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ABSTRACT

Muralidharan, Vivek. M.S.A.A, Purdue University, December 2017. Orbit Mainte-
nance Strategies for Sun-Earth/Moon Libration Point Missions: Parameter Selection
for Target Point and Cauchy-Green Tensor Approaches. Major Professor: Kathleen
C. Howell.

The libration point orbits in the Sun-Earth/Moon system are formed by concur-

rent gravitational influences by various celestial bodies, originating in a nonlinear

dynamical regime. Coupled with the unstable nature of the orbit, the impact of

any perturbations are expected to increase rapidly. The feasibility of a flow-based,

Cauchy-Green tensor control strategy for station-keeping is examined. An orbit con-

sistent with the mission objectives is selected for examination. The station-keeping

process is stochastic, thus Gaussian random errors are introduced for simulation. The

evolution of a velocity perturbation over time is monitored, beyond which the attain-

able state in the accessible region nearest to the target state is employed as a feedback

to compute the necessary full, three-component corrective maneuver. The applica-

tion and appropriateness of single axis control maneuvers for orbit maintenance are

also evaluated. The selection procedure for certain parameters such as tolerances and

weighting values are developed to incorporate the available dynamical information,

yielding a versatile and straightforward strategy. Weighting matrices within the tar-

get point approach are effective in influencing the station-keeping costs as well as

size and direction of maneuvers. Moreover, selection of appropriate tolerance values

in the application of the Cauchy-Green tensor exploits the dominant stretching di-

rection of the perturbation magnitude to inform the maneuver construction process.

The work is demonstrated in the context of the upcoming Aditya-1 mission to a Sun-

Earth/Moon L1 halo orbit for solar observations and the James Webb Telescope to a

Sun-Earth/Moon L2 halo orbit for astronomy.
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1. INTRODUCTION

The quest for scientific discovery throughout the universe has long been of focus of

human interest. It is only recently that humans gained the capability to venture into

the space with both crewed and robotic vehicles. One of the main challenges in de-

ploying a spacecraft for scientific exploration is delivering the vehicle to a wide variety

of destinations in support of ever-expanding and increasingly complex goals. Leverag-

ing multi-body dynamical environments has produced a much wider array of options

for space exploration. In particular, trajectories associated with the Lagrange points

or libration points in a wide range of systems are very beneficial for scientific discovery.

Ever since the successful launch of the International Sun Earth Explorer-3 (ISEE-

3) mission in 1978 to the Sun-Earth L1 Lagrange point, interest has grown in missions

to the Sun-Earth libration points, especially L1 and L2, i.e., the libration points clos-

est to Earth. While ISEE-1 and ISEE-2 [1] were deployed to examine the dynamical

behavior within the Earth’s magnetosphere, ISEE-3 investigated the cosmic rays and

solar wind patterns. The launch of the WIND mission in 1994, the Solar Heliospheric

Observatory (SOHO) in 1995 and the Advanced Composition Explorer (ACE) in

1997 [2] followed ISEE-3 to support helio-physics research while positioned at the

Sun-Earth L1 halo orbits. The Genesis spacecraft [3] collected samples of solar wind

maintaining itself along a halo orbit at the Sun-Earth L1 libration point while the

Wilkinson Microwave Anisotropy Probe (WMAP) [4] spacecraft hovering in an orbit

about the Sun-Earth L2 Lagrange point investigated the cosmic waves from the big

bang. Many such spacecraft have explored such areas and more missions have been

planned to utilize this location for scientific studies. Such investigations would not be

possible unless the spacecraft is maintained in a predefined orbit near the Lagrange

points. Orbits in the proximity of these libration points are highly unstable, therefore
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robust low-cost station-keeping techniques are required to maintain the spacecrafts

in its predetermined orbit to enable scientific investigations.

The libration point orbits with potential benefits do pose a few challenges. The

libration points L1 and L2 in the Sun-Earth system are about 1.5 million km from

the Earth. The circular restricted three body problem (CR3BP) does not take into

consideration the eccentricity of the Earth’s orbit around the Sun, therefore, it ne-

glects the oscillatory behavior of the L1 and L2 distances. The Moon’s orbit is also at

a fairly close distance to these equilibrium points; as a result the Moon’s gravity acts

as a strong perturbing force, consequently, neither the uniform predictable behavior

of the orbits in CR3BP is preserved nor the existence of any equilibrium points are

guaranteed. Furthermore, the large distance from the Earth to the spacecraft in the

vicinity of such equilibrium points presents navigational challenges. The orbit main-

tenance strategies developed must be effective in maintaining the spacecraft close to

the baseline path by overcoming such challenges. The station-keeping algorithm must

be able to compute an effective maneuver despite the navigational limitations. The

algorithm must be able to incorporate the gravitational forces of other perturbing

bodies to simulate a real mission scenario.

1.1 Problem Definition

The scientific advantages of the two Sun-Earth collinear equilibrium points in the

vicinity of the Earth has motivated more missions in their vicinity. Scheduled to

launch in 2019-20, the goals for the Aditya-1 mission [4] to the vicinity of the Sun-

Earth L1 Lagrange point includes examination of the Sun’s corona and the particle

flux emissions while the James Webb Telescope [5] to a Sun-Earth L2 Lagrange point

orbit is expected to be launched in October 2018 to observe distant events in the Uni-

verse including formation of stars, galaxies etc. The potential orbits for these missions

to the vicinity of L1 and L2 libration points are highly unstable, therefore, an efficient
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station-keeping algorithm is sought to successfully maintain the spacecraft close to

the reference orbits for the mission duration. Since the Aditya-1 mission is relatively

new, the exact orbit for this mission is not yet available, however, the overall mission

objectives are similar to that of ISEE-3 and SOHO mission, thus the orbit is assumed

similar to that used for these previous missions. Moreover, values from the literature

are used to analyze the results. Based on these factors, an orbit similar to ISEE-3

mission is used extensively throughout this work.

Station-keeping simulations are accomplished to estimate the orbit maintenance

cost of the Aditya-1 mission, using three different approaches, the target point, the

Floquet mode and the Cauchy-Green tensor approach. The aim of conducting station-

keeping using these approaches are not to distinguish these methods based on their

advantages and disadvantages, rather to understand their functioning and explore

the possibilities from modifying certain parameters based on dynamical information

rather than an arbitrary or heuristic selection. The focus of this research has been

to answer the following questions. The target point approach is a simple and robust

method but depends greatly on the weighting matrices to compute a low cost ma-

neuver. The Floquet mode approach on the contrary, uses qualitative information

from the eigenstructure of the monodromy matrix to compute a maneuver. Can the

qualitative information available from the Floquet Mode approach be leveraged to

find the right weighting matrices in the target point approach? Also, can the target

point approached be further tuned to obtain even lower costs? Moreover, instead of

selecting the weights by trial and error method, can range of probable weights be an-

alyzed to identify any orderly behavior, in terms of cost minimization and maneuver

direction.

The Cauchy-Green tensor approach is analyzed in the Sun-Earth/Moon system

as a potential station-keeping strategy for libration point orbits for the first time.

The feasibility of the CGT approach for such a highly unstable orbit in the Sun-
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Earth/Moon system is worth examining. Would the CGT method yield station-

keeping costs of the same order of magnitude as that estimated using the target point

and the Floquet mode approach? Since the CGT approach is driven by design vari-

ables such as horizon time, minimum executable maneuver size and target tolerance,

their effect on the overall station-keeping costs and computational expense are worth

investigating. Further, can information based decision be made rather than a heuris-

tic based decision on the value of target tolerance, that affects the station-keeping

costs and computational expense? Finally, are there certain trends in the location of

the maneuvers? Are certain regions more prone to maneuvers than the others?

1.2 Previous Contributions

1.2.1 Multibody Dynamics

During the early seventeenth century, Johannes Kepler (1571 - 1630) postulated

his three laws, that govern a two body motion based on the heliocentric theory given

by Nicolaus Copernicus [6,7]. The work was only corroborated in 1687 after Sir Isaac

Newton (1642 - 1727) formulated the Universal Laws of Gravitation in Philosophiæ-

Naturalis Principia Mathematica [8] that explained Kepler‘s laws. Although a very

simplified model, the two body problem, in general, offered a good approximation of

the planetary motion around the Sun. Since each body in space applies a gravita-

tional force on the other, a model with a central gravitational body is not sufficient

to explain the complex nature of space. Despite the benefits of a two body problem,

a more comprehensive model was sought until Leonhard Euler (1707 - 1783) in 1767

formulated a simple restricted three body problem [9]. Joseph-Louis Lagrange (1736

- 1813) in 1772 computed the existence of equilibrium points based on the Euler’s

three body problem [10]. During the same time a lot of other astronomers and math-

ematicians offered in their theories and improvised the existing models. Carl Gustav

Jacob Jacobi (1804 - 1851) came up with the concept of energy-like constant that ex-

ists in CR3BP, that is now known as Jacobi Constant or Jacobi integrals [11]. Jules
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Henri Poincaré (1854 - 1912) investigated the nature of various trajectories and came

up with a visualization technique using maps in 1899 [12], now denoted as Poincaré

Maps, to represent different dynamical behavior of the trajectories as noted by saddle,

focus, center or nodes. In 1967, Victor Szebehely‘s Theory of Orbits [13] summarizes

the improvements done in the circular restricted three body problem till then and

substantiates theories with appropriate numerical results.

With the ability to venture into space, the mathematical solutions of the three

body problem became an interest for practical applications. The launch of ISEE-3

mission in 1978 to the Sun-Earth L1 Lagrange point, marked the new beginning in

the area of multi-body dynamics. With confidence in operating space missions and

the quest for scientific experiments that are otherwise not possible on the Earth has

boosted the research in the area of multi-body dynamics. A lot of research has been

done to explore different dynamical structures in the multi-body systems suitable for

space missions. Farquhar in 1968, describes a 3 dimensional halo orbit that exists

close to the collinear equilibrium points in his PhD thesis [14]. He endorsed it for a

communications station along the L2 halo orbit for its locational benefits. The orbit

is suitable for continuous communication with the Earth and the far side of the Moon

without being blocked by the Moon shadow. Later in 1973, Farquhar and Kamel, pro-

duced analytical solutions to represent quasi-periodic orbit using Lindstedt-Poincaré

approach [15]. In 1980, Richardson came up with an analytical solution to represent

halo orbits for ISEE-3 mission [16]. Howell in 1984 developed a numerical computa-

tion technique for precise halo orbit construction [17]. Howell and Pernicka extended

the research to determine Lissajous trajectory in CR3BP [18]. Recent work by Nath

and Ramanan also focuses on precise halo orbit design [19]. The close proximity of

the Sun-Earth L1 and L2 halo orbits to the Earth and continuous communication

possibilities makes it a favorable choice for a lot of space missions. The launch of

the WIND mission in 1994, the Solar Heliospheric Observatory (SOHO) in 1995 and

the Advanced Composition Explorer (ACE) in 1997 [2], the Genesis mission [3] and
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the Wilkinson Microwave Anisotropy Probe [20] in 2001 have successfully followed

ISEE-3 to their respective libration point orbits.

1.2.2 Orbit Maintenance Strategies

The orbits close to the collinear equilibrium points are unstable in general, requir-

ing regular orbit maintenance maneuvers to keep the spacecraft in close vicinity to the

ideal path. Early orbit maintenance research was done by Farquhar et al. [1,21] over

the ISEE-3 mission during 1970-80s. Other prevalent research over station-keeping

of the ISEE-3 missions had been done by Heuberger [22] as well as Erickson and

Glass [23] during the same time. Other studies on ISEE-3 are found in [24–26]. With

more missions that followed ISEE-3, more researchers have worked on orbit mainte-

nance strategies. Rodriguez and Hechler [27] studies aspects of SOHO mission design

while Sharer et al. examined the WIND Trajectory design and control [28]. Few

other station-keeping studies in the Sun-Earth system is found in [29–31]. Some of

the early works in the Earth-Moon system is found in the studies done by Breakwell

et al. [32,33], Colombo [34], Euler and Yu [35]. Recent studies on orbit maintenance

for ARTEMIS mission were conducted by Folta et al [36–38] as well as Howell and

Pavlak [39].

Howell and Pernicka [24, 25] incorporate statistical errors into the computation

of station-keeping costs in a numerical simulation. Their work is highly utilized to

generate large number of simulations especially with advancements in computational

technology. Their work also illustrates a new maneuver computation technique using

the target point approach. Later improvements to this method were made by Howell

and Gordon [40, 41] as well as Howell and Keeter [42, 43]. Williams et al. [30] used

a simplified version of the target point approach with single future position target-

ing for orbit maintenance of the Genesis spacecraft. Another noted station-keeping

technique using the Floquet mode was first seen in the works of Gomez et al [44, 45]
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in 1985, that deals with removing the unstable component of the eigenvectors of the

monodromy matrix to maintain the spacecraft close to the nominal trajectory. The

method has been used successively by Simo et al. [46, 47], Howell and Keeter [42, 43]

Howell and Pavlak [39] and Meng et al. [48]. In 2017, Guzzetti et al. formulated a

method to perform station-keeping for missions along the Earth-Moon near rectilinear

halo orbits using the Cauchy-Green tensor method [49]. Many more research using

impulsive control methods for station-keeping has been seen in the works of Ghorbani

and Assadian [50], Howell and Barden [51], Lu et al. [52]. A summary of few orbit

maintenance techniques for libration point orbits has been provided by Shirobokov

et al. [53].

1.3 Present Work

In this research, well established station-keeping techniques like the target point

approach has been analyzed with the Floquet mode approach for performance tun-

ing. Besides, for the first time, application of a recently developed method using the

Cauchy-Green tensor has been analyzed in the Sun-Earth system.

The target point approach although being a simple and robust method, uses dif-

ferent weighting matrices in the cost function. It may become challenging to find

appropriate weights that produce a low-cost maneuver with minimal deviation from

the nominal orbit. The Floquet mode approach on the other hand uses rich informa-

tion about the flow, but is computationally intensive. In this work, the qualitative

information provided by the Floquet mode is utilized to find the corresponding weights

that gives a similar, cost-effective station-keeping budget. Further efforts have been

put to tune the target point approach to give lower station-keeping costs than the

Floquet mode approach.



8

The Cauchy-Green tensor method was previously analyzed in the Earth-Moon

near rectilinear halo orbit that has a very low stability index. The method for the

very first time has been analyzed in the Sun-Earth/Moon L1 halo orbit that has sig-

nificantly larger stability index and larger stretching. The effects of other parameters

such as target tolerance and horizon time on orbit maintenance costs and computa-

tional time has been analyzed.

The applications of this research are not limited to the Aditya-1 or the James

Webb Telescope mission to the Sun-Earth Lagrange points, but applicable to many

other missions in future.

The study is summarized as follows.

• Chapter 2

The equations of motions in the circular restricted three body problem are

modeled based on a few fundamental assumptions. The equilibrium solutions

are calculated. Energy-like constant is defined, thus determining the accessible

regions. Behavior in close vicinity to a reference solution is examined using

linearization. A higher fidelity model using n-gravitational bodies is formu-

lated. Further, ways to transform different coordinate systems are derived in

this chapter.

• Chapter 3

The CR3BP is a nonlinear dynamical system; consequently, determining an

initial condition that would drive to a desired final state is non-intuitive. Dy-

namical systems theory provides tools to resolve this challenge using linear

state transition matrix (STM) over a chosen reference solution. Differential

correction techniques use the STM information for trajectory design as well as

station-keeping techniques investigated in this chapter. Likewise, single shoot-
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ing and multiple shooting techniques for complex trajectory corrections are

derived. Application of this tool in a higher fidelity model is also discussed.

• Chapter 4

Setup of a station-keeping algorithm is addressed in this chapter. Steps to

select a baseline solution and converting into a higher fidelity model are shown.

Ways to introduce stochastic errors for simulating an actual orbit maintenance

scenario is introduced. Insight into Monte Carlo simulations is provided with

explanation on impact of number of runs on confidence levels.

• Chapter 5

Detailed explanation on the target point and the Floquet mode approach for

station-keeping has been included in this chapter. The two approaches are

correlated to explore the impact of weighting matrix in the target point approach

on station-keeping costs and amount of drift from baseline solution. Also, trends

in maneuver direction is studied. Feasibility of corrective maneuvers in a fixed

direction, for simplicity, is inspected.

• Chapter 6

The concept of the Cauchy-Green tensor(CGT) and its application in orbit

maintenance is presented. Different parameters that could potentially affect

the station-keeping costs and computational time such as target tolerance and

horizon time are investigated. Dynamical information based selection of target

tolerance is proposed. Preliminary results are documented in this chapter. Fea-

sibility of x-direction controlled maneuver is surveyed. Magnitudes of maneuver

computed using the CGT approach are compared with those produces using a

single shooting differential correction process.

• Chapter 7

The station-keeping budget computed using the Cauchy-Green Tensor is com-

pared with the other two well established methods to check for costs. Effort
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has been put to analyze the distribution of maneuver locations along the orbit.

Survey of libration point missions in the Sun-Earth/Moon system are provided.

• Chapter 8

The research developments on orbit maintenance strategies using the three

methods are summarized. Some peculiar observations are highlighted. Rec-

ommendations for future work are offered.
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2. SYSTEM MODELS

The “two body problem” represents the behavior of two particles under their mutual

gravitational attraction. The two body problem is expressed mathematically with

relatively straight forward simple differential equations and an analytical solution

is available. With additional gravitational bodies, the complexity increases and an

analytical solution ceases to exist. Some characteristics of the system behavior are

exposed by numerical propagation of the governing differential equations. Adding

only one additional gravitational source the three body problem is formulated and

serves well as a foundation for more complex motion.

2.1 Circular Restricted Three Body Problem (CR3BP)

Infinitely many gravitational bodies can influence the motion of every other body

in the solar system. The motion of one body influenced by ‘n − 1’ other bodies

in the solar system is modeled as the ‘the n-body problem.’ To formulate the n

body problem define each of ‘n’ bodies as Pi with mass mi where i = 1, 2, ..., n.

Assuming all the n bodies to be spherically symmetric, Newton’s Law of motion is

applied to compute the force acting on the particle of interest. Let orthonormal unit

vectors X̂, Ŷ , Ẑ represent the coordinates of the inertially fixed frame, I, with O as

the inertially fixed base point or the origin. The vector r̄i describes the position of

body Pi with respect to the base point O while the vector r̄qi describes the position of

body Pi with respect to the body Pq as shown in Figure 2.1. Therefore, as expressed

in [54], the total force acting on body Pi as a result of all other bodies is

F̄i = −G̃
n∑

j=1, j 6=i

mimj

r3
ji

r̄ji (2.1)
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such that, G̃ is the dimensional scalar gravitational constant given by 6.67408 x

10−11 m3kg−1s−2 [55] and F̄i is the force vector acting on body Pi.

෠𝑌

መ𝑍

ҧ𝑟1

ҧ𝑟𝑛

ҧ𝑟𝑞

ҧ𝑟𝑖

ҧ𝑟𝑞𝑖

෠𝑋

𝑃𝑖 (𝑚𝑖)

𝑃𝑞 (𝑚𝑞)

𝑃1 (𝑚1)

𝑃𝑛 (𝑚𝑛)

𝑂

Figure 2.1. Gravitational interactions between n bodies in space.

The motion of a body is well expressed in terms of kinematic quantities. Using

Newton’s second law of motion, equation (2.1) is expressed in terms of acceleration

of body Pi in the inertial frame, I, as

F̄i = mi ¨̄ri = −G̃
n∑
j=1
j 6=i

mimj

r3
ji

r̄ji (2.2)

such that,

¨̄ri = −G̃
n∑
j=1
j 6=i

mj

r3
ji

r̄ji (2.3)

where ¨̄ri represents the acceleration of body Pi due to gravitational forces due to all

other particles in the n-body system. It is the double derivative of the position vector

with respect to the dimensional time as observed in the inertial frame.
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For a system with more than two gravitational bodies, an analytical solution does

not exist. Hence, gaining some insight into the system behavior is a challenge but the

highest priority. For the n-body system, each of the bodies are sensitive to changes in

position, velocity and acceleration due to the influence of all other bodies in the solar

system hence a generic equation of motion cannot be formulated that is independent of

time. A multi-body problem can be analyzed with selected number of bodies about a

fixed epoch date and real time data describing the states, called the ephemeres model.

A less complex, time invariant mathematical model with three gravitational bodies is

formulated with certain assumptions making a reliable framework to understand the

characteristic behavior of the system. The Circular Restricted Three Body Problem,

CR3BP, is the most commonly used method of formulating the equations of motion of

one body influenced by two other bodies, independent of time, with some assumptions

stated in section 2.1.1. The solution obtained using the CR3BP model can be used

as an initial guess for the higher fidelity model.

2.1.1 Assumptions

The Circular Restricted Three Body Problem is a specific case of the n-body

problem where the total number of bodies are three. Equation (2.3) delivers the

expression of a n-body system, so for n = 3

¨̄r3 = −G̃
[
m1

r3
13

r̄13 +
m2

r3
23

r̄23

]
(2.4)

where the position vectors r̄13 and r̄23 are given as

r̄13 = r̄3 − r̄1 (2.5)

r̄23 = r̄3 − r̄2 (2.6)

such that, r̄i is the position vector of body i with respect to the origin. To solve for the

differential equation, time history of r̄1 and r̄2 are to be known, but such information

is not available as states of P1 and P2 are themselves influenced by r̄3(t). Hence to
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solve for the three body problem 18 integrals of motion are to be solved i.e. 6 states

(3 position and 3 velocity states) for each of the 3 bodies, but only 10 integrals are

known. A two body problem has a closed form solution but with addition of one more

gravitational body i.e. n = 3, a closed form solution ceases to exist. With certain

additional assumptions, a refined model is described that quite accurately illustrates

the behavior of a number of systems.

• m3 << m1,m2

Let the three bodies P1, P2 and P3 be point mass bodies with masses m1,m2

and m3, such that m3 << m1,m2. The two bodies P1 and P2 are considered as

primaries that are massive in comparison to the third body, P3, that is modeled

as infinitesimally small body like a spacecraft, a comet etc. The assumption is

further extended to m1 < m2 to represent a larger primary body and a smaller

primary body.

• m3 does not influence the motion of m1 and m2

When m3 is modeled as infinitesimally small body in comparison to the pri-

maries it is assumed that the gravitational force due to m3 does not influence

the motion of m1 and m2. This results in an isolated two body system with

primary body m1 and secondary body m2, for which solution is known to be a

conic. m3 is known to coexist within the stable system of m1 and m2.

• m1 and m2 move on circular orbits about its barycenter

Further it is assumed that the primaries move in a circular orbit about its

barycenter. This assumption is not necessary but simplifies the model from an

elliptic restricted three body problem. As a result, the barycenter is regarded as

inertially fixed and treated as the origin for developing the equations of motion

in the circular restricted three body problem.

Now that the circular restricted three body problem is defined, let the bodies be

oriented in as shown in Figure 2.2. Let orthonormal unit vectors X̂, Ŷ , Ẑ represent
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the coordinates of the inertially fixed frame, I, with origin at the barycenter (B) of

the primaries. Since P1 and P2 have a conic solution, the motion of the primaries are

fixed in X̂Ŷ plane. The angular momentum vector of the motion of the primaries is

along the positive Ẑ direction.

Figure 2.2. Three-body orientation in space.

2.1.2 Equations of Motion

Since the primaries move in a circular orbit about the barycenter observed in the

inertial frame, the angular velocity of its motion is fixed. Let θ̇ represent the angular

velocity or the mean motion. The motion of the primaries is defined in the inertial

fixed frame as a function of time, t, as

R̄1 = R1

[
−cos(θ̇t)X̂ − sin(θ̇t)Ŷ

]
(2.7)

R̄2 = R2

[
cos(θ̇t)X̂ + sin(θ̇t)Ŷ

]
(2.8)

where R̄1 an R̄2 are the position vectors from the barycenter towards primaries P1

and P2 respectively. The magnitude of each of the vectors R̄1 and R̄2 are displayed

as R1 and R2 respectively. In this investigation, non bold italicized letters represents

the scalar magnitude of a quantity while the non bold italicized letters with a bar
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sign on top represents the vector quantity. The position vector of the third body P3

denoted by R̄3 is free to change in all three spatial directions. Computing the states

R̄3 and ˙̄R3 in the inertial frame requires computation of the position and velocity

states of the primaries at all times. A rotating coordinate frame, R, that moves along

the primaries removes the necessity to evaluate the states of the primaries that are

explicit functions of time. The energy of the system in the rotating frame, R, remains

conserved as in the inertial frame, I. Define x̂, ŷ, ẑ as the unit vectors that define the

rotational frame of reference, such that x̂ gives the direction from Primary P1 to P2.

ẑ gives the direction of the angular momentum of the primaries aligned along the

positive Ẑ axis. ŷ completes the right hand coordinate system.

To further generalize the equations for different three body systems and minimize

the chances of round-off errors during numerical integration, all terms of the equations

of motion are non-dimensionalized by corresponding characteristic quantities. All

quantities of distance is reduced by characteristics length, all quantities of mass is

reduced using characteristics mass and quantities of time with characteristic time.

The characteristic length, l∗, is defined as the constant distance between the two

primaries such as

l∗ = R1 +R2, (2.9)

the characteristic mass, m∗, is the total mass of the system given as

m∗ = m1 +m2 (2.10)

and the characteristic time is defined as the reciprocal of the mean motion,

t∗ = 1/θ̇ =

√
l∗3/G̃m∗ (2.11)

where the subscript 1 denotes the characteristic properties of primary P1 while sub-

script 2 denotes properties of primary P2. Let the system mass ratio, µ, be another

defining quantity, given as,

µ =
m2

m1 +m2

=
m2

m∗
(2.12)
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hence, m2 = µm∗ and m1 = (1− µ)m∗. The characteristic quantities and the system

mass ratio are sufficient to portray the nature of a system. The circular restricted

three body is therefore formulated in the non-dimensional units. The differential

equation that governs the motion of body P3 as given by equation (2.4), is non-

dimensionalized as

¨̄r3 =
1− µ
r3

13

r̄13 +
µ

r3
23

r̄23 (2.13)

where r̄3 is now expressed in the rotational frame as r̄3 = xx̂+ yŷ + zẑ. The vectors

r̄13 and r̄23 given as

r̄13 = r̄3 − r̄1 = (x− µ)x̂+ yŷ + zẑ (2.14)

r̄23 = r̄3 − r̄2 = (x− 1 + µ)x̂+ yŷ + zẑ (2.15)

depends on the location of the primaries along the x̂ axis i.e. r̄1 = −µx̂ and

r̄2 = (1 − µ)x̂. The derivatives i.e. ˙̄r3 and ¨̄r3 are with respect to non-dimensional

time τ where τ = t/t∗.

To formulate the equations of motion in the rotational frame, the derivative is

taken in the rotational frame, R, with respect to an inertial frame, I. The Basic

Kinematic equation (BKE) relates derivatives in the rotational frame to the inertial

frame as

Idr̄3

dτ
=

Rdr̄3

dτ
+ IωR × r̄3 (2.16)

where IωR = θ̇ẑ gives the angular velocity of the rotational frame about ẑ axis. The

velocity of the body P3 therefore becomes

I ˙̄r3 = ẋx̂+ ẏŷ + żẑ + [θ̇ẑ]× [xx̂+ yŷ + zẑ]

= (ẋ− θ̇y)x̂+ (ẏ + θ̇x)ŷ + żẑ
(2.17)

in the rotational frame, R. The second derivative of the position vector r̄3, yields

I ¨̄r3 = (ẍ− 2θ̇ẏ − θ̇2x)x̂+ (ÿ + 2θ̇ẋ− θ̇2y)ŷ + z̈ẑ (2.18)
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where I ¨̄r3 is the instantaneous acceleration in the rotating frame. Substituting the

equations, (2.14), (2.15) and (2.18) into equation (2.13) along with non-dimensional

value of θ̇, that is 1 for CR3BP, yields three scalar equations of motion of P3 purely

in the rotational frame, R, given by

ẍ− 2ẏ − x = −1− µ
d3

(x+ µ)− µ

r3
(x− 1 + µ) (2.19)

ÿ + 2ẋ− y = −1− µ
d3

y − µ

r3
y (2.20)

z̈ = −1− µ
d3

z − µ

r3
z (2.21)

such that,

d = r13 =
√

(x+ µ)2 + (y)2 + (z)2 (2.22)

r = r23 =
√

(x− 1 + µ)2 + (y)2 + (z)2 (2.23)

where d represents the non-dimensional distance from P3 to primary body P1 and r

represents the non-dimensional distance from P3 to smaller primary body P2.

2.1.3 Jacobi Constant

The conservation of energy does not hold true for a non inertial system. A similar

quantity that is conserved in the rotational frame is of high significance. A potential

function (U) represents the work done to displace a unit mass from infinity to that

particular point. For CR3BP, this is given by,

U =
1− µ
d

+
µ

r
(2.24)

such that, ∇̄Ui = mi ¨̄ri for a unit mass mi. Similarly a pseudo-potential function (U∗)

is defined such that,

U∗ = U +
1

2

(
x2 + y2

)
=

1− µ
d

+
µ

r
+

1

2

(
x2 + y2

)
(2.25)
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where U and U∗ are both functions of only positions and give useful insights about

the motion of the spacecrafts. The scalar equations of motion in equations (2.19),

(2.20) and (2.21) when rendered as a function of pseudo-potential function, given by

ẍ− 2ẏ =
∂U∗

∂x
(2.26)

ÿ + 2ẋ =
∂U∗

∂y
(2.27)

z̈ =
∂U∗

∂z
(2.28)

indicates that the acceleration in the x and y directions as in equations (2.26) and

(2.27) are decoupled from any out of plane components in the z direction. This im-

plies that the xy planar motion evolves independently of the out of plane motion and

vice-versa. Any motion in the orbit plane of primaries will remain in the same plane

unless any out of plane maneuver is applied. Both U and U∗ do not remain conserved

in the rotational frame.

An energy integral is computed by integrating the dot product of the velocity and

the acceleration components of the third body in motion due to the gravitational

forces exerted on it by the two primaries. In the rotational frame, this is given by

˙̄r3 · ¨̄r3 = [ẋx̂+ ẏŷ + żẑ] · [ẍx̂+ ÿŷ + z̈ẑ]

= ẋẍ+ ẏÿ + żz̈

=
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż

=
∂U∗

∂t

(2.29)

which is the time derivative of the pseudo-potential function. The integration of the

partials in equation (2.29) yields,

˙̄r2
3 = v2 = 2U∗ − C → C = 2U∗ − v2 (2.30)

here C is the constant of integration and v is the velocity of the third body P3 in the

rotating frame. The constant C, known as Jacobi Constant represents a conserved
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energy-like quantity in the rotational frame. An increase in energy of the system

relative to the rotating frame represents a decrease in the Jacobi constant and vice-

versa. Jacobi constant has various uses in the circular restricted three body problem.

It is used to determine accuracy of numerical integration by monitoring the change in

the value of C, to manipulate change in energy required for transfers, to understand

the energy limits of families of orbits and many more.

2.1.4 Equilibrium Solutions

Determining equilibrium solutions helps gain further insight into the CR3BP. The

equilibrium solutions correspond to the positions where the third body, free from

any initial acceleration or velocity remains stationary in the rotating frame for an

indefinite period of time. This implies that all time derivatives are zero i.e. ẋ =

ẏ = ż = ẍ = ÿ = z̈ = 0. Substituting this relation into the equations (2.26)-

(2.28) indicates that the gradient of pseudo-potential function is zero i.e. ∇U∗ = 0.

Therefore, the equilibrium solutions are computed by solving the following factored

equations
∂U∗

∂x
=
∂U∗

∂y
=
∂U∗

∂z
= 0 (2.31)

using numerical schemes. The equilibrium points are also commonly described as

Lagrange points or Libration points (Li). Each Libration point Li is found by

numerically solving the equation (2.31) that yields,

∂U∗

∂x
= −1− µ

d3
Li

(xLi
+ µ)− µ

r3
Li

(xLi
− 1 + µ) + xLi

= 0 (2.32)

∂U∗

∂y
= −1− µ

d3
Li

yLi
− µ

r3
Li

yLi
+ yLi

= 0 (2.33)

∂U∗

∂z
= −1− µ

d3
Li

zLi
− µ

r3
Li

zLi
= 0 (2.34)

where d3
Li

and r3
Li

are the distances from the libration point Li to each of the two

primaries while the coordinates of the equilibrium points are (xLi
, yLi

, zLi
).
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Each combination of (xLi
, yLi

, zLi
) corresponds to one libration point. Equation

(2.34) is satisfied with zLi
= 0, thus all libration points lie in the orbit plane of the

primaries. Similarly, yLi
= 0, is a solution of equation (2.33), hence one or more

equilibrium solutions exists on the x-axis given by (xLi
, 0, 0) that satisfies equation

(2.32) as

− 1− µ
|xLi

+ µ|3
(xLi

+ µ)− µ

|xLi
− 1 + µ|3

(xLi
− 1 + µ) + xLi

= 0 (2.35)

but equation (2.35) has no closed form solution therefore roots are computed numer-

ically that yields three real solutions. Imaginary solutions are neglected as physical

locations cannot be represented by imaginary numbers. The three possible solutions

of equation (2.35) are represented in terms of the displacement from the nearest

primary using γi. Coordinates of the three collinear libration points are given as

(xLi
, yLi

, zLi
), such that,

L1 : (1− µ− γ1, 0, 0) (2.36)

L2 : (1− µ+ γ2, 0, 0) (2.37)

L3 : ( −µ− γ3, 0, 0) (2.38)

where γi indirectly depends on the value of µ i.e. different values of γi for different

three body systems. The values of γi is solved by iterating the equation (2.35) at

each collinear Li, specifically

− 1− µ
(1− γ1)2

+
µ

γ2
1

+ 1− µ− γ1 = 0 (2.39)

− 1− µ
(1 + γ2)2

− µ

γ2
2

+ 1− µ+ γ2 = 0 (2.40)

1− µ
γ2

3

+
µ

(1 + γ3)2
− µ+ γ3 = 0 (2.41)
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for different system mass ratio µ. Libration point L1 lies between the two primaries,

L2 lies to the right of smaller primary while L3 lies to the left of larger primary as

shown in Figure 2.3. Each of the libration points are numbered congruent to the

convention followed in most of the recent papers.

Besides the three collinear solution, two other equilibrium solutions exists in the

CR3BP. Equations (2.32) and (2.33) are also satisfied simultaneously for d = r = 1

that completes the equilateral triangle with the distance between the primaries as the

side of the equilateral triangle. This results in two equilibrium points on either side

of the x − z plane equidistant from both the primaries as shown in Figure 2.3. By

virtue of their location, these points are denoted as triangular or equilateral Libration

points. As per convention coordinates of the triangular libration points are

L4 :

(
1

2
− µ,

√
3

2
, 0

)
(2.42)

L5 :

(
1

2
− µ, −

√
3

2
, 0

)
(2.43)

where L4 is located in the positive ŷ region while L5 is located in the negative ŷ

region.

2.1.5 Zero Velocity Curves

Within the CR3BP, the motion of P3, under the influence of the two primary

bodies, is bounded by the total energy it possesses. The value of the Jacobi Constant

along with the equilibrium solutions renders the boundaries of motion. Equation

(2.30), v2 = 2U∗ − C, leads to the conclusion that the velocity of P3 will become

imaginary if C > 2U∗ which is mathematically possible but physically absurd. The

region where the velocity becomes imaginary is physically inaccessible hence it is

termed as the forbidden region. The motion of the third body P3 is confined within
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Figure 2.3. Equilibrium solutions in CR3BP.

the region where C ≤ 2U∗. The boundary occurs where P3 is theoretically stationary

with zero velocity or

C = 2U∗ =
2(1− µ)

d
+

2µ

r
+
(
x2 + y2

)
(2.44)

where an infinitely many combinations of (x, y, z) satisfy the equation (2.44) generat-

ing a three-dimensional surface called the Zero Velocity Surface (ZVS). An example

of a ZVS in the Earth-Moon system is illustrated in Figure 2.4.

A two-dimensional curve formed out of cross section of the ZVS is called the Zero

Velocity Curves (ZVC). To examine a planar motion, a cross section of the Zero

Velocity Surface is considered along the x − y plane forming a Zero Velocity Curve

representing the boundary for the planar motion.



24

Figure 2.4. Zero Velocity Surface in the Earth-Moon system for C =
3.2. (Earth and Moon not to scale)

The Zero Velocity Curves for different energy levels (or different Jacobi values)

decides the range P3 can travel in the plane. Each equilibrium point corresponds to a

Jacobi Value (CLi
). As the ZVCs evolve for different Jacobi values, it becomes impor-

tant to monitor the changes in the ZVCs as it crosses each CLi
. Figure 2.5 illustrates

the evolution of ZVCs for different Jacobi values in comparison to the Jacobi values

at the Lagrange points mentioned as CLi
for the Earth Moon (EM) system, and its

impact on the accessible regions in space.

The Jacobi values at the Lagrange points, CLi
, are critical factors that decide the

shape of the ZVCs. The traits of the changing geometry is as explained

• CL1 < C

For an energy level less than at L1 i.e. CL1 < C, the third body P3 is trapped in

the vicinity of either one of the primary as indicated in Figure 2.5(a). If initially
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Forbidden Region

(a) CL1
< C

Forbidden Region

(b) CL2
< C < CL1

Forbidden Region

(c) CL3 < C < CL2

Forbidden Region

Forbidden Region

(d) CL4,5 < C < CL3

Figure 2.5. Zero Velocity Curves in the x−y plane for different Jacobi
values in the Earth-Moon (EM) system.

present near main primary then it continues to remain in the vicinity of the main

primary. Similarly, if present near the second primary then it remains bounded

near the second primary. The energy level is not enough to cross the forbidden

region near the Lagrange point L1 to travel from one primary body to the other.

• CL2 < C < CL1

For ZVCs with Jacobi values intermediate of the Jacobi at L1 and L2 it can be

seen from Figure 2.5(b) that, a gateway opens up near L1 connecting regions
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near the two primaries. In this range of C, P3 can pass from one primary to

another, however, P3 still does not possess enough energy to escape into outer

space.

• CL3 < C < CL2

With increase in energy level more than L2, gateway opens up near L2 allowing

P3 to escape into outer space near the second primary. Forbidden region still

persists towards the left of the main primary, thus access to outer space is

possible only along the positive x direction.

• CL4,5 < C < CL3

The ZVC splits near L3 at Jacobi level CL3 opening gateway to outer space

near L3 as well. In this range of Jacobi values, P3 has enough energy to move

out of vicinity of both the primaries in either direction. The forbidden regions

eventually contracts towards L4,5.

• C < CL4,5

For lower Jacobi values less than at L4,5, the ZVC ceases to exist in the x − y

plane. This does not imply that P3 is now free to move anywhere, it just means

that it is free to move anywhere in the planar space and there are still out of

plane regions that are inaccessible. It is important to note that at this range

of Jacobi values the Zero Velocity Surface has split into two distinct surfaces

at L4 and L5 and is now no longer single surface, unlike at lower energy levels.

The two distinct Zero Velocity Surfaces continues to shrink with decrease in C

values in the direction away from the principal plane of motion i.e. x− y plane.

The Zero Velocity Surfaces provides practicable information especially for mission

design. A maneuver is performed to increase the energy level to reach from one pri-

mary to another by opening a gateway near L1, similarly a energy reducing maneuver

can capture the spacecraft in the vicinity of the primaries by closing the gateways

near L1 and L2.
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2.2 Linearized Model

Any nonlinear system is difficult to analyze directly. A linearized model thus

assists in understanding the behavior of the system in the local vicinity of equilibrium

solutions. The behavior of certain states in the nonlinear system close to an already

known solution is predicted using the linearized model without actually requiring to

propagate the selected states. With the same intention the equations of motion of

CR3BP is linearized about its equilibria.

2.2.1 Linearized Variational Equations of Motion

The motion in circular restricted three body problem is governed by coupled,

second order non linear differential equations that does not have closed form analyt-

ical solution. Linearized solutions is generated near the equilibrium points to realize

the local behavior. All the six states are perturbed about the equilibrium points

to develop the linearized equations of motion. Let (xeq, yeq, zeq) represent the posi-

tion of the equilibrium points and (ξ, η, ζ) be the perturbations in (x̂, ŷ, ẑ) directions

respectively such that,

x = xeq + ξ (2.45)

y = yeq + η (2.46)

z = zeq + ζ (2.47)

where (x, y, z) are the new states in the vicinity of the equilibrium points. For any

state q, such that q = qeq + δq, where δq is a small deviation from reference solution

qeq, the derivative is expressed as

q̇ = f(q, t) (2.48)

which is approximated to the first order derivative term using Taylor Series. As a

result, equation (2.48) becomes,

˙qeq + δ̇q ≈ f(qeq + δq, t) = f(qeq, t) +
∂f

∂q

∣∣∣∣
qeq

dq +H.O.T.s (2.49)
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where, H.O.T.s represents the higher order terms that are neglected here for approx-

imating the integration to first order, assuming perturbations are very small. The

first order approximation yields

δq̇ =
∂f

∂q

∣∣∣∣
qeq

δq = A(t)δq (2.50)

where A(t) is known as the Jacobian Matrix and contains the partials of f with

respect to state q. Using equation (2.50), the time derivatives of the position and

velocity states near equilibrium points in CR3BP is also written in the same form,

ẋ = ẋeq + ξ̇ = ξ̇ (2.51)

ẏ = ẏeq + η̇ = η̇ (2.52)

ż = żeq + ζ̇ = ζ̇ (2.53)

ẍ = ẍeq + ξ̈ = ξ̈ (2.54)

ÿ = ÿeq + η̈ = η̈ (2.55)

z̈ = z̈eq + ζ̈ = ζ̈ (2.56)

since [ẋeq, ẏeq, żeq, ẍeq, ÿeq, ÿeq]
T = 0̄, as the equilibrium points are stationary in CR3BP.

The variational equations are developed by taking the derivatives of the equations

(2.26), (2.27) and (2.28) and expressed in terms of pseudo potential function, U∗, as

ξ̈ − 2η̇ = U∗xxξ + U∗xyη + U∗xzζ (2.57)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη + U∗yzζ (2.58)

ζ̈ = U∗zxξ + U∗zyη + U∗zzζ (2.59)

where each U∗ij =
∂2U∗

∂i∂j
are the second order partials of U∗ with respect to the

directions expressed as the subscripts. For each i, j ∈ {x, y, z}, the partials are

expanded as

U∗xx = 1− 1− µ
d3
− µ

r3
+

3(1− µ)(x+ µ)2

d5
+

3µ(x− 1 + µ)2

r5
(2.60)
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U∗yy = 1− 1− µ
d3
− µ

r3
+

3(1− µ)y2

d5
+

3µy2

r5
(2.61)

U∗zz = −1− µ
d3
− µ

r3
+

3(1− µ)z2

d5
+

3µz2

r5
(2.62)

U∗xy =
3(1− µ)(x+ µ)y

d5
+

3µ(x− 1 + µ)y

r5
= U∗yx (2.63)

U∗xz =
3(1− µ)(x+ µ)z

d5
+

3µ(x− 1 + µ)z

r5
= U∗zx (2.64)

U∗yz =
3(1− µ)yz

d5
+

3µyz

r5
= U∗zy (2.65)

where d, r and µ retain their original definitions.

In CR3BP, the natural motion is represented by 6 state variables, [ξ, η, ζ, ξ̇, η̇, ζ̇]T .

The linearized variational equations of motion are expressed in first order state space

form as



ξ̇

η̇

ζ̇

ξ̈

η̈

ζ̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗xx U∗xy U∗xz 0 2 0

U∗yx U∗yy U∗yz −2 0 0

U∗zx U∗zy U∗zz 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇


(2.66)

that is numerically integrated to determine the 6 states required to express the mo-

tion of a spacecraft uniquely. For ease of representation, if δq̄ denotes the states

[ξ, η, ζ, ξ̇, η̇, ζ̇]T , then δ ˙̄q = A(t)δq̄ portrays equation (2.66), such that A(t) is the 6x6

Jacobian matrix that is reduced to smaller 3x3 submatrices as,

A(t) =

 O3×3 I3×3

UXX Ω3×3

 (2.67)

where O, I, UXX and Ω are 3x3 submatrices of 6x6 Jacobian matrix in equation

(2.66). Always, O denotes a zero matrix while I indicates an identity matrix.
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2.2.2 Stability of the Equilibrium Points

The motion of the spacecraft in the vicinity of the equilibrium solutions can not be

analyzed using linearized equations of motion unless the stability is properly defined.

There are multiple ways to define the stability of a solution, of which the most suitable

choice is made depending on the objective of the given problem. An equilibrium

point is considered stable if, the motion of a particle that is subjected to any small

perturbations remains bounded in the near neighborhood of the equilibrium point.

The definition of the stability in this case is in lieu with Lyapunov Stability Criteria.

Mathematically, an equilibrium point ψe is Lyapunov Stable if for all ε > 0 there exists

δ > 0, such that if at time, t = 0, ||ψ(0)− ψe|| < δ, then for t ≥ 0, ||ψ(t)− ψe|| < ε.

Alternatively, if an initial perturbation δ is given about the equilibrium point then

subsequent motion should remain bounded within a defined ε. Furthermore, the

solution is said to be asymptotically stable if, the solution satisfies the Lyapunov

Stability and, for an initial perturbation within some δ > 0, i.e. at t = 0, ||ψ(0) −

ψe|| < δ, there exists,

lim
t→∞
||ψ(0)− ψe|| = 0 (2.68)

indicating the convergent behavior.

The Lyapunov stability of a linearized system defined as, δ ˙̄q = Aδq̄, is computed

by inspecting the eigenvalues of the Jacobian Matrix A (assuming A constant). The

eigenvalues λi are the roots of the characteristics equation of A for which the deter-

minant ||λI − A|| = 0 is evaluated. A system is classified as unstable, marginally

stable or asymptotically stable based on the eigenvalues. The criteria are

• Unstable: If at-least one of the eigenvalues have a positive real part i.e.

R(λi) > 0, then the linearized system is unstable. The corresponding nonlinear

system is also unstable.

• Marginally Stable: If all of the eigenvalues are purely imaginary i.e. R(λi) =

0, then the linearized system is marginally stable. A marginally stable linearized
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system is bounded but not asymptotically stable. No conclusions can be made

about the stability of the corresponding nonlinear system.

• Asymptotically Stable: If all of the eigenvalues have negative real part i.e.

R(λi) < 0, then the linearized system is marginally stable. The corresponding

nonlinear system is stable in the local vicinity.

The linearized equations of motion are computed about the equilibrium points to

assess the stability. The equilibrium points computed in section 2.1.4 indicates that

all of them lie in the plane of the primaries i.e. z = 0. Therefore, partials given in

equations (2.64) and (2.65) becomes U∗xz = U∗yz = U∗zx = U∗zy = 0. The linearized

equations in (2.57) - (2.59) are simplified to three equations

ξ̈ − 2η̇ = U∗xxξ + U∗xyη (2.69)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη (2.70)

ζ̈ = U∗zzζ (2.71)

with fewer number of partials. The linearized equations of motion about the equi-

librium solutions expressed in equations (2.69) - (2.71) indicates that the motion of

spacecraft in the out of plane direction i.e. z direction given in (2.71) is decoupled

from equations (2.69) and (2.70) that relate the inplane motion. Subsequently imply-

ing that the motion in the out of plane direction evolves independent of the motion

in the plane of primaries.

The fact that equation (2.71) is decoupled from equations (2.69) and (2.70), the

out of plane motion and the inplane motion are analyzed independently. For all

equilibrium points, U∗zz < 0, hence out of plane motion in the vicinity of all equilibrium

points undergo simple harmonic motion like a spring mass system. Moreover, the

eigenvalues λz = ±iωz = ±i
√
|U∗zz|, implying marginal stability with the frequency of

out of plane motion given by ωz =
√
|U∗zz|. For Lagrange points L4 and L5, the value
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of |U∗zz| = 1, i.e. ωz = 1, hence the period of out of plane motion P = 2π/ωz = 2π (in

non-dimensional unit) which is same as the period of the primaries. For variational

inplane motion about the equilibrium points the states are given by δq̄ = [ξ, η, ξ̇, η̇]T

such that,

δ ˙̄q = Axyδq̄ (2.72)

Axy =

 O2×2 I2×2

UXX,2×2 Ω2×2

 (2.73)

where Axy denotes the Jacobian matrix of the inplane motion, with submatrices as

UXX,2×2 =

 U∗xx U∗xy

U∗yx U∗yy

 (2.74)

Ω2×2 =

 0 2

−2 0

 (2.75)

while O2×2 is a 2×2 zero matrix and I2×2 is a 2× 2 identity matrix. The eigenvalues

of the inplane system near the equilibrium points are the roots of the characteristic

equations given by determinant ||λI − Axy|| = 0 i.e.

λ4 + (4− U∗xx − U∗yy)λ2 + (−2U∗xy + 2U∗yx)λ+ (U∗xxU
∗
yy − U∗xyU∗yx) = 0 (2.76)

where the values U∗xx, U
∗
xy and U∗yx are different for different equilibrium points. Con-

sequently, each equilibrium point has different stability properties that are analyzed

separately.

2.2.3 Motion near the Collinear Equilibrium Points

The collinear equilibrium points L1, L2 and L3 lie along the x-axis, which simplifies

the solution of the linearized model in their vicinity. Since yLi
= zLi

= 0, some of the

terms in the linear variational equations of motion is nullified in the vicinity of the

collinear Lagrange points i.e. U∗xy = U∗yx = 0. Thus, the characteristic equation for

the inplane motion as in equation (2.76) simplifies to
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λ4 + (4− U∗xx − U∗yy)λ2 + (U∗xxU
∗
yy) = 0 (2.77)

with fewer variable. The eigenvalues corresponding to the system are the roots of the

characteristic equations that are given by,

λ1,2 = ±
√
−β1 + (β2

1 + β2
2)1/2 (2.78)

λ3,4 = ±
√
−β1 − (β2

1 + β2
2)1/2 (2.79)

where, for simplicity β1 and β2 are defined as

β1 = 2−
U∗xx + U∗yy

2
(2.80)

β2
2 = −U∗xxU∗yy (2.81)

that are functions of pseudo-potential evaluated at corresponding equilibrium point

Li. Further, for additional simplicity, define

s =
√
β1 + (β2

1 + β2
2)1/2 (2.82)

β3 =
s2 + U∗xx

2s
(2.83)

as constants for representation. The analytical solution of variational equations in

terms of position along x and y directions near the equilibrium points are expressed

as

ξ =
4∑
i=1

Aie
λit (2.84)

η =
4∑
i=1

Bie
λit (2.85)

where Ai and Bi are coefficients corresponding to stimulated eigenvector with λi as

the corresponding eigenvalue. Here, Ai and Bi are related to each other as

Bi = αiAi (2.86)

αi =
λ2
i − U∗xx

2λi
(2.87)
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because of coupled xy motion. To expose the motion along a particular direction, the

linearized variational model is excited along the corresponding eigenvector direction.

It is important to note here that λ3,4 = ±is where s is as defined in equation (2.82)

implying that λ3,4 are purely imaginary indicating marginal stability, while λ1,2 exists

as positive and negative real pair. A periodic solution in the linearized system may

exists only along the eigenvalues λ3,4, demanding a suppression of eigenvalues λ1,2 that

can potentially destabilize the system due to its unstable component. Henceforth,

conditions such that, A1 = A2 = 0 are set to modify equations (2.84) and (2.85) to

ξ = A3e
λ3t + A4e

λ4t (2.88)

η = B3e
λ3t +B4e

λ4t = α3A3e
λ3t + α4A4e

λ4t (2.89)

resulting in a solution may potentially be periodic in the vicinity of the collinear

libration points. On evaluating, A3 and A4 in terms of s, α3, ξ0, η0, the analytical

representation of the periodic behavior of the motion of the spacecraft in the vicinity

of the collinear equilibrium points are given by

ξ = ξ0 cos(s(τ − τ0)) +
η0

β3

sin(s(τ − τ0)) (2.90)

η = η0 cos(s(τ − τ0))− ξ0β3 sin(s(τ − τ0)) (2.91)

ξ̇ = −ξ0s sin(s(τ − τ0)) +
η0

β3

s cos(s(τ − τ0)) (2.92)

η̇ = −η0s sin(s(τ − τ0))− ξ0β3s sin(s(τ − τ0)) (2.93)

where, τ represents the non-dimensional time. The linearized variational equations

of motion are developed given the initial positions (ξ0, η0) and velocity (ξ̇0, η̇0) in the

x and y directions respectively at initial non-dimensional time τ0. The periodicity of

formed orbit is given by

P =
2π

s
(2.94)

where, orbit time period P is expressed in non-dimensional time.
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2.2.4 Motion near the Triangular Equilibrium Points

Similar to collinear equilibrium points, analytical linearized variational equations

of motion are used to leverage the dynamics is close vicinity to the triangular equi-

librium points. The out of plane motion is decoupled from the inplane motion and

hence it evolves independently. As discussed in section 2.2.2, the period of out of

plane motion is same as the period of the primaries about the barycenter. While, the

inplane motion is represented by the characteristic equation given in equation (2.76).

For equilibrium points L4 and L5, the partials of the pseudo-potential functions are

evaluated as

U∗xx =
3

4
(2.95)

U∗yy =
9

4
(2.96)

U∗xy = U∗yx = ±3
√

3

2

(
µ− 1

2

)
(2.97)

where U∗xy and U∗yx is positive for L4 and negative for L5. On substituting these in

equation (2.76), the characteristic equations for the inplane motion becomes,

λ4 + λ2 +
27

4
µ (1− µ) = 0 (2.98)

which is purely a function of the system mass ratio, µ. The roots of the characteristic

equation are computed to be

λ1,2 = ±
√

1

2
(−1 +

√
g) (2.99)

λ3,4 = ±
√

1

2
(−1−√g) (2.100)

such that,

g = 1− 27µ (1− µ) (2.101)

is a constant value defined for simplicity.
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The eigenvalues that determine the stability of the system depends on the value of

g which is a function of mass ratio µ, hence stability characteristics of triangular libra-

tion points in different three body systems is different. The stability characteristics

change at certain critical system mass ratios as explained.

• 0 < g < 1 or 0 < µ < 0.03852

On careful inspection, it is seen that for all values of 0 < µ < 0.03852, λ1,2 and

λ3,4 are purely imaginary hence the motion of the third body about the triangu-

lar equilibrium points is periodic in linear sense. The eigenvalues are represented

in terms of their frequencies i.e. λ1,2 = ±iω1 and λ3,4 = ±iω2, where ω1 is the

smaller frequency that corresponds to long period motion (P = 2π/ω1) and ω2

is the larger frequency that corresponds to short period motion (P = 2π/ω2).

The motion near the Lagrange points L4 and L5 are a linear combination of

short period motion and long period motion. Stability in the nonlinear system

is however not determined. This case is same as 0.96148 < µ < 1 except that

the positions of the primaries bodies are interchanged.

• g = 0 or µ = 0.03852

At this critical mass ratio, λ1,2 = λ3,4 = ±
(
1/
√

2
)
i, which means that one of

the short period or long period motion is eliminated. Additionally in the linear

model, repeated imaginary eigenvalues results in an unstable system.

• g < 0 or 0.03852 < µ

For any three body system with mass ratio µ such that, 0.03852 < µ (or µ <

1− 0.03852 = 0.96148), the eigenvalues exists in the form

λ1,2 = ±
√

1

2
(−1 +

√
g) = ±

√
1

2
(−1± iδ) (2.102)

λ3,4 = ±
√

1

2
(−1−√g) = ±

√
1

2
(−1∓ iδ) (2.103)
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where
√
g = ±iδ. The eigenvalues for this system exist in the form λi = p+ iq,

with two positive real and two negative real part, making the system unstable.

Still, initial conditions can be wisely selected in the direction of eigenvectors cor-

responding to negative real eigenvalues to generate a linear model which would

result in an asymptotically stable linear system in the local vicinity. This will

result in the body undergoing a spiral motion eventually approaching the tri-

angular equilibrium point.

• g ≥ 1 or µ ≤ 0, 1 ≤ µ

Such mass ratio indicates negative mass for either of the primary body. Such

system cannot exist physically.

2.3 Higher Fidelity Ephemeris Model

The circular restricted three body problem fundamentally captures details of the

motion of the spacecraft due to gravitational interaction with two main primary bod-

ies. The presence of other non finite gravitational bodies could substantially alter the

motion of the spacecraft. The higher fidelity model is a more accurate representation

of this complex dynamical regime, used to represent accurate trajectory designs and

compute orbit maintenance costs with reduced errors. DE405 planetary ephemerides

from NASA Jet Propulsion Laboratory (JPL) is used to identify the position and

velocity of different celestial bodies used in simulating in the higher fidelity model.

The inclusion of precise orbit eccentricities and inclination in the ephemeris model

improves the authenticity of the solutions unlike in the lower fidelity CR3BP model

where such parameters are either ignored or assumed constant.
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2.3.1 n-body Dynamical Model

For improved accuracy, the governing equations of motion of the object of interest

is derived in this n-body dynamical regime. The additional higher fidelity force terms

enhances the solution over a restricted three body problem. The objective of this

model is to study the motion of a body Pi in an n-body gravitational model. In

section 2.1, the differential equations of motion of a n-body model were written with

respect to an inertially fixed base point. Since the DE405 planetary ephemerides data

provides relative location of a celestial body with respect to another, it is practically

convenient to formulate the equations of motion with respect to a central body Pq as

portrayed in Figure 2.6. The central body is denoted by subscript q, the object of

interest or the spacecraft as i, while the remaining of the n bodies are labeled as j.

r̄qi represents the relative position of spacecraft with respect to the central body.

෠𝑌

መ𝑍

ҧ𝑟𝑞𝑛

ҧ𝑟𝑞𝑖

ҧ𝑟𝑞𝑗

෠𝑋

𝑃𝑗 (𝑚𝑗)

𝑃𝑞 (𝑚𝑞)

𝑃1 (𝑚1)

𝑃𝑛 (𝑚𝑛)

ҧ𝑟𝑞1

ҧ𝑟𝑛𝑖

ҧ𝑟1𝑖

ҧ𝑟𝑗𝑖

𝑃𝑖 (𝑚𝑖)

Figure 2.6. Geometry of the n-body problem.

The second order vector differential equation that governs the motion of the space-

craft with respect to the central body is derived upon the instantaneous position

vectors r̄ij and r̄qj, as demonstrated using the geometry in Figure 2.6, as
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¨̄rqi = −G̃(mi +mq)

r3
qi

r̄qi − G̃
n∑
j=1
j 6=i,q

mj

(
r̄ij
r3
ij

− r̄qj
r3
qj

)
(2.104)

where the vector r̄qj is directly obtained from DE405 ephemerides data while the

vector r̄ij is obtained by vector operation i.e.

r̄ij = r̄qj − r̄qi (2.105)

where the vector r̄qi is the continuously monitored position of the spacecraft relative

to the central body. Additionally, r̄ij = −r̄ji denotes the relative location of the

perturbing body Pj with respect to the body of interest Pi.

The n-body equation of motion as given in equation (2.104) is expressed in dimen-

sional units, however for practical use and computational ease for numerical integra-

tion, the terms are non-dimensionalized using corresponding characteristic quantities

of the most relevant CR3BP system. The accuracy of this model can be further im-

proved by additional force models such as Solar Radiation Pressure, J2 perturbation

etc. but it is beyond the scope of this work.

2.4 Coordinate Frame Transformations

The circular restricted three body problem is formulated in the coordinate frame

that rotates along with the primaries. With respect to the inertial frame this frame

appears to be rotating at the rate equal to the angular velocity of the primaries

about its barycenter, hence, commonly denoted as rotating frame. The trajectory of

the spacecraft with respect to the primaries may not be evident in the inertial frame,

on contrary the ephemeris data is given in the inertial coordinate frame. From the

designer’s perspective it becomes necessary to transform from one coordinate frame

to another to get useful information. The apparent motion in one frame may not

reveal its behavior in the other frame, therefore, regardless of the frame in which the
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trajectory is computed, for visual understanding coordinate transformation of the

states becomes necessary.

2.4.1 Correlating the Inertial and Rotating Coordinate Frames

The most straight forward way of correlating states in one frame to another is using

a transformation matrix that can be multiplied directly with the states in one frame

to get the states in other frame. Figure 2.2 indicates the relation between the rotating

frame and the inertial frame. The rotating coordinate frame, R, is indicated using

unit vectors x̂, ŷ, ẑ (small letters) while the inertial coordinate frame, I, is indicated

using unit vectors X̂, Ŷ , Ẑ (capital letters). The angle that relates frame R to frame I

given by θ that is a function of non-dimensional time such that, θ = θ̇τ = τ , as θ̇ = 1

for CR3BP in non-dimensional units. The Direction Cosine Matrix (DCM) defined

as ICR,

ICR =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.106)

transforms the position states in the rotational frame to the inertial frame as
rX

rY

rZ

 = ICR


rx

ry

rz

 (2.107)

where the superscript R on the right of ICR indicates that the column vector of

the states in rotating frame is multiplied to the DCM. Similarly, a direction cosine

matrix RCI is used to convert the states in inertial frame to rotating frame where

RCI =
[
ICR

]−1
.
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Since velocity components are derivatives of position with respect to time the con-

version from inertial frame to rotational frame requires an additional consideration.

Either using the equation (2.16) or by taking the derivative of equation (2.107) with

respect to non-dimensional time, the velocity between the two frames is related as


vX

vY

vZ

 = IĊR


rx

ry

rz

+ ICR


vx

vy

vz

 (2.108)

where IĊR indicates derivative of each element of ICR with respect to non-dimensional

time. A combined, total transformation matrix is established that converts both the

position and velocity states from the rotational frame to the inertial frame.



rX

rY

rZ

xX

xY

xZ


=

 ICR O3x3

IĊR ICR





rx

ry

rz

vx

vy

vz


(2.109)

where O3x3 is a 3 × 3 zero matrix. Similarly, full states from inertial frame can be

converted to rotational frame using the inverse of 6×6 DCM used in equation (2.109).

2.4.2 Correlating the Inertial J2000 and Rotating Coordinate Frames

Transitioning from an Inertial J2000 frame to a rotating frame is comparable to

the transformation in section 2.4.1 except that planetary ephemerides information is

also incorporated while performing the transformation. Since the barycenter of the

two main primary bodies P1 and P2 is not inertially fixed, it is not possible to intro-

duce the rotation matrix with respect to the barycenter. Instead, it is convenient to

convert to primary centered rotational frame about the main primary body P1. The
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instantaneous position and velocity of the smaller primary with respect to the main

primary obtained from DE405 ephemerides data is used to convert the frame.

The rotating frame is derived from the available relative positions of primaries

from the ephemerides data. Let the vector

R̄ = r̄12 =


rX

rY

rZ

 (2.110)

be the instantaneous position of smaller primary with respect to the main primary

obtained from DE405 in the primary centered inertial frame. In a rotating frame

the smaller primary is always directed to the positive x-axis of the rotating frame

while z-axis corresponds to the direction of angular momentum and y-axis completes

the dextral coordinate system. Using the same principle, the instantaneous rotating

frame is defined as

x̂ =
R̄

||R̄||
(2.111)

ẑ =
R̄× V̄
||R̄× V̄ ||

(2.112)

ŷ = ẑ × x̂ (2.113)

where R̄ and V̄ are the instantaneous position and velocity vectors of smaller primary

body P2 with respect to the main primary P1 expressed in the primary centered

inertial J2000 frame. The instantaneous transformation matrix to convert position in

primary centered rotational frame to inertial J2000 frame is given by

ICR =
[
x̂ ŷ ẑ

]
=


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.114)
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where each Cij represents the (i, j) term of the transformation matrix ICR. ICR

transforms the position of a body represented in the primary centered rotational

frame to primary centered inertial J2000 frame as
XPC

YPC

ZPC

 = ICR


xPC

yPC

zPC

 (2.115)

such that, the subscript PC denotes that the vectors in rotational and inertial frame

of reference are with respect to primary center.

Contradictory to the circular restricted three body problem, the angular velocity

in an ephemeris model is not constant, instead, it is a time variant function. The

instantaneous angular velocity defined as

θ̇ =
h

||R̄||2
=
R̄× V̄
||R̄||2

(2.116)

is used to relate the velocity of the object of interest in the primary centered rotating

frame to primary centered inertial J2000 frame.

The Basic kinematic equation (BKE) is used to relate the velocity of the body

of interest P3 in the primary centered rotational frame to the velocity in the primary

centered inertial frame. It is mathematically expressed as

Idr̄13

dτ
=

Rdr̄13

dτ
+ IωR × r̄13 (2.117)

where subscript 1 denotes the primary body. For simplicity, this is denoted as primary

centered system where all measurements of the spacecraft are taken with respect to

this primary body, hence, r̄PC = r̄13. Therefore, the Basic Kinematic equation is

expressed alternatively as

Idr̄PC
dτ

=
Rdr̄PC
dτ

+ IωR × r̄PC (2.118)
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Idr̄PC
dτ

= (ẋPC − θ̇yPC)x̂+ (ẏPC + θ̇xPC)ŷ + żPC ẑ (2.119)

where IωR = θ̇ẑ represents the angular velocity of the instantaneous primary centered

rotating frame to the primary centered inertial J2000 frame. Equation (2.119) is used

to correlate velocity in the inertial frame to the position and velocity states in the

primary centered rotational frame. When expressed in the matrix form equation

(2.119) becomes


ẊPC

ẎPC

ŻPC

 =


θ̇C12 −θ̇C11 0 C11 C12 C13

θ̇C22 −θ̇C21 0 C12 C22 C23

θ̇C32 −θ̇C31 0 C13 C32 C33





xPC

yPC

zPC

ẋPC

ẏPC

żPC


(2.120)

where velocity states in inertial frame are now a function of both position and velocity

states in the rotating frame. Combining equations (2.115) and (2.120) provides a 6×6

transformation matrix that converts the three position and three velocity states of

the body of interest in primary centered rotational frame to primary centered inertial

J2000 frame in one step i.e.



XPC

YPC

ZPC

ẊPC

ẎPC

ŻPC


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C32 C33 0 0 0

θ̇C12 −θ̇C11 0 C11 C12 C13

θ̇C22 −θ̇C21 0 C12 C22 C23

θ̇C32 −θ̇C31 0 C13 C32 C33





xPC

yPC

zPC

ẋPC

ẏPC

żPC


(2.121)

where the transformation matrix is a function of Cij obtained from equation (2.114)

and θ̇ obtained from equation (2.116). Since the bottom left 3×3 matrix is dimensional

due to the presence of θ̇ that is measured in rad/s, the entire transformation is done
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in the dimensional units. Once transformed, the vectors is non-dimensionalized for

convenience. Similar to the transformation procedure in the circular restricted model,

the states in primary centered J2000 inertial frame can be converted to primary

centered rotational frame by taking the inverse of the transformation matrix.
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3. DYNAMICAL SYSTEMS THEORY

From the mission perspective, it is vital to deduce an initial condition that drives

the spacecraft to the desired final states. The nonlinear equations of motion of the

Circular Restricted Three Body Problem does not provide the observability to esti-

mate the initial state to reach a particular target. The desired final state may be

close to observed final state along any baseline trajectory. The initial conditions can

be modified in infinite ways out of which only one true initial condition would drive

to the target, thus it is highly unlikely that a chosen starting condition drives to the

desired end. The Dynamical Systems theory provides intuitive schemes to predict the

right conditions that leads to the desired final states.

3.1 State Transition Matrix

The State Transition Matrix (STM) is a linear operator that correlates the initial

variation about the baseline solution to the variation at the end. It is a fundamen-

tal tool that predicts the changes in states at the final time due to certain minute

changes in initial condition contemplated in the linear sense. Similar to linearizing

the nonlinear equations of motions of CR3BP about its equilibria, linearization is

exercised along a fixed baseline/reference trajectory using Taylor series expansion to

develop the State Transition Matrix.

The State Transition Matrix is formulated by considering the flow of a trajectory

nearby a reference trajectory. Let the reference trajectory be represented by the

asterisks(∗) symbol, the initial initial state vector x̄∗0 is propagated for time, t, to a

final state x̄∗(t). Let a nearby varied trajectory, with isochronous correspondence, be

obtained by perturbing the initial states of the reference trajectory and propagating
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for the same time, t, as demonstrated in Figure 3.1. Let the initial condition of the

perturbed solution be denoted by

x̄0 = x̄∗0 + δx̄0 (3.1)

where δx̄0 is the small perturbation applied at the initial time. The new initial

condition drives the solution to a new final state x̄(x̄0, t) such that,

x̄(x̄0, t) = x̄∗(x̄∗0, t) + δx̄(t) (3.2)

where δx̄(t) is the small variation about the reference solution at time, t, while the

elements within the brackets, (x̄0, t) and (x̄∗0, t) are the initial state vector they were

propagated from, and the time of propagation. Since x̄0 = x̄∗0 + δx̄0, equation (3.2)

becomes,

x̄(x̄∗0 + δx̄0, t) = x̄∗(x̄∗0, t) + δx̄(t) (3.3)

where all the vectors are presented purely in terms of states of the nearby reference so-

lution and the corresponding perturbation at anytime t. First order Taylor expansion

applied to equation (3.3) as

x̄∗(x̄∗0, t) +
∂x̄

∂x̄0

δx̄0 +H.O.T.s = x̄∗(x̄∗0, t) + δx̄(t) (3.4)

to compute the linear State transition Matrix. Since approximation only up to first

oder is required, the higher order terms H.O.T.s are neglected to yield

∂x̄

∂x̄0

δx̄0 ≈ δx̄(t) (3.5)

where the partial
∂x̄

∂x̄0

is the n× n sensitivity matrix or the State Transition Matrix

which is a linear correlation between the initial variation to the variation at the final

time computed along some baseline trajectory. The perturbation vectors δx̄0 and

δx̄(t) are n× 1 matrices that relates to the variation in the n states measured along

the reference trajectory at initial time t0 and final time t respectively.
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Figure 3.1. Baseline/Reference solution and isochronous variation.

Specifically for the circular restricted three body problem where there are 6 states

inclusive of 3 position and 3 velocity states, the State Transition Matrix is of the size

6 × 6. The partials in the STM is calculated by propagating the states along the

reference orbit for time, t, as

φ(t, t0) =
∂x̄(t)

∂x̄0

=



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


(3.6)

where [x, y, z, ẋ, ẏ, ż]T are the final states along the reference orbit propagated from

[x0, y0, z0, ẋ0, ẏ0, ż0]T . At time t = t0, since the initial and final states along the

reference trajectory is the same, the STM φ(t0, t0) = I6×6, a six-dimensional identity

matrix, mathematically this describes the derivative of the initial states with respect
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to itself. The 6 × 6 STM can be written in a more compact form, by collectively

representing the position states r and velocity states v as

φ(t, t0) =

 φrr φrv

φvr φvv

 (3.7)

where φrr is the partial of final position states to initial position states, φrv relates

final velocity states to initial position states, φvr relates final position states to initial

velocity states and finally φvv is the partial of final velocity states to initial velocity

states.

To perform certain conditions, state correction process is performed with the help

of STM information. The partials of the state transition matrix is also integrated

numerically along with the equations of motion in the CR3BP model, and in higher

fidelity model. The differential equations that govern the partials of the STM are

φ̇(t, t0) =
d

dt

∂x̄

∂x̄0

=
∂ ˙̄x

∂x̄0

(3.8)

that is essentially the partials of the derivative of the final states with respect to the

initial states. From equation (2.50), ˙̄x = A(t)x̄, hence equation (3.8) is reduced to

φ̇(t, t0) =
∂A(t)x̄

∂x̄0

= A(t)
∂x̄

∂x̄0

(3.9)

φ̇(t, t0) = A(t)φ(t, t0) (3.10)

that produces a 6 × 6 matrix φ̇(t, t0), producing 36 scalar partial differential equa-

tions. Combined with the 6 equations of motion, a total of 42 partial differential

equations are numerically propagated to get the time history of the actual states and

the partials of the final states with respect to the initial states.

The State Transition matrix being a linear operator, the accuracy substantially

depends on the initial variation, that is expected to be small. A large initial variation

may amplify the error in the final solution as the linear STM may no longer be capable
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of accurately predicting the flow. In general, when predicting the desired initial or

final states, the baseline trajectory is updated continuously to minimize variation

every successive step. The accuracy of the STM increases as variation diminishes.

The same principal concept is applied in the Differential Correction process

3.2 Differential Correction Process

Targeting a desired state is one of the most sought after tasks especially for tra-

jectory design and optimization. Differential correction process is a scheme that

facilitates targeting certain final conditions. Since STM is a linear operator that

estimates the final variation due to some initial variation about a baseline solution,

Differential Correction process involving the State Transition Matrix is exploited to

target the required end conditions for trajectory design in the CR3BP. Finally, an

iterative process is applied till demanded tolerance is reached.

Several schemes are available for implementing the Differential Correction Process.

Throughout this work, the method of free variables and constraints as carried out

by many other researchers have been used [56], [57], [58]. This method employs the

Newton-Raphson approximation technique which uses the truncated Taylor expansion

to the first order [59]. The method is formulated by considering a design variable

vector X̄ with n free variables which are subjected to updates. Vector X̄ is defined

as a column vector

X̄ =


X1

X2

...

Xn

 (3.11)

where X1, X2, ... , Xn may be position states, velocity states, time and/or any other

relevant design variables. The constraint vector F̄ (X̄) defined as a column vector



52

F̄ (X̄) =


F1(X̄)

F2(X̄)
...

Fm(X̄)

 (3.12)

is subjected to m different constraints F1(X̄), F2(X̄) through Fm(X̄) which may be

combination of continuity constraints, altitude constraints, energy constraint or any

other user defined constraint that are a function of the defined state variables X̄.

Taylor series expansion of F̄ (X̄) with free variable at initial time X̄0 results in

F̄ (X̄) = F̄ (X̄0) +DF̄ (X̄0)
(
X̄ − X̄0

)
+H.O.T.s (3.13)

where the higher order terms, H.O.T.s, are neglected as Newton-Raphson method

truncates the Taylor series expansion to only the first order term. Additionally, the

aim of this method is to update the free design variable till X̄ drives the constraint

vector F̄ (X̄) = 0. Hence equation (3.13) reduces to

0̄ ≈ F̄ (X̄0) +DF̄ (X̄0)
(
X̄ − X̄0

)
(3.14)

where DF̄ (X̄0) is the Jacobian matrix of size m× n as

DF̄ (X̄0) =
∂F̄ (X̄0)

∂X̄0)
=


∂F1

∂X1
. . . ∂F1

∂Xn

...
. . .

...

∂Fm

∂X1
. . . ∂Fm

∂Xn

 (3.15)

that consists of the first order partials of each of the constraint vector Fi with respect

to each of the state variables Xj, such that i ∈ {1, ...,m} and j ∈ {1, ..., n}.

For a linear problem a single step would have been suffice for Differential correction

process to update the free design vector that would drive the constraint vector to zero,

however, for a nonlinear problem, iterative approach is applied to drive the constraint

vector below the specified tolerance level. The updated design variable after every
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successive iteration is used as the new initial condition for the baseline solution upon

which the Newton’s method is applied again. To incorporate the iterative strategy

equation (3.14) is modified to

F̄ (X̄j) +DF̄ (X̄j)
(
X̄j+1 − X̄j

)
= 0̄ (3.16)

where j is the number of iterations performed and X̄j+1 is the updated free variable

after jth iteration that serves as the initial condition for the updated baseline solution.

If the number of design variables n and number of constraints m are equal i.e n = m,

then a unique solution exists for X̄j+1,

X̄j+1 = X̄j −
[
DF̄ (X̄j)

]−1
F̄ (X̄j) (3.17)

such that,
[
DF̄ (X̄j)

]−1
is perfectly invertible. If there are more design variables than

the number of constraints i.e. n > m the system is under-determined, infinitely many

solutions exits. A potential solution,

X̄j+1 = X̄j −DF̄ (X̄j)
T
[
DF̄ (X̄j) DF̄ (X̄j)

T
]−1

F̄ (X̄j) (3.18)

is computed using minimum norm solution. On the contrary, if there are less design

variables than the number of constraints i.e. n < m the system is over-determined, no

solutions exits. Using the least squares approach, a conceivable solution is computed

as

X̄j+1 = X̄j −
[
DF̄ (X̄j)

T DF̄ (X̄j)
]−1

DF̄ (X̄j)
T F̄ (X̄j) (3.19)

that produces the minimum error. Least squares approach is used in several other

places such as curve fitting and optimization where errors are to be minimized. Using

the Newton’s method, the solutions are likely to converge every successive iteration

and is continued till required tolerance is achieved.

3.3 Single Shooting

The State Transition Matrix is utilized to achieve various end conditions in the

CR3BP. As its name suggests, Single shooting technique implies correcting a single



54

reference transfer arc to target a predefined end condition. Since the STM is not

self-starting, a baseline solution is generated upon some initial conditions over which

the STM is computed and single shooting algorithm is applied. The technique is

illustrated in detail involving a fixed time target and a variable time target scheme.

3.3.1 Fixed Time Position Target

The most common application of Single shooting technique involving the STM in

CR3BP is to target a desired position from an initial location. As in Figure 3.2, let

the initial position be defined as r̄0 and the predefined target position be r̄d. The

initial velocity v̄old drives the reference trajectory to final position x̄ at time T . Since

this is a fixed time position target, the desired trajectory should take exactly ‘T ’

time to travel from r̄0 to r̄d with no constraint on the arrival velocity at the target

location. The initial position r̄0 being fixed, the aim is to determine the required

change in velocity components i.e. ∆v maneuver required to achieve r̄d at time T .

To apply the Differential Correction scheme, free variables and constraints have

to be defined distinctly. Let the free design variables be expressed as the three initial

velocity components i.e.

X̄ =


ẋ0

ẏ0

ż0

 (3.20)

that will change over every iteration till it drives to desired state r̄d at time T with

some tolerance. Here, r̄d = [xd, yd, zd]
T . Similarly, the constraint vector F̄ (X̄),

F̄ (X̄) =


x(T )− xd
y(T )− yd
z(T )− zd

 (3.21)

is defined as the difference between the positions at the end of the reference trajectory
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ത𝑋𝑛𝑒𝑤 =[ ҧ𝑟0, ҧ𝑣𝑛𝑒𝑤 ]

T

T

Figure 3.2. Single shooting technique with fixed time position target.

and the desired state. As the solution approaches the desired solution, F̄ (X̄) tends

to zero. The corresponding Jacobian matrix for the fixed time position target is

DF̄ (X̄) =


∂F1

∂X1

∂F1

∂X2

∂F1

∂X3

∂F2

∂X1

∂F2

∂X2

∂F2

∂X3

∂F3

∂X1

∂F3

∂X2

∂F3

∂X3

 =


∂x(T )
∂ẋ0

∂x(T )
∂ẏ0

∂x(T )
∂ż0

∂y(T )
∂ẋ0

∂y(T )
∂ẏ0

∂y(T )
∂ż0

∂z(T )
∂ẋ0

∂z(T )
∂ẏ0

∂z(T )
∂ż0

 (3.22)

where the partials for DF̄ (X̄) constitute the STM defined in equation (3.6), therefore

DF̄ (X̄) =


φ14 φ15 φ16

φ24 φ25 φ26

φ34 φ26 φ36

 (3.23)

where each φij corresponds to the element in the ith row and jth column of the 6× 6

STM. Here, DF̄ (X̄) is same as the φvr matrix defined in equation (3.7). Once the free

design vector X̄, constraint vector F̄ (X̄) and the Jacobian matrix DF̄ (X̄) is defined,
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the Newton’s equation is applied to find the required update. In this case, the number

of variables and the number of constraints are equal hence a unique solution exists.

The appropriate update to the reference solution is computed as δX̄,

δX̄ = −[DF̄ (X̄)]−1F̄ (X̄) (3.24)

from equation (3.17). After every successive iteration, the reference solution is up-

dated as

X̄j+1 = X̄j + δX̄ (3.25)

till the desired tolerance level is attained. The Differential Correction process com-

putes variation using linear approximation while CR3BP is a nonlinear problem,

therefore no matter how many iterations are performed, the reference trajectory will

never be exactly equal to the desired solution. With every successful iteration, con-

straint vector F̄ (X̄) diminishes hence the numerical process can be terminated once

the norm ||F̄ (X̄)|| is within the permissible tolerance.

3.3.2 Variable Time Position Target

Unlike for fixed time position target, as shown in Figure 3.3, the time of flight

from the initial position to the desired position is not constrained to be the same as

the time of flight of the reference trajectory, hence this is a variable time position

target problem. The method only tries to find one possible trajectory that satisfies

both the initial and final position states.

For any targeting scheme, free variables and constraints are to be defined appro-

priately. The time of flight T becomes an additional design variable hence,

X̄ =


ẋ0

ẏ0

ż0

T

 (3.26)
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ҧ𝑥 ( ത𝑋𝑜𝑙𝑑,T)

ത𝑋𝑜𝑙𝑑 =[ ҧ𝑟0, ҧ𝑣𝑜𝑙𝑑 ]
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𝑇
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Figure 3.3. Single shooting technique with variable time position target.

is defined as the new free variable vector. The goal is only to achieve the predefined

position states at the end hence the end conditions still remains the same. As a

result there is no modifications to the constraint vector F̄ (X̄). Nonetheless, DF̄ (X̄)

is altered due to a different design vector X̄, thus

DF̄ (X̄) =


∂x(T )
∂ẋ0

∂x(T )
∂ẏ0

∂x(T )
∂ż0

∂x(T )
∂T

∂y(T )
∂ẋ0

∂y(T )
∂ẏ0

∂y(T )
∂ż0

∂y(T )
∂T

∂z(T )
∂ẋ0

∂z(T )
∂ẏ0

∂z(T )
∂ż0

∂z(T )
∂T

 =


φ14 φ15 φ16 ẋ(T )

φ24 φ25 φ26 ẏ(T )

φ34 φ26 φ36 ż(T )

 (3.27)

where an additional column of the derivative of the position states with respect to

time are also included. DF̄ (X̄) is no longer a square matrix. There are more design

variables than the number of constraints, hence, infinitely many solutions exists. One
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such solution can be found using the minimum norm approach. The update to the

reference can be computed to be,

δX̄ = −DF̄ (X̄)T
[
DF̄ (X̄) DF̄ (X̄)T

]−1
F̄ (X̄) (3.28)

as mentioned in equation (3.18). The iterative process is continued till acceptable

tolerance is reached.

The single shooting technique is illustrated using position target scheme. The

application is not limited to just position target. The design vector, the constraint

vector and the corresponding Jacobian matrix can be modified to target any com-

binations of position, velocity and/or any other relevant quantity. The technique is

although restricted to only single target vector. To target multiple conditions, more

robust methods like multiple shooting technique is applied.

3.4 Multiple Shooting

A single shooting technique has vast applications, however, when the trajectory

passes through regions of higher sensitivities, this technique struggles to converge. In

such cases, few intermediate patch points are incorporated through which the trajec-

tories should traverse before reaching the desired end condition. Multiple shooting

is a strategy to cumulatively use single shooting technique to target two adjacent

patch points forming a sub-arc as described in Figure 3.4. The process is continued

till a transfer trajectory is created from the initial location to the final state that is

continuous in position and velocity at each of the updated patch points within some

acceptable tolerance. The patch points are free to move around in any directions in

the phase space. Similar to single shooting technique, the final state can be achieved

either through a fixed time target strategy or a variable time target strategy.
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Figure 3.4. Concept of multiple shooting target algorithm.

3.4.1 Fixed Time Multiple Shooting

Similar to a fixed time single shooting process where the time between the starting

point and the end point is fixed, in fixed time multiple shooting the time of flight

between any two successive patch points is fixed. Identical to formulating the single

shooting technique, free design variables and constraints are to be defined for the

multiple shooting target algorithm. The free design variables at all the defined patch



60

points are accumulated into one stacked vector. It is considered that the states at

each of the patch points are free to be updated every iteration i.e. x̄i according to

Figure 3.4(a). The design variable X̄ is therefore a 6n sized vector,

X̄ =


x̄1

x̄2

...

x̄n

 (3.29)

where each x̄i is a column vector with position and velocity states at that patch point.

The sub-arcs have to be continuous in position and time at the intermediate patch

points in order to achieve a smooth trajectory between the initial and final point as

the solution converges. Hence the constraint vector F̄ (X̄) is defined as

F̄ (X̄) =


x̄t2(x̄1)− x̄2

x̄t3(x̄2)− x̄3

...

x̄tn(x̄n−1)− x̄n

 (3.30)

where each x̄tj+1(x̄j) are the states achieved by propagating state vector x̄j as the

initial condition for fixed predefined time. Since the trajectory originates at the

initial point there is no constraint at x̄1, so the length of the constraint vector is

6(n− 1). The corresponding Jacobian Matrix becomes

DF̄ (X̄) =


(
∂x̄t2
∂x̄1
− ∂x̄t2

∂x̄1

) (
∂x̄t2
∂x̄2
− ∂x̄t2

∂x̄2

)
. . . . . .(

∂x̄tn
∂x̄n−1

− ∂x̄tn
∂x̄n−1

) (
∂x̄tn
∂x̄n
− ∂x̄tn

∂x̄n

)
 (3.31)

that is reduced to more revealing form by correlating the partials to the STM, as

DF̄ (X̄) =


φ2,1 −I6×6

. . . . . .

φn,n−1 −I6×6

 (3.32)



61

where each φi+1,i, is the 6 × 6 State transition Matrix computed between ith patch

point to (i+1)th patch point. Newton’s method is used to update position and velocity

states the patch points and iterated till acceptable level of accuracy is obtained.

3.4.2 Variable Time Multiple Shooting with Additional Constraints

Alike variable time single shooting process, where the time between initial time

and the desired final state is not constrained, in variable time multiple shooting, the

time of flight between two successive patch points is not constrained. To consider a

time variable multiple shooting technique, let the time of flight between each patch

points be Ti as in Figure 3.4(a), that can be considered as a design variable additional

to its position and velocity states. Hence a total of 7n − 1 design variable exists for

this case i.e.

X̄ =



x̄1

x̄2

...

x̄n

T1

...

Tn−1


(3.33)

where each Ti represents the time of flight between ith patch point and (i + 1)th

patch point. To represent a more specific problem, like a trajectory with predefined

Jacobi constant, or trajectory with fixed starting point and/or fixed end point or any

other criterion, Multiple shooting technique provides the leverage to add additional

constraints to represent the same. Let ‘C’ denote any additional constraint besides
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the ones defined for fixed time multiple shooting, such that upon convergence C = 0.

Hence, the constraint vector F̄ (X̄) becomes

F̄ (X̄) =



x̄t2(x̄1)− x̄2

x̄t3(x̄2)− x̄3

...

x̄tn(x̄n−1)− x̄n
C


(3.34)

where C is an added constraint that is a function of the state variables at any one

or more patch points. The Jacobian matrix in this variable time multiple shooting

method with added constraints defined as DF̄ (X̄),

DF̄ (X̄) =


φ1,2 −I6×6 ˙̄xt2

. . . . . . . . .

φn−1,n −I6×6 ˙̄xtn
∂C
∂x̄1

. . . . . . ∂C
∂x̄n

∂C
∂T1

. . . ∂C
∂Tn−1

 (3.35)

contains additional partials that represents time derivatives with respect to free vari-

ables as well as partials of ‘C’ with the states at all patch points and corresponding

time of flights. The additional partials that ˙̄xti represents the time derivative of x̄i

with respect to the time of flight from (i−1)th to ith patch point i.e. ˙̄xti = ∂x̄i/∂Ti−1.

For every iteration, the update can be computed by taking direct inverse or minimum

norm depending on the dimensions of the Jacobian Matrix.
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4. ORBIT MAINTENANCE OPERATIONS

The principal step of a mission design process is to determine a nominal orbit. The

actual spacecraft is expected to move along this reference path. Due to unmodeled

perturbations the spacecraft tends to drift away from the reference path, and the

unstable nature of most of the libration point orbits will amplify the deviation in

both position and velocity states. A station-keeping strategy is introduced to compute

timely maneuvers that can secure the spacecraft within an acceptable region defined

as a torus centered about the reference path. The algorithm computes impulsive

maneuver (both magnitude and direction) that potentially sustains the spacecraft

through the mission duration. Decreasing the maneuver magnitude for increased life

of the spacecraft is a principal part of the program.

4.1 Representation of Reference Orbit

To perform orbit maintenance, a precise nominal path must be known. Previous

studies have shown ways to compute precise halo orbits in the Circular Restricted

Three Body Problem [16–19,60]. The orbits are determined by propagating the non-

linear equations of motion and corrected using differential correction schemes [17].

Computing Lissajous orbits and quasi-halo orbits in the vicinity of the libration points

can be challenging as they are non-periodic. Howell and Pernicka [18] use a two-level

patching algorithm to join trajectories of arbitrary duration to form a continuous

trajectory. This technique can be used to patch trajectories other than the halo and

Lissajous orbits. The application is extended in higher fidelity model as well.

For a real mission scenario, the trajectory of choice may not be exactly periodic,

like a halo orbit in CR3BP, primarily due to other perturbing bodies in space that has



64

non-periodic behavior. Considering a periodic halo orbit as the reference trajectory

for the station-keeping process may therefore not be the right choice if simulated in

the ephemeris model. A more accurate trajectory is generated by numerically con-

verging a continuous trajectory in the higher fidelity ephemeris model that acts as a

baseline trajectory.

In this work, India’s upcoming Aditya-1 mission to Sun-Earth L1 libration point

is considered while designing the nominal trajectory and performing station-keeping

maneuvers. The scientific goal of this mission includes studying the solar corona,

solar flares and energy distribution. The reasons to choose this orbit as the reference

are due to its similarity with the ISEE-3 and the SOHO mission in its scientific

objectives [1] and that the orbit avoids the solar exclusion zone. As explained by

Howell and Pernicka [25], the solar exclusion zone is the region where the spacecraft

appears right in front of the solar disk as viewed from the Earth, causing radio

interferences that can potentially result in loss of communication link. Besides, a lot

of literature sources are available on the ISEE-3 and SOHO mission [24, 25, 40–43],

therefore, considering an orbit similar to ISEE-3 for the Aditya-1 mission would offer

an opportunity to compare results. Consequently, a halo orbit, similar to ISEE-3,

in the vicinity of the libration point L1 of the Sun-Earth/Moon barycenter CR3BP

system is selected that is later corrected in the ephemeris model. A L1 southern halo

orbit with approximate y-amplitude Ay = 668700 km and out of plane amplitude

Az = 124680 km is chosen in the CR3BP. The orbit corresponds to a Jacobi constant

of 3.000826905620419 and an orbit period of 177.86 days. The chosen orbit is in close

proximity to L1 libration point in comparison to other orbits in the same family as

indicated in Figure 4.1. Typically the orbits in close proximity to the L1 libration

points are highly unstable, analogous to the unstable nature of the L1 libration point.

The unstable nature of the orbit can be mathematically represented as

ν̃ =
1

2

(
|λmax|+

1

|λmax|

)
(4.1)
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where ν̃ is called the stability index and λmax is the largest eigenvalue (by magnitude)

of the monodromy matrix computed for the particular orbit. In the linear terms, a

marginally stable orbit will have ν̃ = 1 and as the value of ν̃ > 1, the unstable nature

of the orbit becomes increasingly dominant. The orbit in consideration here has a

stability index, ν̃ = 866.98, exhibiting very high unstable nature.

The dimensions of the chosen orbit is evident from the Figure 4.2, as it displays

the three planar projections and an isometric view of the reference halo orbit in

the Sun-Earth/Moon barycenter CR3BP. The x-axis is along the line joining the

primaries from the Sun to the Earth/Moon barycenter. The z-axis is along the

angular momentum vector and y-axis completes the dextral coordinate system. The

origin is shifted to the L1 libration point.

The orbit’s initial conditions from the CR3BP when propagated in the higher

fidelity model will not result in a closed orbit, due to perturbations caused by un-

modeled forces including gravitational force of other celestial bodies. In fact, it is

likely that the trajectory will escape the halo orbit region and never return. To ob-

tain a near halo trajectory in the ephemeris model that better approximates a real

mission scenario, 20 patch points per orbit equally spaced in time from the CR3BP

solution is selected and a multiple shooting technique is incorporated to converge a

solution continuous in states and time. To model with improved accuracy, ephemeris

data of more planetary bodies can be added, but with more number of bodies added,

increases the computational challenges. It becomes important to select the right num-

ber of bodies, such that accuracy of the solution is not compromised at the expense

of computational time. Besides the forces due to other celestial bodies, the solar

radiation pressure (SRP) may also induce perturbations to the spacecraft. Figure

4.3 demonstrates the magnitude of net perturbing acceleration due to different celes-

tial bodies in the solar system as well as the solar radiation pressure acting at the

Sun-Earth/Moon libration point L1 over the duration of 2 years with starting epoch
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Figure 4.1. Location of the nominal orbit in the family of southern
L1 halo orbit of the Sun-Earth/Moon barycenter system.

date chosen as January 13, 2020. Clearly the Sun, the Earth and the Moon are the

three dominant influencing bodies at the L1 libration point. Therefore, gravitational

forces of the Sun, the Earth and the Moon are selected to model the higher fidelity
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To Sun L1

Figure 4.2. Planar projections of the nominal orbit modeled in the CR3BP.

solution. This model is identified as the SEM model, similar nomenclature used by

other researchers [24,25,40–43]. All other forces are neglected for the sole purpose of

computational speed; however, Jupiter and Venus may be added as other perturbing

bodies if increased accuracy is demanded. Similarly, based on the knowledge about

the actual spacecraft the impact of solar radiation pressure can also be taken into

consideration.

4.1.1 Effect of Solar Radiation Pressure on the Aditya-1 Mission

The Aditya-1 spacecraft as planned has an aluminum honeycomb structure of

dimensions 89 cm x 89 cm x 61.5 cm. In addition to the payload, the spacecraft

features two solar cell electric panels of dimensions 120 cm x 81 cm each. Overall

the spacecraft is expected to weigh about 400 kg [61]. Considering the dimensions of

the Aditya-1 spacecraft, the maximum surface area that is exposed to the Sun at any

time would be 2.7361 m2. Consequently, the area to mass ratio (AMR) is 0.00684025

m2/kg or the mass to area ratio (σMAR) is 146.1935 kg/m2. The additional perturbing
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force due to solar radiation pressure (SRP) acts on the spacecraft due to its surface,

that is otherwise trivial if modeled as a point mass. For a perfectly reflective surface,

the mass to area ratio, σ∗MAR = 1.53 × 10−3 kg/m2 is the critical value at which the

solar radiation pressure acting on the spacecraft is exactly equal to the gravitational

force acting due to the Sun. A dimensionless sail lightness parameter βsail (or sail

loading parameter) is defined as

βsail =
σ∗MAR

σMAR

(4.2)

that is effectively the ratio between the solar radiation pressure acting on the space-

craft to the gravitational force due to the Sun [62,63]. The value of βsail = 0, represent

a point mass object. For the Aditya-1 spacecraft, the value of βsail is computed to

be 1.0466× 10−5. The acceleration due to the solar radiation pressure acting on the

spacecraft is given as

¨̄rSRP = βsail

(
k̃

2

)
G̃MS

R2
S−s/c

cos2(α) n̂sail (4.3)

where, α is the angle between the direction of incident photons and the normal to the

surface of the spacecraft, n̂sail is the direction normal to the surface of the spacecraft,

G̃ is the universal gravitational constant, MS is the mass of the Sun, RS−s/c is the

distance from the Sun to the spacecraft while k̃ is a material parameter such that

0 ≤ k̃ ≤ 2 where k̃ = 2 indicates perfectly reflective surface while k̃ = 0 indicates

perfectly light absorbing surface [62, 63]. The net perturbing acceleration due to

multiple celestial bodies is compared with the solar radiation pressure for the mission

duration of two years in Figure 4.3. It is assumed that the surface of the spacecraft

is perfectly reflective i.e. k̃ = 2, and the maximum area of the spacecraft is projected

towards the Sun at all times i.e. α = 0o, to incorporate the maximum impact of the

solar radiation pressure. The net acceleration due to the SRP is of the order of the

net perturbing acceleration due to Venus and Jupiter. For spacecraft, such as the
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Aditya-1 with a very low value of βsail, the behavior as expected is similar to a point

mass object. The acceleration due to the SRP is extremely small in comparison to

the dominant acceleration due to the Sun, the Earth and the Moon; therefore, as

discussed, the gravitational forces due to the Sun, the Earth and the Moon are the

only forces incorporated for calculation in this work to save computational expense,

however for higher precision other forces can be incorporated. If the mass to area

ratio (σMAR) of the spacecraft is small, then the effect of the SRP is more prominent.

Sun

Earth

Moon

Jupiter

Venus

Mars

Saturn

SRP

Figure 4.3. Net perturbing acceleration due to various celestial bodies
acting at the Sun-Earth/Moon L1 Lagrange point.

Considering that the impact of the solar radiation pressure is to be incorporated

while modeling the motion of the spacecraft and selecting an orbit that satisfies the

mission objectives, the acceleration due to the SRP is incorporated into the CR3BP

equations of motion making it the solar sail - circular restricted three body problem

(SS-CR3BP). Due to the change in dynamics due to additional acceleration com-

ponents, the equilibrium solutions of the equation of motions in the SS-CR3BP are
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different than the standard CR3BP, that are a function of sail lightness parameter

and orientation of the spacecraft. For the Aditya-1 spacecraft, with a solar light-

ness parameter βsail = 1.0466 × 10−5 and the spacecraft assumed to be projecting

maximum surface area to the Sun i.e. α = 0o with 100% reflecting surface (k̃ = 2),

the L1 libration point shifts 175 km towards the Sun. For the ISEE-3 mission with

k̃βsail = 7.65 × 10−6 as derived from Bell [64], the L1 libration point moves 127

km towards the Sun. Accordingly, considering a more practical value of k̃, for the

Aditya-1 mission, the libration point is expected to move much less than 175 km

towards the Sun. New periodic orbit families can be generated about the SS-CR3BP

libration point L1 for different combinations of k̃βsail. Analytical solutions from the

linearized model in the vicinity of the equilibrium solutions are used as initial guess,

that is converged using differential correction scheme with the modified state transi-

tion matrix that incorporates additional SRP terms to generate periodic orbits. The

additional variables in the SS-CR3BP presents a wider range of solutions than the

standard CR3BP, however the desired halo orbit generated in the SS-CR3BP model

maintains approximately the same geometry as the CR3BP halo orbit, except that

the position and velocity states are marginally shifted. The new reference orbit in

the SS-CR3BP model is further converged in the ephemeris model to simulate with

increased fidelity based on real time. The deviation due to solar radiation pressure

for the Aditya-1 spacecraft is negligible, considering the characteristics distance in

the Sun-Earth/Moon system, to cause any significant change to the position and ve-

locity states of the spacecraft, however for future missions with effective solar sails, a

periodic halo orbit converged in the SS-CR3BP would serve as the baseline solution.

For this research, the SEM model is used wherever higher fidelity is addressed.

Using the SEM model, the patch points from the CR3BP halo orbit is converged

into a continuous trajectory for mission duration of 2 years which roughly corresponds

to 4 orbit periods. The epoch date at the halo orbit injection (HOI) is assumed to

be January 13, 2020 UT1: 00:00:00.0 (Julian Date: 2458861.5) which is comparable
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to the planned mission schedule for the Aditya-1 mission. The Figure 4.4 displays

the nominal trajectory converged in the SEM model for 2 years viewed in the Sun-

Earth/Moon L1 rotating frame. The L1 equilibrium point may not exist in the SEM

model because of non-periodicity of the acting gravitational bodies, however for rep-

resentation, location of L1 obtained from the circular restricted model can be used.

Additionally, the orbits no more possess periodic behavior, but they still retain quasi-

halo like behavior as observed in the CR3BP.

To Sun L1

Figure 4.4. Planar projections of the nominal orbit converged in the SEM Model.

As per the mission plan the spacecraft is expected to sail along the nominal or-

bit converged in the SEM model, nevertheless, it may drift away from the nominal

path due to unmodeled error and the unstable nature of the orbit. It is crucial to

continuously track the spacecraft against this reference orbit, which is obtained from

converging in the higher fidelity system, in form of tabular listings of time, position

and velocity states. It is computationally expensive to store large data sets as well re-

trieve the large data every time to compare the true spacecraft states to the reference.

Howell and Pernicka [24,25] concluded that, data points spaced within 1.1 days pro-
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vides fairly accurate representation of the nominal path. When the data points were

spaced more than 1.1 days apart, the station-keeping costs seem to have risen dras-

tically. Since the computational ability at present is more advanced, it was therefore

decided to store data points at 2.5 hour spacing, so that accuracy is not compromised.

There has been substantial literature on the type of curve that could be used

to retrieve interpolated data accurately. Richardson [16] uses a complete 13th order

analytical Fourier series representation of the halo orbit. Howell and Pernicka [24,25]

use Akima cubic spline interpolation while Gordon in his dissertation [41] and Howell

and Gordon [40] analyzed different interpolating schemes and concluded that cubic

splines especially Akima cubic splines gave smoother representation. For estimating

intermediate states and times from the available data points placed interval of 2.5

hours, different methods such as linear interpolation, quadratic polynomial fit, cubic

spline and Akima cubic spline are investigated for their accuracies. Since the data

points were placed in a mere 2.5 hours interval, linear interpolation could present

fairly accurate results with errors well within 0.1 km and 1 mm/s, but it was still

inferior in comparison to other methods. The accuracies of other three methods

were comparable. Nevertheless, to not compromise on accuracy in any extreme case,

Akima cubic spline is selected as the primary interpolating technique throughout this

work.

4.2 Assumptions

A spacecraft experiences perturbations ever since its launch, due to several factors

like atmospheric drag, limitations of the measuring apparatus, additional gravita-

tional bodies, magnetic field of earth, charged particles, solar radiation pressure etc.

Besides, modeling errors can also result in the spacecraft‘s true path being different

from the reference path. Despite all these potential challenges, the primary focus

of a station-keeping process is restricted to sustaining the spacecraft to unmodeled
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errors post the orbit injection phase, which essentially depends on orbit injection er-

ror, tracking error and maneuver execution error. These errors are inevitable due to

limitations of the orbit determination apparatus and the engine thrusting abilities.

The magnitude of these errors can although be decreased by using better quality

and sophisticated instruments, but cannot be overcome perfectly. Some other errors

including the solar radiation pressure and gravitational effects of the unaccounted

bodies can be overcome by adding their effects into the model, however, for this re-

search, solar radiation pressure and gravity due to bodies other than the Sun, the

Earth and the Moon are not taken into consideration. These can be added in future

depending on mission demands.

Station-keeping maneuvers can be executed either as an impulsive maneuver or

a continuous thrust. Since the main aim of this research is to compare different

strategies and use the station-keeping process as a tool to sustain the spacecraft in

a desired orbit and not to focus on the abilities of different thrusters, no attempt

has been made to perform station-keeping using continuous thrusters. All maneuvers

executed are single impulse maneuvers.

For consistency throughout this work, the constants retrieved from Adaptive Tra-

jectory Design (ATD) software is used wherever Circular Restricted Three Body is

mentioned. Since the orbits are sensitive to the characteristic values they are rep-

resented in, even the minutest change in any of the constants can change the entire

course of the trajectory. The values are therefore summarized in table 4.1.

4.3 Unmodeled Orbit Determination Errors

Any uncertainty in the measurement of the position and the velocity states of

the spacecraft is called orbit determination errors. The station-keeping phase begins

post the injection of the spacecraft into its desired orbit. Therefore, the different
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Table 4.1. Constants used throughout CR3BP applications.

Standard Gravitational Parameter

µ̃ = G̃M , km3/s2

Sun 132712197035.766

Earth 398600.432896939280908555

Moon 4902.800582147764544061

Characteristic quantities

Sun-Earth/Moon system

µ [ndim] 3.040428955805986×10−6

l∗ [km] 149597886

t∗ [s] 5022640.66103807

types of orbit determination errors that can influence the motion of the spacecraft

are the orbit injection error, tracking or navigational errors and maneuver execution

errors. These errors are stochastic in nature, thus cannot be modeled into the system.

If not addressed, these errors can potentially destabilize the motion of a spacecraft.

From the simulation point of view, it is necessary to understand the evolution of

these errors and how can these stochastic errors be incorporated to estimate the

maneuvers required to maintain the spacecraft in the appropriate region. The orbit

determination errors are broadly classified into the three types.

4.3.1 Orbit Injection Errors

The orbit injection marks the beginning of the station-keeping process. At the

end of the transfer trajectory an orbit injection maneuver is applied to inject the

spacecraft into its orbit at the desired position with a desired velocity. Undoubtedly,

the injection would not be perfect due to limitations in the engine performance and



75

tracking apparatus which measures the spacecraft location. Therefore, the resulting

position and velocity states immediately after the orbit injection would be different

from the reference states.

To incorporate this error, in the simulation, each component of the reference

position and velocity states are perturbed independently. A Gaussian random number

generator is used to perturb each of the states. The mean of the perturbation is

zero while the standard deviation is chosen based on the knowledge of the existing

hardware. The perturbed states are propagated in the SEM model to obtain the

actual trajectory or the true path of the spacecraft.

4.3.2 Tracking Errors

As the spacecraft traverses along the orbit about the libration point, the earth

based tracking stations determine the position and velocity states of the spacecraft

at discrete intervals, better known as tracking intervals. Due to limitations in the

orbit determination equipment, the states are never known to complete accuracy. A

station-keeping strategy should successfully compute a reasonable maneuver to main-

tain the spacecraft close to the reference solution despite of this tracking errors.

To simulate the tracking error, each component of the position and velocity states

determined at each tracking interval is purposefully perturbed with a Gaussian error

similar to orbit injection error. Again, the mean is set to zero and the standard

deviation is chosen depending on knowledge about the tracking instrument. Each

component is perturbed independently. The perturbed states are propagated in the

SEM model as usual.
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4.3.3 Maneuver Execution Errors

As the spacecraft deviates away from the reference solution, the station-keeping

algorithm computes a corrective maneuver to maintain the spacecraft back in a close

torus about the reference solution. But the computed maneuver and the implemented

maneuver is never exact, typically due to engine thrusting limitations. To incorporate

this inaccuracy, each of the components of the computed maneuver is perturbed using

Gaussian distribution, again with mean zero and some standard deviation known from

engine capabilities.

4.4 Station-keeping Algorithm

To replicate a real mission station-keeping scenario, different errors are introduced

on purpose. As soon as the spacecraft is injected in to the desired orbit the process

of station-keeping commences. The halo orbit injection (HOI) is assumed to be the

starting point of this process. Based on the knowledge of the thrusters, standard

deviation for the orbit injection error is introduced. The three position and the

three velocity states are perturbed with a random number generated using Gaussian

probability distribution corresponding to standard deviation of orbit injection error.

The spacecraft will naturally deviate from the desired orbit due to the errors in the

states, hence station-keeping algorithm should be performed to keep the spacecraft

within a specified torus about the nominal path. The exact states of the spacecraft is

never exactly known due to tracking errors, hence at every tracking interval the states

are intentionally perturbed corresponding to the tracking errors. From literature

studies, it was concluded that, for an SEM system tracking intervals of 2 days is

typical. The unmodeled errors and the unstable mature of the orbit may result in the

spacecraft drifting away from the nominal path. A corrective maneuver is calculated

to ensure the spacecraft is in close vicinity to the nominal path. As summarized in

Figure 4.5, certain constraints are taken into consideration to compute and implement

the maneuver, which includes
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Figure 4.5. Station-keeping decision making process.
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1. A minimum length of time ∆tmin must elapse between two successive maneu-

vers to provide ample time for orbit estimation, undergo attitude change and/or

payload constraints. A maneuver at current time, t, will be computed and/or

implemented only if t − t∆V̄ > ∆tmin, where t∆V̄ is the time at the last imple-

mented maneuver.

2. The spacecraft must deviate more than the minimum specified drift from the

nominal orbit, dmin, to consider a requirement for a corrective maneuver. A

maneuver is not calculated or executed if d < dmin, where d is the current

deviation of the spacecraft from the nominal path.

3. The spacecraft deviation from the nominal path must be increasing for a maneu-

ver to be computed and/or executed. Mathematically, di+1 > di, where i and

i+1 are the measurements at two successive tracking intervals. In a continuous

system a positive rate of deviation is equivalent to d(d)/dt > 0.

4. Only if steps 1-3 are satisfied, a maneuver is computed. Concerning the engine

limitations, a maneuver will be implemented only if the computed maneuver is

larger than minimum executable maneuver defined as ∆Vmin i.e. ∆V ≥ ∆Vmin.

Due to inaccuracy in attitude change or due to engine performance limitations the

implemented maneuver cannot be exactly equal to the computed maneuver hence the

maneuver executed is altered based on the ciphered standard deviation of the maneu-

ver execution error. The current states are updated to get the new initial conditions

which is propagated further. After simulating till the end of mission duration, the

magnitude of all implemented maneuvers within the mission duration are considered

to estimate the station-keeping costs. For a stochastic process, multiple simulations

are conducted to estimate the mean and standard deviation.

For station-keeping algorithm used throughout this research, in addition to the

minimum drift condition, a maximum drift case is also considered. In case the space-
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craft drifts unacceptably far from the reference, the simulation is ceased immedi-

ately and the computed costs for that particular iteration is ignored. The termi-

nation distance is capped at 50000 km for this work. This value seems to be an

appropriate choice in the Sun-Earth/Moon system for many other researchers as

well [24, 25, 40–43]. A new set of random numbers are generated and the simulation

is continued.

Throughout this work, two different sets of orbit determination errors have been

used, Type A and Type B, the details of which are enumerated in Table 4.2. Type A

has low orbit injection, tracking and maneuver execution error sigma limits. While

Type B has comparatively larger error variance. Using two different but extreme

values, one low and another higher level of error would provide more dynamic range

to compare the performance of the station-keeping algorithms. Finally, comparison

is made with sources from literature with similar orbit determination errors.

4.5 Monte Carlo Simulation

Station-keeping algorithm uses random sampling errors to represents uncertain-

ties in orbit determination and maneuver execution which is then propagated using

a nonlinear regime. Computing the mean maneuver cost is not possible using an

analytical approach. Due to its stochastic nature, it is convenient to use Monte Carlo

simulation to determine the probabilistic mean. The quality of the solution obtained

using the Monte Carlo process can be considered high only if the computed solution

is close to the true solution. Hence sufficiently large sample size is required.

For problems, whose true solution is known, the sample size can be adjusted based

on the how close solution is required. But in the case of station-keeping, the true so-

lution itself is unknown. Hence, it is challenging to decide the sample size required

to estimate the mean value close to the true value. A sample size about 20 or 30 is
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Table 4.2. Selected orbit determination error and input parameters
for station-keeping simulation, Type A and Type B.

Type A B

Minimum time between

maneuvers, ∆tmin [days]

30 30

Minimum drift from the

nominal path for a correc-

tive maneuver, dmin [km]

0 0

Maximum drift from the

nominal path for termina-

tion, dmax [km]

50000 50000

Minimum magnitude of

executable maneuvers,

∆Vmin [cm/s]

Variable

5, 10, 20, 50, 100

Variable

5, 10, 20, 50, 100

Tracking interval [days] 2 2

Orbit injection & tracking

Error (1σ)

• Position [km] 1.5, 2.5, 15 3, 30, 30

• Velocity [mm/s] 1, 1, 3 15, 15, 30

Maneuver execution error

(1σ)

2.5% of planned

maneuver magnitude

in each direction

5% of planned

maneuver magnitude

in each direction

Halo orbit injection epoch January 13, 2020 January 13, 2020

generally too small to get a solution with high confidence level required for compar-

ison. On the other hand, having too many simulations, adds very little information

at high computational expense, which is ineffective. An appropriate sample size is
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desired that provides substantially high confidence level making comparison effective.

Many researchers in the past have used about 50, 100, 300, 500 or even 1000 Monte

Carlo runs without providing remarks on their confidence level. Few researchers have

used some approaches to compute the either the appropriate number of Monte Carlo

runs or specified the standard deviation at the end of the simulation [40–43, 65].

Sample size determination can be vital for Monte Carlo simulations. Muralidharan

[66] elaborates the process of determining the right sample size based on the accepted

confidence intervals. The strategy had been adopted by Gordon [41] for his station-

keeping application. For a trial that produces observations κ1, κ2, ..., κn, the mean,

κ̄ and the standard deviation, Sκ, of the samples can be computed by

κ̄ =
1

n

n∑
i=1

κi (4.4)

S2
κ =

1

n− 1

n∑
i=1

(κi − κ̄)2 (4.5)

where n is the sample size. The mean computed from the samples may not be exactly

equal to the true mean, therefore, the variance of the computed mean, σ2
κ̄, is defined

as

σ2
κ̄ =

S2
κ
n

(4.6)

that is a function of the variance of the samples S2
κ. A superior quality Monte

Carlo simulation will estimate the computed mean, κ̄, close to the true mean, µκ.

The confidence level of the computed mean determines if the true mean lies within a

certain bounded region about the computed mean. As demonstrated in Figure 4.6, let

the lower control limit and the upper control limit of the bounded region be denoted

as LCL and UCL respectively. Mathematically, LCL and UCL can be defined as

[LCL, UCL] = κ̄ ± zcσκ̄ = κ̄ ± zc
Sκ√
n

(4.7)

where zc defines the percentage confidence level in terms of sigma limits that signifies

how confident should the user be that the true mean lies within LCL and UCL.
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The relation between percentage confidence level and the corresponding sigma limit

is provided in table 4.3 [66]. As the sample size increases, the gap between LCL and

UCL becomes narrower. consequently, the true mean and the computed mean gets

closer. The half width, h, also referred to as ‘precision’ by some researchers, between

LCL and UCL can be a deciding factor on the number on Monte Carlo runs. The

precision or half width is defined as

h =
UCL− LCL

2
= zc

Sκ√
n

(4.8)

that inversely depends on the number of iterations. Large number of iterations will

produce a more precise result at the cost of immense computational time. The number

of simulations actually required is in fact a function of the preferred precision level.

The precision or the half width, h, desired may be an absolute parameter or a relative

parameter in comparison to the mean. The number of Monte Carlo runs can be

estimated in either case.

• Absolute Precision

Assuming that the precision of the required solution is given in terms of the

permissible absolute error, α. In other words, for the chosen confidence level,

true mean should be within κ̄ ± α, thus

h = α = zc
Sκ√
n

→ n =

(
zcSκ

α

)2

(4.9)

• Relative Precision

If the precision of the required solution is given in terms of the permissible

relative error (α%). In other words, for the chosen confidence level, true mean

should be within κ̄ ± (α/100)κ̄, thus

h =
α

100
κ̄ = zc

Sκ√
n

→ n =

(
100

zcSκ

ακ̄

)2

(4.10)

Either of equations (4.9) or (4.10) can be used to compute the required number

of Monte Carlo simulations that yields computed mean that would be close to the
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true mean within the accepted confidence level. The sample size, n, depends on the

accepted sigma limit, zc, the permissible absolute or relative error, α, the present

computed mean, κ̄ and standard deviation of the samples tested, Sκ.

LCL UCL

𝜇𝜘

ҧ𝜘

Figure 4.6. Precision in a stochastic process.

Table 4.3. Percentage confidence level and corresponding sigma limits.

Confidence Level (%) Sigma Limit (zc)

68.26 1

95 1.96

95.45 2

99 2.58

99.73 3

99.99 3.89

It was observed that few authors have used the estimate value of Sκ to predict the

desired number of runs. Making the right estimate of Sκ without any prior Monte

Carlo runs is however not possible, hence, the reason for their choice is uncertain. A

better method is sought to overcome this challenge. It was observed from different

Monte Carlo runs that at least 30 runs are required to stabilize the variance. It
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is proposed in this research that the value of Sκ after first 30 runs can be used to

substituted in equation (4.9) or (4.10) to compute the number of Monte Carlo runs

required. Besides continuous computation of required sample size using the value of

Sκ calculated every run beyond 30 is an effective method. The following scheme can

be adopted to compute the right number of Monte Carlo runs.

1. Perform ’i’ number of trials such that, i ≥ 30.

2. Compute statistical information available from conducted trials. Mean κ̄ and

Standard deviation Sκ.

3. Compute required number of trials/Sample size ‘n’. Use equation (4.9) or (4.10)

based on desired absolute precision or relative precision.

4. If required number of trials are more than the performed number of trials i.e.

n ≥ i go to step 5 else go to step 6.

5. i = i+ 1, perform additional trial. Go to step 1.

6. More trials have been performed than the required. Simulation is terminated.

Computed mean is κ̄i.

Standard deviation of the mean is Sκi
/
√
i.

Monte Carlo method is a probabilistic mean computation technique based on

stochastic sampling hence no fixed number of runs or value of precision is defined.

The termination of a Monte Carlo process is based on the precision demanded by the

user to evaluate the data appropriately. Either based on predefined precision level,

the sample size can be estimated using the procedures discussed, or, the standard

deviation of the total number of runs must be specified along with the computed

mean to provide the essence of the actual distribution.
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5. CORRELATING TARGET POINT APPROACH WITH

FLOQUET MODE APPROACH

The target point and the Floquet mode approaches are two of the most popular

methods of station-keeping for libration point orbits in the Sun-Earth/Moon system.

The early use of the Floquet mode method for station-keeping are found in the work by

Gomez et al. [44,45] in 1985, and ever since, there has been substantial research on the

application of the Floquet mode approach for orbit maintenance of different missions.

The target point approach known for its simplicity was illustrated for station-keeping

along the libration point orbits for the first time by Howell and Pernicka [24, 25] in

1990. Since then many studies have been conducted on various parameters within the

method to improvise. Keeter [42,43] analyzed the weighting matrices used in the cost

function of the target point approach to automate the selection process but observed

that the automation process although decreased manual effort, increased the station-

keeping costs. The effect of certain free parameters are analyzed to understand how

each parameter potentially alters the orbit maintenance costs. The concept of the

Floquet mode approach is used to evaluate the dimensions of the right weighting

matrix that should provide sufficiently low costs using the target point approach.

5.1 Target Point Approach

The fundamental principle of the target point approach (TPA) is minimizing the

predefined cost function, that is a combination of the applied maneuver and the

deviation in position and velocity states at all the targeted future times. Introduced

by Dwivedi [67] the approach is used to maintain spacecraft close to the nominal path

in interplanetary missions, by targeting future position states. Howell and Pernicka

[24,25] modified the algorithm to incorporate the strategy for libration point missions
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by introducing additional future velocity target conditions. Howell and Gordon [40,41]

and Keeter [42,43] get credits for enhancing the strategy to include more conditions.

In general, the target point approach tries to compute a maneuver at present time t0

that minimizes the cost function J defined as

J(p̄0, ē0,∆V̄ ) = ∆V̄ TQ∆V̄ +
n∑
i=1

{
m̄T
i Rim̄i + v̄Ti RVi v̄i

}
(5.1)

where ∆V̄ is the maneuver computed, p̄0 and ē0 are the position and velocity devia-

tion from the nominal path measured at the present time. Here, n is the total number

of future target points while m̄i and v̄i are position and velocity deviation that would

result at the ith target point if the maneuver ∆V̄ is implemented. The value of m̄i

and v̄i are retrieved using the state transition matrix as

m̄i

v̄i

 = φ(ti, t0)

 p̄0

ē0 + ∆V̄

 (5.2)

φ(ti, t0) =

Ai0 Bi0

Ci0 Di0

 (5.3)

where Ai0, Bi0, Ci0 and Di0 are the 3 × 3 submatrices of the STM, φ(ti, t0). The

weighting matrix Q is positive definite while Ri and Rvi are positive semidefinite

weighting matrix corresponding to the position and velocity deviations at ith future

target point respectively. The equation (5.1) indicates an exact n combination of

position and velocity deviation for future target, however, only position deviation or

velocity deviation or any combination of the two can be considered as future targets.

To not consider a particular state as future target, either the term is ignored or the

corresponding weighting matrix is set to 0̄. The goal of TPA method is to compute a

maneuver that minimizes the cost function defined in equation (5.1) that is equivalent

of determining the root of the equation

∂

∂t
J(p̄0, ē0,∆V̄ ) = 0 (5.4)
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that correspond to the minima of the cost function, J . The maneuver computed is

therefore a function of the number and types of future target conditions selected.

Besides computing a low cost maneuver, one of the primary goals of a station-

keeping technique is to compute a maneuver that essentially secures the spacecraft

near the reference trajectory by performing maneuvers at regular intervals. Howell

and Pernicka [24, 25] use two future position targets in equation (5.4) to predict the

maneuver as

∆V̄ = −
[
Q+BT

10R1B10 +BT
20R2B20

]−1[(
BT

10R1B10 +BT
20R2B20

)
ē0 +

(
BT

10R1A10 +BT
20R2A20

)
p̄0

] (5.5)

where, each Ai0 and Bi0 are the corresponding submatrices of STMs φ(ti, t0), as in

equation (5.3), computed to first target point and second target points. As usual, Q is

the wighting matrix corresponding to the maneuver while R1 and R2 matrices weigh

the first position and second position targets respectively. Howell and Gordon [40,41]

and Keeter [42, 43] include more target points and weigh velocity states in addition

to position states as additional station-keeping constraints.

The target point approach is very robust and hence used for station-keeping for

orbits with wide range of stability properties. Computation of minimum maneuver

does not require any advanced mathematical operators making this method not com-

putationally expensive, however, the TPA approach uses a lot of weighting matrices

Q, Ri and RVi . As more future target points are considered more weighting matrices

are included (each for position and velocity). Since there is no established way of

selecting the weighting matrix, trial and error approach is used to identify the co-

efficients of each weighting matrix, to compute a low cost maneuver. As a result,

the process can become tedious as more future targets are taken into consideration.

Serious examination is required to understand the effects of different free parameters

on the orbit maintenance costs and explore the range of appropriate weights.
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5.2 Floquet Mode Approach

The Floquet mode approach (FMA) utilizes the qualitative information about the

dynamical flow of the phase space along the periodic orbit, using the Invariant Man-

ifold Theorem [68], to compute a corrective maneuver. The state deviation vectors

are decomposed into its constituent linear combination of the Floquet modes utilizing

the eigenstructure of the monodromy matrix i.e. the state transition matrix over one

orbit period. The controller then computes an impulsive maneuver that cancels the

unstable component of the state deviation vector to maintain the spacecraft close to

the nominal path.

5.2.1 Floquet Theory

The state transition matrix provides a linear correlation of the flow of a deviation

vector at two different times. The direction of flow of a nearby trajectory is determined

by the linear combination of the Floquet modes that constitutes its states, evaluated

using properties of the state transition matrix computed upon the reference path.

Consider the differential equation that drives the STM,

φ̇ = A(t)φ (5.6)

that is governed by a linear periodic Jacobian matrix A(t) as introduced in equation

(2.50). For a periodic coefficient linear system expressed as equation (5.6), the Floquet

mode, F (t), provides a time variant solution of φ as

φ(t, 0) = F (t)eJ tF−1(0) (5.7)

where J is a constant matrix that contains the Poincaré exponents of the monodromy

matrix along its diagonals. As the Jacobian matrix A(t) is periodic, so is the STM

and the Floquet mode F (t) periodic with periodicity T = P, where P is the time

period of the chosen orbit. The monodromy matrix is thus expressed as

φ(T, 0) = F (T )eJ TF−1(0) (5.8)
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such that, F (t) is periodic with F (T ) = F (0). Consequently, the eigenstructure at

the same location on the periodic orbit is the same. The columns of matrix F (0)

are the eigenvectors of the monodromy matrix and columns of matrix eJ T are the

corresponding eigenvalues. Let $i be the Poincaré exponent along the diagonals of

matrix J . Therefore each

λi = e$iT (5.9)

defines the eigenvalues of the state transition matrix. Using equation (5.9), each

Poincaré exponent is computed as

$i =
1

T
ln(λi) (5.10)

that are time invariant constants that represents the flow unlike the STM. The time

invariance of $i provides better understanding of the flow and produces a superior

behavior in numerical propagation of the states unlike the STM. The six eigenvalues

of STM occurs in pairs of unstable-stable, two ones, and two complex conjugate pairs,

so the Poincaré exponents are also retrieved in similar pairs.

• Unstable and Stable eigenvalues

For unstable and stable eigenvalues, λi takes a value greater than 1 and smaller

than 1 respectively. The Poincaré exponents are computed from equation (5.9)

in the same form as

$i =
1

T
ln(λi) (5.11)

where the unstable eigenvalue corresponds to a positive Poincaré exponent while

a stable eigenvalue is denoted by a negative Poincaré exponent.

• Unit eigenvalues

For eigenvalues that are 1, the Poincaré exponents computed from equation

(5.9) by substituting λi = 1 yields,

$i = 0 (5.12)
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• Complex conjugate pairs of eigenvalues

The complex conjugate eigenvalues exists as λi = a± ib = Re±iϑ, the Poincaré

exponents computed from equation (5.9) is in the form,

$i =
1

T
ln
(
Re±iϑ

)
=

1

T
{ln(R)± iϑ} (5.13)

where, R =
√
a2 + b2 and ϑ = tan−1 (b/a).

The time invariant J matrix is used as a basis to describe the direction of flow at

any time using the Floquet modes. From equation (5.7), the Floquet modes at any

time, t, is represented as

F (t) = φ(t, 0)F (0)e−J t (5.14)

where t = 0 corresponds to any chosen initial condition along the periodic orbit.

The Floquet modes F (t) exists as a six-dimensional column vectors, F̄i(t), with non

orthogonal basis as

F (t) =
[
F̄1(t), F̄2(t), F̄3(t), F̄4(t), F̄5(t), F̄6(t)

]
(5.15)

that are computed using equations (5.11), (5.12), (5.13) and (5.14) as

F̄1(t) = φ(t, 0)F̄1(0) exp

(
− t

T
ln(λ1)

)
(5.16)

F̄2(t) = φ(t, 0)F̄2(0) exp

(
− t

T
ln(λ2)

)
(5.17)

F̄3(t) = φ(t, 0)F̄3(0) (5.18)

F̄4(t) = φ(t, 0)F̄4(0) (5.19)

F̄5(t) = φ(t, 0)F̄5(0)R−t/T
{
cos

(
ϑ
t

T

)
− i sin

(
ϑ
t

T

)}
(5.20)

F̄6(t) = φ(t, 0)F̄6(0)R−t/T
{
cos

(
ϑ
t

T

)
+ i sin

(
ϑ
t

T

)}
(5.21)

such that, F̄i(0) are the eigenvectors of the corresponding monodromy matrix. The

Floquet modes provide the flow dynamics of the spacecraft along the periodic orbit.

Any state in the vicinity of the periodic orbit can be modeled as a linear combinations

of the Floquet modes. The same principle is applied for orbit maintenance by filtering

out the unstable mode.
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5.2.2 Floquet Controller

The ability to filter a given state as a linear combination of its different constituent

Floquet modes are exercised to compute a station-keeping maneuver. The aim is to

calculate a maneuver that will cancel any component in the direction of the unstable

Floquet mode to prevent the spacecraft from deviating. Since the L1 libration point

orbit in the Sun-Earth/Moon system chosen for the mission is highly unstable, the

spacecraft will deviate from the nominal orbit due to perturbations along the way.

Any perturbation in position and velocity at any time, t, is modeled as a linear

combination of the six Floquet modes as

δx̄(t) =
6∑
i=1

ciF̄i(t) (5.22)

where ci are some coefficients and F̄i are the corresponding Floquet mode vectors.

Since the Floquet modes are modeled upon the eigenvalues, they too exists as unsta-

ble, stable and oscillatory modes. Rather, if equation (5.22) is represented as

δx̄(t) = δx̄1(t) + δx̄2(t) + δx̄3(t) + δx̄4(t) + δx̄5(t) + δx̄6(t) (5.23)

then, δx̄1(t) represents the unstable component of the perturbation, δx̄2(t) is the sta-

ble component while components δx̄3−6(t) are oriented along the oscillatory Floquet

modes. Let vector F̄1(t) represent the unstable mode, so the component of pertur-

bation, δx̄1(t), in this direction will amplify over time. The controller in the Floquet

mode station-keeping method estimates a corrective maneuver ∆V̄ that cancels the

component of perturbation oriented along the unstable Floquet mode. Mathemati-

cally, addition of a maneuver ∆V̄ amends the equation (5.22) to

δx̄(t) + ∆V̄ =
6∑
i=2

αiF̄i(t) (5.24)

that is void of any component along the unstable Floquet mode direction.

The addition of a maneuver ∆V̄ alters only the components along the three ve-

locity states but equation (5.24) can be potentially satisfied by modification of linear
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combination of the five Floquet modes F̄2(t) through F̄6(t) by their coefficients α2

through α6, hence there are infinitely many solutions possible. A possible solution is

the minimum norm solution, but several other possible solutions are considered based

on mission requirements. For a perturbation p̄0 in position and ē0 in velocity at time,

t = 0, the corrective maneuver computed satisfies

p̄0

ē0

+

 0̄

∆V̄

 =
[
F̄2(0) F̄3(0) F̄4(0) F̄5(0) F̄6(0)

]


α2

α3

α4

α5

α6


= F (0)



0

α2

α3

α4

α5

α6


(5.25)

where α2 through α6 are 5 free variables while ∆V̄ can be up to 3 free variables. Each

F̄i(0) is a 6× 1 column vector. The value of ∆V̄ can be computed as per the mission

requirement. Few potential constraints are as discussed.

• Single Axis Control

A maneuver ∆V̄ is computed, such that it is aligned along one of the axis either

x, y or z. For example, consider maneuver along x-axis, therefore equation

(5.25) becomes

p̄0

ē0

 =


F̄2(0) F̄3(0) F̄4(0) F̄5(0) F̄6(0)

0

0

0

−1

0

0





α2

α3

α4

α5

α6

∆Vx


(5.26)

where [α2, α3, α4, α5, α6,∆Vx]
T are the 6 unknowns. There are 6 equations and

6 unknowns, hence a perfect solution can be computed. A unique maneuver

exists in a single axis controller.
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• Three Axis Control

A maneuver ∆V̄ that is free to align itself along any 3D orientation can be

computed from

p̄0

ē0

 =


F̄2(0) F̄3(0) F̄4(0) F̄5(0) F̄6(0)

0 0 0

0 0 0

0 0 0

−1 0 0

0 −1 0

0 0 −1





α2

α3

α4

α5

α6

∆Vx

∆Vy

∆Vz



(5.27)

where [α2, α3, α4, α5, α6,∆Vx,∆Vy,∆Vz]
T are the 8 unknowns. There are 6 equa-

tions and 8 unknowns, hence infinitely many solutions are possible, one such

solution is the minimum norm solution.

Similarly, a two axis maneuver, a planar maneuver or any other mission design con-

straints can be incorporated into computing a corrective station-keeping maneuver.

Maneuvers are computed and executed at regular intervals to maintain the spacecraft

within a close distance to the nominal orbit.

5.3 Correlation between Target Point and Floquet mode Approaches

The target point approach uses a cost function that is minimized to compute

a maneuver while the Floquet mode approach uses the qualitative information of

the flow of the reference trajectory using the eigenstructure to predict a maneuver

that cancels any unstable component at that location. To correlate the target point

approach to the Floquet mode approach, it must be expressed in a similar way as the

mode of operation of the later. The eigenvectors used in the Floquet mode approach

are the property of the monodromy matrix, the state transition matrix computed

over one time period. In the TPA method, targeting a base-point one time period
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beyond essentially provides similar information as that of the Floquet mode approach.

Additionally, let the computed maneuver result in a position deviation of m̄1 and a

velocity deviation of v̄1 at the end of future target time of one time period, P. The

monodromy matrix relates the value m̄1 and v̄1 due to current position deviation p̄0,

velocity deviation ē0 and proposed maneuver ∆V̄ asm̄1

v̄1

 = φ(T, 0)

 p̄0

ē0 + ∆V̄

 =

A10 B10

C10 D10

 p̄0

ē0 + ∆V̄

 (5.28)

where time T = P while A10, B10, C10 and D10 are 3× 3 submatrices of φ(T, 0). The

equation (5.28) is expressed in the same form as Delta V Controller type 1 by Gor-

don [41] with one future position state and one future velocity state target. Using a

combination of one position state and one velocity state targeting at a target time of

one time period, the effective mode of operation of the target point approach should

be similar to the Floquet mode approach. The similarity property is used to explore

behavior of certain weighting matrices used in the target point approach.

The cost function J in the target point approach for Delta V Controller type 1

that could potentially replicate the behavior of the Floquet mode approach is modeled

as

J(p̄0, ē0,∆V̄ ) = ∆V̄ TQ∆V̄ + m̄T
1 Rm̄1 + v̄T1 RV v̄1 (5.29)

where Q, R and RV are weighting matrices. The positive definite matrix Q directly

controls the size of the maneuver ∆V̄ while matrices R and RV weighs the position and

velocity deviation after one time period respectively. The maneuver that minimizes

the cost function J essentially satisfies the relation

∂

∂∆V̄
J(p̄0, ē0,∆V̄ ) = 0 (5.30)

Q∆V̄ = −
[
BT

10RB10 +DT
10RVD10

] (
ē0 + ∆V̄

)
−
[
BT

10RA10 +DT
10RVC10

]
p̄0

(5.31)
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resulting in an implicit relation. To compute the positive definite diagonal matrix Q,

the values of ∆V̄ obtained from each of the Floquet mode maneuver are substituted

into the equation (5.31) along with values of R and RV that are taken as identity I, as

the Floquet mode approach is not biased to any position or velocity states, however,

R and RV may be tuned if there seems to be a possibility of decreasing the maneuver

magnitude once the matrix Q is tuned, but in general matrix Q seems to affect overall

costs the most.

One of the most applicable information procured by correlating the target point

approach with the Floquet mode approach is the dimensions of the Q matrix. Since

the target point approach and the Floquet mode approach do not have one to one

correspondence, the elements of the matrix Q calculated using equation (5.31) may be

negative for some maneuvers computed by the Floquet mode approach. The equation

(5.30) satisfies both the maxima and minima, but to minimize the cost function the

value of Q computed in equation (5.31) should necessarily represent the local minima.

The additional constraint to ensure a minima in equation (5.30) is

∂2

∂∆V̄ 2
J(p̄0, ē0,∆V̄ ) = Q > 0 (5.32)

hence any solution for Q computed from equation (5.31) that results in negative value

represents the local maxima, as a result they are disregarded. Only positive values of

Q that represent the local minima are used for tuning the matrix Q. The purpose of

a positive definite matrix Q used in the target point approach is thus justified.

5.4 Preliminary Results

5.4.1 Effect of Weighting Matrices on Station-keeping costs in the Target

Point Approach

The target point station-keeping approach computes corrective maneuvers that

corresponds to the local minima of the cost function. The weighting matrices govern
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the magnitude and the direction of the computed maneuver. The primary challenge

using TPA is that, as the number of future target points increases the number of

weighting matrices to be used. Since there is no specific method to select the weights,

applying trial and error to get the optimal solution from significantly large combina-

tions of weights is implausible. Furthermore, addition of many future targets does not

necessarily improve the solution. One of the aim of this research is to select relevant

number of future target conditions and explore effect of the weighting matrices on

the maneuver cost. It is studied in section 5.3 to establish a correlation between the

Floquet mode and the target point approach. Although the Floquet mode provides

explanatory solution it is computationally expensive. Tuning the target point ap-

proach with the right weights could make it more reliable.

The formulation of the cost function by itself reveals the effect of weighting matri-

ces on the corresponding free variables. The Floquet mode method closely matches

with Gordon’s Delta V Controller type 1 [41] with future velocity and position target

scheme at one time period downstream, for which, the cost function J is defined as

J = ∆V̄ TQ∆V̄ + m̄T
1 Rm̄1 + v̄T1 RV v̄1 (5.33)

where the matrix Q directly controls the maneuver ∆V̄ while R and RV controls the

deviation in position and velocity at the future target point that is one period down-

stream in this case. Here, subscripts of R and RV are ignored as only one position and

one velocity targets are considered. Since matrix Q has direct and maximum influence

on the magnitude of the maneuver, it becomes the primary choice of improvement. If

the system is assumed to be one-dimensional then a large value of Q would diminish

the ∆V̄ magnitude and vice-versa, however, for a three-dimensional system making a

direct conclusion is not definite. A component wise analysis is mandatory to describe

the trend.

For consistency in analysis, the weighting matrices must be expressed in the right

units. If the cost function J is expressed in the non-dimensional units with matrix
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Q, R and RV defined as identity, for simplicity, then the matrix Q in the dimensional

units would be scaled by the order of magnitude of t∗2 to obtain ∆V̄ in in terms

of km/s. In the Sun-Earth/Moon barycenter system t∗2 is approximately equal to

2.52 × 1013 s2. Such large value of Q is comparable to the ones used by Howell and

Pernicka [24,25], Howell and Gordon [40,41] and Howell and Keeter [42,43]. Since Q

is a 3× 3 positive definite diagonal matrix, let it be represented as

Q =


q1

q2

q3

 (5.34)

such that, q1, q2, q3 > 0. Each of q1, q2 and q3 weighs individual components of the

∆V̄ vector along x, y and z-direction respectively. At every location near the refer-

ence orbit where a maneuver of size ∆Vmin is detected by Floquet mode approach, an

alternative maneuver is computed using TPA to explore the influence of each of the

qi components within the TPA. The magnitude of ∆V̄ is computed by varying each

of qi from 1010 to 1018 in dimensional units, equivalent to approximately 10−4 to 104

in the non-dimensional case. As a result, a four-dimensional array of various com-

binations of q1, q2, q3 and corresponding value of ∆V̄ are obtained, that is analyzed

to understand the effect of the weighting matrix Q on the cost of each individual

maneuver.

It was expected that a large value of qi would decrease the maneuver along the

corresponding direction, and vice-versa, but such a trend was found to be true only

for the cases where minimum possible ∆V̄ was set to zero. The case suggests that

no matter how small the computed maneuver is, it will be executed (Even of the

order of mm/s or lesser). In no event, such small maneuver can be executed due

to engine limitations. Besides, the maneuver computed is smaller than the orbit

determination error making it impossible to even detect such small maneuvers. When

the minimum executable ∆V̄ magnitude was altered to more practically feasible values
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like 5 cm/s, 10 cm/s, 20 cm/s, 50 cm/s or 100 cm/s, the trend was unlike the previous

case. To be certain about the trend, the four-dimensional array of combinations of

qi and ∆V̄ were computed at different maneuver locations, and for different ∆Vmin

conditions. For representation of this four-dimensional array, q1, q2 and q3 are modeled

as the three axis while the fourth dimension, ∆V magnitude, is indicated with a color

scheme as demonstrated in Figure 5.1. An enlarged plot for an arbitrary maneuver for

∆Vmin = 10 cm/s is shown in Figure 5.2. The plots in Figures 5.1 and 5.2 are in fact

a solid block with varying color scheme that represent the magnitude of computed

maneuver in a three-dimensional grid. For visual inspection, a solid block is not a

smart choice as it is not possible to examine the values not along the outside surface,

hence for better visual representation, parallel planes with fixed q3 values are chosen.

The specific reason why q3 was fixed instead of q1 or q2 is explained further. The plots

in Figure 5.1 only showcase patterns observed at majority of the maneuver locations,

without making a claim that all maneuvers exists in the same way. In fact at few

maneuver locations the trend was not similar especially for low ∆Vmin values such

as 5 cm/s and 10 cm/s. Moreover, it was observed that with increase in ∆Vmin, the

trend became more ordered.

The magnitude of maneuver computed at a particular location depends greatly

on the Q matrix and it is certain from the color distribution indicated in Figure 5.2.

Based on knowledge about a one-dimensional cost function, it is expected that a large

weight diminishes the value of the corresponding free variable and vice versa. Using

the same intuition, it was expected that the lowest magnitude of computed velocity

would appear at higher values of q1, q2 and q3 while the highest value of maneuver

magnitude would appear diagonally opposite to the lowest velocity case on the 3D

grid map i.e. at low values of q1, q2 and q3, but the actual trend observed contradicts

this intuition. Indeed, the variations along the three axes q1, q2 and q3 are not similar.

Firstly, in most maneuver locations, fixing q1 and q2 and moving only along the q3

axis does not make any significant changes in the magnitude of maneuver computed.
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Δ𝑉𝑚𝑖𝑛 5 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#2)

Δ𝑉𝑚𝑖𝑛 20 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#3) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#4)

Δ𝑉𝑚𝑖𝑛 50 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 50 cm/s   (#2) Δ𝑉𝑚𝑖𝑛 100 cm/s      (#1)

Figure 5.1. Variation in maneuver magnitude for different Q matrix
combinations for different ∆Vmin cases. Each individual plot corre-
sponds to an arbitrary maneuver location. The symbol ‘#’ indicates
sequential numbering for a particular ∆Vmin case. For consistency,
color scheme is skewed to match ∆Vmin with green color in all plots.
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Figure 5.2. Variation in maneuver magnitude for different Q matrix
combinations for ∆Vmin = 10 cm/s case at an arbitrary maneuver
location. For consistency, color scheme is skewed to match ∆Vmin
with green color.

This is precisely the reason why the four-dimensional solid block is displayed as a

combination of two parallel planes along the q3 direction. The trend indicates that

perturbations along the z-direction does not grow rapidly. thus, the necessity for a

maneuver aligned along the z-direction is non trivial for the obit selected for the mis-

sion. The asymmetric distribution of computed maneuver along the three-dimensional

grid implies maneuvers are not equal in all the three direction. Certain directions are

more sensitive that the others. For low values of q1 in Figure 5.2, moving parallel

to q2 axis for fixed q1 and q3 show no notable change in maneuver magnitude. The

behavior implies that the change in y-velocity does not cause any substantial change

in the overall maneuver magnitude especially when x-maneuver is not constrained.

Only for large q1 value (i.e. x-maneuver is forcefully restricted), change in y-velocity

affects the maneuver magnitude. Evidently, the maneuvers are dominant along the
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x-direction.

The algorithm when free to compute a maneuver in any spatial direction without

any constraint i.e. using low values of dimensional matrices q1, q2 and q3 (q1 =

q2 = q3 = 1010), the magnitude of maneuver computed is same as computed for

low value of q1 with high values of q2 and q3 (q1 = 1010, q2 = q3 = 1018). The

maneuver is inclined almost along the x-direction, hence change in y and z-maneuvers

makes almost no significant impact on the overall maneuver cost. The behavior is

pictorially represented in Figure 5.3 as a plane with fixed low q1 value indicating

the different combination of weights that has the same maneuver magnitudes. The

arrow represents directions of completely unrestricted maneuver (low values of qi)

and the direction of pure x-direction maneuver (low q1 but high q2, q3). For the

Sun-Earth/Moon L1 Halo orbit chosen for the mission, the dominance of x-velocity

is highlighted. The behavior can equated to the presence of strong gravitational force

along the line joining the primaries that is along the rotational x-axis.

The trends observed were based on individual maneuver locations, however, the

general behavior remained same across all the maneuver locations. It can therefore

be concluded that, to purely capitalize the fixed x-direction maneuvers low value of

q1 with high values of q2 and q3 must be selected when performing station-keeping

using the target point approach. Ability to perform only x-direction maneuvers holds

beneficial from the mission attitude control perspective, as the orientation of the

engine thrusters need not be altered to any spatial directions every time a maneuver

needs to be executed.

5.4.2 Direction of Computed Maneuvers

The combinations of the weighting matrix Q in the target point approach supports

the dominance of maneuvers along the x-direction, but needs to be measured in terms



102

Δ
𝑉
[c
m
/s
]

Figure 5.3. Almost constant maneuver magnitude for different q2− q3

combinations for low q1 values, reflective of dominance of x-direction
maneuvers computed using the target point approach.

of some explicit quantity to make reasonable comparisons. Let a quantity υx be

defined as

υx =
∆Vx
||∆V̄ ||

× 100% (5.35)

such that, ∆Vx is the component along the x-direction while ||∆V̄ || is the magnitude

of the computed corrective maneuver. For simplicity ||∆V̄ || can also be represented

as ∆V , i.e. without a vector symbol. At every maneuver location, the value of υx

is computed to quantify the x-dominance. For a maneuver perfectly aligned along

the x-direction will have υx = 100% while a maneuver with no component along the

x-direction will have υx = 0%.

A station-keeping scenario is simulated for a mission duration of 2 years with

parameters specified in Table 5.1. Both Type A and Type B orbit determination errors
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Table 5.1. Input parameters for Station-Keeping simulation to detect
direction of maneuvers.

Model SEM Ephemeris

Station-keeping algorithm Target point approach

Mission duration 2 Years

∆Vmin [cm/s] Variable

5, 10, 20, 50, 100

∆tmin [days] 30

Tracking interval [days] 2

Orbit determination errors Type A, Type B

Halo orbit injection epoch January 13, 2020

Q [dimensional] • Diag(1010, 1010, 1010)

• Diag(1010, 1018, 1018)

R I3×3

RV I3×3

are used for simulation with two combination of Q matrix, one for unrestricted spatial

maneuver and another for restricted x-direction maneuvers to make a reasonable

comparison on the dominance of maneuvers along the x-direction. At each maneuver

location υx is calculated and displayed as color gradient as demonstrated in Figure

5.4 and Figure 5.5 for Type A and Type B ODEs respectively. Both Figure 5.4 and

Figure 5.5 are records for 10 Monte Carlo iterations. For all plots on the left in Figure

5.4 and Figure 5.5, where q1 = q2 = q3 = 1010 i.e. algorithm is free to compute a

maneuver is any spatial direction, but most maneuvers seem to be inclined towards

x-direction except in a very few cases where the ∆Vmin are small and for larger orbit

determination error as in Type B. Besides as ∆Vmin increases from 5 cm/s to 100

cm/s, the maneuvers become more aligned towards x-axis. The number of blue and

yellow dots as in case of ∆Vmin=5 cm/s reduces as ∆Vmin increases for both Type
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A and Type B ODEs. As the major gravitational bodies are along the rotational x-

axis, perturbations are more likely to amplify along the x-direction, hence x-control

maneuvers should be suffice for station-keeping. This is achieved by suppressing

maneuvers along y and z-direction to get pure x-control maneuvers. The weights

chosen as q1 = 1010 and q2 = q3 = 1018 satisfy the criterion. All the maneuvers thus

computed are essentially in the rotational x-direction. As indicated in the plots on

the right hand side in Figure 5.4 and Figure 5.5, the υx value computed for each

maneuvers for different ∆Vmin cases are all almost 100%.

5.4.3 Search for Low Cost x-direction Control Maneuvers

The unconstrained spatial maneuver obtained through q1 = q2 = q3 = 1010 in

the target point approach being closely aligned in the x-direction indicates that con-

strained x-axis maneuver could be leveraged for the entire station-keeping process.

Constraining a maneuver in a particular direction using the target point approach

is done by providing corresponding asymmetric weights. Since maneuver is aimed

only in the x-direction, the corresponding coefficient q1 is chosen small to vary be-

tween 1010 and 1018 in the dimensional units. Besides, no component of maneuver in

the y and z-direction is achieved by biasing q2 and q3 to be extremely high. Ideally

q2 = q3 =∞ for a perfect x-direction maneuver, however, for computational purposes

q2, q3 ≥ 1018. Increasing q2, q3 much beyond 1018 have practically insignificant change

in maneuver cost. Figure 5.6 indicates that the possible combinations of Q matrix

required for a x-control maneuver that is procured by moving along the marked edge.

The edge corresponds to varying q1 value with a fixed large value of q2 and q3. As

discussed, changing q2, q3 ≥ 1018 causes almost no meaningful change to maneuver

cost. For convenience q2, q3 = 1025 is used for this work.

The possible domain of Q matrix is essentially reduced to one dimension by vary-

ing only q1 component and fixing q2, q3 = 1025 but the suitable range of values are
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(a) ∆Vmin = 5 cm/s. Type A ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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(b) ∆Vmin = 10 cm/s. Type A ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.

𝜐 𝑥
 %

 

To 
Sun  

To 
Sun  

𝜐 𝑥
 %

 

(c) ∆Vmin = 20 cm/s. Type A ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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(d) ∆Vmin = 50 cm/s. Type A ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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Sun  
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(e) ∆Vmin = 100 cm/s. Type A ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.

Figure 5.4. Alignment of maneuvers with x-direction measured as υx%
for different ∆Vmin cases computed using the target point approach.
Plot on left side within each sub figure corresponds to q1 = q2 = q3 =
1010 while plot on right side within each sub figure corresponds to
q1 = 1010, q2 = q3 = 1018. All figures correspond to Type A orbit
determination error.
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(a) ∆Vmin = 5 cm/s. Type B ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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(b) ∆Vmin = 10 cm/s. Type B ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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(c) ∆Vmin = 20 cm/s. Type B ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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(d) ∆Vmin = 50 cm/s. Type B ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.
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(e) ∆Vmin = 100 cm/s. Type B ODE. Left q1 = q2 = q3 = 1010. Right q1 = 1010,

q2 = q3 = 1018.

Figure 5.5. Alignment of maneuvers with x-direction measured as υx%
for different ∆Vmin cases computed using the target point approach.
Plot on left side within each sub figure corresponds to q1 = q2 = q3 =
1010 while plot on right side within each sub figure corresponds to
q1 = 1010, q2 = q3 = 1018. All figures correspond to Type B orbit
determination error.
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Figure 5.6. Potential domain of Q matrix for x-axis control maneu-
vers using the target point approach. The arrow represents possible
combinations of q1, q2, q3 that form diagonal elements of matrix Q.

however unknown to begin exploring for the minimal station-keeping cost. The Flo-

quet mode approach has the capability to find x-control maneuvers required for the

station-keeping process. The maneuvers from the Floquet mode approach are used to

make a selection of a range of possible weights to explore the target point approach.

Using the scheme discussed in section 5.3, each maneuver computed in the Floquet

mode approach can be equivalently produced by the target point approach using a

particular combination of Q matrix. Therefore, a station-keeping process is simulated

using the Floquet mode approach and at every maneuver computed, an alternative

but correlating value of q1 that essentially produces the same maneuver if used in the

target point approach, is recorded. Five different and practically likely cases of appli-

cable ∆Vmin with two different sets of orbit determination and maneuver execution
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errors, Type A and Type B, are explored to find the correlating weighting matrix Q.

Table 5.2. Input parameters for station-keeping simulation using the
Floquet mode approach to estimate total maneuver costs and predict
equivalent q1 value in the target point approach that would estimate
the same maneuver.

Model SEM Ephemeris

Station-keeping algorithm Floquet mode approach

Mission duration 2 Years

∆Vmin [cm/s] Variable

5, 10, 20, 50, 100

∆tmin [days] 30

dmin [km] 0

Terminating distance,

dmax [km]

50000

Tracking interval [days] 2

Orbit determination errors Type A, Type B

Halo orbit injection Epoch January 13, 2020

At all locations where the maneuver is computed using the Floquet mode ap-

proach, an equivalent minimizing positive definite Q matrix is sought for. Since

q2, q3 = 1025 is assumed for precise x-control maneuver the output obtained is just

the values of q1. Since the target point and the Floquet mode approach is mathemat-

ically different, same values of q1 are not predicted throughout, instead it is spread

over a range of values as described in Figure 5.7 and Figure 5.8. The obtained range

of values marks the region to search for cost minimizing Q matrix. Figure 5.7 and

Figure 5.8 show the distribution of q1 over 10 Monte Carlo simulations for different

∆Vmin cases. Clearly the distribution is spread across values between 1012 and 1020
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with more concentration between 1014 and 1018. Mean of the distribution can be

used as satisfying value of q1 but it has no physical significance. Moreover, the mean

obtained for different ∆Vmin condition is also different, hence, finding particular q1

that reduces the station-keeping costs for all the cases is hard to determine. Also, it

need not guarantee the best result. Instead the range of values obtained is used as a

test spectrum to explore for the q1 that minimizes the station-keeping budget.

Station-keeping simulations conducted using different values of q1 obtained from

the distribution in Figure 5.7 and Figure 5.8, requires a baseline solution to determine

whether the orbit maintenance costs produced by different q1 values are comparable.

A baseline solution is determined by performing station-keeping simulation purely

using the Floquet mode approach. The results produced by different q1 values is

compared with the Floquet mode solutions to make a conclusion.

(a) ∆Vmin = 5 cm/s.

(b) ∆Vmin = 10 cm/s.
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(c) ∆Vmin = 20 cm/s.

(d) ∆Vmin = 50 cm/s.

(e) ∆Vmin = 100 cm/s.

Figure 5.7. Potential range of q1 values for the target point approach
estimated from every corrective maneuvers computed using the Flo-
quet mode approach. For all cases, Type A orbit determination error
is incorporated.
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(a) ∆Vmin = 5 cm/s.

(b) ∆Vmin = 10 cm/s.

(c) ∆Vmin = 20 cm/s.

(d) ∆Vmin = 50 cm/s.
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(e) ∆Vmin = 100 cm/s.

Figure 5.8. Potential range of q1 values for the target point approach
estimated from every corrective maneuvers computed using the Flo-
quet mode approach. For all cases, Type B orbit determination error
is incorporated.

Floquet Mode Station-keeping Budget

The Floquet mode leverages the natural dynamics of the flow in the libration point

orbits. The method computes a maneuver that cancels the unstable Floquet mode

thus driving the system along stable and oscillatory modes. The Floquet mode ap-

proach is used to estimate the station-keeping budget of the spacecraft in the desired

orbit for a span of two years. The mission duration selected is equivalent to about 4

complete revolutions. The annual cost can serve as a baseline if the mission duration

were to be scaled.

Since Monte Carlo technique is based on stochastic process, the number of iter-

ations required to have an appropriate solution is very vital. More the number of

iterations, better is the accuracy of the solution but performing too many iterations

adds very little information, hence, it is important to terminate the total number

of runs once the desired level of accuracy is obtained. Howell and Pernicka [24, 25]

and Howell and Keeter [42, 43] use 100 simulation for their station-keeping process.

Gordon concludes that, 30 iterations are sufficient to get a result with 10 % relative

tolerance [40, 41]. Pavlak [39] uses about 500 simulations in search of more precise
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results. In this work, choices of iterations are made depending on the required pre-

cision for each individual problem. The level of convergence is either mentioned in

terms of targeted value of relative precision or converged value of standard deviation

of the computed mean. For estimating the station-keeping cost using the Floquet

mode approach, 3500 iterations have been used. The cited works indicates that less

than 2% tolerance in the station-keeping costs is a good level of accuracy required for

comparing different cases. Equation (4.10) is used to calculate the required number

of iterations to have relative tolerance within 1%. Confidence level of 95% i.e. 1.96

sigma limit is assumed for the station-keeping problem.

A station-keeping simulation is performed using the Floquet mode approach using

parameters specified in Table 5.2 to estimate the total orbit maintenance costs for 2

year mission duration. A total of 3500 Monte Carlo simulations are performed for

estimating the cost and to study the convergence behavior. The mean station-keeping

cost is estimated by taking the average of all the simulations performed. It may not

always be feasible to compute 3500 Monte Carlo simulations due to computational

limitations, therefore a continuous estimation of the mean is desirable. A moving

mean is thus defined as the mean of all the previous simulations performed till that

iteration number. Figure 5.9 displays the actual observations (2 year total maneuver

cost) obtained for each of the 3500 Monte Carlo runs along with the moving mean.

It is apparent that the moving mean stabilizes after the first 50 to 100 iterations,

beyond which, it changes only marginally. The number of iterations used by the cited

researchers, would therefore provide similar values, but with a comparatively lower

confidence level. The mean station-keeping cost estimated for 2 year mission duration

for Type A ODE obtained after 3500 iterations for ∆Vmin =10 cm/s case is 74.1 cm/s,

as demonstrated in Figure 5.9.

The authenticity of the computed mean in a stochastic process depends on how

close it is to the true mean. Unfortunately, for a station-keeping problem, the knowl-
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Observation Moving Mean

Figure 5.9. Mean station-keeping cost estimated from Monte Carlo
runs. Example shown for ∆Vmin = 10 cm/s case with Type A or-
bit determination error computed using the Floquet mode approach
(FMA).

edge about the true mean itself is unavailable. The standard deviation of the mean

is evaluated to measure the convergence, that is a function of the standard deviation

of the observations, produced in a Monte Carlo run. The dispersion of each observa-

tions about the mean, are indicated in Figure 5.10 in terms of standard deviation of

the observations. After 3500 iterations, the standard deviation of the observations is

13.0 cm/s, indicating that if the station-keeping problem is assumed as a Gaussian

distribution, 68% (1σ) of the observations lie within 74.1 ± 13.0 cm/s i.e. within 61.1

cm/s and 84.0 cm/s. The standard deviation of the observations obtained from Fig-

ure 5.10 is used to calculate the relative precision (or the half width) of the computed

mean using equation (4.10). With each additional iteration the mean becomes more

precise as the relative precision reduces as described in Figure 5.11. Clearly, there is

a sharp drop in the precision value in the first 50 iterations, beyond which the rate

of decrease is gradual. The abrupt change in precision level justifies the claim made

by Gordon [41] that at least 30 iterations are required to get a result with less than

10% relative tolerance. For 95% confidence or 1.96 limits, the half width or precision

as expressed in equation (4.10) would decrease gradually, rendering more proximity

between true mean and computed mean. If the desired precision (half width) is 1%,

then the number of iterations required is the abscissa corresponding to 1%.
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Figure 5.10. Variation in standard deviation of observations with
increase in the number of Monte Carlo iterations. Example shown
for ∆Vmin = 10 cm/s case with Type A orbit determination error
computed using the Floquet mode Approach (FMA).

Figure 5.11. Effect of the number of Monte Carlo iterations on rel-
ative precision (or half width) of estimated mean. Example shown
for ∆Vmin = 10 cm/s case with Type A orbit determination error
computed using the Floquet mode approach (FMA).

In most station-keeping cases, where the simulation is computationally expensive,

performing 3500 iterations to estimate the level of convergence may not be a wise

option. A continuous estimation of the required number of Monte Carlo runs is

preferable. Figure 5.12 illustrates the continuous prediction of required sample size

(number of Monte Carlo iterations) as explained in section 4.5. The three lines in

the Figure 5.12 denotes trials required for 1%, 0.75% and 0.6% relative precision.

The desired precision is achieved if the actual number of trials performed exceeds the
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predicted number of trials. For a precision of 1%, the number of Monte Carlo runs

required is 1170, for which, the true mean is expected to be within 73.7 ± 0.7 i.e.

within 73.0 cm/s and 74.4 cm/s. Similarly, 2171 trials to achieve precision of 0.75%;

true mean is likely to be within 73.4 cm/s and 74.5 cm/s. Monte Carlo trials of 3270

yields 0.6% precision; true mean is likely between 73.8 cm/s and 74.6 cm/s. When a

computed mean of a Monte Carlo simulations is required to be expressed in terms of

a fixed relative or absolute precision, the method of predicting the desirable number

of iterations is useful. Alternatively, specifying the standard deviation of the mean

provides sufficient knowledge about the achieved convergence.

Precision 

± 1.00 %  

± 0.75 %  

± 0.60 %  

  

  

Figure 5.12. Number of Monte Carlo iterations required for prede-
fined precision level. Example shown for ∆Vmin = 10 cm/s case with
Type A orbit determination error computed using the Floquet mode
approach (FMA). Precision is defined as a relative quantity with re-
spect to the estimated mean.

The station-keeping costs estimated with the Floquet mode approach serves as a

baseline solution for comparing with the target point approach with different weight-

ing matrix Q, therefore precise estimation of the costs are desired. For computational

convenience, a standard 3500 Monte Carlo iterations have been used for all cases, re-
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sulting in precision within 0.75% for most cases (within 0.60% for some cases). For

comparative purposes, this is a suitable level of precision. The station-keeping costs

for 2 year mission are computed for different ∆Vmin cases for both Type A and B

orbit determination errors and summarized in Table 5.3 and Table 5.4 respectively.

Table 5.3. Outcome of station-keeping simulation using the Floquet
mode approach for 2 year mission duration with Type A orbit deter-
mination error.

∆Vmin

[cm/s]

Total ∆V

cost, {κ̄}

[cm/s]

Std. dev. of

observations, {Sκ}

[cm/s]

Precision

(h/κ̄)× 100

[%]

Convergence

[%]

5 37.2 5.3 0.47 100

10 74.1 13.0 0.58 99.97

20 146.2 27.8 0.63 99.97

50 355.5 72.7 0.68 99.94

100 685.5 134.9 0.65 99.71

The station-keeping cost is one of the most vital data to analyze the mission.

The orbit maintenance costs increases with increase in the minimum applicable ma-

neuver, ∆Vmin. The orbit determination errors have significant impact on the orbit

maintenance costs. As the ODE increases, as in Type B in comparison with Type A,

the station-keeping costs rises for all ∆Vmin cases. For 3500 Monte Carlo iterations

to simulate the station-keeping process, relative precision for the results obtained is

lower than 0.7% for all cases providing very precise value of computed mean. For

almost 100% of the simulations, the spacecraft has successfully cruised through the

mission duration without deviating uncontrollably far from the reference orbit for

both the chosen orbit determination errors. The Floquet mode approach acts as an

effective algorithm for station-keeping.
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Table 5.4. Outcome of station-keeping simulation using the Floquet
mode approach for 2 year mission duration with Type B orbit deter-
mination error.

∆Vmin

[cm/s]

Total ∆V

cost, {κ̄}

[cm/s]

Std. dev. of

observations, {Sκ}

[cm/s]

Precision

(h/κ̄)× 100

[%]

Convergence

[%]

5 65.37 9.04 0.46 100.00

10 102.76 13.52 0.44 99.97

20 188.76 24.56 0.43 99.94

50 454.53 72.91 0.53 100.00

100 893.47 159.77 0.59 99.94

Target Point Approach

The search span of the weighting matrix Q that would reduce the station-keeping

cost using the target point approach has been streamlined based on potential q1 values

obtained at each maneuver location computed using the Floquet mode approach.

Since the maneuver is planned only along the x-direction, the search region is reduced

to one dimension. The component of the weighting matrix that affects the maneuver

in the y and z-direction has been effectively chosen to be q2 = q3 = 1025, to effectively

suppress any component of maneuver not directed along the line joining the primaries.

Furthermore, the value of q1 is further curtailed from the range of possible q1 values

obtained from the Floquet mode maneuver computation shown in Figure 5.7 and

Figure 5.8 for different ∆Vmin cases. Different values of q1 between 1010 and 1018 are

chosen and the station-keeping algorithm is performed using the target point approach

to estimate the total cost after 2 year mission duration. Parameters specified in Table

5.5 are used for the simulation.
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Table 5.5. Input specifications for station-keeping simulation using
the target point approach.

Model SEM Ephemeris

Station-keeping algorithm Target point approach

Mission duration 2 Years

∆Vmin [cm/s] Variable

5, 10, 20, 50, 100

∆tmin [days] 30

dmin [km] 0

Terminating distance,

dmax [km]

50000

Tracking interval [days] 2

Future position targets 1

Future velocity targets 1

Duration to future target point

[days]

177.8645 (1P)

Orbit determination errors Type A, Type B

Halo orbit injection epoch January 13, 2020

Q [dimensional] Diag (q1, q2, q3)

• 1010 ≤ q1 ≤ 1018

• q2, q3 = 1025

R I3×3

RV I3×3

Precise station-keeping costs are sought for comparing the impact of each chosen

value of q1. As used for the Floquet mode approach, 3500 Monte Carlo runs are used

for the target point approach as well, to ensure that the precision in the costs obtained

are within 0.75%. For each value of q1, total costs for different ∆Vmin conditions are
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computed for 3500 independent Monte Carlo iterations. The values obtained for each

combination of q1 and ∆Vmin are given in Table 5.6 and Table 5.7 for Type A and

Type B orbit determination errors respectively. A comparison of the values obtained

using the Floquet mode approach and each q1 using the target point approach are

conducted and the results are displayed for Type A and Type B ODEs in Figure 5.13

and Figure 5.14 respectively.

An orderliness between q1 component of the weighting matrix Q and the total

station-keeping cost is observed. When q1 is between 1010 and 1016, the cost com-

puted using the target point approach matches closely with the values computed using

the Floquet mode approach for all the ∆Vmin cases indicative of the efficiency of the

target point approach. The TPA method uses only simple computations yet finds

a value close to the one predicted by FMA method that utilizes the rich dynamics

of the system. For q1 between 1016 and 1018, the TPA method computes a station-

keeping cost lower than the FMA method initially and then increases rapidly. The

setup of the cost function signifies that a larger weight should effectively decrease

the individual maneuver cost, that is being applied in the case of TPA as well, as q1

varies between 1010 and 1017.5, the cost is being reduced consistent with the weights

and a decrease in the overall cost is observed. For Type A ODE, q1 beyond 1017.5,

the algorithm does compute an extremely low maneuver at each individual location,

however, the maneuver executed is minuscule that the spacecraft it is not able to fully

recover from its deviated state, hence with time, the deviation increases exponentially

along the unstable orbit. With the rapid increase in the deviation, the corresponding

maneuvers computed also grows. Therefore, an overall growth in the total station-

keeping cost is observed for very large q1.

Figure 5.13 and Figure 5.14 suggests that q1 between 1016 and 1018 is a poten-

tial region to identify the weighting matrix that may provide an efficient low cost

maneuver for the two types of ODE chosen for the simulation. The value of q1 is
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Figure 5.13. Comparison of station-keeping cost estimated using the
Floquet mode approach (FMA) and different values of q1 in the target
point approach (TPA) for different ∆Vmin cases and Type A orbit
determination error.
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Figure 5.14. Comparison of station-keeping cost estimated using the
Floquet mode approach (FMA) and different values of q1 in the target
point approach (TPA) for different ∆Vmin cases and Type B orbit
determination error.
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Table 5.6. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type A orbit determination
error and q1 between 1010 and 1018.

log(q1)
∆Vmin [cm/s]

5 10 20 50 100

10 37.4 74.0 146.3 357.4 686.7

11 37.3 73.9 146.8 353.8 690.0

12 37.3 74.4 146.9 356.5 687.4

13 37.4 74.2 146.3 356.9 691.0

14 37.2 74.2 146.0 354.9 689.8

15 37.3 74.1 146.3 355.7 689.8

16 37.4 73.7 146.7 356.4 687.0

16.5 37.3 73.5 146.1 351.7 682.2

17 37.1 73.2 143.9 350.4 671.7

17.5 37.3 73.0 143.8 346.3 667.1

18 45.2 88.3 173.4 416.4 801.6

varied in multiples of 100.1 to form 20 different intervals between 1016 and 1018 i.e.

1016.1, 1016.2, · · · , 1017.9, 1018.0. Whether the step size should be further reduced to

have more conditions is determined based on the performance of multiples of 100.1.

Again, station-keeping simulations are conducted by performing 3500 Monte Carlo

simulations and the costs are estimated for different ∆Vmin cases for both Type A and

Type B ODE and the results are presented in Table 5.8 and Table 5.9 respectively.

The lowest recorded station-keeping cost for each ∆Vmin case is underlined.

Investigation of Table 5.8 and Table 5.9 yields that the minimal value of station-

keeping costs for each ∆Vmin case exists at distinct values of q1. No particular value of
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Table 5.7. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type B orbit determination
error and q1 between 1010 and 1018.

log(q1)
∆Vmin [cm/s]

5 10 20 50 100

10 65.2 102.6 188.5 453.1 893.0

11 64.7 102.8 188.0 452.7 893.3

12 65.1 103.2 188.5 452.1 896.9

13 65.0 103.1 188.7 450.2 897.0

14 65.3 103.0 188.8 453.0 895.6

15 65.2 103.0 188.2 453.4 895.2

16 65.1 102.8 188.6 451.4 890.3

16.5 64.8 102.8 188.1 448.1 890.8

17 64.5 102.9 187.8 449.5 882.7

17.5 64.5 101.6 184.7 440.5 866.6

18 67.2 107.6 194.0 451.1 878.5

q1, results in the minimal solution that satisfies all cases tested. Different curve fitting

methods are tested but none of them yields the same q1 that satisfies the minimal

∆Vmin for all cases. The lowest case for each ∆Vmin is underlined in Table 5.8 and

Table 5.9. Some better approach needs to be applied to select a right q1 that would

deliver the lowest station-keeping costs for majority number of cases. The fundamen-

tal aim is to determine a q1 that provides the least cost for the most number of cases.

Furthermore, an absolute decrease in the total cost is also as crucial as a relative

decrease in maneuver cost. The change in the total cost computed for most of the

values of q1 vary not more than 1-2%. For example, consider case 1 where ∆Vmin=5

cm/s for Type A, the lowest maneuver cost of 36.9 cm/s is predicted for q1 = 1017.1.
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Table 5.8. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type A orbit determination
error for refined values of 1016 ≤ q1 ≤ 1018.

log(q1)
∆Vmin [cm/s] Sum

5 10 20 50 100 [cm/s]

16.1 37.2 73.7 146.3 350.5 684.5 1292.3

16.2 37.1 73.3 146.6 351.8 687.3 1296.1

16.3 37.3 74.1 144.8 355.3 685.9 1297.4

16.4 37.2 74.2 145.4 355.6 683.8 1296.2

16.5 37.3 73.5 146.1 351.7 682.2 1290.7

16.6 37.1 73.7 147.2 352.7 678.4 1289.0

16.7 37.1 73.7 145.3 352.0 682.0 1290.1

16.8 37.2 73.4 144.8 352.6 675.5 1283.4

16.9 37.1 72.5 146.4 348.8 676.4 1281.3

17.0 37.1 73.2 143.9 350.4 671.7 1276.3

17.1 36.9 72.8 144.7 349.1 675.2 1278.7

17.2 36.9 72.8 144.0 347.9 669.1 1270.8

17.3 37.1 72.7 143.7 344.3 666.6 1264.4

17.4 37.1 73.1 142.9 343.6 663.7 1260.3

17.5 37.3 73.0 143.8 346.3 667.1 1267.4

17.6 37.9 74.0 145.4 351.2 669.5 1278.0

17.7 38.8 75.8 149.3 356.5 687.9 1308.3

17.8 40.2 78.7 156.2 369.8 710.8 1355.6

17.9 42.2 83.0 162.6 390.6 747.1 1425.4

18.0 45.2 88.3 173.4 416.4 801.6 1524.9
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Table 5.9. Station-keeping costs in cm/s estimated by the target point
approach for 2 year mission duration with Type B orbit determination
error for refined values of 1016 ≤ q1 ≤ 1018.

log(q1)
∆Vmin [cm/s] Sum

5 10 20 50 100 [cm/s]

16.1 65.0 103.4 188.4 450.7 895.0 1702.5

16.2 65.2 103.1 186.9 450.5 894.4 1700.1

16.3 64.7 102.7 189.0 448.6 892.1 1697.1

16.4 65.1 103.3 188.8 448.3 888.9 1694.4

16.5 64.8 102.8 188.1 448.1 890.8 1694.6

16.6 64.9 103.0 188.8 452.0 887.8 1696.4

16.7 65.2 102.9 186.9 450.4 889.7 1695.0

16.8 65.0 102.2 187.3 446.9 884.8 1686.3

16.9 64.9 102.7 187.8 449.1 886.1 1690.4

17.0 64.5 102.9 187.8 449.5 882.7 1687.4

17.1 64.8 102.1 187.3 446.2 873.9 1674.1

17.2 64.4 101.9 187.2 444.0 874.9 1672.3

17.3 64.3 101.9 184.5 440.5 870.8 1662.0

17.4 64.6 101.7 185.7 442.2 866.4 1660.6

17.5 64.5 101.6 184.7 440.5 866.6 1657.9

17.6 64.3 102.3 185.1 436.4 857.0 1645.0

17.7 64.4 102.2 186.3 436.2 849.0 1638.1

17.8 64.6 103.3 187.3 438.5 856.3 1650.0

17.9 65.6 104.5 188.9 441.8 859.8 1660.7

18.0 67.2 107.6 194.0 451.1 878.5 1698.4
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A marginal increase in cost is predicted for q1 = 1017.4 in comparison to the former

case. In absolute terms the increase is 0.2 cm/s and relatively this is 0.59%. Similarly,

case 2, where ∆Vmin=100 cm/s for Type A, the lowest maneuver cost of 663.7 cm/s

is predicted for q1 = 1017.4. A marginal increase in cost is predicted for q1 = 1017.3

by 2.9 cm/s i.e. 0.44%. Although relative change in case 1 was higher than in case

2, absolute change in case 2 is much larger than in case 1. Minimizing the absolute

value is a viable option. To have an absolute decrease in total maneuver cost, it is

better to identify a value of q1 that diminishes larger station-keeping costs, typically

for larger ∆Vmin cases. A simple technique is to compute the sum for all cases against

each q1, that are provided in the last columns in Table 5.8 and Table 5.9. Although

the sum has no physical significance, bias is created towards the larger values than

the smaller values when performing summation. The q1 corresponding to the overall

smallest sum potentially gives the best performance. The smallest sum in under-

lined for presentation. The plot between each q1 value and the corresponding sum

is presented in Figure 5.15 and Figure 5.16 for Type A and Type B ODE respectively.
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Figure 5.15. Comparison of station-keeping cost estimated for differ-
ent values of q1 between 1016 and 1010 in intervals of 100.1 using the
target point approach (TPA) for different ∆Vmin cases and Type A
orbit determination error.
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Figure 5.16. Comparison of station-keeping cost estimated for differ-
ent values of q1 between 1016 and 1010 in intervals of 100.1 using the
target point approach (TPA) for different ∆Vmin cases and Type B
orbit determination error.

Clearly, q1 = 1017.4 provides the best station-keeping cost for Type A ODE while

q1 = 1017.7 provides the best station-keeping cost for Type B ODE but it is observed

that with increases in the value of qi, the maneuver magnitude in the corresponding

direction is reduced. Very small maneuvers are generally not capable of maintaining

spacecraft close to the nominal orbit for a longer duration as it experiences exponen-

tial drifting. The value of q1 = 1017.4 for Type A and q1 = 1017.7 for Type B can

only be considered if at such values, the spacecraft does not experience large drifting

away from nominal trajectory. Otherwise, by the end of the mission duration, the

spacecraft would have diverged uncontrollably.

The choice on further refining q1 is analyzed from the values in Table 5.8 and Table

5.9, where the difference between the costs computed for any two successive q1 value

separated by multiple of 100.1 is not larger than 1% except in very few cases. Reducing

the step size for more intermediate values therefore, would not necessarily provide any

relevant information. Using more computation for finding intermediate values may

not be worth. If computational expense is not a concern, performing more Monte
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Carlo simulations would be a better choice at each of 1016.1, 1016.2, · · · ,1017.9, 1018.0

to find more confident values, rather than finding lot of points with poor precision.

5.4.4 Drifting of Spacecraft from the Nominal Path

The cost function in the target point approach is defined, such that it accounts for

both the size of maneuver ∆V and the isochronous drift from the nominal trajectory.

The weighting matrix Q has considerable but indirect impact on the drift. A smaller

value of Q in general, allows the isochronous drift to be the more dominant term of

cost function. To reduce the cost function, the algorithm computes a maneuver to

minimize the drifting of spacecraft away from the nominal orbit. Alternatively, a large

value of Q would effectively compute a low maneuver at the expense of less control on

the drift. The spacecraft is thus, highly likely to drift away from the nominal orbit,

primarily, because the maneuver computed is minute to be not able to overcome the

diverging effect caused due to uncertainties due the orbit determination error.

In the case of x-control maneuver scheme, q2 and q3 i.e. the second and the third

diagonal elements that controls the maneuver in the y and z-direction are set to be

very high that almost no maneuver is computed in y and z-direction. Any errors

in the out of plane direction is unlikely to diverge as no perturbing bodies exists

along the out of plane direction. Additionally, the station-keeping maneuvers along

the x-direction is shown to effectively maintain the spacecraft throughout the mission

duration, hence the perturbations along the y-direction at any instant is believed to be

correctable using some x-direction maneuver at any later time. The only free variable

is q1, hence the divergence characteristics should depend greatly on q1. Besides, due

to the presence of large gravitational forces acting especially along the x-direction,

any untreated errors will cause the spacecraft to diverge. It is evident from the results

presented, that q1 impacts the maneuver being applied, thus, controls the drifting.

At larger values of q1, as the maneuver magnitude is suppressed, the algorithm may
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struggle to efficiently overcome the drifting away of spacecraft, therefore, larger q1

values for station-keeping may be inferior.

For Type A ODE, a low station-keeping cost was detected near values of q1 = 1017.4

but the adoption of q1 = 1017.4 depends greatly on the divergence behavior. Differ-

ent values of q1 between 1010 and 1019 are analyzed to understand the divergence

characteristics. The analysis is extended for different ∆Vmin cases. Same conclusion

is valid for Type B ODE. Continuous spacecraft tracking data reveals the deviation

characteristics of the spacecraft throughout the mission duration. A 100 Monte Carlo

simulation for each value of q1 is performed and the isochronous deviation for dif-

ferent ∆Vmin cases for Type A and Type B ODE is plotted as a function of time in

Figure 5.17 and Figure 5.18 respectively. Each q1 is color coded separately for visual

assistance. At high values of q1 the deviations are larger. For few cases, for example,

∆Vmin = 100 cm/s, q1 = 1019, the deviation exceeds 50000 km that is the terminat-

ing drift, hence no converged solutions are obtained. For each q1, the trend in the

deviation are similar. It undergoes an oscillatory behavior that increases with time.

The peaks in the plot correspond to the x−z plane crossings where the magnitude of

velocity becomes higher in comparison to other regions of the periodic orbit, causing

more drift. Besides, for large q1 values, the deviation is large, but clear depiction of

the deviation at the intermediate q1 values are not distinct from Figure 5.17 and Fig-

ure 5.18. To overcome this challenge, the average deviation for each q1 computed over

100 Monte Carlo simulations at the final time is presented. For better realization,

the deviation at the end of mission duration is presented in distinct color gradients

in Figure 5.19 and Figure 5.20 for Type A and Type B ODE respectively.

The effectiveness of different q1 values for station-keeping is portrayed in Figure

5.17 and Figure 5.18 through the mean deviation at the end of the mission duration

i.e. 2 years for the two chosen ODE and different ∆Vmin cases. For all the ∆Vmin

cases, q1 between 1010 and 1018 show divergence behavior of almost the same order,
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Figure 5.17. Deviation of the spacecraft from the reference orbit for
different values of q1 using the target point approach (TPA) for dif-
ferent ∆Vmin cases with Type A orbit determination error. Deviation
history plotted for 100 independent Monte Carlo iterations.
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Figure 5.18. Deviation of the spacecraft from the reference orbit for
different values of q1 using the target point approach (TPA) for dif-
ferent ∆Vmin cases with Type B orbit determination error. Deviation
history plotted for 100 independent Monte Carlo iterations.
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Figure 5.19. Mean deviation at the end of mission duration estimated
for different values of q1 using the target point approach (TPA), for
different ∆Vmin cases and Type A orbit determination error. Mean
computed for 100 independent Monte Carlo iterations.
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Figure 5.20. Mean deviation at the end of mission duration estimated
for different values of q1 using the target point approach (TPA), for
different ∆Vmin cases and Type B orbit determination error. Mean
computed for 100 independent Monte Carlo iterations.
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that remains close to the nominal trajectory, while q1 larger than 1018 seems to be

inefficient in maintaining the spacecraft near the desired orbit, hence with time the

deviation grows rapidly. Since a slow divergence is predicted for q1 = 1017.4 for Type

A ODE and q1 = 1017.7 for Type B ODE, that provided the least station-keeping

costs, the value of q1 can be chosen for further enhancements or for final use.

5.4.5 Effect of Weights on Future Position and Velocity Targets

The target point approach for station-keeping is driven by the defined cost func-

tion that weighs the magnitude of maneuver and the deviation in position and velocity

states at some future time. Based on correlation between TPA and FMA, the future

target points are considered to be exactly one period downstream. The weighting ma-

trix Q that directly controls the magnitude of maneuver has been analyzed for both

the orbit determination errors chosen for the station-keeping simulation to identify

the values that yields in the lowest annual cost. Since the Floquet mode approach

weighs is not biased towards position deviation and velocity deviation states, the

matrix R and RV that weights future position and velocity targets respectively, were

considered to be identity, I. Since R and RV are technically free variables, there is

scope to analyze the effect of components of matrices R and RV on the station-keeping

costs, by not considering I. Similar to the process adopted for analyzing matrix Q,

grid search is performed at each of the maneuver location to identify a certain pat-

terns that can be utilized to further reduce station-keeping costs.

To analyze the weighting matrix R that accounts for the position deviation at

the future time, at every maneuver location, different combinations of R matrix are
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used to compute the maneuver keeping Q and RV fixed. Let the positive semidefinite

matrix R be represented as

R =


r̃1 0 0

0 r̃2 0

0 0 r̃3

 (5.36)

where, r̃1 weights the position deviation along x-direction, r̃2 along y-direction and r̃3

along z-direction. The value of the selectedQmatrix is diag(1017.4, 1025, 1025) for Type

A ODE and diag(1017.7, 1025, 1025) for Type B ODE, in the dimensional units. Ex-

pressed in non-dimensionalized units, Q matrix is diag(1.0×104, 4.0×1011, 4.0×1011)

for Type A ODE and diag(2.0 × 104, 4.0 × 1011, 4.0 × 1011) for Type B ODE. The

matrix RV is assumed to be I in non dimensional units, while performing the analysis

on the effects of matrix R. At every maneuver location, the value of R, that is a

non-dimensional unit by itself, is selected as a combination of r̃1, r̃2 and r̃3 that are

varied from 10−5 to 105 and the corresponding maneuver cost is recorded for different

∆Vmin cases. The four-dimensional array consisting of r̃1, r̃2, r̃3 and ∆V are presented

as a three-dimensional space of r̃1, r̃2, r̃3 with the 4th dimension, ∆V color coded for

visual assistance. The results are presented in Figure 5.21 for different ∆Vmin cases.

Unlike Figure 5.1 where the effects of Q matrix was analyzed, no specific trend is

observable. The chosen range of values of r̃i seems to be sufficient to include range

of maneuver magnitudes possible but the range of achievable maneuver magnitudes

are very narrow in comparison to the range of maneuver magnitudes achieved by

varying Q matrix. Due to the lack of any specific pattern in the occurrence of low

maneuver magnitude region and the extremely narrow range of maneuver magnitudes

achievable, it may not be worth to spend intense computational resources to iden-

tify another value of R that may marginally alter the station-keeping costs predicted

using an identity matrix, which is indeed not guaranteed. The use of Monte Carlo

process results in uncertainty in the measurement of the mean station-keeping cost.

It is not guaranteed that altering the value of matrix R, from identity, will result in

station-keeping costs lower than the uncertainty in measurement. Therefore, for this
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work the value of R is allowed to remain as I, however, for other orbits if definite

pattern is observable then R can be analyzed and enhanced.
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Figure 5.21. Variation in maneuver magnitude for different R matrix
combinations for different ∆Vmin cases. Each individual plot is for
an arbitrary maneuver location. The symbol ‘#’ indicates sequential
numbering for a particular ∆Vmin case.
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Similar to analyzing the weighting matrix R, the wighting matrix RV that accounts

for the velocity deviation at the future time is analyzed. At every maneuver location,

different combinations of RV matrix are used to compute the maneuver keeping Q

and R fixed. Define the positive semidefinite matrix RV as

RV =


r̃V 1 0 0

0 r̃V 2 0

0 0 r̃V 3

 (5.37)

where, r̃V 1 weights the velocity deviation along x-direction, r̃V 2 along y-direction and

r̃V 3 along z-direction at the future target time. At every maneuver location, the

value of RV , in non-dimensional units, is selected as a combination of r̃V 1, r̃V 2 and

r̃V 3 that are varied from 10−5 to 105 and the corresponding maneuver cost is recorded

for different ∆Vmin cases. Like the case of R, the four-dimensional array consisting

of r̃V 1, r̃V 2, r̃V 3 and ∆V are presented as a three-dimensional space of with the 4th

dimension, ∆V color coded for visual assistance. The results are presented in Figure

5.22 for different ∆Vmin cases. Although distinct patterns are visible, they are not

very prominent. Low values of r̃V i within the domain indicates lower maneuver costs,

while larger values seem to increase the maneuver magnitudes. Although the chosen

domain for r̃V i seems to be sufficient to cover most maneuver magnitudes possible

and present the distinct pattern, the range of achievable maneuver magnitude is very

narrow in comparison to the range of maneuver magnitudes achieved by varying Q

matrix. The selected value of Q already estimates station-keeping costs marginally

lower than that estimated using the Floquet mode approach, hence the chance of

decreasing orbit maintenance costs significantly lower is very slim. The fact is that the

overall cost may or may not change by altering the value of RV matrix, that produces

marginal change in individual maneuver cost, hence additional computational effort

only to have a probability of detecting a marginally smaller station-keeping cost, does

not seem appropriate. The value of RV is therefore chosen as I for this work. For

other cases, if the possible decrease in maneuver magnitude is significant and occurs in
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a specific pattern then it may be worth investing additional computational resources

to reduce the annual station-keeping cost.

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ
𝑉

[c
m

/s
]

Δ𝑉𝑚𝑖𝑛 5 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#2)

Δ𝑉𝑚𝑖𝑛 20 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#3) Δ𝑉𝑚𝑖𝑛 10 cm/s   (#4)

Δ𝑉𝑚𝑖𝑛 50 cm/s   (#1) Δ𝑉𝑚𝑖𝑛 50 cm/s   (#2) Δ𝑉𝑚𝑖𝑛 100 cm/s      (#1)

Δ
𝑉

[c
m

/s
]

lo
g
(
ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g(

ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g(

ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g
(
ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g
(
ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g(

ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g(

ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g(

ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

lo
g(

ǁ𝑟 V
3
)

log( ǁ𝑟V1)

log( ǁ𝑟V2)

Figure 5.22. Variation in maneuver magnitude for different RV matrix
combinations for different ∆Vmin cases. Each individual plot is for an
arbitrary maneuver location. The symbol ‘#’ indicates sequential
numbering for a particular ∆Vmin case.
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6. CAUCHY GREEN TENSOR STATION-KEEPING

STRATEGY

The concept of continuum mechanics deals with the flow of materials as a continuous

volume. Cauchy Green tensor is used commonly in the area of continuum mechanics

to portray the flow characteristics in different directions. To one’s advantage, Cauchy

Green tensor can also be used for station-keeping by utilizing the flow characteristics

of a reference trajectory. The dynamical flow in the vicinity of a reference or a

baseline trajectory depict the imaginary flow of a material volume in a given time

duration [49]. The local deformation or the strain generated in the material volume is

realized by the Cauchy-Green strain tensor (CGST) or commonly the Cauchy-Green

tensor (CGT).

6.1 Cauchy-Green Tensor

The Cauchy Green tensor as well as the state transition matrix yields the dynam-

ical flow characteristics in the vicinity of a reference solution. While the STM relates

the variation of each individual states over time, the CGT relates the transforma-

tion of perturbation emulated by a material volume over time. The state transition

matrix, φ, relates the flow in the vicinity of a baseline trajectory by mapping initial

perturbation, δx̄0, to the final perturbed states, δx̄f , as a linear correlation i.e.

δx̄f = φ(tf , t0)δx̄0 (6.1)

where, t0 and tf are initial and final epochs. The CGT, or for mathematically sim-

plicity represented as ‘C’,

C(tf , t0) = φT (tf , t0)φ(tf , t0) (6.2)
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defines the deformation as product of transpose of the state transition matrix, φ, with

itself. Physically, CGT renders the square of magnitude of final deformation to the

initial deformation as

||δx̄f ||2 = δx̄Tf δx̄f = δx̄T0 φ
T (tf , t0)φ(tf , t0)δx̄0

= δx̄T0 C(tf , t0)δx̄0

(6.3)

obtained by squaring equation (6.1). The growth or decay of the quantity ||δx̄f ||2

describes the sensitivity of the trajectory to initial perturbation, δx̄0, however, when

the size of an initial perturbation is undefined, the sensitivity information can be

directly extracted from CGT. The eigen-decomposition of CGT or the singular value

decomposition of STM yields details about direction and magnitude of stretching.

Moreover, in a multi-eigenvalue system, the positive definite matrix, CGT, indicates

a better behavior for numerical computation than a regular STM [69].

The flow of the perturbation, emulated by a material volume is characterized pri-

marily by magnitude and direction of elongation. The flow of any system can be

understood either using the eigendecomposition or singular value decomposition of

the corresponding matrices. The eigendecomposition of the CGT, yields eigenvalues

λi and eigenvectors Vi. For a linear system, the contraction or expansion of the

local phase space is given by σi in the direction given by Vi. Note that σi =
√
λi.

The singular values decomposition (SVD) of the STM, reveals the same critical de-

tails about the flow in the phase space but with additional direction information.

Mathematically, STM is decomposed to matrices, U, Σ and V, such that,

UΣV∗ = φ (6.4)
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where, the columns of U gives the direction of stretching at the final epoch. For

a square matrix, φ, Σ is a diagonal matrix with the magnitude of stretching along

different directions in the ascending order i.e.

Σ =


σ1

σ2

. . .

σn

 (6.5)

such that, σ1 > σ2 > ... > σn. The matrix V provides the principal direction before

stretching. The matrices Σ and V essentially provides the same details acquired

using an eigenvalue decomposition, while U is an additional information captured

using singular value decomposition [70]. The matrices U and V are orthonormal. The

Figure 6.1 reveals how SVD relates the direction of principal axis before and after

propagation, as well as the magnitude of contraction or expansion with the example

of a two-dimensional system. Consider a unit circle in the phase space near an initial

reference which undergoes deformation and evolves into a stretched ellipse. The

evolution of this unit circle to an ellipse is a combination of translation and rotation.

The matrices U and V provides the rotation information while the matrix Σ provides

information about translation. The columns of matrix V represented by Vi indicates

the direction of principal axis on this unit circle which evolves into Ui (columns of

matrix U). The diagonal elements of matrix Σ or σi indicates the stretching along

corresponding principal directions. The eigenvalue decomposition and the singular

value decomposition fundamentally provides the same information except that the

later is a more elegant representation of the dynamical flow. Any of these methods

can be used to linearly approximate the attainable region in the vicinity of a reference

trajectory. The CGT station-keeping strategy uses the same principle.
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𝕍1

𝕍2 𝕌2
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𝜎2

𝜎1

Figure 6.1. Singular value decomposition of a two-dimensional system.

6.2 Cauchy-Green Tensor Station-keeping Strategy

A spacecraft without a maneuver on a libration point orbit tends to deviate from

its desired path because of their highly unstable nature and limitations of accurate

orbit determination process. A station-keeping technique ensures that maneuvers

are executed at regular intervals to maintain the spacecraft in the vicinity of the

baseline/nominal trajectory. Ideally, it is expected that the spacecraft meet a target

condition x̄T , generally the states of the baseline trajectory, after some horizon time

Th from the current time t0. Due to perturbations or deviation from the nominal

orbit, x̄T may or may not be achieved, but at-least a solution close to x̄T is achieved

by having the information about the nearest attainable state.

The Cauchy-Green tensor station-keeping strategy uses the geometry of the phase

space to compute a corrective maneuver. The CGT approach tracks the evolution of a

physical continuum attributed as attainable region, at some epoch time tf separated

by a horizon time Th i.e. tf = t0 + Th, for a set of known finite initial velocity

perturbation as demonstrated in Figure 6.2. A point in the attainable region closest

to the target condition, x̄T , is chosen to compute the maneuver. A fixed maneuver

magnitude, ∆VM , at the initial time stretches the attainable region to ε at time tf .
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In the phase space, ε is a six-dimensional ellipsoid. Mathematically, the attainable

region on the six-dimensional ellipsoid is expressed as,

ε =
{

x̄ | (x̄− c̄)TQ(x̄− c̄) = 1
}

(6.6)

where c̄ is the center of the ellipsoid while Q = USUT is a symmetric positive semidef-

inite matrix that gives information of the radius of the ellipsoid in their principal

directions. The matrix U is determined by the singular value decomposition of the

state transition matrix while the matrix S,

S = (Σ∆VM)−2 =


1/σ2

1

1/σ2
2

. . .

1/σ2
6

∆V −2
M (6.7)

is the inverse square of the radii of the attainable ellipsoid region in all the six di-

mensions.

𝕍1

𝕍𝑛
𝜎𝑛𝕌𝑛

𝜎1𝕌1

ℂ(𝑡𝑓 , 𝑡0)

𝑡0 𝑡𝑓

Attainable Region

Reference Trajectory * 𝜎𝑖𝕌𝑖 = 𝜙 𝑡𝑓, 𝑡0 𝕍𝑖

Figure 6.2. Attainable region computed using the Cauchy-Green tensor.
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The goal of the CGT station-keeping process is to target position and velocity

states along the baseline trajectory at regular intervals to secure the spacecraft path

close to the baseline path. Let the point x̄T be a state on the baseline trajectory

that acts as a target condition to compute a maneuver. For a fixed maneuver size

∆VM , an attainable ellipsoid region ε is computed using the CGT information. It

might be challenging to attain the exact states at x̄T , but the point closest to x̄T on

the attainable ellipsoid ε should serve the same purpose, provided that the tolerance

is low. The point x̄∗ on this ellipsoid closest to the target state, x̄T , satisfies the

following condition,

x∗ = arg min
x̄∈ε

(x̄− x̄T ) (6.8)

where all possible values of x̄ are the solutions to ε. The computed point x̄∗ is the

closest point to the target state x̄T , but it may be overshooting or undershooting

the desired target state. Since the aim is to achieve the state that almost exactly

reproduces the target state, further refinement to the value of x̄∗ is required.

The geometry of the attainable region is capitalized to compute an increase or

decrease in the size of maneuver. Define cD∗ as the distance from the center of the

ellipsoid c̄, to x̄∗ while ∗DT as the distance from x̄∗ to the target x̄T and cDT is the

distance from the center, c̄, to target, x̄T to complete the triangle i.e.

cD∗ = ∗Dc = ||x̄∗ − c̄|| (6.9)

∗DT = TD∗ = ||x̄∗ − x̄T || (6.10)

cDT = TDc = ||x̄T − c̄|| (6.11)

where each scalar distance iDj = jDi, for i, j ∈ {c, ∗, T}. Once the sides of the

triangles are fixed, the relative location of c̄, x̄∗ and x̄T is unique. For reference, the

so formed triangle between c̄, x̄∗ and x̄T can be called as maneuver feedback triangle,

as the geometry of this triangle decides a change in the size of the maneuver. If

cDT > cD∗ then the size of the maneuver is not sufficient to achieve the target state
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and hence an increase in size of maneuver is required. The magnitude of maneuver

∆VM is increased from the previous value either using the relation

∆VM = ∆VM + ∆Vmin (6.12)

where the increment in maneuver magnitude is a step function of size ∆Vmin or using

the relation

∆VM = ∆VM(cDT/cD∗) (6.13)

that manipulates the dimensions of the maneuver feedback triangle to compute an

increase in the size of the maneuver. Similarly, if cDT < cD∗ then the size of the ma-

neuver causes overshooting the target state, hence a decrease in size of maneuver is

required. Again equation (6.13) is used to decrease the size of the attainable region in

the required proportion. Since the geometry is not linear i.e. x̄∗ does not necessarily

lie between c̄ and x̄T , a single increment or decrement of the maneuver size may not

be sufficient to result in achieved closest state x̄∗ to almost overlap x̄T , nevertheless

the distance ∗DT diminishes every iteration. The size of the ellipsoid or the size of the

maneuver is refined till the required tolerance level is achieved. The target tolerance

can be defined as scalar quantity εT , such that if ∗DT < εT , it can be assumed that

the achievable state x̄∗ is almost exactly equal to the desired target x̄T with tolerance

of εT . Figure 6.3 illustrates the different possible scenarios of maneuver refinement.

Once the final achievable state x̄∗ is determined, it is desired to compute the

corresponding maneuver. Illustrated in Figure 6.4, each point on the six-dimensional

ellipsoid, ε, has a corresponding initial condition represented as a six-dimensional

state vector, as a result, x̄∗ corresponds to a point, x̄i at t = 0, that would drive the

spacecraft to x̄∗ at time tf . In other words, the actual initial state x̄0 at t = 0 if

continued would reach the final state x̄f at time tf . The vector x̄f is also the center

of the ellipsoid represented as c̄. In order to reach a different state x̄∗ at t = tf ,

the required condition is x̄i at t = t0. Since x̄f (same as c̄) is not equal to x̄∗; the
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Figure 6.3. Refinement of attainable region produced using CGT.

vectors x̄0 and x̄i are not the same. The difference between the vector x̄i and x̄0 is

the required initial perturbation vector achieve x̄∗.
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Figure 6.4. Required initial perturbation to achieve state on the at-
tainable region nearest to the target state.
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The difference between the state vector x̄i and x̄0 are both in terms of position and

velocity, however, using an impulsive maneuver only the change in velocity states can

be achieved. If a perfect solution existed, the corresponding maneuver ∆V̄M should

satisfy

(x̄∗ − c̄) = φ(tf , t0)

 0̄

∆V̄M

 =

φrr φrv

φvr φvv

 0̄

∆V̄M

 (6.14)

(x̄∗ − c̄) =

φrv
φvv

∆V̄M = A∆V̄M (6.15)

where A =

φrv
φvv

 is a 6×3 matrix. In general, this is an overdetermined system with

no perfect solution, therefore, a solution with pure velocity change will have some

error. A least squares method [71] produces a possible solution

∆V̄M =
(
ATA

)−1
AT (x̄∗ − c̄) (6.16)

with the minimal error. Ideally, a position perturbation as well as a velocity pertur-

bation at initial time is required to almost exactly attain the target state. Due to

impractical position perturbation, the nearest possible attainable state is achieved by

the computed ∆V̄M . The details of this process is elaborated in Figure 6.5 using two

major steps. (1) Firstly, the state x̄∗ on ε closest to the target state x̄T is mapped

back to the initial time to determine the actual perturbation required to achieve x̄∗,

that are in terms of both position and velocity perturbation. (2) Since position per-

turbation is practically not achievable, the second step determines the best possible

alternative in terms of pure velocity perturbation i.e. the maneuver ∆V̄M using a

least square projection. The computed maneuver, void of any errors, drives the tra-

jectory towards a new achievable state x̄+
f that is in close vicinity to desired x̄∗ or x̄T .

Based on the limitation of not achieving the exact target state, regular maneuvers

are required to ensure that the spacecraft transits in close vicinity to the reference

trajectory. An impulsive maneuver ∆V̄M is implemented along with station-keeping

execution errors and thus a new initial condition is generated. The new states are

propagated and the process is repeated till the end of mission duration.
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Figure 6.5. CGT station-keeping method; maneuver computation us-
ing projection of required perturbation on to the velocity subspace.

Similar to the one noted by Guzzetti et al. [72], Figure 6.6 summarizes the station-

keeping process in concise steps. (1) The current state, x̄0, and target state, x̄T , is

defined. (2) The current state is propagated for time tf till it reaches x̄f . (3) Using

CGT or STM, for a chosen value of ∆VM , the attainable region is computed. (4)

The point on the attainable region closest to the target state is selected. Further

refinements as explained are conducted till the required tolerance is achieved. (5) The

point x̄∗ that is closest to the target state is mapped back using STM information to

find the necessary initial condition required to achieve close proximity to x̄T at tf .

(6) Corresponding maneuver ∆VM is procured using least square method.

A linear approximation of the attainable region may be less accurate for a very

large ∆VM . Further, an increase in the horizon time will result in more stretched

ε, consequently, modeling the attainable region as a linear approximation may not

be reasonable. Additional parameter that can affect the performance of this station-
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Figure 6.6. CGT station-keeping maneuver computation scheme.

keeping technique is the size of the scalar target tolerance, εT . Too low value of εT

will enforce the algorithm to compute x̄∗ almost equal to the exact target state x̄T

more accurately, that may be difficult to achieve. Similarly, larger value of εT may

indicate larger separation between x̄∗ and x̄T . It becomes challenging to decide the

right size of the target tolerance, εT . The following sections explores the performance
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of CGT station-keeping technique with varying sizes of ∆VM , different horizon times,

Th, and target tolerance, εT .

6.3 Effect of Target Tolerance, Horizon Time and Maneuver size

The principle of the Cauchy-Green tensor station-keeping method is to utilize the

flow characteristics of the reference trajectory to compute a corrective maneuver, by

accessing states on the attainable region at a future time closest to the desired target

state. The main hypothesis behind the use of CGT is that the accessible region is

computed by linear approximation of flow dynamics near the reference trajectory.

The nominal path or the periodic orbits computed either in the CR3BP model or the

Ephemeris model are nonlinear, hence, linear approximation may deteriorate over

time as well as larger perturbation levels. Essentially, the horizon time and size of

maneuver may impact the performance of the CGT method for station-keeping. The

CGT method predicts an attainable region which is a six-dimensional ellipsoid at

some horizon time downstream. With increase in time, the non linear characteristics

become more dominant, therefore the ellipsoid approximation may not hold reliable.

The evolution of the attainable region with horizon time is illustrated in Figure 6.7

as red ellipsoids. With increase in horizon time, the bending of the ellipsoid region is

apparent, indicating that the linear approximation is deteriorating. Similarly, the in-

crease in the size of the maneuver magnitude is comparable to the flow due to a larger

perturbation. The accuracy of the linear approximation of the flow decreases as the

perturbation increases, therefore, a larger maneuver size may essentially downgrade

the performance of CGT, that is linear estimation of the attainable region. The phe-

nomenon is demonstrated in Figure 6.8 where for a constant horizon time of 1P, the

attainable region digresses from its ellipsoid shape with increases in the size of ma-

neuver. Another potential challenge is the size of the target tolerance, that is a scalar

quantity to judge whether the maneuver feedback triangle requires any additional

refinement. Typically a low value of target tolerance will cause more refinement of
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the maneuver feedback triangle, increasing the computational expense. Alternatively,

a large value of target tolerance may degrade the performance of CGT method for

station-keeping and result in larger annual costs. The causes and the impact of the

three potential challenges including horizon time, size of maneuver magnitude and

size of target tolerance are explored.

135 days

90 days

60 days
45 days

𝐿1

Figure 6.7. Specific example of variation in attainable region for ∆V
= 100 cm/s over different horizon time. The attainable region in
configuration space is marked as red ellipsoid.

The three potential challenges discussed here i.e. horizon time, size of maneuver

magnitude and size of target tolerance are not mutually exclusive hence indepen-

dent studies may not be profitable. The parameters are inter dependent and hence

combinatorial studies are performed. A three-dimensional grid as described in Fig-

ure 6.9 provides potential combinations of the three parameters used to explore the

performance of the CGT. At a time, one parameter is fixed, and the impact of the

remaining two parameters are studied. The combinations are then altered to get a

better understanding of the impact of all the three parameters on the station-keeping

costs and computational time. For the studies, horizon time of 45, 60 and 90 days
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𝐿1

Earth

𝐿1

Δ𝑉 = 5 cm/s

𝐿1

Δ𝑉 = 20 cm/s

Δ𝑉 = 50 cm/s

Figure 6.8. Specific example of variation in attainable region for ∆V
of size 5 cm/s, 20 cm/s and 50 cm/s over constant horizon time of one
period (1P). The attainable region in configuration space is marked
as red ellipsoid.

are considered, while the size of the maneuver is controlled by introducing ∆Vmin

constraints of 5, 10, 20, 50 and 100 cm/s. The value of the scalar target tolerance is

considered between 10−7 and 10−3 assuming that the selected range does contain the

factual values, which will be assessed later.
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Horizon Time, 𝑇ℎ

Δ𝑉𝑚𝑖𝑛

Target Tolerance, 𝜖𝑇

90 days

60 days

45 days

5    10    20    50    100 cm/s
1e-7

1e-6
1e-5

1e-4
1e-3

Figure 6.9. Three-dimensional grid for potential combinations of hori-
zon time, size of maneuver and target tolerance to explore perfor-
mance of CGT station-keeping approach.

6.4 Preliminary Results

6.4.1 Station-keeping Outcomes for various combinations of Horizon Time,

Th, size of Minimum Executable Maneuver, ∆Vmin, and Target Tol-

erance, εT

The horizon time Th, size of minimum executable maneuver ∆Vmin and target tol-

erance εT are the three important parameters that can influence the performance of

the Cauchy-Green tensor station-keeping process, mainly the orbit maintenance costs

and the computational expense. A three-dimensional grid as discussed provides poten-

tial combinations of the three parameters that are used to simulate a station-keeping

scenario. The outcomes including station-keeping costs and computational expense

estimated for different combinations of the parameters within the grid provides the

impact of these parameters on the CGT method performance. The station-keeping

cost estimated for each of the cases are measured in cm/s while the computational
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expense is measured as the ratio of the computational resources used compared to

a baseline value. The computational expense is inclusive of computational time and

number of processors used for Monte Carlo simulation. The baseline value corre-

sponds to the outcome of Type A ODE with horizon time 45 days, ∆Vmin = 10 cm/s

and εT = 10−5. Computational expense computed for all cases with Type A as well

as Type B ODE are compared to this specified baseline value.

A way to analyze the effect of the three parameters, horizon time Th, size of

minimum executable maneuver ∆Vmin and target tolerance εT is by maintaining a

fixed value of horizon time and varying the size of ∆Vmin for different values of εT

between 10−7 to 10−3. Figure 6.10 and Figure 6.11 provides the variation in station-

keeping cost with respect to εT for fixed values of Th and different ∆Vmin case, for Type

A and Type B ODE respectively. For both type of ODE, the station-keeping costs for

fixed horizon time and ∆Vmin, almost seem to remain unchanged over different values

of εT . The constant station-keeping cost predicted is the result of the functioning of

the algorithm that computes an almost accurate maneuver in the first iteration itself,

prior to introduction of the quantity εT , The computational expense for Type A and

Type B ODE for varying εT with fixed values of Th and ∆Vmin case are presented

in Figure 6.12 and Figure 6.13 respectively. For smaller values of εT in the selected

range, the computational expense seem to shoot up, especially in the case of higher

values of ∆Vmin. The algorithm performs multiple iterations to compute a state on

the attainable region closest to the target state with more accuracy by reforming the

maneuver feedback triangle, such that the distance between x̄∗ and x̄T is within the

specified target tolerance. From the trends observed, it can be concluded that very

small values of εT may result in high computational expense without improving the

station-keeping costs, while a large value of εT may result in a poor station-keeping

costs especially in sensitive maneuver locations where one iteration of the algorithm

may not be sufficient to compute an appropriate maneuver. A better selection of εT

is required for a meaningful station-keeping cost without excess computational load.
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Horizon Time, 𝑇ℎ = 45 days 

Horizon Time, 𝑇ℎ = 60 days 

Horizon Time, 𝑇ℎ = 90 days 

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Figure 6.10. Station-keeping costs estimated by the Cauchy-Green
tensor approach for 2 year mission duration with Type A orbit de-
termination error. Different horizon times of 45, 60 and 90 days and
range of target tolerance between 10−7 and 10−3 are considered.
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Horizon Time, 𝑇ℎ = 45 days 

Horizon Time, 𝑇ℎ = 60 days 

Horizon Time, 𝑇ℎ = 90 days 

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Figure 6.11. Station-keeping costs estimated by the Cauchy-Green
tensor approach for 2 year mission duration with Type B orbit de-
termination error. Different horizon times of 45, 60 and 90 days and
range of target tolerance between 10−7 and 10−3 are considered.
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Horizon Time, 𝑇ℎ = 45 days 

Horizon Time, 𝑇ℎ = 60 days 

Horizon Time, 𝑇ℎ = 90 days 

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Figure 6.12. Computational expense for station-keeping simulation
using the Cauchy-Green tensor approach for 2 year mission duration
with Type A ODE, expressed with respect to baseline value. Baseline
value is the simulation corresponding to horizon time 45 days, ∆Vmin
= 10 cm/s and εT = 10−5 for Type A ODE. Different horizon times
of 45, 60 and 90 days and range of target tolerance between 10−7 and
10−3 are considered.
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Horizon Time, 𝑇ℎ = 45 days 

Horizon Time, 𝑇ℎ = 60 days 

Horizon Time, 𝑇ℎ = 90 days 

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Δ𝑉𝑚𝑖𝑛

5 cm/s
10 cm/s
20 cm/s
50 cm/s
100 cm/s

Figure 6.13. Computational expense for station-keeping simulation
using the Cauchy-Green tensor approach for 2 year mission duration
with Type B ODE, expressed with respect to baseline value. Baseline
value is the simulation corresponding to horizon time 45 days, ∆Vmin
= 10 cm/s and εT = 10−5 for Type A ODE. Different horizon times
of 45, 60 and 90 days and range of target tolerance between 10−7 and
10−3 are considered.
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6.4.2 Dynamic selection of Target Tolerance

A station-keeping problem is an attempt to secure the spacecraft near the refer-

ence solution for the mission duration. Station-keeping is a stochastic problem, hence

locating states of the spacecraft with full accuracy is not possible. There is a limi-

tation to the determination of accurate states of the spacecraft at all times, thereby

effort to compute the corrective maneuver with high accuracy is insignificant. The

size of the orbit determination error is a potential deciding factor on the value of tar-

get tolerance εT that would deliver the maneuver with the same order of uncertainty

as that of the ODE. Desire for more accurate result is meaningless, therefore, it is

redundant to invest high computational expenditure for very low values of εT . To

use the ODE information to formulate a relevant εT , the evolution of the error over

time needs to be analyzed. The ODE error is pretended to constitute an error region

inclusive of deviation in position and velocity states. The evolution of the flow in

the vicinity of a reference trajectory is used to investigate the evolution of the error

region and thus develop a way of establishing a value of reasonable εT .

The Cauchy-Green tensor relates the evolution of the position and velocity de-

viation described as an error sphere over time to form an error ellipsoid caused by

stretching and rotation. Equivalently, the ODE error is also a form of error in both

position and velocity and therefore it is assumed that it will also get stretched and

rotated as the position and velocity deviation vector. Applying the same linear corre-

lation using cauchy-green tensor, the manner in which the orbit determination error

region evolves is determined. As described in Figure 6.14, the region marked in red at

initial time represents the region of no significance as a result of orbit determination

error. Any value computed smaller than the size of the red circle is not recognizable

due to limitations in orbit determination, therefore desiring an accuracy within the

size of the red region is not sensible. The boundary of the red region relates to the

minimum measurable precision level, therefore the desired value of εT must be the
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measurement corresponding to the outer surface of the red region. The fictitious

six-dimensional radius of the red sphere is a relevant scalar quantity that relates to

the size of sphere i.e. the size of uncertainty. For a six-dimensional ODE vector,

δx̄ODE, the scalar radius is given as ||δx̄ODE||. Explained by Spreen et al. [73], the

rate of separation between two nearby trajectories over a non infinite time interval

is predicted by the Finite Time Lyapunov Exponent (FTLE), of which the largest

component of the FTLE reflects the most stretching direction. Also labeled as Local

Lyapunov Exponent (LLE), the actual separation is given by the square root of the

largest eigenvalue of φ(tf , t0)Tφ(tf , t0), where t0 and tf are the initial and final epoch.

The value predicted by the LLE information is exactly equal to the largest eigenvalue

of the Cauchy-Green tensor σ1. Therefore, the dominant stretching of the no value

region indicated by red ellipsoid in Figure 6.14 is in the direction of U1 with a mag-

nitude of σ1. The appropriate scalar target tolerance εT to represent the no value

region is given by σ1||δx̄ODE||, such that ||δx̄ODE|| indicates the initial separation

while σ1 is a measure of expansion. The target tolerance εT is thus represented by

a dynamic quantity that takes into consideration the orbit determination error, the

horizon time and the location along the orbit that influences the amount of stretching.

𝕍1

𝕍2 𝜎2𝕌2

𝜎1𝕌1

𝜙

ODE

No value region

Figure 6.14. Six-dimensional region of no value or non measurable
value, resulting from orbit determination error, mapped using a linear
state transition matrix.
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The dynamic target tolerance εT is now defined as εT = σ1||δx̄ODE||, where σ1 is

a dynamic quantity that depends on the sensitivity of the location along the orbit

as well as the horizon time that impacts the amount of stretching. Similar to a

LLE surface, an entire spectrum of possible values of σ1 are generated to identify

the corresponding values at different locations along the orbit as well as for different

horizon times. The location along the orbit can be represented in terms of the time

propagated from a fixed initial location, that is demonstrated in Figure 6.15, where

the point on the reference orbit corresponding to x − z plane crossing towards the

Sun is considered as the initial fixed location for generating the stretching spectrum.

At different locations along the orbit, separated by small time intervals, magnitude

of the dominant stretching, σ1, is computed and recorded for different horizon time

between (0, 1P]. The entire data recorded for different combinations of the location

and the horizon times are given as a spectrum in Figure 6.16. The colorbar used

to represent the spectrum is indicated in natural logarithmic scale to encompass the

entire range with proper visualization. Recall that σ1 = σmax after singular value

decomposition is performed.

To Sun 

Location 
at 𝑡 = 0

Figure 6.15. Location along the orbit as a measure of elapsed time
from the initial fixed location.
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Figure 6.16. Spectrum of magnitude of dominant stretching computed
for varying horizon times.

To perform station-keeping, at every maneuver location, depending on the chosen

value of horizon time the value of dominant stretching, σ1, is computed, or retrieved

from Figure 6.16. For the three different horizon times 45, 60 and 90 days selected

for the station-keeping simulation, the value of dominant stretching are presented

in Figure 6.17. Along with the chosen orbit determination error level, the value of

target tolerance is predicted as εT = σ1||δx̄ODE||. The selected value of target tol-

erance is a function of the sensitivity at that location and factors in the level of

accuracy of measurement. Since the sensitivity at every location along the orbit is

different, continuous computation of the magnitude of stretching must be achieved.

The eigenvalues of the Cauchy-Green tensor are already known, of which the domi-

nant stretching is the largest eigenvalue of the CGT, therefore, excess computational

expenditure is eliminated. The dynamically selected value of target tolerance along

with the predefined parameters, horizon time, Th, and minimum executable maneuver

magnitude, ∆Vmin, are used to estimate the station-keeping outcomes for both Type

A and Type B orbit determination errors.
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Horizon Time, 
𝑇ℎ = 45 days

Horizon Time, 
𝑇ℎ = 60 days

Horizon Time, 
𝑇ℎ = 90 days

Figure 6.17. Magnitude of dominant stretching along different loca-
tions on the chosen reference orbit for horizon time 45, 60 and 90
days.

The station-keeping outcomes, including costs and computational expense as esti-

mated in section 6.4.1 for a range of fixed target tolerance between 10−7 and 10−3, in

non-dimensional units, are now replaced with dynamical selection of target tolerance

to compute the station-keeping outcomes. For both the ODE types, orbit mainte-

nance simulations are performed by 100 Monte Carlo iterations, for horizon time of

45, 60 and 90 days and ∆Vmin cases of 5, 10, 20, 50 and 100 cm/s. The direction
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of corrective maneuvers computed are unconstrained i.e. they are executable in any

spatial direction. Unlike the previous section, the target tolerance is selected dynam-

ically. The outcomes for Type A ODE is provided in Table 6.1 while Type B results

are in Table 6.2. The station-keeping costs for 2 year mission duration are identical

to that predicted using constant values of target tolerance in the range of 10−7 and

10−3 for both Type A and Type B ODE, however, drastic decrease in computational

expense is observed in comparison to low values of εT chosen before. For Type A ODE

with ∆Vmin = 100 cm/s case, the computational expense for low fixed εT = 2×10−7 is

413%, 2672% and 16086% for horizon time of 45, 60 and 90 days respectively. Using

a dynamical selection of εT , the same computational expense has decreased to 103%,

206% and 693% for horizon time of 45, 60 and 90 days respectively. Similarly for

Type B ODE with ∆Vmin = 100 cm/s case, the computational expense for low fixed

εT = 2 × 10−7 is 400%, 2061% and 14032% for horizon time of 45, 60 and 90 days

respectively that has reduced to 149%, 300% and 966% respectively, using a dynam-

ical selection of εT . Moreover, the change in computational expense across different

∆Vmin cases for a fixed horizon time is minute, except for cases with large ODE and

low ∆Vmin case as the magnitude of ODE becomes significant. A decent level of preci-

sion is obtained on 100 Monte Carlo runs, as most relative precision are within 1.52 -

2.72% range. The dynamical selection of the target tolerance, εT , contributes to bet-

ter realization of the measurement accuracies and sensitivity of the maneuver location.

The average time between two successive maneuvers is also a crucial component to

compare station-keeping outcomes. As expected, the average time between successive

maneuvers are less for Type B ODE in comparison with Type A ODE as the size of

orbit determination error for Type B is significantly larger than Type A, hence more

maneuvers are performed for Type B ODE. Consequently, the station-keeping costs

for Type B are higher in contrast to Type A. Moreover, with increase in ∆Vmin condi-

tion, time required by the spacecraft to deviate enough from the reference trajectory

to result in a maneuver magnitude of that size also increases, hence larger ∆Vmin
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Table 6.1. Station-keeping outcomes estimated by the Cauchy-
Green tensor approach for 2 year mission duration over 100 Monte
Carlo simulations with Type A orbit determination error and three-
dimensional/spatial maneuvers.

Th ∆Vmin [cm/s]

[days] 5 10 20 50 100

Station-keeping

costs [cm/s]

45 46.0 85.5 167.6 401.5 757.5

60 38.8 72.6 137.5 338.3 648.2

90 37.6 70.9 144.0 344.6 683.1

Precision [%]

(95% confidence

or 1.96 σ)

45 1.86 1.87 2.07 2.01 1.84

60 2.21 1.70 1.92 1.84 2.55

90 2.23 2.60 2.36 2.45 2.29

Computational

expense [%]

(wrt baseline)

45 82.61 90.43 91.87 94.77 103.74

60 155.05 174.69 191.77 205.04 205.94

90 573.08 639.09 671.35 702.81 693.29

Avg. time b/w

successive ∆V̄

[days]

45 81.2 83.6 86.2 90.1 95.1

60 93.9 99.0 104.1 105.1 110.0

90 97.0 99.1 99.7 103.3 106.6

case results in larger time span between successive maneuvers. Increasing horizon

time from 45 days to 60 days results in marginal increase in average time between

successive maneuvers but the change between 60 days to 90 days is neither uniform

nor very significant, for both Type A and Type B orbit determination errors. The in-

crease in computational expense across increasing ∆Vmin cases are also justified with

the increase in average time between successive maneuvers. For smaller ∆Vmin cases,

maneuvers are executed frequently. As the algorithm is setup, no maneuvers are

computed for 30 days beyond the execution of a corrective maneuver, thereby saving
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Table 6.2. Station-keeping outcomes estimated by the Cauchy-
Green tensor approach for 2 year mission duration over 100 Monte
Carlo simulations with Type B orbit determination error and three-
dimensional/spatial maneuvers.

Th ∆Vmin [cm/s]

[days] 5 10 20 50 100

Station-keeping

costs [cm/s]

45 106.4 118.9 206.1 462.3 874.0

60 105.6 115.3 182.3 424.0 837.5

90 87.9 103.9 188.6 449.0 865.8

Precision [%]

(95% confidence

or 1.96 σ)

45 2.25 2.50 2.56 2.72 2.51

60 1.52 2.05 2.47 1.88 2.33

90 2.02 2.54 2.46 2.41 2.41

Computational

expense [%]

(wrt baseline)

45 62.01 107.13 126.02 144.27 149.24

60 108.53 190.55 238.26 282.56 300.46

90 423.44 703.72 817.92 941.66 966.45

Avg. time b/w

successive ∆V̄

[days]

45 40.6 66.9 74.9 81.3 84.1

60 41.5 68.5 82.7 86.8 87.3

90 44.8 73.7 79.8 83.7 84.9

computational resources to compute intermediate maneuvers. For larger ∆Vmin cases,

more intermediate maneuvers are computed but not implemented till the ∆Vmin con-

dition is satisfied. To use average time elapsed between two consecutive maneuvers to

compare station-keeping performance with different ODE types is challenging, as it

depends on two factors, sensitivity of maneuver locations and the number of maneu-

ver, that have contradicting effects. For larger ODE, it is more likely that the space-

craft deviates from the reference trajectory rapidly on propagating the predefined

horizon time downstream, increasing computational efforts for numerical integration.
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On the contrary, frequent maneuvers requires less computational resources as a result

of reduction in intermediate maneuver computation over 30 days coast/recovery pe-

riod beyond an executed maneuver. The station-keeping costs and the computational

expense are implicitly related to the average time elapsed between successive maneu-

vers, making it a difficult component to analyze. Apart from the magnitude of the

maneuvers and the time span between their occurrence, the direction of the maneu-

vers also provide details about the behavior of the spacecraft under orbit inaccuracies.

The maneuvers computed using the Floquet mode approach and the target point

approach indicated that inclination of most station-keeping maneuvers are towards

the rotating x-axis. Such an alignment has serious benefits in mission control as

spacecraft orientation need not be altered to perform successive maneuvers, thus pre-

venting any scope of errors. The CGT algorithm is therefore modified to incorporate

x-control maneuvers for station-keeping.

6.4.3 x-direction Control Maneuvers using CGT Approach

The orbit chosen for the mission in the vicinity of the Sun-Earth/Moon L1 libra-

tion point has indicated maximum sensitivity towards the rotational x-axis control

maneuvers predominantly due to large perturbing gravitational bodies along the ro-

tating x-axis. Within the CR3BP model, as the energy of the spacecraft is increased,

the zero velocity curves (ZVCs) evolves, opening the gateway at the L1 libration point.

The least energy access from the vicinity of one primary body to another primary

body through the gateway at L1 is effective only through motion along the rotational

x-direction, thus complementing the x-direction sensitivity. The direction of maneu-

vers at each of the maneuver locations as computed in section 5.4.2, validates the

maneuver sensitivity towards x-direction. Fixed direction maneuvers are beneficial

for mission operations as it offers a simpler alternative, therefore best if exploited in

the direction of highest sensitivity. Besides, the direction of the larger thrusters in
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the previous spacecrafts to the orbits near the Sun-Earth L1 point are aligned fairly

close to the rotational x-axis, as per their mission requirements [30,74,75].

The Cauchy-Green tensor approach can be considered a versatile station-keeping

method only if multiple constraints can be added for station-keeping without signifi-

cant altercations to the algorithm. To compute a corrective x-control station-keeping

maneuver that can secure the spacecraft through the mission duration, the update

equation that maps error vector at final time to the initial time is modified. The

Cauchy-Green tensor approach computes the closest attainable state on to the target

state beyond a predefined horizon time, within the specified target tolerance. The

six-dimensional state error vector (x̄∗− c̄) is then mapped back to initial time to iden-

tify the necessary corrective maneuver that would drive the spacecraft with minimal

error. Recall, x̄∗ is the closest attainable state to the target state at some horizon

time downstream while c̄ is the state achieved by propagating the initial condition

for the same horizon time without any additional perturbation. The pure x-direction

maneuver is in fact, a subset of the total maneuvers that could be computed using

the CGT method. Equation (6.14) is modified to map error vector (x̄∗ − c̄) back to

the initial time, with a pure x-control maneuver, ∆V̄M = [∆Vx, 0, 0]T , as

(x̄∗ − c̄) = φ(tf , t0)

 0̄

∆V̄M

 =

φrr φrv

φvr φvv




0̄

∆Vx

0

0

 (6.17)

(x̄∗ − c̄) =



φ14

φ24

φ34

φ44

φ54

φ64


∆Vx = A∆Vx (6.18)
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where A = [φ14, φ24, φ34, φ44, φ54, φ64]T is the 4th column of the state transition matrix

φ(t0 + Th, t0). Applying least squares method given in equation (6.16) over equation

(6.18), the pure x-direction maneuver, ∆Vx, is calculated. The maneuver vector,

∆V̄M , is therefore ∆V̄M = [∆Vx, 0, 0]T .

Similar to performing a station-keeping simulation with a spatial maneuvers as

the update, the orbit maintenance algorithm is run in the same manner except with

x-control maneuvers as updates. Same two ODE cases Type A and Type B are

considered with horizon time of 45, 60 and 90 days. Target tolerance is computed

dynamically at each step. The station-keeping costs and computational expense for

propagating the spacecraft for 2 year mission duration are registered in Table 6.3 and

table 6.4 for Type A and Type B ODE respectively.

Station-keeping outcomes for spatial maneuvers as well as x-control maneuvers

are compared to analyze the performance of both the maneuver types. The net

station-keeping costs are larger for x-control maneuvers irrespective of the orbit de-

termination error levels. A least square method is used to compute the corrective

maneuver in the CGT method. Having lesser dimensions to map the deviation vector

in the x-control maneuver case, the computed maneuver is unable to correct to its

maximum potential, that otherwise is possible through a spatial maneuver. As a

result, the x-control maneuver implemented is not as adequate as a spatial maneu-

ver for orbit maintenance, therefore increased station-keeping costs are estimated for

x-control maneuver case. The relative precision measured is indicative of the disper-

sion of individual station-keeping costs predicted for each Monte Carlo simulation.

For the x-control maneuver case, the converged precision is of the order of 2.39 -

5.79 % while between 1.52 - 2.72% for spatial maneuvers, indicating that the costs

predicted for x-direction maneuvers are more scattered about the computed mean,

while individual spatial maneuvers computed are more closer to the mean value. The
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Table 6.3. Station-keeping outcomes estimated by the Cauchy-Green
tensor approach for 2 year mission duration over 100 Monte Carlo
simulations with Type A orbit determination error and x-control ma-
neuvers.

Th ∆Vmin [cm/s]

[days] 5 10 20 50 100

Station-keeping

costs [cm/s]

45 49.3 99.3 183.1 421.7 827.6

60 43.0 93.7 190.1 449.1 834.1

90 40.1 80.5 158.4 397.0 752.7

Precision [%]

(95% confidence

or 1.96 σ)

45 2.96 4.64 2.86 4.04 4.05

60 2.39 3.42 4.61 3.84 4.03

90 3.29 3.68 3.75 4.17 4.08

Computational

expense [%]

(wrt baseline)

45 75.34 77.57 82.79 94.28 97.66

60 156.78 161.71 165.02 165.38 180.19

90 482.53 526.60 532.95 539.64 574.96

Avg. time b/w

successive ∆V̄

[days]

45 78.8 82.1 83.6 92.9 93.3

60 89.3 91.1 95.3 96.4 101.3

90 97.7 102.2 103.2 105.4 106.8

computational time seems to have marginally decreased for x-axis maneuvers while

no mannerly trend is observed on the variation in the average time between successive

maneuvers, for both x-control and spatial maneuver types. The arbitrary change in

the average time between successive maneuver can be due to contradicting effects.

Since projection of deviation vector on to the available subspaces are the basis of

maneuver computation, it would take larger time for x-control maneuver magnitude

to reach ∆Vmin constrain than for a spatial maneuver where components along all

the three dimensions increase, consequently the average time between successive ma-
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Table 6.4. Station-keeping outcomes estimated by the Cauchy-Green
tensor approach for 2 year mission duration over 100 Monte Carlo
simulations with Type B orbit determination error and x-control ma-
neuvers.

Th ∆Vmin [cm/s]

[days] 5 10 20 50 100

Station-keeping

costs [cm/s]

45 117.9 156.9 236.1 552.7 1118.8

60 109.3 115.8 225.7 494.5 1004.9

90 70.6 108.8 192.0 469.0 955.2

Precision [%]

(95% confidence

or 1.96 σ)

45 5.79 4.63 4.10 4.32 5.42

60 5.24 3.27 3.58 2.93 3.80

90 3.22 2.52 2.39 3.85 3.58

Computational

expense [%]

(wrt baseline)

45 52.04 59.69 68.82 77.83 86.22

60 90.35 129.95 134.85 159.96 171.21

90 348.00 397.00 430.31 471.54 492.42

Avg. time b/w

successive ∆V̄

[days]

45 45.4 56.9 70.3 72.5 76.3

60 47.3 69.1 73.7 79.7 81.4

90 63.3 74.9 81.3 85.8 86.0

neuvers should be larger for x-control maneuver case. On the contrary, x-direction

maneuvers are not superior than spatial maneuvers in orbit maintenance due to errors

in least square computation when mapping to lesser dimensions, hence the spacecraft

would deviate rapidly away from the reference orbit, causing frequent maneuvers. For

any case, the average time between two consecutive maneuvers are a combination of

the two parameters discussed, that are contrary, hence a common trend is not avail-

able from the recorded data. Although, in general, for the orbit chosen for mission

design, x-control maneuver still acts as a superior choice for orbit maintenance. Al-
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most all the Monte Carlo simulations were successful, complementing the ability to

of x-control maneuvers to secure the spacecraft throughout the mission duration.

Sources from literature also complement the benefits and ability of x-control ma-

neuvers for station-keeping for libration point missions in the Sun-Earth/Moon L1

orbits. Rohrbaugh and Schiff [29] while their investigation on station-keeping for Mi-

crowave Anisotropy Probe mission reported that x-control maneuvers are as efficient

as unconstrained spatial maneuvers. Anderson et al. [76] indicated large sensitivities

along the line joining the primaries through their investigation using local Lyapunov

exponents, that is evident as overcoming deviations along the x-direction seems to be

an effective way of maintaining the orbit. As mentioned by Roberts [74] for SOHO

mission and Williams et al. [30] for Genesis spacecraft, the requirements for SOHO

and Genesis spacecrafts were to point towards the direction of the Sun throughout

their mission duration to satisfy their objectives of studying the Sun, requiring ma-

neuvers to be along the Sun-spacecraft line, that is almost ±0.25o from the rotating

x-axis. The study of x-control maneuvers for these missions have shown great poten-

tial.

The Cauchy-Green tensor approach is a flexible station-keeping technique that can

compute maneuvers with added constraint other than just spatial maneuvers. The

ability to perform maneuvers constrained in rotational x-direction is an illustration of

added constraint in maneuver computation. Overall, CGT approach identifies to be a

convenient method for station-keeping but the formulation of the CGT algorithm for

maneuver computation is sophisticated. The reliability of the sophisticated maneuver

computation is therefore reviewed with a more simpler differential correction process

for maneuver computation, to gain confidence in the maneuvers generated.
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6.4.4 Maneuvers using Differential Correction Process

A differential correction process using a linear state transition matrix is the most

straightforward way of computing any corrections in the Ephemeris or CR3BP sys-

tem. In general, the differential corrections are applied to under-determined system

or system with a unique solution, so that output of the differential correction method

can be used to update the initial condition to attain the final state. A corrective

maneuver can be calculated by targeting position states at a future time and get-

ting a perfect solution, however, station-keeping using a CGT approach targets both

position and velocity state at some horizon time downstream. To mimic the CGT

approach, a differential correction process is applied to target both position and ve-

locity states at the end of some predefined horizon time. Since the corrections are

possible only in the velocity states but the target conditions are combination of both

position and velocity states, the system is over-determined. A differential correction

can be performed using direct STM but with least squares technique. The update

will not perfectly drive to the desired target states as the solution obtained is only

a least square solution to an over-determined system, but drives close to the target

state with some error. The maneuvers computed using the STM in a very uncom-

plicated manner is compared with the maneuvers computed using CGT approach to

gain confidence in the CGT solution.

At every maneuver location, the maneuver is computed using the CGT method

as well as the differential correction method with a direct STM and compared. The

comparison process is extended to different combinations of ∆Vmin cases, horizon

time, ODE and direction of maneuvers. Figure 6.18 and Figure 6.19 are two of the

many cases, for comparing the maneuver size, computed using the CGT approach and

the differential correction process. Figure 6.18 demonstrates the comparison made

for Type B ODE with horizon time of 45 days and ∆Vmin of 10 cm/s while Figure

6.19 describes the resemblance for Type B ODE with horizon time of 90 days and
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∆Vmin of 100 cm/s. The maneuvers computed, not necessarily implemented, at each

maneuver location depends only on the deviation from the reference orbit at current

time and the target states at some predefined horizon time downstream. The value

is independent of the orbit determination error. In both Figure 6.18 and Figure 6.19,

Subfigure ‘a’ indicates the maneuvers computed using CGT approach at each ma-

neuver location for the mission duration of 2 years, over 10 Monte Carlo iterations,

while Subfigure ‘b’ describes the maneuver magnitude computed using a differential

correction process with a direct linear STM, at the same maneuver location. The

dotted lines marked in Subfigure ‘a’ and ‘b’ indicates the ∆Vmin value chosen for the

specific case. Subfigure ‘c’ presents the difference between the maneuver magnitudes

computed using CGT approach vs direct STM, at a fixed maneuver location with the

same target condition. Subfigure ‘d’ is a histogram depicting the distribution of the

points presented in Subfigure ‘c’ with very small bin size. Subfigures ‘a’, ‘b’ and ‘c’

are plotted 10 Monte Carlo simulations while Subfigure ‘d’ is estimated for 100 Monte

Carlo simulations. Based on the plots, it is apparent that the maneuver magnitudes

computed using CGT approach and the differential correction process with a direct

STM are comparable. Subfigure ‘d’ in both Figure 6.18 and Figure 6.19 provide

histogram which resembles a Gaussian distribution centered about zero. More than

99.5% of the points recorded in the histogram are within 10% of the ∆Vmin values

that is almost equivalent to 3σ limits. Alternatively, the 1σ limit corresponds to

about 3.33% of the chosen ∆Vmin value, indicating the closeness in values computed

using the sophisticated CGT approach and the direct differential correction process.

In general, the Subfigure ‘a’ and ‘b’ of Figure 6.19 appears to have a more orderly

behavior in terms of maneuver computation spaced equally at tracking interval of 2

days as opposed to Figure 6.18 that appears to be scattered. The primary reason for

this is the size of the orbit determination error levels in comparison to the actual size

of the maneuver. Figure 6.19 corresponds to case with ∆Vmin of 100 cm/s contrary to

Figure 6.18 with ∆Vmin of 10 cm/s. As a result the effect of the orbit determination
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Figure 6.18. Comparison of maneuver magnitudes computed using
CGT approach and differential correction process using direct STM,
for Type B ODE with horizon time 45 days and ∆Vmin of 10 cm/s,
computed for 10 Monte Carlo simulations.
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Figure 6.19. Comparison of maneuver magnitudes computed using
CGT approach and differential correction process using direct STM,
for Type B ODE with horizon time 90 days and ∆Vmin of 100 cm/s,
computed for 10 Monte Carlo simulations.
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errors in more apparent for lower values of ∆Vmin. With increase in ∆Vmin values,

the effect of ODE in velocity estimation diminishes.

The Cauchy-Green tensor approach appears to be a versatile method like the Flo-

quet mode and the target point approach for station-keeping in libration point orbits

in the Sun-Earth/Moon system, with the capability to tune the direction of the ma-

neuvers without significant modifications like the previous methods. The ability to

adjust parameters with the measurement inaccuracies is advantageous. The applica-

tion of the CGT method for station-keeping in the Sun-Earth/Moon libration point

orbits, as studied for the Aditya-1 mission, indicate great potential for more such

missions applications.
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7. OBSERVATIONS AND RESULTS

There are many orbit maintenance strategies for Sun-Earth/Moon libration point

orbits and have been used successfully in the past. This research mainly investi-

gates the target point, the Floquet mode and the Cauchy-Green tensor approach for

station-keeping. Few outcomes like the net station-keeping costs and the maneuver

locations are worth examining. The aim of this research is not to find advantages

or disadvantages of any method but to extend the capabilities of its functioning, by

probing the effects of different parameters that potentially influences the overall costs

or the computational expenditure or both.

7.1 Station-keeping Costs

The most common parameter for comparison between different station-keeping

strategies is the cost. The comparison made on the costs are just to analyze dif-

ferent strategies for orbit maintenance and not to decide if one strategy is superior

than the other. To be consistent in the comparison, x-control maneuvers are selected

for the target point, the Floquet mode and the Cauchy-Green tensor approach for

station-keeping. The algorithms and the steps involved in maneuver computation

are essentially different across different strategies adopted, hence it is not sensible

to make a direct comparison on their supremacy and control on overall costs. The

spatial maneuvers computed using the Floquet mode approach are solutions to an

under-determined system, hence infinitely many solutions exists. A possible spatial

maneuver is just one out of infinite solutions available, generally identified using a

minimum norm solution. Any two additional constraints can be added to convert the

under-determined system to a system with unique solution. Restricting any maneu-

ver component along the y and z-direction is equivalent to adding two constraints.
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The unique solution of this system is the x-control maneuver, generated using the

Floquet mode approach. The maneuver generation using the target point approach

depends on the magnitude of weights along different directions. As discussed, a low

weight allows unrestricted maneuver component along that particular direction and

vice versa. Since the range of weighting matrices that were selected at majority of th

maneuver locations indicated dominance along the x-axis, any maneuver along the y

and z-directions were restricted on purpose. The x-control maneuver computed is the

unique solution to the governing equation. The Cauchy-Green tensor approach uses

a totally different approach. The method tries to compute a maneuver that targets

an attainable position and velocity states nearest to the desired state. Unlike the pre-

vious method, the governing equation in a CGT method is always over-constrained,

no solutions exists, therefore a least squares method is adopted to calculate a ma-

neuver that minimizes the error. A detailed summary of the station-keeping costs for

the three approaches are provided in Table 7.1 for both Type A and Type B orbit

determination errors. The target point approach and the Floquet mode approach

targets one time period downstream while the CGT approach uses different horizon

times indicated as < Th > in the table. The station-keeping costs within the CGT

method decreases with increase in horizon time, which is expected as more time is

available to make the correction. Although the CGT approach yields a marginally

larger station-keeping costs, the CGT approach offers a great initial set of values

that can be further tuned using other strategies. Overall the maneuver magnitudes

between different strategies are almost of the same order of magnitude.

7.2 Maneuver Locations

The distribution of the maneuver locations complements the sensitivity along the

halo orbit chosen for the mission. In a CR3BP model, the chosen periodic orbit has

a stability index of 866.98, that is highly unstable. Perturbations along such an un-

stable orbit tends to diverge rapidly. Additionally, the local stretching characteristics
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Table 7.1. Station-keeping cost in cm/s estimated by the target point,
the Floquet mode and the Cauchy-Green tensor approach for 2 year
mission duration over 100 Monte Carlo simulations with x-control
maneuvers.

TPA FMA
CGT

< 45 > < 60 > < 90 >

Orbit injection & Type A

tracking error (1σ) [1.5, 2.5, 15] km & [1, 1, 3] mm/s

Maneuver execution
2.5% of planned maneuver magnitude in each direction

error (1σ)

∆Vmin

[cm/s]

5 37.1 37.2 49.3 43.0 40.1

10 73.0 74.1 99.3 93.7 80.5

20 142.9 146.2 183.1 190.1 158.4

50 343.6 355.5 421.7 449.1 397.0

100 663.7 685.5 827.6 834.1 752.7

Remarks
q1 =

1017.4
- Horizon time < Th > in days

Orbit injection & Type B

tracking error (1σ) [3, 30, 30] km & [15, 15, 30] mm/s

Maneuver execution
5% of planned maneuver magnitude in each direction

error (1σ)

∆Vmin

[cm/s]

5 64.4 65.4 117.9 109.3 70.6

10 102.2 102.8 156.9 115.8 108.8

20 186.3 188.8 236.1 225.7 192.0

50 436.2 454.5 552.7 494.5 469.0

100 849.0 893.5 1118.8 1004.9 955.2

Remarks
q1 =

1017.7
- Horizon time < Th > in days
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along the halo orbit as portrayed in Figure 6.16 shows a smooth transition and indi-

cates no selective region of higher sensitivity. Although region on the halo orbit that

is closer to the Earth has marginally more tendency to diverge, it is not significantly

larger than the other regions. The almost similar stretching characteristics is primar-

ily because of the location of the chosen halo orbit. The chosen orbit is significantly

far from any gravitational body hence all regions experience the gravitational field of

almost the same order of magnitude. At any point along the orbit, as horizon time

increases, the gradient seems to increase almost linearly in the logarithmic scale, that

is reflective of exponential divergence that causes the deviation to increase rapidly.

Consequently, an early maneuver is regarded. No region seems to provide any signifi-

cant benefits than the other, hence a maneuver is likely in all regions along halo orbit.

To study the specifics of the distribution of the maneuver locations along the

halo orbit, the maneuver location is defined with respect to the Lagrange point L1

in terms of the in-plane angle, ψ as shown in Figure 7.1. The in-plane angle, ψ, is

defined in sync with the conventional coordinate system with angles increasing in

the anticlockwise direction. A histogram is plotted that indicates the distribution of

maneuver locations along the halo orbit, in terms of angle ψ, over two-year mission

duration. The exercise is performed for the target point, the Floquet mode and the

Cauchy-green tensor approach and plotted in Figure 7.2 and Figure 7.3 for Type A

and Type B orbit determination errors respectively. Since x-control maneuvers are

more preferable for the chosen mission scenarios, the histograms are plotted for x-

control maneuvers. Different practically feasible ∆Vmin of 5, 10, 20, 50 and 100 cm/s

cases are considered within each control strategy.

Maneuver data obtained for the three different station-keeping strategies are con-

sistent with the argument that for such an unstable orbit as chosen, maneuvers are

likely at all locations. More specifically, the distribution is however not uniform

throughout the orbit. For both, low and high orbit determination errors as in Type
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Figure 7.1. In-plane angle at the maneuver location measured with
respect to positive x-axis centered about L1.

A and type B respectively, more maneuvers happen close to the region where the

angle subtended is ±80o. The region is close to the extreme y coordinates that occurs

at ±81.35o. The reason for this selective dominance is primarily due to the space-

craft velocity characteristics in this region. Figure 7.4 provides the relation between

velocity magnitude and the in-plane angle ψ subtended at different locations along

the halo orbit. Clearly, close to the extreme y positions, there is a considerable drop

in the velocity magnitude thus allowing a larger time for the spacecraft to coast in

the region, thus providing sufficient time for orbit estimation. As soon as the diver-

gence is detected a maneuver is applied. As y position is close to zero near the line

joining the primaries, the magnitude of velocity is high, therefore very less time is

spent hovering near this region, resulting in lesser time for orbit estimation and lower

number of maneuvers in this region. The plot on the relation between in-plane angle

and the time along the orbit represented in Figure 7.5 also justifies the distribution

of the maneuver locations. Recall, the time along the orbit is defined as in Figure

6.15. Close to the extreme y positions the rate of change in angle vs time is gradual,

therefore more orbit estimation happens at angles close to extreme y positions. A
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Figure 7.2. Distribution of maneuver locations with respect to the
Lagrange points L1 computed for Type A ODE. Measurements are
taken in terms of the in-plane angle ψ.
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Cauchy-Green Tensor Approach (Horizon time 90 days)
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Figure 7.3. Distribution of maneuver locations with respect to the
Lagrange points L1 computed for Type B ODE. Measurements are
taken in terms of the in-plane angle ψ.
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maneuver is executed immediately as divergence is detected. At y values close to the

line joining the primaries, the rate of change in angle is abrupt, reducing the number

orbit estimation data, lowering the chance of detecting a maneuver.

Figure 7.4. Variation in velocity magnitude along the chosen halo
orbit. Location along the orbit is represented in terms of angle ψ.

𝑦 = 0, towards Sun 

𝑦 = 0, away from Sun 

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

Figure 7.5. Variation of inplane angle, ψ, as a function of time.
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7.3 Survey of Libration Point Orbit Station-keeping Studies

For confidence and completeness of the work, it is crucial to examine the station-

keeping outcomes for similar missions in the past. The orbit maintenance costs serves

as the common baseline for the survey. The challenges in comparing the data is that

different missions have different reference orbit, different equipment for orbit deter-

mination and different thruster types and capacity. Despite such inconsistencies, it

is assumed that the values for similar mission types must results in the same order of

magnitude, if not precise. Further the station-keeping costs are assumed to be linear

function of time and therefore scaled to 2-year mission duration.

The station-keeping cost is generated by performing Monte Carlo trials and com-

puting the mean. The standard deviation of the distribution is attributed to the

confidence in the computed mean. The costs mentioned in few literature sources

without any details about their distribution or the sample size, are assumed to cor-

respond to the computed mean rather than a particular outcome of one Monte Carlo

trial. Further comparison on confidence interval cannot be performed due to insuffi-

ciency in the statistical data.

Despite certain inaccuracies, the most appropriate way of exploring orbit mainte-

nance outcomes for the previous Sun-Earth/Moon L1 libration point orbits is using

the station-keeping cost comparison. The station-keeping survey is detailed in Table

7.2. The table corresponds to previous station-keeping (SK) results available from

different literature sources, that have been cited. All the costs are scaled to 2-year

mission duration. Different values of orbit determination and tracking errors that

have been used for different missions are documented. Few mission use additional

Solar Reflectivity (SR) uncertainty while other have not considered such errors. Ad-

ditional parameters important to analyze the data are provided in the ’Remarks’

column, provided that those details are mentioned in the literature source. Not all
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range of costs are comparable as they are solutions to different ∆Vmin conditions.

Table 7.2.: Survey of station-keeping costs for the Sun-Earth/Moon L1

halo orbits.

Source

Tracking errors Maneuver
2-year SK

Remarks(1σ) execution
cost [m/s]

[km] [mm/s] error (1σ)

Howell &

Pernicka

[24,25]

2.5%

0.33 - 4.02
∆Vmin : 0.05 - 0.5 m/s

[1.5, 2.5, 15] ∆tmin = 30 days

[1, 1, 3]
0.77 - 3.61

∆Vmin : 0.05 - 0.5 m/s

∆tmin = 60 days

Howell &

Gordon

[40,41]

10%

0.76 - 0.87
SR uncertainty = 13%

[1.46, 2.64, 4.81] ∆tmin = 60 days

[1.40, 1.85, 2.49]
0.92 - 1.23

SR uncertainty = 13%

∆tmin = 80 days

Gomez

et.al [44]

[1.5, 2.5, 15]
2.5% 0.4

20 cm/s/year

[1, 1, 3] SR uncertainty = 2.5%

Gomez

et.al [26]

[3, 30, 30]
10% 13.3

∆Vmin = 1.5 m/s

[15, 15, 30]
∆tmin = 60 days

Tracking int. : 3 days

Simo et

al. [47]

[1.7, 2.2, 5.5]
2.5% 0.35 - 0.4

0.7 - 0.8 m/s for 4 years

[1.4, 1.4, 2.4] SR uncertainty = 5%

Howell &

Keeter

[42,43]

[3, 30, 30]
2.5% 0.34 - 18.8

[15, 15, 30]
∆tmin : 30 - 90 days

ISEE-3
15 Actual mission data

[21,77]
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Table 7.2.: continued

WIND
2.0 Actual mission data

[2, 53]

ACE
2.0 Actual mission data

[2, 53]

SOHO
4.8 Actual mission data

[53,74]

This

work

(x-axis

control)

[1.5, 2.5, 15]
2.5% 0.37 - 8.27

∆Vmin : 0.05 - 1.0 m/s

[1, 1, 3]
∆tmin = 30 days

Tracking int. : 2 days

[3, 30, 30]
5% 0.64 - 11.18

∆Vmin : 0.05 - 1.0 m/s

[15, 15, 30]
∆tmin = 30 days

Tracking int. : 2 days

There seems to a broad variance in the station-keeping costs estimated for a

spacecraft in the Sun-Earth/Moon L1 halo type orbits. The wide range costs is

attributed to the difference in the orbit determination error levels used for simulating

the mission scenarios and the dissimilarity in the algorithm chosen to perform the

orbit maintenance. Nevertheless, the station-keeping costs computed in this work

for x-control maneuvers using the target point, the Floquet mode and the Cauchy-

Green tensor approach are in the same order of magnitude. For the type A ODE, the

station-keeping costs estimated in this work is almost equal to the values predicted

in by Howell and Pernicka [24,25] that uses the same ODE level. Similarly, for Type

B ODE, the station-keeping costs estimated in this work fall in the range of values

obtained by other researchers that used the similar uncertainty levels. The work

presents a range of station-keeping costs considering a wide range of ∆Vmin and ODE
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values. The actual costs for a mission depends on the capacity of the engine and

the measurement accuracy of the equipment in use. It is expected that the values

estimated for the real mission will be in the range of costs computed in this work.

Further, no claim has been made on the optimality of the solutions.
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8. SUMMARY AND RECOMMENDATIONS

8.1 Summary

The goal of this work is to explore different station-keeping strategies such as the

target point, the Floquet mode and the Cauchy-Green tensor approach. Effort has

been put to make parameter selections information based rather than human choice

based selection. The intent is not to find advantages or disadvantages of one method

over the other rather to explore and enhance the parameter selection within each

strategy. The issues are administered in an progressive manner.

The first chapter summarizes the different questions that this research work fo-

cuses. The background studies and the development of the circular restricted three

body problem are addressed. A detailed description of previous missions to the Sun-

Earth/Moon L1 libration point orbits and various orbit maintenance strategies are

provided.

In the second chapter, the different system models that are used throughout this

work are discussed. The equations of motion in the circular restricted three body

problem are derived and equilibrium solutions are calculated. To study the behav-

ior of a spacecraft in the vicinity of an equilibrium solution, linearized solutions are

formulated. The solutions in a circular restricted model is an approximation of the

behavior of the spacecraft under the influence of two main primary bodies, however

there will be perturbations due to elliptic orbit and presence of other gravitational

bodies and forces. In order to simulate a real life scenario, the behavior of the space-

craft must be analyzed in the presence of multiple forces that significantly affects the

motion of the spacecraft hence, the higher fidelity ephemeris model is described with
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a new set of equations of motion. It is desirable to analyze the the motion of the

spacecraft in the inertial coordinate frame as well as the rotational frame fixed with

the primaries, therefore a coordinate transformation matrix is developed.

Chapter three is an outline of the tools used in the circular restricted three body

model as well as the ephemeris model to target certain boundary conditions. A state

transition matrix is developed that maps the evolution of some initial perturbation

to a final time in the linear sense, derived upon an arbitrary reference solution. An

explanation of the differential correction process that predicts linear modification to

attain some final condition is illustrated. To solve boundary value problems in a

more complex regime, a robust multiple shooting technique, that is a cumulative sin-

gle shooting differential correction problem, is elaborated.

The outline of an orbit maintenance operation is detailed in chapter four. The

selection of a nominal orbit in the CR3BP and transformation into the ephemeris

model is discussed. The station-keeping problem is stochastic in nature due to in-

accuracies in measurements. For simulation, the inaccuracies are purposefully incor-

porated to mimic a real mission scenario. The overall orbit maintenance algorithm

is discussed, and parameters like minimum executable maneuver ∆Vmin, minimum

time between maneuvers ∆tmin, drift from the reference orbit d, that influence the

station-keeping performance are introduced. Background on Monte Carlo process to

evaluate a stochastic problem like station-keeping is provided.

In chapter five, functioning of the target point and the Floquet mode approach

are elaborated. The qualitative information available from the Floquet mode ap-

proach are leveraged to identify the right range of values of the weighting matrices

in the target point approach that can mimic the Floquet mode results as well as

decrease the station-keeping costs. The range of weights substantiates the dominance

of maneuvers along the rotational x-axis at majority of the locations, indicative of
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pure x-control maneuver that would be sufficient for orbit maintenance. The drifting

pattern is observed for a range of weights to determine if the spacecraft will deviate

uncontrollably by the end of the mission duration.

An application of the recently developed method for station-keeping using the

Cauchy-Green tensor approach in the Sun-Earth/Moon system is analyzed in chapter

six. The approach is tested in the Sun-Earth/Moon system for the first time and

shows promising results. The effects of target tolerance, size of executable maneuver

and horizon time on station-keeping costs and computational expense are analyzed.

Smaller target tolerance increased the computational expense while station-keeping

costs remained almost the same for the range of target tolerance selected for the

analysis. The flow in the vicinity of a reference trajectory and the size of the or-

bit determination error is used to define a dynamic value of target tolerance that is

selected based on dynamical information available rather than heuristics. The feasi-

bility of x-direction control maneuvers for the selected orbit is investigated using the

CGT approach. Similar to the spatial maneuvers, the x-direction control maneuvers

were successful in maintaining the spacecraft near the reference orbit for the mission

duration except for a marginal increase in annual orbit maintenance costs. Finally,

the maneuvers computed using sophisticated approach like CGT is seen to be of the

same order as that predicted with the simple differential correction tool, thus pre-

senting confidence in the CGT results.

The common basis for comparing multiple orbit maintenance strategies is the

station-keeping costs, therefore the values obtained using the target point, the Flo-

quet mode and the Cauchy-Green tensor approach are compared for the purpose of

understanding the functioning of different approaches rather to identify if any method

is superior to another. The details are presented in chapter seven. It was identified

that more maneuvers are likely at extreme y positions due to the smaller velocities f

the spacecraft in those regions allowing larger duration for orbit estimation. Lastly,
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a summary of station-keeping costs from different literature sources are documented

to compare the order of magnitude of the values obtained in this research and gain

confidence. The station-keeping costs for some of the previous missions are in the

range of costs computed in this work.

8.2 Recommendations for Future Work

The application of the target point, the Floquet mode and the Cauchy-Green ten-

sor approach for station-keeping in the Sun-Earth/Moon system looks promising. The

analysis was done in the higher fidelity model with gravitational forces of the Sun,

the Earth and the Moon only. For more specific case, additional gravitational forces

can be incorporated. For a mission that uses solar sail, solar radiation pressure and

its effects on the motion of the spacecraft can be incorporated for the station-keeping

problem. Similarly, application of continuous controller and/or low thrust propulsion

system are potential options for future work. Specific to the Cauchy-Green tensor

approach, that was tested in the Sun-Earth/Moon system for the first time, orbit

maintenance simulations were initially performed for spatial maneuvers. Addition of

two more constraints i.e. restriction of y and z direction components, resulted in

x-control maneuvers. Modification of constraints types to generate different kinds of

maneuver than just x-control maneuver is worth investigating, specific example for

that is maneuvers along the Sun-spacecraft line, that may be beneficial for certain

missions. The nominal orbit chosen for the mission was an unstable southern halo

orbit in the Sun-Earth/Moon L1 region. Other orbits such as Lissajous, Lyapunov,

quasi-periodic orbits etc. are worth inspecting. Moreover, orbits in the vicinity of L2

region and orbits around the primary bodies are also candidates for future missions

hence station-keeping analysis might be valuable.

The continued interests in libration point missions will keep orbit maintenance a

popular topic of research. The three approaches for station-keeping have their own
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advantages, simplicity and robustness of the target point approach, the qualitative

information provided by the Floquet mode approach and the knowledge about the

local stretching given by the Cauchy-Green tensor approach. The success of future li-

bration point missions relies on the enhancement of these station-keeping approaches.
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