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AIM AND SCOPE

» Population ageing is one of the key challenges of our times: EU population
share above the age of 65 expected to reach almost 30% by 2050 (starting from
19.2% in 2016). Understanding well-being in old age is a priority.

» Current life conditions and the cumulative impacts of past life events
influence the reported well being level [1],[2].

» Environmental factors relates to well-being but their effect remains under
discovered.

» The complexity and high dimensionality of this mechanism challenge
traditional modelling techniques, undermining the use of well being to inform
public policies|3].

» Data-driven computational approaches open new possibilities toward the
understanding of well being data generating process.

OBJECTIVES AND EXPECTED CONTRIBUTION

Focus on five well-being dimensions: life satisfaction, happiness, depression,
health frailty and perceived health.

The short term objective and contributions are:

» Move along the trade-off between model complexity and interpretability to shed
ights on well being outcomes’ data generating process.

» Identify the best predictive model.
» Uncover most predictive past life events of each well being outcome.

In the long term we will:

» Integrate Environmental Big Data sources in the predictor set.

WELL BEING EQUATION

The well being equation we are estimating takes the following general form [4]:
WB,I - hj(Uj()(,'7 Y,'7 E,)) + €

For individual i, WB;; is self reported level in Well-Being dimension j, u(...) is to be
thought as the person’s true well being or utility (unobserved), h(.) is a the function
that relates the actual well being to the reported well-being. X, Y; and E; are the past
life events, demographics and environmental factors. ¢; is an error term.

METHODOLOGY

» Supervised learning algorithms outperform least squares modeling technique
in predictive task [5],[6].

» We optimize through 10-fold cross validation six different algorithms: least
sguares regression, elastic net, conditional inference trees/forest, traditional
CART, Support Vector Machine and deep neural network.

» Different training and test sets in order to assess performance across different
setting.

» We calculate models specific features importance for each well being outcomes
and training set.

DATA

The data we used are based on the Survey of Health, Aging and Retirement in Europe
(SHARE):

» Individual-level data on health, socio-economic status and social and family
networks aged 50+ from 29 European countries and Israel.

» Panel structure: repeated observations every two year plus refreshment
sample, from 2004 to 2018.

» SHARELIFE questionnaire (wave 3 (2008/09) and wave 7 (2017)):
Retrospective information about individuals’ life histories.

TRAINING-TEST

Training sample
Pooled (80%) ~ 36407.8
2008/09 Wave 3 ~ 19068.6 2017 Wave 7 ~ 24451.8
13 Countries (80%) ~ 2948.54 Country (20%) ~ 735.18

Training and test samples, average number of observations (N) among the five well being outcomes

Dimension (N) Test sample Dimension (N)

Pooled (20%) ~ 9100
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Figure: lllustration of the framework
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Figure: What is the role of Environment?
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