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Abstract
Aggregated hold-out (agghoo) is a method which averages learning rules selected by hold-
out (that is, cross-validation with a single split). We provide the first theoretical guarantees
on agghoo, ensuring that it can be used safely: Agghoo performs at worst like the hold-
out when the risk is convex. The same holds true in classification with the 0–1 risk,
with an additional constant factor. For the hold-out, oracle inequalities are known for
bounded losses, as in binary classification. We show that similar results can be proved,
under appropriate assumptions, for other risk-minimization problems. In particular, we
obtain an oracle inequality for regularized kernel regression with a Lipschitz loss, without
requiring that the Y variable or the regressors be bounded. Numerical experiments show
that aggregation brings a significant improvement over the hold-out and that agghoo is
competitive with cross-validation.
Keywords: cross-validation, aggregation, bagging, hyperparameter selection, regularized
kernel regression

1. Introduction

The problem of choosing from data among a family of learning rules is central to machine
learning. There is typically a variety of rules which can be applied to a given problem —
for instance, support vector machines, neural networks or random forests. Moreover, most
machine learning rules depend on hyperparameters which have a strong impact on the final
performance of the algorithm. For instance, k-nearest-neighbors rules (Biau and Devroye,
2015) depend on the number k of neighbors. A second example, among many others, is given
by regularized empirical risk minimization rules, such as support vector machines (Steinwart
and Christmann, 2008) or the lasso (Tibshirani, 1996; Bühlmann and van de Geer, 2011),
which all depend on some regularization parameter. A related problem is model selection
(Burnham and Anderson, 2002; Massart, 2007), where one has to choose among a family of
candidate models.

In supervised learning, cross-validation (CV) is a general, efficient and classical answer
to the problem of selecting a learning rule (Arlot and Celisse, 2010). It relies on the idea
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of splitting data into a training sample —used for training a predictor with each rule in
competition— and a validation sample —used for assessing the performance of each pre-
dictor. This leads to an estimator of the risk —the hold-out estimator when data are split
once, the CV estimator when an average is taken over several data splits—, which can be
minimized for selecting among a family of competing rules.

A completely different strategy, called aggregation, is to combine the predictors obtained
with all candidates (Nemirovski, 2000; Yang, 2001; Tsybakov, 2004). Aggregation is the
key step of ensemble methods (Dietterich, 2000), among which we can mention bagging
(Breiman, 1996), adaboost (Freund and Schapire, 1997) and random forests (Breiman, 2001;
Biau and Scornet, 2016). A major interest of aggregation is that it builds a learning rule
that may not belong to the family of rules in competition. Therefore, it sometimes has a
smaller risk than the best of all rules (Salmon and Dalalyan, 2011, Table 1). In contrast,
cross-validation, which selects only one candidate, cannot outperform the best rule in the
family.

1.1 Aggregated Hold-Out (Agghoo)

This paper studies a procedure mixing cross-validation and aggregation ideas, that we call
aggregated hold-out (agghoo). Data are split several times; for each split, the hold-out se-
lects one predictor; then, the predictors obtained with the different splits are aggregated. A
formal definition is provided in Section 3. This procedure is as general as cross-validation
and it has roughly the same computational cost (see Section 3.4). Agghoo is already pop-
ular among practicioners, and has appeared in the neuro-imaging literature (Hoyos-Idrobo
et al., 2015; Varoquaux et al., 2017) under the name “CV + averaging”. Yet, to the best of
our knowledge, existing experimental studies do not give any indication on how to choose
agghoo’s parameters. No general mathematical definition has been provided, so it is unclear
how to generalize agghoo beyond a given article’s setting. Theoretical guarantees on agghoo
have not been established yet, to the best of our knowledge. The closest results we found
study other procedures, called ACV (Jung and Hu, 2015), EKCV (Jung, 2016), or Hall and
Robinson (2009)’s bagged cross-validation (shortened into Hall’s BCV, which should not
be confused with other procedures combining bagging and cross-validation, see Section 3.3).
These authors do not prove oracle inequalities. We explain in Section 3.3 why agghoo should
be preferred to these procedures in the general prediction setting.

Because of the aggregation step, agghoo is an ensemble method, and like bagging, it
combines resampling with aggregation. However, unlike agghoo, bagging applies to single
estimators, and does not adress the problem of estimator selection. Hence, if there is a free
hyperparameter, bagging must be combined with some estimator selection method, such as
cross-validation. The application of bagging to the hold-out was first suggested by Breiman
(1996) as a way to combine pruning and bagging of CART trees. We discuss in detail in
Section 3.3 how agghoo relates to bagging and subagging combined with the hold-out. In
particular, we explain why previous results on bagging or subagging do not apply to agghoo;
new developments are required.
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1.2 Contributions

In this article, agghoo’s performance is studied both theoretically and experimentally. We
consider agghoo from a prediction point of view. Performance is measured by a risk func-
tional. On the theoretical side, the aim is to show that the risk of agghoo’s final predictor is
as low as the risk of the optimal rule among the given collection. This is known as an oracle
inequality. By a convexity argument, agghoo always improves on the hold-out, provided
that the risk is convex. Hence, agghoo can safely replace the hold-out in any application
where this hypothesis holds true. Another consequence is that oracle inequalities for agghoo
can be deduced from oracle inequalities for the hold-out.

This kind of result on the hold-out has already appeared in the literature: for example,
Massart (2007, Corollary 8.8) proves a general theorem under an abstract noise assumption;
more explicit results have been obtained in specific settings such as least-squares regression
(Györfi et al., 2002, Theorem 7.1) or maximum-likelihood density estimation (Massart, 2007,
Theorem 8.9). A review on cross-validation—which includes the hold-out—is done by Arlot
and Celisse (2010).

Most existing theoretical guarantees on the hold-out have a limitation: they assume that
the loss function is uniformly bounded. In regression, the variable Y and the regressors are
also usually assumed to be bounded, which excludes some standard least-squares estima-
tors. Even when the boundedness assumption holds true, constants arising from general
bounds may be of the wrong order of magnitude, leading to vacuous results. By replacing
uniform supremum bounds by local ones, we are able to relax these hypotheses in a general
setting (Theorem 17). This enables us to prove an oracle inequality for the hold-out and
agghoo in regularized kernel regression with a general Lipschitz loss (Theorem 11). This
oracle inequality allows for instance to recover state-of-the-art convergence rates in median
regression without knowing the regularity of the regression function (adaptivity), both in the
general case and, for small enough regularity, also in the specific setting of Eberts and Stein-
wart (2013). To illustrate the implications of Theorem 11, we also apply it to ε-regression
(Corollary 12). To the best of our knowledge, all these oracle inequalities are new, even for
the hold-out. In addition to the RKHS setting studied here, Theorem 17 of this article has
also been applied to sparse linear regression (Maillard, 2020a) and to least-squares density
estimation (Maillard, 2020b).

A limitation of agghoo is that it does not cover settings where averaging does not make
sense, such as classification. In classification with the 0–1 loss, the natural way to aggregate
classifiers is to take a majority vote among them. This yields a procedure which we call
majhoo. Using existing theory for the hold-out in classification, we prove that majhoo
satisfies a general margin-adaptive oracle inequality (Theorem 13) under Tsybakov’s margin
assumption (Mammen and Tsybakov, 1999).

All our oracle inequalities are valid for any size of the aggregation ensemble. Qualita-
tively, since bagging and subagging are well-known for their stabilizing effects (Breiman,
1996; Bühlmann and Yu, 2002), we can expect agghoo to behave similarly. In particular,
large ensembles should improve much the prediction performance of CV when the hold-out
selected predictor is unstable.

For further insights into agghoo and majhoo, we conduct in Section 5 a numerical study
on simulated data sets. Its results confirm our intuition: in all settings considered, agghoo
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and majhoo actually perform much better than the hold-out, and sometimes better than
CV, provided their parameters are well-chosen. When choosing the number of neighbors for
k-nearest neighbors, the prediction performance of majhoo is much better than the one of
CV, which illustrates the strong interest of using agghoo/majhoo when learning rules are
“unstable”. In support vector regression, agghoo can even perform as well as the oracle,
an achievement that is not matched by CV, ACV, EKCV or bagging applied to K-fold
cross-validation. Based upon our experiments, we also give in Section 5 some guidelines for
choosing agghoo’s parameters: the training set size and the number of data splits.

The remaining of the article is structured as follows. In Section 2, we introduce the
general statistical setting. In Section 3, we give a formal definition of agghoo. In Section 4,
we state the main theoretical results. In Section 5, we present our numerical experiments
and discuss the results. Finally, in Section 6, we draw some qualitative conclusions about
agghoo. The proofs are postponed to the Appendix.

2. Setting and Definitions

We consider a general statistical learning setting, following the book by Massart (2007).

2.1 Risk Minimization

The goal is to minimize over a set S a risk functional L : S→ R∪ {+∞}. The set S may be
infinite dimensional for non-parametric problems. Assume that L attains its minimum over
S at a point s, called a Bayes element. Then the excess risk of any f ∈ S is the nonnegative
quantity

`(s, f) = L(f)− L(s) .

Suppose that the risk can be written as an expectation over an unknown probability distri-
bution,

L(f) = E
[
γ(f, ξ)

]
,

for a contrast function γ : S × Ξ → R and a random variable ξ with values in some set Ξ
and unknown distribution P , such that

∀f ∈ S, ξ̃ ∈ Ξ 7→ γ(f, ξ̃) is P -measurable .

The statistical learning problem is to use data Dn = (ξ1, ..., ξn), where ξ1, ..., ξn are inde-
pendent and identically distributed with common distribution P , to find an approximate
minimizer for L. The quality of this approximation is measured by the excess risk.

2.2 Examples

Supervised learning aims at predicting a quantity of interest Y ∈ Y using explanatory
variables X ∈ X . The statistician observes pairs (X1, Y1), . . . (Xn, Yn), so that Ξ = X × Y,
and seeks a predictor in S = {f : X → Y : f measurable}. The contrast function is defined
by γ(f, (x, y)) = g(f(x), y) for some loss function g : Y × Y → R. Here, g(y′, y) measures
the loss incurred by predicting y′ instead of the observed value y. Two classical supervised
learning problems are classification and regression, which we detail below.
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Example 1 (Classification) In classification, Y belongs to a finite set of labels, that is,
Y = {0, . . . ,M − 1} for some M > 2. We wish to correctly label any new data point X, and
the risk is the probability of error :

∀f ∈ S, L(f) = P
(
f(X) 6= Y

)
,

which corresponds to the loss function g(y′, y) = I{y′ 6= y}. Classification with convex
losses (such as the hinge loss or logistic loss) can also be described using the formalism of
Section 2.1.

Example 2 (Regression) In regression, we wish to predict a continuous variable Y that
belongs to Y = Rd. The error made by predicting y′ instead of y is measured by the loss
function defined by g(y′, y) = φ(‖y′ − y‖) where φ : R+ → R+ is nondecreasing and convex.
Some typical choices are φ(x) = x2 (least squares), φ(x) = |x| (median regression) or
φ(x) = (|x| − ε)+ (Vapnik’s ε-insensitive loss, leading to ε-regression). The risk is given by

L(f) = E
[
φ
(
‖Y − f(X)‖

)]
.

If φ is strictly convex, the minimizer of L over S is a unique function, up to modification on
a set of probability 0 under the distribution of X.

In some applications, such as robust regression, it is of interest to define s and `(s, f)
even when φ(‖Y ‖) /∈ L1. This is possible for Lipschitz contrasts, by the following remark.

Remark 1 When φ is convex and increasing (as in Example 2), assuming also that φ is
Lipschitz-continuous, it is always possible to define

s : x 7→ argmin
u∈R

E
[
φ(‖Y − u‖)− φ(‖Y ‖)

∣∣X = x
]
.

When s ∈ L1(X), it is a Bayes element for the loss function g(y′, y) = φ(‖y′ − y‖)−φ(‖y‖).
Whenever φ(‖Y ‖) ∈ L1, this loss yields the same Bayes element and excess risk as in
Example 2.2.

This adjustment to the general definition allows to consider Example 2 when φ(‖Y − s(X)‖)
is not integrable, for example when Y = s(X)+η, where η is independent fromX and follows
a multivariate Cauchy distribution with location parameter 0.

Some density estimation problems, such as maximum-likelihood or least-squares density
estimation, also fit the formalism of Section 2.1, see the book by Massart (2007).

2.3 Learning Rules and Estimator Ensembles

Statistical procedures use data to compute an element of S which approximately minimizes L.
Since agghoo uses subsampling, we require learning rules to accept as input data sets of any
size. Therefore, we define a learning rule to be a function which maps any data set to an
element of S.
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Definition 2 A data set Dn of length n is a finite sequence (ξi)16i6n of independent and
identically distributed Ξ-valued random variables with common distribution P .

A learning rule A is a measurable function1

A :
∞⋃
n=1

Ξn → S .

In the risk minimization setting, A should be chosen so as to minimize L(A(Dn)).

A generic situation is when a family (Am)m∈M of learning rules is given, so that we
have to select one of them (estimator selection), or to combine their outputs (estimator
aggregation). For instance, when X is a metric space, we can consider the family (ANN

k )k>1

of nearest-neighbors classifiers —where k is the number of neighbors—, or, for a given
kernel on X , the family (ASVM

λ )λ∈[0,+∞) of support vector machine classifiers —where λ is
the regularization parameter. Not all rules in such families perform well on a given data set.
Bad rules should be avoided when selecting the hyperparameter, or be given small weights
if the outputs are combined in a weighted average. This requires a data-adaptive procedure,
as the right choice of rule in general depends on the unknown distribution P .

Aggregation and parameter selection methods aim to resolve this problem, as described
in the next section.

3. Cross-Validation and Aggregated Hold-Out (Agghoo)

This section recalls the definition of cross-validation for estimator selection, and introduces
a new procedure called aggregated hold-out (agghoo). For more details and references on
cross-validation, we refer the reader to the survey by Arlot and Celisse (2010).

3.1 Background: Cross-Validation

Cross-validation uses subsampling and the empirical risk. We first introduce some notation.

Definition 3 (Empirical risk) For any data set Dn = (ξi)16i6n and any f ∈ S, the
empirical risk of f over Dn is defined by

Pnγ(f, ·) =
1

n

n∑
i=1

γ(f, ξi) .

For any nonempty subset T ⊂ {1, . . . , n}, let also

DT
n = (ξi)i∈T

be the subsample of Dn indexed by T , and define the associated empirical risk by

∀f ∈ S, P Tn γ(f, ·) =
1

|T |
∑
i∈T

γ(f, ξi) .

1. For any n, {
Ξn × Ξ → R
(ξ1:n, ξ) 7→ γ(A(ξ1:n), ξ)

is assumed to be measurable with respect to the product σ-algebra on Ξn+1.
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The most classical estimator selection procedure is to hold out some data to calculate the
empirical risk of each estimator, and then to select the estimator with the lowest empirical
risk. This ensures that the data used to evaluate the risk are independent from the training
data used to compute the learning rules.

Definition 4 (Hold-out) For any data set Dn and any subset T ⊂ {1, . . . , n}, the associ-
ated hold-out risk estimator of a learning rule A is defined by

HOT (A, Dn) = P T
c

n γ
(
A(DT

n ), ·
)
.

Given a collection of learning rules (Am)m∈M, the hold-out procedure selects

m̂ho
T (Dn) ∈ argmin

m∈M
HOT (Am, Dn) ,

measurably with respect to Dn. The overall learning rule is then given by

f̂ ho
T

(
(Am)m∈M, Dn

)
= Am̂ho

T (Dn)(D
T
n ) .

Hold-out depends on the arbitrary choice of a training set T , and is known to be quite
unstable, despite its good theoretical properties (Massart, 2007, Section 8.5.1). Therefore,
practicioners often prefer to use cross-validation instead, which considers several training
sets.

Definition 5 (Cross-validation) Let Dn denote a data set. Let T denote a collection of
nonempty subsets of {1, . . . , n}. The associated cross-validation risk estimator of a learning
rule A is defined by

CVT (A, Dn) =
1

|T |
∑
T∈T

HOT (A, Dn) .

The cross-validation procedure then selects

m̂cv
T (Dn) ∈ argmin

m∈M
CVT (Am, Dn) .

The final predictor obtained through this procedure is

f̂ cv
T
(
(Am)m∈M, Dn

)
= Am̂cv

T (Dn)(Dn) .

Depending on how T is chosen, this can lead to leave-one-out, leave-p-out, V -fold cross-
validation or Monte-Carlo cross-validation, among others (Arlot and Celisse, 2010). In the
following, we omit some of the arguments A, Dn which appear in Definitions 4 and 5, when
they are clear from context. For example, we often write HOT (A) , m̂ho

T , f̂
ho
T instead of

HOT (A, Dn) , m̂ho
T (Dn), f̂ ho

T

(
(Am)m∈M, Dn

)
, respectively.

3.2 Aggregated Hold-Out (Agghoo) Estimators

In this paper, we study another way to improve on the stability of hold-out selection, by
aggregating the predictors f̂ ho

T obtained by the hold-out procedure applied repeatedly with
different training sets T ∈ T . When S is convex (for example, regression), aggregated hold-
out (agghoo) consists in averaging them.
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Definition 6 (Agghoo) Assume that S is a convex set. Let (Am)m∈M denote a collection
of learning rules, Dn a data set, and T a collection of subsets of {1, . . . , n}. Using the
notation of Definition 4, the associated agghoo estimator is defined by

f̂ ag
T
(
(Am)m∈M, Dn

)
=

1

|T |
∑
T∈T

f̂ ho
T

(
(Am)m∈M, Dn

)
.

In the classification framework, as seen in Example 1, S = {f : X → {0, . . . ,M − 1}}
which is not convex. However, there is still a natural way to aggregate several classifiers, by
taking a majority vote.

Definition 7 (Majhoo) Let Y = {0, . . . ,M − 1} be the set of labels. Given a collection
of learning rules (Am)m∈M, a data set Dn and a collection T of subsets of {1, . . . , n}, the
majority hold-out (majhoo) classifier is any measurable f̂ mv

T
(
(Am)m∈M, Dn

)
: X → Y such

that, using the notation f̂ ho
T introduced in Definition 4, for all x ∈ X ,

f̂ mv
T
(
(Am)m∈M, Dn

)
(x) ∈ argmax

j∈Y

∣∣∣{T ∈ T : f̂ ho
T

(
(Am)m∈M, Dn

)
(x) = j

}∣∣∣ .
In most situations, it is clear how hold-out rules should be aggregated and there is no
ambiguity in discussing hold-out aggregation. However, there is an important exception
where both agghoo and majhoo can be used.

Remark 8 (Two options for binary classification) In binary classification (Example 1
with M = 2), it is classical to consider classifiers of the form x 7→ If(x)>0 where the function
f ∈ Sconv = {f : X → R} aims at minimizing a surrogate convex risk associated with the
loss gconv : (y′, y) 7→ φ[(2y′ − 1)(2y − 1)] with φ : R → R convex (Boucheron et al., 2005).
Then, given a family of Sconv-valued learning rules

(
Am
)
m∈M, one can either apply agghoo

to the surrogate problem and get

I
f̂ ag
T ((Am)m∈M,Dn)>0

,

or apply majhoo to the binary classification problem and get

f̂ mv
T

((
IAm(·)>0

)
m∈M, Dn

)
.

In the rest of Section 3, we focus on agghoo, though much of the following discussion applies
also to majhoo.

Compared to cross-validation rules (Definition 5), agghoo reverses the order between
aggregation (majority vote or averaging) and minimization of the risk estimator: instead of
averaging hold-out risk estimators before selecting the hyperparameter, the selection step
is made first to produce hold-out predictors

(
f̂ ho
T

)
T∈T (given by Definition 4) and then an

average is taken.
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3.3 Related Procedures

To the best of our knowledge, agghoo has not been studied theoretically before, though it
is used in applications (Hoyos-Idrobo et al., 2015; Varoquaux et al., 2017), under the name
“CV + averaging” in Varoquaux et al. (2017). According to Varoquaux et al. (2017), agghoo
is commonly used by the machine learning community thanks to the scikit-learn library
(Pedregosa et al., 2011).

A related procedure is “K-fold averaging cross-validation” (ACV), proposed by Jung and
Hu (2015). In linear regression, ACV corresponds to averaging the Am̂ho

T
(Dn), which are

“retrained” on the whole data set, while agghoo averages the Am̂ho
T

(DT
n ). An advantage of

averaging the rules Am̂ho
T

(DT
n ) is that they have been selected for their good performance

on the validation set T c, unlike the Am̂ho
T

(Dn) whose performance has not been assessed on
independent data. Furthermore, similarly to bagging, using several distinct training sets
may result in improvements for unstable methods through a reduction in variance. Note
finally that the theoretical results of Jung and Hu (2015) on ACV are limited to a specific
setting, and much weaker than an oracle inequality.

A second family of related procedures is averaging the chosen parameters
(
m̂ho
T

)
T∈T ,

contrary to agghoo which averages the chosen prediction rules. This leads to different proce-
dures for learning rules that are not linear functions of their parameters. This is the approach
taken by Jung and Hu (2015) for selecting a regularization parameter, still under the name of
ACV. The idea has also been put forward under the name “bagged cross-validation” (that we
call in this article Hall’s BCV, for avoiding confusion with other ways of combining bagging
and cross-validation) by Hall and Robinson (2009) —with numerical and theoretical results
in the case of bandwidth choice in kernel density estimation—, and under the name “efficient
K-fold cross-validation” (EKCV; Jung, 2016) for the choice of a regularization parameter
in high-dimensional regression —with numerical results only. Unlike agghoo, which only
depends on the set {Am : m ∈M} of learning rules, ACV, EKCV and Hall’s BCV depend
on the parametrization m 7→ Am . Sometimes, the most natural parametrization does not
allow the use of such procedures: for example, model dimensions are integers, and averaging
them does not make sense. In contrast, in regression, it is always possible to average the
real-valued functions Am(Dnt) ∈ S.

Even when all procedures are applicable, averaging rules is generally safer than averaging
hyperparameters. Often in regression, the risk L is known to be convex over S, so given
f1, . . . , fV ∈ S,

L

(
1

V

∑
i=1

fi

)
6

1

V

V∑
i=1

L(fi) .

Hence, averaging regressors (agghoo) always improves performance compared to selecting a
single fi at random (hold-out). On the other hand, if (fθ)θ∈Θ is a family of elements of S
parametrized by a convex set Θ, there is no guarantee in general that the function θ 7→ L(fθ)
is convex over Θ. So, for some θ1, . . . , θV ∈ Θ, it may happen that

L
(
f 1
V

∑V
i=1 θi

)
>

1

V

V∑
i=1

L(fθi) .
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In such a case, it is better to choose one parameter at random (hold-out) than to average
them (ACV, EKCV or Hall’s BCV).

A third family of related procedures is bagging or subagging applied to some CV predictor
Dn 7→ f̂ cv

T ((Am)m∈M, Dn) given by Definition 5. The bagging case (that we call “bagged
CV”) has been studied numerically by Petersen et al. (2007), but clearly differs from agghoo
since it relies on bootstrap resamples, in which the original data can appear several times.
As a consequence, some data can be shared between training and test samples, which breaks
the independence between them. This is a major issue for theory, and it can degrade the
performance as shown by our numerical experiments (Tables 1–2 in Section 5.1).

The problem disappears if sampling with replacement (bagging) is replaced with sam-
pling without replacement (subagging). The resulting procedure, that can be called “sub-
agged CV” in general, and “subagged hold-out” when the kind of CV considered is the
hold-out, is not explicitly studied in the literature, to the best of our knowledge. Subagged
hold-out is closer to agghoo but there is still a slight difference. In subagged hold-out, the
sample is divided into three parts: the training part of the bagging subsample, the validation
part of the bagging subsample, and the data not in the bagging subsample. Thus, part of
the data is discarded in each iteration of subagging. With agghoo, the sample is only divided
into two parts: training set and validation set. Thus, all the data is used, either to train the
learning rules or to estimate their risk. As a result, agghoo is potentially more efficient in
its use of the data. Another consequence is that theoretical results on bagging or subagging
cannot be used directly for studying agghoo.

Note also that Petersen et al. (2007) recommend a different approach, where rather than
bagging the whole CV procedure, bagging is instead applied within each CV fold, which
leads to the (random) selection of a single (bagged) estimator. In contrast, agghoo selects
different estimators for each fold, potentially reducing the variance as usual with ensemble
methods (Catoni, 2001; Lecué, 2007; Genuer, 2012).

3.4 Computational Complexity

In general, for a given value of V = |T |, both agghoo (f̂ ag
T ) and CV (f̂ cv

T ) must compute V
hold-out risk estimators over all values of m ∈ M. Assume for simplicity that all training
data sets DT

n , T ∈ T , have the same size |T | = nt, and denote by nv = n − nt the size of
the validation data set. Let Cho(M, nt, nv) be the average computational complexity of the
hold-out. Then the overall complexity of risk estimation is of order V × Cho(M, nt, nv) for
both agghoo and CV. Next, CV must average V risk vectors of length |M| and find a single
minimum, while agghoo computes V minima over m ∈ M; these operations have similar
complexity, of order V × |M|. Thus, computing the ensemble aggregated by agghoo takes
about as much time as selecting a learning rule using cross-validation.

A potential difference occurs when evaluating agghoo and CV on new data. If there is
no fast way to perform aggregation at training time, it is always possible to evaluate each
predictor in the ensemble on the new data, and to average the results; then, agghoo is slower
than CV by a factor of order V at test time.

10
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4. Theoretical Results

The purpose of agghoo is to construct an estimator whose risk is as small as possible,
compared to the (unknown) best rule in the class (Am)m∈M. This is guaranteed theoretically
by proving “oracle inequalities” of the form

E
[
`(s, f̂ ag

T )
]
6 CE

[
inf
m∈M

`
(
s,Am(Dn)

)]
+ εn , (1)

with εn negligible compared to the oracle excess risk E[infm∈M `(s,Am(Dn))] and C close
to 1. Equation (1) then implies that agghoo performs as well as the best choice of m ∈M,
up to the constant C. In the following, we actually prove slightly weaker inequalities that
are more natural in our setting.

By definition, agghoo is an average of predictors chosen by hold-out over the collection
(Am)m∈M . Therefore, when the risk is convex, an oracle inequality (1) can be deduced from
an oracle inequality for the hold-out, provided that there exists an integer nt ∈ {1, . . . , n−1}
such that

T is independent from Dn and ∀T ∈ T , |T | = nt . (2)

We make this assumption in the rest of the article, and then define nv = n− nt the size of
the validation data set.

Most cross-validation methods satisfy hypothesis (2), including leave-p-out, V -fold cross-
validation (with nt = n(V − 1)/V ) and Monte-Carlo cross-validation (Arlot and Celisse,
2010).

In the remainder of this section, we introduce the RKHS setting of interest, and prove
an oracle inequality for agghoo without changing the standard estimators or requiring Y to
be bounded.

4.1 Agghoo in Regularized Kernel Regression

Kernel methods such as support vector machines (SVM), kernel least squares or ε-regression
use a kernel function to map the data Xi into an infinite-dimensional function space, more
specifically a reproducing kernel Hilbert space (RKHS) (Scholkopf and Smola, 2001; Stein-
wart and Christmann, 2008). We consider in this section regularized empirical risk mini-
mization using a training loss function c, with a penalty proportional to the square norm of
the RKHS, to solve the supervised learning problem (defined in Section 2.2) with loss func-
tion g for defining the risk. Hence, the contrast γ can be written γ(f, (x, y)) = g(f(x), y) :=
(g ◦ f)(x, y). We assume that g and c are convex in their first argument.

Definition 9 (Regularized kernel estimator) Let c : R × R → R be convex in its first
argument, and let K : X × X → R be a positive-definite kernel function. Given λ > 0 and
training data (Xi, Yi)16i6nt, define the regularized kernel estimator as

Aλ(Dnt) = argmin
f∈H

{
Pnt(c ◦ f) + λ ‖f‖2H

}
,

11
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where H is the reproducing kernel Hilbert space induced by K. By the representer theorem,
Aλ can be computed explicitly :

Aλ(Dnt)(x) =

nt∑
j=1

θ̂λ,jK(Xj , x) where θ̂λ,j is the j-th component of the vector

θ̂λ = argmin
θ∈Rnt

 1

nt

nt∑
i=1

c

 nt∑
j=1

θjK(Xj , Xi), Yi

+ λ

nt∑
i=1

nt∑
j=1

θiθjK(Xi, Xj)

 . (3)

The loss function c is used to measure the accuracy of the fit on the training data: for
example, taking c : (u, y) 7→ (1− uy)+ (the hinge loss) in Definition 9 corresponds to SVM.
The loss function g used for risk evaluation may or may not be equal to c. For example,
in classification, the 0–1 loss often cannot be used for training for computational reasons,
hence a surrogate convex loss, such as the hinge loss, is used instead (see Remark 8), but
there is no reason to use the hinge loss for risk estimation and hyperparameter selection.

In Definition 9, the hyperparameter of interest is λ (we assume that K is fixed). We
show below some guarantees on agghoo’s performance when it is applied to a finite subfamily
(Aλ)λ∈Λ of the one defined by Definition 9. We first state some useful assumptions.

Hypothesis CompC(g, c): The functions Lc : f 7→ P (c◦f) and Lg have a common minimum
s ∈ argminf∈S Lc(f)∩argminf∈S Lg(f) and for any f ∈ S, Lc(f)−Lc(s) 6 C [Lg(f)− Lg(s)].

Note that Comp1(g, c) is always satisfied when g = c. When g 6= c, some hypothesis
relating c and g is necessary anyway for Definition 9 to be of interest, if only to ensure
consistency (asymptotic minimization of the risk) for some sequence of hyperparameters
(λn)n∈N.

In addition, some information about the evaluation loss g helps to obtain an oracle in-
equality (1) with a smaller remainder term εn.

Hypothesis SCρ,ν : Let `X(u) = E[g(u, Y )|X] − infv∈R E[g(v, Y )|X]. The triple (g,X, Y )
satisfies SCρ,ν if and only if, for any u, v ∈ R,

E
[(
g(u, Y )− g(v, Y )

)2 ∣∣X] 6 [ρ ∨ (ν|u− v|)][`X(u) + `X(v)
]
. (4)

For example, in the case of median regression, that is, g(u, y) = |u − y|, hypothesis SCρ,ν
holds whenever there is a uniform lower bound on the concentration of Y around s(X), as
shown by the following proposition.

Proposition 10 Let g(u, y) = |u − y| for all u, y ∈ R. For any x ∈ X , let Fx be the
conditional cumulative distribution function of Y knowing X = x. Assume that, for any
x ∈ X , Fx is continuous with a unique median s(x) and that there exists a(x) > 0, b(x) > 0
such that

∀u ∈ R,
∣∣∣Fx(u)− Fx

(
s(x)

)∣∣∣ > a(x)
[∣∣u− s(x)

∣∣ ∧ b(x)
]
. (5)

12
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For instance, this holds true if dFx
du > a(x)I|u−s(x)|6b(x) for every x ∈ X . Let

am = inf
x∈X

{
a(x)

}
and µm = inf

x∈X

{
a(x)b(x)

}
.

If am > 0 and µm > 0, then (g,X, Y ) satisfies SC 2
am

, 2
µm

.

Proposition 10 is proved in Appendix C.1. We can now state our first main result.

Theorem 11 Let Λ ⊂ R∗+ be a finite grid. Using the notation of Definition 6 and assuming
that (2) holds true, let f̂ ag

T be the output of agghoo, applied to the collection (Aλ)λ∈Λ given
by Definition 9. Assume that λm = min Λ > 0 and κ = supx∈X K(x, x) < +∞. Assume that
CompC(g, c) holds for a constant C > 0 and that (g,X, Y ) satisfies SCρ,ν with constants
ρ > 0, ν > 0. Assume that c and g are convex and Lipschitz in their first argument, with
Lipschitz constant less than L. Assume also that nv > 100 and 3 6 |Λ| 6 e

√
nv . Then, for

any θ ∈ (0, 1],

(1− θ)E
[
`
(
s, f̂ ag
T
)]

6 (1 + θ)E
[
min
λ∈Λ

`
(
s,Aλ(Dnt)

)]
+ max

{
18ρ

log
(
nv|Λ|

)
θnv

, b1
log2

(
nv|Λ|

)
θ3λmn2

v

, b2
log

3
2

(
nv|Λ|

)
θλmnv

√
nt

}
,

(6)

where b1, b2 do not depend on nv, nt, λm, ρ or θ but only on κ, L, ν and C.

Theorem 11 is proved in Appendix B as a consequence of a result valid in the general
framework of Section 2.1 (Theorem 17). It shows that f̂ ag

T satisfies an oracle inequality of
the form (1), with Aλ(Dnt) instead of Aλ(Dn) on the right-hand side of the inequality. The
fact that Dnt appears in the bound instead of Dn is a limitation of our result, but it is
natural since predictors aggregated by agghoo are only trained on part of the data. In most
cases, it can be expected that `(s,Aλ(Dnt)) is close to `(s,Aλ(Dn)) whenever nt

n is close to
1.

The assumption that K is bounded is mild. For instance, popular kernels such as
Gaussian kernels, (x, x′) 7→ exp[−‖x− x′‖2 /(2h2)] for some h > 0, or Laplace kernels,
(x, x′) 7→ exp(−‖x− x′‖ /h) for some h > 0, are bounded by κ = 1.

Taking |T | = 1 in Theorem 11 yields a new oracle inequality for the hold-out. Oracle
inequalities for the hold-out have already been proved in a variety of settings (see Arlot
and Celisse, 2010, for a review), and used to obtain adaptive rates in regularized kernel
regression (Steinwart and Christmann, 2008). However, this work has mostly been accom-
plished under the assumption that the contrast γ (Aλ(Dn), (X,Y )) is bounded uniformly
(in n, Dn and λ ∈ Λ) by a constant. If this constant increases with n, bounds obtained in
this manner may worsen considerably. As many “natural” regression procedures—including
regularized kernel regression (Definition 9)—fail to satisfy such bounds, some theoreticians
introduce “truncated” versions of standard procedures (Steinwart and Christmann, 2008),
but truncation has no basis in practice. Theorem 11 avoids these complications.

In order to be satisfactory, Theorem 11 should prove that agghoo performs asymptotically
as well as the best choice of λ ∈ Λ, at least for reasonable choices of Λ. This is the case

13
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whenever the maximum in Equation (6) is negligible with respect to the oracle excess risk
E[minλ∈Λ `(s,Aλ(Dnt))] as n → +∞. This depends on the range [λm,+∞) in which the
hold-out is allowed to search for the optimal λ. On the one hand, it is desirable that this
interval be wide enough to contain the true optimal value. On the other hand, if λm = 0,
then inequality (6) becomes vacuous. We now provide precise examples where Theorem 11
applies with a remainder term in Equation (6) that is negligible relative to the oracle excess
risk.

Take the example of median regression, in which c(u, y) = g(u, y) = |u − y|. Then
Comp1(g, c) holds trivially. Make also the same assumptions as in Proposition 10, which
ensures that SCρ,ν holds for some finite values of ρ and ν. Theorem 11 therefore applies as
long as the kernel K is bounded and λm > 0. Choose nv = nt = n

2 and Λ of cardinality
at most polynomial in n (which is sufficient in theory and in practice). Then Steinwart
and Christmann (2008, Theorem 9.6) prove the consistency of Aλn(Dn) as n → +∞, pro-
vided that λ2

nn → +∞. This suggests choosing λm = 1/
√
nt, in which case the remainder

term of Equation (6) is of order (log n)3/2/n, which is negligible relative to nonparametric
convergence rates in median regression.

In order to have a more precise idea of the order of magnitude of the oracle excess risk,
let us consider median regression with a Gaussian kernel. Under some assumptions, one of
which coincides with Proposition 10, Eberts and Steinwart (2013, Corollary 4.12) show that
taking λn = c1

n leads to rates of order n−
2α

2α+d , where d ∈ N is the dimension of X and α > 0
is the smoothness of s. Therefore, taking λm = 1/nt in Theorem 11, the remainder term of
Equation (6) is at most of order (log n)3/2/

√
n, hence negligible relative to the above risk

rates as soon as 2α < d.

Theorem 11 can handle situations where g is different from the training loss c, pro-
vided that CompC(g, c) holds true. Such situations arise for instance in the case of support
vector regression (Scholkopf and Smola, 2001, Chapter 9), which uses for training Vapnik’s
ε-insensitive loss cepsε (u, y) = (|u−y|−ε)+. This loss depends on a parameter ε, the choice of
which is usually motivated by a tradeoff between sparsity and prediction accuracy (Scholkopf
and Smola, 2001). Therefore, some other loss is typically used to measure predictive perfor-
mance, independently of ε. We state one possible application of Theorem 11 to this case,
as a corollary.

Corollary 12 (ε-regression) Let c = cepsε : (u, y) 7→ (|y−u|−ε)+ be Vapnik’s ε-insensitive
loss and assume that the evaluation loss is g = ceps0 : (u, y) 7→ |u− y|. Assume that for every
x the conditional distribution of Y given X = x has a unimodal density with respect to the
Lebesgue measure, symmetric around its mode. Introduce the robust noise parameter

σ = sup
x∈X

{
inf

{
y ∈ R : P(Y 6 y |X = x) >

3

4

}
− sup

{
y ∈ R : P(Y 6 y |X = x) 6

1

4

}}
.

Then, applying agghoo to a finite subfamily (Aλ)λ∈Λ of the rules given by Definition 9 with
c = cepsε and a kernel K such that ‖K‖∞ 6 1 yields the following oracle inequality. Assuming
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nv > 100, 3 6 |Λ| 6 e
√
nv , and that (2) holds true, we have that for any θ ∈ (0, 1],

(1− θ)E
[
`
(
s, f̂ ag
T
)]

6 (1 + θ)E
[
min
λ∈Λ

`
(
s,Aλ(Dnt)

)]
+ max

{
72σ

log
(
nv|Λ|

)
θnv

, b1
log2

(
nv|Λ|

)
θ3λmn2

v

, b2
log

3
2

(
nv|Λ|

)
θλmnv

√
nt

}
,

where b1 and b2 represent numerical constants.

Corollary 12 is proved in Appendix C.2.
When ε = 0, ε-regression becomes median regression, which is discussed above. The

oracle inequality of Corollary 12 is then the same as that given by Theorem 11 and Propo-
sition 10. Assumptions of unimodality and symmetry allow to give more explicit values of
am and µm in terms of σ. When ε > 0, the unimodality and symmetry assumptions are
used to prove hypothesis CompC(g, c).

4.2 Classification

Loss functions are not all convex. When convexity fails, the aggregation procedure should
be revised.

In classification, majhoo is a possible solution (see Definition 7). By Proposition 35 in
Appendix D, majority voting satisfies a kind of “convexity inequality” with respect to the
0–1 loss; as a result, oracle inequalities for the hold-out imply oracle inequalities for majhoo.

Hold-out for binary classification with 0–1 loss has been studied by Massart (2007). In
that work, Massart makes an assumption which is closely related to margin hypotheses, such
as Tsybakov’s noise condition (Mammen and Tsybakov, 1999) which we consider here. This
approach allows to derive the following theorem.

Theorem 13 Consider the classification setting described in Example 1 with M = 2 classes
(binary classification). Let (Am)m∈M be a collection of learning rules and T a collection of
training sets satisfying assumption (2).

Assume that there exists β > 0 and r > 1 such that for ξ = (X,Y ) with distribution P ,

∀h > 0, P
(∣∣2η(X)− 1

∣∣ 6 h
)
6 rhβ (MA)

where η(X) := P(Y = 1 |X). Then, we have

E
[
`
(
s, f̂ mv
T
)]

6 3E
[

inf
m∈M

`
(
s,Am(Dnt)

)]
+

29r
1

β+2 log
(
e|M|

)
n
β+1
β+2
v

.

Theorem 13 is proved in Appendix D. It shows that f̂ mv
T , like f̂ ag

T , satisfies an oracle
inequality of the form (1) with Am(Dnt) instead of Am(Dn). Tsybakov’s margin assumption
(MA) only depends on the distribution of (X,Y ) and not on the collection of learning rules.
It is a standard hypothesis in classification, under which “fast” learning rates—faster than
n−1/2—are attainable (Tsybakov, 2004). In contrast with the results of Section 4.1, that are
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valid for various losses but only for a specific type of learning rule, Theorem 13 holds true
for any family of classification rules.

The constant 3 in front of the oracle excess risk can be replaced by any constant larger
than 2, at the price of increasing the constant in the remainder term, as can be seen from
the proof (in Appendix D). However, our approach cannot yield a constant lower than 2,
because we use Proposition 35 instead of a convexity argument, since the 0–1 loss is not
convex.

5. Numerical Experiments

This section investigates how agghoo and majhoo’s performance vary with their parameters
V = |T | = and τ = nt

n , and how it compares to the performance of CV and related methods
at a similar computational cost—that is, for the same values of V and τ . Two settings are
considered, corresponding to Corollary 12 (ε-regression) and Theorem 13 (classification).

5.1 ε-Regression

Consider the collection (Aλ)λ∈Λ of regularized kernel estimators (see Definition 9) with loss
function cepsε (u, y) = (|u − y| − ε)+ and Gaussian kernel K(x, x′) = exp[−(x − x′)2/(2h2)]
over X = R.

5.1.1 Experimental Procedure

Agghoo and CV training sets T ∈ T are chosen independently and uniformly among the
subsets of {1, . . . , n} with cardinality bτnc, for different values of τ and V = |T |; hence,
CV corresponds to what is usually called “Monte-Carlo CV” (Arlot and Celisse, 2010).
Each algorithm is run on 1000 independent samples of size n = 500, and independent test
samples of size 1000 are used for estimating the excess risks `(s, f̂ ag

T ), `(s, f̂ cv
T ) and the oracle

excess risk infλ∈Λ `(s,Aλ(Dn)). The risks (and excess risks) are evaluated using the L1 loss
g(u, y) = |u− y|. Expectations of these quantities are estimated by taking an average over
the 1000 samples; we also compute standard deviations for these estimates, which are not
displayed, since they are sufficiently small to ensure that visible “gaps” on the graph are
statistically significant.

Agghoo and CV are applied to (Aλ)λ∈Λ over the grid Λ = { 2j−1

500nt
: 0 6 j 6 17},

corresponding to the grid {500
2j

: 0 6 j 6 17} over the cost parameter C = 1
2λnt

of the R
implementation svm from package e1071.

In a second step, V -fold agghoo and Monte-Carlo agghoo are compared with other av-
eraging cross-validation procedures:

• ACV (Jung and Hu, 2015),

• EKCV (Jung, 2016),

• bagged K-FCV, that is, bagging applied to the K-fold CV predictor f̂ cv
T given by

Definition 5, with T = {{1, . . . , n}\Ji : 1 6 i 6 K} for some partition (Ji)16i6K of
{1, . . . , n} into K blocks of equal size |Ji| = nv = n/K. Following the terminology
detailed in Section 3.3, bagged K-FCV is a specific instance of bagged CV. Note that
bagged K-FCV is not Hall’s BCV.
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Figure 1: Performance of agghoo and CV for ε-regression in setup 1

These methods can be seen as having the same two hyperparameters: the fraction τ of
data assigned to the training set in each fold of CV, and the number V of estimators—or
parameters—being aggregated. Using the notation of Jung and Hu (2015) for ACV, we have
τ = (K − 1)/K and V = K for some integer K > 1. Using the notation of Jung (2016) for
EKCV, we have τ = K−1

K and V = M . For bagged K-FCV, V is the number of bagging
resamples considered, and τ = (K−1)/K (or equivalently, K = 1/(1−τ)). For all methods,
we consider the choices τ ∈ {0.8, 0.9} and V ∈ {5, 10}. For ACV and EKCV, these are the
values recommended by Jung and Hu (2015) and Jung (2016), respectively.

5.1.2 Setup 1

Data are generated as follows: (X1, Y1), . . . , (Xn, Yn) are independent, with Xi ∼ N (0, π2),
Yi = s(Xi) + Zi, with Zi ∼ N (0, 1/4) independent from Xi. The regression function is
s : x 7→ exp[cos(x)], the kernel parameter is h = 1

2 and the threshold for the ε-insensitive
loss is ε = 1

4 .

Results for agghoo and CV in setup 1 are shown on Figure 1. The performance of agghoo
strongly depends on both τ and V . For a fixed τ , increasing V significantly decreases the
risk of the resulting estimator. This is not surprising and confirms that considering several
data splits is always useful.

Most of the improvement occurs between V = 1 and V = 5, and taking V much larger
seems useless—at least for τ > 0.5—, a behavior previously observed for CV (Arlot and

17



Maillard, Arlot and Lerasle

τ V MC agghoo V -fold agghoo ACV EKCV Bagged K-FCV
0.8 5 2.48± 0.2 1.95± 0.2 1.66± 0.2 1.51± 0.2 5.46± 0.4
0.8 10 1.93± 0.2 1.47± 0.2 3.54± 0.3
0.9 5 3.46± 0.3 1.52± 0.2 6.03± 0.4
0.9 10 2.82± 0.2 2.35± 0.2 2.07± 0.2 1.38± 0.2 3.99± 0.3

Table 1: Setup 1, difference between the average risk of each method and the average risk
of the oracle, multiplied by 103. The uncertainty is obtained using the formula
2 ∗ σ̂√

ns
, where σ̂2 is the empirical variance and ns is the number of simulations.

Missing values occur when the given combination of τ and V is not allowed by the
method; this is the case with ACV and V -fold agghoo, for which τ = V−1

V .

Lerasle, 2016). For a fixed V , the risk strongly decreases when τ increases from 0.1 to 0.5,
decreases slowly over the interval [0.5, 0.8] and seems to rise for τ > 0.8. It seems that
τ ∈ [0.6, 0.9] yields the best performance, while taking τ close to 0 should clearly be avoided
(at least for V 6 10). Taking V large enough, say V = 10, makes the choice of τ less crucial:
a large region of values of τ yields (almost) optimal performance. We do not know whether
taking V larger can make the performance of agghoo with τ 6 0.4 close to the optimum.

As a function of τ , the risk of CV behaves quite differently from agghoo’s. The per-
formance does not degrade significantly when τ is small. The optimum is located around
τ = 0.1, but the risk curve is so flat that there is no perceptible difference between the values
of τ ∈ [0.1, 0.4]. In any case, the optimum is much smaller than for agghoo. A possible
explanation is that the regressors produced by cross-validation are all trained on the whole
sample, so that τ only impacts risk estimation. Furthermore, additional simulations show,
as expected, that higher values of τ (τ = 0.8 or τ = 0.9) improve risk estimation while de-
grading the hyperparameter selection performance. Compared to agghoo, CV’s performance
depends much less on V : only V = 2 appears to be significantly worse than V > 5.

Let us now compare agghoo and CV. For small values of τ (that is, τ 6 0.5), agghoo
generally performs much worse than CV for all values of V . In the case of the hold-out, this
is unsurprising as the hold-out estimator is then trained on a much smaller sample than the
CV estimator. Clearly, aggregation does not sufficiently compensate for this, at least for
V 6 10. On the other hand, for τ ∈ [0.6, 0.9], agghoo with V = 10 approximately matches
CV’s performance. The risks of the two methods are indistinguishable for V = 10, τ = 0.8.

Comparison of agghoo with ACV, EKCV and bagged K-FCV in setup 1. According to
the results summarized by Table 1, the best performing method in this experiment is EKCV,
followed by ACV. The performance of EKCV does not vary very much over the tested values
of V, τ , whereas other methods show stronger variation. Among the two agghoo methods,
V -fold appears to perform better than Monte-Carlo for a given value of τ and equal or
smaller value of V . Bagged K-FCV performs the worst out of all the methods, for all values
of τ and V . Overall, in this simulation, the methods which select a single regressor from the
collection (Aλ(Dn))λ∈R+ (CV, ACV and EKCV) generally perform better than the methods
which aggregate them (agghoo and bagged K-FCV). This could be due to the fact that the
regression function exp[cos(x)] of setup 1 is very smooth (analytic) and bounded. Combined
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Figure 2: Performance of agghoo and CV for ε-regression in setup 2

with a one-dimensional variable X and Gaussian noise, this yields an “easy” non-parametric
regression problem. As a result, the collection (Aλ(Dn))λ∈R+ may already have very good
approximation properties and improving on it with aggregation may be difficult. Estimator
aggregation could prove more useful in harder problems where s is less smooth and the
dimension is higher. In order to assess this hypothesis, we carry out a second experiment.

5.1.3 Setup 2

Data are generated as follows: (X1, Y1), . . . , (Xn, Yn) are independent, with Xi ∈ R2 dis-
tributed as Cauchy(0, 1)⊗2, Yi = s(Xi) + Zi, with Zi ∼ N (0, 1/4) independent from Xi.
The regression function is defined almost everywhere by

s(x1, x2) =
2 sin(x1x2)

x2
1 + x2

2

,

the kernel parameter is h = 1
2 and the threshold for the ε-insensitive loss is ε = 1

4 . This
regression function is less regular than in the previous setup, since it has a discontinuity at
(0, 0) ∈ R2.

Results for agghoo and CV in setup 2 are shown on Figure 2. The qualitative conclusions
about the behaviour of agghoo and CV, taken separately, are mostly the same as in setup 1,
with the exception that CV now shows the expected increase in risk for the smallest values
of τ .
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τ V MC agghoo V -fold agghoo ACV EKCV Bagged K-FCV
0.8 5 0.94± 0.3 0.32± 0.2 2.1± 0.2 1.97± 0.2 6.97± 0.6
0.8 10 0.08± 0.2 3.66± 0.4 3.64± 0.5
0.9 5 2.39± 0.4 1.96± 0.2 8.81± 0.6
0.9 10 1.07± 0.3 0.72± 0.3 3.18± 0.4 3.65± 0.4 4.65± 0.5

Table 2: Setup 2, difference between the average risk of each method and the average risk
of the oracle, multiplied by 103. The uncertainty is obtained using the formula
2 ∗ σ̂√

ns
, where σ̂2 is the empirical variance and ns is the number of simulations.

The main difference with setup 1 is that agghoo performs much better relative to CV
and the oracle. For V = 10 and τ ∈ [0.4, 0.9], agghoo outperforms CV by a significant
margin; for V = 10 and τ ∈ [0.6, 0.8], agghoo even matches the oracle’s performance, up to
statistical uncertainty.

Part of the explanation is that, on a given data set, agghoo can perform better than the
oracle using aggregation whereas CV, as a parameter selection method, naturally cannot.
Indeed, for a randomly drawn data set in setup 2, this situation can be observed to occur
quite regularly.

Overall, if the computational cost of V = 10 data splits is not prohibitive, agghoo with
optimized parameters (V = 10, τ ∈ [0.6, 0.8]) clearly improves over CV with optimized
parameters (V = 10, τ ∈ [0.5, 0.7]). The same holds with V = 5.

Comparison of agghoo with ACV, EKCV and bagged K-FCV in setup 2. According
to the results summarized by Table 2, aggregated hold-out is clearly the best performing
method in setup 2, by a large margin. This shows the potential advantage of aggregating
estimators (agghoo) rather than parameters (ACV, EKCV) when s is non-smooth. Overall,
bagged K-FCV performs the worst, except for (τ, V ) = (0.8, 10) where it is tied with EKCV.
Its poor performance relative to agghoo can be explained by several factors: first, K-fold
CV is more stable than the hold-out, which leads to a less diverse ensemble for aggregation.
Secondly, bagging (sampling with replacement) breaks the independence between training
and test samples, potentially leading to overfitting. Among the two agghoo methods, V -
fold seems to outperform Monte-Carlo whenever both are defined, though the difference is
not significant. However, the overall best performance is attained at (τ, V ) = (0.8, 10), a
combination which is not achievable using a V -fold subsampling scheme.

5.1.4 Computational Complexity

By Equation (3), regularized kernel regressors can be represented linearly by vectors of
length nt, therefore the aggregation step can be performed at training time by averaging
these vectors. The complexity of this aggregation is at most O(V × nt). In general, this
is negligible relative to the cost of computing the hold-out, as simply computing the kernel
matrix requires nt(nt + 1)/2 kernel evaluations. Therefore, the aggregation step does not
affect much the computational complexity of agghoo, so the conclusion of Section 3.4 that
agghoo and CV have similar complexity applies in the present setting. The same holds for
ACV and EKCV which rely on V -fold type splits. In contrast, bagged K-FCV has a higher
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complexity, as one must carry out 1/(1 − τ)-fold CV within each bagging sample. As a
result, the hold-out must be computed V/(1− τ) times.

Evaluating agghoo, CV, ACV, EKCV and bagged K-FCV on new data x ∈ X also takes
the same time in general, as all can be computed by evaluating

∑nt
j=1 θjK(Xj , x) with a

pre-computed value of θ. A potential difference occurs when the θ̂λ—given by Definition 9,
Equation (3)—are sparse: aggregation increases the number of non-zero coefficients, so
evaluating f̂ ag

T on new data can be slower than evaluating f̂ cv
T (or ACV and EKCV) if the

implementation is designed to take advantage of sparsity.

5.2 k-Nearest-Neighbors Classification

We consider the collection (ANN
k )k>1, k odd of nearest-neighbors classifiers—assuming k is

odd to avoid ties— on the following binary classification problem.

5.2.1 Experimental Setup

Data (X1, Y1), . . . , (Xn, Yn) are independent, with Xi uniformly distributed over X = [0, 1]2

and

P(Yi = 1 |Xi) = σ

(
h(Xi)− b

λ

)
where ∀u, v ∈ R, σ(u) =

1

1 + e−u
and h

(
(u, v)

)
= exp

[
−(u2 + v)3

]
+ u2 + v2 ,

b = 1.18 and λ = 0.05. The Bayes classifier is s : x 7→ Ih(x)>b and the Bayes risk, computed
numerically using the scipy.integrate python library, is approximately equal to 0.242.
Majhoo (the classification version of agghoo, see Definition 7) and CV are used with the
collection (ANN

k )k>1, k odd and “Monte-Carlo” training sets as in Section 5.1. An experimental
procedure similar to the one of Section 5.1 is used to evaluate the performance of agghoo
and to compare it with Monte-Carlo cross-validation. Standard deviations of the excess risk
were computed; they are smaller than 3.6% of the estimated value.

5.2.2 Results

As shown by Figure 3, the results are similar to the regression case (see Section 5.1), with a
few differences. First, agghoo does not perform better than the oracle. In fact, all methods
considered here remain far from the oracle, which has an excess risk around 0.0034±0.0004;
both agghoo and CV have excess risks at least 4 times larger. Second, risk curves as a
function of τ for agghoo are almost U -shaped, with a significant rise of the risk for τ > 0.6.
Therefore, less data is needed for training, compared to Section 5.1. The optimal value of τ
here is 0.6, at least for some values of V , up to statistical error. Third, the performance of
CV as a function of τ has a similar U-shape, which makes the comparison between agghoo
and CV easier. For a given τ , agghoo performs significantly better if V > 10, while CV
performs significantly better if V = 2; the difference is mild for V = 5.

5.2.3 Alternative Methods

Neither ACV nor EKCV can be applied to k-nearest neighbors, as there are no models and
the parameter k of k-NN cannot be averaged, as it is an integer. Bagged K-FCV can be
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Figure 3: Classification performance of majhoo and CV for the k-NN family

used here, however it performs very poorly: using V bagging samples and K-fold CV with
(V,K) ∈ {5, 10}2 yields excess risks close to 0.072, again with negligible error (estimated
standard deviation 8× 10−4), hence two to five times worse than agghoo.

Further investigations reveal that within a bagging sample, CV often chooses k = 1, so
that bagged K-FCV practically reduces to bagged 1-NN. A plausible explanation for this
is that sampling with replacement leads to the same data point appearing in both training
and test sets; 1-NN perfectly classifies these repeated samples, which “artificially” improves
its CV score.

5.2.4 Computational Complexity

As explained in Section 3.4, the complexity of computing the optimal parameters for CV
(k̂cv
T ) is the same as for computing (k̂ ho

T )T∈T for majhoo. Here, there is no simple way to
represent the aggregated estimator, so aggregation may have to be performed at test time.
In that case, the complexity of evaluating majhoo on new data is roughly V times greater
than for CV, as explained in Section 3.4 for agghoo.

6. Discussion

Theoretical and numerical results of the paper show that agghoo can be used safely in RKHS
regression, at least when its parameters are properly chosen; V > 10 and τ = 0.8 seem to
be safe choices. A variant, majhoo, can be used in supervised classification with the 0–1
loss, with a general guarantee on its performance (Theorem 13). Experiments show that

22



Aggregated Hold-Out

agghoo/majhoo actually performs much better than what the upper bounds of Section 4
suggest. In one simulation setup, it roughly matches CV’s performance for well chosen V, τ .
In two others setups, it outperforms CV by a significant margin, as long as V > 5 splits
are used. Proving theoretically that agghoo can improve over CV is an open problem that
deserves future works, solved in a specific setting during the revision of this article (Maillard,
2020b, Chapters 5–6).

Since agghoo and CV have the same training computational cost for any fixed (V, τ),
agghoo—with properly chosen parameters V, τ—is competitive with CV in practice, unless
aggregation is undesirable for some other reason, such as interpretability of the predictors,
or computational complexity at test time.

Our results can be extended in several ways. First, our theoretical bounds directly
apply to subagging hold-out, which also averages several hold-out selected estimators. As
explained in Section 3.3, the difference with agghoo is that, in subagging, the training set
size is n − p − q and the validation set size is q, for some q ∈ {1, . . . , n − p − 1}, leading
to slightly worse bounds than those we obtained for agghoo (at least if E [`(s,Am(Dn))]
decreases with n). The difference should not be large in practice, if q is well chosen.

Oracle inequalities can also be obtained for agghoo in other settings, as a consequence
of our general Theorems 16 and 17 in Appendix A. Since the first version of this paper
appeared as a preprint, such results have been obtained in two settings. Maillard (2020a)
applies Theorem 17 to sparse linear regression with the Huber loss function. Maillard (2020b,
Chapter 6) applies Theorem 17 to the collection of empirical Fourier projections in least-
squares density estimation, as a preliminary step to a deeper study of agghoo in that setting.
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Appendix A. General Theorems

We need the following hypothesis, defined for two functions wi : R+ → R+, i ∈ {1, 2} and a
family (tm)m∈M ∈ SM.

Hypothesis H(w1, w2, (tm)m∈M): w1 and w2 are nondecreasing, and for any (m,m′) ∈M2,
some cmm′ ∈ R exists such that, for all k > 2,

P
(∣∣γ(tm)− γ(tm′)− cmm′

∣∣k) 6 k!
[
w1

(√
`(s, tm)

)
+ w1(

√
`(s, tm′))

]2

×
[
w2

(√
`(s, tm)

)
+ w2

(√
`(s, tm′)

)]k−2
.

This hypothesis is similar to those used by Massart (2007) to study the hold-out and em-
pirical risk minimizers. However, unlike Massart (2007), we intend to go beyond the setting
of bounded risks.

We also need the following definition.
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Definition 14 Let w : R+ → R+ and r ∈ R+. Let

δ(w, r) = inf
{
δ > 0 : ∀x > δ, w(x) 6 rx2

}
,

with the convention inf ∅ = +∞.

Remark 15 • If r > 0 and x 7→ w(x)
x is nonincreasing, then δ(w, r) is the unique

solution to the equation w(x)
x = rx.

• r 7→ δ(w, r) is nonincreasing.

• If w(x) = cxβ for c > 0 and β ∈ [0, 2), then δ(w, r) =
(
c
r

) 1
2−β .

A.1 Theorem Statements

We can now state two general theorems from which we deduce all the theoretical results of
the paper. The first theorem is a general oracle inequality for the hold-out.

Theorem 16 Let (tm)m∈M be a finite collection in S, and

m̂ ∈ argmin
m∈M

Pnvγ(tm, ·) .

Assume that H(w1, w2, (tm)m∈M) holds true. Let x > 0. Then, with probability larger than
1− e−x, for any θ ∈ (0, 1], we have

(1− θ) `(s, tm̂) 6 (1 + θ) min
m∈M

{
`(s, tm)

}
+
√

2θδ2

(
w1,

θ

2

√
nv

x+ log|M|

)
+
θ2

2
δ2

(
w2,

θ2

4

nv
x+ log|M|

)
. (7)

If in addition, the two functions x 7→ wj(x)
x , j = 1, 2, are nonincreasing, then for any x > 0,

with probability larger than 1− e−x, for all θ ∈ (0, 1], we have

(1− θ)`(s, tm̂) 6 (1 + θ) min
m∈M

{
`(s, tm)

}
+ δ2(w1,

√
nv)

[
θ +

2(x+ log|M|)
θ

]
+ δ2(w2, nv)

[
θ +

(x+ log|M|)2

θ

]
.

(8)

Using Theorem 16, we prove the following general oracle inequality for agghoo.

Theorem 17 Assume that the hyperparameter space S is convex and that the risk L is
convex. Let (Am)m∈M be a finite collection of learning rules of size |M| > 3. Let f̂ ag

T
be an agghoo estimator, according to Definition 6, with T satisfying assumption (2). As-
sume that ŵ1,1, ŵ1,2 are Dnt-measurable random functions such that almost surely, hypothesis
H
(
ŵ1,1, ŵ1,2, (Am(Dnt))m∈M

)
holds true. Assume also that for i ∈ {1, 2}, x 7→ ŵ1,i(x)

x is
nonincreasing. Then for any θ ∈ (0, 1],

(1− θ)E
[
`
(
s, f̂ ag
T
)]

6 (1 + θ)E
[

min
m∈M

`
(
s,Am(Dnt)

)]
+R1(θ) (9)
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where R1(θ) = R1,1(θ) +R1,2(θ) with

R1,1(θ) =

(
θ +

2
(
1 + log|M|

)
θ

)
E
[
δ2
(
ŵ1,1,

√
nv
)]

,

R1,2(θ) =

(
θ +

2
(
1 + log|M|

)
+ log2|M|

θ

)
E
[
δ2
(
ŵ1,2, nv

)]
.

For any Dnt-measurable functions ŵ2,1 and ŵ2,2 such that H(ŵ2,1, ŵ2,2, (Am(Dnt))m∈M)
holds true almost surely, and any x > 0, θ ∈ (0, 1], we have

(1− θ)E
[
`
(
s, f̂ ag
T
)]

6 (1 + θ)E
[

min
m∈M

`
(
s,Am(Dnt)

)]
+R2(θ) (10)

where R2(θ) = R2,1(θ) +R2,2(θ) +R2,3(θ) +R2,4(θ) with

R2,1(θ) =
√

2θE
[
δ2

(
ŵ2,1,

θ

2

√
nv

x+ log|M|

)]
,

R2,2(θ) =
θ2

2
E
[
δ2

(
ŵ2,2,

θ2

4

nv
x+ log|M|

)]
,

R2,3(θ) = e−x
(
θ +

2(1 + x+ log|M|)
θ

)
E
[
δ2
(
ŵ1,1,

√
nv
)]

,

and R2,4(θ) = e−x
(
θ +

2(1 + x+ log|M|) + (x+ log|M|)2

θ

)
E
[
δ2
(
ŵ1,2, nv

)]
.

A.2 Proof of Theorem 16

We start by proving three lemmas.

Lemma 18 Let w be a nondecreasing function on R+. Let r > 0. Then

∀u > 0 , w(u) 6 r
(
u2 ∨ δ2(w, r)

)
,

where δ(w, r) is given by Definition 14.

Proof If u > δ(w, r), by Definition 14,

w(u) 6 ru2.

If u 6 δ(w, r), since w is nondecreasing, for all v > δ(w, r),

w(u) 6 w(v) 6 rv2.

By taking the infimum over v, we recover w(u) 6 rδ(w, r)2.

Lemma 19 Let w be a nondecreasing function such that x 7→ w(x)
x is nonincreasing over

(0,+∞). Let a ∈ R+ and b ∈ (0,+∞). For any θ ∈ (0, 1] and u > 0,

a

b
w(
√
u) 6

θ

2

[
u+ δ2(w, b)

]
+
a2δ2(w, b)

2θ
.
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Proof Since w is nondecreasing,

w(
√
u) 6 w

(√
u+ δ2(w, b)

)
=
√
u+ δ2(w, b)

w
(√

u+ δ2(w, b)
)√

u+ δ2(w, b)
.

Since w(x)
x is nonincreasing and δ(w, b) > 0,

w(
√
u) 6

√
u+ δ2(w, b)

w
(
δ(w, b)

)
δ(w, b)

6
√
u+ δ2(w, b) b δ(w, b) by Definition 14.

Therefore, using the inequality √xy 6 θ
2x+ y

2θ , valid for any x > 0, y > 0,

a

b
w(
√
u) 6

√
a2
[
u+ δ(w, b)2

]
δ(w, b)2 6

θ

2

[
u+ δ(w, b)2

]
+
a2δ(w, b)2

2θ
.

Lemma 20 Let nv ∈ N∗. LetM be a finite set and let (tm)m∈M ∈ SM. Assume that there
exists p ∈ [0, 1/|M|) and a function R : (0, 1] → R+ such that for any m,m′ in M, with
probability greater than 1− p,

∀θ ∈ (0, 1] , (Pnv − P )
[
γ(tm, ·)− γ(tm′ , ·)

]
6 θ`(s, tm) + θ`(s, tm′) +R(θ) .

Then, with probability greater than 1− |M|p, for any m̂ ∈ argminm∈M Pnvγ(tm, ·),

∀θ ∈ (0, 1] , (1− θ)`(s, tm̂) 6 (1 + θ) min
m∈M

{
`(s, tm)

}
+R(θ) .

Proof Let m∗ ∈ argminm∈M Pγ(tm, ·). Then for any m ∈ M, with probability greater
than 1− p,

∀θ ∈ (0, 1] , (Pnv − P )
[
γ(tm∗ , ·)− γ(tm, ·)

]
6 θ`(s, tm∗) + θ`(s, tm) +R(θ) .

So by the union bound, with probability greater than 1− |M|p,

∀θ ∈ (0, 1] , ∀m ∈M , (Pnv − P )
[
γ(tm∗ , ·)− γ(tm, ·)

]
6 θ`(s, tm∗) + θ`(s, tm) +R(θ) .

On that event, for all θ ∈ (0, 1],

Pγ(tm̂, ·) = Pnvγ(tm̂, ·) + (P − Pnv)γ(tm̂, ·)
6 Pnvγ(tm∗ , ·) + (P − Pnv)γ(tm̂, ·)
= Pγ(tm∗ , ·) + (P − Pnv)

[
γ(tm̂, ·)− γ(tm∗ , ·)

]
6 Pγ(tm∗ , ·) + θ`(s, tm∗) + θ`(s, tm̂) +R(θ) .
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Subtracting the Bayes risk Pγ(s, ·) on both sides, we get with probability greater than
1− |M|p, for all θ ∈ (0, 1],

`(s, tm̂) 6 `(s, tm∗) + θ`(s, tm∗) + θ`(s, tm̂) +R(θ) ,

that is, (1− θ)`(s, tm̂) 6 (1 + θ) min
m∈M

{
`(s, tm)

}
+R(θ) .

We now prove Theorem 16. Let (m,m′) ∈M2 be fixed. Let

σ := w1

(√
`(s, tm)

)
+ w1

(√
`(s, tm′)

)
,

and c := w2

(√
`(s, tm)

)
+ w2

(√
`(s, tm′)

)
.

By hypothesis H
(
w1, w2, (tm)m∈M

)
,

∃cmm′ ∈ R such that ∀k > 2 , P
(
γ(tm, ·)− γ(tm′ , ·)− cmm′

)k
6 k!σ2ck−2 .

For all y > 0, let Ωy(m,m
′) be the event on which

(Pnv − P )
[
γ(tm, ·)− γ(tm′ , ·)

]
6

√
2y

nv
σ +

cy

nv
. (11)

By Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10),

P
(
Ωy(m,m

′)
)
> 1− e−y .

Let q = θ
2

√
nv

x+log|M| . By Lemma 18 with r = q,

σ := w1

(√
`(s, tm)

)
+ w1

(√
`(s, tm′)

)
6 q
[
`(s, tm) ∨ δ2(w1, q) + `(s, tm′) ∨ δ2(w1, q)

]
.

Set y = x+ log|M| in Equation (11). Then,√
2y

nv
σ :=

√
2(x+ log|M|)

nv
σ

6

√
2(x+ log|M|)

nv

θ

2

√
nv

x+ log|M|
[
`(s, tm) ∨ δ2(w1, q) + `(s, tm′) ∨ δ2(w1, q)

]
6

θ√
2

[
`(s, tm) + `(s, tm′) + 2δ2

(
w1,

θ

2

√
nv

x+ log|M|

)]
. (12)

As for the second term of Equation (11), by Lemma 18 with r = q2, we have

c := w2(
√
`(s, tm)) + w2(

√
`(s, tm′)) 6 q2

[
`(s, tm) ∨ δ2(w2, q

2) + `(s, tm′) ∨ δ2(w2, q
2)
]
.
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Recall that q is shorthand for θ
2

√
nv

x+log|M| . Therefore,

c
y

nv
6
x+ log|M|

nv

θ2

4

nv
x+ log|M|

[
`(s, tm) ∨ δ2(w2, q

2) + `(s, tm′) ∨ δ2(w2, q
2)
]

=
θ2

4

[
`(s, tm) ∨ δ2(w2, q

2) + `(s, tm′) ∨ δ2(w2, q
2)
]

6
θ2

4

[
`(s, tm) + `(s, tm′) + 2δ2

(
w2,

θ2

4

nv
x+ log|M|

)]
. (13)

Since
√

1
2 + 1

4 6 1 and θ ∈ (0, 1], plugging Equations (12) and (13) in Equation (11) yields,
on the event Ωx+log|M|(m,m

′), for all θ ∈ (0, 1],

(Pnv − P )
[
γ(tm, ·)− γ(tm′ , ·)

]
6 θ
[
`(s, tm) + `(s, tm′)

]
+
√

2θδ2

(
w1,

θ

2

√
nv

x+ log|M|

)
+
θ2

2
δ2

(
w2,

θ2

4

nv
x+ log|M|

)
. (14)

Suppose now that x 7→ wj(x)
x is nonincreasing for j ∈ {1, 2}. Let θ ∈ (0, 1]. Let y > 0. By

Lemma 19 with a =
√

2y and b =
√
nv,√

2y

nv
σ =

√
2y

nv

[
w1

(√
`(s, tm)

)
+ w1

(√
`(s, tm′)

)]
6
θ

2
`(s, tm) +

θ

2
`(s, tm′) + δ2(w1,

√
nv)

(
θ +

2y

θ

)
. (15)

By Lemma 19 with a = y and b = nv,

c
y

nv
=

y

nv

[
w2

(√
`(s, tm)

)
+ w2

(√
`(s, tm′)

)]
6
θ

2
`(s, tm) +

θ

2
`(s, tm′) + δ2(w2, nv)

[
θ +

y2

θ

]
. (16)

Plugging Equations (15) and (16) in Equation (11) yields, on the event Ωy(m,m
′), for all

θ ∈ (0, 1],

(Pnv − P )
[
γ(tm, ·)− γ(tm′ , ·)

]
6 θ`(s, tm) + θ`(s, tm′) + δ2(w1,

√
nv)

(
θ +

2y

θ

)
+ δ2(w2, nv)

(
θ +

y2

θ

)
.

(17)

By Equation (14), Lemma 20 applies with p = exp(−x)/|M| and

R(θ) =
√

2θδ2

(
w1,

θ

2

√
nv

x+ log|M|

)
+
θ2

2
δ2

(
w2,

θ2

4

nv
x+ log|M|

)
.

This yields Equation (7). By Equation (17), Lemma 20 applies with p = e−y and

R(θ) = δ2(w1,
√
nv)

[
θ +

2y

θ

]
+ δ2(w2, nv)

(
θ +

y2

θ

)
.

Setting y = log|M|+ x yields Equation (8).
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A.3 Proof of Theorem 17

We start by proving two lemmas.

Lemma 21 Let f ∈ L1(R+, e
−xdx) be a non-negative, nondecreasing function such that

lim
x→+∞

f(x) = +∞. Let X be a random variable such that

∀x ∈ R+ , P
(
X > f(x)

)
6 e−x .

Then

E[X] 6
∫ +∞

0
f(x)e−xdx .

Proof Let g ∈ L1(R+, e
−xdx) be a nondecreasing, differentiable function such that g > f .

Then

E[X] 6
∫ +∞

0
P(X > t)dt

=

∫ g(0)

0
P(X > t)dt+

∫ +∞

0
P
(
X > g(x)

)
g′(x)dx

6 g(0) +

∫ +∞

0
e−xg′(x)dx since g > f

= g(0) +
[
e−xg(x)

]∞
0

+

∫ +∞

0
e−xg(x)dx

=

∫ +∞

0
e−xg(x)dx .

It remains to show that g can approximate f in L1(Ix>0e−xdx). Let K be a nonnegative
smooth function vanishing outside [−1, 1], normalized such that

∫
K(t)dt = 1. Let ε > 0.

Define

fε(x) =
1

ε

∫
f(t)K

(
x+ ε− t

ε

)
dt (18)

=
1

ε

∫
f(x+ ε− t)K

(
t

ε

)
dt (19)

By Equation (18), fε is smooth. By Equation (19), fε is nondecreasing, moreover

fε(x)− f(x) =
1

ε

∫ [
f(x+ ε− t)− f(x)

]
K

(
t

ε

)
dt since

∫
K = 1

=
1

ε

∫ ε

−ε

[
f(x+ ε− t)− f(x)

]
K

(
t

ε

)
dt since K(u) = 0 when |u| > 1

> 0 since f is nondecreasing and K > 0 .

Thus fε > f . Finally, by Jensen’s inequality and Fubini’s theorem,∫ ∣∣fε(x)− f(x)
∣∣e−xdx 6

1

ε

∫ ε

−ε
K

(
t

ε

)∫ ∣∣f(x+ ε− t)− f(x)
∣∣e−xdxdt

6 sup
|τ |62ε

∫ ∣∣f(x+ τ)− f(x)
∣∣e−xdx ,
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which converges to 0 when ε→ 0 since f ∈ L1(R+, e
−xdx).

We use the following additional notation:

Definition 22 Let g be the function defined by

∀(θ, y, p, q) ∈ (0, 1]× R3
+ , g(θ, y, p, q) = θ[p+ q] +

1

θ
(2yp+ y2q) .

This function satisfies the following properties.

Lemma 23 Let g be the function given in Definition 22. For any θ ∈ (0, 1] and any real
numbers u > 0, p > 0, q > 0,

eu
∫ +∞

u
g(θ, y, p, q)e−ydy =

(
θ +

2(1 + u)

θ

)
p+

(
θ +

2 + 2u+ u2

θ

)
q .

Proof Using the formulae∫ +∞

u
e−xdx = e−u ,

∫ +∞

u
xe−xdx = (1 + u)e−u

and
∫ +∞

u
x2e−xdx = (2 + 2u+ u2)e−u ,

we get

eu
∫ +∞

u
g(θ, y, p, q)e−ydy = θ(p+ q) + (1 + u)

2p

θ
+ (2 + 2u+ u2)

q

θ

=

(
θ +

2(1 + u)

θ

)
p+

(
θ +

2 + 2u+ u2

θ

)
q .

We can now proceed with the proof of Theorem 17. Let θ ∈ (0, 1] be fixed. Let (f̂ ho
T )T∈T

be the individual hold out estimators, so that f̂ ag
T = 1

|T |
∑

T∈T f̂
ho
T . By convexity of the risk

functional L, we have

L(f̂ ag
T ) 6

1

|T |
∑
T∈T
L(f̂ ho

T ) .

It follows by subtracting L(s) that

`(s, f̂ ag
T ) 6

1

|T |
∑
T∈T

`(s, f̂ ho
T ) .

Since the data are independent and identically distributed, by assumption (2), all f̂ ho
T have

the same distribution. Let T1 = {1, . . . , nt}, so that DT1
n = Dnt . Taking expectations yields

E
[
`(s, f̂ ag

T )
]
6 E

[
`(s, f̂ ho

T1 )
]
. (20)

Since H (ŵ1,1, ŵ1,2, (Am(Dnt))m∈M) holds, we can apply Theorem 16 conditionally on Dnt ,
with tm = Am(Dnt).
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A.3.1 Proof of Equation (9)

For i ∈ {1, 2}, let δ̂1,i = δ(ŵ1,i,
√
nv

i). Let g be given by Definition 22. By Theorem 16,
Equation (8), for any z > 0, with probability greater than 1− e−z,

(1− θ)`(s, f̂ ho
T1 ) 6 (1 + θ) min

m∈M

{
`(s, tm)

}
+ g
(
θ, z + log|M|, δ̂ 2

1,1, δ̂
2
1,2

)
. (21)

As g is nondecreasing in its second variable, Lemma 21 applied to the random variable
(1− θ)`(s, f̂ ho

T1
) yields

(1− θ)E
[
`(s, f̂ ho

T1 )
∣∣DT1

n

]
6 (1 + θ) min

m∈M

{
`(s, tm)

}
+

∫ +∞

log|M|
g
(
θ, y, δ̂ 2

1,1, δ̂
2
1,2

)
e−(y−log|M|)dy .

Lemma 23 yields

(1− θ)E
[
`(s, f̂ ho

T1 )
∣∣DT1

n

]
6 (1 + θ) min

m∈M

{
`(s, tm)

}
+

(
θ +

2 (1 + log|M|)
θ

)
δ̂ 2

1,1

+

(
θ +

2 (1 + log|M|) + log2|M|
θ

)
δ̂ 2

1,2 .

Taking expectations with respect to DT1
n = Dnt , we get

(1− θ)E
[
`(s, f̂ ho

T1 )
]
6 (1 + θ)E

[
min
m∈M

`(s,Am(Dnt))

]
+

(
θ +

2 (1 + log|M|)
θ

)
E
[
δ̂ 2

1,1

]
+

(
θ +

2 (1 + log|M|) + log2|M|
θ

)
E
[
δ̂ 2

1,2

]
.

Equation (9) then follows from Equation (20).

A.3.2 Proof of Equation (10)

Fix x > 0. For i ∈ {1, 2}, let δ̂2,i = δ

(
ŵ2,i,

(
θ
2

√
nv

x+log|M|

)i)
.

By Theorem 16, Equation (7), with probability larger than 1− e−x,

(1− θ)`(s, f̂ ho
T1 ) 6 (1 + θ) min

m∈M

{
`(s, tm)

}
+
√

2θδ̂ 2
2,1 +

θ2

2
δ̂ 2

2,2 . (22)

Combining Equations (21) and (22), for any z > 0, with probability larger than 1− e−z,

(1− θ)`(s, f̂ ho
T1 ) 6 (1 + θ) min

m∈M

{
`(s, tm)

}
+
√

2θδ̂ 2
2,1 +

θ2

2
δ̂ 2

2,2 + Iz>xg
(
θ, z + log|M|, δ̂ 2

1,1, δ̂
2
1,2

)
.

By Lemma 21,

(1− θ)E
[
`(s, f̂ ho

T1 )
∣∣DT1

n

]
6 (1 + θ) min

m∈M

{
`(s, tm)

}
+
√

2θδ̂ 2
2,1 +

θ2

2
δ̂ 2

2,2

+

∫ +∞

x+log|M|
g
(
θ, y, δ̂ 2

1,1, δ̂
2
1,2

)
e−(y−log|M|)dy .
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By Lemma 23, it follows that

(1− θ)E
[
`(s, f̂ ho

T1 )
∣∣DT1

n

]
6 (1 + θ) min

m∈M

{
`(s, tm)

}
+
√

2θδ̂ 2
2,1 +

θ2

2
δ̂ 2

2,2

+ e−x
(
θ +

2(1 + x+ log|M|)
θ

)
δ̂ 2

1,1

+ e−x
(
θ +

2(1 + x+ log|M|) + (x+ log|M|)2

θ

)
δ̂ 2

1,2 .

Taking expectations with respect to DT1
n and using inequality (20) yields Equation (10) of

Theorem 17.

Appendix B. RKHS Regression: Proof of Theorem 11

In the following, for any g : R × R → R and t : X → R, the function (x, y) 7→ g(t(x), y) is
denoted by g ◦ t.

B.1 Preliminary Results

Remark first that the RKHS norm dominates the supremum norm.

Lemma 24 If κ = supx∈X K(x, x) < +∞ then for any t ∈ H,

‖t‖∞ 6
√
κ ‖t‖H .

Proof By definition of an RKHS, ∀t ∈ H,∀x ∈ X , 〈t,K(x, ·)〉H = t(x). It follows that, for
any t ∈ H,

‖t‖2∞ = sup
x∈X

t(x)2 = sup
x∈X
〈t,K(x, ·)〉2H

6 ‖t‖2H sup
x∈X
〈K(x, ·),K(x, ·)〉

6 ‖t‖2H sup
x∈X

K(x, x) .

Using standard arguments, the following deviation inequality can be derived.

Proposition 25 Let H denote a RKHS with bounded kernel K : X × X → R. Let κ =
supx∈X K(x, x) and h : R2 → R be Lipschitz in its first argument with Lipschitz constant L.
For any t ∈ H and r > 0, denote

BH(t, r) =
{
t′ ∈ H :

∥∥t′ − t∥∥H 6 r
}
.

Let t0 ∈ H. Then for any probability measure P on X × R and any y > 0,

P⊗n

[
sup

(t1,t2)∈BH(t0,r)2
(Pn − P )

(
h ◦ t1 − h ◦ t2

)
> 2(2 +

√
2y)L

r
√
κ√
n

]
6 e−y .

32



Aggregated Hold-Out

Proof Let Dn = (Xi, Yi)16i6n be a data set drawn from P . Let (σi)16i6n be independent
Rademacher variables independent from Dn. Denote by

Rn(F) = E

[
sup
f∈F

1

n

n∑
i=1

σif(Xi)

]

the Rademacher complexity of a class F of real valued functions.
By Lemma 24, for any (t1, t2) ∈ BH(t0, r)

2,

‖h ◦ t1 − h ◦ t2‖∞ 6 L ‖t1 − t2‖∞ 6 L [‖t1 − t0‖∞ + ‖t2 − t0‖∞] 6 2L
√
κr .

By symmetry under exchange of t1 and t2, notice that

Rn
(
{h ◦ t1 − h ◦ t2 : (t1, t2) ∈ BH(t0, r)

2}
)

= sup
(t1,t2)∈BH(t0,r)2

1

n

∣∣∣∣∣
n∑
i=1

σi(h ◦ t1 − h ◦ t2)(Xi)

∣∣∣∣∣ .
By the bounded difference inequality and Boucheron et al. (2005, Theorem 3.2), it follows
that for any y > 0, with probability greater than 1− e−y,

sup
(t1,t2)∈BH(t0,r)2

(Pn − P )(h ◦ t1 − h ◦ t2)

6 2Rn
(
{h ◦ t1 − h ◦ t2 : (t1, t2) ∈ BH(t0, r)

2}
)

+ 2Lr

√
2κy

n
.

Moreover,

Rn
(
{h ◦ t1 − h ◦ t2 : (t1, t2) ∈ BH(t0, r)

2}
)

6 Rn

({
h ◦ t : t ∈ BH(t0, r)

})
+Rn

({
−h ◦ t : t ∈ BH(t0, r)

})
6 2LRn

(
BH(t0, r)

)
by the contraction lemma

as formulated by Meir and Zhang (2003, Theorem 7),
= 2LRn

(
BH(0, r)

)
by translation invariance.

Finally, by a classical computation (see for example Boucheron et al., 2005, Section 4.1.2),

Rn

({
h ◦ t1 − h ◦ t2 : (t1, t2) ∈ BH(t0, r)

2
})

6 2L
r

n
E

√√√√ n∑
i=1

K(Xi, Xi)

6 2Lr

√
κ

n
.

The proof of Theorem 11 also uses the following peeling lemma.
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Lemma 26 Let (Zu)u∈T be a stochastic process and d : T → R+ be a function. Let a > 0
and b ∈ (0, 2] and assume that

∀r, y > 0 , P

(
sup

u∈T :d(u)6r
Zu > r

1 +
√
b(a+ y)√
n

)
6 e−y . (23)

Then, for any θ ∈ (0,+∞),

P

(
∃u ∈ T , Zu > θd2(u) +

2 + b
[
1.1 + 2(a+ y)

]
θn

)
6 e−y .

Proof Let x > 0. Let η ∈ (1, 2], jm ∈ N∗ and y0 ∈ R be numerical constants that will be
determined later. Then,

I

{
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

}

6 I

{
sup

u∈T :d(u)6x

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

}

+
+∞∑
j=0

I

{
sup

u∈T :ηjx6d(u)6ηj+1x

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

}

6 I

{
sup

u∈T :d(u)6x

Zu
x2

>
1 +

√
b(a+ y)

x
√
n

}

+

+∞∑
j=0

I

{
sup

u∈T :ηjx6d(u)6ηj+1x

Zu
(1 + η2j)x2

>
1 +

√
b(a+ y)

x
√
n

}

6 I

{
sup

u∈T :d(u)6x
Zu >

x
(
1 +

√
b(a+ y)

)
√
n

}

+

+∞∑
j=0

I

{
sup

u∈T :d(u)6ηj+1x

Zu > (1 + η2j)
x
(
1 +

√
b(a+ y)

)
√
n

}
. (24)

Notice that

(1 + η2j)
x
(
1 +

√
b(a+ y)

)
√
n

= xηj+1 × η2j + 1

ηj+1
×

1 +
√
b(a+ y)√
n

= xηj+1 1 +
√
b(a+ zj)√
n

,

where

zj =
1

b

(
η2j + 1

ηj+1
− 1 +

η2j + 1

ηj+1

√
b(a+ y)

)2

− a

>
1

b

(
η2j + 1

ηj+1
− 1

)2

+

(
η2j + 1

ηj+1

)2

y since a > 0 and η2j + 1 > ηj+1 .
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Taking expectations in Equation (24) and using hypothesis (23), we obtain

P

(
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

)
6 e−y +

+∞∑
j=0

e−zj .

So for any y > y0 ,

P

(
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

)

6 e−y + e−y
+∞∑
j=0

exp

[
−1

b

(
η2j + 1

ηj+1
− 1

)2

−
(

(η2j + 1)2

(ηj+1)2
− 1

)
y

]

6 e−y + e−y
+∞∑
j=0

exp

[
−1

b

(
η2j + 1

ηj+1
− 1

)2

−
(

(η2j + 1)2

(ηj+1)2
− 1

)
y0

]
. (25)

Now, we have

exp

[
−1

b

(
η2j + 1

ηj+1
− 1

)2

−
(

(η2j + 1)2

(ηj+1)2
− 1

)
y0

]
6 exp

[
−
(

(η2j + 1)2

(ηj+1)2
− 1

)
y0

]
6 exp

(
y0 − η2(j−1)y0

)
. (26)

Let v denote the sequence vj = exp
(
y0 − η2(j−1)y0

)
. Then for j > jm,

log vj+1 − log vj = η2(j−1)y0 − η2jy0

= y0(1− η2)η2(j−1)

6 y0(1− η2)η2(jm−1) since η > 1 .

Thus,
∀j > jm, vj+1 6 vj exp

(
−y0(η2 − 1)η2(jm−1)

)
.

Therefore, we have

∀j > 0, vj+jm 6 vjm exp
(
−jy0(η2 − 1)η2(jm−1))

)
and

+∞∑
j=jm

vj 6 vjm

[
1− exp

(
−y0(η2 − 1)η2(jm−1)

)]−1
.

It follows from Equations (25) and (26) that for any y > y0, since b 6 2,

eyP

(
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

)

6 1 +

jm∑
j=0

exp

[
−1

2

(
η2j + 1

ηj+1
− 1

)2

−
(

(η2j + 1)2

(ηj+1)2
− 1

)
y0

]

+
exp

(
y0 − η2(jm−1)y0

)
1− exp

(
−y0(η2 − 1)η2(jm−1)

) .

(27)
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On the other hand, when y 6 y0,

P

(
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

)
6 1 6 ey0e−y .

Taking η = 1.18, jm = 10, y0 = 0.52, the right-hand side of Equation (27) evaluates to
1.6765 < 1.7 whereas ey0 6 1.683 < 1.7. It follows that for all y > 0,

P

(
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

)
6 1.7e−y . (28)

Now take x =
1+
√
b(a+y)

θ
√
n

with θ > 0. We can rewrite

P

(
sup
u∈T

Zu
d2(u) + x2

>
1 +

√
b(a+ y)

x
√
n

)

= P
(
∃u ∈ T , Zu

d2(u) + x2
> θ

)
= P

(
∃u ∈ T , Zu > θd2(u) +

1

θn

[
1 +

√
b(a+ y)

]2
)

> P
(
∃u ∈ T , Zu > θd2(u) +

2 + 2b(a+ y)

θn

)
.

It follows from Equation (28), with y replaced by y + 0.55, that

P

(
∃u ∈ T,Zu > θd2(u) +

2 + b
[
1.1 + 2(a+ y)

]
θn

)
6 1.7e−0.55e−y 6 e−y .

We need two other technical lemmas in the proof of Theorem 11.

Lemma 27 For any nonnegative, continuous convex function h over a Hilbert space H, and
any λ ∈ R+, the elements of the regularization path,

tλ = argmin
t∈H

{
h(t) + λ ‖t‖2H

}
,

satisfy, for any (λ, µ) ∈ R2 such that 0 < λ 6 µ,

‖tλ − tµ‖2H 6 ‖tλ‖2H − ‖tµ‖
2
H .

Proof By Barbu and Precupanu (2012, Theorem 2.11), tλ exists for any λ ∈ R+. Moreover,
it is unique by strong convexity of ‖·‖2H. For a closed convex set C ⊂ H, let ΠC denote the
orthogonal projection onto C.

36



Aggregated Hold-Out

Let µ > 0. The set {t : h(t) 6 h(tµ)} is closed by continuity of h and convex by convexity
of h. Moreover, for any t ∈ H such that h(t) 6 h(tµ),

µ ‖tµ‖2H 6 h(tµ)− h(t) + µ ‖tµ‖2H
6 µ ‖t‖2H by definition of tµ .

Therefore, tµ = Π{t:h(t)6h(tµ)}(0). Let λ ∈ (0, µ). By definition of tλ, tµ,

h(tµ)

µ
+ ‖tµ‖2H 6

h(tλ)

µ
+ ‖tλ‖2H

=
h(tλ)

λ
+ ‖tλ‖2H +

(
1

µ
− 1

λ

)
h(tλ)

6
h(tµ)

λ
+ ‖tµ‖2H +

(
1

µ
− 1

λ

)
h(tλ) ,

which implies (µ−1−λ−1)h(tµ) 6 (µ−1−λ−1)h(tλ) and thus h(tλ) 6 h(tµ) since λ < µ. For
a projection ΠC , it is well known that

∀t ∈ H , ∀t′ ∈ C , 〈t−ΠC(t),ΠC(t)− t′〉H > 0 .

Choosing C = {t : h(t) 6 h(tµ)}, t′ = tλ ∈ C, t = 0 yields 〈−tµ, tµ − tλ〉H > 0. Therefore

‖tλ‖2H = ‖tµ + (tλ − tµ)‖2H
= ‖tµ‖2H + ‖tλ − tµ‖2H + 2〈tµ, tλ − tµ〉H
> ‖tµ‖2H + ‖tλ − tµ‖2H .

Lemma 28 Let (b, c) ∈ R2
+ and lb,c(x) = bx + c. Let δ be given by Definition 14. For any

r ∈ R+,

δ2(lb,c, r) 6
b2

r2
+

2c

r
. (29)

For (a, b, c) ∈ R3
+, let ga,b,c(x) = ax ∨ (bx3 + cx2)

1
2 . For any r ∈ R+,

δ2
(
ga,b,c, r

)
6
a2

r2
∨
(
b2

r4
+

2c

r2

)
6
a2

r2
+
b2

r4
+

2c

r2
. (30)

Proof Since x 7→ lb,c(x)
x is nonincreasing, we have by Remark 15

bδ(lb,c, r) + c = rδ2(lb,c, r) ,

that is, δ2(lb,c, r)−
bδ(lb,c, r)

r
− c

r
= 0 ,
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hence δ(lb,c, r) = b
2r + 1

2

√
b2

r2
+ 4c

r . Thus, we have

δ2(lb,c, r) 6 2

(
b2

4r2
+

b2

4r2
+
c

r

)
6
b2

r2
+

2c

r
.

This proves Equation (29). For any x > 0, ga,b,c(x) 6 rx2 is equivalent to

ax 6 rx2 (31)

and bx3 + cx2 6 r2x4 . (32)

Equation (31) is equivalent to x > a
r . On the other hand, for every

x >

(
b2

r4
+

2c

r2

) 1
2

,

we have x > δ(lb,c, r
2) by Equation (29), hence bx + c 6 r2x2 by Definition 14, so that

Equation (32) holds true. Therefore, whenever

x >
a

r
∨
(
b2

r4
+

2c

r2

) 1
2

,

it holds that ga,b,c(x) 6 rx2. Equation (30) follows by Definition 14.

B.2 Uniform Control on the Empirical Process

From now on, until the end of the proof, the notation and hypotheses of Theorem 11 are
used. Recall also the notation g◦t : (x, y) 7→ g(t(x), y), for any g : R×R→ R and t : X → R.
Fix a training set Dnt . Start with the following definition.

Definition 29 For t1, t2 ∈ H, let

d(t1, t2) = min
λ∈Λ

{
‖t1 − sλ‖H

}
+ ‖t1 − t2‖H , (33)

where sλ = argmint∈H

{
P (c ◦ t) + λ ‖t‖2H

}
. Furthermore, let

ŷ =
λmnt
32κL2

× sup
(t1,t2)∈H2

{
(Pnt − P )(c ◦ t1 − c ◦ t2)− λm

2
d(t1, t2)2

}
,

so that

∀(t1, t2) ∈ H2 , (Pnt − P )(c ◦ t1 − c ◦ t2) 6
λm
2
d(t1, t2)2 +

32κL2ŷ

λmnt
. (34)

We then have the following bounds on ŷ.

38



Aggregated Hold-Out

Claim 30 For all x > 0,

P
(
ŷ > 2.6 + log|Λ|+ x

)
6 e−x .

In particular, E[ŷ] 6 4 + log|Λ|.

Proof Let t1, t2 ∈ H be such that d(t1, t2) 6 r. Let λ ∈ Λ be such that

‖t1 − sλ‖H + ‖t1 − t2‖H 6 r .

By the triangle inequality, t1, t2 ∈ B(sλ, r), hence

sup
(t1,t2):d(t1,t2)6r

{
(Pnt−P )(c◦ t1− c◦ t2)

}
6 max

λ∈Λ
sup

(t1,t2)∈B(sλ,r)2
(Pnt−P )(c◦ t1− c◦ t2) . (35)

From Proposition 25 and the union bound, it follows that, for any x > 0,

P

(
max
λ∈Λ

sup
(t1,t2)∈B(sλ,r)2

{
(Pnt − P )(c ◦ t1 − c ◦ t2)

}
> 2

(
2 +

√
2(x+ log|Λ|)

)
L
r
√
κ

√
nt

)
6 e−x .

It follows by Equation (35) that, for all x > 0,

P

(
sup

(t1,t2):d(t1,t2)6r

1

4L
√
κ

{
(Pnt − P )(c ◦ t1 − c ◦ t2)

}
>

(
1 +

√
x+ log|Λ|

2

)
r
√
nt

)
6 e−x .

By Lemma 26 with θ = λm
8L
√
κ
, a = log|Λ|, b = 1

2 , with probability larger than 1− e−x,

∀(t1, t2) ∈ H2 , (Pnt − P )(c ◦ t1 − c ◦ t2) 6
λm
2
d(t1, t2)2 + 32L2κ(2.6 + x+ log|Λ|)

λmnt
.

On the same event, ŷ 6 2.6 + x + log|Λ| by Definition 29. Therefore, by Lemma 21,
E[ŷ] 6 3.6 + log|Λ|.

Definition 29 and Claim 30 together imply a uniform control on the empirical process
thanks to the drift term λmd(t1, t2)2, whereas Proposition 25 only gives a bound on an
RKHS ball of fixed radius.

B.3 Verifying the Assumptions of Theorem 17

Theorem 11 is a consequence of Theorem 17. For all λ ∈ Λ, let t̂λ = Aλ(Dnt), where
Aλ is given by Definition 9. To verify the assumptions of Theorem 17, adequate functions
(ŵi,j)(i,j)∈{1,2}2 must be found such that for i ∈ {1, 2}, H

(
ŵi,1, ŵi,2, (t̂λ)λ∈Λ

)
holds almost

surely. This is the purpose of the present subsection.
The core of the proof of Theorem 11 lies in the following deterministic claim.

Claim 31 For all λ, µ ∈ Λ such that λ 6 µ, we have

∥∥t̂λ − t̂µ∥∥2

∞ 6
κC

λm
`(s, t̂µ) + 96L2 κ2ŷ

λ2
mnt

.
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Proof Let (λ, µ) ∈ Λ2 with λ 6 µ. Let sµ be as in Definition 29. By convexity of c, the
function t 7→ P (c ◦ t) + µ ‖t‖2H is µ-strongly convex. Since sµ is its optimum, we get

∀t ∈ H , P (c ◦ t) + µ ‖t‖2H > P (c ◦ sµ) + µ ‖sµ‖2H + µ ‖t− sµ‖2H .

Hence, taking t = t̂µ,

λm
∥∥t̂µ − sµ∥∥2

H

6 µ
∥∥t̂µ − sµ∥∥2

H

6 P (c ◦ t̂µ) + µ
∥∥t̂µ∥∥2

H − P (c ◦ sµ)− µ ‖sµ‖2H
= Pnt(c ◦ t̂µ) + µ

∥∥t̂µ∥∥2

H − Pnt(c ◦ sµ)− µ ‖sµ‖2H + (P − Pnt)(c ◦ t̂µ − c ◦ sµ) .

By Definition 9,
Pnt(c ◦ t̂µ) + µ

∥∥t̂µ∥∥2

H 6 Pnt(c ◦ sµ) + µ ‖sµ‖2H .

Hence λm
∥∥t̂µ − sµ∥∥2

H 6 (P − Pnt)(c ◦ t̂µ − c ◦ sµ) = (Pnt − P )(c ◦ sµ − c ◦ t̂µ). Now take
t1 = sµ and t2 = t̂µ in Equation (34) of Definition 29 to get

λm
∥∥t̂µ − sµ∥∥2

H 6
λm
2
d(sµ, t̂µ)2 + 32L2 κŷ

λmnt

=
λm
2

∥∥sµ − t̂µ∥∥2

H + 32L2 κŷ

λmnt
.

Therefore, ∥∥t̂µ − sµ∥∥2

H 6 64L2 ŷκ

λ2
mnt

. (36)

Now
∥∥t̂λ − t̂µ∥∥2

H can be bounded as follows. Since t 7→ Pnt(c ◦ t) + λ ‖t‖2H is λ-strongly
convex and t̂λ is its optimum,

λm
∥∥t̂λ − t̂µ∥∥2

H 6 λ
∥∥t̂λ − t̂µ∥∥2

H

6 Pnt(c ◦ t̂µ)− Pnt(c ◦ t̂λ) + λ
∥∥t̂µ∥∥2

H − λ
∥∥t̂λ∥∥2

H .

By Lemma 27 with h(t) = Pnt(c ◦ t),
∥∥t̂λ − t̂µ∥∥2

H 6
∥∥t̂λ∥∥2

H −
∥∥t̂µ∥∥2

H. Hence

(λm + λ)
∥∥t̂λ − t̂µ∥∥2

H 6 Pnt(c ◦ t̂µ)− Pnt(c ◦ t̂λ)

= P (c ◦ t̂µ)− P (c ◦ t̂λ) + (Pnt − P )
(
c ◦ t̂µ − c ◦ t̂λ

)
6 P (c ◦ t̂µ)−min

t∈S
P
(
c ◦ t) + (Pnt − P )(c ◦ t̂µ − c ◦ t̂λ

)
6 C`(s, t̂µ) + (Pnt − P )

(
c ◦ t̂µ − c ◦ t̂λ

)
by hypothesis CompC(g, c). By Equation (34) with t1 = t̂µ and t2 = t̂λ, we have

(λm + λ)
∥∥t̂λ − t̂µ∥∥2

H 6 C`(s, t̂µ) +
λm
2

(∥∥t̂µ − sµ∥∥H +
∥∥t̂λ − t̂µ∥∥H)2 + 32L2 κŷ

λmnt

6 C`(s, t̂µ) +
λm
2

(
8
L
√
ŷκ

λm
√
nt

+
∥∥t̂λ − t̂µ∥∥H

)2

+ 32L2 κŷ

λmnt
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by Equation (36). For any a, b ∈ R, (a+ b)2 6 2a2 + 2b2, hence

(λ+ λm)
∥∥t̂λ − t̂µ∥∥2

H 6 C`(s, t̂µ) +
λm
2

(
128L2 ŷκ

λ2
mnt

+ 2
∥∥t̂λ − t̂µ∥∥2

H

)
+ 32L2 κŷ

λmnt
.

This yields

λ
∥∥t̂λ − t̂µ∥∥2

H 6 C`(s, t̂µ) + 96L2 κŷ

λmnt
,

and finally, since λ > λm,

∥∥t̂λ − t̂µ∥∥2

H 6
C`(s, t̂µ)

λm
+ 96L2 κŷ

λ2
mnt

.

Now, by Lemma 24, ∥∥t̂λ − t̂µ∥∥2

∞ 6 κ
∥∥t̂λ − t̂µ∥∥2

H

6
κC

λm
`(s, t̂µ) + 96L2 κ2ŷ

λ2
mnt

.

This proves Claim 31.

Using hypothesis SCρ,ν—Equation (4)—, a refined bound can be obtained on

P
[(
g ◦ t̂λ − g ◦ t̂µ

)2]
.

Claim 32 For any (λ, µ) ∈ Λ2,

P
[(
g ◦ t̂λ − g ◦ t̂µ

)2]
6 ŵB

(√
`(s, t̂λ)

)2

+ ŵB

(√
`(s, t̂µ)

)2

where

ŵB(x)2 = max

{
ρx2, ν

4

3

√
κC

λm
x3 + 10νL

κ
√
ŷ

λm
√
nt
x2

}
.

Proof By hypothesis SCρ,ν—Equation (4)—with u = t̂λ(X) and v = t̂µ(X),

E
[(
g ◦ t̂λ − g ◦ t̂µ

)2
(X,Y )

∣∣X] 6 [ρ ∨ (ν|t̂λ(X)− t̂µ(X)|
)] [

`X(t̂λ(X)) + `X(t̂µ(X))
]

6
[
ρ ∨

(
ν
∥∥t̂λ − t̂µ∥∥∞)] [`X(t̂λ(X)) + `X(t̂µ(X))

]
,

where `X(u) = E[g(u, Y )|X]−minv∈R E[g(v, Y )|X]. Integrating this inequality with respect
to X, it follows that

P
[(
g ◦ t̂λ − g ◦ t̂µ

)2]
6
[
ρ ∨

(
ν
∥∥t̂λ − t̂µ∥∥∞)][`(s, t̂λ) + `(s, t̂µ)

]
.

41



Maillard, Arlot and Lerasle

Assume without loss of generality that λ 6 µ. By Claim 31,

P
[(
g ◦ t̂λ − g ◦ t̂µ

)2]
6

(
ρ ∨ ν

[√
κC

λm

√
`(s, t̂µ) + 10

Lκ
√
ŷ

λm
√
nt

])[
`(s, t̂λ) + `(s, t̂µ)

]
6 max

{
ρ
[
`(s, t̂λ) + `(s, t̂µ)

]
, ν

[√
κC

λm

(√
`(s, t̂µ)`(s, t̂λ) +

√
`(s, t̂µ)

3)

+ 10
Lκ
√
ŷ

λm
√
nt

[
`(s, t̂λ) + `(s, t̂µ)

]]}
. (37)

Using the inequality ab 6 ap

p + bq

q with Hölder conjugates p = 3, q = 3
2 , we have√

`(s, t̂µ) `(s, t̂λ) +

√
`(s, t̂µ)

3

6
1

3

√
`(s, t̂µ)

3

+
2

3
`(s, t̂λ)

3
2 +

√
`(s, t̂µ)

3

6
4

3

[√
`(s, t̂λ)

3

+

√
`(s, t̂µ)

3]
. (38)

Claim 32 then follows from Equations (37) and (38), using the elementary inequality

∀a, b, c, d ∈ R , (a+ b) ∨ (c+ d) 6 a ∨ c+ b ∨ d .

As g is L-Lipschitz in its first argument, it follows from Claim 31 that for all λ, µ ∈ Λ
such that λ 6 µ,∥∥g ◦ t̂λ − g ◦ t̂µ∥∥∞ 6 L

∥∥t̂λ − t̂µ∥∥∞
6 L

√
κC

λm

√
`(s, t̂µ) + 10L2 κ

√
ŷ

λm
√
nt

6 ŵA

(√
`(s, t̂µ)

)
+ ŵA

(√
`(s, t̂λ)

)
, (39)

where

ŵA(x) = L

√
κC

λm
x+ 5L2 κ

√
ŷ

λm
√
nt

. (40)

If follows that for all k > 2,

P
[(
g ◦ t̂λ − g ◦ t̂µ

)k]
6
∥∥g ◦ t̂λ − g ◦ t̂µ∥∥k∞

6

[
ŵA

(√
`(s, t̂µ)

)
+ ŵA

(√
`(s, t̂λ)

)]k
.

This proves that hypothesis H
(
ŵA, ŵA, (t̂λ)λ∈Λ

)
, as defined in Appendix A, holds true.
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It follows from Claim 32 and Equation (39) that, for all k > 2,

P
[
|g ◦ t̂λ − g ◦ t̂µ|k

]
6
∥∥g ◦ t̂λ − g ◦ t̂µ∥∥k−2

∞ P
[(
g(t̂λ(X), Y )− g(t̂µ(X), Y )

)2]
6

[
ŵA

(√
`(s, t̂λ)

)
+ ŵA

(√
`(s, t̂µ)

)]k−2

×
[
ŵB

(√
`(s, t̂λ)

)
+ ŵB

(√
`(s, t̂µ)

)]2

which proves that H
(
ŵB, ŵA, (t̂λ)λ∈Λ

)
holds true.

B.4 Conclusion of the Proof

We have proved thatH
(
ŵB, ŵA, (t̂λ)λ∈Λ

)
andH

(
ŵA, ŵA, (t̂λ)λ∈Λ

)
hold, where ŵB is defined

in Claim 32 and ŵA in Equation (40). Moreover, x 7→ ŵA(x)
x is nonincreasing. Therefore,

Theorem 17 applies with ŵ1,1 = ŵA, ŵ1,2 = ŵA, ŵ2,1 = ŵB, ŵ2,2 = ŵA, x = log nv and it
remains to bound the remainder terms (R2,i)16i64 of Equation (10). For each i, we bound
R2,i(θ) by a numerical constant times max{T1(θ), T2(θ), T3(θ)}, where

T1(θ) =
6ρ

100

log(nv|Λ|)
θnv

T2(θ) = (ν ∨ L)2 κC
log2(nv|Λ|)
θ3λmn2

v

T3(θ) = L(ν ∨ L)κ
log

3
2 (nv|Λ|)

θλmnv
√
nt

.

Summing up these bounds yields Theorem 11.

B.4.1 Bound on R2,1(θ) =
√

2θE
[
δ2

(
ŵB,

θ
2

√
nv

log(nv |Λ|)

)]
Recall that ŵB(x)2 := max

{
ρx2, ν 4

3

√
κC
λm
x3 + 10νL

κ
√
ŷ

λm
√
nt
x2

}
.

By Equation (30) in Lemma 28 with a =
√
ρ, b = ν 4

3

√
κC
λm

and c = 10νL
κ
√
ŷ

λm
√
nt
, we have

δ2

(
ŵB,

θ

2

√
nv

log(nv|Λ|)

)
6 4ρ

log(nv|Λ|)
θ2nv

+ 29ν2κC

[
log(nv|Λ|)

]2
θ4λmn2

v

+80νLκ

[
log(nv|Λ|)

]√
ŷ

θ2λmnv
√
nt

.

Therefore,

R2,1(θ) 6 4
√

2ρ
log(nv|Λ|)

θnv
+ 29

√
2ν2κC

[
log(nv|Λ|)

]2
θ3λmn2

v

+ 80
√

2νLκ

[
log(nv|Λ|)

]√
E[ŷ]

θλmnv
√
nt

.
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By Claim 30, E[ŷ] 6 4 + log|Λ|. Since nv > 100 > e4, E[ŷ] 6 log(nv|Λ|). As a result,

R2,1(θ) 6 6ρ
log(nv|Λ|)

θnv
+ 42ν2κC

[
log(nv|Λ|)

]2
θ3λmn2

v

+ 114νLκ

[
log(nv|Λ|)

] 3
2

θλmnv
√
nt

6 100T1(θ) + 42T2(θ) + 114T3(θ)

6 256×max
{
T1(θ), T2(θ), T3(θ)

}
.

B.4.2 Bound on R2,2(θ) = θ2

2 E
[
δ2
(
ŵA,

θ2

4
nv

log(nv |Λ|)

)]
Recall that by Equation (40), ŵA(x) = L

√
κC
λm
x+ 5L2 κ

√
ŷ

λm
√
nt
.

By Equation (29) in Lemma 28 with b = L
√

κC
λm

and c = 5L2 κ
√
ŷ

λm
√
nt
, we have

δ2

(
ŵA,

θ2

4

nv
log(nv|Λ|)

)
6 16L2κC

log2(nv|Λ|)
θ4λmn2

v

+ 40L2κ

[
log(nv|Λ|)

]√
ŷ

θ2λmnv
√
nt

.

As E[ŷ] 6 log(nv|Λ|) by Claim 30, it follows that

R2,2(θ) 6 8L2κC
log2(nv|Λ|)
θ2λmn2

v

+ 20L2κ
log

3
2 (nv|Λ|)

λmnv
√
nt

6 8θT2(θ) + 20θT3(θ)

6 28×max {T1(θ), T2(θ), T3(θ)} since θ ∈ (0, 1] .

B.4.3 Bound on R2,3(θ) = 1
nv

(
θ +

2
[
1+log(nv |Λ|)

]
θ

)
E
[
δ̂ 2
(
ŵA,
√
nv
)]

By Equation (29) in Lemma 28 with b = L
√

κC
λm

and c = 5L2 κ
√
ŷ

λm
√
nt
, we have

δ2(ŵA,
√
nv) 6 L2 κC

λmnv
+ L2 10κ

√
ŷ

λm
√
nvnt

.

As θ ∈ (0, 1] and nv > 100 > e
3
2 , we have θ + 2

θ 6 3
θ 6 2 log(nv |Λ|)

θ , hence

θ +
2[1 + log(nv|Λ|)]

θ
6

4 log(nv|Λ|)
θ

. (41)

Therefore,

R2,3(θ) 6
4 log(nv|Λ|)

θnv

(
L2 κC

λmnv
+ L2 10κ

√
E[ŷ]

λm
√
nvnt

)
.
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Since E[ŷ] 6 log(nv|Λ|) by Claim 30,

R2,3(θ) 6 4 log(nv|Λ|)
L2κC

θλmn2
v

+ 40L2κ
log

3
2 (nv|Λ|)

θλmnv
√
nvnt

6
4θ2

log(nv|Λ|)
T2(θ) +

40
√
nv
T3(θ)

6 0.8T2(θ) + 4T3(θ) since nv > 100 and |Λ| > 2

6 4.8×max{T1, T2, T3} .

B.4.4 Bound on R2,4(θ) = 1
nv

(
θ +

2
[
1+log(nv |Λ|)

]
+log2(nv |Λ|)

θ

)
E
[
δ̂ 2
(
ŵA, nv

)]
By Equation (29) in Lemma 28 with b = L

√
κC
λm

and c = 5L2 κ
√
ŷ

λm
√
nt
, we have

δ2(ŵA, nv) 6 L2 κC

λmn2
v

+ L2 10κ
√
ŷ

λmnv
√
nt

. (42)

Since θ ∈ [0, 1], nv > 100 and |Λ| > 2, we have log(nv|Λ|) > log(200) > 5 and

θ +
2
[
1 + log(nv|Λ|)

]
θ

6
4 log(nv|Λ|)

θ
by Equation (41)

6
4 log2(nv|Λ|)

5θ
.

Hence, by Equation (42),

R2,4(θ) 6
1.8 log2(nv|Λ|)

θnv

[
L2 κC

λmn2
v

+ L2 10κ
√
E[ŷ]

λmnv
√
nt

]
.

Since E[ŷ] 6 log(nv|Λ|),

R2,4(θ) 6 1.8 log2(nv|Λ|)
L2κC

θλmn3
v

+ 18L2κ
log

5
2 (nv|Λ|)

θλmn2
v
√
nt

6
1.8θ2

nv
T2(θ) + 18

log(nv|Λ|)
nv

T3(θ) .

Since nv > 100 and |Λ| 6 e
√
nv , we have log(nv |Λ|)

nv
6 log(nv)

nv
+ log(e

√
nv )

nv
6 log(100)

100 + 1
10 6 0.15

and so

R2,4(θ) 6 0.018T2(θ) + 2.7T3(θ)

6 2.8×max
{
T1(θ) , T2(θ) , T3(θ)

}
.

B.4.5 Conclusion

Summing up the above inequalities, we get that for every θ ∈ (0, 1],

R2(θ) = R2,1(θ) +R2,2(θ) +R2,3(θ) +R2,4(θ)

6 292 max
{
T1(θ) , T2(θ) , T3(θ)

}
.
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Equation (10) in Theorem 17 thus yields

(1− θ)E
[
`(s, f̂ ag

T )
]
6 (1 + θ)E

[
min
λ∈Λ

`(s,Aλ(Dnt))
]

+ 292 max
{
T1(θ) , T2(θ) , T3(θ)

}
which proves Theorem 11 with b1 = 292(ν ∨ L)2κC and b2 = 292L(ν ∨ L)κ.

Appendix C. Proof of Proposition 10 and Corollary 12

Let us start by two useful lemmas.

Lemma 33 If ψ is a convex, Lipschitz-continuous, and even function, and if Y is a random
variable with a non-atomic distribution, then the function

R : u 7→ E
[
ψ(u− Y )

]
is convex and differentiable with derivative R′(u) = E[ψ′(u − Y )]. Moreover, if Y is sym-
metric around q, that is, (q − Y ) ∼ (Y − q), then R reaches a minimum at q.

Proof First, remark that R is convex by convexity of ψ. Let u ∈ R. For h 6= 0, let
k(h, Y ) = ψ(u+h−Y )−ψ(u−Y )

h . Let A be the set on which ψ is non-differentiable. Since ψ is
convex, A is at most countable. By definition, k(h, Y ) −→

h→0
ψ′(u− Y ) whenever u− Y /∈ A,

that is to say Y /∈ u − A. Since Y is non-atomic, P(Y /∈ u − A) = 1. Moreover, since ψ
is Lipschitz, there exists a constant L such that ∀h 6= 0, |k(h, Y )| 6 L. Therefore, by the
dominated convergence theorem,

R(u+ h)−R(u)

h
= E[k(h, Y )] −→

h→0
E[ψ′(u− Y )] .

Thus, R is differentiable and for all u ∈ R, R′(u) = E[ψ′(u− Y )].
Moreover, we have

R′(q) = E[ψ′(q − Y )]

= −E[ψ′(Y − q)] since ψ′(−x) = −ψ′(x) on R\A
= −E[ψ′(q − Y )] since (Y − q) ∼ (q − Y ) ,

which implies that R′(q) = 0. Hence, R reaches a minimum at q since R is convex.

Lemma 34 Let G : R → R be a differentiable convex function that reaches a minimum at
u∗ ∈ R. If there exists ε, δ > 0 such that

∀u ∈ [u∗ − δ , u∗ + δ] , |G′(u)| > ε|u− u∗| , (43)

then for all (u, v) ∈ R2,

(u− v)2 6

[
4

ε
∨
(

4

εδ
|u− v|

)] [
G(u) +G(v)− 2G(u∗)

]
.
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Proof By integrating Equation (43),

∀u ∈ [u∗ − δ , u∗ + δ] , G(u)−G(u∗) >
ε

2
(u− u∗)2 . (44)

Let
h(u) =

1

δ

[
G(u∗ + δ)−G(u∗)

]
(u− u∗) . (45)

By convexity of G, for any u > u∗ + δ, G(u)−G(u∗) > h(u). Hence by Equation (44) with
u = u∗ + δ and Equation (45),

∀u > u∗ + δ , G(u)−G(u∗) >
1

δ

ε

2
δ2(u− u∗) =

εδ

2
(u− u∗) .

The same argument applies to the convex function x 7→ G(−x) with minimum −u∗, which
yields that

∀u ∈ R such that |u− u∗| > δ , G(u)−G(u∗) >
εδ

2
|u− u∗| . (46)

Let (u, v) ∈ R2. Assume without loss of generality that |u− u∗| > |v − u∗|. If |u− u∗| 6 δ
then by Equation (44),

(u− v)2 6 2(u− u∗)2 + 2(v − u∗)2

6
4

ε

[
G(u) +G(v)− 2G(u∗)

]
.

Otherwise, by Equation (46),

(u− v)2 6 |u− v|
(
|u− u∗|+ |v − u∗|

)
6 2|u− v| × |u− u∗|

6
4

εδ
|u− v|

[
G(u)−G(u∗)

]
6

4

εδ
|u− v|

[
G(u) +G(v)− 2G(u∗)

]
.

C.1 Proof of Proposition 10

Now, we can prove Proposition 10. Let Rx : u 7→
∫
|u − y|dFx(y). By Lemma 33 with

ψ = | · |, for all v ∈ R,

R′x(v) =

∫
(−Iv−y60 + Iv−y>0) dFx(y)

= Fx(v)−
[
1− Fx(v)

]
= 2
[
Fx(v)− Fx

(
s(x)

)]
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since by definition, Fx(s(x)) = 1
2 . Hence by hypothesis (5),

∀u ∈
[
s(x)− b(x) , s(x) + b(x)

]
,

∣∣R′x(u)
∣∣ > 2a(x)

∣∣u− s(x)
∣∣ .

Therefore by Lemma 34 with G = Rx, δ = b(x) and ε = 2a(x), we obtain that for all x ∈ X
and (u, v) ∈ R2,

(u− v)2 6

(
4

2a(x)
∨ 4|u− v|

2a(x)b(x)

)[
Rx(u) +Rx(v)− 2Rx

(
s(x)

)]
6

[
2

am
∨
(

2

µm
|u− v|

)] [
Rx(u) +Rx(v)− 2Rx

(
s(x)

)]
.

Since g is the function (u, y) 7→ |u− y|, it follows by taking x = X that[
g(u, Y )− g(v, Y )

]2
6 (u− v)2 6

[
2

am
∨
(

2

µm
|u− v|

)] [
`X(u) + `X(v)

]
,

which implies hypothesis SC 2
am

, 2
µm

.

C.2 Proof of Corollary 12

Corollary 12 is a consequence of Theorem 11. Let us check that its assumptions are satisfied.

C.2.1 Compatibility Hypothesis Comp1(ceps0 , cepsε )

Fix x ∈ X and let px, Fx be respectively the density and the cumulative distribution function
of Y given X = x. By assumption, px is symmetric. Recall that the contrast function here
is γ(t, (x, y)) = ceps0 (t(x), y) = |t(x) − y|, so any conditional median is a possible value for
s(x), and we can take s(x) equal to the center of symmetry. Let

Rε,x : u 7→
∫
y
cepsε (u, y)px(y)dy =

∫
ψε(u− y)px(y)dy , (47)

where ψε(z) = (|z| − ε)+ for any z ∈ R. Lemma 33 applies, since px is symmetric by
assumption and ψε is even, convex and 1-Lipschitz.

Hence for any ε > 0, Rε,x has a minimum at s(x) and is differentiable, with

R′ε,x(u) =

∫
ψ′ε(u− y)px(y)dy =

∫
[−Iu−y6−ε + Iu−y>ε] px(y)dy

= Fx(u− ε)−
[
1− Fx(u+ ε)

]
.

Therefore, for any ε > 0 and u ∈ R,

R′ε,x(u)−R′0,x(u) =

∫ ε

0

[
−px(u− t) + px(u+ t)

]
dt . (48)

Now, assume that u > s(x). By symmetry of px around s(x), for all t > 0,

px(u− t) = px

(
s(x) +

[
u− s(x)− t

])
= px

[
s(x) + |u− s(x)− t|

]
. (49)
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Since px is unimodal, its mode is s(x) and px is nonincreasing on [s(x),+∞). It follows from
Equation (49) that for all u > s(x) and t > 0,

px(u− t) > px
(
s(x) + |u− s(x)|+ t

)
= px(u+ t) . (50)

Therefore, by Equations (48) and (50), for all u > s(x) and ε > 0, R′ε,x(u) 6 R′0,x(u). By
integration, this implies that for all u > s(x),

Rε,x(u)−Rε,x
(
s(x)

)
6 R0,x(u)−R0,x

(
s(x)

)
. (51)

By Equation (47) and symmetry of px, Rε,x and R0,x are symmetric around s(x), hence
inequality (51) is also valid when u 6 s(x). Choosing x = X, u = t(X) and taking an
expectation, we get Lcepsε

(t)−Lcepsε
(s) 6 Lceps0

(t)−Lceps0
(s) which proves Comp1(ceps0 , cepsε ).

C.2.2 Hypothesis SC4σ,8

We first compute a lower bound on R0,x.
Let qx, 1

4
= sup{y : Fx(y) 6 1

4} and qx, 3
4

= inf{y : Fx(y) > 3
4}. By continuity of Fx,

Fx(qx, 1
4
) = 1

4 and Fx(qx, 3
4
) = 3

4 . Let σ(x) = qx, 3
4
− qx, 1

4
, which is the smallest determination

of the interquartile range. By symmetry of px around s(x), 1
2

[
qx, 1

4
+ qx, 3

4

]
= s(x), therefore

qx, 3
4

= s(x) + σ(x)
2 and qx, 1

4
= s(x)− σ(x)

2 .

For any u ∈
[
s(x)− σ(x)

2 , s(x) + σ(x)
2

]
, by symmetry of px around s(x),

∣∣Fx(u)− Fx
(
s(x)

)∣∣ =

∫ s(x)+|u−s(x)|

s(x)
px(v)dv

= |u− s(x)| 1

|u− s(x)|

∫ s(x)+|u−s(x)|

s(x)
px(v)dv .

Since px is nonincreasing on [s(x),+∞) and |u− s(x)| 6 σ(x)
2 ,

∣∣Fx(u)− Fx
(
s(x)

)∣∣ > |u− s(x)| 2

σ(x)

∫ s(x)+
σ(x)
2

s(x)
px(v)dv

= |u− s(x)| 2

σ(x)

[
Fx
(
qx, 3

4

)
− Fx

(
s(x)

)]
=
|u− s(x)|

2σ(x)
.

Hence, by Proposition 10 with a(x) = 1
2σ(x) and b(x) = σ(x)

2 , (g,X, Y ) satisfies hypothesis
SC4σ,8.

C.2.3 Conclusion

To conclude, we apply Theorem 11 with κ = 1, C = 1, L = 1 (since ceps0 and cepsε are
1-Lipschitz), ρ = 4σ and ν = 8. Since constants b1, b2 of Theorem 11 only depend on
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κ, L,C, ν and all these parameters have now received explicit values, the constants b1, b2 are
now absolute.

Appendix D. Classification: Proof of Theorem 13

In the proof of Theorem 17, we use convexity of the risk to show that the risk of the average
is less than the average of the risk. A property of this type also holds in the setting of
classification, with the average replaced by the majority vote.

Proposition 35 In the classification framework—see Example 1—, let (f̂i)16i6V denote a
finite family of functions X → Y and let f̂mv be some majority vote rule, defined by

∀x ∈ X , f̂mv(x) ∈ argmax
y∈Y

|{i ∈ [V ] : f̂i(x) = m}| .

Then, we have

`(s, f̂mv) 6
M

V

V∑
i=1

`(s, f̂i) and L(f̂mv) 6
2

V

V∑
i=1

L(f̂i) .

Proof For any y ∈ Y, define ηy : x 7→ P(Y = y|X = x). Then, for any f ∈ S, we have
L(f) = E[1− ηf(X)(X)] hence s(X) ∈ argmaxy∈Y ηy(X) and

`(s, f) = E
[
max
y∈Y

ηy(X)− ηf(X)(X)
]

= E
[
ηs(X)(X)− ηf(X)(X)

]
.

We now fix some x ∈ X and define Cx(y) = {i ∈ [V ] : f̂i(x) = y} and Cx = maxy∈Y |Cx(y)|.
Since CxM >

∑
y∈Y |Cx(y)| = V , we get Cx > V/M . On the other hand, by definition

of f̂mv,

1

V

V∑
i=1

[
ηs(x)(x)− η

f̂i(x)
(x)︸ ︷︷ ︸

>0

]
>
Cx
V

[
ηs(x)(x)− η

f̂mv(x)
(x)
]
>

1

M

[
ηs(x)(x)− η

f̂mv(x)
(x)
]
.

Integrating over x (with respect to the distribution of X) yields the first bound.
For the second bound, fix x ∈ X and define Cx(y) and Cx as above. Let y ∈ Y be such

that f̂mv(x) 6= y. Since y occurs less often than f̂mv(x) among f̂1(x), . . . , f̂V (x), we have
|Cx(y)| 6 V/2. Therefore,

1

V

V∑
i=1

I{f̂i(x) 6=y} =
V − |Cx(y)|

V
>

1

2
.

Thus,

f̂mv(x) 6= y implies
1

V

V∑
i=1

I{f̂i(x)6=y} >
1

2
.
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Hence, for any y ∈ Y,

I{f̂mv(x) 6=y} 6
2

V

V∑
i=1

I{f̂i(x)6=y} .

Taking expectations with respect to (x, y) yields L(f̂mv) 6 2V −1
∑V

i=1 L(f̂i).

We can now proceed with the proof of Theorem 13. It relies on a result by Massart
(2007, Equation 8.60, which is itself a consequence of Corollary 8.8), which holds true as
soon as

∀t ∈ S, Var
(
I{t(X)6=Y } − I{s(X)6=Y }

)
6
[
w
(√

`(s, t)
)]2

(52)

for some nonnegative and nondecreasing continuous function w on R+, such that x 7→ w(x)/x
is nonincreasing on (0,+∞) and w(1) > 1.

Let us first prove that assumption (52) holds true. On the one hand, since Y = {0, 1},
for any t ∈ S,

Var
(
I{t(X)6=Y } − I{s(X)6=Y }

)
6 E

[(
I{t(X)6=Y } − I{s(X)6=Y }

)2]
= E

[
I{t(X)6=s(X)}

]
= E

[
|t(X)− s(X)|] .

(53)

On the other hand, since we consider binary classification with the 0–1 loss, for any t ∈ S
and h > 0,

`(s, t) = E
[
|2η(X)− 1| · |t(X)− s(X)|

]
by Devroye et al. (1996, Theorem 2.2)

> hE
[
|t(X)− s(X)|I{|2η(X)−1|>h}

]
> hE

[
|t(X)− s(X)| − I{|2η(X)−1|<h}

]
since ‖t− s‖∞ 6 1

> hE
[
|t(X)− s(X)|

]
− rhβ+1 by (MA).

This lower bound is maximized by taking

h = h∗ :=

(
E
[
|t(X)− s(X)|

]
r(β + 1)

) 1
β

,

which belongs to [0, 1] since r > 1 and E
[
|t(X)− s(X)|

]
6 1. Thus, we obtain

`(s, t) > h∗
β

β + 1
E
[
|t(X)− s(X)|

]
=

β

(β + 1)(β+1)/βr1/β
E
[
|t(X)− s(X)|

](β+1)/β
.

Therefore, Equation (53) leads to

Var
(
I{t(X)6=Y } − I{s(X)6=Y }

)
6 E

[
|t(X)− s(X)|

]
6

β + 1

ββ/(β+1)
r

1
β+1 `(s, t)

β
β+1 .

By Lemma 36 below, β+1
ββ/(β+1) 6 2; hence, defining r1 = 2r

1
β+1 , Equation (52) holds true

with w(u) =
√
r1u

β
β+1 , which statisfies the required conditions. So, by Massart (2007,

Equation 8.60), for any θ ∈ (0, 1),

E
[
`
(
s, f̂ ho

T

)
|DT

n

]
6

1 + θ

1− θ
inf
m∈M

{
`
(
s,Am(DT

n )
)}

+
δ2
∗

1− θ

[
2θ + log

(
e|M|

)(1

3
+ θ−1

)]
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where δ∗ is the positive solution of the fixed-point equation w(δ∗) =
√
nvδ

2
∗ , that is,

δ2
∗ =

(
r1

nv

)β+1
β+2

.

Taking expectations with respect to the training data DT
n , we obtain

E
[
`(s, f̂ ho

T )
]
6

1 + θ

1− θ
E
[

inf
m∈M

`
(
s,Am(DT

n )
)]

+
2r

1
β+2

1− θ
2θ + log

(
e|M|

) (
1
3 + θ−1

)
n
β+1
β+2
v

.

Under assumption (2), E
[
`(s, f̂ ho

T )
]
and E

[
L(f̂ ho

T )
]
do not depend on T ∈ T (they only

depend on T through its cardinality nt). Now, by Proposition 35 applied to (f̂ ho
T )T∈T ,

E
[
`(s, f̂ mv

T )
]
6 2E

[
`(s, f̂ ho

T1 )
]

6 2
1 + θ

1− θ
E
[

inf
m∈M

`
(
s,Am(DT

n )
)]

+
4r

1
β+2

1− θ
2θ + log

(
e|M|

) (
1
3 + θ−1

)
n
β+1
β+2
v

.

Taking θ = 1/5 leads to the result.

The proof of Theorem 13 makes use of the following lemma.

Lemma 36 For all β > 0, we have

β + 1

ββ/(β+1)
6 2 .

Proof We first notice that

log

(
β + 1

ββ/(β+1)

)
= log(β + 1)− β

β + 1
log β

= log(β + 1)− β

β + 1

[
log(β + 1) + log

(
β
β+1

)]
=

log(β + 1)

β + 1
− β

β + 1
log
(

β
β+1

)
.

Defining p = 1
β+1 , this can be written

log

(
β + 1

ββ/(β+1)

)
= −p log p− (1− p) log(1− p) ,

which is the entropy of a Bernoulli distribution. The result follows from the fact that this
entropy attains its maximal value log 2 at p = 1

2 .
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