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Abstract. In the Bayes paradigm, given a loss function and an n-
sample, we present the construction of a new type of posterior distribu-
tion, that extends the classical Bayes one. The loss functions we have
in mind are either those derived from the total variation and Hellinger
distances or some Lj-ones for j > 1. We prove that, with a probabil-
ity close to one, this new posterior distribution concentrates its mass in
a neighbourhood (for the chosen loss function) of the law of the data,
provided that this law belongs to the support of the prior or, at least,
lies close enough to it. We therefore establish that the new posterior
distribution enjoys some robustness properties with respect to a pos-
sible misspecification of the prior, or more precisely, its support. We
also show that the posterior distribution is stable with respect to the
equidistribution assumption we started from. Besides, when the model
is regular and well-specified and one uses the squared Hellinger loss, we
show that our credible regions possess, at least for n sufficiently large,
the same ellipsoidal shapes and approximately the same sizes as those
we would derive from the classical Bayesian posterior distribution by
using the Bernstein–von Mises theorem. Then we use our Bayesian-
like approach to solve the following problems. We first consider the
estimation of a location parameter or both the location and scale pa-
rameters of a density in a nonparametric framework. Then we tackle
the problem of estimating a density, with the squared Hellinger loss, in
a high-dimensional parametric model under some sparsity conditions on
the parameter. Importantly, the results established in this paper are
nonasymptotic and provide, as much as possible, bounds with explicit
constants.

1. Introduction

Observe n i.i.d. random variables X1, . . . , Xn with values in a measurable
space (E, E) and assume that their common distribution P ? belongs to a
family M of candidate probabilities, or at least lies close enough to it in a
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suitable sense. We consider the problem of estimating P ? from the observa-
tion of X = (X1, . . . , Xn) and we evaluate the performance of an estimator
with values in M by means of a given loss function ` : P×M → R+, where
P denotes a set of probabilities containing P ?.

Our approach to solve this estimation problem has a Bayesian flavour.
We endow M with a σ-algebra A and a probability measure π that plays
the same role as the prior in the classical Bayes paradigm. Our aim is to
design a posterior distribution π̂X , solely based on X and the choice of `,
that concentrates its mass, with a probability close to one, on an `-ball,
namely a set of the form

(1) B(P ?, r) = {P ∈M , `(P ?, P ) 6 r} with r > 0.

This means that with a probability close to 1, a point “P which is randomly
drawn according to our (random) distribution π̂X is likely to estimate P ?
with an accuracy (with respect to the chosen loss `) not larger than r. Our
objective is to design π̂X in such a way that this concentration property
holds for small values of r and under mild assumptions on P ? and M .

In the literature, many authors have studied the concentration properties
of the classical Bayes posterior distribution on Hellinger balls. We refer to
the pioneering papers by van der Vaart and his co-authors — see for example
Ghosal, Ghosh and van der Vaart (2000). They show that the concentration
property around P ? holds, as n tends to infinity, provided that the prior π
puts enough mass on sets of the form K(P ?, ε) = {P ∈M , K(P ?, P ) < ε}
where ε is a positive number and K(P ?, P ) the Kullback–Leibler divergence
between P ? and P . This assumption may, however, be quite restrictive
even in the favorable situation where P ? belongs to the model M . Such
sets may indeed be empty, and the condition therefore unsatisfied, when
the probabilities in M are not equivalent. This is for example the case
when M is the set of all uniform distributions Pθ on [θ− 1/2, θ+ 1/2], with
θ ∈ R, although the problem of estimating P ? ∈M in this setting is quite
easy, even in the Bayesian paradigm. The assumption appears even more
restrictive when the probability P ? does not belong to M , that is when
the model is misspecified. For example, if the distributions in M are all
equivalent and R is singular with respect to P ∈ M , K(P ?, ε) is empty
for P ? = (1 − 10−10)P + 10−10R although P ? and P ∈M are statistically
indistinguishable from any n-sample of realistic size.

Unfortunately, it is in general impossible to get rid of the restrictive con-
ditions we have mentioned above. It is well known that the Bayes poste-
rior distribution can be unstable in case of a misspecification of the model.
Examples that illustrate this weakness have been given in Jiang and Tan-
ner (2008) and Baraud and Birgé (2020) for instance. This instability is due
to the fact that the Bayes posterior distribution is based on the log-likelihood
function and similar issues are known for the maximum likelihood estimator.
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In order to obtain the concentration and stability properties we look for,
we replace the log-likelihood function by a more stable one. Substituting
another function to the log-likelihood one is not new in the literature and
leads to what is called quasi-posterior distributions. The resulting estima-
tors, called quasi-Bayesian estimators or Laplace type estimators, have been
studied by various statisticians among which Chernozhukov and Hong (2003)
and Bissiri et al. (2016) (we also refer to the references therein). These pa-
pers, however, do not address the problem of misspecification. In contrast, it
is addressed in Jiang and Tanner (2008) for performing variable selection in
the logistic model. The authors show that the classical Bayesian approach is
no longer reliable when the model is slightly misspecified while their Gibbs
posterior distribution performs well and offers thus a much safer alternative.
The problem of estimating a high-dimensional parameter θ ∈ Rd under a
sparsity condition was considered in Atchadé (2017). His quasi-posterior
distribution is obtained by replacing the joint density of the data by a more
suitable one and by using some specific prior that forces sparsity. He proves
that the so-defined posterior distribution contracts around the true parame-
ter θ? at rate

√
(s? log d)/n (where s? is the number of nonzero coordinates

of θ?) when both d and n tend to infinity. A common feature of the papers
we have cited above lies in their asymptotic nature. This is not the case for
Bhattacharya, Pati and Yang (2019) who replaced the likelihood function in
the expression of the posterior distribution by the fractional likelihood, that
is a suitable power of the likelihood function. The authors also consider the
situation where the model is possibly misspecified but their result involves
the α-divergence which, as the Kullback one, can be infinite even when the
true distribution of the data is close to the model for the total variation
distance or the Hellinger one.

Baraud and Birgé (2020) propose a surrogate to the Bayes posterior dis-
tribution that is called the ρ-posterior distribution in reference to the theory
of ρ-estimation that was developed in Baraud et al. (2017) and Baraud and
Birgé (2018). In the frequentist paradigm, this theory aimed at solving the
various problems connected to the instability of the maximum likelihood
method. The ρ-posterior distribution preserves some of the nice features of
the classical Bayes one but also possesses the robustness property we are
interested in. The authors show that their posterior distribution concen-
trates on a Hellinger ball around P ? as soon as the prior puts enough mass
around a point which is close enough to P ?. However their approach applies
to specific dominated models M = {P = p · µ, p ∈ M} only. They assume
that the familyM of densities that defines their model possesses some spe-
cial combinatorial structure which is either met when M is finite or when
it satisfies some VC-type condition (see their Section 5). As a consequence,
the concentration radius they obtain not only depends on the choice of the
prior but also on a complexity term that is linked to this structure. Unlike
theirs, our approach makes no such assumptions onM and we are therefore
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able to get rid of this unpleasant complexity term while retaining a similar
dependency with respect to the choice of the prior. Baraud and Birgé’s pos-
terior distribution has also the drawback to involve the supremum over the
familyM of an empirical process. Their posterior distribution is therefore
difficult to calculate in practice, unless M is finite with a reasonable size.
From a more theoretical point of view, it also raises some unpleasant issues
with regard to the measurability of this supremum in the situation where
the familyM is uncountable, which is the typical case. Finally, Baraud and
Birgé’s approach restricts to the squared Hellinger loss while ours applies to
many others.

Closer to our approach are the aggregation methods and PAC-Bayesian
techniques that have been popularized by Olivier Catoni in statistical learn-
ing (see Catoni (2004)). This approach has mainly been applied for the
purpose of empirical risk minimization and statistical learning (see for ex-
ample Alquier (2008)). Our aim is to extend these techniques toward a
versatile tool that can solve our Bayes-like estimation problem for various
loss functions simultaneously.

The problem of designing a good estimator of P ? for a given loss func-
tion ` was tackled in the frequentist paradigm in Baraud (2021). There, the
author provides a general framework that enables one to deal with various
loss functions of interest, among which the total variation, 1-Wasserstein,
Hellinger, and Lj-losses among others. His approach relies on the construc-
tion of a suitable family of robust tests and lies in the line of the former work
of Le Cam (1973), Birgé (1983) and Birgé (2006). The aim of the present
paper is to transpose this theory from the frequentist to the Bayesian para-
digm. If ` is the Kullback–Leibler divergence, our construction recovers the
classical Bayes posterior distribution even though this is not the choice we
would recommend for the reasons we have explained before.

Quite surprisingly, the concentration properties that we establish here re-
quire almost no assumption on M and the distribution of the data (apart
from independence). They mostly depend on the choices of the prior π
and the loss function `. For a suitable element P which belongs to the
model M and lies close enough to P ?, these concentration properties de-
pend on the minimal value of the radius r over which the log-ratio V (P, r) =
log [π(B(P, 2r))/π(B(P, r))] (with B defined in (1)) increases at most lin-
early with r. This log-ratio was introduced in Birgé (2015a) for the pur-
pose of analyzing the behaviour of the classical Bayes posterior distribution.
In our Bayes-like paradigm, we show that the behaviour of the quantities
V (P, r) for P ∈ M and r > 0 completely encapsulates the complexity of
the model M . We prove that our posterior distribution π̂X concentrates
on an `-ball centered at P ? and the radius r = r(n) of which is usually of
minimax order as n tends to infinity when the model is well-specified. From



FROM ROBUST TESTS TO BAYES-LIKE POSTERIOR DISTRIBUTIONS 5

a nonasymptotic point of view, we show that π̂X retains its nice concen-
tration properties as long as P ? remains close enough to an element P in
M around which the prior puts enough mass, that is, even in the situation
where the model is slightly misspecified. Actually, we establish the stronger
result that even when the data are only independent but not i.i.d., the above
conclusion remains true for the average P ? of their marginal distributions
in place of P ?. We therefore show that the posterior distribution π̂X enjoys
some robustness properties with respect to the equidistribution assumption
we started from. The main theorems involve as much as possible explicit
numerical constants. We illustrate our results with examples which are de-
liberately chosen to be as general and simple as possible. Our aim is to give
a flavour of the results that can be established with our Bayes-like posterior,
avoiding as much as possible the technicalities that would result from the
choice of ad-hoc priors introduced to solve specific problems. Instead, we
wish to discuss the optimality and robustness properties of our construction
for solving general parametric and nonparametric estimation problems in
the density framework under assumptions that we wish to be as weak as
possible. These posterior distributions will therefore provide a benchmark
for comparison with other methods. Their practical implementation will be
the subject of future work.

Of special interest is the choice of ` given by the total variation distance
or the Hellinger one. As we shall see, for such losses the stability of our
posterior distribution automatically leads to estimators “P ∼ π̂X that are
naturally robust to the presence of outliers or contaminating data among
the sample. These results contrast sharply with the instability of the clas-
sical Bayes posterior distribution we underlined earlier. Nevertheless, our
posterior distribution also shares some similarities with the classical Bayes
one. When the model is well-specified and one uses the squared Hellinger
loss, we show that the credible regions of our posterior distribution asymp-
totically possess the same ellipsoidal shapes and approximately the same
sizes as the ones we derive from the classical Bayes posterior by means of
the Bernstein–von Mises theorem. Establishing an analogue of this theorem
for our Bayes-like posterior distribution is, however, beyond the scope of the
present paper.

Our paper is organized as follows. We present our statistical setting in
Section 2. We consider there independent but not necessarily i.i.d. data in
order to analyse later on the behaviour of our posterior distribution with
respect to a possible departure from equidistribution. The construction of
the posterior distribution is described in Section 3. In this section, we also
show how more classical constructions based on the likelihood or the frac-
tional likelihoods are particular cases of ours. We complete this section with
some heuristics which, we hope, help understanding the main ideas of our
approach. In particular, we bridge there the problem of designing robust
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posterior distributions to that of testing between two disjoint `-balls. Sec-
tion 4 is devoted to the main theorems. We describe there the concentration
properties of our posterior distribution. The applications of these results to
classical loss functions are presented in Section 5. We put a special emphasis
on the cases of the total variation distance and the squared Hellinger loss.
In the remaining part of the paper, we only focus on these two losses. In
Section 6 we highlight some similarities and differences between the classi-
cal Bayes posterior and ours for the squared Hellinger loss. In Section 7 we
explain how our posterior distribution can be used to solve the problem of
estimating a density, or a parameter associated with it, in several statistical
frameworks of interest. We discuss there how the concentration properties of
our posterior distribution deteriorate in the case of a misspecification of the
model by the prior. We also consider the problems of estimating a density
in a location-scale family and a high-dimensional parameter in a paramet-
ric model under a sparsity constraint. We also show how our estimation
strategy leads to unusual rates of convergence for estimating a translation
parameter in a non-regular statistical model. In Section 8, we provide an
evaluation of the concentration radius of our posterior distributions in the
parametric framework. Finally, Section 9 is devoted to the proofs of the
main theorems and Section 10 to the other proofs.

2. The statistical setting

Let X = (X1, . . . , Xn) be an n-tuple of independent random variables
with values in a measurable space (E, E) and joint distribution P? =

⊗n
i=1 P

?
i .

Even though this might not be true, we pretend that the Xi are i.i.d. and our
aim is to estimate their (presumed) common distribution P ? from the obser-
vation of X. To do so, we introduce a family M that consists of candidate
probabilities (or merely finite signed measures in the case of the Lj-loss).
The reason for considering finite signed measures lies in the fact that statis-
ticians sometimes estimate probability densities by integrable functions that
are not necessarily densities but elements of a suitable linear space for in-
stance (think of the case of projection estimators). We endow M with a
σ-algebra A and a probability measure π, that we call a prior by analogy to
the classical Bayesian framework, and we refer to the resulting pair (M , π)
as our model. The model (M , π) plays here a similar role as in the classical
Bayes paradigm. It encapsulates the a priori information that the statisti-
cian has on P ?. Nevertheless, we do not assume that P ?, if it ever exists,
belongs to M nor that the true marginals P ?i do. We rather assume that
the model (M , π) is approximately correct in the sense that the average
distribution

P
? = 1

n

n∑
i=1

P ?i
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is close enough to some point P in M around which the prior π puts enough
mass. We assume that P ? belongs to a given set P of probability measures
on (E, E) and we measure the estimation accuracy by means of a loss func-
tion ` : (M ∪P) ×M → R+ which is not identical to 0 in order to avoid
trivialities. Even though ` may not be a genuine distance in general, we
assume that it shares some similar features and we interpret it as if it were.
For this reason, we call `-ball (or ball for short) centered at P ∈ P ∪M
with radius r > 0 the subset of M

B(P, r) = {Q ∈M , `(P,Q) 6 r} .
Our aim is to built a posterior distribution (or posterior for short) π̂X on
(M ,A), depending on our observation X, which concentrates with a prob-
ability close to 1 on an `-ball of the form B(P ?, rn) where we wish the value
of rn > 0 to be small.

2.1. The special case of parametrized models. In many situations we
consider statistical models M = {Pθ, θ ∈ Θ} which are parametrized via
a one-to-one mapping θ 7→ Pθ. When (Θ,B, ν) is a measurable space, we
endow M with the σ-algebra A = {A, {θ ∈ Θ, Pθ ∈ A} ∈ B}. This choice
possesses several advantages. First, the mapping θ 7→ Pθ is measurable from
(Θ,B) onto (M ,A) and we may therefore define the prior π on (M ,A) as
the image of ν by this mapping. Besides, a function F is measurable on
(M ,A) if and only if the mapping θ 7→ F ◦ Pθ is measurable on (Θ,B).
This property makes the measurability of F easier to check in general. In
particular, the mapping F : Pθ 7→ θ is measurable on (M ,A) because
θ 7→ F ◦Pθ = θ is measurable on (Θ,B) and we may then define a posterior
ν̂X on (Θ,B) as the image by F of our posterior π̂X on (M ,A). By definition
of ν̂X , for all θ ∈ Θ and r > 0
(2) π̂X (B(Pθ, r)) = ν̂X

({
θ′ ∈ Θ, `(θ, θ′) 6 r

})
where `(θ, θ′) denotes, slightly abusively, `(Pθ, Pθ′) for θ, θ′ ∈ Θ. The con-
centration of π̂X on an `-ball centered at Pθ with radius r > 0 is then
equivalent to the concentration of ν̂X on the set {θ′ ∈ Θ, `(θ, θ′) 6 r}. Ev-
ery time we consider a parametrized model, we assume that it is identifiable
and implicitly use the construction that we presented above as well as its
consequences.

2.2. Notation and conventions. Throughout this paper, we use the fol-
lowing notation and conventions. For a, b ∈ R, a∨b and a∧b denote min{a, b}
and max{a, b} respectively. For x ∈ R, (x)+ = x∨ 0 while (x)− = (−x)∨ 0.
The Euclidean spaces Rk with k > 1 are equipped with their Borel σ-
algebras. The cardinality of a set A is denoted |A| and its complement cA.
In particular, for P ∈P ∪M and r > 0, cB(P, r) = {Q ∈M , `(P,Q) > r}.
The elements of Rk with k > 1 are denoted with bold letters, e.g. x =
(x1, . . . , xk) and 0 = (0, . . . , 0). For x ∈ Rk, |x|∞ = maxi∈{1,...,k} |xi| while
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|x| denotes the Euclidean norm of x. The inner product of Rk is denoted
by 〈·, ·〉 and the closed Euclidean ball centered at x with radius r > 0 by
B(x, r). By convention inf∅ = +∞ unless otherwise specified. We write
f ≡ c when a function f is constant and equals c on its domain. For all
suitable functions f on (En, E⊗n), E [f(X)] means

∫
En fdP? while for f on

(E, E), ES [f(X)] denotes the integral
∫
E fdS with respect to the measure

S on (E, E). For j ∈ [1,+∞), we denote by Lj(E, E , µ), the set of mea-
surable functions f on (E, E) such that ‖f‖j,µ = [

∫
E |f |jdµ]1/j < +∞ while

‖f‖∞ = supx∈E |f(x)| is the supremum norm of a function f on E. If π′ is
a distribution on (M ,A), Q ∼ π′ means that Q is a random variable with
distribution π′. Finally, all the measures that we consider are implicitly
assumed to be σ-finite.

3. Construction of the posterior distribution

Throughout this section, the model (M , π) is assumed to be fixed.

3.1. The properties of our loss functions. The construction of the pos-
terior not only depends on the prior π but also on the choice of the loss
function. We first assume that ` satisfies some basic properties which are
described below.

Assumption 1. For all S ∈P ∪M , the mapping
`(S, ·) : (M ,A) −→ R+

P 7−→ `(S, P )
is measurable.

Under such an assumption, `-balls are measurable and the quantities
π(B(P, r)) for P ∈P ∪M and r > 0 are therefore well-defined.

Assumption 2. There exists a positive number τ such that, for all S ∈P
and P,Q ∈M ,

`(S,Q) 6 τ [`(S, P ) + `(P,Q)](3)
`(S,Q) > τ−1`(P,Q)− `(S, P ).(4)

When ` is a genuine distance, inequalities (3) and (4) are satisfied with
τ = 1 since they correspond to the triangle inequality. When ` is the square
of a distance, these inequalities are satisfied with τ = 2.

Importantly, we assume that ` is associated with a family T (`,M ) ={
t(P,Q), (P,Q) ∈M 2} of test statistics on (E, E) which possesses the prop-

erties below. We shall see in Section 5 that many classical loss functions
(among which the total variation distance, the squared Hellinger distance,
etc.) can be associated with families T (`,M ) satisfying the following as-
sumptions.
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Assumption 3. The elements t(P,Q) of T (`,M ) satisfy:

(i) The mapping
t : (E ×M ×M , E ⊗ A⊗A) −→ R

(x, P,Q) 7−→ t(P,Q)(x)
is measurable.
(ii) For all P,Q ∈M , t(P,Q) = −t(Q,P ).
(iii) there exist positive numbers a0, a1 such that, for all S ∈P and
P,Q ∈M ,

(5) ES
[
t(P,Q)(X)

]
6 a0`(S, P )− a1`(S,Q).

(iv) For all P,Q ∈M ,
sup
x∈E

t(P,Q)(x)− inf
x∈E

t(P,Q)(x) 6 1.

Under assumption (ii), t(P,P ) = 0 and we deduce from (5) that (a0 −
a1)`(S, P ) > 0, hence that a0 > a1 since ` is not constantly equal to 0.

Some families T (`,M ) may satisfy the stronger

Assumption 4. Additionally to Assumption 3, there exists a2 > 0 such that

(iv) for all S ∈P and P,Q ∈M ,
VarS

[
t(P,Q)(X)

]
6 a2 [`(S, P ) + `(S,Q)] .

3.2. Construction of the posterior. Let T (`,M ) be a family of test
statistics that satisfies our Assumption 3 and let β and λ be two positive
numbers such that
(6) λ = (1 + c)β with c > 0 satisfying c0 = (1 + c)− c(a0/a1) > 0.
We set

T(X, P,Q) =
n∑
i=1

t(P,Q)(Xi) for all P,Q ∈M

and define π̃X(·|P ) as the probability on (M ,A) with density
dπ̃X(·|P )

dπ
: Q 7→ exp [λT(X, P,Q)]∫

M exp [λT(X, P,Q)] dπ(Q) .

Then, for P ∈M we set

T(X, P ) =
∫

M
T(X, P,Q)dπ̃X(Q|P )

=
∫

M
T(X, P,Q) exp [λT(X, P,Q)]∫

M exp [λT(X, P,Q)] dπ(Q)dπ(Q).

Finally, we define π̂X as the posterior distribution on (M ,A) with density

(7) dπ̂X
dπ

: P 7→ exp [−βT(X, P )]∫
M exp [−βT(X, P )] dπ(P ) .
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Our Assumption 3-(i) ensures that dπ̃X(·|P )/dπ is a measurable function of
(X, P,Q) and dπ̂X/dπ a measurable function of (X, P ).

The posterior distribution depends on our choice of β and λ (or equiva-
lently c) even though we drop this dependency with the notation π̂X .

3.3. Monte Carlo computation of functions of the posterior. Even
though we focus on the concentration properties of the posterior π̂X , one
may alternatively be interested in some estimators derived from it. For
example, estimators of the form

I =
∫

M
F (P )dπ̂X(P )

where F is a real-valued π-integrable function on (M ,A). For typical choices
of F , I gives the expected mean, mode or median of the posterior whenever
these quantities make sense. One may also choose F : P 7→ 1lP∈B(P0,ε) with
P0 ∈ M and ε > 0 in order to compute the (posterior) probability that
`(P0, “P ) is not larger than ε when “P ∼ π̂X .

Interestingly, the integral I can be approximated by Monte Carlo as fol-
lows. Assume that the prior π admits a density of the form C−1Π with
respect to a given probability measure m, where Π is a nonnegative m-
integrable function on (M ,A) and C =

∫
M Π(P )dm(P ) > 0 a positive

normalizing constant (that will not be involved in our calculation). Let
P1, . . . , PN be an N -sample with distribution m and for each i ∈ {1, . . . , N},
Q

(1)
i , . . . , Q

(N ′)
i an independent N ′-sample with the same distribution. We

may approximate I by

ÎN,N ′ =
N∑
i=1

F (Pi)
exp

[
−βWi,N ′(Pi)

]
Π(Pi)∑N

i′=1 exp
[
−βWi′,N ′(Pi′)

]
Π(Pi′)

where for all i ∈ {1, . . . , N},

Wi,N ′(Pi) =
N ′∑
j=1

T (X, Pi, Q
(j)
i )

exp
î
λT (X, Pi, Q

(j)
i )
ó

Π(Q(j)
i )∑N ′

j′=1 exp
î
λT (X, Pi, Q

(j′)
i )
ó

Π(Q(j′)
i )

.

It is then easy to check that, by the law of large numbers,

lim
N→+∞

ï
lim

N ′→+∞
ÎN,N ′

ò
= I.

3.4. Connection with the classical Bayes posterior distribution.
The classical Bayes posterior turns out to be a particular case of the posterior-
type ones introduced in Section 3.2. As we shall see now, they are associated
with the Kullback–Leibler divergence loss. We recall that the Kullback–
Leibler divergence `(P,Q) = K(P,Q) between two probabilities P,Q on
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(E, E) is defined by

K(P,Q) =


∫
E

log
Å
dP

dQ

ã
dP when P � Q;

+∞ otherwise.

Let us consider now a family M of probabilities that satisfy for some a > 0
and suitable versions of their densities dQ/dP the following inequalities:

(8) e−a 6
dP

dQ
(x) 6 ea for all x ∈ E and P,Q ∈M .

It follows from Baraud (2021)[Proposition 12] that the families of functions

(9) T (`,M ) =
ß
t(P,Q) = 1

2a log
Å
dQ

dP

ã
, P,Q ∈M

™
satisfies our Assumptions 3 and 4 with a0 = a1 = 1/(2a) and a2 = 2a/[tanh(a/2)].
Note that given P,Q ∈ M , P 6= Q, the test based on the sign of t(P,Q) is
the classical likelihood ratio test between P and Q.

If we apply the construction described in Section 3.2 to the family T (`,M )
we obtain that for all P,Q, P0 ∈M ,

T(X, P,Q) = T(X, P0, Q)−T(X, P0, P ).

For all λ > 0, the density of π̃X(·|P )

Q 7→ exp [λT(X, P,Q)]∫
M exp [λT(X, P,Q)] dπ(Q) = exp [λT(X, P0, Q)]∫

M exp [λT(X, P0, Q)] dπ(Q)
is independent of P and writing π̃X(·) in place of π̃X(·|P ) we obtain that

T(X, P ) =
∫

M
T(X, P,Q)dπ̃X(Q)

=
∫

M
T(X, P0, Q)dπ̃X(Q)−T(X, P0, P )

= C − 1
2a

n∑
i=1

log
Å
dP

dP0

ã
(Xi) with C =

∫
M

T(X, P0, Q)dπ̃X(Q).

Finally, the density of our posterior π̂X at P ∈M is given by

dπ̂X
dπ

(P ) = exp [−βT(X, P )]∫
M exp [−βT(X, P )] dπ(P ) = [

∏n
i=1(dP/dP0)(Xi)]β/(2a)∫

M [
∏n
i=1(dP/dP0)(Xi)]β/(2a) dπ(P )

.

This is the density of the classical Bayes posterior when β = 2a while for
other values of β it is that of fractional Bayes ones.

Nevertheless, in the present paper we restrict our study to loss functions
that satisfy some triangle-type inequality – see Assumption 2. This excludes
the Kullback–Leibler divergence unless one is ready to make strong assump-
tions on the unknown distribution of the data, which we do not want to do
here.
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3.5. Some heuristics. In this section, we present the basic ideas that un-
derline our approach. In particular, we shall see how the estimation problem
we want to solve is linked to the one of testing between two disjoint `-balls
B(P, r) and B(Q, r) with P,Q ∈M .

In order to avoid unnecessary details, we assume here that we observe i.i.d.
data X1, . . . , Xn with distribution P ? ∈ P and that we have at disposal a
family T (`,M ) of functions that satisfies our Assumption 3. In particular
it follows from Assumption 3-(iii) that

E
ïT(X, P,Q)

n

ò
= 1
n

n∑
i=1

E
[
t(P,Q)(Xi)

]
6 a0`(P ?, P )− a1`(P ?, Q).

The antisymmetric property required by Assumption 3-(ii) entails that

T(X, P,Q) = −T(X, Q, P )

and leads to the lower bound

E
ïT(X, P,Q)

n

ò
> a1`(P ?, P )− a0`(P ?, Q).

Assuming for the sake of simplicity that a0 = a1 = 1, these calculations
show that n−1T(X, P,Q) = n−1∑n

i=1 t(P,Q)(Xi) is an unbiased and con-
sistent estimator of `(P ?, P ) − `(P ?, Q). In particular, if the two `-balls
B(P, r), B(Q, r) are disjoint and P ? belongs to one of them, the sign of
n−1T(X, P,Q) = n−1∑n

i=1 t(P,Q)(Xi) provides a consistent test for decid-
ing which one contains P ?. In fact, the test does not depend on the value of
r and consequently chooses the element among {P,Q} which is the closest
to P ? (with respect to `), at least when n is large enough. As compared to
the classical likelihood ratio test between P and Q, this test has the advan-
tage not to assume that P ? is either P or Q but only that it lies in a small
enough `-vicinity around one of these two probabilities. The test is said to
be robust with respect to the model {P,Q}. Its nonasymptotic properties
have been studied in Baraud (2021).

Let us now explain how such families {T(X, P,Q), (P,Q) ∈M 2} of test
statistics can be used to build robust estimators and not only tests. In
the frequentist paradigm, the construction of `-estimators is based on the
following heuristics. If, with a probability close to 1, n−1T(X, P,Q) is close
to its expectation `(P ?, P )−`(P ?, Q) uniformly with respect to (P,Q) ∈M 2

then n−1T′(X, P ) = supQ∈M

[
n−1T(X, P,Q)

]
is close to

sup
Q∈M

[`(P ?, P )− `(P ?, Q)] = `(P ?, P )− inf
Q∈M

`(P ?, Q).

We therefore expect that a minimizer over M of the function P ∈ M 7→
n−1T′(X, P ) be close to a minimizer over M of the function P ∈ M 7→
`(P ?, P ) − infQ∈M `(P ?, Q), that is an element that minimizes the loss
`(P ?, P ) among the probabilities P ∈M .
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In the Bayesian paradigm, we may argue in a similar way as follows.
Replacing n−1T(X, P,Q) by its expectation `(P ?, P )− `(P ?, Q), as we did
before, amounts to replacing T(X,P) by

T(X,P)

= n

∫
M

(`(P ?, P )− `(P ?, Q)) exp [nλ (`(P ?, P )− `(P ?, Q))] dπ(Q)∫
M exp [nλ (`(P ?, P )− `(P ?, Q))] dπ(Q)

= n`(P ?, P )− n
∫

M
`(P ?, Q) exp [−nλ`(P ?, Q)]∫

M exp [−nλ`(P ?, Q)] dπ(Q)dπ(Q).

Note that the second term in the right-hand side does not depend on P .
Consequently, replacing T(X,P) by T(X,P) in the expression (7) of the
density of π̂X leads to the density

P 7→
exp

[
−βT(X, P )

]∫
M exp

[
−βT(X, P )

]
dπ(P )

= exp [−nβ`(P ?, P )]∫
M exp [−nβ`(P ?, P )] dπ(P ) .

We recognize here the density of a Gibbs measure associated with the energy
`(P ?, P ) at point P ∈ M and inverse temperature nβ > 0. We know
that when the temperature goes to 0 (or equivalently nβ to infinity), Gibbs
measures concentrate their masses in vicinities of low energy points in M .
In our case, these low energy points are those for which `(P ?, P ) is minimal.

Similar ideas can be found in Catoni’s work and more specifically in his
construction of Gibbs estimators – see Catoni (2004)[Chapter 4]. There,
Catoni shows how to aggregate a continuous family of estimators in order
to minimize a risk. In the present paper, we do not aim at aggregating
estimators but we use similar ideas and tools that are due to Catoni and his
co-authors for the construction of our robust posterior distribution.

4. The main results

4.1. Linking the prior to the complexity of the model. For P ∈M
and r > 0, we recall that

V (P, r) = log
Å
π(B(P, 2r))
π(B(P, r))

ã
where we use the convention a/0 = +∞ for all a > 0. We said in the
Introduction that such quantities encapsulate in some sense the complexity
of the model (M , π) and we shall now explain why. If M = {Pθ, θ ∈ Rk}
is a parametric model endowed with a loss ` such that `(θ,θ′) =

∣∣θ − θ′∣∣, so
that (M , `) is isometric to (Rk, |·|), and if the prior ν on Θ = Rk is improper
and given by the Lebesgue measure, we obtain that for all P ∈M and r > 0

V (P, r) = log
Å
π(B(P, 2r))
π(B(P, r))

ã
= log

Ç
(2r)k

rk

å
= k log 2.(10)
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We observe that V (P, r) corresponds in this case to the usual dimension of
Rk (up the factor log 2). For more general models (M , π) and loss functions
`, we may interpret V (P, r) as some notion of dimension (or complexity)
associated with the element P ∈M at the scale r > 0. As we do not consider
improper priors but probability distributions, limr→+∞ π(B(P, r)) = 1 and
consequently limr→+∞ V (P, r) = 0. This means that the connection with
the notion of “dimension” is only relevant for values of r which are not too
large.

Given γ ∈ (0, 1], the set

R(β, P ) =
®
r >

1
nβa1

, such that sup
r′>r

V (P, r′)
r′

6 γnβa1

´
is the subinterval of R+ on which the mapping r 7→ V (P, r) is not larger
than r 7→ γnβa1r. We denote by
(11) rn(β, P ) = infR(β, P )

the left endpoint of R(β, P ). Since R(β, P ) is increasing with β with respect
to set inclusion, rn(β, P ) is a nonincreasing function of β. For example, in
the ideal situation given in (10) where V (P, r) ≡ k log 2 with k log 2 > 1,
rn(β, P ) = (γa1)−1[k log 2/(nβ)]. When the model M = {Pθ, θ ∈ Θ} is
parametric and the parameter space Θ is an open subset of Rk endowed
with a prior ν, we shall see in Section 8.2 that under suitable assumptions
rn(β, Pθ) is indeed of order k/(nβ), at least for n sufficiently large.

The Bayesian paradigm offers the possibility to favour some elements of
M as compared to others. The order of magnitude of rn(β, P ) allows one
to quantify how much the prior π advantages or disadvantages P ∈M . It
follows from the definition of rn(β, P ) that

0 < π (B(P, 2r)) 6 exp (γnβa1r)π (B(P, r)) for all r > rn(β, P ).(12)

Letting r decrease to rn(β, P ), we derive that (12) also holds for r =
rn(β, P ). In particular, π (B(P, r)) > 0 for r = rn(β, P ). If the prior
puts no mass on the `-ball B(P, r), which clearly corresponds to a situation
where the prior disadvantages P , rn(β, P ) > r and rn(β, P ) is therefore large
if r is large. In the opposite case, if the prior puts enough mass on B(P, r)
in the sense that

(13) π (B(P, r)) > exp (−γnβa1r) ,

then for all r′ > r,

π
(
B(P, r′)

)
> exp (−γnβa1r) > exp

(
−γnβa1r

′)
> exp

(
−γnβa1r

′)π (B(P, 2r′)
)

hence,
π (B(P, 2r′))
π (B(P, r′)) 6 exp

(
γnβa1r

′) and rn(β, P ) 6 r.
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The quantity rn(β, P ) is therefore small if r is small. Although (13) is not
equivalent to (12) (it is actually stronger), the previous arguments provide a
partial view on the relationship between π and rn and conditions to decide
whether P is favoured by π or not, according to the size of rn(β, P ).

4.2. A general result on the concentration property of the posterior
distribution. According to the discussion of Section 4.1, we see that, when
the set
(14) M (β) =

{
P ∈M , rn(β, P ) 6 a−1

1 β
}

is nonempty, it contains the most favoured elements of the model (M , π)
at level a−1

1 β. Since rn(β, P ) is nonincreasing with β, the set M (β) is
increasing with β with respect to set inclusion. If a−1

1 β > (nβa1)−1 or
equivalently β > 1/

√
n, the set M (β) can alternatively be defined from

V (P, r) as follows:
M (β) =

{
P ∈M , V (P, r) 6 γnβa1r for all r > a−1

1 β
}
.(15)

This set plays a crucial role in our first result.

Theorem 1. Assume that the model (M , π) and the loss ` satisfy Assump-
tions 1 and 2 and the family T (`,M ) Assumption 3. Let γ < (c0 ∧ c)/(2τ)
and β > 1/

√
n be chosen in such a way that the set M (β) defined by (14)

is not empty. Then, the posterior π̂X defined by (7) possesses the following
property. There exists κ0 > 0 only depending on c, τ, γ and the ratio a0/a1
such that, for all ξ > 0 and any distribution P? with marginals in P,

E
î
π̂X
Ä

cB(P ?, κ0r)
äó
6 2e−ξ(16)

with

(17) r = inf
P∈M (β)

`(P ?, P ) + 1
a1

Å
β + 2ξ

nβ

ã
.

In particular,

P
î
π̂X
Ä

cB(P ?, κ0r)
ä
> e−ξ/2

ó
6 2e−ξ/2.

The value of κ0 is given by (119) in the proof. It only depends on the
choice of the family T (`,M ) but not on the prior π. Hence, for a given
family T (`,M ), κ0 is a numerical constant.

Let us now comment on Theorem 1. When X1, . . . , Xn are truly i.i.d.
with distribution P ? and the prior puts enough mass around P ?, in the
sense that P ? ∈M (β), then r = a−1

1 [β + 2ξ/(nβ)] in (17). When this ideal
situation is not met, either because the data are not identically distributed
or because P ? does not belong to M (β), r increases by at most an additive
term of order infP∈M (β) `(P

?
, P ). When this approximation term remains

small as compared to a−1
1 β, the value of r does not deteriorate too much as

compared to the previous situation.
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The value of r given by (17) depends on the choice of the parameter
β. Since the set M (β) is increasing (with respect to set inclusion) as β
gets larger, the two terms infP∈M (β) `(P

?
, P ) and a−1

1 β vary in opposite
directions as β increases. The set M (β) must be large enough to provide
a suitable approximation of P ? while β must not be too large in order
to keep a−1

1 β to a reasonable size. Practically, we recommend to choose
β = β(α) > 1/

√
n such that

(18) π (M (β)) > 1− α for α ∈ (0, 1/10).

In Example 1 below and in Section 7.1, we give some examples of choices of
β.

Example 1. Let (M , π) be a model where the prior π satisfies for some
k > 1 and constants 0 < A 6 (2/e)B,

(19) (Ar)k ∧ 1 6 π (B(P, r)) 6 (Br)k ∧ 1 for all P ∈M and r > 0.

This means that the prior π behaves like the Lebesgue measure on an Eu-
clidean space of dimension k for small enough values of r. Then,

(20) V (P, r) = log π (B(P, 2r))
π (B(P, r)) 6 k log

Å2B
A

ã
for all P ∈M and r > 0

which implies that for all P ∈M

(21) rn(P, β) 6 k

γa1nβ
log
Å2B
A

ã
.

The right-hand side is not larger than a−1
1 β for

(22) β =
 
k log(2B/A)

γn

which is larger than 1/
√
n since (2B/A) > e and γ ∈ (0, 1]. For such a value

of β, which does not depend on the distribution of the data, the element
P belongs to M (β) given by (15), and since P is arbitrary we derive that
M (β) = M . Applying Theorem 1 we conclude that the distribution π̂X
concentrates on an `-ball centered at P ? with a radius r of order

(23) rn = inf
P∈M

`(P ?, P ) + 1
a1

Ç…
k

n
+ 2ξ√

nk

å
.

4.3. A refined result under Assumption 4. Let us assume now that
the family T (`,M ) satisfies the stronger Assumption 4. We introduce the
mapping

(24)
φ : (0,+∞) −→ R+

z 7−→ φ(z) = 2 (ez − 1− z)
z2 .
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The function φ is increasing on (0,+∞) and tends to 1 when z tends to 0.
Given β > 0 and a family T (`,M ) that satisfies Assumption 4, we define

c1 = c0 − βa2a
−1
1 τ2φ [β(1 + 2c)] (1 + 2c(1 + c));(25)

c2 = c− βa2a
−1
1 τ2φ [β(1 + 2c)] c2;(26)

c3 = (2 + c)− βa2a
−1
1 τ2φ [β(3 + 2c)] (2 + c)2.(27)

Note that the value of c1 ∧ c2 ∧ c3 is positive for β = 0 and decreases
continuously to −∞ when β grows to infinity. Consequently, there exists
some β0 > 0 for which c1 ∧ c2 ∧ c3 = 0 and c1 ∧ c2 ∧ c3 is positive for all
values β ∈ (0, β0).

Let us now present our second result on the concentration property of our
posterior π̂X .

Theorem 2. Assume that the model (M , π) and the loss ` satisfy Assump-
tion 1 and 2 and the family T (`,M ) Assumption 4. For β ∈ (0, β0) and
γ < (c1∧c2∧c3)/(2τ), the posterior π̂X defined by (7) satisfies the following
property. There exists κ0 > 0 only depending on a0/a1, a2/a1, c, τ, β and γ
such that, for all ξ > 0 and any distribution P? with marginals in P,

E
î
π̂X
Ä

cB(P ?, κ0r)
äó
6 2e−ξ(28)

with

(29) r = inf
P∈M

î
`(P ?, P ) + rn(β, P )

ó
+ 2ξ
nβa1

.

In particular,

P
î
π̂X
Ä

cB(P ?, κ0r)
ä
> e−ξ/2

ó
6 2e−ξ/2.

The value of κ0 is given by (132) in the proof. Note that the constraints
on β and γ, that are required in our Theorem 2, and that on c given in (6)
only depend on a0, a1 and a2, hence on the choice of the family T (`,M ).
When a0, a1 and a2 do not depend on M , the value of β can be chosen as
a universal constant. In particular, it neither depends on the model (M , π)
nor on the sample size n.

Example 2 (Example 1 continued). Let us go back to the framework of
our Example 1 and assume that T (`,M ) satisfies the requirements of The-
orem 2, hence Assumption 4. Applying our construction with some numer-
ical value of β which satisfies the constraint of our Theorem 2, we deduce
from (21) that π̂X concentrates on an `-ball with radius of order

(30) r = inf
P∈M

`(P ?, P ) + log(2B/A)
γa1β

k

n
+ 2
a1β

ξ

n
.

When the model is well-specified, infP∈M `(P ?, P ) = 0 and the ball B(P ?, κ0r)
with radius r = r(n) contracts at the rate 1/n. Applying our Theorem 1
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under Assumption 3, ignoring the fact that the family T (`,M ) also sat-
isfies Assumption 4, would lead to the weaker result that when the model
is well-specified the posterior concentrates on an `-ball with radius of order√
k/n, hence at a rate 1/

√
n, as shown by (23).

4.4. Concentrated priors. Theorem 1 and 2 show that starting from a
prior π that puts enough mass around most of the elements of M , the pos-
terior π̂X concentrates on an `-ball with radius of order infP∈M `(P ?, P )+rn
where rn is small, at least under suitable assumptions and for n sufficiently
large. The situation we want to investigate now is what happens when the
prior is very concentrated on a small `-ball with radius ε > 0 around an
element Q ∈M that might not be the true distribution of the data. More
precisely, assume the following

Assumption 5. For Q ∈M and ε > 0,
π
(cB(Q, ε)

)
6 e−(2ξ+1)π

(
B(Q, ε)

)
with ξ > 0.

In this case, we establish the following result.

Theorem 3. Assume that the model (M , π) and the loss ` satisfy Assump-
tion 1 and 2 and the family T (`,M ) Assumption 3. If Assumption 5 is
satisfied, there exists κ0 > 0 only depending on c, τ and the ratio a0/a1 such
that for any distribution P? with marginals in P,

E
î
π̂X
Ä

cB(P ?, κ0r)
äó
6 2e−ξ with r = `(P ?, Q) ∨ β

a1
∨ ε.(31)

In particular, for the choice β = a1ε, r = `(P ?, Q) ∨ ε.
If furthermore, Assumption 4 is satisfied and β ∈ (0, β0) (where β0 is

defined in Section 4.3), there exists κ′0 > 0 only depending on τ, β, a0/a1
and a2/a1 such that for any distribution P? with marginals in P,

E
î
π̂X
Ä

cB(P ?, κ′0r)
äó
6 2e−ξ with r = `(P ?, Q) ∨ ε.(32)

This result shows that for a suitable choice of β, the posterior π̂X also
concentrates on an `-ball centred at P ? with radius of order ε when the
model is well-specified, that is, when the data are i.i.d. with distribution
P
? = Q. When the model is misspecified, the radius of the ball is of order

`(P ?, Q) ∨ ε and therefore does not inflate more than the distance of P ? to
the center Q. This result illustrates the stability of the posterior π̂X with
respect to misspecification.

5. Applications to classical loss functions

The aim of this section is to show how our general construction can be
applied to loss functions ` of interest. The propositions contained in this
section about the corresponding families T (`,M ) have been established in
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Baraud (2021) except for the squared Hellinger loss for which we refer to
Baraud and Birgé (2018)[Proposition 3]. The list of loss functions we present
here is not exhaustive. Our results also apply to all loss functions that derive
from a variational formula of the form

`(P,Q) = sup
f∈F

ï∫
E
fdP −

∫
E
fdQ

ò
where F is a suitable class of bounded functions. For such losses, we refer
the reader to Baraud (2021).

In this section, we consider models M = {P = p · µ, p ∈ M} which are
dominated by a measure µ on (E, E) and we denote by M ⊂ L1(E, E , µ)
the corresponding families of densities with respect to µ. Elements P,Q, . . .
in M are associated with their densities in M by using lower case letters
p, q, . . .. In all the cases we consider, t(P,Q)(x) is a measurable function of
(p(x), q(x)) for P,Q ∈M and x ∈ E. In order to satisfy our measurability
Assumption 3-(i), it is therefore sufficient to assume that

(E ×M , E ⊗ A) −→ R
(x, P ) 7−→ p(x)

is measurable. In the case of a parametrized model M = {Pθ = pθ·µ, θ ∈ Θ},
as described in Section 2.1, this condition is satisfied as soon as the mapping

p : (E ×Θ, E ⊗B) −→ R+
(x, θ) 7−→ pθ(x)

is measurable. Throughout this section, we assume that such measurability
assumptions are satisfied.

5.1. The case of the total variation distance. In this section, P is the
set of all probability measures on (E, E) and

(33) ‖P −Q‖ = 1
2

∫
E
|p− q| dµ

denotes the total variation loss (TV-loss for short) between P,Q ∈P.

Proposition 1. The family T (`,M ) which consists of all the functions
t(P,Q) defined for P = p · µ and Q = q · µ in M by

(34) t(P,Q) = 1
2 [1lq>p −Q(q > p)]− 1

2 [1lp>q − P (p > q)]

satisfies Assumption 2 with τ = 1 and Assumption 3 with a0 = 3/2 and
a1 = 1/2.

It follows from Proposition 1 that we may apply our general construction
to the so-defined family T (`,M ) with the values c = c0 = 1/3 (hence
λ = 4/3). The reader can check that the value γ = 1/100 satisfies the
requirement of our Theorem 1 and that (16) is satisfied with κ0 = 220.
Theorem 1 can therefore be rephrased as follows.
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Corollary 1. Let β > 1/
√
n, c = 1/3 and π̂TV

X be the posterior defined
by (7) and associated with the family T (`,M ) given in Proposition 1. For
all ξ > 0 and any distribution P?, with a probability at least 1− 2e−ξ/2, the
posterior π̂TV

X satisfies

π̂TV
X

Åß
P ∈M , `(P ?, P ) 6 220

ï
inf

P ′∈M (β)
`(P ?, P ′) + 2

Å
β + 2ξ

nβ

ãò™ã
> 1− e−ξ/2(35)

where

M (β) =
®
P ∈M , sup

r>2β

ï200
nr

log
Å
π (B(P, 2r))
π (B(P, r))

ãò
6 β

´
.

By convexity, we may write that

inf
P∈M (β)

∥∥∥P − P ?∥∥∥ 6 inf
P∈M (β)

ñ
1
n

n∑
i=1
‖P − P ?i ‖

ô
and the left-hand side is therefore small when there exists P ∈M (β) that
approximates well enough most of the marginals of P?. The concentration
properties of π̂TV

X remain thus stable with respect to a possible misspecifi-
cation of the model and a departure from the equidistribution assumption.

In fact, as we shall see in our Example 3 below, the average distribution
P
? may belong to M (β) even when none of the marginals P ?i does. This

means that in good situations, the posterior may concentrate around P ?, as
it would do in the i.i.d. case when the distribution of the data does belong to
M (β), even when the data are non-i.i.d. and their marginals do not belong
to M (β).

Example 3. [Example 1 continued] Going back to Example 1 and taking
for ` the TV-loss (then a1 = 1/2), we deduce from (23) that

rn = inf
P∈M

∥∥∥P ? − P∥∥∥+ 2
Ç…

k

n
+ 2ξ√

nk

å
.

In particular, if for each i ∈ {1, . . . , n}, P ?i is the uniform distribution on
[(i − 1)/n, i/n] and M contains the uniform distribution U([0, 1]) on [0, 1],
M contains P ? = U([0, 1]), even if none of the marginals P ?i belongs to M .
We then get that

rn = 2
Ç…

k

n
+ 2ξ√

nk

å
and the posterior concentrates around P ? at a parametric rate.



FROM ROBUST TESTS TO BAYES-LIKE POSTERIOR DISTRIBUTIONS 21

5.2. Case of the Lj-loss. Let j ∈ (1,+∞). We denote by Pj the set of all
finite and signed measures on (E, E , µ) which are of the form P = p ·µ with
p ∈ Lj(E,µ)∩L1(E,µ). Let `j be the loss defined by `j(P,Q) = ‖p− q‖µ,j
for all P = p · µ and Q = q · µ in Pj . In this section, P is the subset that
consists of all the probability measures in Pj .

Proposition 2. Let M = {P = p · µ, p ∈M} be a subset of Pj for which
M satisfies for some R > 0
(36) ‖p− q‖∞ 6 R ‖p− q‖µ,j for all p, q ∈M.
Define for P = p · µ and Q = q · µ in M ,

f(P,Q) =
(p− q)j−1

+ − (p− q)j−1
−

‖p− q‖j−1
µ,j

when P 6= Q and f(P,P ) = 0.

Then, the family T (`j ,M ) which contains the functions t(P,Q) defined for
P,Q ∈M by

(37) t(P,Q) = 1
2Rj−1

ï∫
E
f(P,Q)

dP + dQ

2 − f(P,Q)

ò
satisfies Assumption 2 with τ = 1 and Assumption 3 with a0 = 3/(4Rj−1)
and a1 = 1/(4Rj−1).

When j = 2, (36) is typically satisfied whenM is a subset of a linear space
enjoying good connections between the L2(µ) and the supremum norms.
Many finite dimensional linear spaces with good approximation properties
do satisfy such connections (e.g. piecewise polynomials of a fixed degree on a
regular partition of [0, 1], trigonometric polynomials on [0, 1) etc.). We refer
the reader to Birgé and Massart (1998)[Section 3] for additional examples.
The property may also hold for infinite dimensional linear spaces as proven
in Baraud (2021).

It follows from Proposition 2 that one may choose c = c0 = 1/3 in (6)
and γ = 1/100 in Theorem 1. Besides, Theorem 1 applies with κ0 = 220.

Example 4 (Example 1 continued). Let us go back to our Example 1 with
` = `j and T (`,M ) given in Proposition 2. For the choice of β given
in (22) and γ = 1/100, we deduce from (23) (with a1 = 1/(4Rj−1)) that the
resulting posterior π̂X concentrates on an `j-ball around P

? with a radius
of order

rn = inf
p∈M

∥∥∥∥∥ 1
n

n∑
i=1

p?i − p
∥∥∥∥∥
µ,j

+ 4Rj−1
Ç…

k

n
+ 2ξ√

nk

å
.

5.3. The case of the squared Hellinger loss. Here, P is the set of all
probability measures on (E, E) and

(38) `(P,Q) = h2(P,Q) = 1
2

∫
E

(√p−√q)2 dµ,
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is the squared Hellinger distance between two probabilities P,Q ∈P.

Proposition 3. Let ψ be the function defined by
ψ : [0,+∞] −→ [−1, 1]

x 7−→


x− 1
x+ 1 if x ∈ [0,+∞)

1 if x = +∞.

The family T (`,M ) containing the functions t(P,Q) defined for P = p · µ
and Q = q · µ in M by

(39) t(P,Q) = 1
2ψ
Å…

q

p

ã
(with the conventions 0/0 = 1 and x/0 = +∞ for all x > 0) satisfies
Assumption 2 with τ = 2 and Assumption 4 with a0 = 2, a1 = 3/16, a2 =
3
√

2/4.

With such a choice of family T (`,M ), (6) is satisfied with c = 1/125,
then c0 ∈ [0.922, 0.923], and the requirements of Theorem 2 are satisfied
with β = 2γ = 1/500. Then the value κ0 = 1694 suits. The definition (11)
of rn(β, P ) for P ∈M becomes

rn(β, P )

= inf
ß
r >

8000
3n ,

π (B(P, 2r′))
π (B(P, r′)) 6 exp

Å 3nr′

8.106

ã
for all r′ > r

™
,(40)

with the convention sup∅ = 8000/(3n). Theorem 2 can then be rephrased
as follows.

Corollary 2. Let πhX be the posterior defined by (7) and associated with
the family T (`,M ) given in Proposition 3 and the choices c = 1/125 and
β = 1/500. For all ξ > 0 and any distribution P?, with a probability at least
1− 2e−ξ/2,

π̂hX
Ä¶
P ∈M , h2

Ä
P
?
, P
ä
6 1694r

©ä
> 1− e−ξ/2

where
r = inf

P∈M

î
h2
Ä
P
?
, P
ä

+ rn(β, P )
ó

+ 5334ξ
n

and rn(β, P ) is given by (40).

As for the total variation distance, we may write that

inf
P∈M

h2
Ä
P
?
, P
ä
6 inf

P∈M

ñ
1
n

n∑
i=1

h2 (P ?i , P )
ô
.

The left-hand side is small when there exists an element P ∈ M that ap-
proximates well most of the marginal distribution P ?i . If for such a P , the
quantity rn(β, P ) is small enough, the posterior concentrates around P ? just
as it would do if the data were truly i.i.d. with distribution P ∈M .
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Example 5 (Example 1 continued). Let us go back to Example 1, more
precisely Example 2, with ` = h2 and T (`,M ) given in Proposition 3.
Inequality (21) is satisfied with β = 2γ = 1/500 and a1 = 3/16. It follows
from (30) that π̂hX concentrates on an h2-ball around P

? with a radius of
order

r = inf
P∈M

h2
Ä
P
?
, P
ä

+ k + ξ

n
.

6. Comparing the classical Bayesian approach to ours

In this section, our aim is to highlight some similarities and differences
between the Bayesian posterior and ours. Throughout this section, we con-
sider the squared Hellinger loss ` = h2 and denote by π̂KX the Bayes posterior
associated with the model (M , π). The letter K in the notation π̂KX refers
to the fact that the Bayesian posterior can be obtained from our general
construction by using the Kullback–Leibler divergence as explained in Sec-
tion 3.4. When M = {Pθ, θ ∈ Θ} is parametric with Θ ⊂ Rk, we denote by
ν̂KX the Bayesian posterior on the parameter space Θ and ν̂hX that associated
to π̂hX .

6.1. Some classical concentration results for the Bayes posterior
distribution. Most of the results that have been established about the
concentration properties of the Bayesian posterior are asymptotic in nature.
It seems difficult to establish a general nonasymptotic version of those as
we do for our posterior. One of the only exceptions we are aware of is
Birgé (2015b).

When the data are i.i.d. with a distribution P ? ∈M , a typical asymptotic
form of these results is the following one (see Ghosal, Ghosh and van der
Vaart (2000) Theorems 2.1 and 2.4 for example). Let εn be a sequence of
positive numbers that converges to zero when n goes to infinity. If P ? fulfils
some suitable conditions, that we shall discuss later on and which depend
on the prior π and εn, the following convergence in probability holds true

π̂KX
(
{P ∈M , h2(P ?, P ) >Mnε

2
n}
) P−→
n→+∞

0 under P ?.(41)

In (41),Mn = M denotes some large enough positive constant if nε2
n → +∞

as n→ +∞ while Mn is increasing to infinity as n→ +∞ if lim inf nε2
n > 0

as n → +∞. The first condition on εn is typically satisfied when M is a
nonparametric model while the second one generally applies to parametric
ones.
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In comparison, in this well-specified framework, our Corollary 2 leads to
the following result. For all P ? ∈M and ξ > 0

P
ï
π̂hX

Åß
P ∈M , h2(P ?, P ) > κ′0

Å
rn(β, P ?) + ξ

n

ã™ã
> e−ξ/2

ò
6 2e−ξ/2(42)

for some numerical constant κ′0 > 0. If P ? satisfies rn(β, P ?) 6 ε2
n, we

recover (41) by setting ξ = ξn = (Mn/(κ′0)− 1)nε2
n. However, our condition

that rn(β, P ?) 6 ε2
n is not equivalent to that imposed on P ? by Ghosal,

Ghosh and van der Vaart (2000). It is actually weaker. In their paper, this
condition is fulfilled when the prior puts enough mass on Kullback–Leibler
type balls around P ?. Our approach allows one to consider Hellinger balls
only, which are larger and make our assumption weaker. In fact, as already
underlined in the Introduction, these Kullback–Leibler type balls could be
empty, and the condition unsatisfied, while our theorem would still apply.

The result established by Birgé (2015b) provides an improvement as com-
pared to the one presented above and established by Ghosal, Ghosh and
van der Vaart. Birgé shows that it is essentially possible to get rid of the
Kullback–Leibler divergence (see his Theorem 2) but only when the model is
parametric and well-specified. Apart for the nonparametric framework, this
result leaves little place for improvement since we know that the Bayesian
posterior may fail to concentrate around the true parameter when the model
becomes slightly ill-specified.

Another consequence of our Corollary 2, as compared to (41), is that it
allows one to control

π̂hX

Åß
P ∈M , h2(P ?, P ) > κ′0

Å
ε2
n + ξ

n

ã™ã
uniformly over the set {P ? ∈ M , rn(β, P ?) 6 ε2

n}. For example, in the
framework of Example 2, for the choice ε2

n = ck/n with c = log(2B/A)/(γa1β),
we know that rn(β, P ?) 6 ε2

n for all P ? ∈M and we deduce from (42) that

sup
P ?∈M

P
ï
π̂hX

Åß
P ∈M , h2(P ?, P ) > κ′0

Å
ε2
n + ξ

n

ã™ã
> e−ξ/2

ò
6 2e−ξ/2.

The concentration properties of our posterior is therefore uniform over the
statistical model M .

6.2. About the shapes and sizes of the credible regions. A nice fea-
ture of the Bayesian approach lies in the fact that it allows one to build
credible regions. In practice, they often play the same role as the confidence
regions in the frequentist paradigm. When the data are i.i.d. with distri-
bution P ? = Pθ? in a parametric model M = {Pθ, θ ∈ Θ}, Θ ⊂ Rk, a
credible set for the parameter θ? is a subset “Θn,X ⊂ Θ (only depending on
observable quantities) that satisfies ν̂KX (“Θn,X) > 1− e−ξ for some choice of
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ξ > 0. When M is a regular parametric model with a nonsingular Fisher
information matrix J, and provided that it satisfies additional assumptions
– see van der Vaart (1998) – the Bernstein-von Mises theorem applies and
tells us that ∥∥∥ν̂KX −N Äθ̂n, (nJ(θ?))−1

ä∥∥∥ P−→
n→+∞

0 under Pθ?

where θ̂n denotes the Maximum Likelihood Estimator (MLE for short).
Denoting by χ−1

k (ξ) the (1 − e−ξ)-quantile of a chi-square random variable
with k degrees of freedom and

(43) Θn,X =
ß
θ ∈ Θ, n

∣∣∣J1/2(θ?)
Ä
θ̂n − θ

ä∣∣∣2 6 χ−1
k (ξ)

™
,

we deduce that∣∣∣ν̂KX (Θn,X)− (1− e−ξ)
∣∣∣ 6 ∥∥∥ν̂KX −N Äθ̂n, (nJ(θ?))−1

ä∥∥∥ P−→
n→+∞

0

hence
ν̂KX (Θn,X) P−→

n→+∞
1− e−ξ under Pθ? .

The asymptotic level of “credibility” of the set Θn,X is therefore 1 − e−ξ.
This set is not, however, a genuine credible region since it depends on the
unknown parameter θ?. We would obtain a genuine credible region by re-
placing θ? by θ̂n in the expression of Θn,X . This substitution would change
the level of credibility but not the shape of the region, which is an ellipsoid
centred at θ̂n and the axes of which are given by the eigenvectors of the
Fisher information matrix.

The aim of this section is to show that our posterior concentrates its mass
on regions that have the same shape and approximately the same size. The
size of Θn,X is determined by the value of the quantile χ−1

k (ξ). The aim of
the following lemma is to specify the order of magnitude of this quantile as
a function of k and ξ. In fact, we consider below the more general case of
the quantiles of a gamma distribution γ(s, σ) with parameters s, σ > 0, that
is, the distribution with density x 7→ (xs−1e−s/σ)/(σsΓ(s)) with respect to
the Lebesgue measure on R+. The proof is postponed to Section 10.1.

Lemma 1. For s, σ, ξ > 0, let γ−1
s,σ(ξ) be the (1−e−ξ)-quantile of the gamma

distribution γ(s, σ) and Φ−1(ξ) that of a standard Gaussian random variable.
Then,

(44) γ−1
s,σ(ξ) 6 σ

Ä√
s+

√
ξ
ä2

and for all s = t+ 1 > 1 and ξ > log 2 + 1/(12t),

(45) γ−1
s,σ(ξ) > σ

ñ
t+
ï√

t Φ−1
Å
ξ − 1

12t

ãò
∨
ñ
ξ + log

Ç
e−1/(12t)
√

2πt

åôô
.
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Since Φ−1(ξ) is equivalent to
√

2ξ for large values of ξ > 0, these two
inequalities show that for s and ξ large enough, γ−1

s,σ(ξ) is of order σ [s+ ξ].
In particular, χ−1

k (ξ) = γ−1
k/2,2(ξ) is of order k + ξ for k and ξ large enough.

To compare ourselves with the classical Bayesian paradigm, we prove in
Section 10.2 the result below for our posterior. This result is based on
the assumption that the statistical model M is regular in the sense that is
defined in Ibragimov and Has’minskĭı (1981). In order to avoid too many
technicalities here, we refer the reader to our Section 8.3, more precisely
Corollary 4, for a complete description of the assumptions on the statistical
model M .

Theorem 4. Assume that the statistical model M satisfies the assumptions
of Corollary 4. If X1, . . . , Xn are i.i.d. with distribution Pθ? ∈ M , for all
ξ > 0 and n large enough, with a probability 1− 2e−ξ,

(46) ν̂hX

Åß
θ ∈ Θ, n

∣∣∣J1/2(θ?) (θ − θ?)
∣∣∣2 6 κ? (k + ξ)

™ã
> 1− e−ξ

where κ? is a positive numerical constant.

The set ß
θ ∈ Θ, n

∣∣∣J1/2(θ?) (θ − θ?)
∣∣∣2 6 κ? (k + ξ)

™
possesses the same shape and, by Lemma 1, approximately the same size
as the set Θn,X defined by (43). We deduce from Theorem 4 that the
classical Bayes posterior and ours concentrate both on similar sets. If θ̂n is
an asymptotically efficient estimator of θ?, it is therefore reasonable to look
for a credible region of the formß

θ ∈ Θ, n
∣∣∣J1/2(θ̂n)

Ä
θ − θ̂n

ä∣∣∣2 6 t™ , t > 0

for ν̂hX as we would do for the classical Bayes one.

6.3. Robustness. As already mentioned, our approach allows the statisti-
cian to design robust posteriors by choosing as a loss function the squared
Hellinger loss or the total variation one. In this section, we illustrate this
property on a concrete example. Consider the statistical model M = {Pθ =
N (θ, 1), θ ∈ R} and the prior π associated with the distribution ν = N (0, 1)
on Θ = R. Then, the Bayes posterior on Θ is ν̂KX = N (“mn, σ

2
n) with“mn = (n + 1)−1∑n

i=1Xi and σ2
n = 1/(n + 1). It concentrates on inter-

vals of the form [“mn − c/
√
n+ 1,“mn + c/

√
n+ 1] for c > 0 large enough.

If the distribution of the data is contaminated so that X1, . . . , Xn are i.i.d.
with distribution

P ? =
Å

1− 1
n

ã
P0 + 1

n
N
(
104(n+ 1), 1/n

)
,
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then with a probability at least 1−(1−1/n)n > 1−1/e > 63%, the posterior
concentrates around “mn ≈ 104, hence far away from 0, even though P ? and
P0 are close: ‖P ? − P0‖ 6 1/n.

In this specific framework, the model M is regular, the Fisher information
is constant and positive, ν admits a positive density which is continuous at
θ? = 0 and for all θ, θ′ ∈ Θ, h2(θ, θ′) = 1 − e−|θ−θ

′|2/8. We shall see in
Section 8, more precisely in Corollary 4, that for such regular statistical
models rn(β, P0) 6 κ?/n for some numerical constant κ? > 0, at least for
n large enough. Since h2(P ?, P0) 6 ‖P ? − P0‖ 6 1/n, we deduce from
Corollary 2 that the posterior ν̂hX concentrates on a set of the form{

θ ∈ R, h2(θ, 0) 6 c

n

}
=
®
θ ∈ R, |θ| 6

 
8 log

Å 1
1− c/n

ã´
with c > 0. This set is an interval around 0 of approximate length 1/

√
n,

at least for n sufficiently large. Despite the contamination of the data, the
concentration property of ν̂hX remains thus the same as in the well-specified
case.

7. Applications

7.1. How to choose β in Theorem 1 for a translation model? In this
section, we consider the translation model M = {Pθ = p(· − θ) · µ, θ ∈ R}
where p is a density on R with respect to the Lebesgue measure µ. Our aim
is to estimate the translation parameter θ by using a prior νσ on Θ = R
with a density (with respect to µ) of the form q(·/σ)/σ for some density q
and positive number σ. We evaluate the estimation error by means of the
total variation loss. In order to use our construction we need to tune the
parameter β. In Section 4.2, we suggested to choose β > 1/

√
n satisfying

(18). In order to find such a value of β = β(α), we may proceed as follows.
Consider a symmetric bounded interval I = [−l/2, l/2] ⊂ R of length l > 0
satisfying νσ(I) > 1− α, hence concentrating most of the mass of the prior
νσ. If the set M (β) is large enough to contain {Pθ, θ ∈ I},
(47) π (M (β)) > π ({Pθ, θ ∈ I}) = νσ(I) > 1− α
and β satisfies (18). We deduce from our Corollary 1 that the corresponding
posterior π̂TV

X concentrates with a probability at least 1−2e−ξ/2 on a TV-ball
with a radius of order

(48) inf
P ′∈M (β)

`(P ?, P ′) + 2
Å
β + 2ξ

nβ

ã
6 inf

θ∈I
`(P ?, Pθ) + 2β + 4ξ√

n
= r(β).

The approximation term infθ∈I `(P
?
, Pθ) is small as soon as P ? is close

enough to a distribution Pθ? whose parameter θ? belongs to I. If we want
to prevent us from the situation where argminθ∈Θ `(P

?
, Pθ) is far from 0,

we need to increase I (or equivalently diminish α). What would be the
consequence on the value of β = β(α)? What if we increase σ, to make
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the prior distribution flatter, or diminish σ to make it more picky? Finally,
what is the influence of the choice of the density q on the size of β?

These are the questions we want to answer in this section. In order to
simplify the presentation of our results and avoid technicalities, we make
the change of variables l = 2σt, or equivalently t = l/(2σ) > 0, and assume
the following.

Assumption 6. The density q is positive, symmetric and decreasing on R+.
There exists some nonnegative and nondecreasing function ϕ : [0, 1) → R+
such that

‖P0 − Pθ‖ 6 r ⇐⇒ |θ| 6 ϕ(r) for all r ∈ [0, 1).

When p is symmetric and nonincreasing on R+, the total variation dis-
tance between P0 and Pθ is given by

‖P0 − Pθ‖ = 2P0 ([0, |θ|/2]) for all θ ∈ R.

Our Assumption 6 is then satisfied with ϕ(r) = F−1
0 [(r + 1)/2] for all r ∈

[0, 1), where F−1
0 denotes the quantile function of the distribution P0. We

set

(49) Γ = max
®ñ

sup
0<r61/4

ϕ(2r)
ϕ(r)

ô
q(0), 1

2ϕ(1/4)

´
and assume that this quantity is finite. Note that it only depends on q(0)
and p. For example, if p is the density x 7→ (1/2)e−|x|,

‖P0 − Pθ‖ = 1− exp [−|θ|/2] and ϕ : r 7→ −2 log(1− r).

Since the mapping r 7→ [ϕ(2r)/ϕ(r)] is increasing, we obtain in this case

Γ = 1
log(4/3) max

ß
q(0) log 2, 1

4

™
.

If now p : x 7→ (s/2)(1− |x|)s−11l|x|<1 with s > 0,

‖P0 − Pθ‖ = 1− (1− |θ|/2)s and ϕ : r 7→ 2[1− (1− r)1/s].

The mapping r 7→ ϕ(2r)/ϕ(r) has a continuous extension on [0, 1/4] and is
therefore bounded. Given q(0), Γ is therefore a finite number.

The following result is proven in Section 10.3.

Proposition 4. Assume that Assumption 6 is satisfied and Γ is finite. Let
t be a (1 − α/2)-quantile of q with α 6 1/2. The set M (β) contains the
subset {Pθ, θ ∈ [−σt, σt]} and therefore satisfies (47) if

(50) β > β =

√
1
nγ

max
®

log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
.
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Let us now comment on this result. The quantity β may be written as
C/
√
n with

C =

√
1
γ

max
®

log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
.

Increasing the value of σ or that of t enlarges the interval I = [−σt, σt]. It
also makes the value of C = C(σ, t) larger. Increasing σ makes the prior νσ
flatter and for a fixed value of t > 0, C = C(σ) increases as

√
log σ when σ is

larger than 1. In the other case, for a fixed value of σ, C = C(t) increases as√
log(1/q(2t)). For example, when q is the density of a standard Gaussian

random variable,
√

log(1/q(2t)) is of order t, while for the Laplace and the
Cauchy distributions it is of order

√
t and

√
log t respectively. This result

illustrates the fact that it is safer to use priors with heavy tails when the
size of the location parameter is uncertain. In case of a light-tailed prior,
it may be wise to introduce a scaling parameter σ > 1. By taking σ = 10,
the concentration radius only increases by a factor less than 1.6, while the
interval I is ten times longer.

7.2. Fast rates. We go back to the statistical framework described in Sec-
tion 7.1 and consider the special case of the density p : x 7→ sxs−11l(0,1] with
s ∈ (0, 1]. As before, we choose the TV-loss. In this specific situation,

(51) ‖Pθ − Pθ′‖ =
∣∣θ − θ′∣∣s ∧ 1 for all θ, θ′ ∈ R

and consequently, ϕ(r) = r1/s for all r ∈ [0, 1). Besides, the family T (`,M )
given by (34) satisfies not only Assumption 3 but also Assumption 4 with
a2 = 1. These two facts are proven in Baraud (2021) [Examples 5 and 6]. As
a consequence, Theorem 2 applies. The reader can check that the constants
c = β = 0.1 and γ = 0.01 satisfy the requirements of Theorem 2 and that
its conclusion holds true with κ0 = 144.

In order to be more specific about the concentration radius of our posterior
π̂TV
X , the following proposition provides an upper bound for the quantity
rn(β, Pθ). The proof is postponed to Section 10.4.

Proposition 5. Let t0 be the third quartile of ν1. If the density q is positive,
symmetric and decreasing on [0,+∞), for all θ ∈ R the quantity rn(β, Pθ)
is not larger than

(52) rn(β, Pθ) = 2000
n

max

log

Ñ
Γ (σ ∨ 1)

q
î
2
Ä |θ|
σ ∨ t0

äóé , log 4

 .

Then, our Theorem 2 tells us that for all ξ > 0, with a probability at least
1− 2e−ξ/2, the posterior satisfies

π̂TV
X

Ä
B(P ?, 144r)

ä
> 1− e−ξ/2



30 YANNICK BARAUD

with

(53) r 6 inf
θ∈R

î∥∥∥P ? − Pθ∥∥∥+ rn(β, Pθ)
ó

+ 40ξ
n
.

When the data are i.i.d. with distribution Pθ? , with probability close to 1,
a randomized estimator P

θ̂
with distribution π̂TV

X satisfies with high proba-
bility ∣∣∣θ? − θ̂∣∣∣s ∧ 1 =

∥∥∥Pθ? − Pθ̂∥∥∥ 6 C(ξ, s, q, θ?, σ)
n

.

This inequality implies, at least for n large enough, that∣∣∣θ? − θ̂∣∣∣ 6 C1/s(ξ, s, q, θ?, σ)
n1/s ,

which means that the parameter θ? is estimated at rate n−1/s. This rate
is much faster than the usual (1/

√
n)-parametric one that is reached by

an estimator based on a moment method for instance. For example, when
s = 1/3 and n = 100, a moment estimator provides an accuracy of order
10−1 while that of θ̂ is of order 10−6. Since p is unbounded, note that the
maximum likelihood estimator for θ? does not exist and is therefore useless.

It follows from the work of Le Cam that in a translation model M of
the form {Pθ = p(· − θ) · µ, θ ∈ R}, where p is a density with respect to
the Lebesgue measure µ, it is impossible to estimate a distribution P ? ∈M
from an n-sample at a rate faster than 1/n for the TV-loss. Because of (51),
the rate we get is not only optimal for estimating the distribution Pθ? but
also for estimating the parameter θ? with respect to the Euclidean distance.

An alternative rate-optimal estimator for estimating θ? is that given by
the minimum of the observations. This estimator is unfortunately obvi-
ously non-robust to the presence of an outlier among the sample. Our con-
struction provides an estimator which possesses the property of being both
rate-optimal and robust.

It also interesting to see how the quantity rn(β, Pθ) given in (52) dete-
riorates under a misspecification of the prior νσ, that is, when the size of
the parameter θ? is large compared to σ. When q is Gaussian, rn(β, Pθ?)
increases by a factor of order (θ?/σ)2 while for the Laplace and Cauchy
distributions it is of order |θ?|/σ and log(|θ?|/σ) respectively. From these
results, we conclude as before that the Cauchy distribution possesses some
advantages over the other two distributions when little information is avail-
able on the location of the parameter θ?.

7.3. A general result under entropy. In this section, we equip E = Rk
with the Lebesgue measure µ and the norm |·|∞. We consider the TV-loss
and the location-scale family

(54) M =
ß
P(p,m,σ) = 1

σk
p
( · −m

σ

)
· µ, p ∈M0, m ∈ Rk, σ > 0

™
,
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where M0 is a set of densities on Rk. Given independent observations
X1, . . . , Xn with presumed distribution P ? = P(p?,m?,σ?) ∈ M , our aim
is to estimate the density p? ∈ M0, the location parameter m? ∈ Rk and
the scale parameter σ? > 0, hence the parameter θ? = (p?,m?, σ?) ∈ Θ =
M0 × Rk × (0,+∞). We assume that the set of densities M0 satisfies the
following conditions.

Assumption 7. Let ‹D be a continuous nonincreasing mapping from (0,+∞)
to [1,+∞) such that limη→+∞ η

−2‹D(η) = 0. For all η > 0, there exists a
finite subsetM0[η] ⊂M0 satisfying

(55) |M0[η]| 6 exp
î‹D(η)

ó
such that for all p ∈M0, there exists p ∈M0[η] that satisfies

(56)
∥∥∥P(p,0,1) − P(p,0,1)

∥∥∥ = 1
2

∫
Rk
|p− p| dµ 6 η.

Besides, we assume that there exist A, s > 0 such that for all p ∈ M0,
m ∈ Rk and σ > 1,

(57)
∥∥∥P(p,0,1) − P(p,m,σ)

∥∥∥ 6 ïAÅ(∣∣∣m
σ

∣∣∣
∞

)s
+
Å

1− 1
σ

ãsãò∧
1.

The first part of Assumption 7, which corresponds to inequalities (55)
and (56), aims at measuring the size of the setM0 by means of its entropy.
The entropy of a set controls its metric dimension and usually determines
the minimax rate of convergence over it as shown in Birgé (1983). With
the second part of Assumption 7, namely inequality (57), we require some
regularity properties of the TV-loss with respect to the location and scale
parameters. It will be commented on later. We shall see that this condition
may be satisfied even when the densities inM0 are not smooth.

Let us now turn to the choice of our prior. We first consider a count-
able subset of the parameter space Θ that will be proven to possess good
approximation properties. Namely, we define for η, δ > 0

Θ[η, δ] =
¶(
p, (1 + δ)j0δj, (1 + δ)j0

)
, (p, j0, j) ∈M0[η]× Z× Zk

©
and we associate a positive weight Lθ with any element θ = θ(p, j0, j) ∈
Θ[η, δ] as follows

(58) Lθ = (k + 1)L+ log |M0[η]|+ 2
k∑
i=0

log(1 + |ji|)

with L = log
[
(π2/3)− 1

]
. It is not difficult to check that

∑
θ∈Θ[η,δ] e

−Lθ = 1,
and we may therefore endow M with the (discrete) prior π defined as

(59) π({Pθ}) = e−Lθ for all θ ∈ Θ[η, δ].
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With such a prior, our posterior π̂TV
X given in Corollary 1 possesses the

following properties.

Corollary 3. Let ξ > 0 and K > 1. Assume thatM0 satisfies Assumption 7
and define

η = ηn = inf Dn with Dn =
ß
η > 0, ‹D(η) 6 nη2

24

™
(60)

δ = δn =
( ηn

2A

)1/s
,(61)

β = βn = 1
2

[
Kηn + 2

 
18.6(k + 1)

n

]
(62)

and the subset Mn(K) of M that consists of the elements P(p,m,σ) for which

(63) | log σ| ∨
∣∣∣m
σ

∣∣∣
∞
6 Λn = exp

ï(K2 − 1)nη2
n

48(k + 1) + log log(1 + δn)
ò
.

Then, the posterior π̂TV
X satisfies the following property: there exists a nu-

merical constant κ′0 > 0 such that for all ξ > 0,

(64) E
î
π̂X
Ä

cB(P ?, κ′0rn)
äó
6 2e−ξ

with

(65) rn = inf
P∈Mn(K)

`(P ?, P ) +Kηn +
…
k + 1
n

+ ξ√
n(k + 1)

∧ ξ

Knηn
.

Let us now comment on this result. The radius rn is the sum of three
main terms, omitting the dependency with respect to ξ. The first one,
infP∈Mn(K) `(P

?
, P ), corresponds to the approximation of P ? by an element

of M whose location and scale parameters satisfy the constraints given in
(63). The quantity ηn, involved in the second term, usually corresponds to
the minimax rate for solely estimating a density p ∈M0 from an n-sample.
Finally, the third term

√
(k + 1)/n corresponds to the rate we would get

for solely estimating the location and translation parameters (m, σ) ∈ Rk+1

when the density p is known.
Let us now provide some examples for which our condition (57) is satisfied.

We start with an example where the densities inM0 are smooth.

Lemma 2. Assume that the setM0 consists of densities p that are supported
on [0, 1]k, satisfy supp∈M0 ‖p‖∞ 6 L0 and

(66) sup
p∈M0

∣∣p(x)− p(x′)
∣∣ 6 L1

∣∣x− x′∣∣s for all x,x′ ∈ Rk,

with constants L0, L1 > 0 and s ∈ (0, 1]. Then (57) is satisfied with A =
L1 ∨ [(1 + L1k

s/2 + L0)/2].
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Nevertheless, condition (57) may also be satisfied for familiesM0 of densi-
ties which are not smooth, as shown in Lemma 3 below. It makes it possible
to consider the following example.

Example 6. We consider here the situation where k = 1 andM0 is the set
of all nonincreasing densities on [0, 1] that are bounded by B > 1. Then, M
consists of all the probabilities whose densities are supported on intervals I
with positive lengths, nonincreasing on I and which are bounded by B/µ(I).
Birman and Solomjak (1967) proved that M0 satisfies Assumption 7 with‹D(η) of order (1/η) ∨ 1 (up to some constant that depends on B). We
deduce from (60) that ηn is therefore of order n−1/3. Besides, it follows
from Lemma 3 below that (57) is satisfied with A = B and s = 1. We may
therefore apply Corollary 3. For a value of K large enough compared to 1,
Λn defined by (63) is larger than exp

î
CK2n1/3

ó
for some constant C > 0

(depending on A). In particular, if X1, . . . , Xn are i.i.d. with a density of
the form

x 7→ p?(x) = 1
σ?
p

Å
x−m?

σ?

ã
where p ∈M0, |m?/σ?| 6 exp

î
CK2n1/3

ó
and

exp
î
− exp

î
CK2n1/3

óó
6 σ? 6 exp

î
exp
î
CK2n1/3

óó
,

(64) is satisfied with rn of order C ′n−1/3 where the constant C ′ > 0 only
depends on ξ,K,B but not onm? and σ?. This means that the concentration
properties of π̂X hold true uniformly over a huge range of translation and
scale parameters m and σ when n is large enough.

Lemma 3. Let p be a nonincreasing density on (0,+∞). For all σ > 1

(67) 1
2

∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx 6 Å1− 1

σ

ã
.

If, furthermore, p is bounded by B > 1, for all m ∈ R,

(68) 1
2

∫
R
|p(x)− p(x−m)| dx 6 (|m|B) ∧ 1.

In particular, for all m ∈ R and σ > 1,

(69) 1
2

∫
R

∣∣∣∣ 1σp(x−mσ )
− p(x)

∣∣∣∣ dx 6 ïB ∣∣∣mσ ∣∣∣+
Å

1− 1
σ

ãò
∧ 1.

7.4. Estimating a parameter under sparsity. Let us consider a para-
metric dominated model M =

{
Pθ = pθ · µ, θ ∈ Rk

}
where the dimension

k of the parameters is large. We presume, even though this might not be
true, that the data are i.i.d. with distribution Pθ? ∈ M and that the co-
ordinates of the true parameter θ? = (θ?1, . . . , θ?k) are all zero except for a
small number of them. Our aim is to estimate Pθ? from the observation of
X1, . . . , Xn by using the squared Hellinger loss.
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To tackle this problem, we partition the model M into the sub-models
{Mm, m ⊂ {1, . . . , k}} where Mm consists of those distributions Pθ ∈ M
for which the coordinates of θ = (θ1, . . . , θk) are all zero except those with an
index i ∈ m. We denote by Θm the set of such parameters, so that Mm =
{Pθ, θ ∈ Θm}, and we use the conventions Θ∅ = {0} and M∅ = {P0}.
Given some positive number R > 0, we equip each parameter space Θm,
m ⊂ {1, . . . , k}, with the uniform distribution νm on Θm(R) = [−R,R]k∩Θm

when m 6= ∅ and the Dirac mass ν∅ = δ0 at 0 ∈ Rk when m = ∅. We may
then define on Rk =

⋃
m⊂{1,...,k}Θm, the hierarchical prior

(70) ν =
∑

m⊂{1,...,k}
e−Lmνm with Lm = |m| log k + k log

Å
1 + 1

k

ã
.

We endow M with the σ-algebra and the prior π as described in Sec-
tion 2.1. Besides, we assume that there exists s ∈ (0, 1] and a positive
number Bk = Bk(R), possibly depending on k and R (although we drop the
dependency with respect to R), such that

(71) h2 (Pθ, Pθ′) 6 Bk
∣∣θ − θ′∣∣s∞ for all θ,θ′ ∈ [−R,R]k.

The following result is proven in Section 10.8.

Proposition 6. Assume that

p : E × Rk −→ R+
(x,θ) 7−→ pθ(x)

is measurable. If RB1/s
k > 1 there exists a numerical constant κ′0 > 0 such

that for any distribution P? and ξ > 0

E
î
π̂hX
Ä

cB(P ?, κ′0r)
äó
6 2e−ξ

where

(72) r = inf
m⊂{1,...,k}

[
inf

θ∈Θm(R)
`(P ?, Pθ) +

|m| log
Ä
2kR(nBk)1/s

ä
+ ξ

n

]
.

Let us now comment on this result. First of all, the mapping

R 7→ sup
®
h2 (Pθ, Pθ′)∣∣θ − θ′∣∣s∞ , θ 6= θ,′ θ,θ′ ∈ [−R,R]k

´
being nondecreasing, our condition RB

1/s
k = R[Bk(R)]1/s > 1 is always

satisfied for a value of R sufficiently large.
When Bk does not increase faster than a power of k, the radius r given

in (72) only depends logarithmically on the dimension k of the parameter
space, as expected.
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Let us now illustrate Proposition 6 by choosing some specific models M =
{Pθ, θ ∈ Rk}. If Pθ is the Gaussian distribution with mean θ ∈ Rk and
covariance matrix σ2Ik, where Ik denotes the k × k identity matrix,

h2(Pθ, Pθ′) = 1− exp
ñ
−
∣∣θ − θ′∣∣2

8σ2

ô
6

∣∣θ − θ′∣∣2
8σ2 6

k
∣∣θ − θ′∣∣2∞

8σ2 .

Then, inequality (71) is satisfied with Bk = k/(8σ2) and s = 2. In particular,
our condition RB1/s

k > 1 is equivalent to R > 2σ
√

(2/k). In this case, the
value of r given by (72) is of order

inf
m⊂{1,...,k}

ï
inf

θ∈Θm(R)
`(P ?, Pθ) + |m| log (knR/σ) + ξ

n

ò
.

More generally, if M = {Pθ,θ ∈ Rk} is a regular statistical model with a
nonsingular Fisher information matrix J(θ) for all θ ∈ Rk, we know from
the book of Ibragimov and Has’minskĭı (1981)[Theorem 7.1 p.81] that for
all θ,θ′ ∈ Rk such that θ,θ′ ∈ [−R,R]k

h2(Pθ, Pθ′) 6
∣∣θ − θ′∣∣2

8 sup
θ′′∈Rk,|θ′′|∞6R

tr
(
J(θ′′)

)
.

Then, Assumption (71) holds with s = 2 and we may take

Bk = k2

8 sup
θ′′∈Rk,|θ′′|∞6R

%
(
J(θ′′)

)
where %

(
J(θ′′)

)
denotes the largest eigenvalue of the matrix J(θ′′). This

value is independent of θ′′ when M is a translation model.
Finally note that the second term in (72) only increases logarithmically

with respect to R, at least when Bk = Bk(R) does not increase faster than
a power of R. By taking larger values of R one may therefore consider-
ably enlarge the sizes of the cubes Θm(R), and therefore diminish the ap-
proximation term in (72), while only slightly increasing the second term
[|m| log(2kR(nBk)1/s) + ξ]/n.

8. Some tools for evaluating rn(β, P )

The aim of this section is to provide some mathematical results that al-
low one to bound the quantity rn(β, P ) from above, or at least evaluate its
order of magnitude, when n is sufficiently large. Throughout this section,
we consider a parametric statistical model M = {Pθ, θ ∈ Θ} where the
parameter space Θ ⊂ Rk is endowed with a prior ν which admits a density
q with respect to the Lebesgue measure on Rk. In order to use the defi-
nition (11) of the quantity rn(β, P ), we assume that we have at disposal a
family T (`,M ) that satisfies our Assumption 3, which provides us with a
value of a1 > 0, as well as a value γ that satisfy the requirements of our
main theorems. Our aim is to bound rn(β, P ) as a function of a1, γ, β, k
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and n under suitable assumptions on the density q and the behaviour of the
loss `. Once ` and T (`,M ) are given, a1 and γ can be considered as fixed
numerical constants. The value of β can also be considered as a numerical
constant when Theorem 2 applies. Otherwise, it can be chosen of order√
k/n as in our Example 1.

8.1. Bounding rn(β, Pθ) in parametric models. In what follows, |·|∗
denotes some arbitrary norm on Rk and B∗(x, z) the corresponding closed
ball centered at x ∈ Rk with radius z > 0.

Assumption 8. Let θ? be an element of Θ ⊂ Rk.

(i) There exist positive numbers a, a and s such that
(73) a |θ − θ?|s∗ 6 `(θ,θ

?) 6 a |θ − θ?|s∗ for all θ ∈ Θ.
(ii) There exists a positive nonincreasing function υθ on R+ such that

(74) ν(B∗(θ?, 2x)) 6 υθ?(x)ν(B∗(θ?, x)) for all x > 0.

Under Assumption 8-(i), the loss function behaves like a power of a norm
between the parameters.

The following result is an extension of Proposition 10 in Baraud and
Birgé (2020). It was established there for the special case of the squared
Hellinger loss and we provide here an extension to an arbitrary one. Since
the proof follows the same lines, we omit it.

Proposition 7. Under Assumption 8,

rn(β, Pθ?) 6 inf
{
r >

1
nβa1

, r >
%0 log

î
υθ?
Ä
[r/a]1/s

äó
γnβa1

}
(75)

with %0 = 1 + log(2a/a)/[s log 2]. If υθ? ≡ υ > 0, then

(76) rn(β, Pθ?) 6
(%0 log υ) ∨ 1

a1nγβ
.

If Assumption 8-(i) is satisfied and if the parameter space Θ is convex
and q satisfies
(77) b 6 q(θ) 6 b for all θ ∈ Θ with 0 < b 6 b,

then Assumption 8-(ii) holds with υθ? ≡ 2k(b/b). Consequently,

(78) rn(β, Pθ?) 6
%1
a1γ

k

nβ
with %1 =

[
%0 log

(
2
[
b/b
]1/k)] ∨ 1.

When Assumption 8-(i) is satisfied and ν admits a density which is bounded
away from 0 and infinity on a convex parameter space Θ ⊂ Rk, rn(β, Pθ) is
of order k/(nβ) for all θ ∈ Θ. This result may also hold true when the den-
sity is not bounded away from infinity as shown in the following example. If
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k = 1, Θ = [−1, 1] and q : θ 7→ (t/2)|θ|t−11l[−1,1](θ) with t ∈ (0, 1), Assump-
tion 8-(ii) holds with υθ ≡ 21+t (2t − 1

)−1 for all θ ∈ [−1, 1] – see Baraud
and Birgé (2020)[Proposition 11]. Then (76) still applies. In the other di-
rection, when the density q takes very small values in the neighbourhood of
the parameter θ, the function υθ may take large values around 0. This is for
example the case when q is proportional to θ 7→ exp

[
−1/

(
2|θ|t

)]
1l[−1,1](θ),

t > 0, and θ = 0. It follows from Baraud and Birgé (2020)[Proposition 12]
(and its proof) that Assumption 8-(ii) is satisfied with υθ : x 7→ exp(c(t)/xt)
for some quantity c(t) > 0. Applying (75) leads to an upper bound on
rn(β, Pθ) of order (nβ)−s/(s+t).

8.2. Some asymptotic order of magnitude. In Section 8.2, we have
given some general tools for controlling the quantity rn(β, Pθ) for a given
value of n. In this section, we present some sufficient conditions under
which rn(β, Pθ) is of order k/(nβ) at least when n is large enough. These
conditions are not the weakest possible ones but they have the advantage to
be relatively easy to check on many examples.

Assumption 9. The density q is continuous and positive at θ? ∈ Θ. The
loss function ` satisfies the following properties for some positive number
s > 0 and a norm |·|∗ on Rk.

(i) For all ε > 0, there exists z = z(ε) > 0 such that
(1− ε) |θ − θ?|s∗ 6 `(θ,θ

?) 6 (1 + ε) |θ − θ?|s∗ for all θ ∈ B∗(θ?, z).
(ii) There exists a subset K ⊂ Θ, the interior of which contains θ?,
that satisfies for some positive numbers aK and η:

(79) aK |θ − θ?|
s
∗ 6 `(θ,θ

?) for θ ∈ K and for θ 6∈ K `(θ,θ?) > η > 0.

Under these assumptions, we establish the following proposition, the proof
of which is postponed to Section 10.10.

Proposition 8. Under Assumption 9, at least for n sufficiently large,

(80) rn (β, Pθ?) 6
(1 + 1/s)
a1γ

k

nβ
.

8.3. The case of the squared Hellinger loss on a regular statistical
model. Of particular interest is the situation where the statistical model
M = {Pθ, θ ∈ Θ}, Θ ⊂ Rk, is regular. There exist several ways of defining
a regular model in statistics and we adopt here the definition of Ibragimov
and Has’minskĭı (1981).

Definition 1. Let µ be a measure on (E, E) and Θ an open subset of Rk.
The statistical model M = {Pθ = pθ · µ, θ ∈ Θ} is said to be regular if the
family of functions {ζθ = √pθ, θ ∈ Θ} ⊂ L2(E, E , µ) satisfies the following
properties.
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(i) For µ-almost all x ∈ E, θ 7→ ζθ(x) is continuous.
(ii) For all θ ∈ Θ, there exists ζ̇θ = (ζ̇θ,1, . . . , ζ̇θ,k) : E → Rk such
that ∫

E

∣∣ζ̇θ(x)
∣∣2 dµ(x) < +∞

and∫
E

∣∣ζθ+ε(x)− ζθ(x)− 〈ζ̇θ(x), ε〉
∣∣2 dµ(x) = o(|ε|2) when |ε| → 0.

(iii) For all i ∈ {1, . . . , k}, the mapping θ 7→ ζ̇θ,i is continuous in
L2(E, E , µ).

When the model is regular, the matrix

J(θ) =
Å

4
∫
E
ζ̇θ,i(x)ζ̇θ,j(x)dµ(x)

ã
16i6k
16j6k

,

is called the Fisher information matrix.

The matrix J(θ) is symmetric and nonnegative and we may therefore
consider its square root J1/2(θ), that is, the symmetric (k× k)-nonnegative
matrix that satisfies J1/2(θ)J1/2(θ) = J(θ).

Regular statistical models enjoy nice metric properties that are described
in Proposition 9 below. For a proof we refer the reader to Ibragimov and
Has’minskĭı (1981) – Lemma 7.1 page 65, Theorem 7.6 page 81 and its proof.

Proposition 9. Let Θ be an open subset of Rk and θ? ∈ Θ. If M =
{Pθ = pθ · µ, θ ∈ Θ} is regular and the Fisher information matrix J(θ?)
nonsingular at θ? ∈ Θ, Assumption 9-(i) is satisfied with ` = h2, s = 2 and
for the norm |·|∗ defined by

(81) |x|∗ = 1√
8

∣∣∣J1/2(θ?)x
∣∣∣ for all x ∈ Rk.

Besides, for any compact subset K ⊂ Θ there exist positive numbers aK, aK
such that

(82) aK |θ − θ?|
2
∗ 6 h

2 (θ,θ?) 6 aK |θ − θ?|2∗ for all θ ∈ K.

Using Proposition 8, we immediately infer the following result.

Corollary 4. Let Θ be an open subset of Rk. Assume that M = {Pθ = pθ ·
µ, θ ∈ Θ} is regular and the Fisher information matrix J(θ?) nonsingular at
θ? ∈ Θ ⊂ Rk. Assume that there exists a compact set K ⊂ Θ, containing θ?
in its interior, such that h(θ,θ?) > η > 0 for all θ 6∈ K. Assume furthermore
that the density q is continuous and positive at θ?. Then, rn(β, Pθ?) 6
[3/(2a1γβ)](k/n), at least for n sufficiently large.
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9. Proofs of Theorems 1, 2 and 3

Throughout this proof we fix some Q ∈M , r, β > 0 and use the following
notation: c1 = 1 + c, c2 = 2 + c,

V(π,Q) =
{
r > 0, π

(
B(Q, r)

)
> 0
}

and for r ∈ V(π,Q) , B = B(Q, r) and πB = [π(B)]−1 1lB · π.

9.1. Main parts of the proofs of Theorems 1 and 2. Throughout the
proofs of these two theorems we fix some positive number z, that will be
chosen later on, r > rn(β,Q) and set

A =
ß∫

M
exp [−βT(X, P )] dπ(P ) > z

™
.

It follows from the definition (7) of π̂X that for all J ∈ N

E
î
π̂X
Ä

cB(Q, 2Jr)
äó

= E
î
π̂X
Ä

cB(Q, 2Jr)
ä

1lcA

ó
+ E
î
π̂X
Ä

cB(Q, 2Jr)
ä

1lA
ó

6 P(cA) + 1
z
E
ï∫

cB(Q,2Jr)
exp [−βT(X, P )] dπ(P )

ò
= P(cA) + 1

z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P ).(83)

In a first step, we prove that for some well chosen values of β, z, r and for J
large enough, each of the two terms in the right-hand side of (83) is not larger
than e−ξ. To achieve this goal, we bound the first term of the right-hand
side of (83) by applying Markov’s inequality

P(cA) = P
ï∫

M
exp [−βT(X, P )] dπ(P ) 6 z

ò
= P
ñï∫

M
exp [−βT(X, P )] dπ(P )

ò−1
> z−1

ô
6 zE

ï 1∫
M exp [−βT(X, P )] dπ(P )

ò
and then by using Lemma 6, we obtain that

P(cA) 6 z

π2(B)

ï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1

.(84)

We therefore have a control of P(cA) by choosing z small enough. We bound
the second term of (83) by using Lemma 5.

We then finish the proofs of Theorems 1 and 2 as follows. In the context
of Theorem 1, we finally establish that for a suitable value of J and all
Q ∈M (β),

E
î
π̂X
Ä

cB(Q, 2Jr)
äó
6 2e−ξ with r = r(Q) = `(P ?, Q) + a−1

1

Å
β + 2ξ

nβ

ã
.
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By (3), B(Q, 2Jr) ⊂ B(P ?, τ`(P ?, Q) + τ2Jr) for all Q ∈ M (β), and con-
sequently E

î
π̂X
Ä

cB(P ?, r
äó
6 2e−ξ with

r = r(Q) = τ
î
`(P ?, Q) + 2Jr

ó
= τ

ï
(1 + 2J)`(P ?, Q) + 2Ja−1

1

Å
β + 2ξ

nβ

ãò
.

We obtain (16) by monotone convergence, taking a sequence (QN )N>0 ⊂
M (β) such that `(P ?, QN ) is nonincreasing to infP∈M (β) `(P

?
, P ), so that

lim
N→+∞

r(QN ) = τ

ñ
(1 + 2J) inf

Q∈M (β)
`(P ?, Q) + 2Ja−1

1

Å
β + 2ξ

nβ

ãô
6 τ(1 + 2J)

ñ
inf

Q∈M (β)
`(P ?, Q) + a−1

1

Å
β + 2ξ

nβ

ãô
and (16) holds provided that κ0 > τ(2J + 1).

In the context of Theorem 2, we show that for some suitable value of J
and all Q ∈M ,

E
î
π̂X
Ä

cB(Q, 2Jr)
äó
6 2e−ξ with r = `(P ?, Q) + rn(Q, β) + 2ξ

nβa1
,

and we get (28) by arguing similarly.

9.2. Preliminary results. In the proofs of Theorems 1 and 2, we use the
following consequence of our Assumption 3. We may write

1
n

n∑
i=1

E
[
t(P,Q)(Xi)

]
= ES

[
t(P,Q)(X)

]
with S = P

? = 1
n

n∑
i=1

P ?i ∈P

and we deduce from (5) that for all P,Q ∈M ,

(85) 1
n

n∑
i=1

E
[
t(P,Q)(Xi)

]
6 a0`(P

?
, P )− a1`(P

?
, Q).

Besides, using the antisymmetry property (ii) we also obtain that

(86) 1
n

n∑
i=1

E
[
t(P,Q)(Xi)

]
> a1`(P

?
, P )− a0`(P

?
, Q).

For the proof of Theorems 2, we additionnally use the following conse-
quence of our Assumption 4. By taking S = P

? and using the convexity of
the mapping u 7→ u2, we deduce that for all P,Q ∈M

1
n

n∑
i=1

Var
[
t(P,Q)(Xi)

]
= ES

î
t2(P,Q)(X)

ó
− 1
n

n∑
i=1

(
E
[
t(P,Q)(Xi)

])2
6 ES

î
t2(P,Q)(X)

ó
−
(
ES
[
t(P,Q)(X)

])2
= VarS

[
t(P,Q)(X)

]
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and it follows then from Assumption 4 (iv) that for all P,Q ∈M

(87) 1
n

n∑
i=1

Var
[
t(P,Q)(Xi)

]
6 a2

î
`(P ?, P ) + `(P ?, Q)

ó
.

The proofs of our main results rely on the following lemmas.

Lemma 4. Let (U, V ) be a pair of random variables with values in a product
space (E×F, E⊗F) and marginal distributions PU and PV respectively. For
all measurable function h on (E × F, E ⊗ F),

EU
ï 1
EV [exp [−h(U, V )]]

ò
6
ï
EV
ï 1
EU [exp [h(U, V )]]

òò−1
.

This lemma is proven in Audibert and Catoni (2011) [Lemma 4.2, page
28].

Lemma 5. For P,Q ∈M , we set

M(P,Q) = log
ï∫

M
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]
dπ(Q′)

]ò
.

For all r ∈ V(π,Q) and P ∈M ,

E [exp [−βT(X, P )]] 6 1
π(B)

ï∫
B

exp [−M(P,Q)] dπB(Q)
ò−1

.(88)

Proof. Let r ∈ V(π,Q). For P,Q ∈M , we set

I(X, P,Q) = c1βT(X, P,Q)− log
∫

M
exp

[
cβT(X, P,Q′)

]
dπ(Q′).

Then,

E [exp [−I(X, P,Q)]]

= E
ï
exp
ï
−c1βT(X, P,Q) + log

∫
M

exp
[
cβT(X, P,Q′)

]
dπ(Q′)

òò
= E
ï∫

M
exp

[
cβT(X, P,Q′)− c1βT(X, P,Q)

]
dπ(Q′)

ò
= exp [M(P,Q)] .(89)
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Since λ = c1β = (1 + c)β, it follows from the convexity of the exponential
that

E [exp [−βT(X, P )]] = E
ï
exp
ï∫

M
[−βT(X, P,Q)]dπ̃X(Q|P )

òò
6 E
ï∫

M
exp [−βT(X, P,Q)] dπ̃X(Q|P )

ò
= E
ï ∫

M exp [cβT(X, P,Q)] dπ(Q)∫
M exp [c1βT(X, P,Q)] dπ(Q)

ò
6 E
ï ∫

M exp [cβT(X, P,Q)] dπ(Q)∫
B exp [c1βT(X, P,Q)] dπ(Q)

ò
.

Hence,

E [exp [−βT(X, P )]] 6 E
ï 1∫

B exp [I(X, P,Q)] dπ(Q)

ò
= 1
π(B)E

ï 1∫
B exp [I(X, P,Q)] dπB(Q)

ò
.

Applying Lemma 4 with U = X, V = Q with distribution πB, and h(U, V ) =
−I(X, P,Q), we obtain that

E [exp [−βT(X, P )]] 6 1
π(B)

ï∫
B

1
E [exp [−I(X, P,Q)]]dπB(Q)

ò−1

and (88) follows from (89). �

Lemma 6. For P,Q ∈M , we set

L(P,Q) = log
∫

M
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′).

For all r ∈ V(π,Q),

E
ï 1∫

M exp [−βT(X, P )] dπ(P )

ò
6

1
π2(B)

ï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1

.

Proof. For P,Q ∈M , we set

H(X, P,Q) = βc1T(X, P,Q)− log
ï∫

M
exp

[
c2βT(X, P,Q′)

]
dπ(Q′)

ò
.
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Then,

E [exp [−H(X, P,Q)]]

= E
ï
exp [−βc1T(X, P,Q)]

∫
M

exp
[
c2βT(X, P,Q′)

]
dπ(Q′)

ò
= E
ï∫

M
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]
dπ(Q′)

ò
= exp [L(P,Q)] .(90)

It follows from the convexity of the exponential and the fact that λ = c1β
that for all P ∈M ,

E [exp [βT(X, P )]] = E
ï
exp
ï∫

M
[βT(X, P,Q)]dπ̃X(Q|P )

òò
6 E
ï∫

M
exp [βT(X, P,Q)] dπ̃X(Q|P )

ò
= E
ï∫

M exp [c2βT(X, P,Q)] dπ(Q)∫
M exp [c1βT(X, P,Q)] dπ(Q)

ò
= E
ï 1∫

M exp [H(X, P,Q)] dπ(Q)

ò
.

Applying Lemma 4 with U = X, V = Q with distribution π, and h(U, V ) =
−H(X, P,Q) we obtain that

E [exp [βT(X, P )]] 6
ï∫

M

1
E [exp [−H(X, P,Q)]]dπ(Q)

ò−1
.

We deduce from (90) that for all P ∈M

E [exp [βT(X, P )]] 6
ï∫

M
exp [−L(P,Q)] dπ(Q)

ò−1

6
1

π(B)

ï∫
B

exp [−L(P,Q)] dπB(Q)
ò−1

.(91)

Applying Lemma 4 with U = X, V = P with distribution π and h(U, V ) =
βT(X, P ), gives

E
ï 1∫

M exp [−βT(X, P )] dπ(P )

ò
6
ï∫

M

1
E [exp [βT(X, P )]]dπ(P )

ò−1

6
1

π(B)

ï∫
B

1
E [exp [βT(X, P )]]dπB(P )

ò−1

which together with (91) leads to the result.
�
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The proofs of Theorems 1 and 2 rely on suitable bounds on the Laplace
transforms of sums of independent random variables and on a summation
lemma. These results are presented below.

Lemma 7. For all β ∈ R and random variable U with values in an interval
of length l ∈ (0,+∞),

(92) logE [exp [βU ]] 6 βE [U ] + β2l2

8 .

Lemma 8. Let U be a squared integrable random variable not larger than
b > 0. For all β > 0,

(93) logE [exp [βU ]] 6 βE [U ] + β2E
[
U2] φ(βb)

2 ,

where φ is defined by (24).

The proofs of Lemmas 7 and 8 can be found on pages 21 and 23 in
Massart (2007) (where our function φ is defined as twice his).

Lemma 9. Let J ∈ N, γ > 0 and Q ∈M . If r satisfies nβa1r > 1 and (12),
for all γ0 > 2γ ∫

cB(Q,2Jr)
exp

[
−γ0nβa1`(Q,P )

]
dπ(P )

6 π (B) exp
î
Ξ− (γ0 − 2γ)nβa12Jr

ó
(94)

with

Ξ = −γ + log
ï 1

1− exp [− (γ0 − 2γ)]

ò
Besides, ∫

M
exp

[
−γ0nβa1`(Q,P )

]
dπ(P ) 6 π(B) exp

[
Ξ′
]

(95)

with

Ξ′ = log
ï
1 + exp [− (γ0 − γ)]

1− exp [− (γ0 − 2γ)]

ò
.

Proof. From (12), we deduce by induction that for all j > 0

π
(
B(Q, 2j+1r)

)
6 exp

[
γnβa1r

j∑
k=0

2k
]
π (B)

= exp
[
(2j+1 − 1)γnβa1r

]
π (B)
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Consequently,

∫
cB(Q,2Jr)

exp
[
−γ0nβa1`(Q,P )

]
dπ(P )

=
∑
j>J

∫
B(Q,2j+1r)\B(Q,2jr)

exp
[
−γ0βna1`(Q,P )

]
dπ(P )

6 π (B)
∑
j>J

π
(
B(Q, 2j+1r)

)
π (B) exp

[
−γ0nβa12jr

]
6 π (B)

∑
j>J

exp
[
γnβa1(2j+1 − 1)r − γ0nβa12jr

]
= π (B) exp [−γnβa1r]

∑
j>J

exp
[
− (γ0 − 2γ)nβa12jr

]
= π (B) exp [−γnβa1r]

∑
j>0

exp
î
− (γ0 − 2γ)nβa12j2Jr

ó
.

Since 2j > j + 1 for all j > 0 we obtain that

∫
cB(Q,2Jr)

exp
[
−γ0nβa1`(Q,P )

]
dπ(P )

6 π (B) exp [−γnβa1r]
∑
j>0

exp
î
− (γ0 − 2γ)nβa1(j + 1)2Jr

ó
6 π (B) exp

î
−γnβa1r − (γ0 − 2γ)nβa12Jr

ó∑
j>0

exp
î
−j (γ0 − 2γ)nβa12Jr

ó
= π (B) exp [−γnβa1r]

1− exp [− (γ0 − 2γ)nβa12Jr] exp
î
− (γ0 − 2γ)nβa12Jr

ó
.

which leads to (94) since nβa12Jr > nβa1r > 1. Finally, by applying this
inequality with J = 0 we obtain that

∫
M

exp
[
−γ0βna1`(Q,P )

]
dπ(P )

=
∫

B
exp

[
−γ0βna1`(Q,P )

]
dπ(P ) +

∫
cB

exp
[
−γ0βna1`(Q,P )

]
dπ(P )

6 π(B)
ï
1 + exp [−γ − (γ0 − 2γ)nβa1r]

1− exp [− (γ0 − 2γ)]

ò
6 π(B)

ï
1 + exp [− (γ0 − γ)]

1− exp [− (γ0 − 2γ)]

ò
,

which is (95). �
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9.3. Proof of Theorem 1. For all i ∈ {1, . . . , n} and P,Q,Q′ ∈M , let us
set

Ui = c
(
t(P,Q′)(Xi)− E

[
t(P,Q′)(Xi)

])
(96)

− c1
(
t(P,Q)(Xi)− E

[
t(P,Q)(Xi)

])
Vi = c2

(
t(P,Q′)(Xi)− E

[
t(P,Q′)(Xi)

])
(97)

− c1
(
t(P,Q)(Xi)− E

[
t(P,Q)(Xi)

])
.

The random variables Ui are independent and under Assumption 3-(iv),
they takes their values in an interval of length l1 = c + c1 = 1 + 2c. The
Vi are also independent and they takes their values in an interval of length
l2 = c1 + c2 = 3 + 2c. Applying Lemma 7, we obtain that

n∏
i=1

E [exp [βUi]] 6 exp
ï
l21nβ

2

8

ò
(98)

and
n∏
i=1

E [exp [βVi]] 6 exp
ï
l22nβ

2

8

ò
.(99)

By using Assumption 2 and the fact that c0 = c1 − ca0/a1 > 0,

c
Ä
a0`(P

?
, P )− a1`(P

?
, Q′)
ä
− c1

Ä
a1`(P

?
, P )− a0`(P

?
, Q)
ä

= − (c1a1 − ca0) `(P ?, P )− ca1`(P
?
, Q′) + c1a0`(P

?
, Q)

6 −c0a1
î
τ−1`(Q,P )− `(P ?, Q)

ó
− ca1

î
τ−1`(Q,Q′)− `(P ?, Q)

ó
+ τc1a0

î
`(P ?, Q) + `(Q,Q)

ó
= e0a1`(P

?
, Q)− τ−1c0a1`(Q,P )− τ−1ca1`(Q,Q′) + τc1a0`(Q,Q)(100)

with

(101) e0 = c0 + c+ τc1a0
a1

.

It follows from (100) and Assumptions 3-(iii), more precisely its conse-
quences (85) and (86), that

n−1 {cE [T(X, P,Q′)
]
− c1E [T(X, P,Q)]

}
6 c
î
a0`(P

?
, P )− a1`(P

?
, Q′)
ó
− c1

î
a1`(P

?
, P )− a0`(P

?
, Q)
ó

6 e0a1`(P
?
, Q)− τ−1c0a1`(Q,P )− τ−1ca1`(Q,Q′) + τc1a0`(Q,Q).(102)
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Since a0 > a1 and c2 > c1, c′0 = c2(a0/a1) − c1 > 0 and by arguing as
above, we obtain similarly that

n−1 {c2E
[
T(X, P,Q′)

]
− c1E [T(X, P,Q)]

}
6 c2

Ä
a0`(P

?
, P )− a1`(P

?
, Q′)
ä
− c1

Ä
a1`(P

?
, P )− a0`(P

?
, Q)
ä

= c′0a1`(P
?
, P )− c2a1`(P

?
, Q′) + c1a0`(P

?
, Q)

6 τc′0a1
î
`(P ?, Q) + `(Q,P )

ó
− c2a1

î
τ−1`(Q,Q′)− `(P ?, Q)

ó
+ τc1a0

î
`(P ?, Q) + `(Q,Q)

ó
6 (e1 + c2) a1`(P

?
, Q) + τc′0a1`(Q,P )

− τ−1c2a1`(Q,Q′) + τc1a0`(Q,Q),(103)

with

(104) e1 = τ
[
c′0 + c1a0/a1

]
= τ [c2(a0/a1) + c1 (a0/a1 − 1)] .

Using (98) and (102), we deduce that for all P,Q,Q′ ∈M

E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
=

n∏
i=1

E
[
exp

[
β
(
ct(P,Q′)(Xi)− c1t(P,Q)(Xi)

)]]
= exp

[
β
(
cE
[
T(X, P,Q′)

]
− c1E [T(X, P,Q)]

)] n∏
i=1

E [exp [βUi]]

6 exp
[
nβ
[
∆1(P,Q)− τ−1ca1`(Q,Q′)

]]
(105)

with

∆1(P,Q) = e0a1`(P
?
, Q) + τc1a0`(Q,Q) + l21β

8 − τ
−1c0a1`(Q,P ).(106)

Using (99) and (103), we obtain similarly that for all P,Q,Q′ ∈M

E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
6 exp

[
nβ
[
∆2(P,Q)− τ−1c2a1`(Q,Q′)

]]
(107)

with

∆2(P,Q) = (e1 + c2) a1`(P
?
, Q) + τc′0a1`(Q,P ) + τc1a0`(Q,Q)

+ l22β

8 .(108)

Since 2γ < τ−1c < τ−1c2, we may apply Lemma 9 with γ0 = τ−1c and
γ0 = τ−1c2 successively which leads to∫

M
exp

[
−τ−1cnβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) exp [Ξ1](109)
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and ∫
M

exp
[
−τ−1c2nβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) exp [Ξ1](110)

with

Ξ1 = log
ñ
1 +

exp
[
−
(
τ−1c− γ

)]
1− exp [− (τ−1c− 2γ)]

ô
(111)

> log
ñ
1 +

exp
[
−
(
τ−1c2 − γ

)]
1− exp [− (τ−1c2 − 2γ)]

ô
.

Putting (107) and (110) together leads to

exp [L(P,Q)] =
∫

M
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp [nβ∆2(P,Q)]
∫

M
exp

[
−τ−1c2nβa1`(Q,Q′)

]
dπ(Q′)

6 π (B) exp [Ξ1 + nβ∆2(P,Q)] ,

and since, for all (P,Q) ∈ B2, by definition (108) of ∆2(P,Q),

∆2(P,Q) 6 (e1 + c2) a1`(P
?
, Q) +

[
τc′0a1 + τc1a0

]
r + l22β

8

= (e1 + c2) a1`(P
?
, Q) + e1a1r + l22β

8 = ∆2(112)

we derive thatï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1
6 π (B) exp [Ξ1 + nβ∆2] .

We deduce from (84) that

P(cA) 6 z

π (B) exp [Ξ1 + nβ∆2] .

In particular, P(cA) 6 e−ξ for z satisfying

log
Å1
z

ã
= ξ + log 1

π(B) + Ξ1 + nβ∆2.(113)

Putting (105) and (109) together, we obtain that

exp [M(P,Q)]

=
∫

M
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp [nβ∆1(P,Q)]
∫

M
exp

[
−τ−1cnβa1`(Q,Q′)

]
dπ(Q′)

6 π (B) exp [Ξ1 + nβ∆1(P,Q)] .
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It follows from the definition (106) of ∆1(P,Q) that for all P ∈M and for
all Q ∈ B,

∆1(P,Q) 6 e0a1`(P
?
, Q) + τc1a0r + l21β

8 − τ
−1c0a1`(Q,P ),

and consequently, for all P ∈M and Q ∈ B

exp [M(P,Q)]

6 π (B) exp
ï
Ξ1 + nβ

Å
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − τ
−1c0a1`(Q,P )

ãò
.

We derive from Lemma 5 that

E [exp [−βT(X, P )]]

6
1

π(B)

ï∫
B

exp [−M(P,Q)] dπB(Q)
ò−1

6 exp
ï
Ξ1 + nβ

Å
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − τ
−1c0a1`(Q,P )

ãò
,

hence, ∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )(114)

6 exp
ï
Ξ1 + nβ

Å
e0a1`(P

?
, Q) + τc1a0r + l21β

8

ãò
×
∫

cB(Q,2Jr)
exp

[
−τ−1c0nβa1`(Q,P )

]
dπ(P ).

Applying Lemma 9 with γ0 = τ−1c0 > 2γ and setting e2 = τ−1c0 − 2γ, we
get∫

cB(Q,2Jr)
exp

[
−τ−1c0nβa1`(Q,P )

]
dπ(P ) 6 π (B) exp

î
Ξ2 − e2nβa12Jr

ó
with

(115) Ξ2 = −γ + log
ï 1

1− exp [−e2]

ò
,

which together with (114) leads to

log
∫

cB(Q,2Jr)
E [exp [−βT(X, P )]] dπ(P )

6 log [π (B)] + Ξ1 + Ξ2

+ nβ

ï
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − e2a12Jr
ò
.(116)
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Using the definitions (113) of z and (112) of ∆2 we deduce from (116) that

log
ï1
z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò

6 log
Å1
z

ã
+ log [π (B)] + Ξ1 + Ξ2

+ nβ

ï
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − e2a12Jr
ò

= ξ + log 1
π(B) + Ξ1 + nβ∆2 + log [π (B)] + Ξ1 + Ξ2

+ nβ

ï
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − e2a12Jr
ò

= nβ

ï
(e1 + c2 + e0) a1`(P

?
, Q) + e1a1r + l22β

8 + +τc1a0r + l21β

8

ò
+ ξ + 2Ξ1 + Ξ2 − e2nβa12Jr

= nβ

ï
(e0 + e1 + c2) a1`(P

?
, Q) +

ï
e1 + τc1a0

a1

ò
a1r + (l21 + l22)β

8

ò
+ ξ + 2Ξ1 + Ξ2 − e2nβa12Jr.(117)

Setting,
C1 = e0 + e1 + c2 and C2 = e1 + τc1a0

a1
,

we see that the right-hand side of (117) is not larger than −ξ, provided that

e2nβa12Jr > 2ξ + 2Ξ1 + Ξ2 + nβ

ï
C1a1`(P

?
, Q) + C2a1r + (l21 + l22)β

8

ò
or equivalently if

2J > 1
e2

ñ
2ξ + 2Ξ1 + Ξ2

βna1r
+ C1`(P

?
, Q)

r
+ C2 +

[
l21 + l22

]
β

8a1r

ô
.(118)

ChoosingQ in M (β) and using the inequalities a−1
1 β > rn(β,Q) > 1/(βna1),

for
r = `(P ?, Q) + 1

a1

Å
β + 2ξ

nβ

ã
>

1
βna1

we obtain that the right-hand side of (118) satisfies

1
e2

ñ
2ξ + 2Ξ1 + Ξ2

βna1r
+ C1`(P

?
, Q) + C2r

r
+
[
l21 + l22

]
β

8a1r

ô
6

1
e2

ï
C2 + 2Ξ1 + Ξ2 + C3

r

Å
`(P ?, Q) + 1

a1

Å
β + 2ξ

nβ

ããò
= 1
e2

[C2 + 2Ξ1 + Ξ2 + C3]
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with C3 = max{1, C1,
[
l21 + l22

]
/8}. Inequality (118) is therefore satisfied for

J ∈ N such that

2J > C2 + 2Ξ1 + Ξ2 + C3
e2

∨ 1 > 2J−1,

and we may take

κ0 = τ

ï2 (C2 + 2Ξ1 + Ξ2 + C3)
e2

∨ 1 + 1
ò
> τ
Ä
2J + 1

ä
.(119)

We recall below, the list of constants depending on a0, a1, c, τ and γ and we
have used along the proof.

c0 = 1 + c− ca0
a1
, c1 = 1 + c, c2 = 2 + c,

c′0 = c2a0
a1
− c1, l1 = 1 + 2c, l2 = 3 + 2c,

e0 = c0 + c+ τc1a0
a1

, e1 = τ

ï
c′0 + c1

a0
a1

ò
, e2 = τ−1c0 − 2γ,

C1 = e0 + e1 + c2, C2 = e1 + τc1a0
a1

, C3 = max
ß

1, C1,
l21 + l22

8

™
,

and

Ξ1 = log
ñ
1 +

exp
[
−
(
τ−1c− γ

)]
1− exp [− (τ−1c− 2γ)]

ô
, Ξ2 = −γ + log

ï 1
1− exp [−e2]

ò
.

9.4. Proof of Theorem 2. The proof follows the same lines as that of The-
orem 1. Under Assumption 3-(iv), the random variables Ui and Vi defined
by (96) and (97) are not larger than with b = c+c1 = l1 and b = c2 +c1 = l2
respectively. Since under Assumption 4, more precisely its consequence (87),
that

1
n

n∑
i=1

E
[
U2
i

]
6 2
ñ
c2

n

n∑
i=1

Var
[
t(P,Q′)(Xi)

]
+ c2

1
n

n∑
i=1

Var
[
t(P,Q)(Xi)

]ô
6 2a2

î
(c2 + c2

1)`(P ?, P ) + c2`(P ?, Q′) + c2
1`(P

?
, Q)
ó

and

1
n

n∑
i=1

E
[
V 2
i

]
6 2a2

î
(c2

2 + c2
1)`(P ?, P ) + c2

2`(P
?
, Q′) + c2

1`(P
?
, Q)
ó
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we may apply Lemma 8 and using the notation Λ1 = τφ(βl1), Λ2 = τφ(βl2)
and Assumption 1, we get

1
nβ

log
ñ
n∏
i=1

E [exp [βUi]]
ô

6 φ(βl1)βa2
î
(c2 + c2

1)`(P ?, P ) + c2`(P ?, Q′) + c2
1`(P

?
, Q)
ó

6 2Λ1βa2
[
c2 + c2

1
]
`(P ?, Q)

+ Λ1βa2
[
(c2 + c2

1)`(Q,P ) + c2`(Q,Q′) + c2
1`(Q,Q)

]
(120)

and similarly

1
nβ

log
ñ
n∏
i=1

E [exp [βVi]]
ô

6 2Λ2βa2
[
c2

2 + c2
1
]
`(P ?, Q)

+ Λ2βa2
[
(c2

2 + c2
1)`(Q,P ) + c2

2`(Q,Q′) + c2
1`(Q,Q)

]
.(121)

It follows from (102) that

E1 = n−1 {cE [T(X, P,Q′)
]
− c1E [T(X, P,Q)]

}
+ 2Λ1βa2

[
c2 + c2

1
]
`(P ?, Q)

+ Λ1βa2
[
(c2 + c2

1)`(Q,P ) + c2`(Q,Q′) + c2
1`(Q,Q)

]
6
[
e0a1 + 2Λ1βa2

(
c2 + c2

1
)]
`(P ?, Q)

−
[
τ−1c0a1 − Λ1βa2(c2 + c2

1)
]
`(Q,P )

−
[
τ−1ca1 − Λ1βa2c

2] `(Q,Q′)
+
[
τc1a0 + Λ1βa2c

2
1
]
`(Q,Q).

Using the definitions (25) of c1 and (26) of c2, , that is,

c1 = c0 − τΛ1βa2a
−1
1 (c2 + c2

1) and c2 = c− τΛ1βa2a
−1
1 c2

and setting

e3 = e0 + 2Λ1β
a2
(
c2 + c2

1
)

a1

e4 = 1
a1

[
τc1a0 + Λ1βa2c

2
1
]

and arguing as in the proof of inequality (105), we deduce from (120) that

logE
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
6 nβE1

6 nβa1
î
e3`(P

?
, Q)− τ−1 [c1`(Q,P ) + c2`(Q,Q′)

]
+ e4`(Q,Q)

ó
.(122)
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It follows from (103) that

E2 = n−1 {c2E
[
T(X, P,Q′)

]
− c1E [T(X, P,Q)]

}
+ 2Λ2βa2

[
c2

2 + c2
1
]
`(P ?, Q)

+ Λ2βa2
[
(c2

2 + c2
1)`(Q,P ) + c2

2`(Q,Q′) + c2
1`(Q,Q)

]
6 (e1 + c2) a1`(P

?
, Q) + τc′0a1`(Q,P )− τ−1c2a1`(Q,Q′)

+ τc1a0`(Q,Q) + 2Λ2βa2
[
c2

2 + c2
1
]
`(P ?, Q)

+ Λ2βa2
[
(c2

2 + c2
1)`(Q,P ) + c2

2`(Q,Q′) + c2
1`(Q,Q)

]
=
[
(e1 + c2) a1 + 2Λ2βa2

(
c2

2 + c2
1
)]
`(P ?, Q)

+
[
τc′0a1 + Λ2βa2(c2

2 + c2
1)
]
`(Q,P )

−
[
τ−1c2a1 − Λ2βa2c

2
2
]
`(Q,Q′)

+
[
τc1a0 + Λ2βa2c

2
1
]
`(Q,Q).

Using the definition (27) of c3, , that is,

c3 = c2 − τΛ2βa2a
−1
1 c2

2,

and setting

e5 = e1 + c2 + 2Λ2β
a2
(
c2

2 + c2
1
)

a1
, e6 = τc′0 + Λ2β

a2(c2
2 + c2

1)
a1

e7 = 1
a1

[
τc1a0 + Λ2βa2c

2
1
]
,

and arguing as in the proof of (107), we deduce from (121) that

logE
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
6 nβE2

= nβa1
Ä
e5`(P

?
, Q) + e6`(Q,P )− τ−1c3`(Q,Q′) + e7`(Q,Q)

ä
.(123)

Under our assumption on β, we know that the quantities c2 and c3 are
positive and that 2γ < τ−1 (c2 ∧ c3). We may therefore apply Lemma 9 with
γ0 = τ−1c2 and γ0 = τ−1c3 successively and get∫

M
exp

[
−τ−1c2nβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) exp

[
Ξ1
]

(124)

and ∫
M

exp
[
−τ−1c3nβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) exp

[
Ξ1
]

(125)

with

(126) Ξ1 = log
ñ

1 +
exp

[
−
(
τ−1(c2 ∧ c3)− γ

)]
1− exp [− (τ−1(c2 ∧ c3)− 2γ)]

ô
.
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Putting (123) and (125) together, we obtain that for all (P,Q) ∈ B2

exp [L(P,Q)]

=
∫

M
E
[
exp

[
β
(
c2T(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp
î
nβa1

Ä
e5`(P

?
, Q) + e6`(Q,P ) + e7`(Q,Q)

äó
×
∫

M
exp

[
−τ−1c3nβa1`(Q,Q′)

]
dπ(Q′)

6 π (B) exp
î
Ξ1 + nβa1

Ä
e5`(P

?
, Q) + e6`(Q,P ) + e7`(Q,Q)

äó
6 π (B) exp

î
Ξ1 + nβa1

Ä
e5`(P

?
, Q) + (e6 + e7)r

äó
.

Consequently,ï∫
B2

exp [−L(P,Q)] dπB(P )dπB(Q)
ò−1

6 π (B) exp
î
Ξ1 + nβa1

Ä
e5`(P

?
, Q) + (e6 + e7)r

äó
.

We deduce from (84) that

P(cA) 6 z

π (B) exp
î
Ξ1 + nβa1

Ä
e5`(P

?
, Q) + (e6 + e7)r

äó
.

In particular, P(cA) 6 e−ξ for z satisfying

log
Å1
z

ã
= ξ + log 1

π(B) + Ξ1 + nβa1
î
e5`(P

?
, Q) + (e6 + e7)r

ó
.(127)

Putting (122) and (124) together, we obtain that for all Q ∈ B

exp [M(P,Q)]

=
∫

M
E
[
exp

[
β
(
cT(X, P,Q′)− c1T(X, P,Q)

)]]
dπ(Q′)

6 exp
î
nβa1

Ä
e3`(P

?
, Q)− τ−1c1`(Q,P ) + e4`(Q,Q)

äó
×
∫

M
exp

[
−τ−1c2nβa1`(Q,Q′)

]
dπ(Q′)

6 π(B) exp
î
Ξ1 + nβa1

Ä
e3`(P

?
, Q) + e4r − τ−1c1`(Q,P )

äó
.

We derive from Lemma 5 that

E [exp [−βT(X, P )]]

6
1

π(B)

ï∫
B

exp [−M(P,Q)] dπB(Q)
ò−1

6 exp
î
Ξ1 + nβa1

Ä
e3`(P

?
, Q) + e4r − τ−1c1`(Q,P )

äó
,
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and consequently,∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )

6 exp
î
Ξ1 + nβa1

Ä
e3`(P

?
, Q) + e4r

äó
×
∫

cB(Q,2Jr)
exp

[
−τ−1c1nβa1`(Q,P )

]
dπ(P ).(128)

Since under our assumptions, c1 > 0 and 2γ < τ−1c1 we may apply Lemma 9
with γ0 = τ−1c1, and setting e8 = τ−1c1 − 2γ which leads to∫

cB(Q,2Jr)
exp

[
−τ−1c1nβa1`(Q,P )

]
dπ(P ) 6 π (B) exp

î
Ξ2 − e8nβa12Jr

ó
.

with

(129) Ξ2 = −γ + log
ï 1

1− exp [−e8]

ò
,

which together with (128) leads to∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )

6 π (B) exp
î
Ξ1 + Ξ2 + nβa1

Ä
e3`(P

?
, Q) + e4r − e82Jr

äó
.(130)

Using the definition (127) of z, we deduce that

log
ï1
z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò

6 log
Å1
z

ã
+ log π(B) + Ξ1 + Ξ2 + nβa1

Ä
e3`(P

?
, Q) + e4r − e82Jr

ä
= ξ + log 1

π(B) + Ξ1 + nβa1
î
e5`(P

?
, Q) + (e6 + e7)r

ó
+ log π(B) + Ξ1 + Ξ2 + nβa1

Ä
e3`(P

?
, Q) + e4r − e82Jr

ä
= ξ + 2Ξ1 + Ξ2 + nβa1

î
(e3 + e5) `(P ?, Q) + (e4 + e6 + e7)r

ó
− e8nβa12Jr.

The right-hand side is not larger than −ξ provided that

2J > 1
e8

ñ
2ξ + 2Ξ1 + Ξ2

nβa1r
+
ñ

(e3 + e5) `(P
?
, Q)
r

+ e4 + e6 + e7

ôô
.(131)

Using the fact that rn(β,Q) > 1/(nβa1), with the choice

r = `(P ?, Q) + rn(β,Q) + 2ξ
nβa1

> `(P ?, Q) + 1 + 2ξ
nβa1

>
1

nβa1
,
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the right-hand side of (131) satisfies

1
e8

ñ
2ξ + 2Ξ1 + Ξ2

nβa1r
+
ñ

(e3 + e5) `(P
?
, Q)
r

+ e4 + e6 + e7

ôô
6

1
e8

ï
2Ξ1 + Ξ2 + e4 + e6 + e7 + (e3 + e5) ∨ 1

r

Å
`(P ?, Q) + 2ξ

nβa1

ãò
6

2Ξ1 + Ξ2 + e4 + e6 + e7 + (e3 + e5) ∨ 1
e8

.

Inequality (131) holds for J ∈ N such that

2J > 2Ξ1 + Ξ2 + e4 + e6 + e7 + (e3 + e5) ∨ 1
e8

∨ 1 > 2J−1,

and we may take

κ0 = τ

ñ
2
[
2Ξ1 + Ξ2 + e4 + e6 + e7 + (e3 + e5) ∨ 1

]
e8

∨ 1 + 1
ô

(132)

> τ
Ä
2J + 1

ä
.

In complements to constants listed at the end of the proof of Theorem 1, we
recall that

Λ1 = τφ(βl1), Λ2 = τφ(βl2)

c1 = c0 − τΛ1β
a2(c2 + c2

1)
a1

, c2 = c− τΛ1β
a2c

2

a1
, c3 = c2 − τΛ2β

a2c
2
2

a1
,

e3 = e0 + 2Λ1β
a2
(
c2 + c2

1
)

a1
, e4 = 1

a1

[
τc1a0 + Λ1βa2c

2
1
]
,

e5 = e1 + c2 + 2Λ2β
a2
(
c2

2 + c2
1
)

a1
, e6 = τc′0 + Λ2β

a2(c2
2 + c2

1)
a1

,

e7 = 1
a1

[
τc1a0 + Λ2βa2c

2
1
]
, e8 = τ−1c1 − 2γ,

and

Ξ1 = log
ñ

1 +
exp

[
−
(
τ−1(c2 ∧ c3)− γ

)]
1− exp [− (τ−1(c2 ∧ c3)− 2γ)]

ô
,

Ξ2 = −γ + log
ï 1

1− exp [−e8]

ò
.
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9.5. Proof of Theorem 3. Let us take r > ε and set $ = 2ξ + 1 so that

π (cB) 6 π
(cB(Q, ε)

)
6 e−$π

(
B(Q, ε)

)
6 e−$π (B) .

In order to prove the first part, let us go back to the proof of Theorem 1.
Clearly,

∫
M

exp
[
−τ−1cnβa1`(Q,Q′)

]
dπ(Q′) 6 1 = π (B) + π (cB) 6 π (B) (1 + e−$)

and similarly,

∫
M

exp
[
−τ−1c2nβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) (1 + e−$).

Inequalities (109) and (110) are therefore satisfied with Ξ1 = log(1 + e−1).
Moreover,

∫
cB(Q,2Jr)

exp
[
−τ−1c0nβa1`(Q,P )

]
dπ(P )

6 exp
î
−τ−1c0nβa12Jr

ó
π (cB) 6 π (B) exp

î
−$ − τ−1c0nβa12Jr

ó
.

We deduce from (114) that

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )

6 exp
ï
Ξ1 + nβ

Å
e0a1`(P

?
, Q) + τc1a0r + l21β

8

ãò
× π (B) exp

î
−$ − τ−1c0nβa12Jr

ó
,

and consequently,

log
∫

cB(Q,2Jr)
E [exp [−βT(X, P )]] dπ(P )

6 log π (B) + Ξ1 −$

+ nβ

ï
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − τ
−1c0a12Jr

ò
.
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Using the definitions (113) of z and (112) of ∆2, we deduce that

log
ï1
z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò

6 ξ + log 1
π(B) + Ξ1 + nβ∆2 + log π (B) + Ξ1 −$

+ nβ

ï
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − τ
−1c0a12Jr

ò
= ξ + 2Ξ1 + nβ

ï
(e1 + c2) a1`(P

?
, Q) + e1a1r + l22β

8

ò
−$

+ nβ

ï
e0a1`(P

?
, Q) + τc1a0r + l21β

8 − τ
−1c0a12Jr

ò
= ξ + 2Ξ1 −$

+ nβa1

ï
C1`(P

?
, Q) + C2r + (l21 + l22)β

8a1
− τ−1c02Jr

ò
,

where the constants C1 and C2 are the same as those defined in the proof
of Theorem 1. If we choose r = `(P ?, Q) ∨ (β/a1) ∨ ε and J such that
τ−1c02J > C1 + C2 + (l21 + l22)/8, we obtain that

log
ï1
z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò
6 ξ + 2Ξ1 −$ 6 −ξ

since $ = 2ξ + 1 > 2(ξ + Ξ1). We conclude as in the proof of Theorem 1.
In order to prove the second part of Theorem 3, we go back to the proof

of Theorem 2. The arguments are similar. As before,
∫

M
exp

[
−τ−1c2nβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) (1 + e−$)

and ∫
M

exp
[
−τ−1c3nβa1`(Q,Q′)

]
dπ(Q′) 6 π (B) (1 + e−$).

Inequalities (124) and (125) are therefore both satisfied with Ξ1 = log(1 +
e−1). Moreover

∫
cB(Q,2Jr)

exp
[
−τ−1c1nβa1`(Q,P )

]
dπ(P )

6 π (B) exp
î
−$ − τ−1c1nβa12Jr

ó
,
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and we deduce from (128) that∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )

6 exp
î
Ξ1 + nβa1

Ä
e3`(P

?
, Q) + e4r

äó
×
∫

cB(Q,2Jr)
exp

[
−τ−1c1nβa1`(Q,P )

]
dπ(P )

6 π (B) exp
î
Ξ1 + nβa1

î
e3`(P

?
, Q) + e4r − τ−1c12Jr

ó
−$
ó
.

Using the definition (127) of z, we deduce that

log
ï1
z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò

6 ξ + log 1
π(B) + Ξ1 + nβa1

î
e5`(P

?
, Q) + (e6 + e7)r

ó
+ log π (B) + Ξ1 + nβa1

î
e3`(P

?
, Q) + e4r − τ−1c12Jr

ó
−$

= ξ + 2Ξ1 −$

+ nβa1
î
(e3 + e5)`(P ?, Q) + (e4 + e6 + e7)r − τ−1c12Jr

ó
.

Taking r = `(P ?, Q) ∨ ε > ε and J > 0 such that

τ−1c12J > e3 + e5 + e4 + e6 + e7

we obtain that

log
ï1
z

∫
cB(Q,2Jr)

E [exp [−βT(X, P )]] dπ(P )
ò
6 −ξ

and we conclude as before.

10. Other proofs

10.1. Proof of Lemma 1. Let Y be a random variable with gamma dis-
tribution γ(s, 1). Since σY ∼ γ(s, σ), it is sufficient to prove the result for
σ = 1. Using the inequality log(1 − x) > −x/(1 − x) which holds for all
x ∈ [0, 1), we obtain that

logE
î
eβ(Y−s)

ó
= −s [log(1− β) + β] 6 sβ2

1− β for all β ∈ [0, 1).

Applying Lemma 8.2 in Birgé (2001) with a =
√
s and b = 1, we obtain that

P
î
Y > s+ 2

√
sξ + ξ

ó
6 e−ξ for all ξ > 0

which proves (44). Let us now turn to the lower bound. For x > 0, let us
set

g(x) = x− log(1 + x) 6
Å
x2

2

ã
∧ x.
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For all t, u > 0,∫ +∞

t+u
xte−xdx =

∫ +∞

u
(t+ y)te−t−ydy = tte−t

∫ +∞

u
e−tg(y/t)dy

> tte−t
Å∫ +∞

u
e−y

2/(2t)dy ∨
∫ +∞

u
e−ydy

ã
= tte−t

ïÅ√
2πt F

Å
u√
t

ãã
∨ e−u

ò
,

where F (z) = P [N (0, 1) > z] for all z ∈ R. Using the the following inequal-
ities

(133) tt−1/2e−t
√

2π 6 Γ(t) 6 tt−1/2e−t
√

2π exp[1/(12t)],

that can be found in Whittaker and Watson (1996)[page 253], with t =
s− 1 > 0, we deduce that

P [Y > t+ u] = 1
Γ(t+ 1)

∫ +∞

t+u
xte−xdx = 1

tΓ(t)

∫ +∞

t+u
xte−xdx

>
ï
F

Å
u√
t

ã
e−1/(12t)

ò
∨
ñ
e−u−1/(12t)
√

2πt

ô
.

Using the fact that F (Φ−1(z)) = e−z for all z > 0, we obtain that for the
choice

u =
ï√

t Φ−1
Å
ξ − 1

12t

ãò
∨ log

Ç
eξ−1/(12t)
√

2πt

å
,

which is nonnegative for ξ > log 2 + 1/(12t), the quantity P [Y > t+ u] is at
least e−ξ, which proves (45).

10.2. Proof of Theorem 4. Throughout this proof, a0 = 2, a1 = 3/16,
β = 2γ = 1/500 and κ denotes a positive numerical constant that may
vary from line to line. It follows from Corollary 4 that for n large enough,
rn(β, Pθ?) 6 r?n = κk/n. Applying our Corollary 2 with ` = h2 (and 2ξ in
place of ξ), we obtain that for n large enough, with a probability at least
1− 2e−ξ,

1− e−ξ 6 ν̂hX
({
θ ∈ Θ, h2(θ,θ?) 6 rn(ξ)

})
with rn(ξ) = κ(k + ξ)

n
.

We know by Proposition 9 that under the assumptions of Corollary 4, As-
sumption 9-(i) is satisfied with s = 2, |·|∗ given by (81) and ε = 1/2. This
implies that for n large{

θ ∈ Θ, h2(θ,θ?) 6 rn(ξ)
}
⊂
¶
θ ∈ Θ, |θ − θ?|2∗ 6 2rn(ξ)

©
,

which leads to (46).
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10.3. Proof of Proposition 4. Let us denote by Fσ the distribution func-
tion of νσ. Throughout this proof, we fix some θ? ∈ [−σt, σt]. Our aim is to
prove that Pθ? belongs to M (β).

Since the total variation distance is translation invariant, ‖Pθ − Pθ?‖ =
‖Pθ−θ? − P0‖ = ‖Pθ?−θ − P0‖ and consequently, for all r ∈ [0, 1),

{θ ∈ Θ, ‖Pθ − Pθ?‖ 6 r} = {θ ∈ Θ, |θ? − θ| 6 ϕ(r)} for all r ∈ [0, 1)

while for r > 1, {θ ∈ Θ, ‖Pθ − Pθ?‖ 6 r} = Θ = R.
We set r0 = sup{r > 0, ϕ(r) 6 σt} and distinguish between two cases.

Case 1: Assume r0 6 1/4. For all r < r0, ϕ(r) < σt, 2r < 1, and since q is
symmetric, positive and decreasing on R+,

π(B(Pθ? , 2r))
π(B(Pθ? , r))

= νσ ({θ ∈ R, ‖Pθ − Pθ?‖ 6 2r})
νσ ({θ ∈ R, ‖Pθ − Pθ?‖ 6 r})

= νσ ({θ ∈ R, |θ − θ?| 6 ϕ(2r)})
νσ ({θ ∈ R, |θ − θ?| 6 ϕ(r)}) 6

2qσ(0)ϕ(2r)
2qσ(|θ?|+ ϕ(r))ϕ(r)

6
qσ(0)ϕ(2r)

qσ(|θ?|+ σt)ϕ(r) 6
qσ(0)ϕ(2r)
qσ(2σt)ϕ(r)

= q(0)ϕ(2r)
q(2t)ϕ(r) 6

Γ
q(2t) .

For all r0 < r < 1, |θ?| 6 σt < ϕ(r), hence Fσ(|θ?|−ϕ(r)) 6 Fσ(0) = 1/2 and
Fσ(|θ?| + ϕ(r)) > Fσ(ϕ(r)) > Fσ(σt) = F1(t) > 3/4 under our assumption
on t. Consequently,

π(B(Pθ? , 2r))
π(B(Pθ? , r))

6
1

νσ ({θ ∈ R, |θ − θ?| 6 ϕ(r)})

= 1
Fσ (|θ?|+ ϕ(r))− F (|θ?| − ϕ(r))

6
1

3/4− 1/2 = 4.

Note that the result also holds for r = r0 by letting r decrease to r0.
Case 2: Assume that r0 > 1/4. Then ϕ(1/4) 6 σt and arguing as before,
we obtain that for all r 6 1/4 < r0,

π(B(Pθ? , 2r))
π(B(Pθ? , r))

6
2qσ(0)ϕ(2r)

2qσ(|θ?|+ ϕ(r))ϕ(r) = qσ(0)ϕ(2r)
qσ(|θ?|+ ϕ(1/4))ϕ(r)

6
qσ(0)ϕ(2r)
qσ(2σt)ϕ(r) 6

Γ
q(2t) .
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For all r ∈ (1/4, 1), ϕ(r) > ϕ(1/4) and
π(B(Pθ? , 2r))
π(B(Pθ? , r))

6
1

νσ ({θ ∈ R, |θ − θ?| 6 ϕ(r)})

6
1

νσ ({θ ∈ R, |θ − θ?| 6 ϕ(1/4)})

6
1

2qσ(|θ?|+ ϕ(1/4))ϕ(1/4)

6
1

2qσ(2σt)ϕ(1/4) 6
Γσ
q(2t) .

We obtain that in any case, for all r ∈ (0, 1) and θ? ∈ [−σt, σt],

log
Å
π(B(Pθ? , 2r))
π(B(Pθ? , r))

ã
6 max

®
log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
.(134)

The inequality is also clearly true for r > 1 since then π(B(Pθ? , 2r)) =
π(B(Pθ? , r)) = 1. Hence, for all r > a−1

1 β

1
nγa1r

log
Å
π(B(Pθ? , 2r))
π(B(Pθ? , r))

ã
6

1
nγβ

sup
r>0

log
Å
π(B(Pθ? , 2r))
π(B(Pθ? , r))

ã
6

1
nγβ

max
®

log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
.

The right-hand side is not larger than β provided that it satisfies (50) and
this lower bound is not smaller than 1/

√
n since γ 6 1. We conclude by

using (15).

10.4. Proof of Proposition 5. Under our assumption on q, Assumption 6
is satisfied and

Γ = 21/s max
¶
q(0), 2(1/s)−1

©
.

Let t = (|θ|/σ) ∨ t0. Then, θ ∈ [−σt, σt], ν1([t,+∞)) 6 1/4 and inequality
(134) holds true. We deduce from (11) that

rn(β, Pθ) 6
1

γna1β
max

®
log
Ç

Γ (σ ∨ 1)
q(2t)

å
, log 4

´
and the result follows from our specific choices of a1, γ and β.

10.5. Proof of Corollary 3. We set for short Θ = Θ[η, δ] with the param-
eters η and δ defined by (60) and (61) respectively and also define

(135) Jn = exp
ï(K2 − 1)γτ4a2

1nη
2
n

2(k + 1)

ò
so that Mn(K) contains the elements P = P(p,m,σ) of M such that

| log σ| ∨
∣∣∣m
σ

∣∣∣
∞
6 log(1 + δ)Jn.
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Hereafter we fix P = P(p,m,σ) ∈Mn(K). There exist θ = θ(P ) = (Q,m, σ) ∈
Θ with σ = (1 + δ)j0 , m = σδj, (j0, j) ∈ Z× Zk such that

(136) σ

(1 + δ) 6 σ < σ and mi = jiσδ 6 mi < mi + σδ,

for all i ∈ {1, . . . , k}. Consequently,

0 6
(

1− σ

σ

)
6

δ

1 + δ
< δ and

∣∣∣∣m−m
σ

∣∣∣∣
∞
6 δ,(137)

and we infer from (56) and (57) and the fact that the total variation loss is
translation and scale invariant that Pθ satisfies

`
(
P(p,m,σ), Pθ

)
6 `
Ä
P(p,m,σ), P(Q,m,σ)

ä
+ `
Ä
P(Q,m,σ), P(Q,m,σ)

ä
6 `
Ä
P(p,0,1), P(Q,0,1)

ä
+ `

(
P(Q,0,1), P(Q,m−m

σ
,σ
σ

)

)
6 η +

ï
A

Å∣∣∣∣m−m
σ

∣∣∣∣s
∞

+
(

1− σ

σ

)sãò
∧ 1

6 η + 2Aδs = 2η.

Besides, the parameters (j0, j) ∈ Z×Zk can be controlled in the following
way. Using that σ 6 σ, the inequality log(1 + δ) 6 δ and (137), we obtain
that for all i ∈ {1, . . . , k},

|ji| =
∣∣∣∣mi

σδ

∣∣∣∣ = 1
σδ
|mi −mi +mi| 6

1
σδ

[
σδ + σ

∣∣∣mi

σ

∣∣∣] 6 1 + 1
log(1 + δ)

∣∣∣mi

σ

∣∣∣ .
Besides,

j0 = log σ
log(1 + δ) = 1

log(1 + δ)

[
− log

(
1 + σ

σ
− 1
)

+ log σ
]

6
1

log(1 + δ)

ï
− log

Å
1− δ

1 + δ

ã
+ | log σ|

ò
= 1

log(1 + δ) [log (1 + δ) + | log σ|] 6 1 + | log σ|
log(1 + δ)

and using the inequality log(1+2x) 6 2 log(1+x), which holds for all x > 0,
we obtain that

j0 >
log σ

log(1 + δ) > −
| log σ|

log(1 + δ) > −
ï
1 + | log σ|

log(1 + δ)

ò
.

Putting these inequalities together and using the fact that P ∈Mn(K), we
get

(138) |(j0, j)|∞ 6 1 + 1
log(1 + δ)

[
| log σ| ∨

∣∣∣m
σ

∣∣∣
∞

]
6 1 + Jn.
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For all r > 0, e−Lθ 6 π (B(Pθ, r)) 6 1 and these two inequalities together
with the definition (60) of η and Assumption 7 imply that for all r > 0

π (B(Pθ, 2r))
π (B(Pθ, r))

6 exp [Lθ] 6 exp
[‹D(η) + 2

k∑
i=0

ï
L

2 + log(1 + |ji|)
ò]

6 exp
[
γτ4a2

1nη
2 + (k + 1) [L+ 2 log(1 + |(j0, j)|∞)]

]
.

Using (138), the definition (135) of Jn and the fact that log(2 +x) 6 log 3 +
log x for all x > 1, we derive that

π (B(Pθ, 2r))
π (B(Pθ, r))

6 exp
[
γτ4a2

1nη
2 + (k + 1)L+ 2(k + 1) log(2 + Jn)

]
,

6 exp
[
K2γτ4a2

1nη
2 + (k + 1) (L+ log 9)

]
and since γ = 1/6 6 L′ = L+ log 9 < 3.1,

1
nβa1

6 rn(β, Pθ) 6
1

γnβa1

[
K2γτ4a2

1nη
2 + (k + 1)L′

]
= 1
a1β

ï
K2τ4a2

1η
2 + (k + 1)L′

γn

ò
.

For the choice of β = βn given by (62),

β >

 
K2τ4a2

1η
2 + (k + 1)L′

γn
>

…
k + 1
n
∨ Kη2

hence, rn(β, Pθ) 6 a−1
1 β and Pθ ∈M (β). This implies that

inf
P ′∈M (β)

`(P ?, P ′) + a−1
1 β 6 `(P ?, Pθ) + a−1

1 β

6 `(P ?, P ) + `(P, Pθ) + a−1
1 β

6 `(P ?, P ) + 2η +
[
Kτ2η + 1

a1

 
(k + 1)L′

γn

]
,

and the result follows by applying Corollary 1 and by using the fact that P
is arbitrary in Mn(K).

10.6. Proof of Lemma 2. For all p ∈M0, σ > 1 and m ∈ Rk, the supports
of the functions x 7→ p(x/σ) and x 7→ p((x−m)/σ) are included in the set
K = [0, σ]k ∪ {m + x, x ∈ [0, σ]k} the Lebesgue measure of which is not
larger than 2σk. Consequently, using (66), we deduce that for all p ∈ M0,
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σ > 1 and m ∈ Rk,

∥∥∥P(p,0,1) − P(p,m,σ)

∥∥∥
6
∥∥∥P(p,0,1) − P(p,0,σ)

∥∥∥+
∥∥∥P(p,0,σ) − P(p,m,σ)

∥∥∥
= 1

2

∫
Rk

∣∣∣∣p(x)− 1
σk
p
(x
σ

)∣∣∣∣ dx+ 1
2σk

∫
Rk

∣∣∣∣p(xσ)− p(x−m
σ

)∣∣∣∣ dx
6

1
2

∫
Rk

∣∣∣∣p(x)− 1
σk
p (x)

∣∣∣∣ dx+ 1
2σk

∫
Rk

∣∣∣p(x)− p
(x
σ

)∣∣∣ dx
+ 1

2σk
∫
Rk

∣∣∣∣p(xσ)− p(x−m
σ

)∣∣∣∣ dx
6

1
2

∫
Rk

∣∣∣∣p(x)− 1
σk
p (x)

∣∣∣∣ dx+ 1
2σk

∫
[0,1]k

∣∣∣p(x)− p
(x
σ

)∣∣∣ dx
+ 1

2σk
∫

[0,σ]k\[0,1]k

∣∣∣p(x
σ

)∣∣∣ dx+ 1
2σk

∫
K

∣∣∣∣p(xσ)− p(x−m
σ

)∣∣∣∣ dx
6

1
2

Å
1− 1

σk

ã
+ 1

2σk
∫

[0,1]k
L1

Å
1− 1

σ

ãs
|x|s dx

+ 1
2

∫
[0,1]k\[0,1/σ]k

|p(x)| dx+ L1
2σk

∫
K

∣∣∣m
σ

∣∣∣s dx
6

1
2

Å
1− 1

σk

ã
+ L1k

s/2

2σk

Å
1− 1

σ

ãs
+ L0

2

Å
1− 1

σk

ã
+ L1

∣∣∣m
σ

∣∣∣s
6

1
2
î
1 + L1k

s/2 + L0
ó Å

1− 1
σ

ãs
+ L1

∣∣∣m
σ

∣∣∣s
and (57) is therefore satisfied with A = L1 ∨ [(1 + L1k

s/2 + L0)/2].

10.7. Proof of Lemma 3. By doing the change of variables u = x − m
in (68) if ever necessary, we may assume with no loss of generality that
m > 0. Then, since p is nonincreasing in (0,+∞) and vanishes elsewhere
p(x −m) > p(x) for all x > m and p(x) > p(x −m) = 0 for all x ∈ (0,m).
Consequently,

∫
R
|p(x)− p(x−m)| dx =

∫ m

0
p(x)dx+

∫ +∞

m
[p(x−m)− p(x)] dx

= 2
∫ m

0
p(x)dx+

∫ +∞

m
p(x−m)dx−

∫ +∞

0
p(x)dx

6 2mB + 1− 1,

and we obtain (68).
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Since σ > 1, p(x/σ) > p(x) and p(x)/σ 6 p(x) for all x > 0. Hence,∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx

6
∫
R

∣∣∣∣ 1σp(xσ)− 1
σ
p(x)

∣∣∣∣ dx+
∫
R

∣∣∣∣ 1σp (x)− p(x)
∣∣∣∣ dx

= 1
σ

∫
R

(
p
(x
σ

)
− p(x)

)
dx+

∫
R

Å
p(x)− 1

σ
p (x)

ã
dx

= 2
Å

1− 1
σ

ã
,

which leads to (67).
Finally, by combining (68) and (67) we deduce that for all m ∈ R and

σ > 1

1
2

∫
R

∣∣∣∣ 1σp(x−mσ )
− p(x)

∣∣∣∣ dx
= 1

2

∫
R

∣∣∣∣ 1σp(x−mσ )
− 1
σ
p
(x
σ

)∣∣∣∣ dx+ 1
2

∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx

= 1
2

∫
R

∣∣∣p(u− m

σ

)
− p(u)

∣∣∣ du+ 1
2

∫
R

∣∣∣∣ 1σp(xσ)− p(x)
∣∣∣∣ dx

6 B
∣∣∣m
σ

∣∣∣+
Å

1− 1
σ

ã
which yields to (69).

10.8. Proof of Proposition 6. This proposition is a consequence of Corol-
lary 2. Let us first check that the assumptions of this corollary are satisfied.
For all S ∈ P, the mapping θ 7→ h(S, Pθ) is continuous because of (71).
It is therefore measurable and it follows from the definition of the algebra
A that Assumption 1 is satisfied. Since the mapping (x,θ) 7→ p(x,θ) is
measurable, so are the mappings

p : (Rk × E × E −→ R+
(x,θ,θ′) 7−→ (pθ(x), pθ′(x)).

and (x,θ,θ′) 7→ ψ
Ä√

pθ′(x)/pθ(x)
ä
, since ψ is measurable. We deduce that

(x, P, P ′) 7→ t(P,P ′)(x) is measurable on (E ×M ×M , E ⊗ A ⊗ A) which
proves that Assumption 3-(i) holds true. The requirements of Corollary 2 are
therefore satisfied and we may apply it. In order to evaluate the quantity
rn(β, Pθ) for θ ∈ Rk, we use the following lemma the proof of which is
postponed to Section 10.9.



FROM ROBUST TESTS TO BAYES-LIKE POSTERIOR DISTRIBUTIONS 67

Lemma 10. Let θ ∈ [−R,R]k. For all m ⊂ {1, . . . , k} and r > 0

νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä
=


1

2|m|
∏
i∈m

ïÅ
1− |θi|

R

ã
∧ r

R
+
Å

1 + |θi|
R

ã
∧ r

R

ò
if |θi| 6 r for all i 6∈ m

0 otherwise,

with the convention
∏

∅ = 1. In particular, if θ ∈ Θm(R) and

(139) νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä > 1
2|m|

( r
R
∧ 1
)|m|

and for all K > 1

(140)
νm
({
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 Kr})
νm
({
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r}) 6 K |m|.
Let us set B = Bk for short and define m? as the subset of {1, . . . , k} that

minimizes over those m ⊂ {1, . . . , k} the mapping

m 7→ inf
θ∈Θm(R)

`(P ?, Pθ) +
|m| log

Ä
2kR(nB)1/s

ä
+ 1

γnβa1
.

Finally, let θ? for some arbitrary element of Θm?(R). It follows from (71)
and (139) that for all r > 0,

1 > πm (B(Pθ? , r))

= νm
Ä¶
θ ∈ Rk, h2(Pθ? , Pθ) 6 r

©ä
> νm

Ä¶
θ ∈ Rk, |θ − θ?|∞ 6 (r/B)1/s

©ä
>

1
2|m|

Ç
(r/B)1/s

R
∧ 1
å|m|

>
1

2|m|

Ç
(r ∧ 1)1/s

RB1/s

å|m|
,(141)

where the last inequality holds true under the assumption that RB1/s > 1.
We deduce from (141) that for all r > 0

π (B(Pθ? , 2r))
π (B(Pθ? , r))

6
1

π (B(Pθ? , r))

6
1∑

m⊂{1,...,k} e
−Lmνm

({
θ ∈ Rk, |θ − θ?|∞ 6 (r/B)1/s

})
6

eLm?

νm?
({
θ ∈ Θm? , |θ − θ?|∞ 6 (r/B)1/s

})
6 exp

ñ
Lm? + |m?| log

Ç
2RB1/s

(r ∧ 1)1/s

åô
= exp

ï
|m?| log

Ä
2kRB1/s

ä
+ k log

Å
1 + 1

k

ã
+ |m

?|
s

log
Å1
r
∨ 1
ãò

.(142)
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Provided that

r >
|m?| log

Ä
2kR(nB)1/s

ä
+ 1

γnβa1
>

1
n
,

we obtain

|m?| log
Ä
2kRB1/s

ä
+ k log

Å
1 + 1

k

ã
+ |m

?|
s

log
Å1
r
∨ 1
ã

6 |m?| log
Ä
2kRB1/s

ä
+ k log

Å
1 + 1

k

ã
+ |m?| log

Ä
n1/s
ä

6 |m?| log
Ä
2kR(nB)1/s

ä
+ 1 6 γnβa1r

and deduce from (142) that rn(β, Pθ?) defined by (11) satisfies

1
nβa1

6 rn(β, Pθ?) 6
|m?| log

Ä
2kR(nB)1/s

ä
+ 1

γnβa1
.

Applying Corollary 2, we obtain that for some numerical constant κ′0 > 0,

E
î
π̂X
Ä

cB(P ?, κ′0r(m?,θ?))
äó
6 2e−ξ

with

r(m?,θ?) = `(P ?, Pθ?) +
|m?| log

Ä
2kR(nB)1/s

ä
+ ξ

γnβa1
.

Finally, the conclusion follows from the definition of m? and the fact that
θ? is arbitrary in Θm?(R).

10.9. Proof of Lemma 10. Let θ ∈ R and ν be the uniform distribution
on [−R,R]. For all θ ∈ [−R,R] and r > 0,

ν ([θ − r, θ + r]) = 1
2R [(θ + r) ∧R− (θ − r) ∨ (−R)]+

= 1
2R [(r + θ) ∧R+ (r − θ) ∧R]+

= 1
2R [(r + |θ|) ∧R+ (r − |θ|) ∧R]+

= 1
2

ïÅ
1− |θ|

R

ã
∧ r

R
+
Å

1 + |θ|
R

ã
∧ r

R

ò
.

Let now θ ∈ Rk such that |θ|∞ 6 R. For all m ⊂ {1, . . . , k}, m 6= ∅,

νm
({
θ′ ∈ Θm,

∣∣θ′ − θ∣∣∞ 6 r}) = 0
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if there exists i 6∈ m such that |θi| > r. Otherwise

νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä = νm

Åß
θ′ ∈ Θm, max

i∈m

∣∣θ′i − θi∣∣ 6 r™ã
=
∏
i∈m

ν ([θi − r, θi + r])

= 1
2|m|

∏
i∈m

ïÅ
1− |θi|

R

ã
∧ r

R
+
Å

1 + |θi|
R

ã
∧ r

R

ò
.

If m = ∅,

ν∅
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 r©ä = 1l|θ|∞6r.

Let us now turn to the proof of (140). Since θ ∈ Θm(R), for all K ′ ∈
{1,K}

νm
Ä¶
θ′ ∈ Rk,

∣∣θ′ − θ∣∣∞ 6 K ′r©ä
= νm

Åß
θ′ ∈ Θm, max

i∈m

∣∣θ′i − θi∣∣ 6 K ′r™ã
=
∏
i∈m

ν
(
[θi −K ′r, θi +K ′r]

)
,

It is therefore enough to show that for all r > 0 and θ ∈ [0, R]

∆(r) = ν ([θ −Kr, θ +Kr])
ν ([θ − r, θ + r]) 6 K.

This is what we do now by distinguishing between several cases.
When θ+Kr 6 R, θ−Kr > 2θ−R > −R and consequently, ∆(r) = K.

When θ +Kr > R and −R 6 θ −Kr,

∆(r) = R− (θ −Kr)
(θ + r) ∧R− (θ − r) =


R− θ +Kr

R− θ + r
when θ + r > R

R− θ +Kr

2r when θ + r 6 R,

and the conclusion follows from the facts that 0 6 R − θ 6 Kr. When
θ +Kr > R and θ −Kr < −R, r > (θ +R)/K > R/K, hence R + r − θ >
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2R/K and R 6 Kr. Consequently,

∆(r) = 2R
(θ + r) ∧R− (θ − r) ∨ (−R)

=



2R
2R = 1 when θ + r > R and θ − r < −R

2R
R+ r − θ

6 K when θ + r > R and θ − r > −R

2R
2r 6 K when θ + r 6 R,

which concludes the proof.

10.10. Proof of Proposition 8. Let ε be a small enough positive number.
Since q is continuous and positive at θ? and since K has a nonempty interior,
there exists z? > 0 such that Θ? = B∗(θ?, z?) ⊂ K,

(143) 0 < b? 6 q(θ) 6 b? with b?/b? 6 1 + ε,

for all θ ∈ Θ? and

(144) (1− ε)|θ − θ?|s∗ 6 `(θ,θ?) 6 (1 + ε)|θ − θ?|s∗.

In particular, ν(Θ?) > 0 and we may define the distribution ν? = ν(· ∩
Θ?)/ν(Θ?) on Θ? with density q? = q1lΘ?/ν(Θ?). Let M ? = {Pθ, θ ∈ Θ?}
and π? be the prior on M ? associated with ν?. The parameter space Θ? is
convex and it follows fom (144) that (Θ?,θ?, `, ν?) satisfy Assumption 8-(i)
with a = 1 + ε, a = 1− ε. Besides, it follows from (143) that the density q?
satisfies condition (77) on Θ?. We may apply Proposition 7 and deduce that
for the model (M ?, π?), r?n = r?n(β, Pθ?) is not larger than κ?0k/(βn) with

κ?0 = 1
a1γ

ßï
1 + log [2(1 + ε)/(1− ε)]

s log 2

ò
log (2(1 + ε))

™
∨ 1 < (1 + s−1)

a1γ

for ε small enough. Consequently, by definition of r?n, for all r > r?n

π? (B(Pθ? , 2r)) = 1
ν(Θ?)ν ({θ ∈ Θ, `(θ,θ?) 6 2r} ∩Θ?)

6
exp (γnβa1r)

ν(Θ?) ν ({θ ∈ Θ, `(θ,θ?) 6 r} ∩Θ?)

6
exp (γnβa1r)

ν(Θ?) ν ({θ ∈ Θ, `(θ,θ?) 6 r}) .(145)

Let r1 = [(z?)saK) ∧ η]/2. If r ∈ (0, r1) and the parameter θ ∈ Θ satisfies
`(θ,θ?) 6 2r, then `(θ,θ?) < η and θ necessarily belongs to K under As-
sumption 9-(ii). Applying (79) we deduce that for such a parameter θ ∈ Θ

aK |θ − θ?|
s
∗ 6 ` (θ,θ?) 6 2r < 2r1 6 aK(z?)s,
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which implies that θ ∈ Θ?. For n large enough, r?n = κ?0k/n < r1 and for
r ∈ (r?n, r1) we may therefore write, using (145),

π (B(Pθ? , 2r)) = ν ({θ ∈ Θ, `(θ,θ?) 6 2r})
= ν ({θ ∈ Θ, `(θ,θ?) 6 2r} ∩Θ?)
6 exp (γnβa1r) ν ({θ ∈ Θ, `(θ,θ?) 6 r})
= exp (γnβa1r)π (B(Pθ? , r)) .(146)

Since q is bounded away from 0 in a neighbourhood of θ?, π (B(Pθ? , r1)) > 0
and we may also write that for r > r1 and n large enough

π (B(Pθ? , r)) > π (B(Pθ? , r1))
= exp [log π (B(Pθ? , r1)) + γnβa1r1 − γnβa1r1]
> exp [−γnβa1r1] > exp [−γnβa1r]
> exp [−γnβa1r]π (B(Pθ? , 2r)) .(147)

Putting (146) and (147) together we obtain that for n large enough

π (B(Pθ? , 2r)) 6 exp (γnβa1r)π (B(Pθ? , r)) for all r > r?n
and consequently that rn(β, Pθ?) 6 r?n = κ?0k/n.
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