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SCOPE

For decades, transportation planners and researchers have relied on traditional

methodologies and experience-based surveys to analyze transit demand.
[1] Problems of this approach:

» Mobility Service providers not willing to share their data
» Users misbehavior on travel surveys

Crowdsourced data-driven approaches may provide novel solutions in this di-

rection.[2]

PREDICTION OF LOCAL BUSINESSES ATTRACTIVENESS

We leverage crowdsensed data to enforce highly-accurate estimation of pas-
sengers demand at subway stations, this information can reach low level of ag-

gregation not easily accessible for traditional tranist dataset.
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» How busy is a certain Business
» Between 0-100
» Live Value of Popularity

Turnstile Data

» Manhattan metro stations
» Entrances and Exits
» Granularity every 4 hours

METHODOLOGY
Calibration
Average Average » We compare GPT of Stations and
| Tumstledata 1 GPT Turnstile data of previous month
| | » We compute a weighted sum
Which Transit Data :
Represents GPT? wsum = a- Entrances + b-Exits
r : » We find the optimal a and b that
Turnstile minimize the error between wsum and
Weighted Sum GPT
é v )
Live Estimation Turnstile Data
‘ \ ( | » We apply a and b calibrated before on
: Weights ; :
Live GPT i eatod Live GPT of the station |
: <0 “1 » We compare such data with the
Live Turnstile turnstile data of the same week
Weighted Sum » Using the proportion computed on
| calibration phase, we reconstruct the
Live values -
Entrances and Exits real amounts of Entrances and Exits
4 Y N
Transit data from Activities ,
) . » We create a profile of the GPT around
GPT of activites the station (Fingerprint)
| o SR » We Use a SVM classifier with:

SVM C(lassifier

7

Turnstile data
of stations

N

e |Inputs: Intervals of the fingerprint of the
area of the station

e Outputs: The transit demand at the station
on the corresponding interval

RESULTS
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» We calibrates the weights of wsum for each station

» The majority of stations have higher weights for entrances than
exits (passengers entering the station have to wait the subway)

» Wsum is a good representation of GPT of stations

Live Estimation Turnstile data through Live GPT (Transit)
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» First we try to replicate Wsum on Live GPT of a specific week

» We obtain a similar profile but with a lower accuracy than
calibration phase

» Then using the live GPT we reconstruct the real number of
passengers using the proportion between GPT and Turnstile
computed during calibration

Estimation Turnstile data through GPT of Local businesses
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» The heatmap represents the
behavior of activities around the
station

» Lighter colors mean higher
popularity for a specific category

» We use slices of this heatmap as
Input for a SVM Classifier
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