematically, STM is decomposed to matrices, U, ¥ and V, such that,

USV* = ¢ (6.4)
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where, the columns of U gives the direction of stretching at the final epoch. For
a square matrix, ¢, ¥ is a diagonal matrix with the magnitude of stretching along

different directions in the ascending order i.e.

01

02

On

such that, o; > 09 > ... > 0,. The matrix V provides the principal direction before
stretching. The matrices > and V essentially provides the same details acquired
using an eigenvalue decomposition, while U is an additional information captured
using singular value decomposition [70]. The matrices U and V are orthonormal. The
Figure 6.1 reveals how SVD relates the direction of principal axis before and after
propagation, as well as the magnitude of contraction or expansion with the example
of a two-dimensional system. Consider a unit circle in the phase space near an initial
reference which undergoes deformation and evolves into a stretched ellipse. The
evolution of this unit circle to an ellipse is a combination of translation and rotation.
The matrices U and V provides the rotation information while the matrix 3 provides
information about translation. The columns of matrix V represented by V; indicates
the direction of principal axis on this unit circle which evolves into U; (columns of
matrix U). The diagonal elements of matrix ¥ or o; indicates the stretching along
corresponding principal directions. The eigenvalue decomposition and the singular
value decomposition fundamentally provides the same information except that the
later is a more elegant representation of the dynamical flow. Any of these methods
can be used to linearly approximate the attainable region in the vicinity of a reference

trajectory. The CGT station-keeping strategy uses the same principle.
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Figure 6.1. Singular value decomposition of a two-dimensional system.

6.2 Cauchy-Green Tensor Station-keeping Strategy

A spacecraft without a maneuver on a libration point orbit tends to deviate from
its desired path because of their highly unstable nature and limitations of accurate
orbit determination process. A station-keeping technique ensures that maneuvers
are executed at regular intervals to maintain the spacecraft in the vicinity of the
baseline/nominal trajectory. Ideally, it is expected that the spacecraft meet a target
condition Z7, generally the states of the baseline trajectory, after some horizon time
T}, from the current time ty. Due to perturbations or deviation from the nominal
orbit, Z7 may or may not be achieved, but at-least a solution close to Zr is achieved

by having the information about the nearest attainable state.

The Cauchy-Green tensor station-keeping strategy uses the geometry of the phase
space to compute a corrective maneuver. The CGT approach tracks the evolution of a
physical continuum attributed as attainable region, at some epoch time ¢y separated
by a horizon time T}, i.e. t; = ty + T}, for a set of known finite initial velocity
perturbation as demonstrated in Figure 6.2. A point in the attainable region closest
to the target condition, Zr, is chosen to compute the maneuver. A fixed maneuver

magnitude, AV),, at the initial time stretches the attainable region to € at time ¢;.
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In the phase space, € is a six-dimensional ellipsoid. Mathematically, the attainable

region on the six-dimensional ellipsoid is expressed as,
c={x| k-0 Qx—0) =1} (6.6)

where ¢ is the center of the ellipsoid while Q = USU? is a symmetric positive semidef-
inite matrix that gives information of the radius of the ellipsoid in their principal
directions. The matrix U is determined by the singular value decomposition of the

state transition matrix while the matrix S,

1/o}

1 2
S = (SAVy) 2 = /o2 . AV ? (6.7)

1/§

is the inverse square of the radii of the attainable ellipsoid region in all the six di-

mensions.

I:l Attainable Region

—— Reference Trajectory *o;U; = qb(tf, tO)Vl-

Figure 6.2. Attainable region computed using the Cauchy-Green tensor.
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The goal of the CGT station-keeping process is to target position and velocity
states along the baseline trajectory at regular intervals to secure the spacecraft path
close to the baseline path. Let the point Zr be a state on the baseline trajectory
that acts as a target condition to compute a maneuver. For a fixed maneuver size
AV, an attainable ellipsoid region ¢ is computed using the CGT information. It
might be challenging to attain the exact states at z7, but the point closest to 7 on
the attainable ellipsoid € should serve the same purpose, provided that the tolerance
is low. The point X* on this ellipsoid closest to the target state, zr, satisfies the
following condition,

x* = arg min(X — ZIr) (6.8)

Xee
where all possible values of X are the solutions to €. The computed point X* is the
closest point to the target state Zr, but it may be overshooting or undershooting
the desired target state. Since the aim is to achieve the state that almost exactly

reproduces the target state, further refinement to the value of X* is required.

The geometry of the attainable region is capitalized to compute an increase or
decrease in the size of maneuver. Define *D* as the distance from the center of the
ellipsoid ¢, to X* while *D7 as the distance from X* to the target z7 and ¢D7 is the

distance from the center, ¢, to target, z7 to complete the triangle i.e.

‘D*="D°=||x* — ¢ (6.9)
DT =TD* = ||x* — z7| (6.10)
‘DT =TD = ||z — €| (6.11)

where each scalar distance ‘D7 = 7D for i,j € {c,*,T}. Once the sides of the
triangles are fixed, the relative location of ¢, x* and z” is unique. For reference, the
so formed triangle between ¢, X* and z! can be called as maneuver feedback triangle,
as the geometry of this triangle decides a change in the size of the maneuver. If

¢DT > ¢D* then the size of the maneuver is not sufficient to achieve the target state
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and hence an increase in size of maneuver is required. The magnitude of maneuver

AV, is increased from the previous value either using the relation
AV = AV + AViin (6.12)

where the increment in maneuver magnitude is a step function of size AV,,,;, or using
the relation

AV = AV (°DT /°D*) (6.13)

that manipulates the dimensions of the maneuver feedback triangle to compute an
increase in the size of the maneuver. Similarly, if ¢DT < ¢D* then the size of the ma-
neuver causes overshooting the target state, hence a decrease in size of maneuver is
required. Again equation (6.13) is used to decrease the size of the attainable region in
the required proportion. Since the geometry is not linear i.e. X* does not necessarily
lie between ¢ and Z7, a single increment or decrement of the maneuver size may not
be sufficient to result in achieved closest state X* to almost overlap z”, nevertheless
the distance * DT diminishes every iteration. The size of the ellipsoid or the size of the
maneuver is refined till the required tolerance level is achieved. The target tolerance
can be defined as scalar quantity er, such that if *DT < ep, it can be assumed that
the achievable state X* is almost exactly equal to the desired target zr with tolerance

of er. Figure 6.3 illustrates the different possible scenarios of maneuver refinement.

Once the final achievable state X* is determined, it is desired to compute the
corresponding maneuver. [llustrated in Figure 6.4, each point on the six-dimensional
ellipsoid, €, has a corresponding initial condition represented as a six-dimensional
state vector, as a result, X* corresponds to a point, z; at t = 0, that would drive the
spacecraft to X* at time ty. In other words, the actual initial state 7y at t = 0 if
continued would reach the final state Z; at time ¢y. The vector Z; is also the center
of the ellipsoid represented as ¢. In order to reach a different state X* at t = ty,

the required condition is z; at ¢t = ¢y. Since Z; (same as ¢) is not equal to X*; the
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(a) Magnitude of maneuver not suffi- (b) Excess maneuver.  De-

cient. Increase maneuver size. crease maneuver size.

Figure 6.3. Refinement of attainable region produced using CGT.

vectors To and Z; are not the same. The difference between the vector z; and Zg is

the required initial perturbation vector achieve x*.

Xr
¢ (tO' tf ) o’ T ;
______ -
\\\\\ ~~~~~~ ’ET
Reference
Trajectory
e C= ff

* ¢(t0' tf) = ¢_1(tfﬂ tO)

Figure 6.4. Required initial perturbation to achieve state on the at-
tainable region nearest to the target state.
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The difference between the state vector z; and Z, are both in terms of position and
velocity, however, using an impulsive maneuver only the change in velocity states can

be achieved. If a perfect solution existed, the corresponding maneuver AVj, should

satisfy
—% — 6 ¢TT’ qu'U ()
X' =0 =oltp,to) [ | = _ (6.14)
AVVM gbvr ¢UU AVM
Y Dro| - .
Do
where A = | | is a 6 x 3 matrix. In general, this is an overdetermined system with

Do

no perfect solution, therefore, a solution with pure velocity change will have some

error. A least squares method [71] produces a possible solution
AVy = (ATA) T AT (2" - @) (6.16)

with the minimal error. Ideally, a position perturbation as well as a velocity pertur-
bation at initial time is required to almost exactly attain the target state. Due to
impractical position perturbation, the nearest possible attainable state is achieved by
the computed AVy,. The details of this process is elaborated in Figure 6.5 using two
major steps. (1) Firstly, the state X* on e closest to the target state Zr is mapped
back to the initial time to determine the actual perturbation required to achieve x*,
that are in terms of both position and velocity perturbation. (2) Since position per-
turbation is practically not achievable, the second step determines the best possible
alternative in terms of pure velocity perturbation i.e. the maneuver AV, using a
least square projection. The computed maneuver, void of any errors, drives the tra-
jectory towards a new achievable state 37:3[ that is in close vicinity to desired X* or Zp.
Based on the limitation of not achieving the exact target state, regular maneuvers
are required to ensure that the spacecraft transits in close vicinity to the reference
trajectory. An impulsive maneuver AV}, is implemented along with station-keeping
execution errors and thus a new initial condition is generated. The new states are

propagated and the process is repeated till the end of mission duration.
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§-Velocity 6-Velocity . OXr €y

d-Position

0-Position

Figure 6.5. CGT station-keeping method; maneuver computation us-
ing projection of required perturbation on to the velocity subspace.

Similar to the one noted by Guzzetti et al. [72], Figure 6.6 summarizes the station-
keeping process in concise steps. (1) The current state, Zy, and target state, Zr, is
defined. (2) The current state is propagated for time ¢, till it reaches ;. (3) Using
CGT or STM, for a chosen value of AV}, the attainable region is computed. (4)
The point on the attainable region closest to the target state is selected. Further
refinements as explained are conducted till the required tolerance is achieved. (5) The
point X* that is closest to the target state is mapped back using STM information to
find the necessary initial condition required to achieve close proximity to Zr at t;.

(6) Corresponding maneuver AV}, is procured using least square method.

A linear approximation of the attainable region may be less accurate for a very
large AV),. Further, an increase in the horizon time will result in more stretched
g, consequently, modeling the attainable region as a linear approximation may not

be reasonable. Additional parameter that can affect the performance of this station-
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Figure 6.6. CGT station-keeping maneuver computation scheme.

keeping technique is the size of the scalar target tolerance, er. Too low value of ep
will enforce the algorithm to compute X* almost equal to the exact target state Zp
more accurately, that may be difficult to achieve. Similarly, larger value of ey may
indicate larger separation between x* and z’. It becomes challenging to decide the

right size of the target tolerance, er. The following sections explores the performance
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of CGT station-keeping technique with varying sizes of AV}, different horizon times,

T}, and target tolerance, er.

6.3 Effect of Target Tolerance, Horizon Time and Maneuver size

The principle of the Cauchy-Green tensor station-keeping method is to utilize the
flow characteristics of the reference trajectory to compute a corrective maneuver, by
accessing states on the attainable region at a future time closest to the desired target
state. The main hypothesis behind the use of CGT is that the accessible region is
computed by linear approximation of flow dynamics near the reference trajectory.
The nominal path or the periodic orbits computed either in the CR3BP model or the
Ephemeris model are nonlinear, hence, linear approximation may deteriorate over
time as well as larger perturbation levels. Essentially, the horizon time and size of
maneuver may impact the performance of the CGT method for station-keeping. The
CGT method predicts an attainable region which is a six-dimensional ellipsoid at
some horizon time downstream. With increase in time, the non linear characteristics
become more dominant, therefore the ellipsoid approximation may not hold reliable.
The evolution of the attainable region with horizon time is illustrated in Figure 6.7
as red ellipsoids. With increase in horizon time, the bending of the ellipsoid region is
apparent, indicating that the linear approximation is deteriorating. Similarly, the in-
crease in the size of the maneuver magnitude is comparable to the flow due to a larger
perturbation. The accuracy of the linear approximation of the flow decreases as the
perturbation increases, therefore, a larger maneuver size may essentially downgrade
the performance of CGT, that is linear estimation of the attainable region. The phe-
nomenon is demonstrated in Figure 6.8 where for a constant horizon time of 1P, the
attainable region digresses from its ellipsoid shape with increases in the size of ma-
neuver. Another potential challenge is the size of the target tolerance, that is a scalar
quantity to judge whether the maneuver feedback triangle requires any additional

refinement. Typically a low value of target tolerance will cause more refinement of
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the maneuver feedback triangle, increasing the computational expense. Alternatively,
a large value of target tolerance may degrade the performance of CGT method for
station-keeping and result in larger annual costs. The causes and the impact of the
three potential challenges including horizon time, size of maneuver magnitude and

size of target tolerance are explored.

6 X 10
135 days
4_
— 2-
£
©
£ ol 90days
= 0 P X l
Ly
2
4t 60 days = /45 days
0.985 0.99 0.995
X [ndim]

Figure 6.7. Specific example of variation in attainable region for AV
= 100 cm/s over different horizon time. The attainable region in
configuration space is marked as red ellipsoid.

The three potential challenges discussed here i.e. horizon time, size of maneuver
magnitude and size of target tolerance are not mutually exclusive hence indepen-
dent studies may not be profitable. The parameters are inter dependent and hence
combinatorial studies are performed. A three-dimensional grid as described in Fig-
ure 6.9 provides potential combinations of the three parameters used to explore the
performance of the CGT. At a time, one parameter is fixed, and the impact of the
remaining two parameters are studied. The combinations are then altered to get a
better understanding of the impact of all the three parameters on the station-keeping

costs and computational time. For the studies, horizon time of 45, 60 and 90 days
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Figure 6.8. Specific example of variation in attainable region for AV
of size 5 cm/s, 20 cm/s and 50 cm/s over constant horizon time of one
period (1PP). The attainable region in configuration space is marked
as red ellipsoid.

are considered, while the size of the maneuver is controlled by introducing AV,
constraints of 5, 10, 20, 50 and 100 cm/s. The value of the scalar target tolerance is
considered between 10~7 and 10~% assuming that the selected range does contain the

factual values, which will be assessed later.
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Figure 6.9. Three-dimensional grid for potential combinations of hori-
zon time, size of maneuver and target tolerance to explore perfor-
mance of CGT station-keeping approach.

6.4 Preliminary Results

6.4.1 Station-keeping Outcomes for various combinations of Horizon Time,
T}, size of Minimum Executable Maneuver, AV,,;,, and Target Tol-

erance, e

The horizon time T}, size of minimum executable maneuver AV,,;, and target tol-
erance e are the three important parameters that can influence the performance of
the Cauchy-Green tensor station-keeping process, mainly the orbit maintenance costs
and the computational expense. A three-dimensional grid as discussed provides poten-
tial combinations of the three parameters that are used to simulate a station-keeping
scenario. The outcomes including station-keeping costs and computational expense
estimated for different combinations of the parameters within the grid provides the
impact of these parameters on the CGT method performance. The station-keeping

cost estimated for each of the cases are measured in cm/s while the computational
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expense is measured as the ratio of the computational resources used compared to
a baseline value. The computational expense is inclusive of computational time and
number of processors used for Monte Carlo simulation. The baseline value corre-
sponds to the outcome of Type A ODE with horizon time 45 days, AV,,;, = 10 cm/s
and ey = 107°. Computational expense computed for all cases with Type A as well

as Type B ODE are compared to this specified baseline value.

A way to analyze the effect of the three parameters, horizon time T},, size of
minimum executable maneuver AV, and target tolerance ey is by maintaining a
fixed value of horizon time and varying the size of AV,,;, for different values of er
between 10~7 to 1073, Figure 6.10 and Figure 6.11 provides the variation in station-
keeping cost with respect to er for fixed values of T}, and different AV,,,;, case, for Type
A and Type B ODE respectively. For both type of ODE, the station-keeping costs for
fixed horizon time and AV,,;,, almost seem to remain unchanged over different values
of er. The constant station-keeping cost predicted is the result of the functioning of
the algorithm that computes an almost accurate maneuver in the first iteration itself,
prior to introduction of the quantity ez, The computational expense for Type A and
Type B ODE for varying ey with fixed values of T), and AV,,;, case are presented
in Figure 6.12 and Figure 6.13 respectively. For smaller values of er in the selected
range, the computational expense seem to shoot up, especially in the case of higher
values of AV,,;,. The algorithm performs multiple iterations to compute a state on
the attainable region closest to the target state with more accuracy by reforming the
maneuver feedback triangle, such that the distance between X* and z” is within the
specified target tolerance. From the trends observed, it can be concluded that very
small values of e may result in high computational expense without improving the
station-keeping costs, while a large value of e may result in a poor station-keeping
costs especially in sensitive maneuver locations where one iteration of the algorithm
may not be sufficient to compute an appropriate maneuver. A better selection of e

is required for a meaningful station-keeping cost without excess computational load.
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Figure 6.10. Station-keeping costs estimated by the Cauchy-Green
tensor approach for 2 year mission duration with Type A orbit de-
termination error. Different horizon times of 45, 60 and 90 days and
range of target tolerance between 10~7 and 1072 are considered.
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Figure 6.11. Station-keeping costs estimated by the Cauchy-Green
tensor approach for 2 year mission duration with Type B orbit de-
termination error. Different horizon times of 45, 60 and 90 days and
range of target tolerance between 10~7 and 1072 are considered.
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Figure 6.12. Computational expense for station-keeping simulation
using the Cauchy-Green tensor approach for 2 year mission duration
with Type A ODE, expressed with respect to baseline value. Baseline
value is the simulation corresponding to horizon time 45 days, AV,in
= 10 cm/s and e = 107° for Type A ODE. Different horizon times
of 45, 60 and 90 days and range of target tolerance between 107 and
1073 are considered.
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Figure 6.13. Computational expense for station-keeping simulation
using the Cauchy-Green tensor approach for 2 year mission duration
with Type B ODE, expressed with respect to baseline value. Baseline
value is the simulation corresponding to horizon time 45 days, AV,in
= 10 cm/s and e = 107° for Type A ODE. Different horizon times
of 45, 60 and 90 days and range of target tolerance between 107 and
1073 are considered.
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6.4.2 Dynamic selection of Target Tolerance

A station-keeping problem is an attempt to secure the spacecraft near the refer-
ence solution for the mission duration. Station-keeping is a stochastic problem, hence
locating states of the spacecraft with full accuracy is not possible. There is a limi-
tation to the determination of accurate states of the spacecraft at all times, thereby
effort to compute the corrective maneuver with high accuracy is insignificant. The
size of the orbit determination error is a potential deciding factor on the value of tar-
get tolerance er that would deliver the maneuver with the same order of uncertainty
as that of the ODE. Desire for more accurate result is meaningless, therefore, it is
redundant to invest high computational expenditure for very low values of er. To
use the ODE information to formulate a relevant ey, the evolution of the error over
time needs to be analyzed. The ODE error is pretended to constitute an error region
inclusive of deviation in position and velocity states. The evolution of the flow in
the vicinity of a reference trajectory is used to investigate the evolution of the error

region and thus develop a way of establishing a value of reasonable er.

The Cauchy-Green tensor relates the evolution of the position and velocity de-
viation described as an error sphere over time to form an error ellipsoid caused by
stretching and rotation. Equivalently, the ODE error is also a form of error in both
position and velocity and therefore it is assumed that it will also get stretched and
rotated as the position and velocity deviation vector. Applying the same linear corre-
lation using cauchy-green tensor, the manner in which the orbit determination error
region evolves is determined. As described in Figure 6.14, the region marked in red at
initial time represents the region of no significance as a result of orbit determination
error. Any value computed smaller than the size of the red circle is not recognizable
due to limitations in orbit determination, therefore desiring an accuracy within the
size of the red region is not sensible. The boundary of the red region relates to the

minimum measurable precision level, therefore the desired value of ey must be the
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measurement, corresponding to the outer surface of the red region. The fictitious
six-dimensional radius of the red sphere is a relevant scalar quantity that relates to
the size of sphere i.e. the size of uncertainty. For a six-dimensional ODE vector,
dZope, the scalar radius is given as ||0Zopg||. Explained by Spreen et al. [73], the
rate of separation between two nearby trajectories over a non infinite time interval
is predicted by the Finite Time Lyapunov Exponent (FTLE), of which the largest
component of the FTLE reflects the most stretching direction. Also labeled as Local
Lyapunov Exponent (LLE), the actual separation is given by the square root of the
largest eigenvalue of ¢(tr,t0)" ¢(ts,t9), where to and t; are the initial and final epoch.
The value predicted by the LLE information is exactly equal to the largest eigenvalue
of the Cauchy-Green tensor o;. Therefore, the dominant stretching of the no value
region indicated by red ellipsoid in Figure 6.14 is in the direction of U; with a mag-
nitude of o;. The appropriate scalar target tolerance er to represent the no value
region is given by o1|[0Zopgl||, such that ||0Zopg|| indicates the initial separation
while o, is a measure of expansion. The target tolerance e is thus represented by
a dynamic quantity that takes into consideration the orbit determination error, the

horizon time and the location along the orbit that influences the amount of stretching.
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Figure 6.14. Six-dimensional region of no value or non measurable
value, resulting from orbit determination error, mapped using a linear
state transition matrix.
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The dynamic target tolerance e is now defined as er = 01||0Zopg||, where o is
a dynamic quantity that depends on the sensitivity of the location along the orbit
as well as the horizon time that impacts the amount of stretching. Similar to a
LLE surface, an entire spectrum of possible values of o; are generated to identify
the corresponding values at different locations along the orbit as well as for different
horizon times. The location along the orbit can be represented in terms of the time
propagated from a fixed initial location, that is demonstrated in Figure 6.15, where
the point on the reference orbit corresponding to z — 2z plane crossing towards the
Sun is considered as the initial fixed location for generating the stretching spectrum.
At different locations along the orbit, separated by small time intervals, magnitude
of the dominant stretching, oy, is computed and recorded for different horizon time
between (0, 1P]. The entire data recorded for different combinations of the location
and the horizon times are given as a spectrum in Figure 6.16. The colorbar used
to represent the spectrum is indicated in natural logarithmic scale to encompass the
entire range with proper visualization. Recall that o; = 0,4, after singular value

decomposition is performed.
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Figure 6.15. Location along the orbit as a measure of elapsed time
from the initial fixed location.
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Figure 6.16. Spectrum of magnitude of dominant stretching computed
for varying horizon times.

To perform station-keeping, at every maneuver location, depending on the chosen
value of horizon time the value of dominant stretching, oy, is computed, or retrieved
from Figure 6.16. For the three different horizon times 45, 60 and 90 days selected
for the station-keeping simulation, the value of dominant stretching are presented
in Figure 6.17. Along with the chosen orbit determination error level, the value of
target tolerance is predicted as er = 01||0Zopg||- The selected value of target tol-
erance is a function of the sensitivity at that location and factors in the level of
accuracy of measurement. Since the sensitivity at every location along the orbit is
different, continuous computation of the magnitude of stretching must be achieved.
The eigenvalues of the Cauchy-Green tensor are already known, of which the domi-
nant stretching is the largest eigenvalue of the CGT, therefore, excess computational
expenditure is eliminated. The dynamically selected value of target tolerance along
with the predefined parameters, horizon time, T}, and minimum executable maneuver
magnitude, AV,,;,, are used to estimate the station-keeping outcomes for both Type

A and Type B orbit determination errors.
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Figure 6.17. Magnitude of dominant stretching along different loca-
tions on the chosen reference orbit for horizon time 45, 60 and 90

days.

The station-keeping outcomes, including costs and computational expense as esti-
mated in section 6.4.1 for a range of fixed target tolerance between 10~7 and 1072, in
non-dimensional units, are now replaced with dynamical selection of target tolerance
to compute the station-keeping outcomes. For both the ODE types, orbit mainte-
nance simulations are performed by 100 Monte Carlo iterations, for horizon time of

45, 60 and 90 days and AV,,;, cases of 5, 10, 20, 50 and 100 cm/s. The direction
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of corrective maneuvers computed are unconstrained i.e. they are executable in any
spatial direction. Unlike the previous section, the target tolerance is selected dynam-
ically. The outcomes for Type A ODE is provided in Table 6.1 while Type B results
are in Table 6.2. The station-keeping costs for 2 year mission duration are identical
to that predicted using constant values of target tolerance in the range of 10~7 and
1073 for both Type A and Type B ODE, however, drastic decrease in computational
expense is observed in comparison to low values of ey chosen before. For Type A ODE
with AV, = 100 cm /s case, the computational expense for low fixed ez = 2x 1077 is
413%, 2672% and 16086% for horizon time of 45, 60 and 90 days respectively. Using
a dynamical selection of e, the same computational expense has decreased to 103%,
206% and 693% for horizon time of 45, 60 and 90 days respectively. Similarly for
Type B ODE with AV,,;, = 100 cm/s case, the computational expense for low fixed
er = 2 x 1077 is 400%, 2061% and 14032% for horizon time of 45, 60 and 90 days
respectively that has reduced to 149%, 300% and 966% respectively, using a dynam-
ical selection of er. Moreover, the change in computational expense across different
AV, cases for a fixed horizon time is minute, except for cases with large ODE and
low AV,,.;, case as the magnitude of ODE becomes significant. A decent level of preci-
sion is obtained on 100 Monte Carlo runs, as most relative precision are within 1.52 -
2.72% range. The dynamical selection of the target tolerance, er, contributes to bet-

ter realization of the measurement accuracies and sensitivity of the maneuver location.

The average time between two successive maneuvers is also a crucial component to
compare station-keeping outcomes. As expected, the average time between successive
maneuvers are less for Type B ODE in comparison with Type A ODE as the size of
orbit determination error for Type B is significantly larger than Type A, hence more
maneuvers are performed for Type B ODE. Consequently, the station-keeping costs
for Type B are higher in contrast to Type A. Moreover, with increase in AV,,,;, condi-
tion, time required by the spacecraft to deviate enough from the reference trajectory

to result in a maneuver magnitude of that size also increases, hence larger AV,
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Table 6.1. Station-keeping outcomes estimated by the Cauchy-
Green tensor approach for 2 year mission duration over 100 Monte
Carlo simulations with Type A orbit determination error and three-
dimensional /spatial maneuvers.

T, AViin [em/s]
[days] 5 10 20 50 100

45 46.0 85.5 167.6 401.5 757.5
Station-keeping

60 38.8 72.6 137.5 338.3 648.2
costs [cm/s]

90 37.6 70.9 144.0 344.6 683.1
Precision [%)] 45 1.86 1.87 2.07 2.01 1.84
(95% confidence 60 2.21 1.70 1.92 1.84 2.55
or 1.96 o) 90 2.23 2.60 2.36 2.45 2.29
Computational 45 82.61 90.43 91.87 94.77 | 103.74
expense [%] 60 155.05 | 174.69 | 191.77 | 205.04 | 205.94
(Wrt baseline) 90 573.08 | 639.09 | 671.35 | 702.81 | 693.29
Avg. time b/W 45 81.2 83.6 86.2 90.1 95.1
successive AV 60 93.9 99.0 | 104.1 | 105.1 | 110.0
[days] 90 97.0 99.1 99.7 103.3 106.6

case results in larger time span between successive maneuvers. Increasing horizon
time from 45 days to 60 days results in marginal increase in average time between
successive maneuvers but the change between 60 days to 90 days is neither uniform
nor very significant, for both Type A and Type B orbit determination errors. The in-
crease in computational expense across increasing AV,,,;, cases are also justified with
the increase in average time between successive maneuvers. For smaller AV, cases,
maneuvers are executed frequently. As the algorithm is setup, no maneuvers are

computed for 30 days beyond the execution of a corrective maneuver, thereby saving
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Table 6.2. Station-keeping outcomes estimated by the Cauchy-
Green tensor approach for 2 year mission duration over 100 Monte
Carlo simulations with Type B orbit determination error and three-
dimensional /spatial maneuvers.

T, AViin [em/s]
[days] 5 10 20 50 100

45 106.4 | 118.9 | 206.1 | 462.3 | 874.0
Station-keeping

60 105.6 | 1153 | 182.3 | 4240 | 8375
costs [cm/s]

90 87.9 103.9 | 188.6 | 449.0 | 865.8
Precision [%] 45 2.25 2.50 2.56 2.72 2.51
(95% confidence 60 1.52 2.05 2.47 1.88 2.33
or 1.96 o) 90 2.02 2.54 2.46 2.41 2.41
Computational 45 62.01 | 107.13 | 126.02 | 144.27 | 149.24
expense [%] 60 108.53 | 190.55 | 238.26 | 282.56 | 300.46
(wrt baseline) 90 423.44 | 703.72 | 817.92 | 941.66 | 966.45
Avg. time b/w 45 40.6 66.9 74.9 81.3 84.1
successive AV 60 41.5 68.5 82.7 86.8 87.3
[days] 90 44.8 73.7 79.8 83.7 84.9

computational resources to compute intermediate maneuvers. For larger AV,,;, cases,
more intermediate maneuvers are computed but not implemented till the AV,,,;,, con-
dition is satisfied. To use average time elapsed between two consecutive maneuvers to
compare station-keeping performance with different ODE types is challenging, as it
depends on two factors, sensitivity of maneuver locations and the number of maneu-
ver, that have contradicting effects. For larger ODE, it is more likely that the space-
craft deviates from the reference trajectory rapidly on propagating the predefined

horizon time downstream, increasing computational efforts for numerical integration.



171

On the contrary, frequent maneuvers requires less computational resources as a result
of reduction in intermediate maneuver computation over 30 days coast/recovery pe-
riod beyond an executed maneuver. The station-keeping costs and the computational
expense are implicitly related to the average time elapsed between successive maneu-
vers, making it a difficult component to analyze. Apart from the magnitude of the
maneuvers and the time span between their occurrence, the direction of the maneu-

vers also provide details about the behavior of the spacecraft under orbit inaccuracies.

The maneuvers computed using the Floquet mode approach and the target point
approach indicated that inclination of most station-keeping maneuvers are towards
the rotating x-axis. Such an alignment has serious benefits in mission control as
spacecraft orientation need not be altered to perform successive maneuvers, thus pre-
venting any scope of errors. The CGT algorithm is therefore modified to incorporate

x-control maneuvers for station-keeping.

6.4.3 z-direction Control Maneuvers using CGT Approach

The orbit chosen for the mission in the vicinity of the Sun-Earth/Moon L, libra-
tion point has indicated maximum sensitivity towards the rotational x-axis control
maneuvers predominantly due to large perturbing gravitational bodies along the ro-
tating x-axis. Within the CR3BP model, as the energy of the spacecraft is increased,
the zero velocity curves (ZVCs) evolves, opening the gateway at the Ly libration point.
The least energy access from the vicinity of one primary body to another primary
body through the gateway at L, is effective only through motion along the rotational
z-direction, thus complementing the z-direction sensitivity. The direction of maneu-
vers at each of the maneuver locations as computed in section 5.4.2; validates the
maneuver sensitivity towards z-direction. Fixed direction maneuvers are beneficial
for mission operations as it offers a simpler alternative, therefore best if exploited in

the direction of highest sensitivity. Besides, the direction of the larger thrusters in
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the previous spacecrafts to the orbits near the Sun-Earth L; point are aligned fairly

close to the rotational x-axis, as per their mission requirements [30, 74, 75].

The Cauchy-Green tensor approach can be considered a versatile station-keeping
method only if multiple constraints can be added for station-keeping without signifi-
cant altercations to the algorithm. To compute a corrective x-control station-keeping
maneuver that can secure the spacecraft through the mission duration, the update
equation that maps error vector at final time to the initial time is modified. The
Cauchy-Green tensor approach computes the closest attainable state on to the target
state beyond a predefined horizon time, within the specified target tolerance. The
six-dimensional state error vector (X* —¢) is then mapped back to initial time to iden-
tify the necessary corrective maneuver that would drive the spacecraft with minimal
error. Recall, X* is the closest attainable state to the target state at some horizon
time downstream while ¢ is the state achieved by propagating the initial condition
for the same horizon time without any additional perturbation. The pure z-direction
maneuver is in fact, a subset of the total maneuvers that could be computed using
the CGT method. Equation (6.14) is modified to map error vector (x* — ¢) back to

the initial time, with a pure z-control maneuver, AV, = [AV,,0,0]7, as

0
6 rr rv A‘/m
(X' —o)=oltp,to) | | = O 0 (6.17)
AV Gor  Puv 0
0
(4]
P24
e P34
(X" —¢) = AV, = AAV, (6.18)
Paa
P54
| Dos
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where A = (14, Poa, P34, Pas, G54, Pea]” is the 4" column of the state transition matrix
&(to + Th,to). Applying least squares method given in equation (6.16) over equation
(6.18), the pure z-direction maneuver, AV,, is calculated. The maneuver vector,

AVyy, is therefore AVy, = [AV,,0,0]7.

Similar to performing a station-keeping simulation with a spatial maneuvers as
the update, the orbit maintenance algorithm is run in the same manner except with
z-control maneuvers as updates. Same two ODE cases Type A and Type B are
considered with horizon time of 45, 60 and 90 days. Target tolerance is computed
dynamically at each step. The station-keeping costs and computational expense for
propagating the spacecraft for 2 year mission duration are registered in Table 6.3 and

table 6.4 for Type A and Type B ODE respectively.

Station-keeping outcomes for spatial maneuvers as well as x-control maneuvers
are compared to analyze the performance of both the maneuver types. The net
station-keeping costs are larger for z-control maneuvers irrespective of the orbit de-
termination error levels. A least square method is used to compute the corrective
maneuver in the CGT method. Having lesser dimensions to map the deviation vector
in the x-control maneuver case, the computed maneuver is unable to correct to its
maximum potential, that otherwise is possible through a spatial maneuver. As a
result, the z-control maneuver implemented is not as adequate as a spatial maneu-
ver for orbit maintenance, therefore increased station-keeping costs are estimated for
x-control maneuver case. The relative precision measured is indicative of the disper-
sion of individual station-keeping costs predicted for each Monte Carlo simulation.
For the z-control maneuver case, the converged precision is of the order of 2.39 -
5.79 % while between 1.52 - 2.72% for spatial maneuvers, indicating that the costs
predicted for z-direction maneuvers are more scattered about the computed mean,

while individual spatial maneuvers computed are more closer to the mean value. The
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Table 6.3. Station-keeping outcomes estimated by the Cauchy-Green
tensor approach for 2 year mission duration over 100 Monte Carlo
simulations with Type A orbit determination error and z-control ma-

neuvers.
T, AViin [em/s]
[days] 5 10 20 50 100
Station keeping 45 49.3 99.3 | 183.1 | 421.7 | 827.6
costs [em/s] 60 43.0 93.7 | 190.1 | 449.1 | 834.1
90 40.1 80.5 | 1584 | 397.0 | 752.7
Precision [%] 45 2.96 4.64 2.86 4.04 4.05
(95% confidence 60 2.39 3.42 4.61 3.84 4.03
or 1.96 o) 90 3.29 3.68 3.75 4.17 4.08
Computational 45 75.34 | 7757 | 82.79 | 94.28 | 97.66
expense [70] 60 156.78 | 161.71 | 165.02 | 165.38 | 180.19
(wrt baseline) 90 482.53 | 526.60 | 532.95 | 539.64 | 574.96
Avg. time b/w 45 78.8 82.1 83.6 92.9 93.3
successive AV 60 89.3 91.1 95.3 96.4 | 101.3
[days] 90 97.7 | 1022 | 103.2 | 1054 | 106.8

computational time seems to have marginally decreased for x-axis maneuvers while
no mannerly trend is observed on the variation in the average time between successive
maneuvers, for both z-control and spatial maneuver types. The arbitrary change in
the average time between successive maneuver can be due to contradicting effects.
Since projection of deviation vector on to the available subspaces are the basis of
maneuver computation, it would take larger time for x-control maneuver magnitude
to reach AV, constrain than for a spatial maneuver where components along all

the three dimensions increase, consequently the average time between successive ma-
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Table 6.4. Station-keeping outcomes estimated by the Cauchy-Green
tensor approach for 2 year mission duration over 100 Monte Carlo
simulations with Type B orbit determination error and z-control ma-

neuvers.
Ty AViin [em/s]
[days] 5 10 20 50 100
Station-keeping 45 117.9 | 156.9 | 236.1 | 552.7 | 11188
costs [cm)s] 60 109.3 | 1158 | 225.7 | 4945 | 1004.9
90 70.6 | 108.8 | 192.0 | 469.0 | 955.2
Precision [%] 45 5.79 4.63 4.10 4.32 5.42
(95% confidence 60 5.24 3.27 3.58 2.93 3.80
or 1.96 o) 90 3.22 2.52 2.39 3.85 3.58
Computational 45 52.04 | 59.69 | 68.82 | 77.83 | 86.22
expense [ 60 90.35 | 129.95 | 134.85 | 159.96 | 171.21
(wrt baseline) 90 348.00 | 397.00 | 430.31 | 471.54 | 492.42
Avg. time b/w 45 45.4 56.9 70.3 72.5 76.3
successive AV 60 47.3 69.1 73.7 79.7 81.4
[days] 90 63.3 74.9 81.3 85.8 86.0

neuvers should be larger for z-control maneuver case. On the contrary, z-direction
maneuvers are not superior than spatial maneuvers in orbit maintenance due to errors
in least square computation when mapping to lesser dimensions, hence the spacecraft
would deviate rapidly away from the reference orbit, causing frequent maneuvers. For
any case, the average time between two consecutive maneuvers are a combination of
the two parameters discussed, that are contrary, hence a common trend is not avail-
able from the recorded data. Although, in general, for the orbit chosen for mission

design, z-control maneuver still acts as a superior choice for orbit maintenance. Al-
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most all the Monte Carlo simulations were successful, complementing the ability to

of z-control maneuvers to secure the spacecraft throughout the mission duration.

Sources from literature also complement the benefits and ability of z-control ma-
neuvers for station-keeping for libration point missions in the Sun-Earth/Moon L,
orbits. Rohrbaugh and Schiff [29] while their investigation on station-keeping for Mi-
crowave Anisotropy Probe mission reported that z-control maneuvers are as efficient
as unconstrained spatial maneuvers. Anderson et al. [76] indicated large sensitivities
along the line joining the primaries through their investigation using local Lyapunov
exponents, that is evident as overcoming deviations along the x-direction seems to be
an effective way of maintaining the orbit. As mentioned by Roberts [74] for SOHO
mission and Williams et al. [30] for Genesis spacecraft, the requirements for SOHO
and Genesis spacecrafts were to point towards the direction of the Sun throughout
their mission duration to satisfy their objectives of studying the Sun, requiring ma-
neuvers to be along the Sun-spacecraft line, that is almost £0.25° from the rotating
z-axis. The study of z-control maneuvers for these missions have shown great poten-

tial.

The Cauchy-Green tensor approach is a flexible station-keeping technique that can
compute maneuvers with added constraint other than just spatial maneuvers. The
ability to perform maneuvers constrained in rotational z-direction is an illustration of
added constraint in maneuver computation. Overall, CGT approach identifies to be a
convenient method for station-keeping but the formulation of the CGT algorithm for
maneuver computation is sophisticated. The reliability of the sophisticated maneuver
computation is therefore reviewed with a more simpler differential correction process

for maneuver computation, to gain confidence in the maneuvers generated.
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6.4.4 Maneuvers using Differential Correction Process

A differential correction process using a linear state transition matrix is the most
straightforward way of computing any corrections in the Ephemeris or CR3BP sys-
tem. In general, the differential corrections are applied to under-determined system
or system with a unique solution, so that output of the differential correction method
can be used to update the initial condition to attain the final state. A corrective
maneuver can be calculated by targeting position states at a future time and get-
ting a perfect solution, however, station-keeping using a CGT approach targets both
position and velocity state at some horizon time downstream. To mimic the CGT
approach, a differential correction process is applied to target both position and ve-
locity states at the end of some predefined horizon time. Since the corrections are
possible only in the velocity states but the target conditions are combination of both
position and velocity states, the system is over-determined. A differential correction
can be performed using direct STM but with least squares technique. The update
will not perfectly drive to the desired target states as the solution obtained is only
a least square solution to an over-determined system, but drives close to the target
state with some error. The maneuvers computed using the STM in a very uncom-
plicated manner is compared with the maneuvers computed using CGT approach to

gain confidence in the CGT solution.

At every maneuver location, the maneuver is computed using the CGT method
as well as the differential correction method with a direct STM and compared. The
comparison process is extended to different combinations of AV, cases, horizon
time, ODE and direction of maneuvers. Figure 6.18 and Figure 6.19 are two of the
many cases, for comparing the maneuver size, computed using the CGT approach and
the differential correction process. Figure 6.18 demonstrates the comparison made
for Type B ODE with horizon time of 45 days and AV,,;, of 10 cm/s while Figure
6.19 describes the resemblance for Type B ODE with horizon time of 90 days and
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AV,in of 100 ecm/s. The maneuvers computed, not necessarily implemented, at each
maneuver location depends only on the deviation from the reference orbit at current
time and the target states at some predefined horizon time downstream. The value
is independent of the orbit determination error. In both Figure 6.18 and Figure 6.19,
Subfigure ‘a’ indicates the maneuvers computed using CGT approach at each ma-
neuver location for the mission duration of 2 years, over 10 Monte Carlo iterations,
while Subfigure ‘b’ describes the maneuver magnitude computed using a differential
correction process with a direct linear STM, at the same maneuver location. The
dotted lines marked in Subfigure ‘a’ and ‘b’ indicates the AV,,;, value chosen for the
specific case. Subfigure ‘c’ presents the difference between the maneuver magnitudes
computed using CGT approach vs direct STM, at a fixed maneuver location with the
same target condition. Subfigure ‘d’ is a histogram depicting the distribution of the
points presented in Subfigure ‘c’ with very small bin size. Subfigures ‘a’; ‘b’ and ‘¢’
are plotted 10 Monte Carlo simulations while Subfigure ‘d’ is estimated for 100 Monte
Carlo simulations. Based on the plots, it is apparent that the maneuver magnitudes
computed using CGT approach and the differential correction process with a direct
STM are comparable. Subfigure ‘d’ in both Figure 6.18 and Figure 6.19 provide
histogram which resembles a Gaussian distribution centered about zero. More than
99.5% of the points recorded in the histogram are within 10% of the AV,,;, values
that is almost equivalent to 3o limits. Alternatively, the 1o limit corresponds to
about 3.33% of the chosen AV,,;, value, indicating the closeness in values computed

using the sophisticated CGT approach and the direct differential correction process.

In general, the Subfigure ‘a’ and ‘b’ of Figure 6.19 appears to have a more orderly
behavior in terms of maneuver computation spaced equally at tracking interval of 2
days as opposed to Figure 6.18 that appears to be scattered. The primary reason for
this is the size of the orbit determination error levels in comparison to the actual size
of the maneuver. Figure 6.19 corresponds to case with AV,,;,, of 100 cm/s contrary to

Figure 6.18 with AV,,;, of 10 cm/s. As a result the effect of the orbit determination
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Figure 6.18. Comparison of maneuver magnitudes computed using
CGT approach and differential correction process using direct STM,
for Type B ODE with horizon time 45 days and AV,,;, of 10 cm/s,
computed for 10 Monte Carlo simulations.
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Figure 6.19. Comparison of maneuver magnitudes computed using
CGT approach and differential correction process using direct STM,
for Type B ODE with horizon time 90 days and AV,,;, of 100 cm/s,
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errors in more apparent for lower values of AV,,;,. With increase in AV,,;, values,

the effect of ODE in velocity estimation diminishes.

The Cauchy-Green tensor approach appears to be a versatile method like the Flo-
quet mode and the target point approach for station-keeping in libration point orbits
in the Sun-Earth/Moon system, with the capability to tune the direction of the ma-
neuvers without significant modifications like the previous methods. The ability to
adjust parameters with the measurement inaccuracies is advantageous. The applica-
tion of the CGT method for station-keeping in the Sun-Earth/Moon libration point
orbits, as studied for the Aditya-1 mission, indicate great potential for more such

missions applications.
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7. OBSERVATIONS AND RESULTS

There are many orbit maintenance strategies for Sun-Earth/Moon libration point
orbits and have been used successfully in the past. This research mainly investi-
gates the target point, the Floquet mode and the Cauchy-Green tensor approach for
station-keeping. Few outcomes like the net station-keeping costs and the maneuver
locations are worth examining. The aim of this research is not to find advantages
or disadvantages of any method but to extend the capabilities of its functioning, by
probing the effects of different parameters that potentially influences the overall costs

or the computational expenditure or both.

7.1 Station-keeping Costs

The most common parameter for comparison between different station-keeping
strategies is the cost. The comparison made on the costs are just to analyze dif-
ferent strategies for orbit maintenance and not to decide if one strategy is superior
than the other. To be consistent in the comparison, x-control maneuvers are selected
for the target point, the Floquet mode and the Cauchy-Green tensor approach for
station-keeping. The algorithms and the steps involved in maneuver computation
are essentially different across different strategies adopted, hence it is not sensible
to make a direct comparison on their supremacy and control on overall costs. The
spatial maneuvers computed using the Floquet mode approach are solutions to an
under-determined system, hence infinitely many solutions exists. A possible spatial
maneuver is just one out of infinite solutions available, generally identified using a
minimum norm solution. Any two additional constraints can be added to convert the
under-determined system to a system with unique solution. Restricting any maneu-

ver component along the y and z-direction is equivalent to adding two constraints.
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The unique solution of this system is the z-control maneuver, generated using the
Floquet mode approach. The maneuver generation using the target point approach
depends on the magnitude of weights along different directions. As discussed, a low
weight allows unrestricted maneuver component along that particular direction and
vice versa. Since the range of weighting matrices that were selected at majority of th
maneuver locations indicated dominance along the z-axis, any maneuver along the y
and z-directions were restricted on purpose. The x-control maneuver computed is the
unique solution to the governing equation. The Cauchy-Green tensor approach uses
a totally different approach. The method tries to compute a maneuver that targets
an attainable position and velocity states nearest to the desired state. Unlike the pre-
vious method, the governing equation in a CGT method is always over-constrained,
no solutions exists, therefore a least squares method is adopted to calculate a ma-
neuver that minimizes the error. A detailed summary of the station-keeping costs for
the three approaches are provided in Table 7.1 for both Type A and Type B orbit
determination errors. The target point approach and the Floquet mode approach
targets one time period downstream while the CGT approach uses different horizon
times indicated as < T} > in the table. The station-keeping costs within the CGT
method decreases with increase in horizon time, which is expected as more time is
available to make the correction. Although the CGT approach yields a marginally
larger station-keeping costs, the CGT approach offers a great initial set of values
that can be further tuned using other strategies. Overall the maneuver magnitudes

between different strategies are almost of the same order of magnitude.

7.2 Maneuver Locations

The distribution of the maneuver locations complements the sensitivity along the
halo orbit chosen for the mission. In a CR3BP model, the chosen periodic orbit has
a stability index of 866.98, that is highly unstable. Perturbations along such an un-
stable orbit tends to diverge rapidly. Additionally, the local stretching characteristics
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Table 7.1. Station-keeping cost in cm/s estimated by the target point,
the Floquet mode and the Cauchy-Green tensor approach for 2 year
mission duration over 100 Monte Carlo simulations with z-control

maneuvers.
CGT
TPA FMA
<45 > < 60 > <90 >
Orbit injection & Type A
tracking error (1o) [1.5,2.5, 15 km & [1, 1, 3] mm/s

Maneuver execution

2.5% of planned maneuver magnitude in each direction

error (1o)
5 37.1 37.2 49.3 43.0 40.1
10 73.0 74.1 99.3 93.7 80.5
20 142.9 146.2 183.1 190.1 158.4
[cm/s]
50 343.6 355.5 421.7 449.1 397.0
100 663.7 685.5 827.6 834.1 752.7
Remarks = - Horizon time < T} > in days
1017.4

Orbit injection &

tracking error (1o)

3,30, 30 km &

Type B

[15, 15, 30] mm/s

Maneuver execution

5% of planned maneuver magnitude in each direction

error (1o)
5 64.4 65.4 117.9 109.3 70.6
10 102.2 102.8 156.9 115.8 108.8
20 186.3 188.8 236.1 225.7 192.0
[cm/s]
50 436.2 454.5 552.7 494.5 469.0
100 849.0 893.5 1118.8 1004.9 955.2
41 = . . .
Remarks - Horizon time < T}, > in days
1017.7
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along the halo orbit as portrayed in Figure 6.16 shows a smooth transition and indi-
cates no selective region of higher sensitivity. Although region on the halo orbit that
is closer to the Earth has marginally more tendency to diverge, it is not significantly
larger than the other regions. The almost similar stretching characteristics is primar-
ily because of the location of the chosen halo orbit. The chosen orbit is significantly
far from any gravitational body hence all regions experience the gravitational field of
almost the same order of magnitude. At any point along the orbit, as horizon time
increases, the gradient seems to increase almost linearly in the logarithmic scale, that
is reflective of exponential divergence that causes the deviation to increase rapidly.
Consequently, an early maneuver is regarded. No region seems to provide any signifi-

cant benefits than the other, hence a maneuver is likely in all regions along halo orbit.

To study the specifics of the distribution of the maneuver locations along the
halo orbit, the maneuver location is defined with respect to the Lagrange point L,
in terms of the in-plane angle, 1) as shown in Figure 7.1. The in-plane angle, v, is
defined in sync with the conventional coordinate system with angles increasing in
the anticlockwise direction. A histogram is plotted that indicates the distribution of
maneuver locations along the halo orbit, in terms of angle ¢, over two-year mission
duration. The exercise is performed for the target point, the Floquet mode and the
Cauchy-green tensor approach and plotted in Figure 7.2 and Figure 7.3 for Type A
and Type B orbit determination errors respectively. Since z-control maneuvers are
more preferable for the chosen mission scenarios, the histograms are plotted for a-
control maneuvers. Different practically feasible AV,,;, of 5, 10, 20, 50 and 100 cm/s

cases are considered within each control strategy:.

Maneuver data obtained for the three different station-keeping strategies are con-
sistent with the argument that for such an unstable orbit as chosen, maneuvers are
likely at all locations. More specifically, the distribution is however not uniform

throughout the orbit. For both, low and high orbit determination errors as in Type
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A

Figure 7.1. In-plane angle at the maneuver location measured with
respect to positive x-axis centered about L;.

A and type B respectively, more maneuvers happen close to the region where the
angle subtended is +80°. The region is close to the extreme y coordinates that occurs
at +81.35°. The reason for this selective dominance is primarily due to the space-
craft velocity characteristics in this region. Figure 7.4 provides the relation between
velocity magnitude and the in-plane angle 1 subtended at different locations along
the halo orbit. Clearly, close to the extreme y positions, there is a considerable drop
in the velocity magnitude thus allowing a larger time for the spacecraft to coast in
the region, thus providing sufficient time for orbit estimation. As soon as the diver-
gence is detected a maneuver is applied. As y position is close to zero near the line
joining the primaries, the magnitude of velocity is high, therefore very less time is
spent hovering near this region, resulting in lesser time for orbit estimation and lower
number of maneuvers in this region. The plot on the relation between in-plane angle
and the time along the orbit represented in Figure 7.5 also justifies the distribution
of the maneuver locations. Recall, the time along the orbit is defined as in Figure
6.15. Close to the extreme y positions the rate of change in angle vs time is gradual,

therefore more orbit estimation happens at angles close to extreme y positions. A
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maneuver is executed immediately as divergence is detected. At y values close to the
line joining the primaries, the rate of change in angle is abrupt, reducing the number

orbit estimation data, lowering the chance of detecting a maneuver.

300 T T T 1 T T T

250

200

150

Velocity magnitude [m/s]
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-150 -100 -50 0 50 100 150
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Figure 7.4. Variation in velocity magnitude along the chosen halo
orbit. Location along the orbit is represented in terms of angle .

y= b towards Sun

y = 0, away from Sun -

Angle  [degree]
o

Ymin

0 20 40 60 80 100 120
Time along orbit [days]

140 160 180

Figure 7.5. Variation of inplane angle, v, as a function of time.
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7.3 Survey of Libration Point Orbit Station-keeping Studies

For confidence and completeness of the work, it is crucial to examine the station-
keeping outcomes for similar missions in the past. The orbit maintenance costs serves
as the common baseline for the survey. The challenges in comparing the data is that
different missions have different reference orbit, different equipment for orbit deter-
mination and different thruster types and capacity. Despite such inconsistencies, it
is assumed that the values for similar mission types must results in the same order of
magnitude, if not precise. Further the station-keeping costs are assumed to be linear

function of time and therefore scaled to 2-year mission duration.

The station-keeping cost is generated by performing Monte Carlo trials and com-
puting the mean. The standard deviation of the distribution is attributed to the
confidence in the computed mean. The costs mentioned in few literature sources
without any details about their distribution or the sample size, are assumed to cor-
respond to the computed mean rather than a particular outcome of one Monte Carlo
trial. Further comparison on confidence interval cannot be performed due to insuffi-

ciency in the statistical data.

Despite certain inaccuracies, the most appropriate way of exploring orbit mainte-
nance outcomes for the previous Sun-Earth/Moon L; libration point orbits is using
the station-keeping cost comparison. The station-keeping survey is detailed in Table
7.2. The table corresponds to previous station-keeping (SK) results available from
different literature sources, that have been cited. All the costs are scaled to 2-year
mission duration. Different values of orbit determination and tracking errors that
have been used for different missions are documented. Few mission use additional
Solar Reflectivity (SR) uncertainty while other have not considered such errors. Ad-
ditional parameters important to analyze the data are provided in the 'Remarks’

column, provided that those details are mentioned in the literature source. Not all
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range of costs are comparable as they are solutions to different AV,,;, conditions.

Table 7.2.: Survey of station-keeping costs for the Sun-Earth/Moon L4

halo orbits.

21, 77]

Tracking errors | Maneuver
2-year SK
Source (lo) execution Remarks
cost [m/s]
[km] [mm/s] error (1lo)
AVppin : 0.05 - 0.5 m/s
Howell & 0.33 - 4.02
1.5, 2.5, 15] Atpmin = 30 days
Pernicka 2.5%
1, 1, 3] AViin 2 0.05 - 0.5 m/s
(24, 25] 0.77 - 3.61
Atin = 60 days
SR uncertainty = 13%
Howell & 0.76 - 0.87
[1.46, 2.64, 4.81] Aty = 60 days
Gordon 10%
[1.40, 1.85, 2.49] SR uncertainty = 13%
[40,41] 0.92 - 1.23
Atin = 80 days
Gomez 1.5, 2.5, 15 20 cm/s/year
| | 2.5% 0.4 /sl
et.al [44] 1, 1, 3] SR uncertainty = 2.5%
Gomez (3, 30, 30]
10% 13.3 At pin = 60 days
et.al [26] 15, 15, 30]
Tracking int. : 3 days
Simo et [1.7, 2.2, 5.5] 0.7 - 0.8 m/s for 4 years
2.5% 0.35-04
al. [47] (1.4, 1.4, 2.4] SR uncertainty = 5%
Howell &
(3, 30, 30]
Keeter 2.5% 0.34 - 18.8 Atin 30 - 90 days
15, 15, 30]
(42, 43]
ISEE-3
15 Actual mission data
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Table 7.2.: continued

WIND
2.0 Actual mission data
2,53
ACE
2.0 Actual mission data
2,53]
SOHO
4.8 Actual mission data
[53,74]
AViin 2 0.05 - 1.0 m/s
1.5, 2.5, 15]
This [ | 2.5% 0.37 - 8.27 Atpin = 30 days
1,1, 3
work Tracking int. : 2 days
(z-axis AVin 2 0.05 - 1.0 m/s
[3, 30, 30]
control) 5% 0.64 - 11.18 Atpin = 30 days
[15, 15, 30]
Tracking int. : 2 days

There seems to a broad variance in the station-keeping costs estimated for a
spacecraft in the Sun-Earth/Moon L; halo type orbits. The wide range costs is
attributed to the difference in the orbit determination error levels used for simulating
the mission scenarios and the dissimilarity in the algorithm chosen to perform the
orbit maintenance. Nevertheless, the station-keeping costs computed in this work
for z-control maneuvers using the target point, the Floquet mode and the Cauchy-
Green tensor approach are in the same order of magnitude. For the type A ODE, the
station-keeping costs estimated in this work is almost equal to the values predicted
in by Howell and Pernicka [24,25] that uses the same ODE level. Similarly, for Type
B ODE, the station-keeping costs estimated in this work fall in the range of values
obtained by other researchers that used the similar uncertainty levels. The work

presents a range of station-keeping costs considering a wide range of AV,,;, and ODE
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values. The actual costs for a mission depends on the capacity of the engine and
the measurement accuracy of the equipment in use. It is expected that the values
estimated for the real mission will be in the range of costs computed in this work.

Further, no claim has been made on the optimality of the solutions.
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8. SUMMARY AND RECOMMENDATIONS

8.1 Summary

The goal of this work is to explore different station-keeping strategies such as the
target point, the Floquet mode and the Cauchy-Green tensor approach. Effort has
been put to make parameter selections information based rather than human choice
based selection. The intent is not to find advantages or disadvantages of one method
over the other rather to explore and enhance the parameter selection within each

strategy. The issues are administered in an progressive manner.

The first chapter summarizes the different questions that this research work fo-
cuses. The background studies and the development of the circular restricted three
body problem are addressed. A detailed description of previous missions to the Sun-
Earth/Moon L, libration point orbits and various orbit maintenance strategies are

provided.

In the second chapter, the different system models that are used throughout this
work are discussed. The equations of motion in the circular restricted three body
problem are derived and equilibrium solutions are calculated. To study the behav-
ior of a spacecraft in the vicinity of an equilibrium solution, linearized solutions are
formulated. The solutions in a circular restricted model is an approximation of the
behavior of the spacecraft under the influence of two main primary bodies, however
there will be perturbations due to elliptic orbit and presence of other gravitational
bodies and forces. In order to simulate a real life scenario, the behavior of the space-
craft must be analyzed in the presence of multiple forces that significantly affects the

motion of the spacecraft hence, the higher fidelity ephemeris model is described with
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a new set of equations of motion. It is desirable to analyze the the motion of the
spacecraft in the inertial coordinate frame as well as the rotational frame fixed with

the primaries, therefore a coordinate transformation matrix is developed.

Chapter three is an outline of the tools used in the circular restricted three body
model as well as the ephemeris model to target certain boundary conditions. A state
transition matrix is developed that maps the evolution of some initial perturbation
to a final time in the linear sense, derived upon an arbitrary reference solution. An
explanation of the differential correction process that predicts linear modification to
attain some final condition is illustrated. To solve boundary value problems in a
more complex regime, a robust multiple shooting technique, that is a cumulative sin-

gle shooting differential correction problem, is elaborated.

The outline of an orbit maintenance operation is detailed in chapter four. The
selection of a nominal orbit in the CR3BP and transformation into the ephemeris
model is discussed. The station-keeping problem is stochastic in nature due to in-
accuracies in measurements. For simulation, the inaccuracies are purposefully incor-
porated to mimic a real mission scenario. The overall orbit maintenance algorithm
is discussed, and parameters like minimum executable maneuver AV,,;,, minimum
time between maneuvers At,,;,, drift from the reference orbit d, that influence the
station-keeping performance are introduced. Background on Monte Carlo process to

evaluate a stochastic problem like station-keeping is provided.

In chapter five, functioning of the target point and the Floquet mode approach
are elaborated. The qualitative information available from the Floquet mode ap-
proach are leveraged to identify the right range of values of the weighting matrices
in the target point approach that can mimic the Floquet mode results as well as
decrease the station-keeping costs. The range of weights substantiates the dominance

of maneuvers along the rotational z-axis at majority of the locations, indicative of
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pure x-control maneuver that would be sufficient for orbit maintenance. The drifting
pattern is observed for a range of weights to determine if the spacecraft will deviate

uncontrollably by the end of the mission duration.

An application of the recently developed method for station-keeping using the
Cauchy-Green tensor approach in the Sun-Earth/Moon system is analyzed in chapter
six. The approach is tested in the Sun-Earth/Moon system for the first time and
shows promising results. The effects of target tolerance, size of executable maneuver
and horizon time on station-keeping costs and computational expense are analyzed.
Smaller target tolerance increased the computational expense while station-keeping
costs remained almost the same for the range of target tolerance selected for the
analysis. The flow in the vicinity of a reference trajectory and the size of the or-
bit determination error is used to define a dynamic value of target tolerance that is
selected based on dynamical information available rather than heuristics. The feasi-
bility of z-direction control maneuvers for the selected orbit is investigated using the
CGT approach. Similar to the spatial maneuvers, the z-direction control maneuvers
were successful in maintaining the spacecraft near the reference orbit for the mission
duration except for a marginal increase in annual orbit maintenance costs. Finally,
the maneuvers computed using sophisticated approach like CGT is seen to be of the
same order as that predicted with the simple differential correction tool, thus pre-

senting confidence in the CGT results.

The common basis for comparing multiple orbit maintenance strategies is the
station-keeping costs, therefore the values obtained using the target point, the Flo-
quet mode and the Cauchy-Green tensor approach are compared for the purpose of
understanding the functioning of different approaches rather to identify if any method
is superior to another. The details are presented in chapter seven. It was identified
that more maneuvers are likely at extreme y positions due to the smaller velocities f

the spacecraft in those regions allowing larger duration for orbit estimation. Lastly,
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a summary of station-keeping costs from different literature sources are documented
to compare the order of magnitude of the values obtained in this research and gain
confidence. The station-keeping costs for some of the previous missions are in the

range of costs computed in this work.

8.2 Recommendations for Future Work

The application of the target point, the Floquet mode and the Cauchy-Green ten-
sor approach for station-keeping in the Sun-Earth/Moon system looks promising. The
analysis was done in the higher fidelity model with gravitational forces of the Sun,
the Earth and the Moon only. For more specific case, additional gravitational forces
can be incorporated. For a mission that uses solar sail, solar radiation pressure and
its effects on the motion of the spacecraft can be incorporated for the station-keeping
problem. Similarly, application of continuous controller and/or low thrust propulsion
system are potential options for future work. Specific to the Cauchy-Green tensor
approach, that was tested in the Sun-Earth/Moon system for the first time, orbit
maintenance simulations were initially performed for spatial maneuvers. Addition of
two more constraints i.e. restriction of y and z direction components, resulted in
x-control maneuvers. Modification of constraints types to generate different kinds of
maneuver than just x-control maneuver is worth investigating, specific example for
that is maneuvers along the Sun-spacecraft line, that may be beneficial for certain
missions. The nominal orbit chosen for the mission was an unstable southern halo
orbit in the Sun-Earth/Moon L; region. Other orbits such as Lissajous, Lyapunov,
quasi-periodic orbits etc. are worth inspecting. Moreover, orbits in the vicinity of Lo
region and orbits around the primary bodies are also candidates for future missions

hence station-keeping analysis might be valuable.

The continued interests in libration point missions will keep orbit maintenance a

popular topic of research. The three approaches for station-keeping have their own
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advantages, simplicity and robustness of the target point approach, the qualitative
information provided by the Floquet mode approach and the knowledge about the
local stretching given by the Cauchy-Green tensor approach. The success of future li-

bration point missions relies on the enhancement of these station-keeping approaches.
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