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πάντα κατ’ ἀριθμόν γίγνονται.
[everything is number]

Pythagoras 570–495 BC

Σοφώτατον χρόνος· ἀνευρίσκει γὰρ πάντα.
[Time is the wisest of all things that are;

for it brings everything to light.]

Thales 624–545 BC

I have no special talents. I am only passionately
curious.

Albert Einstein

Nothing is better than reading and gaining more
and more knowledge.

Stephen Hawking
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Abstract

Modern electrical grids include numerous digital technologies for producing,
transmitting, distributing, and supplying electricity. The electrical grids that
achieve the most reliable, efficient, and less environmental impact operation us-
ing the above technologies combined with renewable energy sources are charac-
terized as smart grids. The study of electricity networks aims at the continuous
and uninterrupted production, transmission, and distribution of electricity un-
der the safest operating conditions. Therefore, an electrical grid is designed and
studied in a multifaceted way to highlight the weaknesses and reduce possible
disturbances. One of the most critical disturbances that can occur in energy
grids is overload. Overloads on an electrical system are dangerous, as they can
cause overheating or an electric arc. Cables in an electrical grid have a maximum
ampacity, i.e., current capacity, that can safely flow. If an excessive number of
devices, such as electric vehicles, are connected to a circuit, the electrical cur-
rent will overheat the cables. If the cable insulation melts, an electric arc can be
generated and cause a fire in the overheating area, even inside a wall. In order
to avoid overloads, fuses are installed in the circuits. If the current exceeds a
specific value, the fuse is activated, drops, and opens the circuit, thus interrupt-
ing electricity flow. However, even if they are below the safety limits, sustained
overloads could also damage the wires.

Smart grid operators could change the state of each grid’s fuse or could re-
motely curtail the over-producing/over-consuming users so that, with the min-
imum interruption, any potential overload could be prevented. Nevertheless,
making the most appropriate decisions is a complicated decision-making task,
mainly due to contractual and technical obligations.

The present dissertation studies the overloading prevention problem in terms
of smart grids’ reliability and resilience and evaluates real-world topology in a
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Abstract

Luxembourg city district. To this end, it suggests solution methods that can
suggest optimal countermeasures to operators facing potential overloading in-
cidents. Specifically, the dissertation has three main axes:

The first axis regards the deterministic overloading prevention problem. Given
the topology and the energy data of a microgrid at the current time, the potential
overloading incidents are detected, and the optimal countermeasures are calcu-
lated for the next measurement interval. The grid operators can apply the pro-
posed actions to recover the grid from the disturbance. Into the thesis, the pro-
blem is defined and formulated as a Multiobjective Mixed Integer Quadratically
Constrained Program. The dissertation also suggests a solution method using a
combinatorial optimization approach with a state-of-the-art exact solver.

The second axis focuses on reliability analysis through simulation after a po-
tential overloading incident. Smart grid operators would be of great use to ensure
stability after a potential overload for a planning horizon, as the future electrical
values are unknown. To evaluate the robustness of the topology reconfiguration
after a disturbance, like an overload, reliability analysis through simulation is
employed.

The third axis proposes the single-stage stochastic overloading prevention pro-
blem. It differs from the deterministic problem as the optimal countermeasures
are calculated for a measurement horizon, e.g., 24 h. The dissertation defines
the corresponding single-stage stochastic program and proposes a simheuristic
method to solve it.

Overall, this thesis presents a fully-edge study on reliability optimization for
smart grids to provide the appropriate countermeasures after a potential over-
loading disturbance. The present approach has been developed in collaboration
with an industrial partner and evaluated on real-world topology.

Keywords: Smart grids, Reliability, Resilience, Combinatorial Optimization,
Integer Linear Programming, Simheuristic, Variable Neighborhood Search, Sto-
chastic Optimization, Simulation
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Nomenclature

Indices

𝑏 cabinet index, 𝑏 ∈ {1,… , 𝑜}

𝑓 fuse index, 𝑓 ∈ {1,… , 2𝑛}

𝑖 cable index, 𝑖 ∈ {1,… , 𝑛}

𝑗 linear equation index, 𝑗 ∈ {1,… , 𝑙𝑒𝑞}

𝑘 user index, 𝑘 ∈ {1,… ,𝑚}

Parameters

𝛿 measurement frequency coefficient; e.g. 60
15
= 4, for 15 min interval

𝜆 maximum allowed current load percentage for all cables, e.g. 80%

𝑎𝐸𝑘 active energy for user 𝑘, 𝑎𝐸𝑘 = 𝑎𝐸𝐶𝑘 − 𝑎𝐸𝑃𝑘, 𝑎𝐸𝑘 ∈ ℝ

𝑎𝐸𝐶𝑘 active energy consumption for user 𝑘, 𝑎𝐸𝐶𝑘 ∈ ℝ+

𝑎𝐸𝑃𝑘 active energy production for user 𝑘, 𝑎𝐸𝑃𝑘 ∈ ℝ+

𝑐𝑏𝑙𝑚𝑜 cable minutes of overload

𝑐𝑏𝑙𝑜 number of cables overloaded

𝑐𝑐𝑏𝑓 fuse cabinet indicator; 1 if fuse 𝑓 belongs to the cabinet 𝑏, 0 otherwise

𝑐𝑙𝑖 maximum allowed current load in cable 𝑖, e.g. 100A

𝑐𝑚𝑜 customer minutes of overload
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Nomenclature

𝑐𝑜 number of customers overloaded

𝑐𝑢𝑟𝑘 amperage of user 𝑘, 𝑐𝑢𝑟𝑘 = √𝑎𝐸2
𝑘+𝑟𝐸

2
𝑘

√3⋅230

𝑐𝑢𝑠𝑡𝑖 number of customers at cable 𝑖

𝑑𝑜𝑤𝑛𝑡𝑖𝑡 duration of overload at cable 𝑖 on period 𝑡

𝑓𝑎𝑖𝑙𝑖𝑡 new overload at cable 𝑖 on period 𝑡

𝐼𝑅 curtailed amperage for users, e.g. 20A

𝐼𝐿𝐶 maximum allowed amperage for consumers, e.g. 32A

𝐼𝐿𝑃 maximum allowed amperage for producers, e.g. 60A

𝑙𝑒𝑞 number of linear equations, 𝑙𝑒𝑞 ∈ ℕ∗

𝑙𝑚𝑜 overload duration of customers

𝑙𝑜 load of customers overloaded

𝑙𝑡 total load

𝑚 number of users, 𝑚 ∈ ℕ∗

𝑛 number of cables, 𝑛 ∈ ℕ∗

𝑜 number of cabinets (including substations), 𝑜 ∈ ℕ∗

𝑃𝑙𝑖 initial active energy for cable 𝑖, 𝑃𝑙𝑖 = 𝛿∑𝑚
𝑘=1 𝑢𝑐𝑘𝑖𝑅𝑎𝐸𝑘

𝑄𝑙𝑖 initial reactive energy for cable 𝑖, 𝑄𝑙𝑖 = 𝛿∑𝑚
𝑘=1 𝑢𝑐𝑘𝑖𝑟𝐸𝑘

𝑅𝑎𝐸𝑘 real active energy consumption for user 𝑘,
𝑅𝑎𝐸𝑘 = 𝑎𝐸𝑘, if 𝑐𝑢𝑟𝑘 < 𝐼𝐿𝐶 , (consumer) or 𝑐𝑢𝑟𝑘 < 𝐼𝐿𝑃 (producer), and
𝑅𝑎𝐸𝑘 = 𝑅𝐺𝑎𝐸𝑘 otherwise

𝑟𝐸𝑘 reactive energy for user 𝑘, 𝑟𝐸𝑘 = 𝑟𝐸𝐶𝑘 − 𝑟𝐸𝑃𝑘, 𝑟𝐸𝑘 ∈ ℝ

𝑟𝐸𝐶𝑘 reactive energy consumption for user 𝑘, 𝑟𝐸𝐶𝑘 ∈ ℝ+
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Nomenclature

𝑟𝐸𝑃𝑘 reactive energy production for user 𝑘, 𝑟𝐸𝑃𝑘 ∈ ℝ+

𝑅𝐺𝑎𝐸𝑘 curtailed active energy for user 𝑘,
𝑅𝐺𝑎𝐸𝑘 = √|2302 ⋅ 3 ⋅ 𝐼2𝑅 − 𝑟𝐸2𝑘|, 𝑅𝐺𝑎𝐸𝑘 ∈ ℝ+

𝑇 time horizon; e.g. 4 ⋅ 24 = 96, for 24 hours and 15 min measurement
interval

𝑡 time period

𝑢𝑖𝑡 overload indicator at cable 𝑖 on period 𝑡

𝑢𝑐𝑘𝑖 user cable indicator; 1 if user 𝑘 is connected with cable 𝑖, 0 otherwise

𝑥0𝑓 initial fuse state; 1 if fuse 𝑓 is closed, and 0 otherwise;
if 𝑓 = 2𝑖, 𝑥0𝑓 denotes the initial state of the start fuse of cable 𝑖,
else if 𝑓 = 2𝑖 + 1, 𝑥0𝑓 denotes the initial state of the end fuse of cable 𝑖

Variables

𝐴𝑗𝑓 coefficient matrix element; for equation 𝑗 and fuse 𝑓, 𝐴𝑗𝑓 ∈ {−1, 0, 1}

𝑑𝑓𝑐𝑎𝑏𝑏 cabinet visit indicator; 1 if ∑2𝑛
𝑓=1 𝑐𝑐𝑏𝑓|𝑥𝑓 − 𝑥0𝑓| ≥ 1, 0 otherwise

𝑙𝑖 actual current load percentage, at cable 𝑖;

𝑙𝑖 = max(100√𝑤𝑝22𝑖+𝑤𝑞22𝑖
230𝑐𝑙𝑖√3

, 100√𝑤𝑝22𝑖+1+𝑤𝑞22𝑖+1
230𝑐𝑙𝑖√3

)

𝑃𝑗 active load vector element; 𝑃𝑗 = 𝑃𝑙𝑖 ⋅𝑟𝑖, if equation 𝑗 is describing the current
flow of cable 𝑖, and 0 otherwise, 𝑃𝑗 ∈ ℝ

𝑄𝑗 reactive load vector element; 𝑄𝑗 = 𝑄𝑙𝑖 ⋅ 𝑟𝑖, if equation 𝑗 is describing the
current flow of cable 𝑖, and 0 otherwise, 𝑄𝑗 ∈ ℝ

𝑟𝑖 reachability cable state; 1 if cable 𝑖 is powered and 0 otherwise

𝑤𝑝𝑓 actual active energy vector energy element for fuse 𝑓; 𝑤𝑝𝑓 ∈ ℝ

𝑤𝑞𝑓 actual reactive energy vector energy element for fuse 𝑓; 𝑤𝑞𝑓 ∈ ℝ
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Nomenclature

𝑥𝑓 fuse state; 1 if fuse 𝑓 is closed, and 0 otherwise;
if 𝑓 = 2𝑖, 𝑥𝑓 denotes the current state of the start fuse of cable 𝑖,
else if 𝑓 = 2𝑖 + 1, 𝑥𝑓 denotes the current state of the end fuse of cable 𝑖
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1 Introduction
ἀρχὴ ἥμισυ παντὸς
[The beginning is half of the whole.]

(Plato, The Republic)

This chapter starts by exposing the context of this dissertation. Then, the aim and
the objectives of this thesis are described. Finally, an overview of the contributions
and thesis’ structure of this dissertation is presented.
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1 Introduction

1.1 Context

The study of the modern electrical grids, also known as smart grids, aims at
the continuous and uninterrupted production, transmission, and distribution
of electricity under safe operation’s optimal economic conditions. Αn electrical
grid, to achieve the above goals, is designed and studied in many ways to iden-
tify its weaknesses and reduce the chances of possible disruptions. The study of
electrical networks includes, among others, three significant chapters: the study
of load flow, the study of short circuits, and the study of transient stability.

The transient stability study seeks to provide an answer to the following two
key questions [142]:

• Does the system return to a state of equilibrium after a disturbance?

• How fast the switching procedures must work to isolate the part of the sys-
tem in error status in time?

For the study of transient stability, several parameters are considered, such as
the switching functions’ activation time, the generator rotor’s electromechanical
oscillations parameters, the initial system conditions before the disturbance, and
the differential equations describing modern and induction machines during the
transitional period. The study of short circuits concerns the design of protection
systems and the identification of each switch of the system’s necessary functions
so that with the least possible interruption of the services provided for consump-
tion, the wrong parts of the system are disconnected, and thus their destruction
is avoided [142]. Both the studies of short circuits and transient stability deal
with an electrical system’s behavior in the field of time, where the operation of
the switching functions is defined.

Also, in an energy system, various disturbances can occur at any time, such as
power bus errors, disconnection of generators, or sudden load changes, which
can cause significant changes in the system’s characteristics. The result of these
changes is the redistribution of power flow and the prevalence of new voltage
and current values resulting in a state of transient stability, with new values of
currents and powers for the system, or a state of transient instability and collapse
of the system [142].
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•

One of the most critical issues in power grids [50] is overloading cables as they
can harm distribution power lines. When an overload trips the fuse switch, the
circuit opens and, consequently, flow and heating stop. Grid operators usually
assume that the load rate above a predefined level on a cable entails a significant
overload chance. Long-term overloads, however, can also damage cables even
within the security limits and may cause energy grids to malfunction [148].

Specific counteractions can then be applied to reduce cable loads and, conse-
quently, to prevent overload. The preferred solution consists of limiting the over-
production remotely (e.g., solar panels on a sunny day) or over-consumption of
specific users (e.g., charging EVs); this countermeasure is commonly named load
curtailment [131]. However, some users have contracts that prevent the operator
from regulating their power capacity. Therefore, curtailment is not, in such cases,
an option. More generally, if curtailments cannot result in a stable state, i.e., wi-
thout risk of overloading, the operators have to reconfigure the topology of the
grid by switching fuses, using the intertrip [20] method to shift reserves from one
network to another, even if intertrip is complicated for the meshed low-voltage
network [20]. Changing fuse states require technicians to visit the correspond-
ing cabinets physically. Therefore, minimizing the number of visiting cabinets is
an object of considerable solicitude to the grid operator to minimize a potential
incident’s restoration time. Another concern is the minimization of the number
of fuses that have to be switched on or off, as the grid’s configuration should re-
main nearly the same as its initial state, returning to the equilibrium state. Avoid
disconnecting users, especially critical ones, such as patients, is a matter of great
concern to the grid operators. Still, this may happen as a last resort to prevent
cascading overloads [20] and to avoid any damage to the power line when there
is an insufficient operating reserve. In this case, the number of disconnected
users should remain minimal. The above countermeasures, including user cur-
tailments and reconfiguration of the grid’s topology, are generally applied in a
short time, i.e., less than an hour. Even if the above counteractions are applied
immediately after detecting a hazardous overloading incident, the recovery re-
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sponse solution could lead to another overloading incident, as the future de-
mands are not known beforehand.

GENERATION TRANSMISSION DISTRIBUTION

Figure 1.1: Diagram of an electric power system.

There are two types of networks in a power grid, depending on the electric
power voltage that circulates, the transmission network and the distribution net-
work. The transmission network transfers the electrical power generated at the
traditional and renewable-energy power plants to the transmission substations,
where transformers convert the low voltage of electricity into high. The trans-
mission is done at high voltage to reduce power losses when the distances are
long. Transmission lines can not directly supply consumers using low voltage
but reach specific points, the transmission substations, where the voltage is re-
duced to medium voltage. Substations are nodes in the electricity network. From
these points where the transmission substations are located, the distribution lines
start, ending at the distribution substations where the medium voltage is lowered
to low voltage, as shown in Figure 1.1. The distribution network includes the
medium voltage distribution network that transfers electricity from the trans-
mission substations to the distribution substations and to industries, and the
low voltage distribution network [42] that transmits electricity from distribution
substations to non-industrial customers. This low-voltage network is, in gen-
eral, more complex and meshed than the medium-voltage one, and it is harder
to track its disturbances. In Figure 1.2, an example of such a network is shown
in the form of a multigraph, where its vertices are the substations and cabinets,
the electrical enclosures which connect the distribution cables, and its edges are
the power lines of the grid.
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Substation
Cabinet

Cabinet  
(Dead End)

Cabinet

other substations

Cabinet Cabinet  
(Dead End)

Cabinet  
(Dead End)

Cabinet  
(Dead End)Cabinet  

(Dead End)

Cabinet  
(Dead End)

Fuse

Users' smart meters

End of cable

Power cable

Figure 1.2: A low-voltage distribution network example.

Each distribution substation comprises a power subsystem that delivers elec-
tric energy to industrial and residential users through feeder pillars, i.e., cabi-
nets and cables. Distribution cabinets control the distributed power and provide
overload protection to the network lines through their fuses. Between the ser-
vice cable and each user installation, a smart meter is installed to measure the
electric consumption and manage loads through its relay trigger. The number
of connected components of the multigraph mentioned above is equal to the
number of distribution substations, meaning that each service cable can only be
connected to precisely one substation. Every cable starts from a fuse in a cab-
inet and ends in another fuse in another cabinet. If the ending cabinet of the
cable does not have any cable that starts from it, it is called dead end. The state
of each fuse can be either open or closed; this information, combined with the
grid’s topology, can be used to determine the reachability of each cable on the
network from each one’s substation. The consumption values for each user are
given through its smart meter. Each cable’s current load summarizes the pro-
duction and consumption values of all the users on this cable.
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From the discussion so far, it is understood that for a particular mode of op-
eration of an electrical grid, the dynamic control of all possible disturbances, in-
cluding short circuits, which can lead to network instability, is a complicated and
computationally costly process that requires the calculation of a set of detailed
operational parameters. During the static study of a grid, time-related electrical
parameters are not considered. The static study of a possible disturbance is done
with the help of a load flow analysis algorithm. In general, the problem of load
flow is to calculate1 the power flows and voltages in a network when the condi-
tions of the balances are determined [142]. During the static analysis of a net-
work, several possible disturbances can be studied, such as overloads. Load flow
analysis is achieved by applying iterative algorithms that require a lot of compu-
tational resources. The current load of each cable can also be approximated, in a
fraction of time, using methods such as described in [74]. Accordingly, the load
percentage of a cable is obtained by dividing its current load by its maximum
ampacity multiplied by one hundred. Then the cable is at risk of overloading if
its current load is over a predefined threshold.

Moreover, modern electricity systems’ mission is to produce, transmit, and
distribute electricity at the lowest possible cost and with a reasonable level of
quality and continuity of supply to their customers. The quality requirement
refers to the need to satisfy the specifications for the supply of electrical power
to customers with a frequency and supply voltage within the prescribed limits.
The design engineers of electricity generation and transmission systems have in
the past taken seriously the requirements of a reasonable level of continuity and
quality of supply in the future, which is why electricity systems include, from the
design phase, many additional physical and functional elements that supply cus-
tomers with increased level power, continuity security, and higher quality level.

1During the load flow analysis procedure for the slack/swing bus, the voltage measurement |𝑉|,
assumed |𝑉| = 1.0 if not specified, and the angle 𝛿, assumed 𝛿 = 0° if not specified, are
given, and the generated active and reactive power 𝑃𝐺 and 𝑄𝐺 , are calculated respectively.
For the load/PQ bus, the active, 𝑃𝐺 , and reactive, 𝑄𝐺 , power produced are specified, while
the voltage measurement |𝑉| and the angle 𝛿 are calculated. For the generator/machine/PV
bus, the generated active power 𝑃𝐺 and the voltage measurement, |𝑉|, are given, and the
generated reactive power 𝑄𝐺 and the angle 𝛿 are calculated. For the voltage controlled bus,
the active, 𝑃𝐺 , the reactive power, 𝑄𝐺 , and the voltage measurement, |𝑉|, are specified, and
the transformation ratio 𝛼 and the angle 𝛿 are calculated [142].
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One indication of this interest is the redundancy in all functional areas of the sys-
tems and many forms, such as reserves in power plants, interconnections with
neighboring networks or countries, other transmission - distribution networks,
and simple or complex alternative supply in distribution systems. These excess
elements are installed because the basic design philosophy recognizes and pre-
dicts the system components’ possible failures and the need to put them out of
order for their planned preventive maintenance. Consideration of all these re-
quirements in feasibility studies, planning, design, and operation of an electrical
system is usually defined by the term reliability assessment [38, 39]. Moreover,
there is ongoing demand from the grid operators for more reliable smart grids
towards the “self-healing” grid [134], automatically responding to problems and
minimizing disturbances. Therefore, if the recovery response solution could be
tested for its efficacy over the next day, the smart grid operators would be of great
use to ensure the solution is as robust as possible.

1.2 Aim and Objectives

The demand for a “self-healing” grid requires novel tools to provide a resilient
and reliable power grid to its users. The overall aim of this thesis is to present
a fully-edge study on reliability optimization for smart grids to provide, fast,
the most appropriate countermeasures after a potential overloading disturbance.
The research studies simulation, optimization methods, and their combination
and suggests implementations, evaluated in a real-world smart grid topology.

The following objectives have been established to achieve the thesis aim:

• To explore the overloading disturbances in a power grid.

• To identify the counteractions to recover from an overloading incident.

• To describe the Deterministic OPP and formulate it as a Multiobjective
Mixed Integer Quadratically Constraint Program (MO-MIQCP).

• To propose a solution method using a combinatorial optimization appro-
ach with a state-of-the-art exact solver.
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• To examine reliability assessment on power grids.

• To apply MCS to estimate the reliability for a planning horizon with un-
known future electrical values.

• To describe the Stochastic OPP and formulate it as a Single-State Stochastic
Program (SSSP).

• To propose a simheuristic approach to solve the Stochastic OPP.

• To propose a software monitoring and alerting system to reduce false posi-
tive alarms for meter reading failures, based on live machine learning tech-
niques.

• To critically evaluate the proposed solution methods in a real-world smart
grid topology.

1.3 Contribution

This dissertation fulfills the aim mentioned above by extending the applicability
of simulation and mathematical optimization to the domain of power grids. In
the following, a short overview is provided about each contribution.

Deterministic Overloading Prevention Problem. Given the topology and
the energy data of a microgrid at the current time, the potential overloading
incidents are detected, and the optimal countermeasures are calculated for the
next measurement interval. The grid operators can apply the proposed actions
to recover the grid from the disturbance. Into this contribution, the problem is
defined and formulated as a MO-MIQCP. This contribution also suggests a solu-
tion method using a combinatorial optimization approach with a state-of-the-art
exact solver.

This contribution is based on the work that has been presented in the following
paper:

• Antoniadis N., Cordy M., Sifaleras A., Le Traon Y. (2020) “Preventing
Overloading Incidents on Smart Grids: A Multiobjective Combinatorial
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Optimization Approach”. In: Dorronsoro B., Ruiz P., de la Torre J., Urda
D., Talbi EG. (eds) Optimization and Learning. OLA 2020. Communica-
tions in Computer and Information Science, vol 1173. Springer, Cham.

Reliability Analysis through Simulation. After a potential overloading in-
cident, smart grid operators would be of great use to ensure stability after a po-
tential overload for a planning horizon, as the future electrical values are un-
known. Into this contribution, reliability analysis through simulation is em-
ployed to evaluate the topology reconfiguration’s robustness after a disturbance,
like an overload.

This contribution is based on the work that has been presented in the following
paper:

• Antoniadis N., Cordy M., Sifaleras A., Le Traon Y. (2021) A variable neigh-
borhood search simheuristic algorithm for reliability optimization of smart
grids under uncertainty. Manuscript submitted for publication.

Single-stage Stochastic Overloading Prevention Problem. It differs from
the deterministic problem as the optimal countermeasures are calculated for a
measurement horizon, e.g., 24 h. This contribution defines the corresponding
SSSP and proposes a simheuristic method to solve it.

This contribution is based on the work that has been presented in the following
paper:

• Antoniadis N., Cordy M., Sifaleras A., Le Traon Y. (2021) A variable neigh-
borhood search simheuristic algorithm for reliability optimization of smart
grids under uncertainty. Manuscript submitted for publication.

SmartMeter CommunicationMonitoring. In this derivative contribution, a
novel software monitoring, and alerting system is introduced based on live ma-
chine learning techniques. More specifically, we suggest using ND-trees to learn
for each smart meter a failure pattern over time, which then acts as a profile for
the respective smart meter. This profile is used to decide, in real-time, if an alarm
should be raised or if the reading error can be considered as “normal”. This con-
tribution can help grid operators decide when reading failures can be considered
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uncritical and ensure that the electrical data are clear from any false reading fail-
ures.

This derivative contribution is based on the work that has been presented in
the following paper:

• Antoniadis N., Cordy M., Le Traon Y. (2021) Intelligent Smart Meter Com-
munication Monitoring by Learning Failure Patterns using ND-Trees. Ma-
nuscript in preparation.

1.4 Thesis Structure

ChaptersContributions

Deterministic Overloading Prevention Problem

Reliability Analysis through Simulation

Single-stage Stochastic Overloading Prevention Problem

Smart Meter Communication Monitoring

Objectives

Explore the overloading disturbances in a power grid

Identify the counteractions to recover from an overload

Describe the Deterministic OPP and formulate it as a MO-MIQCP

Propose a solution method using a combinatorial optimization 
approach with a state-of-the-art exact solver

Critically evaluate the proposed solution methods in a real-world smart 
grid topology

Examine reliability assessment on power grids

Apply MCS to estimate the reliability for a planning horizon with 
unknown future electrical values

Describe the Stochastic OPP and formulate it as a 
Single-stage Stochastic Program

Propose a simheuristic approach to solve the 
Stochastic OPP

Propose a software monitoring and alerting system, based on live 
machine learning techniques

fullfilled by Part I
Part II

Part III

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Figure 1.3: Thesis structure.

This thesis encompasses three parts. The first part introduces the technical
background of this dissertation and the related work. Then, the central part of
this manuscript fulfills the thesis’ objectives, presented in Section 1.2, by extend-
ing the applicability of simulation and mathematical optimization to the domain
of power grids. Each of the chapters starts with an introduction to and a mo-
tivation for fulfilling the thesis’ objectives. In this way, each of these chapters
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can be read independently. Finally, a third part presents the conclusion of this
dissertation. Figure 1.3 depicts the structure of the dissertation along with the
contributions made in this thesis and shows which of the objectives described in
Section 1.2 are fulfilled. In the following, an overview of each part is provided.

Part I: Prologue. This part is composed of the present Chapter 1, which in-
troduces the context of this thesis, and Chapter 2 which presents the technical
background and the related work regarding this dissertation.

Part II: Enhancing Smart Grid Resilience and Reliability. This is the part
of the contribution. It defines the core and derivative concepts and foundations
of this thesis. More detailed, in Chapter 3, the Deterministic OPP is defined,
and formulated a MO-MIQCP. Then, a solution method using a combinatorial
optimization approach with a state-of-the-art exact solver is suggested. This ap-
proach is evaluated using a real-word topology [34], showing that the proposed
method can suggest optimal countermeasures to grid operators who are facing
potential overloading incidents. In Chapter 4, reliability analysis through simu-
lation is discussed and employed to evaluate the robustness of applying the sug-
gested countermeasures, which calculated by the solution method suggested in
Chapter 3, for a planning horizon, e.g., the next 24h. Then, to achieve a more
robust configuration, an SSSP is proposed to suggest such a grid topology config-
uration, after a potential overload, to ensure stability for a planning horizon. A
simheuristic approach based on a Variable Neighborhood Search (VNS) meta-
heuristic is presented to solve the problem mentioned above. After evaluating
the two approaches, it is shown that especially the simheuristic, the proposed
grid topology configuration can lead to a highly possible reliable grid for the
planning horizon. At the end of Part II, in Chapter 5 a machine learning-based
approach is presented that can continuously learn the “normal” pattern of the
smart meter communication to help grid operators to decide if reading failures
have happened, that could indicate severe disturbances in the grid, or there hap-
pened due to certain conditions, like noisy solar panels. The evaluation of this
approach shows that it can significantly reduce false negatives, avoid unobserved,
critical for the smart grid, communication errors, and false positives, limiting the
number of sending technicians unnecessarily to investigate why a smart meter
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is not reachable. This approach can also help electrical data to be clear from any
false reading failures.

Part III: Epilogue. This part gives the conclusion of the thesis. In Chapter 6
the concluding points are explained, and possible future research directions are
discussed.
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2 Background and Related
Work

If we knew what were doing, it wouldn’t be called
research.

(Albert Einstein)

This chapter presents the technical background related to smart grid resilience and
reliabily, simulation and simulation-optimization methods. Along with the back-
ground, this chapter provides an overview of works on related research topics. Spe-
cial care was taken to exhaustively cover all the published studies until the time of
writing.
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2.2 Preventing Overloading Incidents . . . . . . . . . . . . 17
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2.8 Failure Patterns in Smart Meters’ Communication . . . 46
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2 Background and Related Work

2.1 Stability in Electrical Grids

The analysis of possible disruptions for electrical networks is the latest years, a
growing field of research due to the imperative needs of uninterrupted energy
production within a competitive environment. The energy production’s specifi-
cations require minimizing the chances of failure to cover loads either locally or
generically. They also presuppose the production of constant frequency and volt-
age energy and the electrical system’s ability to remain in the permanent working
condition under extraordinary conditions. The competitive environment and
the liberalization of the energy market have led to interconnected electrical net-
works that are more stable. However, at the same time, due to competition, they
have to operate increasingly close to their limits, making them more vulnerable.

Nowadays, the design and implementation of stable and durable electrical sys-
tems disturbances is now a separate field in electrical engineering. The stabil-
ity, safety, reliability, and optimal economical operation of electrical networks is
the issue. Generally, stability is defined as the ability of the system to remain in
functional equilibrium or synchronization during disturbances [98]. Three types
of stability are distinguished: stability during a permanent operating mode, dy-
namic, and transient. Stability during a permanent operating mode refers to a
synchronous machine’s response to a progressively increasing load. Dynamic
stability refers to the system’s response to small disturbances that cause oscilla-
tions, while transient one refers to the system’s response to large disturbances
that affect machine torsional moments, angles, and power transfers [98].

The dynamic stability study refers to either increasing amplitude oscillations
in the system, which lead either to dynamic instability or to dynamic stability
due to decreasing amplitude oscillations. The system’s response to a dynamic
stability disturbance may not be perceived for 10 to 20 seconds, while the system’s
response to transient phenomena is usually perceived within the first second [98].
Kundur et al. [90], define the operating states for an electric power system into
five categories: normal, alert, emergency, extreme, and restorative, illustrated in
Figure 2.1. During the normal state, the power system operates securely. If the
system’s state variables, such as voltage and current, are over particular but still
acceptable limits, the system enters into the alert state. The system enters into an
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In-Extremis

Restorative

Normal (safe)

Emergency

Alert (not safe)

Restorative procedures

Disturbance

Control actions

Figure 2.1: Operating states for electrical power systems.

emergency state if the system cannot withstand the potential overload anymore.
An extreme state occurs when the severity of the disturbance increases, while the
restoration and reconnection procedure is represented by the restorative state [2,
41, 90].

2.2 Preventing Overloading Incidents

Even though the prevention of overloading incidents concerns the grid opera-
tors, this problem is not studied enough. Several research works investigate how
to prevent overload incidents using demand response programs. To the best of
our knowledge, there is no detailed work that examines the overloading preven-
tion problem in respect to demand response for both producers and consumers
and grid reconfiguration at the same time.

Ramaswamy and Deconinck [113] define the grid reconfiguration problem as
a multiobjective non-convex one and argue that a genetic algorithm is proba-
bly a suitable optimization method to solve it. Han and Piette [64] describe dif-
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ferent incentive-based demand response programs; usually reducing demands
with a financial benefit for the customers. They present different direct load
control methods, interruptible/curtailable rates, emergency demand response
programs, capacity market programs, and demand bidding/buyback programs.
To prevent overloads, Bollen [20] present different curtailment schemes averting
the operating reserve from getting insufficient, that could lead to overloads. In
this work, curtailment’s general directions are given without giving many details
about modeling and solving the curtailment problem. Furthermore, Simao et
al. [131] formulate the problem of planning short-term load curtailment in a
dense urban area as a stochastic mixed-integer optimization problem. They im-
plement three approximation policies and test them with a baseline policy where
all curtailable loads are curtailed to the maximum amount possible. Even if
short-term planning is implemented in their work, overloads are allowed, and
the curtailment applies only to consumers of the grid.

In addition to the previous studies, in [55], Goyal et al. propose a control strat-
egy of a Battery Storage Unit (BSU) to prevent overloading in an autonomous
hybrid microgrid by setting it online, depending on the frequency signal. Xyngi
and Popov [147] are describing an algorithm for coordinating relays on a Dutch
medium voltage network to solve the false tripping problem that happens when
the relay does not recognize the fault current direction. Correa et al. [33] present
a binary programming model for online coordination of directional overload
relay problems in interconnected power distribution and sub-transmission sys-
tems. In [93] an adaptive overcurrent protection strategy for a microgrid network
is presented. They treat the overcurrent relays’ protection coordination as a lin-
ear programming problem for the different operation states. An artificial neural
network is trained with real-time measurements to identify whether there is a
fault on the line segment. Recently, Dehghanpour et al. [36] presented the opti-
mal coordination of directional overcurrent relays in microgrids as a non-linear
programming problem. They combined Cuckoo Optimization Algorithm with
linear programming as a hybrid optimization algorithm to optimize the coor-
dination protection of directional overcurrent relays in microgrids. In addition
to the previous studies, Pashajavid et al. [103] present an overload management
strategy that controls the supporting floating batteries in an autonomous mi-
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crogrid and decides any possible connection between it and its neighboring mi-
crogrids by monitoring the microgrids’ frequency. However, in their work, no
demand response program is considered.

Furthermore, Shahnia et al. [126] developed a dynamic multi-criteria decision-
making algorithm to manage microgrid overloads. They also deploy a cloud
theory-based probabilistic analysis to contemplate the uncertainties in the con-
sidered distribution network. Nevertheless, they were not considering reactive
power in their approach to define overloading. Recently, Babalola et al. [10] pro-
posed a multi-agent algorithm that does not require load shedding to prevent
cascading failures, such as overloaded lines after a contingency occurs. Nonethe-
less, their work is focused on power generators only.

2.3 Reliability Analysis in Electrical Grids

Generally, the term reliability is used to denote the overall ability of a system to
perform its intended function [19, 25, 32, 132]. Electrical systems are prime ex-
amples of systems with an expected high level of operational reliability. Modern
social conditions demand a high priority in achieving a satisfactory operational
reliability level and the rapid reconnection of the supplied power after a power
outage. In most countries, the average duration of power outages for a consumer
is 2-3 hours per year. Thus, reliability analysis is one of the most critical stages
of forecasting, planning, design, operation, and electrical systems maintenance.
For many decades a satisfactory level of reliability was achieved through empir-
ical methods and rules. However, as systems grew in size and complexity, the
need for rigorous analyzes grew, and in recent years, standard principles and
methods for calculating operating reliability have been applied to every area of
electrical reliability studies of power systems. The actual level of operational reli-
ability of a customer varies from region to region, while different transmission or
distribution networks display different levels of reliability. It is easy to see that to
achieve the desired level of reliability at the customer level, each system’s higher
levels must have an even higher reliability level.
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In a quantitative sense, reliability can deal with understanding and decisions
making while dealing with complex situations. The term reliability is used, in
this dissertation, to denote, quantitatively, the ability of the smart grid to avoid
overloading events. The application of quantitative methods of calculating op-
erating reliability is the only way all conflicting and uncertain factors affecting
electrical systems’ operation can be considered individually. The reliability anal-
ysis results can be correlated with the financial aspect of the system’s planning,
design, and operation. Simultaneously, it is evident that the corresponding ef-
fects that arise significantly determine the system’s present and future develop-
ment. Modern electricity systems’ economic operation is a significant problem
because many and peculiar factors influence it. Coincidentally, systems’ role is
crucial in economic and social life and its inhabitants’ quality of life. Therefore,
there is increased pressure from many social groups and organizations that have
not existed during the past decades. Therefore, it is necessary to consider with
great care the various areas of problems related to the reliable operation of cur-
rent electrical systems and to recognize the need to develop methodologies for
calculating the reliability indicators of systems and data collection procedures
required by historical their functional characteristics.

The modeling of the electrical systems’ operational reliability and the calcula-
tion of their reliability indicators has been the subject of research [4, 16, 17, 18, 19].
The purpose of these publications is to present the numerical analysis techniques
that realistically reflect these systems’ operational behavior and their impact on
customers. These techniques calculate an appropriate set of performance relia-
bility indicators for each analyzed system’s load balances and allow studies to be
performed to evaluate alternative systems reinforcement designs.

2.3.1 Methodology

One of the objectives of the programming of electrical systems is to strengthen
them with equipment, such as production units, transmission lines, and trans-
formers, necessary to supply economically and reliably a projected level of load
demand. These two objectives are conflicting because the higher level of reli-
ability requires the system’s strengthening, which results in the increased cost
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of supplying customers’ demands. The scholars’ responsibility is to achieve the
best degree of correlation between price and level of reliability by considering the
uncertainties in the change in loads and the indicators of system data availability.

Over the past decades, researchers of electrical systems have traditionally used
deterministic criteria [16, 39]. A studied system’s performance is calculated for
several different scenarios representing functional conditions considered critical
and reasonable in such a causal process. For example, a scenario can be defined
by the annual peak of system load demand, the loss of any transmission line,
and the loss of the system’s largest production unit. The design of a system is
considered acceptable if it can feed the load in any considered scenario. In such
cases, the most economical method is chosen from those considered adequate
according to the deterministic criteria used.

Deterministic criteria present a significant number of attractive modeling fea-
tures. An understandable and straightforward implementation process while
dealing with critical and non-functional conditions is usually compatible with
past principles to design a reliable system. However, these criteria present spe-
cific modeling limitations that have been recognized in the past, such as:

• the difficulty of determining the level of operational unreliability of a sys-
tem that can be damaged according to more than one scenario

• the difficulty of identifying a system that has a more significant margin of
safety than two or more systems that meet all criteria and scenarios

• the creation of a non-economical design for the studied systems in compar-
ison with the corresponding optimized methods that result considering the
possible occurrence of each scenario and the financial implications of the
reduced operating efficiency according to the relevant scenarios

The probabilistic methodology is the alternative modeling methodology in
which the stochastic features and functional processes are fully represented. For
many decades the principles of modeling and the practical advantages of proba-
bilistic methods have been successfully recognized and promoted [16, 39]. How-
ever, such a transition from deterministic to probabilistic methods is relatively

21



2 Background and Related Work

slow. It is due to objective difficulties, the most important of which are the fol-
lowing:

(i) Data Collection: Statistics of system equipment failure are based on histor-
ical records, which usually have significant deficiencies and include many
errors, such as human and entry errors. At the same time, older files are
not stored on computers, and therefore there is increased effort to collect
and analyze them.

(ii) Modeling of Probabilistic Phenomena: Probabilistic models of representing
faults in system equipment can be quite tricky. They may require laborious
calculations and depend significantly on the type of equipment, their age,
and their functional characteristics.

(iii) System Response Modeling: The probabilistic analysis and the calculation of
probabilistic indicators are performed by applying computational models.
Such models can accurately simulate the system’s functional characteris-
tics in a larger number of operating conditions. The development, control,
and implementation of such computing tools is a significant investment in
technological thinking and computer equipment.

However, it is evident that despite the above difficulties, the possible analysis
of the electrical systems’ operational reliability has begun to become more and
more enjoyable, both for the designers and the operators of such systems. Several
computer programs have been developed with increasingly detailed modeling
and approximation methods, intended for general or specific applications. In this
direction, enormous difficulties had to be faced in development, which appears
in modeling, information gathering, and computer simulation. The fundamental
problem has proven to be to strike a balance between the most realistic model
possible and the corresponding volume of calculations that need to be solved so
that operators can obtain results within acceptable time limits.

The application of probabilistic techniques for calculating the operating relia-
bility of electrical systems can be divided into the following main areas of interest:

• Electrical power generation capacity

• Transmission and distribution of electrical power

• A combined system of electrical power generation and transmission
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• Electrical supply systems in industrial installations

The first area concerns the power generation system. Its primary purpose is to
determine the amount of electricity generation needed to meet, with a reason-
able degree of safety, customer demand requirements. The transmission network
must carefully connect to the generation system to allow power to flow from the
sources to the distribution networks that supply the customers’ loads with direct
and often radial routing. The transmission and distribution networks must also
maintain the system’s quality requirements: the system voltage balances’ satis-
factory level and the loading of the branches with power flows less than or equal
to their thermal limits. Finally, power supply systems in industrial installations
are exceptional cases of distribution systems with particular functional charac-
teristics that significantly affect their reliability level.

Different models have been proposed to determine the effects of random dis-
turbances, like overloads, on the reliability assessment of a smart grid system.
These models can be grouped into either analytical or MCS methods, as have
been presented in the international literature [4, 16, 17, 18, 19, 24, 28, 38, 39, 63,
119, 132].

Analytical methods, are widely developed in North America and several Eu-
ropean countries, based on detecting and analyzing system conditions that may
lead to a fault condition. Analytical methods include [132, 138]:

• State spacemethod using Markov processes, where all possible system states
are enumerated; consequently, this approach can be regarded as the most
direct approach to calculating reliability indices [132].

• Network reduction method, where the serial and parallel elements of a sys-
tem are reduced to a single equivalent element; hence the reliability of the
reduced system equals the reliability of the initial system [138].

• Conditional probability method, where the complex, not serial, or parallel,
elements of a system are simplified, via the conditional probability con-
cept, to a combination of serial and parallel structures; then the network
reduction method can be used to find the reliability of the system [132].
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• Cut-set and tie-set method. The minimal cut set contains a set of system
components that, when they fail, would cause the failure of the system. On
the opposite, the minimal tie set consists of a set of system components
that, when successful, would lead to system success. Then, the reliability
indices can be calculated by the probabilities of failures or successes [77,
132].

The above analytical approaches could be used when the problems are rela-
tively easy to be modeled and solved. However, in complex models, MCS should
be employed to determine the effect of random failures on the reliability of the
system, as it is more flexible in dealing with challenging operating conditions
and system considerations [132]. Thus, using simulation, we can estimate the
reliability indices by constructing realizations of the stochastic values. MCS can
be categorized as non-sequential [107], and sequential [106]. In Non-Sequential
Monte Carlo Simulation (NSMCS), the states of the system are randomly sam-
pled, while in Sequential Monte Carlo Simulation (SMCS), the system states are
simulated in chronological order, providing statistically more reliable informa-
tion [62].

Reliability, as defined above, is concerned with the ability of a power system
to avoid overloading incidents. To quantify the expected reliability, indices are
used to express the probabilistic measures of the examined system. Some of the
most common reliability indices [25, 32, 43], introduced by [79], are the System
Average Interruption Frequency Index (SAIFI), the System Average Interrup-
tion Duration Index (SAIDI), the Customer Average Interruption Duration In-
dex (CAIDI), the Average System Interruption Frequency Index (ASIFI), and
the Average System Interruption Duration Index (ASIDI).

MCS method, which began to be applied mainly in Italy, France, and Brazil
and has been extended to all countries of the world, is based on the simula-
tion methodology, which simulates the system’s operation during the consid-
ered analysis period. Both methods have respective advantages and disadvan-
tages. The analytical approach can detect rare but significant potential faults and
can be considered a standard procedure for identifying specific systems’ flaws.
The MCS method often handles the frequent failures in the system components,

24



2.3 Reliability Analysis in Electrical Grids

which may not cause system failure because the system’s smooth operation is not
disturbed. This method should also be applied in all cases where the chronolog-
ical order of the considered contingencies needs to be analyzed, such as when
accurate modeling of hydropower plants’ operation is required, reservoir model
consideration, and complex interdependencies between different system param-
eters. It is essential to understand that the computational effort needed for the
calculations applying the MCS method depends little on the system’s size con-
cerning the analytical methodology’s corresponding dependence. The reliability
assessment part of the present dissertation is focused on the MCS method be-
cause the electrical systems’ characteristics require detailed and complex mod-
eling that could not be achieved using the analytical process.

2.3.2 Basic Principles of the MCS

Simulation, in its broadest sense, is a technique of forming experimental samples
in a system model. The simulation method is used, showing advantages over ot-
her methods. In cases where the system being analyzed is so complicated that it
cannot be described by a set of mathematical equations or when a mathematical
model can be formed to represent the system but is not possible to achieve a so-
lution by narrowly analytical methods. The simulation makes it possible to study
and experiment, taking into account detailed observations of the simulated sys-
tem. During the simulation design phase, the knowledge gained often indicates
the proposed changes in operating practices applied to the system.

The MCS method is straightforward to apply, especially in complex systems,
and very large to be solved with the analytical process. However, most issues of
systems reliability analysis result in simulations to determine rare cases. From
this point of view, the MCS leads to a colossal waste of computation time, which
is the main disadvantage of the method. The MCS method’s application presup-
poses creating the random variables’ appropriate values using the corresponding
distribution function proposed for the considered model. This procedure can be
achieved systematically for each variable by first generating evenly distributed
random numbers from 0 to 1 and then, employing appropriate transformations,
generating the corresponding set of random numbers with the given distribution
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function. The production of evenly distributed random numbers is a significant
step in the MCS. Before the discovery of the first computers, many attempts were
made to construct lists of random numbers. Today, software companies sup-
ply their programs with internal subroutines for random number generation.
All uniformly distributed random number generation techniques are based on
calculations using retrograde residual calculus relations, mod 𝑚, resulting from
a linear transformation. The most widely used method of generating random
numbers today is the multiplication convergence method, in which the remain-
ders of the successive forces of a number 𝑋 are the sequential numbers in a series
of random numbers [4, 63, 119].

One of the most common methods of generating random numbers starts from
an initial value 𝑋0 and calculates successive values 𝑋𝑛, 𝑛 ≥ 1:

𝑋𝑛 = 𝑎𝑋𝑛−1 mod 𝑚 (2.1)

where 𝑎 and 𝑚 are positive integer numbers.
A general method of generating random numbers from a given distribution

function considers a distribution function 𝐹 of the continuous random variable
𝑢 and looks for the value of 𝑥, so that 𝐹(𝑥) = 𝑢. This value of the variable 𝑥 is
found from the calculation of the inverse function:

𝑥 = 𝐹−1(𝑢) (2.2)

which means that if (𝑢1, 𝑢2, … , 𝑢𝑛) is a set of values of the variable 𝑢, the
corresponding set of values obtained assuming the above equation is:

𝑥𝑖 = 𝐹−1(𝑢𝑖), 𝑖 = 1, 2, … , 𝑛 (2.3)

Applying Equation 2.2 produces random numbers that are evenly distributed
and correspond to a considered probabilistic distribution. It is necessary to de-
termine the inverse function from the distribution function, and for this reason,
this method is known as the inverse transform method [121] can be applied very
easily in cases where the inverse distribution function has an analytical expres-
sion.
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The simulation of a probabilistic model involves creating the model’s stocha-
stic mechanisms, and all observations of the model flow over time. Depending
on the purpose of the simulation development, some parameters need to be de-
fined. However, the change of the model over time often involves a complex
logical structure of the elements that make it up, and it is not always obvious to
be able to monitor this change to determine the required parameters. A general
rule has been developed based on the idea of discrete events and has its objec-
tive to monitor the model’s flow over time and determine the numerical values
of the required parameters. This methodology is called Discrete Event Simula-
tion (DES) [12].

The main parameters of a DES are variables and events [9]. The development
of a simulation requires the constant monitoring of some variables. There are
three types of variables used:

• Time variable 𝑡: Refers to the total time elapsed since the simulation’s start.

• Statistical counter variables: Determine the frequency of events that occur
during time 𝑡.

• System state variables: Describe the state of the system at time 𝑡.

Each time a “contingency” occurs, the values of the above variables change or
are renewed. At the same time, all the required data are collected as an output
of the process. A list of contingencies is kept to determine when the next event
will occur. This list records all the nearest future contingencies and the time they
are scheduled to occur. Whenever a contingency “occurs”, all state variables and
variable counters return to their original value while the relevant data is being
collected.

A simulation study is commonly used to determine the value of a parameter
𝜃 associated with a stochastic model. A simulation of the relevant system results
in calculating a random variable 𝑋 whose expected mean value is the parameter
𝜃. A second simulation, which means a second flow, results in a new and in-
dependent random variable having an average value 𝜃. This calculation process
continues until 𝑘 flows are completed and 𝑘 random variables 𝑋1, 𝑋2, … , 𝑋𝑘 are
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found, which are all uniformly distributed with mean 𝜃. The mean of these 𝑘 val-
ues is used as the estimator or approximate value of the parameter 𝜃. A related
problem of any simulation process is the decision related to the time it must stop,
which means that the appropriate value of 𝑘 must be decided. The quality of the
estimator of 𝜃 can be used as a criterion for this decision. A confidence interval
can also be found in which the parameter 𝜃 lies with some uncertainty level.

If 𝑋1, 𝑋2, … , 𝑋𝑘 are random independent variables that have the same dis-
tribution function while 𝜃 and 𝜎2 are respectively their mean and variance, the
arithmetic mean and the variance of the sample are defined as:

𝑋 =
𝑛
∑
𝑖=1

𝑋𝑖
𝑛 (2.4)

𝑠2 =
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)
𝑛 − 1 (2.5)

and can be considered as impartial estimators of the parameters 𝜃 and 𝜎2, re-
spectively.

A simulation process is continued until 𝑘 values are generated to estimate the
mean value 𝜃 for which the coefficient of variation 𝛽 = 𝑠/(√𝑘 ̄𝑋)must be less than
an acceptable value 𝑑. When the sample size is small, the standard deviation of
the sample 𝑠 may not be a good estimator of 𝜎. Therefore, a small number of
initial values are generated to estimate the sample’s standard deviation and the
corresponding coefficient of variability. This process follows the following steps:

• Selection of an acceptable value 𝑑 of the coefficient of variability 𝛽.

• Generation of a small number of initial values for estimating the coefficient
of variability 𝛽.

• Continue producing new values until 𝑘 values have been generated for
which 𝛽 < 𝑑 where 𝛽 is the coefficient of variation based on these 𝑘 val-
ues.

• The estimator of 𝜃 is given by 𝑋 = ∑𝑘
𝑖=1 𝑋𝑖/𝑘
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2.3.3 Variance Reduction

In the simulation method, various variance reduction techniques have been de-
veloped, aiming to reduce the uncertainty associated with the samples’ finite size
and, therefore, allow the simulation to be terminated faster, without compromis-
ing the accuracy of the results. The following variance reduction techniques are
mainly used in the reliability analyzes of the operation of electricity systems [4,
9, 63, 119, 120]:

(i) Antithetic Variates. For the estimation of 𝜃 = 𝔼(𝑋), the variables 𝑋1 and 𝑋2
are produced, which are uniformly distributed random variables and have
an average value 𝜃. Then it holds that:

Var(𝑋1 + 𝑋2
2 ) = 1

4[Var(𝑋1) + Var(𝑋2) + 2Cov(𝑋1 + 𝑋2)] (2.6)

From this expression it is clear that the variance Var ((𝑋1 + 𝑋2)/2) is smaller
than Var(𝑋1), if the variables 𝑋1 and 𝑋2 are negatively correlated.
The above findings lead to a simulation process where the generated ran-
dom numbers 𝑈1, 𝑈2, … , 𝑈𝑚, which are evenly distributed in the interval
(0, 1), are used to calculate the random variable 𝑋1 while the set of random
numbers (1 − 𝑈1), (1 − 𝑈2), … , (1 − 𝑈𝑚) is used to calculate the variable 𝑋2
so that it is negatively correlated with the random variable 𝑋1. This process
has a double benefit because the calculated estimator has reduced variance,
and the calculation time is significantly less because no additional time is
needed to generate a second set of random numbers.

(ii) Control Variates. The control variate technique considers a random variable
𝑌 , which has a known mean value equal to 𝔼(𝑌) = 𝜇𝑌 , which is related to
the random variable 𝑋 and uses the variable 𝑍 = 𝑋 + 𝑐(𝑌 − 𝜇𝑌 ), which
also is an unbiased estimator of the parameter 𝜃; 𝔼(𝑍) = 𝔼(𝑋) = 𝜃. The
constant 𝑐 is determined so that the variance of the random variable 𝑍 takes
a minimum value.

Var(𝑍) = Var(𝑋) + 𝑐2 Var(𝑌) + 2𝑐Cov(𝑋, 𝑌) (2.7)
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The minimum value of constant 𝑐, (𝑐 = 𝑐∗), is calculated as

𝑐∗ = −Cov(𝑋, 𝑌)
Var(𝑌) (2.8)

while the minimum value of the estimator variance is equal to:

Var[𝑋 + 𝑐∗(𝑌 − 𝜇𝑌 )] = Var(𝑋) − [Cov(𝑋, 𝑌)]2
Var(𝑌) (2.9)

The variable 𝑌 is called the control variate for the estimator of the vari-
able 𝑋 of the simulation. This technique is quite efficient because the 𝑐∗
parameter takes negative or positive values when the variables 𝑋 and 𝑌 are
positively or negatively correlated, respectively. If 𝑋 and 𝑌 are assumed to
be positively correlated, 𝑋 receives large values when 𝑌 receives large val-
ues and vice versa. The indication of a large or small value means that the
corresponding variable’s value is greater than its known mean value. If a
simulation flow results in a large, or small, value of 𝑌 , then 𝑋 takes a cor-
respondingly higher, or lower, value than the mean value of 𝜃. Therefore,
it is desirable to correct it by decreasing, or increasing, the 𝑋 ’s estimator
value, which is achieved when the parameter 𝑐∗ is negative, or positive, re-
spectively. Similar reasoning is inferred when the variables 𝑋 and 𝑌 are
negatively correlated.
The variance of the variable 𝑌 , Var(𝑌), is known before the start of the si-
mulation while Cov(𝑋, 𝑌) is almost always unknown because the objective
purpose of the simulation is to estimate the unknown value of 𝔼(𝑋). It is
evident that the value of 𝑐∗ is not known before the simulation process be-
gins. However, because the maximum gain of using the variable control
technique is achieved by selecting a value 𝑐 close to 𝑐∗, a substantial im-
provement in the estimation of the variable 𝑋 is achieved by considering
the results of a small preliminary number of simulations. The value found
is used for the remaining number of simulations until the convergence cri-
teria are met.

(iii) Variance Reduction by Conditioning.
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The calculation of expected values by conditioning is a classic technique
in probability theory. When 𝔼(𝑋) needs to be calculated, sometimes it is
useful to suppose there is a second random variable 𝑌 , so that:

𝔼(𝑋) = 𝔼(𝔼(𝑋|𝑌)) (2.10)

The variance can also be computed like:

Var(𝑋) = 𝔼(Var(𝑋|𝑌)) + Var (𝔼(𝑋|𝑌)) (2.11)

As all the values in Equation 2.11 are non-negative, we can have:

Var(𝑋) ≥ Var (𝔼(𝑋|𝑌)) (2.12)

that leads to variance reduction by conditioning.
The use of this reduction is useful when the goal is to estimate 𝜃 = 𝔼(𝑋),
and there is such another random variable so that the value 𝔼(𝑋|𝑌 = 𝑦)
is known. Equation 2.12 shows that 𝔼(𝑋|𝑌) is an unbiased estimator for
/𝑡ℎ𝑒𝑡𝑎, superior to the estimator 𝑋 .

(iv) Stratified Sampling.
Supposedly, we want to estimate 𝔼(𝑋), and, somehow, a random variable
𝑋 is related to another random variable 𝑌 , that can take discrete values 𝑦𝑗
with known possibility. Thus, 𝑌 follows a discrete distribution with known
probability function:

𝑃𝑌 = 𝑦𝑗 = 𝑝𝑗 , 𝑗 = 1, … , 𝑚 (2.13)

Using conditioning, we have:

𝔼(𝑋) =
𝑚
∑
𝑗=1

𝔼(𝑋|𝑌 = 𝑦𝑗)𝑝𝑗 (2.14)
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Simulation can be applied to estimate the values of𝔼(𝑋|𝑌 = 𝑦𝑗), 𝑗 = 1, … , 𝑚,
so that using Equation 2.14, 𝔼(𝑋) can be estimated, as:

ℰ =
𝑚
∑
𝑗=1

𝑋𝑗𝑝𝑗 (2.15)

where𝑋𝑗 is the average of the 𝑛𝑝𝑗 observed values of𝑋 generated conditional
on 𝑌 = 𝑦𝑗 . The unbiased estimator ℰ is called a stratified sampling estimator
of 𝔼(𝑋).

2.4 Stochastic Programming

When decision problems are modeled and solved deterministic, in many extreme
and exceptional cases, the expected values   of the variables are often excluded
and taken into account. According to Masse [143], such a thing involves dan-
ger, as something that is considered a detail at the time of analysis, maybe later
crucial. Masse also mentions that looking towards a causal future is overly opti-
mistic and lacks flexibility. It is done so clearly that deterministic models fail to
represent the future satisfactorily and their accuracy decreases as the subject in
question grow the time horizon of the problem. Therefore, the concept of sto-
chastic programming is introduced, which is a modeling method for problem
optimization involving variables and constraints with a vital element of uncer-
tainty. This uncertainty stems from the lack of reliable data, from measurement
errors or parameters containing future information. It is obvious that stochastic
programming is a category of problems and not a method of solving them. Many
of the models belonging to this category can be solved either with mathematical
programming tools, like the one presented in Chapter 4, or Stochastic Dynamic
Programming (SDP). The stochastic programming problems can be categorized
as:

• Single-stage Stochastic Programming. The single-stage stochastic optimi-
zation problems refer to the problems where the decision is taken instan-
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taneously, and no correction to the random variables is obtained into ac-
count.

• Two-stage Stochastic Programming. In them, some decisions are taken de-
terministically within a specific one period of time, that is, in the first stage,
after the end of which they occur random events. A set of retrospective de-
cisions can be made at the second stage to compensate for any adverse effect
it has observed since the first decision was taken.

• Multi-stage Stochastic Programming. A generalization of the two-stage model
is the multi-stage model. In this case, each stage consists of a decision fol-
lowed by a series of uncertain parameters over time.

Random parameters in stochastic programming are displayed as scenarios.
These scenarios are shared as part of their stochastic information and create a
graph called a scenario tree. Power system design problems have always been a
field of programming applications under uncertainty. Thus the use of stochastic
programming is considered useful and often imperative.

2.4.1 Stochastic Programming in Power Grids

Stochastic parameters that appear in the power grid problems [37, 51, 70, 95, 99,
116, 123, 133, 140, 145] refer, among other things, to load demand, hydroelectric
dam reservoir inputs, fuel prices, emission allowance prices, unit availability, un-
scheduled outages, and staff availability.

The above parameters affect the programming according to time horizon of
this. In the power grid problems, the time horizon programming is divided into
the following categories:

• very long term (5–15 years)

• long term (2–5 years)

• medium term (1 month–2 years)

• short term (1 week–1 month)
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• very short term (up to 1 week)

It is indicatively stated that the stochasticity of load demand influences each
time horizon’s decisions, although it seems that its influence is more significant
in very long-term (network expansion) and very short-term models. On the
other hand, the stochasticity of hydroelectric dam reservoir inputs, due to their
annual cycle of changes, seems to have a more significant impact on the medium-
term models. While providing satisfactory solutions to small-scale problems,
traditional optimization methods often prove to be inadequate when applied to
larger problems. That is why in the present dissertation, described in Chapter 4
it was chosen to model the problem of Stochastic OPP to be done using stocha-
stic single-stage programming. The stochastic parameter, the effect of which in
planning is considered, is the possibility of unplanned outages due to potential
overloads.

2.5 Simulation-based Optimization

Simulation techniques can model complex systems, although they cannot be
used by themselves as an optimization tool [86]. If we combine simulation ap-
proaches with optimization techniques, like metaheuristics, the hybrid simulation-
optimization (Sim-Opt) can handle the uncertainty in stochastic optimization
problems [1, 45]. There are many ways to combine simulation with optimization
in simulation-optimization approaches; the major categories are [45]:

• Solution Evaluation (SE) approaches. Evaluation Function (EF) and Sur-
rogate Model Construction (SMC) compose the SE approaches. A repre-
senting simulation model of the system is developed in these approaches,
and different solutions are evaluated. Thus, these approaches are focused
on optimizing a simulation model, while the purpose of a simulation is
to evaluate the performance of solutions (simulation optimization). The
drawback of these approaches is that evaluating various solutions through
simulation can be computationally intensive.
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• SolutionGeneration (SG) approaches. In some problems, the solution could
be chosen without the simulation outcome be needed. A representing ana-
lytical model of the system is formulated and solved in such approaches,
and different solutions are simulated, optimization-based simulation. The
purpose of a simulation is to compute all the interesting variables and not
to evaluate the solutions. Although these methods can be very effective in
the above problems, they may not be effective in other problems.

• Analytical Model Enhancement (AME) approaches. In these approaches,
usually, the analytical model is hybridized with SE approaches. Simulation
results could be another enhancement of the analytical model.

While the first stochastic-approximation methods were suggested about sev-
enty years ago, Simulation-Optimization (SO) techniques [86] have been used
for over twenty-five years. In the last twenty years, the SO field has thrived, as
it embraced computational power, simulation software, and novel, sophisticated
optimization methods, such as hybrid metaheuristics. An illustration of the SO
approach is given in Figure 2.2, where in order to find near-optimal solutions to
stochastic optimization problems, simulation and optimization methods inter-
act.

Both simulation and optimization communities, autonomously from each ot-
her, developed simulation-optimization approaches [45]. The optimization com-
munity formed Hybrid Simulation–Analytic (HSA) models/modeling [127], while
the simulation community developed the SO approach–concentrated on the op-
timization of simulation models.

Concerning SO, Swisher et al. [135] describe it as a “structured approach to de-
termine optimal input parameter values, where optimal is measured by a func-
tion of output variables–steady-state or transient–associated with a simulation
model.” Therefore, the optimization method evaluates a given solution’s perfor-
mance by utilizing the outputs from the simulation paradigm, and its inputs con-
sist of a collection of decisions. Based on the past, the optimization method, in-
cluding the current evaluations, chooses a new collection of input values. Conse-
quently, the simulation paradigm acts as an EF of the optimization procedure [5].
A metamodel, or better SMC, may be constructed, by simulating various col-
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Figure 2.2: Overview of the Sim-Opt approach, adapted from [86]

lections of input values, each being a solution to the problem. Then, classical
optimization methods can be used, rather than simulation, to solve SMC [13].
SMC’s solution is considered, after this procedure, as an approximate solution
to the original problem. In the literature [86], different works exist considering
both SMC and EF approaches [48, 137, 144]. OptQuest, a proprietary simulation
optimization engine [7, 52] combines both these methods; the SMC part uses a
neural network, while scatter search and tabu search metaheuristics are used in
the EF part.

An HSA model, as stated by Shanthikumar and Sargen [127], is “a mathemat-
ical model which combines identifiable simulation and analytic models,” since
HSA modeling “consists of building independent analytic and simulation models
of the total system, developing their solution procedures, and using their solution
procedures together for problem-solving.” Any stochastic program with sampled
scenarios that have been obtained via MCS is an example of an HSA paradigm.
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Thus, in HSA, simulation is used to generate part of the solution (SG) or en-
hance the analytical model (AME) and not to evaluate the solutions’ feasibility
or quality. Simulation is used in AME to refine the parameters of an analytical
paradigm that is specific to the problem. Since the optimization part is inde-
pendent of simulation, AME’s strategy is less simulation-intensive than EF [86].
Simulation-optimization approaches differ in their focus.For the optimization-
driven ones (simulation-based optimization), simulation operates as an ‘auxil-
iary’ agent, while the optimization algorithm acts as the ‘driving’ agent. Con-
versely, for the simulation-driven ones (optimization-based simulation) optimi-
zation, occasionally find, at least, near-optimal, simulation parameters’ values,
while simulation, as the ‘driving’ agent, reproduces a random system’s behav-
ior [86].

2.6 Simheuristic Algorithms

Simheuristics, or simheuristic algorithms [30, 86], as a simulation-optimization
approach, combine simulation with metaheuristics to solve stochastic combina-
torial optimization problems. They are usually optimization-driven, but, accord-
ing to their implementation, can be classified as AME (HSA) or EF (SO).

Metaheuristic approaches typically address real-world sized instances of Com-
binatorial Optimization Problems (COPs). Similarly, real-life stochastic COPs
can be naturally addressed by combining metaheuristics and simulation tech-
niques in any variation. A simheuristic algorithm is a simulation-optimization
method to adeptly dive into a stochastic COP instance containing stochastic ele-
ments, located either in the constraints’ set or objective function. Olafsson [100]
highlighted the importance of eliminating the differences between theoretical
analysis, exact methods, and practical problems. Even though simheuristics can
also be applied to complex deterministic problems, this dissertation focuses on
stochastic COPs.

In simulation-optimization literature, there are several examples of applying
simheuristics to different domains. By combining MCS with routing metaheuris-
tics, Gonzalez et al. [54] solved the Arc Routing Problem (ARP) with stocha-
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stic demands, while Juan et al. [82] solved the Vehicle Routing Problem (VRP)
with stochastic demands, and Juan et al. [87] solved the Inventory Routing Pro-
blem (IRP) with stochastic demands and stock-outs. Additionally, the Permu-
tation Flow-Shop Problem (PFSP) with stochastic processing times was solved
by Juan et al. [85], who combined a scheduling metaheuristic with MCS. Also,
Cabrera et al. [26] introduce solving COPs with probabilistic constraints by com-
bining a metaheuristic with DES, where time conditions the random behavior.

Stochastic model Deterministic model

Start

Stochastic COP Deterministic COP

Generate a new solution using a 
metaheuristic-driven search

Estimate quality/feasibility     
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Is it a
promising
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Rank the solution

More time 
available?

Refine estimates on 
quality/feasibility

Re-rank elite solutions

Perform risk/reliability analysis

End

Interaction between metaheuristic-
driven search and simulation

Y
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(low number of replications)
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(e.g., using expected values)

Intensive simulation process on elite solutions 
(large number of replications)

Figure 2.3: General scheme of simheuristics, adapted from [86]

In most practical applications, with moderate variance scenarios, it is safe to
assume for simheuristic algorithms that the best solutions for the determinis-
tic COP are probably the best solutions for the analogous stochastic one, wi-
thout implying that is mandatory. Notice that, in extreme uncertainty scenar-
ios, optimization methods should not be applied, as individual results can be
remarkably disparate. Thus, given this ‘relationship assumption’ [86], a few high-
quality solutions from the deterministic COP can be generated to effectuate sev-
eral ‘promising’ solutions for the corresponding stochastic problem. Given a sto-
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chastic COP instance, a simplification process, as delineated in Figure 2.3, con-
siders the corresponding deterministic problem, e.g., by using expected values.
Then, a metaheuristic-driven algorithm tries efficiently to find feasible, high-
quality solutions for the deterministic COP. The simheuristic algorithm esti-
mates or assesses the feasibility and the quality of the ‘promising’ solutions using
simulation, fuzzy logic, or dynamic programming methods. However, the si-
mulation method should be preferred, as, in this method, a best-fit theoretical
or empirical probability distribution can pattern randomness instead of taking
normal or exponential behavior, like other methods [86]. Additionally, a reduced
number of replications are performed during the simulation to allow metaheuris-
tic to perform an intensive search. A ranked list of the stochastic problem’s elite
solutions is keeped by using the estimated values of the simulation. Depend-
ing on the simulation’s estimated values, metaheuristic can intensify exploration
of promising searching areas. Larger number of simulations can be performed,
after the metaheuristic’s maximum allowed time is over, for a reduced batch of
elite solutions, and, consequently, the new estimates can be used to re-rank the
solutions.

Notice that additional information on the probability distribution of each so-
lution’s quality can be extracted from the final step’s long simulations. Then, the
decision-making procedure can include reliability/risk analysis criteria by using
the above corresponding information. Thus, decision-makers may also be in-
terested in analyzing the values’ probability distribution with similar expected
values to choose a lower risk solution over a risky, better-expected value [86].
Consequently, one of the critical simheuristics’ advantages is the risk analysis
competency, as metaheuristics can generate a plethora of high-quality alterna-
tive solutions and as simulation can provide a random sampling of observations
for each proposed solution.

To solve stochastic COPs, metaheuristics, considered primarily to deal with
deterministic problems, can be extended using simulation. Simheuristics is an
instigating alternative to combined metaheuristics-simulation methods as they
can provide near-optimal and high-quality solutions to stochastic and NP-hard
problems in good computing times [86]. Additionally, obtaining an approxi-

39



2 Background and Related Work

mate solution to a real-world’s precise model is better than taking the simplistic
model’s optimal solution.

Application areas of simheuristics include transportation and logistics [57, 83,
84, 87, 111, 117, 141], finance [101], healthcare [46], waste collection [56, 59], and
cloud computing [96]. For real-world complex stochastic optimization prob-
lems, simheuristics should be considered a “first-resort” method [30], as it can
handle reality in uncertain problems by simulation modeling, it can assess risk
with ease, and a post-run simulation output analysis can be made. In this disser-
tation, particularly in Chapter 4, simulation drives the optimization in a sense
that, after adaptive sampling, each candidate solution is evaluated, and the opti-
mization algorithm can drive the search process.

2.7 Variable Neighborhood Search

The VNS proposed by Mladenovic and Hansen [14, 68, 69, 97, 130] is an efficient
and straightforward metaheuristic method for solving various types of combina-
torial optimization problems. Examines remote areas, or neighborhoods, of the
current solution and moves to a new solution if and only if the objective function
improves. Local search methods are applied repeatedly to find solutions in the
neighborhood near the local. VNS is designed to approach solutions to discrete
and continuous optimization problems and, aims to solve linear problems, inte-
ger programming problems, mixed-integer problems, nonlinear problems, and
similar ones. VNS systematically changes the search into two phases. A descent
is first performed to find a local optimal and finally a phase of successive per-
turbations to escape from the respective valley and explore more remote areas.
VNS is based on the following concepts [65]:

• The local minimum concerning one neighborhood structure is not neces-
sarily a local minimum in another neighborhood structure.

• A global minimum is a local minimum concerning all possible neighbor-
hood structures.
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• In many problems, the local minima concerning one or more neighbor-
hoods are relatively close to each other.

The local search uses heuristic algorithms such as 2-opt1 heuristic. The goal is
to improve the existing solution through a set of rules that define the respective
neighborhood. Thus arises the set of permissible steps from which we choose
the solution that presents the greatest improvement over the existing one. If no
improvement is found, the algorithm is trapped in a local optimum and can not
take any steps. VNS method aims to release these local optimal [91]. Therefore,
in addition to providing very good solutions, often in simpler ways than other
methods, VNS shows us due to its very good performance, which, in turn, can
lead to more efficient and more sophisticated implementations. VNS’s scope of
applications is growing rapidly in number and covers many areas such as in-
tegral programming, vehicle routing, network design, location, artificial intel-
ligence, engineering, concentration problems, biology, telecommunications de-
sign. Additionally, the use of VNS in a simheuristic has been used in many recent
projects [57, 58, 101, 110].

2.7.1 Basic Variable Neighborhood Search

The Basic Variable Neighborhood Search (BVNS) takes as input an initial solu-
tion 𝑥 the number of 𝑘𝑚𝑎𝑥 neighborhoods available, and the termination crite-
rion that usually in this type of algorithm is a time limit that we allow the algo-
rithm to return the best improvement has been found within this time frame.
𝑘 first takes the value 1, which means that we start from the first neighborhood
we have defined. Then shaking takes place during which some random, but in
any case, proper steps are taken to escape from the local best and explore other
solutions. The algorithm attempts to apply the method of better improvement
based on the neighborhood 𝑘 in which we are. If no improvement is found, 𝑘

1Croes [35] first proposed the 2-opt technique where he defines it as an optimized solution
for the Traveling Salesman Problem (TSP) for both symmetric and asymmetric instances,
the latter requiring more work. There is no guarantee that this technique will find a global
optimum answer; instead, as it is a heuristic, the returning answer is usually said to be 2-
optimal. It aims to gradually improve an initially given, feasible answer, local search, until it
reaches a local optimum and no more improvements, called “inversions”, can be made.
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Figure 2.4: Schematic representation of the BVNS.

increases by 1, i.e., we go to the next available neighborhood, starting from the
beginning, making a disturbance and optimization based on this neighborhood.
If an improvement is found, then 𝑘 becomes 1 again, i.e., we return to the first
neighborhood and start from the beginning. This procedure continues until we
reach the time limit set from the beginning and the best solution found up to that
point is returned. BVNS is described in Algorithm 1, and a visual representation
of its operation is given in Figure 2.4.

2.7.2 Variable Neighborhood Descent

The Variable Neighborhood Descent (VND) is an optimization method that de-
terministically combines many neighborhoods to find better solutions to our
problem. Like BVNS, it starts by looking at optimization in the first neighbor-
hood, and if no improvement is found, it goes to the next one. If it finds improve-
ment in a neighborhood, it makes the step required for improvement and returns
to the first neighborhood. The difference with the BVNS is that the perturbation
process is not interfered with, and thus the VND is a completely deterministic
methodology with stops when the termination criterion is met, which is not the
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Algorithm 1 Steps of the BVNS.
Require: 𝑥 : initial solution

𝑘𝑚𝑎𝑥 : number of neighborhoods
𝑡𝑚𝑎𝑥 : maximum CPU time allowed

1: repeat
2: 𝑘 ← 1
3: repeat
4: 𝑥′ ← Shake(𝑥, 𝑘) ▷ Shaking
5: 𝑥′′ ← BestImprovement(𝑥′) ▷ Local search
6: NeighborhoodChange(𝑥, 𝑥′′, 𝑘) ▷ Change neighborhood
7: until 𝑘 = 𝑘𝑚𝑎𝑥
8: 𝑡 ← CpuTime()
9: until 𝑡 > 𝑡𝑚𝑎𝑥

execution time but not the execution time finding any improvement [68]. VND
is described in the Algorithm 2.

Algorithm 2 Steps of the basic VND.
Require: 𝑥 : initial solution

ℓ𝑚𝑎𝑥 : number of neighborhoods
1: ℓ ← 1
2: repeat
3: 𝑥′ ← arg min𝑦∈𝑁ℓ(𝑥)

𝑓(𝑥) ▷ Find the best neighbor in 𝑁ℓ(𝑥)
4: NeighborhoodChange(𝑥, 𝑥′, ℓ) ▷ Change neighborhood
5: until ℓ = ℓ𝑚𝑎𝑥

2.7.3 General Variable Neighborhood Search

The General Variable Neighborhood Search (GVNS) is the method that results
if we replace the BestImprovement optimization step in the BVNS, described
in Section 2.7.1, using the VND algorithm, described in Section 2.7.2. This way,
we will have more efficient but maybe slower optimization. In each iteration,
the current candidate solution is optimized not by using a neighborhood but by
the VND, which does more in-depth optimization by considering a sufficient
number of neighborhoods before stopping. Algorithm 3 describes the GVNS
method [67].
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Algorithm 3 Steps of the GVNS.
Require: 𝑥 : initial solution

𝑘𝑚𝑎𝑥 : number of VNS neighborhoods
ℓ𝑚𝑎𝑥 : number of local search neighborhoods
𝑡𝑚𝑎𝑥 : maximum CPU time allowed

1: repeat
2: 𝑘 ← 1
3: repeat
4: 𝑥′ ← Shake(𝑥, 𝑘) ▷ Shaking
5: 𝑥′′ ← VND(𝑥′, ℓ𝑚𝑎𝑥) ▷ Local search
6: NeighborhoodChange(𝑥, 𝑥′′, 𝑘) ▷ Change neighborhood
7: until 𝑘 = 𝑘𝑚𝑎𝑥
8: 𝑡 ← CpuTime()
9: until 𝑡 > 𝑡𝑚𝑎𝑥

2.7.4 Reduced Variable Neighborhood Search

The Reduced Variable Neighborhood Search (RVNS) is a variant that is more
popular when dealing with substantial problems [66]. In problems of this mag-
nitude, the optimization phase will undoubtedly cost us a lot of computing time,
and we will not be able to find a sufficient number of areas of the total space of
feasible solutions due to the time constraints we place on the various variants
of VNS algorithms. For this reason, the RVNS lacks the optimization phase. It
starts with an initial solution either randomly or using a construction heuristic
algorithm. Then, as in BVNS, described in Section 2.7.1, the shake is done, but
there is no optimization, resulting in a series of random movements. In each rep-
etition of the shake, the necessary check is made for whether any improvement
was found. The procedure is described in Algorithm 4.

2.7.5 Skewed Variable Neighborhood Search

This variant aims to explore very remote areas within the space of feasible solu-
tions. Skewed Variable Neighborhood Search (SVNS) [68] measures the distance
between two candidate solutions with a measurement function 𝜌(𝑥, 𝑥′) and the
help of parameter 𝛼, which will allow the jump to other more remote areas with
the appropriate value selection. Especially in the VRPs in which we start the
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Algorithm 4 Steps of the RVNS.
Require: 𝑥 : initial solution

𝑘𝑚𝑎𝑥 : number of neighborhoods
𝑡𝑚𝑎𝑥 : maximum CPU time allowed

1: repeat
2: 𝑘 ← 1
3: repeat
4: 𝑥′ ← Shake(𝑥, 𝑘) ▷ Shaking
5: NeighborhoodChange(𝑥, 𝑥′′, 𝑘) ▷ Change neighborhood
6: until 𝑘 = 𝑘𝑚𝑎𝑥
7: 𝑡 ← CpuTime()
8: until 𝑡 > 𝑡𝑚𝑎𝑥

exploration having a quality initial solution and not some random one, this met-
hod may not give good results since the optimal solution of the problem will not
be in a very remote area but will have several standard features with our initial
solution. Algorithm 5 describes the SVNS.

Algorithm 5 Steps of the SVNS.
Require: 𝑥 : initial solution

𝑘𝑚𝑎𝑥 : number of VNS neighborhoods
𝛼 : parameter
𝑡𝑚𝑎𝑥 : maximum CPU time allowed

1: repeat
2: 𝑘 ← 1
3: repeat
4: 𝑥′ ← Shake(𝑥, 𝑘) ▷ Shaking
5: 𝑥′′ ← FirstImprovement(𝑥′) ▷ First descent heuristic
6: if 𝑓(𝑥′) < 𝑓(𝑥) then ▷ Keep the best of the solutions 𝑥, and 𝑥′
7: 𝑥 ← 𝑥′
8: if 𝑓(𝑥′′) − 𝛼𝜌(𝑥, 𝑥′′) < 𝑓(𝑥) then ▷ Change neighborhood
9: 𝑥 ← 𝑥′′

10: 𝑘 ← 1
11: else
12: 𝑘 ← 𝑘 + 1
13: until 𝑘 = 𝑘𝑚𝑎𝑥
14: 𝑡 ← CpuTime()
15: until 𝑡 > 𝑡𝑚𝑎𝑥
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2.8 Failure Patterns in Smart Meters’
Communication

Despite the fact that learning failure patterns in the communication of smart
meters are a definite concern of grid operators, as of today, this problem is un-
derstudied. However, lots of work investigates how failures in smart grids can
be efficiently detected. Calderaro et al. [27] proposed a model for performing
fault diagnosis despite erroneous data transmissions. Equally important is the
approach of Jiang et al. [81] that suggested a data-driven method for fault detec-
tion, identification, and location in smart grids. Moreover, Jiang and Zeng [76]
proposed a probabilistic graphical model to detect line outages in power grids.
In our approach, described in Chapter 5, we utilize machine learning and indi-
vidual profiles to successfully classify the smart meters’ behaviour.

Machine learning techniques have been widely applied to solve smart grid
problems. Kher et al. [88] suggested a machine learning model to monitor sus-
picious activities or malicious attacks. They proposed leveraging the real-time
data collected from the grid. By the same token, Valdes et al. [139] suggested to
use machine learning to distinguish normal, fault, and attack states in an electri-
cal substation, by profiling the customer consumption per day. Similarly, Hart-
mann et al. [75] also proposed to use machine learning, to profile smart meters’
behaviour. In their approach, they suggested to use Gaussian mixture models
to detect non-technical losses in real-time. In like manner, in the domain of in-
trusion detection systems, to learn the standard behaviour of data transfers in a
network and to find discrepancies that suggest an intrusion, Berthier et al. [15]
proposed a machine learning technique.

Furthermore, Ruzelli et al. [122] suggested that the machine behaviour and dis-
turbance in the environment can be learnt and stored in profiles. These profiles
are then used to create signatures of electrical appliances to detect their operat-
ing status. Correspondingly, in our work, we suggest creating profiles to identify
the normal communication behaviour of smart meters. In addition to the multi-
variate profiles approach, firstly used on [75], our implementation uses ND-trees
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to encode the failure patterns and verify if the new behaviour is expected or not,
based on the computed profile.

ND-trees are mainly used to search through non-ordered data spaces[29, 109].
Moreover, Kobe et al. [89] proposed to repurpose ND-trees for k-nearest neigh-
bour search. In our approach, we choose the ND-tree technique as it can quickly
search the huge amount of historical data, allowing the profile to be calculated in
near real time.
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Enhancing Smart Grid Resilience
and Reliability
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3 Deterministic Overloading
Prevention Problem

No problem can be solved from the same level of
consciousness that created it.

(Albert Einstein)

Given the topology and the energy data of amicrogrid at the current time, the potential
overloading incidents are detected, and the optimal countermeasures are calculated for
the next measurement interval. The grid operators can apply the proposed actions to
recover the grid from the disturbance. Into this chapter, the problem is defined and
formulated as a MO-MIQCP. This chapter also suggests a solution method using a
combinatorial optimization approach with a state-of-the-art exact solver.
This chapter is based on work that has been published in the following paper:

• “Preventing Overloading Incidents on Smart Grids: A Multiobjective Combi-
natorial Optimization Approach” (OLA 2020)
Antoniadis N., Cordy M., Sifaleras A., Le Traon Y.
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3.1 Introduction

The so-called smart grid paradigm has been motivated by the need to manage
today’s power grids’ growing complexity. It aims to keep up with growing en-
ergy demand, for example, by integrating renewable energy or providing innova-
tive services, primarily driven by sensors and two-way communications between
smart meters and electricity suppliers. Part of the smart grid power system [42] in
Luxembourg [34], the low voltage distribution network, carries electricity from
distribution transformers to smart meters of end customers. This low-voltage
network is generally more complex and meshed than the medium-voltage one,
and it is more difficult to trace its perturbations. Each distribution substation
comprises a power supply system that delivers electricity to industrial and res-
idential users through power supplies, i.e., cabinets, and cables. Distribution
cabinets control distributed power and provide overload protection to mains
lines through their fuses. A smart meter is installed between the service cable
and each user’s installation to measure power consumption and manage loads
through their relay, triggering the function. The number of connected compo-
nents of the multigraph 1.2 is equal to the number of distribution substations,
which means that each service cable can only be connected to one substation
precisely. All cables start from one fuse in one cabinet and end in another fuse
in another cabinet. If the end cabinet of the cable does not have any cable start-
ing from it, it is called dead end. Each fuse’s status can be opened or closed; this
information, combined with the network topology, can be used to determine the
accessibility of each cable in the network from each substation. The current load
of each cable can be approximated using methods such as presented in [74], by
summarizing the production and consumption values of all users of this cable,
that given through their smart meters. Consequently, a cable’s load percentage
is obtained by dividing its current load by its maximum amplitude multiplied by
one hundred. Then the cable runs the risk of overload if its current load exceeds
a predefined threshold.
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3.1.1 Preventing an overloading incident

Grid operators typically consider a risk of overloading incident when the cur-
rent load percentage on a cable exceeds a predefined threshold set by the grid
operator. Then, they can apply different countermeasures to reduce cable loads,
thereby avoiding overloading to occur. The preferred solution consists of lim-
iting the over-production remotely, e.g., solar panels on a sunny day, or over-
consumption of specific users, e.g., charging EVs; this countermeasure is com-
monly named load curtailment [131]. However, some users have contracts that
prevent the operator from regulating their power capacity. Therefore, curtail-
ment is not, in such cases, an option. More generally, if curtailments cannot
result in a stable state, i.e., without risk of overloading, the operators have to
reconfigure the topology of the grid by switching fuses, using the intertrip [20]
method to shift reserves from one network to another, even if intertrip is com-
plicated for the meshed low-voltage network [20].

Changing fuse states require technicians to visit the corresponding cabinets
physically. Therefore, minimizing the number of visiting cabinets is an object
of considerable solicitude to the grid operator to minimize a potential incident’s
restoration time. Another concern is the minimization of the number of fuses
that have to be switched on or off, as the grid’s configuration should remain nearly
the same as its initial state.

Avoid disconnecting users, especially critical ones, such as patients, is a mat-
ter of great concern to the grid operators. Still, this may happen as a last resort
to prevent cascading overloads [20] and to avoid any damage to the power line
when there is an insufficient operating reserve. In this case, the number of dis-
connected users should remain minimal.

3.1.2 Contribution

Given the above requirements, finding the ideal solution(s) to prevent overloa-
ding incident is a daunting decision-making task that humans can hardly solve
without support. Therefore, in this chapter, we propose a multiobjective com-
binatorial optimization approach to define, model, and solve the overloading
prevention problem for a low-voltage network. Our approach can also model
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a medium-voltage smart grid or a standalone microgrid with minimal changes.
Mathematical optimization methods have been successfully applied to solve a
wide range of decision problems [129], including in the energy industry, see Sec-
tion 2.2).

Given the physical network data, i.e., substations, cabinets, cables, connec-
tions between cabinets, that are assumed to remain constant, the initial state of
the fuses, and the power values from the users’ smart meters, we approximate the
current load percentage on each cable by solving a linear system described in [74].
To create the matrices defining this linear system, we compute the reachable ca-
bles from every substation based on the fuses’ state and the physical network
data. We also detect parallel cables, i.e., multiple edges in the grid’s multigraph,
since computations involving those are slightly different.

Once the risk of overload is detected, i.e., the approximated current load per-
centage exceeds the predefined threshold; we store the fuses’ current states and
the smart meter values. Then we solve our optimization model to suggest the
most appropriate countermeasures. Curtailment of compliant users is first at-
tempted.

If this curtailment cannot establish a stable state, we should take the second
action to switch fuses on or off. On every possible change of fuses’ state, a new
linear system has to be defined and solved to approximate the current loads on
the cables. Moreover, simultaneously connecting multiple substations should
be avoided, as we cannot calculate the power flow cycles between substations;
otherwise, the load calculation could return a wrong result [74]. In the end, our
solution aims to maximize the number of connected users while minimizing the
number of visited cabinets and the number of changes applied to fuses.

We evaluate the applicability of our approach through a benchmark set com-
prising ten grid topologies for five substations; similar to an area of a small vil-
lage in Luxembourg, and another set containing a gradually increasing number
of substations, by steps of five, from ten to fifty; similar to an area of a medium-
size city in Luxembourg. The topologies are generated by a tool we developed
based on Creos Luxembourg S.A.’s real-world statistics, the only grid operator in
Luxembourg and our project partner. Our results show that our approach can
suggest solutions for all topologies in due time, up to about 15 min. Moreover, a
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detailed analysis of the curtailed and disconnected users reveals that curtailment
alone is not enough to prevent overloading incidents, emphasizing the need for
automated solutions to reconfigure the grid and more sophisticated demand re-
sponse programs. The remainder of this chapter is structured as follows. Sec-
tion 3.2 provides the mathematical model for this work. Then, in Section 3.3, we
detail the implementation of our proposed solution method, which is evaluated
in Section 3.4. Finally, we conclude in Section 3.5.

3.2 Mathematical Model
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d% Load %

Figure 3.1: Overload Prevention Problem example.

The OPP can be defined on a complete undirected multigraph 𝐺 = (𝑉, 𝐸).
The set 𝑉 = {1, 2, … , 𝑜} is the vertex set, i.e., the set of the cabinets of the grid,
𝐸 = {(𝑖, 𝑗) ∈ 𝑉2, 𝑖 ≠ 𝑗} is the multiple edge set, i.e., the multiset of the cables that
connect the cabinets of the grid. An example of the problem is illustrated in
Figure 3.1, while in Figure 3.2 the associated multigraph of the example is pre-
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Figure 3.2: Associated multigraph of the example.

sented. The problem, we previously described, can be modeled as a Mixed Inte-
ger Quadratically Constraint Program (MIQCP) formulation as follows:

max
𝑛
∑
𝑖=1

𝑟𝑖
𝑚
∑
𝑘=1

𝑢𝑐𝑘𝑖 (3.1)

min
𝑜
∑
𝑏=1

𝑑𝑓𝑐𝑎𝑏𝑏 (3.2)

min
2𝑛
∑
𝑓=1

|𝑥𝑓 − 𝑥0𝑓| (3.3)

subject to:
𝐴 ⋅ 𝑤𝑝 = 𝑃 (3.4)

𝐴 ⋅ 𝑤𝑞 = 𝑄 (3.5)

𝑙𝑖 < 𝜆, ∀𝑖 ∈ {1,… , 𝑛} (3.6)
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Start
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Figure 3.3: Outline of the solving procedure.

Given 𝐺, the first objective, Equation 3.1, defines the fuses’ state to maxi-
mize the serviced users of the grid. Simultaneously, the second objective, Equa-
tion 3.2, sets the state of each fuse to minimize the number of visiting cabinets.
According to Creos Luxembourg SA, the cost of reconfiguration is nearly anal-
ogous to the number of the cabinets the technicians have to visit. The third ob-
jective, Equation 3.3, minimizes the number of fuses’ changes to keep the initial
fuses’ state as much as possible. An outline of the solving procedure is presented
in Figure 3.3.

Curtailment policy to the users is applied when any producer or consumer
has amperage over 𝐼𝐿𝑃 and 𝐼𝐿𝐶 , respectively. Equation 3.4 and Equation 3.5 ap-
proximate the current loads, as in [74]. To avoid overload cables, the constraint
described in Equation 3.6 limit the current load percentage on each cable under
the predefined threshold. The notation used is presented in the Nomenclature .
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3 Deterministic Overloading Prevention Problem

3.3 Implementation

As the problem above is formulated as a MIQCP, a state-of-the-art mathemati-
cal programming solver, Gurobi [61], is chosen to address it. Smart grid data are
imported to our program, and a pre-computational phase is taking place. Vec-
tors, substations, cabinets, and the edges, cables are stored, and the multigraph of
the smart grid is created. Additionally, the initial fuses’ states, the smart meters,
their connecting cables, and their consumption and production values are being
read and stored. Moreover, the entire set of cycles of the multigraph [80, 105]
are being found, eliminating any connections between substations and investi-
gating any multi-edges, multiple cables between cabinets, on the graph. Du-
ring this pre-processing phase, the dead-ends cabinets are also defined to help
us compute the load, using the depth-first-search algorithm [136], and stored.
Having this information about the topology, we construct the potential linear
equations assuming that all the fuses are closed. This phase ends by calculating
the loads [74] by using Singular Value Decomposition (SVN) [53] for solving the
over-determined linear system of equations and check if the initial state has any
overloaded cables or not. If an overload is inspected, then the variables are being
initialized and, using the Depth First Search (DFS) algorithm [136], the reacha-
bility vector 𝑟 is constructed. After the reachability cable state is initialized, we
can create the actual linear equations, the cable, cabinet, dead-end, and circle
ones [74].

3.3.1 Linear transformation

As Gurobi does not support quadratic equality constraints, we need to trans-
form the constraints, expressed by the Equation 3.4 and Equation 3.5 into a lin-
ear form. Firstly, we rewrite the constraints, expressed by the Equation 3.4 and
Equation 3.5 as:

𝑃𝑗 =
2𝑛
∑
𝑓=1

𝐴𝑗𝑓𝑤𝑝𝑓, ∀𝑗 ∈ {1,… , 𝑙𝑒𝑞} (3.7)
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𝑄𝑗 =
2𝑛
∑
𝑓=1

𝐴𝑗𝑓𝑤𝑞𝑓, ∀𝑗 ∈ {1,… , 𝑙𝑒𝑞} (3.8)

We introduce, for each quadratic term in the above summations, new variables
𝑧𝑝𝑗𝑓 = 𝐴𝑗𝑓𝑤𝑝𝑓 and 𝑧𝑞𝑗𝑓 = 𝐴𝑗𝑓𝑤𝑞𝑓. As 𝐴𝑗𝑓 ∈ {−1, 0, 1}:

𝑧𝑝𝑗𝑓 =
⎧
⎨
⎩

−𝑤𝑝𝑓, 𝐴𝑗𝑓 = −1
0, 𝐴𝑗𝑓 = 0
𝑤𝑝𝑓, 𝐴𝑗𝑓 = 1

(3.9) 𝑧𝑞𝑗𝑓 =
⎧
⎨
⎩

−𝑤𝑞𝑓, 𝐴𝑗𝑓 = −1
0, 𝐴𝑗𝑓 = 0
𝑤𝑞𝑓, 𝐴𝑗𝑓 = 1

(3.10)

Using the Equation 3.9 and the Equation 3.10 we can rewrite the Equation 3.7
and the Equation 3.8 as:

𝑃𝑗 =
2𝑛
∑
𝑓=1

𝑧𝑝𝑗𝑓, ∀𝑗 ∈ {1,… , 𝑙𝑒𝑞} (3.11) 𝑄𝑗 =
2𝑛
∑
𝑓=1

𝑧𝑞𝑗𝑓, ∀𝑗 ∈ {1,… , 𝑙𝑒𝑞} (3.12)

To be able to compute the 𝑧𝑝𝑗𝑓 and 𝑧𝑞𝑗𝑓, we need to binary transform the
above piecewise functions using indicator constraints [21]. Thus, for every coef-
ficient matrix element, we introduce three additional variables as:

−1𝑦𝑗𝑓1 + 0𝑦𝑗𝑓2 + 1𝑦𝑗𝑓3 = 𝐴𝑗𝑓, (3.13) 𝑦𝑗𝑓1 + 𝑦𝑗𝑓2 + 𝑦𝑗𝑓3 = 1 (3.14)

∀𝑗 ∈ {1,… , 𝑙𝑒𝑞}, ∀𝑓 ∈ {1,… , 2𝑛}, 𝑦𝑗𝑓1, 𝑦𝑗𝑓2, 𝑦𝑗𝑓3 ∈ {0, 1}

In Equation 3.13 it is ensured that 𝐴𝑗𝑓 can only take values from its domain
where the Equation 3.14 ensures that, only one variable could take value one.
Using the Equations 3.13 and the Equation 3.14, the Equation 3.9 and the Equa-
tion 3.10 become:

𝑧𝑝𝑗𝑓 =
⎧
⎨
⎩

−𝑤𝑝𝑓, 𝑦𝑗𝑓1 = 1
0, 𝑦𝑗𝑓2 = 1
𝑤𝑝𝑓, 𝑦𝑗𝑓3 = 1

(3.15) 𝑧𝑞𝑗𝑓 =
⎧
⎨
⎩

−𝑤𝑞𝑓, 𝑦𝑗𝑓1 = 1
0, 𝑦𝑗𝑓2 = 1
𝑤𝑞𝑓, 𝑦𝑗𝑓3 = 1

(3.16)
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3.3.2 Solving model

The final step is to calculate the difference between the initial and the current
state of each fuse. Moreover, the binary cabinet visit indicator for each cabinet
is computed. To solve the model, we are using the lexicographic approach [22]
for the objectives to reach any Pareto optimal solution by assigning a priority to
each objective and then optimizing the objectives in decreasing priority order.
At each step, the current objective is optimized, and a constraint is introduced
to guarantee that the higher-priority objective functions preserve their optimal
value [22, 61]. We are specifying a complete order of importance along with our
partner, Creos Luxembourg SA. After getting the preference information, our
first objective, Equation 3.1, has the highest importance, the second one, Equa-
tion 3.2, has lower importance and, the third one, Equation (3.3), has the least
importance.

3.4 Evaluation

Our method has to provide solutions to the overloading prevention problem suf-
ficiently fast in order to be practicable. According to our partner Creos Luxem-
bourg SA, the computation time should not exceed 15 minutes (which corre-
sponds to the interval of time between two smart meter data reports). Hence,
our first research question concerns the scalability of our approach concerning
increasingly-large grids.

Our primary focus is to analyze the presented solution qualitatively: how much
our approach manages to satisfy the requirements of not disconnecting, if pos-
sible, the users. The absolute numbers, of course, depend on the particular cases
considered. Therefore, our second research question concerns a relative analy-
sis: how well different curtailment policies allow avoiding user disconnections
in different overload scenarios.
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3.4.1 Dataset and experimental setup

A topology generation software tool to evaluate our proposed method was first
developed. Using this tool, we create ten realistic smart grid graphs based on
real topology data. In each instance, we consider five substations to answer the
second research question, topologies that resemble a small village in Luxem-
bourg. For every grid graph, we consider 216 scenarios1 as a combination of
different percentage of overload producers, overload consumers, producers, and
consumers that can be curtailed. Moreover, as we do not notice a significant dif-
ference when changing the percentage of overloading and curtailment in timing,
we study the scalability only concerning the grid size by creating another nine re-
alistic smart grid graphs. Each instance contains a gradually increasing number
of substations by five, from ten to fifty.

On these graphs, three to four cabinets are connected on each substation,
where the number of cabinets is uniformly random. Two of these cabinets are
connected by two edges (cables) to the substation. Under the first level of cabi-
nets, three to five cabinets are connected, where the number of cabinets is uni-
formly random. Under the second level of cabinets, zero to two cabinets are
connected, where the number of cabinets is uniformly random. During the ex-
periments’ creation, it is explicitly assumed that one cabinet, either on the second
or the third level of the graph, is connected to another substation’s cabinet so that
intertrip can be applied. The material, size, and maximum ampacity are gener-
ated uniformly randomly from real data for each cable. On each cable, up to 21
smart meters are connected. The smart meters were sampled from a uniform
discrete distribution with the range [0, 21].

We analyzed the historical data we acquired from Creos Luxembourg SA to
create consumption and production energy data. More specifically, we analyzed
for the 215 consumers and the seven producers, the four electrical values from
their smart meters, active energy consumption and production, and reactive en-
ergy consumption and production. The data consisted of 9 months of measure-
ments, with 96 measurements per day. Mean and standard deviation and min-

1Interested readers may find all the presented results for the 216 instances from http://tiny.

cc/ola2020_antoniadis
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3 Deterministic Overloading Prevention Problem

imum and maximum value for each user were computed to produce their con-
sumption and production profiles. For each smart meter, a random profile is se-
lected and, from the corresponding distribution, an electrical value is generated.
Additionally, at most, 10% of the users are selected to produce energy. To create
a different percentage of overloaded and curtailed users, we shuffle the producers
and consumers vectors using the Fisher-Yates algorithm [40, 47]. Then, we pick
the corresponding number of users from the shuffled vectors.

A soft curtailment [20] is applied if a producer overpasses the threshold of 60 A,
i.e., 80% of 75 A, the typical roof-top solar panel installation amperage, or if a
consumer overpasses the threshold of 32 A, i.e., 80% of 40 A, the typical amper-
age supplied by residential meters. If a producer or a consumer is picked for cur-
tailment, its active energy is limited to 20 A; a value picked together with Creos
Luxembourg SA. The experiments were conducted on a standard MacBook Pro
with a 2.6 GHz Intel Core i7 processor, macOS Mojave 10.14.6 operating sys-
tem, 16 GB 2133 MHz LPDDR3 memory using Java JDK 1.8.0-162 and Gurobi
Optimizer 8.1.1 – Academic Version [61].

3.4.2 Results and discussion

In what follows, each experiment was run for ten times, for the ten different
topologies, and the 216 different scenarios. The average time and the 99% confi-
dence interval for the 21600 experiments (5 substations), was found to be equal
to 6.363 sec ± 1.527 sec.

We observe that our method can propose solutions quickly to help grid oper-
ators to prevent overloading incidents. To check if our method could be applied
to a larger scale smart grid, we create and test nine different topologies, and the
results of these experiments are shown in Figure 3.4. Indeed, even in the most
complex case, that resembles the size of a medium-size city in Luxembourg, our
approach finds a solution in about the allowed time (15 min).

Moreover, we notice that when the size of the graph doubles, the average com-
putation time is approximately five times higher. For the second research ques-

2POv: overload producers’ percentage, COv: overload consumers’ percentage, PCur: curtailed
producers’ percentage, CCur: curtailed consumers’ percentage, ConU : connected users per-
centage, VisCab: cabinets to visit percentage, FusesCh: fuses changed percentage
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Figure 3.4: Different topologies and computational time.

POv2 COv2 PCur2 CCur2 ConU2 VisCab2 FusesCh2

0-25% 0-10% 100% 100% 100% 6.98% 3.47%
0% 25% - 100% 99.96% 7.04% 3.5%
0% 50% - 100% 95.07% 11.55% 5.5%

25% 25% 100% 100% 99.8% 7.18% 3.56%
10% 50% 50% 100% 94.7% 12% 5.78%
50% 10% 100% 100% 99.94% 7.02% 3.49%
10% 0% 0% - 94.57% 10.75% 5.37%
10% 0% 50% - 97.68% 8.47% 4.19%
50% 25% 100% 100% 99.35% 7.67% 3.76%
50% 25% 50% 50% 61.57% 31.6% 17.18%
50% 25% 0% 0% 41.77% 35.83% 23.06%

Table 3.1: Sample results of our method (5 substations).

63



3 Deterministic Overloading Prevention Problem

tion, as shown in Table 3.1, and detailed in Appendix A, if the percentage of
overloaded consumers remains at most 10%, while the percentage of overloaded
producers remains at most 25%, and curtailment is applied for all the users of
the grid, no disconnection is needed. Nonetheless, the percentages of cabinets
to visit and changed fuses remain low, 6.98% and 3.47%, respectively. On the op-
posite, 5.43% ± 0.93% of the users should be disconnected to prevent overload if
10% of the producers are overloaded, and no curtailment policy is applied. From
our findings, it is shown that curtailment policies lead to fewer disconnections
to prevent overloads. Additionally, fewer cabinet visits and fewer changed fuses
are needed, avoiding additional costs for the electrical companies while keep-
ing the grid in a stable configured state as possible. Nevertheless, in the long
term, electrical companies should increase their operational reserves to decrease
the possibility of disconnections [20]. Moreover, solar panel producers should
install batteries to minimize their losses due to the curtailment policies [20].

3.5 Conclusion

In this chapter, the definition of the OPP in smart grids and its formulation as a
MO-MIQCP is presented, and a solution method using a state-of-the-art exact
solver is suggested. It is shown that this approach can be included in the grid op-
erator’s decision-making process as it can successfully and rapidly help to prevent
challenging overloading incidents in a smart grid of about the size of a medium
city in Luxembourg, minimizing the disconnections of the grid’s users.

Our method has been integrated into a grid visualization tool that allows op-
erators to observe the grid cable states, detect (risk of) overloading incident, and
call our algorithm to find appropriate countermeasures.
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4 Reliability Analysis
through Simulation and
Stochastic Optimization

True optimization is the revolutionary contribution of
modern research to decision processes.

(George Dantzig)

Into this chapter, reliability analysis through simulation is employed to evaluate the
topology reconfiguration’s robustness after a disturbance, like an overload. Then, in
this chapter, the Single-State Stochastic Program (SSSP) is defined, where the optimal
countermeasures are calculated for a measurement horizon, e.g., 24 h, and a simheu-
ristic method is proposed to solve it.
This chapter is based on work that has been published in the following paper:

• “A variable neighborhood search simheuristic algorithm for reliability optimiza-
tion of smart grids under uncertainty.” Manuscript submitted for publication.
Antoniadis N., Cordy M., Sifaleras A., Le Traon Y.
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4 Reliability Analysis through Simulation and Stochastic Optimization

4.1 Introduction

The increased complexity of the energy grids motivates the idea of a smarter grid.
There is a way that they can deal with the growing demand for energy and pro-
viding innovative services [6].

One of the most critical issues in power grids is overloading cables as they
can harm distribution power lines. With fuse switches, an overload trips the
fuse, causing the circuit to open and, consequently, stopping flow and heating.
Grid operators usually assume that the load rate above a predefined level on a
cable entails a significant overload chance. Long-term overloads, however, can
also damage cables even within the security limits and may cause energy grids to
malfunction [148].

Specific counteractions can then be applied to reduce cable loads, preventing
overload, including the curtailment of over-production or over-usage by indi-
vidual users.

Some consumers, however, have contracts that prohibit the operator from
controlling its power capacity. In these cases, therefore, a restriction is not a
choice. More generally, when such constraints do not effectuate a stable state, i.e., wi-
thout the possibility of a surge, operators need to reconfigure the grid topology
by swapping fuses to transfer reserves between networks even when the intertrip
for the meshed low voltage network is complicated.

Technicians, if remotely switching is not possible, have to physically visit the
correct cabinets if the fuse states are to be changed. Therefore, the minimization
of the number of visitor booths is an area of considerable concern for the grid
operator, which minimizes the recovery time of a possible incident.

It is a matter of significant interest for grid operators to avoid disconnecting
users, critical ones, such as hospitals. However, if there is an inadequate operat-
ing reserve, this will happen to prevent cascading overloads to avoid harm to the
line as a last resort. In this case, there will remain a small number of disconnected
users.

The above countermeasures, including user curtailments and reconfiguration
of the grid’s topology, are generally applied in a short time, i.e., less than an hour.
Although, even if the above counteractions are applied immediately after detect-
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ing a risky overloading incident, the recovery response solution could lead to
another overloading incident, as the future demands are not known beforehand.
Moreover, there is ongoing demand from the grid operators for more reliable
smart grids towards the “self-healing” grid [134], in the sense of automatically
respond to problems and minimize disturbances. Therefore, if the recovery re-
sponse solution could be tested for its efficacy over the next day, the smart grid
operators would be of great use to ensure the solution is as robust as possible.

4.1.1 Contribution

In this chapter, two methods capable of calculating a smart grid’s short-term ex-
pected reliability after an overloading event are presented. Firstly, correspond-
ingly to the above IEEE reliability indices, three customer-based, three cable-
based, and two load-based reliability indices, estimating overloading incidents
are presented. After a potential overload event, the optimal and sub-optimal so-
lutions are calculated, as described in [6]. For every solution, using Monte Carlo
Simulation (MCS), the eight reliability indices could be estimated. Along with
the number of fuses’ changes, a Unified Overload Index (UOI) is calculated as a
normalized weighted sum of the values. By using different vectors of weights, the
decision-maker could investigate different aspects of the reliability assessment.

As the simulation is not an optimization tool [86], we propose a SSSP to opti-
mize the reconfiguration of the grid topology and to ensure the smart grid could
remain stable for the next 24 h. We propose to solve it through the simheuristics
method, which combines simulation with metaheuristics [118](see also 2.6) to
solve Stochastic Combinatorial Optimization Problems (COPs). For the meta-
heuristic part, we use Variable Neighborhood Search (VNS), in which the inten-
sification of search and the diversification of local optimum solution is based on
the systematic change of neighborhoods (see also 2.7). Additionally, we apply
the control variate reduction technique (see also 2.3.3) to the MCS to reduce the
number of simulations.

The remainder of this chapter is structured as follows. Section 4.2 provides
the mathematical model for the stochastic program of this work. Then, in Sec-
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tion 4.3, we detail the implementation of our proposed solution method, which
is evaluated in Section 4.4. Finally, we conclude the chapter in Section 4.5.

4.2 Materials and Methods

tt0 24h + t0

Suggest 
actions

Overload

Apply 
actions

Stable grid after 24h?

Current 
electrical 
values

Future electrical 
values are unknown

Figure 4.1: Check for stability over time.

The scope of our work is to predict the stability of a smart grid after a potential
overload. The outline of the procedure is presented in Figure 4.1. From the given
electrical values that have been read by the smart meters, if a potential overload
has occurred, our proposed methods suggest the proper actions that have to be
applied by the smart grid technicians. Our goal is to propose a robust solution
for the next day under uncertainty, as the future electrical values are unknown.
To do so, we propose two methods. The first one extends the work presented
in [6] by including an MCS step for predicting the electrical values after a po-
tential overload. As the simulation is not an optimization tool, in the second
method, we use a single-stage stochastic program to optimize the grid topol-
ogy’s reconfiguration to ensure the smart grid could remain stable for the next
24 h by hybridizing simulation with a metaheuristic. To evaluate the solutions’
quality, we propose a UOI as described in Section 4.2.1.
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4.2.1 Unified Overload Index

In order to estimate the reliability after a potential overloading situation, we pro-
pose, in accordance with the state-of-the-art IEEE reliability indices [79] the fol-
lowing eight indices (see also Nomenclature ):

• System Average Overload Frequency Index (SAOFI), like System Average
Interruption Frequency Index (SAIFI) [79]. It expresses how often a cus-
tomer experiences a sustained overload over a predefined period of time
(overloads/day).

𝑆𝐴𝑂𝐹𝐼 = 𝑐𝑜
𝑚 (4.1)

𝑐𝑜 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑓𝑎𝑖𝑙𝑖𝑡𝑐𝑢𝑠𝑡𝑖 (4.2)

𝑓𝑎𝑖𝑙𝑖𝑡 = {
1 (𝑢𝑖(𝑡−1) = 0 ∧ 𝑢𝑖𝑡 = 1 ∧ 𝑡 > 0) ∨ (𝑢𝑖0 = 1 ∧ 𝑡 = 0)
0 otherwise

(4.3)

𝑢𝑖𝑡 = {
1 𝑙𝑑𝑖𝑡 > 𝜆
0 otherwise

(4.4)

• System Average Overload Duration Index (SAODI), like System Average
Interruption Duration Index (SAIDI) [79]. It expresses the total duration
of overload for a customer during a predefined period of time (mins/day).

𝑆𝐴𝑂𝐷𝐼 = 𝑐𝑚𝑜
𝑚 (4.5)

• Customer Average Overload Duration Index (CAODI), like Customer Av-
erage Interruption Duration Index (CAIDI) [79]. It expresses the average
time required to restore service on a customer (mins/day).

𝐶𝐴𝑂𝐷𝐼 = 𝑐𝑚𝑜
𝑐𝑜 (4.6)
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𝑐𝑚𝑜 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑑𝑜𝑤𝑛𝑡𝑖𝑡𝑐𝑢𝑠𝑡𝑖 (4.7)

𝑑𝑜𝑤𝑛𝑡𝑖𝑡 = 15𝑢𝑖𝑡 (4.8)

• Cable System Average Overload Frequency Index (CBLSAOFI), like SAIFI [79].
It expresses how often a cable experiences a sustained overload over a pre-
defined period of time (overloads/day).

𝐶𝐵𝐿𝑆𝐴𝑂𝐹𝐼 = 𝑐𝑏𝑙𝑜
𝑛 (4.9)

𝑐𝑏𝑙𝑜 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑓𝑎𝑖𝑙𝑖𝑡 (4.10)

• Cable System Average Overload Duration Index (CBLSAODI), like SAODI [79].
It expresses the total duration of overload for a cable during a predefined
period of time (mins/day).

𝐶𝐵𝐿𝑆𝐴𝑂𝐷𝐼 = 𝑐𝑏𝑙𝑚𝑜
𝑛 (4.11)

𝑐𝑏𝑙𝑚𝑜 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑑𝑜𝑤𝑛𝑡𝑖𝑡 (4.12)

• Cable Average Overload Duration Index (CBLAODI), like CAODI [79]. It
expresses the average time required to restore service on a cable (mins/day).

𝐶𝐵𝐿𝐴𝑂𝐷𝐼 = 𝑐𝑏𝑙𝑚𝑜
𝑐𝑏𝑙𝑜 (4.13)
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• Average System Overload Frequency Index (ASOFI), like Average System
Interruption Frequency Index (ASIFI) [79]. It is similar to SAOFI but it is
based on load (overloads/day).

𝐴𝑆𝑂𝐹𝐼 = 𝑙𝑜
𝑙𝑡 (4.14)

𝑙𝑜 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑓𝑎𝑖𝑙𝑖𝑡𝑙𝑑𝑖𝑡 (4.15)

𝑙𝑡 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑙𝑑𝑖𝑡 (4.16)

• Average System Overload Duration Index (ASODI), like Average System
Interruption Duration Index (ASIDI) [79]. It is similar to SAODI but it is
based on load (mins/day).

𝐴𝑆𝑂𝐷𝐼 = 𝑙𝑚𝑜
𝑙𝑡 (4.17)

𝑙𝑚𝑜 =
𝑛
∑
𝑖=0

𝑇
∑
𝑡=0

𝑑𝑜𝑤𝑛𝑡𝑖𝑡𝑙𝑑𝑖𝑡 (4.18)

In accordance with our industrial partner Creos Luxembourg SA, the weighted
mean of the above indices is defined as the UOI. UOI can be used as a standard
metric for the decision-makers to help them understand the impact of every pro-
posed solution to the grid.

𝑈𝑂𝐼 = 𝑤𝑆𝐴𝑂𝐹𝐼
𝑆𝐴𝑂𝐹𝐼
𝑇
2
+ 1

+ 𝑤𝑆𝐴𝑂𝐷𝐼
𝑆𝐴𝑂𝐷𝐼
15(𝑇 + 1) + 𝑤𝐶𝐴𝑂𝐷𝐼

𝐶𝐴𝑂𝐷𝐼
15(𝑇 + 1)

+ 𝑤𝐶𝐵𝐿𝑆𝐴𝑂𝐹𝐼
𝐶𝐵𝐿𝑆𝐴𝑂𝐹𝐼

𝑇
2
+ 1

+ 𝑤𝐶𝐵𝐿𝑆𝐴𝑂𝐷𝐼
𝐶𝐵𝐿𝑆𝐴𝑂𝐷𝐼
15(𝑇 + 1) + 𝑤𝐶𝐵𝐿𝐴𝑂𝐷𝐼

𝐶𝐵𝐿𝐴𝑂𝐷𝐼
15(𝑇 + 1)

+ 𝑤𝐴𝑆𝑂𝐹𝐼
𝐴𝑆𝑂𝐹𝐼
𝑇
2
+ 1

+ 𝑤𝐴𝑆𝑂𝐷𝐼
𝐴𝑆𝑂𝐷𝐼
15(𝑇 + 1)

(4.19)
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𝑤𝑆𝐴𝑂𝐹𝐼 + 𝑤𝑆𝐴𝑂𝐷𝐼 + 𝑤𝐶𝐴𝑂𝐷𝐼 + 𝑤𝐶𝐵𝐿𝑆𝐴𝑂𝐹𝐼

+ 𝑤𝐶𝐵𝐿𝑆𝐴𝑂𝐷𝐼 + 𝑤𝐶𝐵𝐿𝐴𝑂𝐷𝐼 + 𝑤𝐴𝑆𝑂𝐹𝐼 + 𝑤𝐴𝑆𝑂𝐷𝐼 = 1
(4.20)

4.2.2 Simulation approach

In our first method, after a potential overload, at most five best solutions are
picked from the method suggested in [6], and presented in Chapter 3, the pro-
posed actions are applied, and the future electrical values are simulated, from the
corresponding historical Gaussian distribution, for the next 24 hours. For every
solution, using MCS, the eight reliability indices are estimated. During the MCS
procedure, the control variates variance reduction method (see also Section 2.3.3)
is applied by using the geometric mean of the UOI as the control variate, as shown
in Equation 4.23. The UOI is calculated as a normalized weighted sum of the es-
timated values and the number of fuses’ changes, as presented in Equation 4.22.
The quality of each proposed solution is denoted by the calculated UOI (see also
Section 2.3). In Figure 4.2 the outline of the proposed method is presented.

4.2.3 Simheuristic approach

Instead of hoping to find a good solution, after applying the proposed actions,
in our second method, using the UOI, we try to find the actions to increase
the expected reliability for the next 24 hours. The UOI is calculated as a nor-
malized weighted mean of the aforementioned reliability indices, as presented
in Section 4.2.1. If we denote the random electrical data that is available only
after the decision is made with 𝜉, we need to minimize the random UOI func-
tion 𝑈𝑂𝐼(𝑥, 𝜉). Since we cannot directly minimize 𝑈𝑂𝐼(𝑥, 𝜉), we alternatively
minimize the expected value, 𝔼[𝑈𝑂𝐼(𝑥, 𝜉)]. The notation used is presented in
the Nomenclature , while the corresponding single-stage stochastic optimization
problem [128] becomes:

min𝔼[𝑈𝑂𝐼(𝑥, 𝜉)] (4.21)
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Start

Import data

Calculate initial loads

Overload?

Build & solve mathematical model

Apply recommended actions

Simulate electrical values for the next 24 hours

Calculate Unified Overload Index

End

no

yes

Figure 4.2: Outline of the simulation procedure.

If in equation (4.20) we set all the weights equal to 1
8
, UOI is the arithmetic

mean of the normalized indices:

𝑈𝑂𝐼𝑎 = 1
8[

𝑆𝐴𝑂𝐹𝐼
𝑇
2
+ 1

+ 𝑆𝐴𝑂𝐷𝐼
15(𝑇 + 1) +

𝐶𝐴𝑂𝐷𝐼
15(𝑇 + 1) +

𝐶𝐵𝐿𝑆𝐴𝑂𝐹𝐼
𝑇
2
+ 1

+ 𝐶𝐵𝐿𝑆𝐴𝑂𝐷𝐼
15(𝑇 + 1)

+𝐶𝐵𝐿𝐴𝑂𝐷𝐼15(𝑇 + 1) +
𝐴𝑆𝑂𝐹𝐼
𝑇
2
+ 1

+ 𝐴𝑆𝑂𝐷𝐼
15(𝑇 + 1)]

(4.22)
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We can also calculate UOI as the geometric mean of the normalized indices as:

𝑈𝑂𝐼𝑔 = [𝑆𝐴𝑂𝐹𝐼𝑇
2
+ 1

⋅ 𝑆𝐴𝑂𝐷𝐼
15(𝑇 + 1) ⋅

𝐶𝐴𝑂𝐷𝐼
15(𝑇 + 1) ⋅

𝐶𝐵𝐿𝑆𝐴𝑂𝐹𝐼
𝑇
2
+ 1

⋅ 𝐶𝐵𝐿𝑆𝐴𝑂𝐷𝐼15(𝑇 + 1) ⋅ 𝐶𝐵𝐿𝐴𝑂𝐷𝐼15(𝑇 + 1)

⋅𝐴𝑆𝑂𝐹𝐼𝑇
2
+ 1

⋅ 𝐴𝑆𝑂𝐷𝐼
15(𝑇 + 1)]

1
8

(4.23)

We suppose that the random variable 𝜉, which represents the realizations of the
electrical values, has a given Gaussian distribution, i.e., it takes values 𝜉1, ..., 𝜉𝐾 ,
with respective probabilities 𝑝1, ..., 𝑝𝐾 , where the 𝐾 considered scenarios repre-
sent historical data. In the case of finitely many scenarios, it is possible to model
the stochastic program as a deterministic optimization problem by writing the
expected value 𝔼[𝑈𝑂𝐼(𝑥, 𝜉)] as the weighted sum:

𝔼[𝑈𝑂𝐼(𝑥, 𝜉)] =
𝐾
∑
𝑘=1

𝑝𝑘𝑈𝑂𝐼(𝑥, 𝜉𝑘) (4.24)

Our simheuristic approach is aimed to solve the problem (Equation 4.21) us-
ing the general solving scheme that has been proposed by [86]. We use the fol-
lowing simheuristic algorithm (Algorithm 6 and Algorithm 7). For the meta-
heuristic part of the simheuristic, we picked the Reduced Variable Neighbor-
hood Search (RVNS), a VNS variant (see also Section 2.7 and Section 2.7.4). It
could quickly reach reasonable quality solutions for large instances, without ap-
plying an iterative improvement procedure, as the Basic Variable Neighborhood
Search (BVNS) (see also Section 2.7.1), but it only explores randomly different
neighborhoods. The most computationally intensive part of our algorithms is the
fitness calculation, in which MCS is used. Therefore, we keep a tabu list to avoid
calculating any candidate solution’s fitness more than once. In the first step (Al-
gorithm 6), our Sim-RVNS algorithm takes as input the initial state of the fuses
when the potential overload has occurred. The number of neighborhoods, and
the maximum number of iterations without change of the best solutions, and the
maximum number of the elite solutions are also given, initially. After that, the
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RVNS procedure continues until the stopping criterion, i.e., the maximum num-
ber of iterations is reached. In the end, Algorithm 6 returns the list of the elite
solutions found after fast simulations.

In the second step, Algorithm 7 takes as an input the elite solutions are found
in the first step (Algorithm 6). For every elite solution, a long simulation is per-
formed, and the tuple of the best solutions is updated. In the end, Algorithm
7 returns the tuple of the best solutions, containing the configuration with the
corresponding, expected UOI.

As time is a determinant factor for our problem, we need to reduce the num-
ber of simulations needed. Therefore, we use a variance reduction technique,
the control variate [120]. The variance reduction techniques minimize the MCS
estimator’s standard error by making the estimator more deterministic. A raw
yet insightful approximation achieves this by the control variate method. As the
covariance between the 𝑈𝑂𝐼𝑎 (Equation 4.22) and 𝑈𝑂𝐼𝑔 (Equation 4.23) is high,
we pick the geometric mean as our control variate (Algorithm 8). Additionally,
we use a modified adaptive sampling method, described in [104], by introducing
a geometrically increasing sample size schedule having a dynamic rate to reduce
the number of samples needed for our experiments (Algorithm 8). The fitness
function is described in Algorithm 8.

4.3 Experimental evaluation

We evaluate the capability of the two methods we propose to calculate the short-
term expected reliability of a smart grid after an overloading event. We consider
a real-world topology from a neighborhood in Luxembourg city and real pro-
sumption data, which are used to estimate future energy demands and supply.
Both of the approaches deploy the above dataset to simulate the electrical values
for the day-ahead from a given date and time. Our research question concerns
the comparison of the expected reliability, in quantitative measures, of each ap-
proach, for the next day. The proposed methodology, as well as the details on
the dataset and its features, are provided below.
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Algorithm 6 Sim-RVNS for the reliability optimization problem
Step 1: RVNS with fast MCS
Require: initial state

𝑘𝑚𝑎𝑥 : number of neighborhoods
𝑚𝑎𝑥𝐼𝑡𝑒𝑟 : maximum number of iterations without change of the best solution
𝑚𝑎𝑥𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑆𝑖𝑧𝑒 : number of elite solutions

1: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 ← initial state
2: 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← {𝑏𝑒𝑠𝑡𝑆𝑜𝑙}
3: 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 ← ∅
4: 𝑖𝑡𝑒𝑟 ← 0
5: 𝐹𝑎𝑠𝑡 ← True

6: repeat
7: 𝑘 ← 1
8: while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
9: 𝑛𝑒𝑤𝑆𝑜𝑙 ← Shake(𝑏𝑒𝑠𝑡𝑆𝑜𝑙, 𝑘)

10: if 𝑛𝑒𝑤𝑆𝑜𝑙 ∉ 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 then ▷ if 𝑛𝑒𝑤𝑆𝑜𝑙 has been already checked
11: 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ∪ 𝑛𝑒𝑤𝑆𝑜𝑙
12: if size_of(𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙) < 𝑚𝑎𝑥𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑆𝑖𝑧𝑒 then
13: if 𝑛𝑒𝑤𝑆𝑜𝑙 ∉ 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 then
14: 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 ∪ 𝑛𝑒𝑤𝑆𝑜𝑙
15: else
16: 𝑊𝑜𝑟𝑠𝑡𝑆𝑜𝑙 ← worstSol(𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙)
17: if fitness(𝑛𝑒𝑤𝑆𝑜𝑙, 𝐹𝑎𝑠𝑡) < fitness(𝑊𝑜𝑟𝑠𝑡𝑆𝑜𝑙, 𝐹𝑎𝑠𝑡) then
18: if 𝑛𝑒𝑤𝑆𝑜𝑙 ∉ 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 then
19: 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 ← 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 ⧵ 𝑊𝑜𝑟𝑠𝑡𝑆𝑜𝑙
20: 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 ← 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 ∪ 𝑛𝑒𝑤𝑆𝑜𝑙
21: if fitness(𝑛𝑒𝑤𝑆𝑜𝑙, 𝐹𝑎𝑠𝑡) < fitness(𝑏𝑒𝑠𝑡𝑆𝑜𝑙, 𝐹𝑎𝑠𝑡) then
22: 𝑏𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝑛𝑒𝑤𝑆𝑜𝑙
23: 𝑖𝑡𝑒𝑟 ← 0
24: break
25: else
26: 𝑘 ← 𝑘 + 1
27: else
28: 𝑘 ← 𝑘 + 1
29: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
30: until 𝑖𝑡𝑒𝑟 > 𝑚𝑎𝑥𝐼𝑡𝑒𝑟
31: return 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙
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Algorithm 7 Sim-RVNS for the reliability optimization problem
Step 2 : Long MCS for the elite solutions
Require: 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 from the Algorithm 6

1: 𝐵𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← ∅
2: 𝐹𝑎𝑠𝑡 ← False

3: for all 𝑠𝑜𝑙 ∈ 𝐸𝑙𝑖𝑡𝑒𝑆𝑜𝑙 do
4: 𝐵𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝐵𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ∪ (𝑠𝑜𝑙, fitness(𝑠𝑜𝑙, 𝐹𝑎𝑠𝑡))
5: return 𝐵𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠

4.3.1 Prosumption data and topology

The dataset covers 711 different customers’ profiles, average and standard de-
viation of active and reactive consumption demand, as well as active and reac-
tive production supply data, is provided by Creos Luxembourg S.A. The data
consisted of 12 months of values, with 96 measurements per day. The topology
dataset consisted of 23 cabinets, 3 of which are substations, 31 cables, and 219
smart meters, extracted from a real neighborhood in Luxembourg, which is also
provided by Creos Luxembourg SA.

As it is unlikely we have more than 25% of overloaded prosumers on a grid and,
if a curtailment policy can be applied, it is also unlikely we could curtail home
residents, we created four different case realistic scenarios as a combination of
different percentage of overloaded and curtailed prosumers:

Table 4.1: Case scenarios.

Scenario Percentage of Percentage of
overloaded prosumers curtailed prosumers

1 10% 0%
2 10% 25%
3 25% 0%
4 25% 25%

For each one of the 219 smart meters, five random profiles are picked from the
historical dataset. Depending on each scenario’s percentage of overloaded and
curtailed customers, the equivalent number of smart meters is picked uniformly
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Algorithm 8 Function fitness(𝑠𝑜𝑙, 𝐹𝑎𝑠𝑡)
Fitness function with adaptive simulations and control variates
Require: 𝑠𝑜𝑙 : solution to check, 𝐹𝑎𝑠𝑡 : flag for fast simulations

𝑁𝑞𝑢𝑖𝑐𝑘 : number of fast simulations, , 𝑐1 : default multiplier (1.1)
𝑐0 : minimum multiplier (1.05), 𝑐ℎ : maximum multiplier (3)
𝑈𝑂𝐼𝑎𝑠 : Arithmetic mean of UOI (Equation 4.22) for experiment 𝑠, based in 𝑠𝑜𝑙
𝑈𝑂𝐼𝑔𝑠 : Geometric mean of UOI (Equation 4.23) for experiment 𝑠, based in 𝑠𝑜𝑙
𝑚𝑎𝑥𝑖𝑡𝑒𝑟 : Maximum iterations for the same number of simulations, e.g., 5

1: if 𝐹𝑎𝑠𝑡 then
2: 𝑖𝑛𝑛𝑒𝑟𝐸𝑟𝑟𝑜𝑟 ← 𝑟𝑒𝑙𝑎𝑥𝑒𝑑𝐹𝑎𝑠𝑡𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
3: 𝑜𝑢𝑡𝑒𝑟𝐸𝑟𝑟𝑜𝑟 ← 𝑓𝑎𝑠𝑡𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
4: else
5: 𝑖𝑛𝑛𝑒𝑟𝐸𝑟𝑟𝑜𝑟 ← 𝑟𝑒𝑙𝑎𝑥𝑒𝑑𝐿𝑜𝑛𝑔𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
6: 𝑜𝑢𝑡𝑒𝑟𝐸𝑟𝑟𝑜𝑟 ← 𝑙𝑜𝑛𝑔𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
7: Calculate initial load (from current electrical values)
8: 𝑎𝑚𝑒𝑎𝑛 ← 1

𝑁𝑞𝑢𝑖𝑐𝑘
∑𝑁𝑞𝑢𝑖𝑐𝑘

𝑠=1 𝑈𝑂𝐼𝑎𝑠
9: 𝑔𝑚𝑒𝑎𝑛 ← 1

𝑁𝑞𝑢𝑖𝑐𝑘
∑𝑁𝑞𝑢𝑖𝑐𝑘

𝑠=1 𝑈𝑂𝐼𝑔𝑠

10: 𝑐𝑜𝑣 ← 1
𝑁𝑞𝑢𝑖𝑐𝑘−1

∑𝑁𝑞𝑢𝑖𝑐𝑘
𝑠=1 [(𝑈𝑂𝐼𝑎𝑠 − 𝑎𝑚𝑒𝑎𝑛) ⋅ (𝑈𝑂𝐼𝑔𝑠 − 𝑔𝑚𝑒𝑎𝑛)]

11: 𝑣𝑎𝑟 ← 1
𝑁𝑞𝑢𝑖𝑐𝑘−1

∑𝑁𝑞𝑢𝑖𝑐𝑘
𝑠=1 (𝑈𝑂𝐼𝑔𝑠 − 𝑔𝑚𝑒𝑎𝑛)

2

12: 𝑐∗ ← − 𝑐𝑜𝑣
𝑣𝑎𝑟

13: 𝜏 ← 0; 𝑁 ← 𝑁𝑞𝑢𝑖𝑐𝑘
14: 𝔼(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ← ∞
15: while 𝔼(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) < 𝑜𝑢𝑡𝑒𝑟𝐸𝑟𝑟𝑜𝑟 do
16: if 𝜏 = 1 then
17: 𝑐1 ← min(2𝑐1 − 1, 𝑐ℎ)
18: else
19: if 𝜏 = 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 then
20: 𝑐1 ← max(𝑐0,

𝑐1+1
2
)

21: 𝑁 ← ⌈𝑐1𝑁⌉
22: 𝜏 ← 0
23: while (𝜏 < 𝑚𝑎𝑥𝑖𝑡𝑒𝑟) ∧ (𝔼(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) < 𝑖𝑛𝑛𝑒𝑟𝐸𝑟𝑟𝑜𝑟) do
24: 𝑔𝑚𝑒𝑎𝑛 ← 1

𝑁
∑𝑁

𝑠=1𝑈𝑂𝐼
𝑔
𝑠

25: 𝔼(𝑈𝑂𝐼) ← 1
𝑁
∑𝑁

𝑠=1[𝑈𝑂𝐼𝑎𝑠 + 𝑐∗(𝑈𝑂𝐼𝑔𝑠 − 𝑔𝑚𝑒𝑎𝑛)]

26: 𝔼(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ← 𝑧𝑎 ⋅ √
1

𝑁−1 ∑
𝑁
𝑠=1[𝑈𝑂𝐼𝑎𝑠 +𝑐∗(𝑈𝑂𝐼𝑔𝑠−𝑔𝑚𝑒𝑎𝑛)−𝔼(𝑈𝑂𝐼)]

2

√𝑁
27: 𝜏 ← 𝜏 + 1
28: return 𝔼(𝑈𝑂𝐼)
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4.3 Experimental evaluation

randomly, and initial consumption and production energy data are created from
the corresponding Gaussian distribution. Thus, our experimental dataset con-
sists of 20 different energy data files. Five different initial consumption and pro-
duction energy data are created for every smart meter. Curtailment policy to
the customers is applied if a prosumer overpasses the threshold of 60 A, i.e., 80%
of 75 A, the typical roof-top solar panel installation amperage, or if a consumer
overpasses the threshold of 32 A, i.e., 80% of 40 A, the typical amperage supplied
by residential meters. If a prosumer or a consumer is picked for curtailment, its
active energy is limited to 20 A; a value picked together with Creos Luxembourg
SA. The “good” UOI level is set to 0.006, meaning less than 0.25 overloads per
day, 5 mins of interruptions per day, and 15 mins of restoration per day, while
the “poor” UOI level is set to 0.013, meaning over than 0.5 overloads per day, 15
mins of overloads per day, and 30 mins of restoration per day, as suggested by
Creos Luxembourg SA.

The experiments1 were conducted on a standard MacBook Pro with a 2.6 GHz
Intel Core i7 processor, macOS Catalina 10.15.3 operating system, 16 GB 2133
MHz LPDDR3 memory using Java JDK 1.8.0-162 and Gurobi Optimizer 9.0.1 –
Academic Version [60].

4.3.2 Experimental setup

To estimate the reliability indices, for our first approach, we first apply, for each
one of the 20 instances, the method described in [6]. For each one of the optimal
and sub-optimal results and the next 96 quarters of an hour, i.e., 24h, we run
adaptive simulations as described in Algorithm 8 to estimate the future electrical
values of the customers. We then solve the corresponding linear systems to get
the current load of each cable and calculate the indices and the UOI. The average
time and the 95% confidence interval for the experiments were found to be equal
to 444 sec +/- 448 sec. The minimum and the maximum time was found to be
0.5 sec and 14,930 sec, respectively.

1Interested readers may find all the presented results along with the input data files from http:

//tiny.cc/SimheuristicRVNS
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4 Reliability Analysis through Simulation and Stochastic Optimization

In our second approach, we investigate a single-stage stochastic program that
gives the impact of the solutions to the grid’s reliability level. We apply the sim-
heuristic algorithm, described previously in Algorithms 6 and 7. Neighborhood
search or local search is considered a highly efficient metaheuristic mechanism
for solving many problems of satisfaction with constraints and optimization. In
defining a neighborhood and starting with an initial solution, local search is
gradually exploring the current solution’s neighborhood for improvement. In
this way, one of its neighbors (often improving) replaces the current solution
iteratively until a specific stop criterion has been met [94]. We define five neigh-
borhoods, based on the one-flip heuristic, where a flip means assigning the op-
posite state to a variable, i.e., negation, of the given solution in the algorithm’s
metaheuristic part as follows:

• 𝑁1 One-flip (substation). In this method, we flip each fuse that changes the
substation, which powers every cable, if possible, in our current solution
and appends that to the neighborhood list.

• 𝑁2 One-flip (parallel). In this method, we flip each fuse in parallel cables, in
such a way that the cables become parallel or not, in our current solution
and append that to the neighborhood list.

• 𝑁3 One-flip (end fuses). In this method, we flip each end fuse in every cable
in our current solution and append that to the neighborhood list.

• 𝑁4 One-flip (start fuses). In this method, we flip each start fuse in every
cable in our current solution and append that to the neighbourhood list.

• 𝑁5 One-flip (all fuses). In this method, we flip each fuse in every cable in
our current solution and append that to the neighbourhood list.

Table 4.2 shows the possible neighborhoods for the presented example in Fig-
ure 3.1.
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4.3 Experimental evaluation

Table 4.2: Neighborhood example.

Neighborhood Current solution Possible Neighborhood list
applying one-flip

𝑁1 [1 1 1 1 1 0 1 0 1 0 1 0 1 0] [1 1 1 ? 1 ? 1 ? 1 0 1 0 1 0]
𝑁2 [1 1 1 1 1 0 1 0 1 0 1 0 1 0] [1 1 1 1 ? ? ? ? ? ? ? ? 1 0]
𝑁3 [1 1 1 1 1 0 1 0 1 0 1 0 1 0] [1 ? 1 ? 1 ? 1 ? 1 ? 1 ? 1 ?]
𝑁4 [1 1 1 1 1 0 1 0 1 0 1 0 1 0] [? 1 ? 1 ? 0 ? 0 ? 0 ? 0 ? 0]
𝑁5 [1 1 1 1 1 0 1 0 1 0 1 0 1 0] [? ? ? ? ? ? ? ? ? ? ? ? ? ?]

The number of elite solutions is set to five, while the maximum number of
iterations without change of the best solution, so far, is set to 80. We use a tabu list
to avoid the possibility of recalculating the same solution, as it is very costly. For
the fitness function, described in Algorithm 8, the number of fast simulations is
set to 30, while the indices 𝑐0, 𝑐ℎ, and 𝑐1 are set to 1.05, 3 and 1.1, respectively. The
tail area 𝛼 for the standard normal distribution is set to 0.025, i.e., 𝑧.025 = 1.96.

We run the experiments to calculate the UOI with three and four digits preci-
sion. The combination of precision and the stopping criteria we use is presented
in Table 4.3.

Table 4.3: Stopping criteria.

Fast/Long Significant digits Relaxed Normal

Fast 3 0.005 0.003
Long 3 0.002 0.001
Fast 4 0.001 0.0005
Long 4 0.0002 0.0001

In all of the following experiments, ten independent runs with different ran-
dom seeds were conducted for each scenario and instance, to acquire statistically
significant results. For each scenario and instance we pick the best solution. For
the experiments with three Decimal Places (DP) precision, the average time and
the 95% confidence interval for the experiments was found to be equal to 348 sec
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4 Reliability Analysis through Simulation and Stochastic Optimization

+/- 26 sec. The minimum and maximum time were found to be 185 sec and 694
sec, respectively.

For the experiments with four DP precision, the average time and the 95%
confidence interval for the experiments was found to be equal to 1,350 sec +/-
372 sec. The minimum and maximum time were found to be 211 sec and 7,557
sec, respectively.

4.4 Results

We can see from the results that the first method, as expected, gives poor results.
In Figures 4.3 we observe that about 44% of the cases, the calculated results

are worse than the initial, i.e., when an potential overload incident is occurred,
ones. In only three instances, the UOI is under the “good” UOI level. The time to
conclude the experiments also has a huge variance and, in the worst-case needed
over four hours to finish. As our first method tries to find a solution without
concerning the future electrical values, the quality of the solutions is, under-
standably, poor.

Our second method improves the results significantly. Even with 25% of over-
loaded customers, our method finds a proper plan to ensure a stable grid, with
the minimum disturbances for the smart grid users and minimize the risk of
overheating cables.

For the experiments that calculate the UOI with three digits precision, in the
worst case, about 11.5 min are enough to find a solution, 3.5 min under the
threshold of 15 min, which is the time interval between smart meter measure-
ments, for the Creos Luxembourg SA case. In all scenarios and instances, the
UOI is under the “good” UOI level, meaning that our method can be used as a
robust reliability optimization tool for the smart grid companies, as can be seen
in Figure 4.4, and in Figure 4.5.

We also conducted experiments with four digits precision to examine the risk’s
practical significance in the results. The difference between the results are given
with the three decimal places precision, Figure 4.4 and the four decimal places
precision, as it can be seen in Figure 4.5, is negligible. Moreover, the four decimal
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(a) First method - First scenario.
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(b) First method - Second scenario.

Inst.1 Inst.2 Inst.3 Inst.4 Inst.5
0

0.8

1.6

2.4

3.2

4
⋅10−2

Good

PoorU
ni

fie
d

O
ve

rlo
ad

In
de

x

Solution 1

Solution 2

Solution 3

Solution 4

Solution 5

Initial

(c) First method - Third scenario.
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(d) First method - Fourth scenario.

Figure 4.3: Simulation method experiments.
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(a) 2nd method, 1st scenario, 3 DP.
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(b) 2nd method, 2nd scenario, 3 DP.
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(c) 2nd method, 3 scenario, 3 DP.
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(d) 2nd method, 4th scenario, 3 DP.

Figure 4.4: Simheuristic method experiments, 3 DP.
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(a) 2nd method, 1st scenario, 4 DP.
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(b) 2nd method, 2nd scenario, 4 DP.
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(c) 2nd method, 3 scenario, 4 DP.
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(d) 2nd method, 4th scenario, 4 DP.

Figure 4.5: Simheuristic method experiments, 4 DP.
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places precision experiments last, on average, about 22.5 min, over the smart me-
ter 15 min measurement threshold. As our method needs to find fast such heal-
ing actions to ensure a smart grid’s stability after a potential overload, the three
digits precision for the UOI is enough for the smart grid operators, according to
Creos Luxembourg SA.

4.5 Conclusions

In this chapter we defined and formulated the single-stage stochastic reliability
optimization problem in smart grids and suggested two solution methods using
MCS and simheuristics. It is shown that this approach can be included in the
grid operator’s decision-making process as it can successfully and rapidly help to
ensure the stability of a smart grid after a potential overloading incident of about
the size of a neighborhood in Luxembourg.
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5 Smart Meter Communication
Monitoring

Dans les champs de l’observation le hasard ne favorise
que les esprits préparés. [In the field of observation,
chance favours only the prepared mind.]

(Louis Pasteur)

Into this chapter, we suggest using ND-trees to learn for each smart meter a failure
pattern over time, which then acts as a profile for the respective smart meter. This
profile is used to decide, in real-time, if an alarm should be raised or if the reading error
can be considered as “normal”. This derivative contribution can help grid operators
decide when reading failures can be considered uncritical and ensure that the electrical
data are clear from any false reading failures.
This chapter is based on work that has been prepared in the following paper:

• “Intelligent Smart Meter Communication Monitoring by Learning Failure Pat-
terns using ND-Trees.” Manuscript in preparation. Antoniadis N., Cordy M.,
Le Traon Y.
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5 Smart Meter Communication Monitoring

5.1 Introduction

The so-called smart grid has begun with the need to manage the increasing com-
plexity of today’s electricity grid. It aims to follow the rising demand for energy,
for example by integrating renewable energies and by providing new and inno-
vative services, mainly driven by sensors and two-way communication between
smart meters and electricity providers. The vast amount of data, e.g., customers’
consumption, which can be automatically measured in real-time, has the po-
tential to significantly increase the reliability and efficiency of today’s electric-
ity grid. Besides enabling new functions like automated meter reading [44] and
on-demand pricing [124], the regular measurements from smart meters are also
used beyond these uses cases to monitor essential characteristics of the grid, as
the quality of power supply [72]. While certain conditions, like heavy rain, wind,
electrical interference, or worn communication lines, can naturally disturb the
remote reading of smart meters, meter reading failures can indicate severe dis-
turbances and potential problems in the grid [146], [78], [71], [102].

The challenge for grid operators is to differentiate between the two. The ques-
tion is when it becomes necessary for a grid operator to send a technician to check
if there is an actual problem or if a reading error can be considered as “normal”,
given a specific meter. For example, in Power-Line Communication (PLC) [49]
and Global Positioning System (GPS) networks, meter reading failures can natu-
rally occur due to weather conditions, high cable load [125], electrical appliances,
medium wave broadcast stations [23], and nearby photovoltaic panels [112]. The-
refore, some smart meters might be regularly not reachable for a significant amount
of time, e.g.,up to several hours. Nonetheless, depending on the meter and exter-
nal parameters (location of the meter, weather conditions, nearby photovoltaic
panels etc.) [3] [92] this could be still considered as “normal”. On the other hand,
for other meters, only a few reading failures could indicate an actual problem in
the grid and its communication infrastructure.

Significant effort has been made to minimise the noise effects in the com-
munication topology. For example, in the context of PLC, protocols like PLC
PRIME [8], PLC G3 [115], and PLC G1 [114] include techniques for handling
noise. Although they reduce the number of communication errors, the general
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problem remains and hence the necessity for detecting the normal communica-
tion behaviour.

Therefore, an intelligent monitoring and alerting system has to only raise an
alarm if the reading failures for certain smart meters can be considered as un-
usual. We are working together with our industrial partner, Creos Luxembourg1,
on a machine learning-based monitoring system that is able to learn the failure
patterns for smart meters and that raises only alarms if the reading errors are
outside of their expected failure patterns. More specifically, in this chapter, we
present a novel approach using ND-trees [109] to encode the failure pattern of
a smart meter over time. In this way, every smart meter is associated with its
own ND-tree, reflecting the learned failure pattern of the smart meter. In ot-
her words, the ND-tree encodes the profile of meter failure readings of a smart
meter. Whenever a new reading failure is detected, the ND-tree of the smart
meter can be used to verify if the reading failure is expected or not. This is fast
enough to be done in near real-time. Most importantly, this approach is able to
significantly lower false positive and negative alarms.

To evaluate our method, we first define a dataset including results of read-
ing attempts on smart meters. This dataset contains five years of data, including
measurements of weather conditions and sun altitude, together with meter read-
ings. Then, we use one ND-tree for each smart meter. We use two-thirds of the
dataset to “train”, i.e.,feed, the ND-trees and the remaining third of the dataset
for testing.

The remainder of this chapter is as follows. In Section 5.2, we describe the nec-
essary background for this work. First, we describe the most relevant elements
of a typical smart grid communication infrastructure, based on the example of
the one in Luxembourg. Secondly, we describe ND-trees, which we use in our
proposed monitoring system to learn the failure patterns of smart meters. Then,
in Section 5.3 we detail the implementation of our proposed monitoring system,
which we evaluate in Section 5.4, before we conclude in Section 5.5.

1Creos is the main electricity grid operator in Luxembourg
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Wireless	/	Optical	Fibre /	Copper	Line	Connection

PLC	Network

…

Figure 5.1: Representation of the smart grid communication topology.

5.2 Background

In this section, we first explain the main communication components of a typical
smart grid. In the second part of this section, we introduce ND-trees.

5.2.1 A smart grid’s communication topology

Like it is the case in many countries [72], the smart grid communication topol-
ogy in Luxembourg is based on a PLC [49] network. The main reason for the
widespread use of PLC is that the communication and information exchange
between the smart grid elements can be handled using the same network that
is used for transmitting the energy. Probably one of its most significant disad-
vantages is that data exchange is comparatively slow. The main elements that
constitute a smart grid communication topology are shown in Figure 5.1.
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5.2 Background

Smart meters are responsible for measuring the electric consumption and the
quality of the power supply at customers’ houses. They are responsible for trans-
mitting the collected data to a so-called data concentrator, or to another smart
meter in case the data concentrator could not be reached. In such situation, this
smart meter acts as a so-called repeater for another meter (e.g., smart meter 2
and smart meter 4 in Figure 5.1).

Data concentrators are controlling all smart meters, one at a given time, that
are directly or indirectly connected to it. Data concentrators are in charge of
collecting and storing the consumption data from the smart meters. Data con-
centrators send this data periodically (several times per day or immediately) to
a central system.

The central system stores and analyses all data received from the concentra-
tors, communicating with them through an optical fibre, a copper line, or a wire-
less connection.

Due to space limitations, this description is limited to the necessary parts of
a smart grids communication infrastructure, which directly concern the context
of this chapter. More detailed information about the typical elements of a smart
grid communication topology can be found in [72], [75], and [73].

5.2.2 ND-tree

To identify a real reading error—i.e., outside of the expected behaviour—for a
smart meter, information about its regular behaviour statistics, weather condi-
tions, time and reading results, are needed. Some of this information, like the
temperature during measurement, is ordered and continuous, while other infor-
mation, like the reading error, is non-ordered and discrete (true, false). A widely
used model [11] to represent these elements is a multi-dimensional vector. In
this model, each element is then a point in a multi-dimensional data space. Such
space that contains both continuous and discrete non-ordered dimensions is of-
ten called a Hybrid Data Space (HDS) [29]. A HDS can be considered as a union
between the Continuous Data Space (CDS), where data values in each dimension
are continuous, and the Non-ordered Discrete Data Space (NDDS), in which all
elements along each dimension are discrete and have no natural ordering. An
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efficient method to search such data space is to search for similarities; in other
words, to find the most similar vector to the one we search for.

An ND-tree is such a technique to search for similarities, initially designed
for multi-dimensional NDDS. Qian et al. [109] have proposed it to discuss ex-
ploring non-ordered data spaces where the index comprises multi-dimensional
information, e.g., weather conditions, time and reading results. Even so it has
been proposed for NDDS, it performs equally well for other methods, e.g., for
HDS, when the number of discrete dimensions is the same or greater than con-
tinuous dimensions [29].

Its tree structure, assuming that our dataset is organized as vectors in a four-
dimensional HDS, is organized as follows: Every non-leaf node in ND-tree
stores, as an array of entries, a pointer to its child node as well as the nearby val-
ues, Discrete Minimum Bounding Rectangle (DMBR) [109], of its child nodes.
Each leaf node also stores an array of entries: a four-dimensional, or multi-
dimensional in general, vector, as key containing both the discrete and continu-
ous components, and a pointer to the actual data of this specific vector. Figure 5.2
shows an example of an ND-tree where its keys are vectors in a four-dimensional
HDS with discrete domains {0,1}, {0,1,...,23}2, and continuous domains [-12,36]
and [0,100].3 Each leaf node contains an array of the vector’s coordinates in the
HDS space. Non-leaf nodes, on each level, group the more “similar” vectors,
based on their DMBR [109]; e.g., the second, non-leaf, non-root, level signifies
this grouping as the [16, 17] × [3, 7] × [65, 70] × {0, 1} entry is based on its child
(leaf ) nodes.

To sum up, an ND-tree can provide, efficiently, similarity searches in NDDS.
It performs very well [108] when searching similarity ranges; in fact, the larger
the dataset, the more the improvement in performance. Moreover, it scales well
with the domain size as well as the data space’s dimensions.

2for discrete domains the numbers in brackets denote the discrete values this dimension is al-
lowed to take

3for continuous domains the numbers in brackets denote the lower and higher values this di-
mension is allowed to take
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... [5, 10] × [10, 15] × [10, 30] × {0, 1} ... [13, 18] × [0, 10] × [60, 90] × {0, 1} ...

... ... [8, 10] × [14, 15] × [20, 30] × {0, 1} ...

... ... (9,14,21,0) ... (10,14,25,1)

... ... [16, 17] × [3, 7] × [65, 70] × {0, 1} ...

... ... (16,4,68,0) ... (17,6,65,1)

...

root

leaves

Figure 5.2: An example of the ND-tree

5.3 Contribution

In this section, we discuss our machine learning based monitoring and alerting
system. This system continuously learns the “normal” pattern of the smart meter
communication in order to alert the smart grid operator only in case a smart
meter behaves differently from this pattern. We present how we create a multi-
dimensional HDS consisting of smart meters’ profiles and then make similarity
searches in this space for unexpected behaviours. In other words, our purpose is
to develop a technique that learns the “normal” communication profile of each
smart meter and alerts the smart grid operator when a different behaviour is
detected. More specifically, we use ND-trees to store and compute the individual
profiles for each smart meter, as we believe that this technique is very suitable for
efficient similarity searches in HDSs.

Each smart meter profile consists of the outcome of the communication at-
tempts to it, success or failure. Moreover, it stores additional information that
influences the transmission success, which are:

• hour of the day

• temperature

• cloud coverage

The similarity queries are performed in near real-time using the previous com-
munication attempts stored in the ND-tree. In this way, it is possible to get an
estimation at a particular time of the day, temperature and cloud coverage per-
centage, about the communication status of a given smart meter.
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Figure 5.3: Working Structure

In the event that we have similar data, we would construct the following ND-
tree for this smart meter. Figure 5.3 exemplifies the process of our approach. The
time scale (1) represents the hour of the day when the reading process takes place.
In this scenario, each smart meter is being read every 15 minutes, and the hourly
success rate with the environmental values are stored as a vector in the smart
meter’s ND-tree (3). This new vector, based on the insertion method of the ND-
tree, will be held to the most relevant leaf node. This operation starts from the
root node and follows a path to the spotted leaf node. At each non-leaf node,
it has to select which child node to follow. If the appointed leaf node overflows
after this reconciliation, a splitting procedure is applied from leaf nodes to the
root (bottom-up).

Each hexagon, marked as (2), represents the SM1 smart meter, and each arrow
represents the hourly aggregation of its profile values. Furthermore, each rectan-
gle marked as (4) represents a non-leaf node of the ND-tree structure. The non-
leaf nodes aggregate the multi-dimensional index of its subnodes (leaf nodes),
while the leaf nodes contain the specific vector in our four-dimensional HDS.
For example, in Figure 5.3, based on the leftmost leaf node, the vector contains
the information that at 8 AM, 20% of cloud coverage, 10∘C of temperature, and
we had 30% of errors in reading attempts.
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Figure 5.4: Total RMSE by smart meter

Moreover, a search on this ND-tree could verify if the reading failure is ex-
pected or not. A query, when the tree is constructed, acts as a thorough search
into the ND-tree. In fact, the query algorithm starts from the root node and elim-
inates dissimilar, based on their DMBR, nodes until it finds the leaf nodes with
the desired vectors. Given that, the retrieved information—a four-dimensional
vector that represents each smart meter’s profile—is used to inform us, if in the
given conditions the smart meter is expected to be reachable or not. As an illus-
tration, if we search for the expected error rate in case that time is 1 PM, there
is 25% of cloud coverage and 20 °C of temperature, the result will be 50% due to
the most “similar” leaf node—the rightmost blue one.

5.4 Evaluation

In this section, we discuss the evaluation of our proposed monitoring method.
We first describe the evaluation setup and used dataset before discussing the re-
sults of the experiments.
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5.4.1 Setup

Before we detail the evaluation setup, we start with a description of the kind of
meter reading errors that we consider in the following experiments. To trans-
form solar energy, which comes from the sun in the form of solar irradiance,
Photovoltaic (PV) technology4 is applied. The output of a PV solar panel is Di-
rect Current (DC); therefore a solar inverter is essential to convert the variable
DC into a utility frequency Alternating Current (AC) that can be fed into the
electrical grid. However, solar inverters generate not only AC but also radio in-
terference, due to their high-frequency switching devices [112]. This interference
can also travel through AC power lines. In our experiments, it was assumed that
the reading failures depend only on noisy photovoltaic panels, except the other
factors hour of the day, temperature, and cloud coverage. With this in mind,
we evaluate our approach, based on real data from the smart grid testbed de-
ployment in Luxembourg. Particularly, for the cabling and location of the smart
meters, real smart grid data is used, whereas topology data, concerning solar
panels and filters, are generated as follows. We suppose that solar panels are
installed into approximately 15% of total consumers, while 30% of them have
noise filters. Therefore, we pick, uniformly, the corresponding number of con-
sumers from the testbed data, in which solar panel and noise filter is installed.
To build the dataset for our experiments, for each day and hour of the weather
data and each smart meter, the reading failures, which are caused by filterless
nearby photovoltaic panels, are generated. To include the weather conditions
into the dataset, temperature and cloud coverage, we use public data taken from
https://rp5.ru5 starting from 12 July 2013 12 AM until 11 April 2018 11 PM, thus
about 40,000 hours of meteorological data. We also use the commons-suncalc6

Java library in order to calculate the sun altitude angle for each timepoint we had
weather data. The final dataset for our experiments consists of the time stamp
from weather data, the id of each smart meter, the temperature and the cloud
coverage percentage at the specific time, and the result of each communication

4PV technology uses solar cells made of semiconductors to absorb the irradiance from the sun
and convert it to electrical energy

5Raspisaniye Pogodi Ltd., St. Petersburg, Russia
6https://github.com/shred/commons-suncalc
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Table 5.1: Confusion matrix (Full dataset)
Communication errors test set
(smart meters not reachable)
Condition
positive

Condition
negative

O
ut
co
m
e Test

positive
True positive

175984
False positive

3493
Precision
98.05%

Test
negative

False negative
3689

True negative
2794242

Recall
99.87%

Sensitivity
97.95%

Specificity
99.88%

attempt. After the dataset was built, it was split between a training and a test set;
two-thirds, from 12 July 2013 12 AM until 25 September 2016 11 PM, was used
for training the ND-tree for each smart meter, and the rest one third was used
for testing. The minimum and maximum values [min,max] for the ND-tree, on
each dimension, was: for the hours [0, 23], for the temperature [-12, 36], for the
cloud coverage [0, 100] and for the read errors [0, 1], where 1 denotes error.

5.4.2 Experiments

The experiments were conducted on a standard MacBook Pro with a 2.6 GHz
Intel Core i7 processor, macOS High Sierra 10.13.4 operating system, 16 GB
2133 MHz LPDDR3 memory using Java JDK 1.8.0-162. The training procedure
for our experiments lasted about 2.5 hours, while the testing period was about
3 minutes. Figure. 5.4 depicts the Root Mean Squared Error (RMSE) for the
whole profile vector (hour, temperature, cloud coverage, reading error). About
60% of the smart meters scored RMSE 0.014, 13% had RMSE 0.066 and the rest
scored between 0.017 and 0.029. A contingency table of predictions, Table 5.1,
against actual classes (also known as confusion matrix) represents the results of
our binary classifier. As our method’s goal is to reduce false positive and nega-
tive alarms, in Figure 5.5 the distribution, by hour, of the false values between
the real ones, from the test dataset, and the ones our profiler resulted, is shown.
This distribution indicates that the only period of the day we have, few, false val-
ues is during daylight. This is in line with our expectations, as the solar inverters
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Figure 5.5: Hours of day false values occurred
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Table 5.2: Confusion matrix (only daylight hours)
Communication errors test set
(smart meters not reachable)
Condition
positive

Condition
negative

O
ut
co
m
e Test

positive
True positive

175984
False positive

3493
Precision
98.05%

Test
negative

False negative
3689

True negative
1925346

Recall
99.81%

Sensitivity
97.95%

Specificity
99.82%

generate radio interference only when electricity is produced, something impos-
sible during nighttime. Therefore, in Table 5.2 the same test statistics, but only
for daylight hours—between 5 and 21—are shown. To evaluate the robustness
of our model, for the second table, we also calculated accuracy 99.66%, meaning
the ratio of correctly predicted observations to the total observations.

5.4.3 Discussion

The above evaluation suggests that our proposed monitoring and alerting system
can be used to identify unexpected reading failures in smart meters. The sensi-
tivity reaches 97.95%, meaning that false negative alarms rarely occur, a cru-
cial goal characteristic for the proposed system. Additionally, we evaluate the
test performance through the Matthews Correlation Coefficient (MCC), as it is
more informative than other confusion matrix measures [31], like accuracy, in
binary classification problems. Our method scores+0.9781, where+1 represents
a perfect classifier, 0 denotes random prediction, while −1 indicates total dis-
agreement between prognosis and observation. Regarding the aforementioned
confusion matrix, the proposed approach succeeds in detecting reading failures
for certain smart meters, when the hour of the day and the weather conditions
are given.
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Figure 5.6: Receiver Operating Characteristic (ROC) curve of our classifier

5.5 Conclusion

The transition from the traditional power grid to an intelligent, self-healing and
self-adaptive smart grid is currently in full swing, probably most visible through
the large-scale deployment of smart meters presently undertaken in many coun-
tries. While certain conditions, like heavy rain, wind, electrical interference, or
worn communication lines, can naturally disturb the remote reading of these
smart meters, reading failures can indicate severe disturbances and potential
problems in the grid. The challenge for grid operators is to decide when reading
failures can be considered as uncritical and when it becomes necessary to send a
technician to verify the problem. In this chapter, we presented a machine learn-
ing based approach—using ND-trees—which continuously learns the “normal”
pattern of the smart meter communication. We presented how we create a multi-
dimensional hybrid data space consisting of smart meters’ profiles and then make
similarity searches in this space to detect unexpected behaviour. We showed that
this approach can significantly reduce false negatives, avoiding unobserved, that
can be critical for the smart grid, communication errors. Equally important is
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the key reduction of false positives, limiting the number of sending technicians
unnecessarily to investigate the reason why a smart meter is not reachable.
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Epilogue

103





6 Conclusion and Future
Work

Everything gets better in the end. If it’s not better, it’s
not quite the end.

(Paolo Coelho)

This chapter summarizes the contributions of this dissertation and discusses potential
directions for future work.
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6.1 Conclusion

The demand for a “self-healing” grid requires novel tools to provide a resilient
and reliable power grid to its users. As we have analyzed in Section 1.2, the over-
all aim of this thesis was to present a fully-edge study on reliability optimization
for smart grids to provide, fast, the most appropriate countermeasures after a
potential overloading disturbance. To achieve the above aim, we established a
few objectives.

This study fulfilled the aim mentioned above by extending the applicability of
simulation and mathematical optimization to the domain of power grids. In the
following, a short summary is provided about each objective.

In Chapter 3 the overloading disturbances in a power grid were explored,
and the counteractions to recover from an overloading incident were identi-
fied. The Overloading Prevention Problem (OPP) in smart grids as a Multi-
objective Mixed Integer Quadratically Constraint Program (MO-MIQCP) was
also described and formulated, and a solution method using a state-of-the-art
exact solver was suggested. It is shown that this approach can be included in the
grid operator’s decision-making process as it can successfully and rapidly help to
prevent challenging overloading incidents in a smart grid of about the size of a
medium city in Luxembourg, minimizing the disconnections of the grid’s users.

Then, in Chapter 4, the reliability assessment on power grids were examined
and analyzed. To estimate the reliability for a planning horizon with unknown
future electrical values, as a first method, Monte Carlo Simulation (MCS) was
applied. The Stochastic OPP in smart grids was described and formulated as a
Single-State Stochastic Program (SSSP), and a simheuristic approach was sug-
gested to solve it. It is shown that this approach can be included in the grid
operator’s decision-making process as it can successfully and rapidly help to en-
sure the stability of a smart grid after a potential overloading incident of about
the size of a neighborhood in Luxembourg, for the next 24 hours.

A software monitoring and alerting system to reduce false positive alarms for
meter reading failures, based on live machine learning techniques, was proposed
in Chapter 5. In this chapter, a machine learning based approach—using ND-
trees—was presented, which continuously learns the “normal” pattern of the
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smart meter communication. We presented how we create a multi-dimensional
hybrid data space consisting of smart meters’ profiles and then make similarity
searches in this space to detect unexpected behaviour and showed that this ap-
proach can significantly reduce false negatives, avoiding unobserved, that can be
critical for the smart grid, communication errors. Equally important is the key
reduction of false positives, limiting the number of sending technicians unnec-
essarily to investigate the reason why a smart meter is not reachable.

The above proposed solution methods were evaluated in a real-world smart
grid topology, provided by our industrial partner, Creos Luxembourg SA.

6.2 Future Work

Initially, as examining new research directions, the approach presented on Chap-
ter 3 can be parallelized to analyze every substation subgraph independently
from other ones, as in [74]. As future work, it would be interesting to analyze the
intermediate states to find the optimal order of fuses’ change. During the analy-
sis of these intermediate states, a “trade-off ” metric should be calculated, as the
difference between the maximum and the minimum load on the grid. This met-
ric should offer an optimal trade-off between the number of actions to perform
and the maximal overload that any cable or substation reaches during the execu-
tion of the actions. Furthermore, the application of a dynamic soft curtailment
policy [20] to the grid’s users would be a challenging idea. Another absorbing
addition should be the appliance of a fairness policy to avoid curtailing the same
users repetitively over time. Such considerations, raise the need for consider-
ing the future states of the grid and their inherent stochasticity, as the recovery
response solution should guarantee stability over the next 24 hours. Inevitably,
the aforementioned considerations complexify the problem, increasing the size
of the problem and its solution space. As such, exact methods may not be suit-
able to address those new concerns. Thus, we also plan to exploit metaheuristic
methods [130] to solve the overloading prevention problem.

As future work, we plan to extend our single-stage stochastic optimization
problem into a multi-stage stochastic optimization problem, so that in every pe-
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riod, i.e., 15 min, considering the expected electrical values, new actions are cal-
culated and, in the end, an action plan for the next 24 hours is calculated with
more precision. This multi-stage stochastic optimization problem inevitably com-
plexify the presented problem, increasing the size and its solution space. Thus,
other metaheuristics, as part of our simheuristic algorithm, should be investi-
gated. Hybrid and parallel metaheuristics may be a suitable solution method.

For the monitoring contribution, we plan to implement various what-if sce-
narios to inspect under which conditions we could expect reachability errors.
Another application would be to develop a simulator for a specific or a set of dif-
ferent scenarios to measure the smart grid robustness. Other techniques, like C-
ND-tree [29], designed explicitly for HDS, can also be evaluated and compared
with this proposed method.
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Appendix A

A Detailed Results of the Deterministic OPP

A.1 Connected Users

The percentage of the connected users is presented; the higher, the better.
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Figure A.1: Connected users (%)
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Figure A.2: Connected users (%) (10% of producers overload)
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Figure A.3: Connected users (%) (25% of producers overload)
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Figure A.4: Connected users (%) (50% of producers overload)
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Figure A.5: Connected users (%) (100% of producers overload)
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A.2 Cabinets to visit

The percentage of the cabinets to visit is presented; the lower, the better.
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overload.
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Figure A.6: Cabinets to visit (%)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.7: Cabinets to visit (%) (10% of producers overload)
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.8: Cabinets to visit (%) (25% of producers overload)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.9: Cabinets to visit (%) (50% of producers overload)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.10: Cabinets to visit (%) (100% of producers overload)
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A.3 Changed fuses

The percentage of the fuses to be changed is presented; the lower, the better.
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Figure A.11: Changed fuses (%)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.12: Changed fuses (%) (10% of producers overload)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.13: Changed fuses (%) (25% of producers overload)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.
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(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.14: Changed fuses (%) (50% of producers overload)
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(a) 10% of consumers overload. Different percentage of curtailed producers.
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(b) 25% of consumers overload. Different percentage of curtailed producers.

0 50 100

0

5

10

15

20

25

30

Consumers curtailed (%)

C
ab

in
et

st
o

vi
sit

(%
)

0%

50%

100%

(c) 50% of consumers overload. Different percentage of curtailed producers.
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(d) 100% of consumers overload. Different percentage of curtailed producers.

Figure A.15: Changed fuses (%) (100% of producers overload)
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