
PhD-FSTM-2021-014
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 29/04/2021 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Chaima BOUFAIED
Born on 16 August 1991 in Nabeul (Tunisia)

SPECIFICATION AND MODEL-DRIVEN TRACE CHECKING OF
COMPLEX TEMPORAL PROPERTIES

DISSERTATION DEFENCE COMMITTEE

DR. DOMENICO BIANCULLI, Dissertation Supervisor
Associate Professor, University of Luxembourg, Luxembourg

DR. LIONEL CLAUDE BRIAND, Member
Professor, University of Luxembourg, Luxembourg

DR. FABRIZIO PASTORE, Chairman
Associate Professor, University of Luxembourg, Luxembourg

DR. PIERLUIGI SAN PIETRO, Member
Professor, Politecnico di Milano, Italy

DR. PAOLA INVERARDI, Member
Professor, Università dell’Aquila, Italy

Acknowledgments

I would like to thank Lionel Briand for the opportunity he gave to me to join SVV lab and to
work on an interesting PhD topic.

I truly appreciate the continuous feedback, the great support, and the confidence that my
advisor, Domenico Bianculli, showed to me.

I value the insights and guidance provided by Claudio Menghi as well as the fruitful collab-
oration I had with him.

Special thanks go to LuxSpace, our industrial partner, and especially to Yago Isasi Parache
for his availability and for providing us with traces and requirements to do trace checking and
trace diagnostics.

I am grateful as well for the feedback I got from my committee members Paola Inverardi
and Pierluigi San Pietro.

I offer this PhD to the soul of my grandma who left me two years ago. . .
I also offer it to my parents who never stopped supporting me during my PhD journey! I also
would like to thank my siblings and my besties for always being there for me.

In the loving memory of my grandma. . .♥

Abstract

Offline trace checking is a procedure used to evaluate requirement properties over a
trace of recorded events. System properties verified in the context of trace checking can be
specified using different specification languages and formalisms; in this thesis, we consider
two classes of complex temporal properties: 1) properties defined using aggregation opera-
tors; 2) signal-based temporal properties from the Cyber Physical System (CPS) domain.

The overall goal of this dissertation is to develop methods and tools for the specification
and trace checking of the aforementioned classes of temporal properties, focusing on the
development of scalable trace checking procedures for such properties.

The main contributions of this thesis are:

i) the TEMPSY-CHECK-AG model-driven approach for trace checking of temporal prop-
erties with aggregation operators, defined in the TemPsy-AG language;

ii) a taxonomy covering the most common types of Signal-based Temporal Properties (SBTPs)
in the CPS domain;

iii) SB-TemPsy, a trace-checking approach for SBTPs that strikes a good balance in industrial
contexts in terms of efficiency of the trace checking procedure and coverage of the most
important types of properties in CPS domains. SB-TemPsy includes: 1) SB-TemPsy-DSL,
a DSL that allows the specification of the types of SBTPs identified in the aforemen-
tioned taxonomy, and 2) an efficient trace-checking procedure, implemented in a proto-
type tool called SB-TemPsy-Check;

iv) TD-SB-TemPsy-Report, a model-driven trace diagnostics approach for SBTPs expressed
in SB-TemPsy-DSL. TD-SB-TemPsy-Report relies on a set of diagnostics patterns, i.e., un-
desired signal behaviors that might lead to property violations. To provide relevant and
detailed information about the cause of a property violation, TD-SB-TemPsy-Report de-
termines the diagnostics information specific to each type of diagnostics pattern.

Our technological contributions rely on model-driven approaches for trace checking and
trace diagnostics. Such approaches consist in reducing the problem of checking (respectively,
determining the diagnostics information of) a property ρ over an execution trace λ to the
problem of evaluating an OCL (Object Constraint Language) constraint (semantically equiv-
alent to ρ) on an instance (equivalent to λ) of a meta-model of the trace. The results — in
terms of efficiency of our model-driven tools — presented in this thesis are in line with those
presented in previous work, and confirm that model-driven technologies can lead to the de-
velopment of tools that exhibit good performance from a practical standpoint, also when
applied in industrial contexts.

i

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Contributions . 3
1.3 Dissemination . 5
1.4 Organization of the Thesis . 5

2 Background 7
2.1 The TemPsy language . 7
2.2 Model-driven trace checking with TemPsy-Check 9
2.3 Specification Patterns for Service Provisioning . 9
2.4 Signals . 11
2.5 Temporal Logics for Signal-based Properties . 12

2.5.1 Signal Temporal Logic (STL) . 12
2.5.2 STL* . 13
2.5.3 Signal First-Order Logic (SFO) . 13

3 A Model-driven Approach to Trace Checking of Temporal Properties with Aggrega-
tions 15
3.1 Overview . 15
3.2 Specifying temporal properties with aggregation operators through TemPsy-AG . 17
3.3 Model-driven trace checking of TemPsy-AG properties 18

3.3.1 Checking the “average response time” pattern 19
3.3.2 Checking the “average number of events” pattern 20

iii

CONTENTS

3.3.3 Checking the “maximum number of events” pattern 22
3.3.4 Tool implementation . 23

3.4 Evaluation . 23
3.4.1 Evaluation Settings . 23

3.4.1.1 Temporal Properties . 23
3.4.1.2 Trace Generation Strategy . 24
3.4.1.3 Computer Settings . 25

3.4.2 Evaluation Results . 25
3.4.2.1 Scalability with respect the to trace length 25
3.4.2.2 Scalability with respect to the number of observation intervals . 25
3.4.2.3 Comparison with SOLOIST-Translator 27

3.4.3 Discussion . 28
3.5 Related work . 28
3.6 Summary . 29

4 Signal-Based Properties: Taxonomy and Logic-based Characterization 31
4.1 Overview . 31
4.2 Taxonomy of signal-based Temporal properties . 33

4.2.1 Data assertion . 34
4.2.1.1 Alternative formalizations . 36

4.2.2 Spike . 36
4.2.2.1 Alternative formalizations . 40

4.2.3 Oscillation . 42
4.2.3.1 Alternative formalizations . 45

4.2.4 Relationship between signals . 47
4.2.4.1 Functional Relationship . 48
4.2.4.2 Order Relationship . 49
4.2.4.3 Transient Behaviors . 52
4.2.4.4 Alternative formalizations . 56

4.3 Expressiveness . 56
4.4 Application to an Industrial Case Study . 60
4.5 Applications . 66
4.6 Related Work . 67
4.7 Summary . 68

5 Trace-Checking Signal-based Temporal Properties: A Model-Driven Approach 71
5.1 Overview . 71
5.2 Case Study and Motivations . 73
5.3 Traces . 75
5.4 The SB-TemPsy Approach . 75
5.5 The SB-TemPsy-DSL Language . 76

iv

Contents

5.5.1 Syntax . 76
5.5.2 Formal Semantics . 78

5.6 SB-TemPsy-Check . 80
5.6.1 Pre-processing . 81
5.6.2 Trace Meta-model . 81
5.6.3 Model-driven Trace Checking . 81

5.7 Evaluation . 83
5.7.1 Expressiveness of SB-TemPsy-DSL . 84
5.7.2 Applicability of SB-TemPsy-Check . 85
5.7.3 Discussion and Threats to Validity . 87

5.8 Related Work . 88
5.9 Summary . 90

6 Trace Diagnostics for Signal-based Temporal Properties 91
6.1 Overview . 91
6.2 Overview of TD-SB-TemPsy . 93
6.3 Diagnostics patterns and Diagnostics Information: formal definition 94

6.3.1 Diagnostics Patterns Definition: Methodology 95
6.3.2 Diagnostics Information . 98

6.4 Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL
property types . 99
6.4.1 Data Assertion . 99
6.4.2 Rise Time (and Fall Time) . 101
6.4.3 Overshoot . 103
6.4.4 Spike . 106
6.4.5 Oscillations . 108

6.5 Implementation and Preliminary Evaluation . 110
6.6 Related Work . 113
6.7 Summary . 114

7 Conclusions & Future Work 115
7.1 Conclusions . 115
7.2 Future Research Directions . 116

Bibliography 119

v

List of Figures

2.1 Syntax (fragment) of TemPsy (left) and meta-model for execution traces (right) 8
2.2 Sample trace . 10

3.1 Syntactic extension included in TemPsy-AG . 17
3.2 OCL invariant for checking TemPsy-AG properties on a trace 19
3.3 Scalability in terms of execution time with respect to the trace length 26

4.1 Taxonomy of Signal-based Temporal Properties . 34
4.2 Two signals used to evaluate property pDA . 35
4.3 Main features used to define a spike . 36
4.4 Characterization of the spike in two signals . 40
4.5 A signal exhibiting an oscillatory behavior . 43
4.6 Two signals used to evaluate property pOSC . 44
4.7 Signals used to evaluate property pRSH-F . 48
4.8 Example signals for order relationships between data assertion properties 49
4.9 Signals used to evaluate property pRSH-O . 51
4.10 Main concepts related to the specification of rise time 54
4.11 Main concepts related to the specification of overshoot 55

5.1 Overview of SB-TemPsy . 77
5.2 SB-TemPsy-DSL syntax . 78
5.3 SB-TemPsy-DSL formal semantics . 79
5.4 UML Class Diagram of the Trace Meta-model . 82
5.5 OCL function for the oscillation pattern of SB-TemPsy-DSL 82

6.1 Examples of signal shapes that violate a spike property pattern. 93
6.2 Overview of TD-SB-TemPsy . 94
6.3 OCL function for the spike pattern . 98

vii

LIST OF FIGURES

6.4 Examples of signal shapes that violate a ‘data assertion’ pattern 100
6.5 Examples of signal shapes that violate a ‘rise time’ pattern. 102
6.6 Examples of signal shapes that violate an ‘overshoot’ pattern. 104
6.7 Examples of signal shapes that violate an ‘oscillations’ pattern. 107

viii

List of Tables

4.1 Expressiveness of STL, STL*, and SFO with respect to the property types included in
the taxonomy in Fig. 4.1 . 57

4.2 Distribution of property types in the case study . 61
4.3 Data assertion properties in the case study . 61
4.4 Spike and oscillation properties in the case study . 62
4.5 Properties of type “functional relationship” in the case study 63
4.6 Properties of type “order relationship” in the case study 64
4.7 Coverage of property types (from our taxonomy, see figure 4.1 for acronyms) in ex-

ample specifications from the literature. 69

5.1 Definition of predicates uni_m_max , uni_sm_max . 80
5.2 Occurrences of the SB-TemPsy-DSL scopes . 85

6.1 Spike Diagnostics Patterns . 95
6.2 Data assertion Diagnostics Patterns . 100
6.3 Violation Details associated with Data Assertion Diagnostics Patterns defined in Ta-

ble 6.2. 101
6.4 Rise Time diagnostics patterns . 102
6.5 Violation Details associated with Rise Time Diagnostics Patterns defined in Table 6.4. . 103
6.6 Overshoot Diagnostics Patterns . 105
6.7 Violation Details associated with Overshoot Diagnostics Patterns defined in Table 6.6. 105
6.8 Violation Details associated with Spike Diagnostics Patterns defined in Table 6.1. . . . 107
6.9 Oscillations Diagnostics Patterns . 109
6.10 Violation Details associated with Oscillations diagnostics patterns defined in Table 6.9. 110
6.11 Preliminary Evaluation Results . 112

ix

Chapter 1

Introduction

1.1 Context and Motivation

Trace checking is a run-time verification (RV) [LS09] technique that checks whether a property
holds over a log of recorded events over system behaviors, represented as execution traces. An
execution trace is collected by executing the system and recording the values of the variables
of interest at certain time instants. Since the execution trace is obtained and checked after the
execution of a system terminates, this technique is also called offline trace checking or post-mortem
analysis, in order to distinguish it from online techniques that check the correctness of a sys-
tem while it is executing [FHR13], possibly by processing a stream of events [DSS+05, Hal16].
Trace-checking tools (e.g., [DBB17a], [BBB19], [BMB+20]) are commonly used to check whether
requirements hold over one or more execution traces. They are used for software verification
& validation (V&V) activities as test oracles [MNGB19] and run-time monitors [SSA+19]. We
distinguish between two main aspects that characterize trace checking approaches: 1) the type
of properties to verify (as well as the specification language used to express them), and 2) the
actual checking procedure to use.

System properties verified in the context of trace checking can be specified using different
specification languages and formalisms, such as a temporal logic (e.g., linear temporal logic,
metric temporal logic [Koy90], signal temporal logic [MN04]), regular expressions, state ma-
chines, or a combination of them [BFFR18], possibly using domain-specific languages (DSLs).
In this thesis we consider two classes of quantitative temporal properties:

• properties defined using aggregation operators;

• signal-based temporal properties from the Cyber Physical System (CPS) domain.

1

1. INTRODUCTION

The class of temporal properties with aggregation operators was identified in a field study [BGPS12],
which analyzed more than 900 requirements specifications written in the context of service-
based applications, extracted from research papers and industrial data (in the domain of bank-
ing service provisioning). More specifically, the study identified a new class of property spec-
ification patterns (inspired by Dwyer et al.’s seminal work [DAC99]) called service provisioning
patterns, which matched the majority of the requirements specifications stated in industrial set-
tings. More than 80% of the industrial specifications analyzed in the study could be written as
temporal properties using aggregation operators, i.e., maximum and average response time. To
the best of our knowledge, the only specification language supporting the service provision-
ing patterns identified in [BGPS12] is SOLOIST [BGS13]; a language based on first-order metric
temporal logic extended with aggregating modalities.

Regarding Signal-based Temporal Properties (SBTPs), they are common in CPS domains.
Note that a typical CPS consists of a mix of analog and digital components, such as sensors,
actuators, and control units, which process input and output signals. System engineers specify
the desired system behavior by defining requirements in terms of the signals obtained from
these components. Such requirements can be specified using SBTPs, which characterize the
expected behavior of signals. For example, a property may require that a signal must not exhibit
an abrupt increase of amplitude (i.e., a spike or bump) within a certain time interval, or that the
signal shall manifest an oscillatory behavior with a particular period.

Expressing requirements in terms of SBTPs poses a number of challenges for system and
software engineers. First, a signal behavior (e.g., a spike) can be characterized using a number
of features (e.g., amplitude, slope, width); for example, a total of 16 different features (and eight
parameters) have been identified in the literature [AMM+14] to detect (and thus characterize)
a spike in a signal. Engineers may decide to choose various subsets of features; without proper
guidelines for selecting the features most appropriate in a certain context and without their pre-
cise characterization, the resulting specification of a signal behavior may become ambiguous
or inconsistent. The second challenge is related to the expressiveness of the specification lan-
guages used for defining SBTPs. Starting from the seminal work on STL [MN04] (STL Signal
Temporal Logic), there have been several proposals of languages that extend more traditional
temporal logics like LTL (Linear Temporal Logic) to support the specification of signal-based
behaviors. Such languages have different levels of expressiveness when it comes to describing
certain signal behaviors. For example, STL cannot be used to express properties (like those re-
lated to oscillatory behaviors) that require to reference the concrete value of a signal at an instant
in which a certain property was satisfied [BDŠV14]. This means that engineers need guidance
to carefully select the language to use for defining SBTPs, based on the type of requirements
they are going to define, the expressiveness of the candidate specification languages, and the
availability of suitable tools (e.g., trace checker) for each language. To tackle these challenges,
one first needs to properly define and characterize the different signal behaviors in CPS domain.

When it comes to verification of properties with aggregation, the support provided in terms
of verification of such properties is limited. Moreover, trace checking algorithms for SOLOIST
proposed in the literature [BGKSP14, BBG+14] do not scale well in terms of the length of the

2

1.2. Research Contributions

trace [BGK14]. As for the trace checking of SBTPs, STL is supported both by offline tools—
such as AMT [NLM+18] (a stand-alone GUI tool with qualitative semantics), Breach [Don10]
and S-Taliro [FSUY12] (two Matlab plugins with quantitative semantics)—and by online tools,
such as the rtamt library [NY20], which automatically generates online monitors with robust-
ness semantics from STL specifications. However, there is a limited support of trace-checking
procedures for the most expressive temporal logics [BDŠV14, BFHN18].

Finally, we remark that most of trace checkers rely on qualitative semantics, returning a
Boolean verdict; the latter is set to true if the input property is satisfied by the execution trace,
and to false in case the property is violated. However, Boolean verdicts are not sufficient to
reveal information about the cause of the property violation, especially when a property vio-
lation can be due to several, distinct causes. This means that when the property is violated, in
the current practice, trace diagnostics is still mostly a manual activity performed with ad-hoc
solutions. For example, in the context of CPS, engineers usually plot the values the signal takes
over time and try to understand the root cause of a violation; this activity is complex and time-
consuming. Solutions for the trace diagnostics problem have been proposed in the literature for
STL [FMN15] and for simple temporal properties based on Dwyer et al. [DAC99] specification
patterns [DBB18]. However, there is no support for trace diagnostics of more complex classes
of temporal properties, such as SBTPs.

1.2 Research Contributions

The overall goal of this dissertation is to develop methods and tools for the specification and
trace checking of the aforementioned classes of temporal properties, addressing the limitations
of the state-of-the-art discussed above. More specifically, we identify the following Research
Goals (RGs):

RG1 developing an efficient trace checking procedure for temporal properties with aggregation
operators;

RG2 providing a comprehensive specification framework for defining the most common types
of SBTPs in the CPS domain as well as developing a scalable trace checking procedure for
such properties, complemented by informative verdicts.

To achieve RG1, we propose the TEMPSY-CHECK-AG approach, which extends TEMPSY-
CHECK [DBB17a] — an approach and tool for model-driven trace checking of a subset of LTL
properties defined in the TemPsy (Temporal Property made easy) DSL — to support temporal
properties with aggregation operators. The properties to verify with TEMPSY-CHECK-AG are
expressed in TemPsy-AG, an extension of TemPsy that supports aggregation operators based on
the service provisioning specification patterns [BGPS12] and the SOLOIST language [BGS13].
We assessed the scalability of TEMPSY-CHECK-AG and compared it with SOLOIST-translator,
a state-of-the-art tool for (non-distributed) trace checking of SOLOIST specifications [BGKSP14,
BBG+14].

3

1. INTRODUCTION

To achieve RG2 goal, we make the following contributions:

• We propose a taxonomy of SBTPs, based on practical experience in analyzing temporal
requirements in CPS domains like the aerospace industry, and by reviewing the literature
in the area of V&V of CPS. Through the taxonomy, we provide a comprehensive and
detailed description of the different types of signal-based behaviors, with each property
type precisely characterized in terms of a temporal logic (i.e., STL, STL* [BDŠV14] and
SFO [BFHN18]).

• To specify and check the most frequent requirement types in CPS domains, we propose
SB-TemPsy, a trace-checking approach for SBTPs that strikes a good balance in industrial
contexts in terms of efficiency of the trace checking procedure and coverage of the most
important types of properties in CPS domains. SB-TemPsy provides:

– SB-TemPsy-DSL, a DSL that allows the specification of the types of SBTPs identified
in the aforementioned taxonomy;

– an efficient trace-checking procedure, implemented in a prototype tool called SB-
TemPsy-Check.

• To allow SB-TemPsy-Check to provide informative verdicts, we propose TD-SB-TemPsy-
Report, a trace diagnostics approach for SBTPs expressed in SB-TemPsy-DSL. TD-SB-
TemPsy-Report relies on a set of diagnostics patterns, i.e., undesired signal behaviors that
might lead to property violations. To provide relevant and detailed information about the
cause of a property violation, TD-SB-TemPsy-Report determines the diagnostics informa-
tion specific to each type of diagnostics pattern.

To achieve these research goals, we rely on model-driven approaches for trace checking and
trace diagnostics. Such approaches consist in reducing the problem of checking (respectively,
determining the diagnostics information of) a property ρ over an execution trace λ to the prob-
lem of evaluating an OCL (Object Constraint Language) constraint (semantically equivalent to
ρ) on an instance (equivalent to λ) of a meta-model of the trace. We made this choice for two
reasons:

1. OCL is a standardized constraint specification language defined by OMG [OMG12] and,
as a result, is supported by a mature constraint checking technology, such as the constraint
checker included in Eclipse OCL [Ecl20].

2. The seminal work of Dou et al. on trace checking [DBB17a] and trace diagnostics [DBB18]
of TemPsy properties has shown that the adoption of model-driven technologies can lead
to the development of tools that exhibit good performance, also when applied in indus-
trial contexts. In this thesis, we made the conjecture that such a level of performance could
be also obtained when model-driven technologies are applied for trace checking of more
complex classes of temporal properties. The evaluation of this conjecture was part of our
empirical investigation.

4

1.3. Dissemination

1.3 Dissemination

Our research work has led to the following publications (listed in chronological order based on
their publication date):

Published papers

• Chaima Boufaied, Domenico Bianculli, and Lionel Briand. A model-driven approach
to trace checking of temporal properties with aggregations. Journal of Object Technology,
18(2):15:1–21, 2019. Proceedings of the 2019 European Conference on Modelling Founda-
tions and Applications (ECMFA 2019), Eindhoven, The Netherlands.

This paper is the basis for Chapter 3. It presents TEMPSY-CHECK-AG and an evaluation
of its scalability.

• Chaima Boufaied, Maris Jukss, Domenico Bianculli, Lionel Briand, and Yago Isasi Parache.
Signal-based properties of cyber-physical systems: Taxonomy and logic-based characteri-
zation. Journal of Systems and Software, 174:110881, April 2021.

This paper is the basis for Chapter 4. It presents our taxonomy of SBTPs.

• Chaima Boufaied, Claudio Menghi, Domenico Bianculli, Lionel Briand, and Yago Isasi-
Parache. Trace-checking signal-based temporal properties: A model-driven approach. In
Proceedings of the 2020 35th ACM/IEEE International Conference on Automated Software Engi-
neering (ASE’20), September 21–25, 2020, Virtual Event, Australia. ACM, September 2020.

This paper is the basis for Chapter 5. It presents SB-TemPsy and an evaluation of its
scalability.

Unpublished report

• Chaima Boufaied, Claudio Menghi, Domenico Bianculli and Lionel Briand. Trace-diagnostics
signal-based temporal properties: A model-driven approach.

This paper is the basis for Chapter 6. It presents our trace diagnostics approach TD-SB-
TemPsy

1.4 Organization of the Thesis

Chapter 2 provides some background concepts that are used throughout the thesis. Chapter 3
presents the TemPsy-AG approach. Chapter 3 illustrates the taxonomy of signal-based temporal

5

1. INTRODUCTION

properties. Chapter 5 presents SB-TemPsy, including the SB-TemPsy-DSL language and the SB-
TemPsy-Check trace checking procedure. Chapter 6 presents our trace diagnostics approach
TD-SB-TemPsy-Report. Chapter 7 provides conclusions and directions for future work.

6

Chapter 2

Background

In this chapter, we illustrate and define the different concepts we used as a background in this
thesis. The chapter is structured based on the two classes of quantitative temporal properties
considered for the accomplishment of this thesis:

Regarding temporal properties with aggregation, we first give a short overview of the TemPsy
language in section 2.1. Then, we present the necessary background for the corresponding
model-driven trace checking procedure realized by TEMPSY-CHECK in section 2.2. Afterwards,
in section 2.3, we present the specification patterns for service provisioning supported by TemPsy-
AG.

As for Signal-based Temporal Properties, we provide background concepts on signals in
section 2.4 and we introduce temporal logics for SBTPs in section 2.5.

2.1 The TemPsy language

TemPsy [DBB17a] is a pattern-based, domain-specific language for the specification of tempo-
ral properties. It has been designed based on the catalogue of property specification patterns
by Dwyer et al. [DAC99], with new constructs derived from a field study performed in the
domain of business processes for eGovernment. The main elements of the syntax of TemPsy
are shown on the left of Figure 2.1: terminals are enclosed in single quotes, non-terminals in
angle brackets, optional elements in brackets; character ‘*’ indicates zero or more occurrences
of an element; 〈event〉s are denoted by alphanumeric strings. Temporal properties in TemPsy
are represented through the concept of 〈TemPsyExpression〉, which is composed of a scope and a
pattern: the latter represents a high-level abstraction of a formal specification while the former
indicates the portion(s) of a system execution in which a certain pattern should hold. TemPsy

7

2. BACKGROUND

supports all the patterns (“absence”, “universality”, “existence”, “bounded existence”, “prece-
dence”, “response”, “precedence chain”, “response chain”) and scopes (“globally”, “before”,
“after”, “between-and”, “after-until”) introduced in [DAC99]; patterns and scopes are denoted
by an intuitive syntax. The new constructs added in TemPsy on top of the original patterns def-

〈TemPsyExpression〉 ::= [‘temporal’ 〈Id〉 ‘:’]
〈Scope〉 〈Pattern〉

〈Scope〉 ::= ‘globally’
| ‘before’ 〈Boundary1〉
| ‘after’ 〈Boundary1〉
| ‘between’ 〈Boundary2〉 ‘and’ 〈Boundary2〉
| ‘after’ 〈Boundary2〉 ‘until’ 〈Boundary2〉
〈Pattern〉 ::= ‘always’ 〈Event〉

| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈Int〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’

[〈TimeDistanceExp〉] 〈EventChainExp〉
| 〈EventChainExp〉 ‘responding’

[〈TimeDistanceExp〉] 〈EventChainExp〉
〈Boundary1〉 ::= [〈Int〉] 〈Event〉 [〈TimeDistanceExp〉]
〈Boundary2〉 ::= [〈Int〉] 〈Event〉 [‘at least’ 〈Int〉 ‘tu’]
〈EventChainExp〉 ::= 〈Event〉

(‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*
〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈Int〉 ‘tu’
〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈Int〉] 〈Event〉
〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’
〈Event〉 ::= 〈Id〉

traceElements*{ordered}

Trace

TraceElement

event : EString
timestamp : EInt

Figure 2.1: Syntax (fragment) of TemPsy (left) and meta-model for execution traces (right)

initions in [DAC99] include: the possibility, in the definition of a scope boundary, of i) referring
to a specific occurrence of an event, and of ii) indicating a distance from the scope boundary;
iii) the support for indicating a time distance between occurrences in the precedence and response
patterns (as well as their chain versions); iv) additional variants for the bounded existence and
absence patterns. Notice that time distances are expressed with an integer value, followed by
the ‘tu’ keyword, which represents a generic system time unit (i.e., any denomination of time)
as suggested in [KC05]). For example, the property “Event A shall happen at least 2 time units
after the fifth occurrence of eventX” is expressed as “after 5 X at least 2 tu eventually A”.

8

2.2. Model-driven trace checking with TemPsy-Check

2.2 Model-driven trace checking with TemPsy-Check

Model-driven trace checking [DBB17a] is an approach that reduces the problem of checking a
temporal property ρ over an execution trace λ to the problem of evaluating an OCL constraint
(semantically equivalent to ρ) on an instance (equivalent to λ) of a meta-model of the trace. This
reduction enables the use of standard constraint checking technology to perform trace check-
ing; standard OCL checkers, such as Eclipse OCL1, can be used to evaluate OCL constraints
on model instances in a practical and scalable way. This trace checking technique has been
proposed for adoption in contexts that rely on a model-driven development process, in which
solutions must be engineered by using standard MDE technologies that are already in place in
the targeted development environment. In the case of TemPsy, the model-driven trace checking
approach has been implemented in the TEMPSY-CHECK tool [DBB17b]. This tool relies on an
optimized mapping of TemPsy properties into OCL constraints on the meta-model of execution
traces depicted in the UML class diagram shown on the right of Figure 2.1. The meta-model
contains a Trace class composed of a sequence of TraceElements accessed through the asso-
ciation traceElements. Each TraceElement contains an attribute event of type string,
which represents an event recorded in the trace, and an attribute timestamp of type integer,
which indicates the time at which the event occurred. In a nutshell, TEMPSY-CHECK works as
follows: given a trace and a TemPsy property (represented by a scope s and a pattern p), the tool
evaluates an OCL invariant defined based on the type of s and p. This evaluation conceptually
corresponds to applying the semantics of pattern p on a set of sub-traces; the latter is deter-
mined by the semantics of scope s. The output of the invariant evaluation is then returned as
Boolean verdict of the trace checking procedure.

2.3 Specification Patterns for Service Provisioning

Specification patterns for service provisioning were identified in a field study [BGPS12], which
analyzed more than 900 requirements specifications written in the context of service-based ap-
plications, extracted from research papers and industrial data. The study classified the require-
ments specifications according to four systems of property specification patterns: three of them
were already defined in the literature [DAC99, KC05, GL06] whereas the fourth class included
patterns that emerged during the study. Indeed, the majority of the requirements specifications
stated in industrial settings (in the domain of banking service provisioning) could be expressed
through this new set of patterns, which consists of: “average response time” (S1), “counting the
number of events” (S2), “average number of events” (S3), “maximum number of events” (S4),
“absolute time” (S5), “unbounded elapsed time” (S6), and “data awareness” (S7). Among these,
patterns S1-S3-S4 were used in almost 82% of the specifications.

In the following, we provide an explanation of patterns S1-S3-S4, based on the semantics
adopted by the SOLOIST language [BGS13], which is a temporal logic tailored to the specifica-

1https://projects.eclipse.org/projects/modeling.mdt.ocl

9

2. BACKGROUND

c

2

b

5

a

8

b

14

c

17

a

18

b

22

a

25

b

28

a

30

Figure 2.2: Sample trace

tion of properties based on the service provisioning patterns. Figure 2.2 depicts a sample trace
(where letters in the upper part of the timeline correspond to events, and numbers in the lower
part of the timeline indicate timestamps in seconds) that will be used to explain the patterns.

Average response time (S1). This pattern (also known as average elapsed time) is a variant of
the bounded response time proposed in [KC05], in which the distance between pairs of events
(i.e., the response time) is aggregated over a time window of length K using the average oper-
ator. It can be used to express a property like “P1: The average distance between events a and b in
the last 20 seconds should be less than 3”, where K = 20. The evaluation of this property, when
done in the position corresponding to the last element of the trace in Figure 2.2 (with timestamp
τend = 30), will consider the time window of length K that includes the events with a times-
tamp τ such that τend −K < τ ≤ τend : (b, 14), (c, 17), (a, 18), (b, 22), (a, 25), (b, 28), (a, 30). The
average distance is then computed by summing the differences between the timestamps of each
pair2 of events (a, b) and dividing the result by the number of the selected events pairs (2 in the
example). In this case the average elapsed time is (22−18)+(28−25)

2 = 3.5, which is greater than
the bound 3, thus violating the property.

Average number of events (S3). This pattern aggregates (using the average operator) the num-
ber of events that occurred in an observation interval h within a time window K. It can be used
to express a property like “P3: Within the last 20 seconds, in each 6-second interval, the average num-
ber of occurrences of event a should be less than 3”, where K = 20, h = 6. The evaluation of this
property, when done in the position corresponding to the last element of the trace in Figure 2.2
(with timestamp τend = 30), will consider the time window that includes the events with a
timestamp τ such that τend −

⌊
K
h

⌋
h < τ ≤ τend . Notice that the left boundary of the time win-

dow is determined by taking into account the possibility that K may not be an exact multiple
of h; if this is the case, the tail interval (with length shorter than the observation interval) is dis-
carded. This time window is then split in

⌊
K
h

⌋
adjacent, non-overlapping observation intervals

(open to the left and closed to the right) of length h = 6; in the example, we have
⌊

20
6

⌋
= 3

observation intervals, delimited by the following timestamp boundaries: (12, 18], (18, 24], and
(24, 30]. The average number of occurrences is then computed by summing all the occurrences
of event a in each observation interval, and dividing the result by the number of observation
intervals. In the example, the average number of occurrences of a is 1+0+2

3 = 1, which is less
than the bound 3: the property is satisfied.

2Based on the semantics in [BGS13], the event (a, 30) is ignored for computing the (average) distance, since it
is not matched by a corresponding b event within the selected time window; a similar reasoning applies to event
(b, 14), which does not follow any event a in the selected time window. Furthermore, as proposed in [BGS13], we
require that between two occurrences of event a (respectively, event b), there is an occurrence of event b (respectively,
event a); because of this assumption, fragments of traces of the form aabbwill be collapsed into ab in a pre-processing
step.

10

2.4. Signals

Maximum number of events (S4). This pattern is a variant of the previous one, in which the
events are aggregated using the maximum operator. It can be used to express a property like
“P4: Within the last 20 seconds, in each 6-second interval, the maximum number of occurrences of
event a should be less than 3”; also in this case, K = 20 is the time window considered for the
aggregation, and h = 6 is the observation interval. Differently from the case of pattern S3, the
semantics of this pattern (as defined in [BGS13]) takes also into account the events occurring
in the tail interval, even if its length is shorter than the one of the observation interval h. The
evaluation of property P4, when done in the position corresponding to the last element of the
trace in Figure 2.2, will thus consider

⌈
20
6

⌉
= 4 observation intervals, delimited by the following

timestamp boundaries: (10, 12], (12, 18], (18, 24], and (24, 30]. The application of the maximum
operator will yield the value 2, which is less than the bound 3: the property is satisfied.

2.4 Signals

A finite length signal s over a domain D is a function s : T→ D, where T is the time domain and
D is an application-dependent value domain. In the context of CPSs, we need to differentiate
between analog, discrete, and digital signals [JBGN16].

An analog signal is a signal that is continuous both in the time and in the value domains.
The time domain T of an analog signal is thus the set of non-negative real numbers R≥0 and the
value domain D is the set of real numbers R. More formally, we define an analog signal sa as
sa : T → R. The domain of definition of sa is the interval Isa = [0, r), with r ∈ Q≥0; the length
of sa is defined as |sa| = r; undefined signal values are denoted by sa(t) = ⊥,∀t ≥ |sa|.

In a discrete signal, the value domain is continuous whereas the time domain is the set of
natural numbers N. More specifically, a discrete signal can be obtained from an analog signal
through sampling, which is the process of converting the continuous-time domain of a signal
to a discrete-time domain. Throughout this process, the analog signal is read at a regular time
interval ∆ called the sampling interval. The resulting discretized signal sdsc can be represented
by the values of an analog signal sa read at the following time points: 0,∆, 2 × ∆, . . . , k × ∆.
A digital signal has the set of natural numbers N as time domain and a finite discrete set as
value domain. Such a signal can be obtained from a discrete signal by quantization, which is the
process of transforming continuous values into their finite discrete approximations.

In the rest of the thesis we will consider analog signals, simply denoted by s, unless a specific
signal type is explicitly mentioned. This choice is motivated by the context in which this work
has been developed, which is the domain of Cyber-physical systems (CPSs) [MNBB18]. CPSs
are systems characterized by a complex interweaving of hardware and software [LS16]. They
are widely used in many safety-critical domains (e.g., aerospace, automotive, medical) where
validation and verification (V&V) activities [BDD+18] of the system’s intended functionality
play a crucial role to guarantee the reliability and safety of the system. In such a domain,
model-driven engineering is used throughout the development process and simulation is used
for design-time testing of system models; simulation models (e.g., those defined in Simulink®)

11

2. BACKGROUND

capture both continuous and discrete system behaviors and, when executed, produce traces
containing analog signals [GPVN+18].

2.5 Temporal Logics for Signal-based Properties

In this section, we provide a brief introduction to the main temporal logics that have been
proposed in the literature for specifying signal-based temporal properties. They will be used in
the next section to present the formalization of signal-based properties.

2.5.1 Signal Temporal Logic (STL)

STL [MN04] has been one of the first proposals of a temporal logic for the specification of tem-
poral properties over dense-time (i.e., T = R≥0), real-valued signals.

Let Π be a finite set of atomic propositions, X be a finite set of real variables, and I be an
interval3 [a, b] over R with a, b ∈ Q≥0 such that 0 ≤ a < b. The syntax of STL with both future
and past operators [MN13] is defined by the following grammar:

ϕ ::= p | x ∼ c | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p ∈ Π, x ∈ X , ∼∈ {<,≤,=,≥, >}, c ∈ R, UI is the metric “Until” operator, and SI is the
metric “Since” operator. Additional temporal operators can be derived using the usual conven-
tions; for example, “Eventually” FIϕ ≡ > UI ϕ; “Globally” GIϕ ≡ ¬FI¬ϕ; “Once (Eventually in
the Past)” PIϕ ≡ > SI ϕ; “Historically” HIϕ ≡ ¬PI¬ϕ.

The semantics of STL is defined through a satisfaction relation (s, t) |=STL ϕ, which indicates
that signal s satisfies formula ϕ starting from position t in the signal. The satisfaction relation is
defined inductively as follows:

(s, t) |=STL p iff p holds on s in t, for p ∈ Π

(s, t) |=STL x ∼ c iff x ∼ c holds on s in t, for x ∈ X and c ∈ R
(s, t) |=STL ¬ϕ iff (s, t) 6|=STL ϕ

(s, t) |=STL ϕ1 ∨ ϕ2 iff (s, t) |=STL ϕ1 or (s, t) |=STL ϕ2

(s, t) |=STL ϕ1 U[a,b] ϕ2 iff ∃t′.(t′ ∈ [t+ a, t+ b] and (s, t′) |=STL ϕ2

and ∀t′′.(t′′ ∈ [t, t′] and (s, t′′) |=STL ϕ1))

(s, t) |=STL ϕ1 S[a,b] ϕ2 iff ∃t′.(t′ ∈ [t− a, t− b] and (s, t′) |=STL ϕ2

and ∀t′′.(t′′ ∈ [t, t′] and (s, t′′) |=STL ϕ1))

We say that a signal s satisfies an STL formula ϕ iff (s, 0) |=STL ϕ.
Several extensions of STL have been proposed in the literature. For example, STL/PSL [NM07]

adds an analog layer to STL that enables the application of (low-level) signal operations; xSTL [NLM+18]
3The restriction on the non-punctual interval I for STL has been lifted in reference [MN13].

12

2.5. Temporal Logics for Signal-based Properties

adds support for Timed Regular Expressions [ACM02]. The STL expressions that we will
present in this thesis can be written in the same form also in STL/PSL or xSTL since they only
rely on the core operators of STL.

2.5.2 STL*

STL* [BDŠV14] is an extension of STL that adds a signal-value freezing operator that binds the
value of a signal to a precise instant of time.

Let J be a finite index set (e.g., the set {1, . . . , n}, n ∈ N) and let the function t∗ : J → [0, |s|]
be the frozen time vector; the i-th frozen time can then be referred to with t∗i = t∗(i). As in the
case of STL, let Π be a finite set of atomic propositions, X be a finite set of real variables, and I
be an interval [a, b] over R with a, b ∈ Q≥0 such that 0 ≤ a < b. The syntax of STL* is defined by
the following grammar:

ϕ ::= p | x ∼ c | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ∗i[ϕ]

where p ∈ Π, x ∈ X , ∼∈ {<,≤,=,≥, >}, c ∈ R, UI is the metric “Until” operator, and ∗i is
the unary signal-value freezing operator for all i ∈ J . Additional operators like Eventually and
Globally can be defined as done above for STL.

The semantics of STL* is defined through a satisfaction relation (s, t, t∗) |=STL∗ ϕ, which in-
dicates that signal s satisfies formula ϕ starting from position t in the signal, taking into account
the frozen time vector t∗ ∈ [0, |s|]J . The satisfaction relation is defined inductively as follows:

(s, t, t∗) |=STL∗ p iff p holds on s in t, for p ∈ Π, with the frozen time vector t∗

(s, t, t∗) |=STL∗ x ∼ c iff x ∼ c holds on s in t, for x ∈ X and c ∈ R,with the frozen
time vector t∗

(s, t, t∗) |=STL∗ ¬ϕ iff (s, t, t∗) 6|=STL∗ ϕ

(s, t, t∗) |=STL∗ ϕ1 ∨ ϕ2 iff (s, t, t∗) |=STL∗ ϕ1 or (s, t, t∗) |=STL∗ ϕ2

(s, t, t∗) |=STL∗ ϕ1 UI ϕ2 iff ∃t′.(t′ ∈ [t+ a, t+ b] and (s, t, t∗) |=STL∗ ϕ2

and ∀t′′.(t′′ ∈ [t, t′] and (s, t′′, t∗) |=STL∗ ϕ1))

(s, t, t∗) |=STL∗ ∗i[ϕ] iff (s, t, t∗[i← t]) |=STL∗ ϕ

where [i ← t] is the operator substituting t with the i-th position in the frozen time vector,

defined as t∗[i← t] =

{
t, i = j

t∗(j), i 6= j
.

We say that a signal s satisfies the STL* formula ϕ iff (s, 0,0) |=STL∗ ϕ.

2.5.3 Signal First-Order Logic (SFO)

SFO [BFHN18] is a formalism that combines first order logic with linear real arithmetic and
uninterpreted unary function symbols; the latter represent real-valued signals evolving over
time.

13

2. BACKGROUND

Let F be a set of function symbols and let X = T ∪ R be a set of variables, where T is the
set of time variables and R is the set of value variables. Let Σ = 〈f1, f2, . . . ,Z,−,+, <〉 be a (first-
order) signature where f1, f2, · · · ∈ F are uninterpreted unary function symbols, Z are integer
constants, and −,+, < are the standard arithmetic functions and order relation. The syntax of
SFO over Σ is defined by the following grammar:

ϕ ::= θ1 < θ2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃r : ϕ | ∃t ∈ I : ϕ

θ ::= τ | ρ
τ ::= t | n | τ1 − τ2 | τ1 + τ2

ρ ::= r | f(τ) | n | ρ1 − ρ2 | ρ1 + ρ2

where r ∈ R, t ∈ T , n ∈ Z, f ∈ F , I is a time interval with bounds in Z ∪ {±∞}. Notice that
a term θ can be either a time term τ or a value term ρ. Additional logical connectors can be
derived using the usual conventions; for example, ∀r : ϕ ≡ ¬∃r : ¬ϕ.

Let a trace ω be an interpretation of a function symbol f ∈ F as a signal, denoted by JfKω;
let a valuation v be an interpretation of a variable x ∈ X as a real number, denoted by JxKv. The
valuation function for a term θ over the trace ω and the valuation v, denoted as JθKω,v is defined

inductively as follows: JxKω,v = JxKv, JnKω,v = n for all n ∈ Z, Jf(τ)Kω,v =
r
f
(
JτKω,v

)z
ω

,

Jθ1 − θ2Kω,v = Jθ1Kω,v − Jθ2Kω,v, Jθ1 + θ2Kω,v = Jθ1Kω,v + Jθ2Kω,v. The semantics of SFO is defined
through a satisfaction relation (ω, v) |=SFO ϕ, which indicates the satisfaction of formula ϕ over
the trace ω and the valuation v. The satisfaction relation is defined inductively as follows:

(ω, v) |=SFO θ1 < θ2 iff Jθ1Kω,v < Jθ2Kω,v
(ω, v) |=SFO ¬ϕ iff (ω, v) 6|=SFO ¬ϕ

(ω, v) |=SFO ϕ1 ∨ ϕ2 iff (ω, v) |=SFO ϕ1 ∨ (ω, v) |=SFO ϕ2

(ω, v) |=SFO ∃r : ϕ iff (ω, v[r ← a]) |=SFO ϕ for some a ∈ R
(ω, v) |=SFO ∃t ∈ I : ϕ iff (ω, v[t← a]) |=SFO ϕ for some a ∈ R

Variants of SFO can be defined by opportunely changing the underlying signature Σ.
The variant of SFO we use for all the formalizations in chapter 4show the following signa-

ture Σ = 〈F,A,Rel ,Z,R〉, where:

• F = Sig∪Aux is the set of function symbols, composed of signal functions Sig = {s, s1, s2, str}
and auxiliary functions and predicates Aux = {σBes,P , σBss,P , ξ, checkOsc, local_min, local_max};

• A is the set of (non-linear) arithmetic functions A = {+,−,×,÷, abs}, where abs repre-
sents the absolute value operator;

• Rel is the set of relational operators Rel = {<,>,≥,≤,=, 6=};

• Z and R are integer and real constants, respectively.

14

Chapter 3

A Model-driven Approach to Trace
Checking of Temporal Properties with
Aggregations

3.1 Overview

In this chapter, we consider temporal properties with aggregating operators. An example of a
property of this specific class of temporal properties is: “the average number of client requests
per hour computed over the daily business hours (from 7.30AM to 7PM) should be less than
10000”, where the operator “average” is used to aggregate the number of events of type “client
request” over one-hour intervals, in an observation time window ranging “from 7.30AM to
7PM”. As detailed in , this class of temporal properties was identified in a field study [BGPS12]
that identified service provisioning patterns; a new class of property specification patterns inspired
by Dwyer et al.’s seminal work [DAC99] (for more details, refer to section 1.1).

To the best of our knowledge, the only specification language that supports the service pro-
visioning patterns identified in [BGPS12] is SOLOIST [BGS13], which is a language based on
first-order metric temporal logic extended with aggregating modalities.

In terms of checking procedure, in this chapter, we consider a model-driven trace checking ap-
proach [DBB17a]. Such an approach consists in reducing the problem of checking a property ρ
over an execution trace λ to the problem of evaluating an OCL (Object Constraint Language)
constraint (semantically equivalent to ρ) on an instance (equivalent to λ) of a meta-model of
the trace. Model-driven trace checking has been proposed in the literature [DBB17a] as a vi-
able solution to the trace checking problem, to be adopted in software development contexts that rely

15

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

on a model-driven engineering (MDE), a common practice in many domains [BCW17]. TEMPSY-
CHECK [DBB17b] is a state-of-the-art tool implementing model-driven trace checking; it has
been shown [DBB17a] to be highly scalable with respect to the length of the trace, exhibiting
performance that is comparable to (and in some cases better than) state-of-the-art alternative
technologies based on temporal logic. The properties to verify with TEMPSY-CHECK are ex-
pressed in TemPsy (Temporal Property made easy) [DBB17a], a pattern-based DSL for the spec-
ification of temporal properties. This language is based on the catalogue of property specifi-
cation patterns by Dwyer et al. [DAC99], with new constructs derived from a field study per-
formed in the domain of business processes for eGovernment. TemPsy is suitable for adoption
by practitioners, since it is a high-level specification language that does not require a strong the-
oretical and mathematical background. Furthermore, TemPsy is pattern-based and inherits the
benefits of pattern-based languages: for example, a recent empirical study [CZss] has shown
that pattern-based temporal property specifications are easier to understand than specifications
written using Linear Temporal Logic and the Event Processing Language.

The work proposed in this chapter is motivated by two observations. On one hand, though
requirements specifications based on temporal properties with aggregation operators (i.e., those
based on the “service provisioning” specification patterns) are common, the support provided
in terms of verification (more specifically, trace checking) of such properties is limited. In-
deed, the two non-distributed1 trace checking algorithms for SOLOIST proposed in the litera-
ture [BGKSP14, BBG+14] do not scale well in terms of the length of the trace [BGK14]. On the
other hand, there is TEMPSY-CHECK, a scalable and effective model-driven trace checking so-
lution, which only supports temporal properties based on Dwyer et al.’s specification patterns.

The goal of this chapter is to provide a solution for scalable model-driven trace checking of tem-
poral properties with aggregation operators. The main idea is to bridge the gap between property
specifications based on service provisioning patterns and model-driven trace checking. More
specifically, we extend the approach presented in [DBB17a] by proposing: 1) an extension of
the TemPsy language called TemPsy-AG, which supports the most used service provisioning
patterns identified in the study in [BGPS12]; 2) an extension of the TemPsy trace checking pro-
cedure, realized through an optimized mapping into OCL constraints (on a meta-model of exe-
cution traces) of the new types of properties included in TemPsy-AG.

We have implemented our approach in TEMPSY-CHECK-AG, a prototypical extension of
TEMPSY-CHECK. We evaluated its scalability (in terms of execution time) with respect to the
length of the trace and other parameters used in the specification of TemPsy-AG properties;
we also compared its performance with respect to SOLOIST-translator, the state-of-the-art tool
for (non-distributed) trace checking of SOLOIST specifications [BGKSP14, BBG+14]. The re-
sults show that TEMPSY-CHECK-AG scales linearly with respect to the parameters considered
in the analysis; in particular its execution time for processing a large trace with one million
events ranges between 6250 ms and 15339 ms, depending on the aggregation operator used in

1The issue of distributed trace checking using Big Data technologies is out of the scope of this chapter (which
restricts itself to the non-distributed case) and is left for future work; a distributed algorithm for SOLOIST has been
presented in [BGK14].

16

3.2. Specifying temporal properties with aggregation operators through TemPsy-AG

the property. Furthermore, it can deal with much larger traces than SOLOIST-Translator, which
could only handle traces up to 1500 events.

To summarize, the two main contributions of this chapter are: i) a model-driven approach
for trace checking of temporal properties with aggregation operators; ii) an evaluation of the
scalability of such an approach when implemented in the TEMPSY-CHECK-AG tool, and the
comparison with a state-of-the-art alternative technology. In addition, the work presented in
this chapter can be seen as a successful case study on the feasibility and viability of extending
model-driven trace checking [DBB17a], i.e., a verification technique enabled by MDE technolo-
gies, with support for a larger class of properties, while retaining acceptable performance from
a practical standpoint.

The rest of the chapter is structured as follows. Section 3.2 presents TemPsy-AG. Section 3.3
illustrates our approach for model-driven checking of temporal properties based on service
provisioning patterns. Section 3.4 reports on the evaluation of the scalability of our implemen-
tation. Section 3.5 discusses related work.

3.2 Specifying temporal properties with aggregation operators
through TemPsy-AG

As a preliminary step towards our model-driven approach for trace checking of temporal prop-
erties with aggregations, we extended the TemPsy language (see syntax in 2.1) to support the
most used service provisioning patterns (i.e., S1, S3, and S4); the new version of the language
is called TemPsy-AG. We modified the syntax of TemPsy by adding new rules corresponding
to the constructs needed for the new patterns; the main additions to the grammar are shown
in Figure 3.1. More specifically, TemPsy-AG sports three new, intuitive keywords (‘avgRT’,
‘average’, ‘maximum’) indicating, respectively, patterns S1, S3, and S4. In all these patterns,
the time window used for aggregation is denoted through the ‘within’ keyword; the obser-
vation interval for patterns S3 and S4 is represented with the ‘every’ keyword; the bound is
expressed through the non-terminal 〈Bound〉, supporting the usual relational operators.

The example properties presented in section 2.3 can be written in TemPsy-AG as follows
(assuming a globally scope):

• P1: globally avgRT(a,b) within 20 tu < 3

〈Pattern〉 ::= . . .
| ‘avgRT’ ‘(’〈Event〉 ‘,’ 〈Event〉‘)’ ‘within’ 〈Int〉 ‘tu’ 〈Bound〉
| ‘average’ 〈Event〉 ‘within’〈Int〉 ‘tu’ ‘every’〈Int〉 ‘tu’ 〈Bound〉
| ‘maximum’ 〈Event〉 ‘within’〈Int〉 ‘tu’ ‘every’〈Int〉 ‘tu’ 〈Bound〉

. . .
〈Bound〉 ::= (‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘==’ | ‘!=’) 〈Int〉

Figure 3.1: Syntactic extension included in TemPsy-AG

17

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

• P3: globally average a within 20 tu every 6 tu < 3

• P4: globally maximum a within 20 tu every 6 tu < 3

In the same spirit as TemPsy, by design TemPsy-AG does not aim at being as expressive as a
full-fledged temporal logic. Instead, its goal is to make as easy as possible the specification of
common types of temporal properties through a pattern-based language.

The formal definition of the semantics of TemPsy-AG extends the one of TemPsy (available
in [Dou16]), and is based on the concept of temporal linear traces. The semantics of the new
three operators added in TemPsy-AG largely mirrors the formalization of the corresponding
service provisioning patterns provided in [BGS13]. The main difference from the definitions
in [BGS13] is that the operators corresponding to the service provisioning patterns are always
evaluated in correspondence of the last element of a (sub-)trace; in other words, the time win-
dow defined by the parameter K is always computed with respect to the timestamp of the last
element of the (sub-)trace (as done in section 2.3).

3.3 Model-driven trace checking of TemPsy-AG properties

Our approach for model-driven trace checking of temporal properties with aggregation oper-
ators is based on the existing trace checking procedure available in TEMPSY-CHECK [DBB17b,
DBB17a] (see approach definition in 2.2). In this section we present the extension of this proce-
dure to support the new types of properties included in TemPsy-AG.

Our main contribution is the operationalization, in OCL, of the semantics of the service
provisioning patterns included in TemPsy-AG. This is a challenging task since this mapping has
to be optimized, based on the structure of the properties to check, in order to achieve better
performance.

As mentioned in section 2.2, the idea at the basis of model-driven trace checking, given as
input a TemPsy-AG property represented by a scope s and a pattern p, is to evaluate an OCL
invariant defined based on the type of s and p. This evaluation conceptually corresponds to
applying the semantics of pattern p on the set of sub-traces that is determined by the semantics
of scope s.

We extend the definition of this invariant to support the aggregation operators available in
TemPsy-AG; a snippet of its OCL pseudocode is shown in Figure 3.2. The body of the invariant
expression is a multi-way branch, which selects a certain branch based on the specific scope
type used within the property (line 4 shows the case for the “globally” scope). In each branch,
after determining the collection of sub-traces (as determined by the scope semantics) with a call
to a function of the form applyScope* (as in line 5, invoking applyScopeGlobally), there
is another multi-way branch, which selects a certain branch based on the specific pattern type
used within the property. Lines 7–13 show the branches corresponding to the three new aggre-
gation operators of TemPsy-AG. In each branch there is a function of the form checkPattern*
that checks whether the pattern used in the property holds on each sub-trace. The core of our

18

3.3. Model-driven trace checking of TemPsy-AG properties

1 context Trace
2 inv: self.properties->forAll(property:TemPsy::TemPsyExpression |
3 let scope:TemPsy::Scope = property.scope, pattern:TemPsy::Pattern = property.

pattern in
4 if scope.type = TemPsy::GLOBALLY then
5 let subtraces:Sequence(OrderedSet(TraceElement)) = applyScopeGlobally(scope)

in
6 [...code related to the other patterns omitted...]
7 if pattern.type = TemPsy::MAX then
8 subtraces->forAll(subtrace | checkPatternMAX(subtrace, pattern))
9 else if pattern.type = TemPsy::AVG then

10 subtraces->forAll(subtrace | checkPatternAVG(subtrace, pattern))
11 else if pattern.type = TemPsy::AVGRT then
12 subtraces->forAll(subtrace | checkPatternAVGRT(subtrace, pattern)
13 endif endif endif
14 else if scope.type = TemPsy::BEFORE then [...])

Figure 3.2: OCL invariant for checking TemPsy-AG properties on a trace

extension lies in the definition of three new OCL functions—checkPatternAVGRT (for pattern
S1, “average response time”), checkPatternAVG (for pattern S3, “average number of events”),
and checkPatternMAX (for pattern S4, “maximum number of events”)—that contain the op-
erational definition (in OCL) of the semantics of each pattern. The rest of the invariant definition
(e.g., returning the verdict) is the same as in the original version [DBB17a].

In the rest of this section we illustrate the definition of the three new checkPattern* afore-
mentioned functions, corresponding to the S1, S3, S4 service provisioning patterns; to ease read-
ability, the algorithms are written using OCL pseudocode.

3.3.1 Checking the “average response time” pattern

Function checkPatternAVGRT, whose pseudocode is shown in Algorithm 1, takes as input a
sub-trace and the parameters of an object representing an average response time pattern in TemPsy-
AG: the pair of events (a, b), the length of the time window K, and a bound expressed with a
relational operator ./ and a numeric constant n. The function returns a Boolean value indicating
whether the pattern holds on the input sub-trace, i.e., whether the cumulative sum (over all
pairs of events (a, b) in the time window) of the time distance between each occurrence of event
b and the corresponding occurrence of event a, divided by the number of (a, b) events pairs in
the time window, satisfies the given bound.

The algorithm uses four auxiliary variables: accDist represents the cumulative sum (over
all pairs of events (a, b)) of the time distance between each occurrence of event b and the cor-
responding occurrence of event a; numPairs is a counter keeping track of the number of (a, b)
events pairs found; inPair is a Boolean flag that is true when the event a has been seen and
the corresponding event b has not been seen yet; lastSeenTS is the timestamp of the last-seen
occurrence of event a.

19

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

First (line 2), the function determines the timestamps corresponding to the left and right
boundaries of the sub-trace to consider. The right boundary RB is the timestamp of the last
element of the sub-trace, whereas the left boundary LB is determined by the value of the time
window and is equal to RB − K; notice that parameter K is assumed to be greater than the
sub-trace length.

The central block of the function is a loop (lines 3–11) that iterates over all elements of the
input sub-trace whose timestamp is comprised between the left and the right boundaries of the
time window2. For each element, we check whether the corresponding event is a match for
either a or b. If we match an occurrence of event a, we set the flag inPair to true and save the
corresponding timestamp in variable lastSeenTS . Notice that, as discussed in the footnote on
page 10, we assume that between two occurrences of event a there is an occurrence of event b. If
we match an occurrence of event b, if the flag inPair is true it means that this event is the one
corresponding to the last occurrence of event a previously matched. In this case, we compute
the distance between this element and the timestamp of the last-seen occurrence of event a,
update the value of accDist accordingly, increase by 1 the value of the numPairs counter, and
reset the value of inPair to false. By construction, following the informal semantics of the
pattern presented in section 2.3, the algorithm will ignore the occurrences of event a that are
not matched by a corresponding b event within the time window, as well as the occurrences of
event b that do not follow any event a in the time window.

The average response time is then computed by dividing the value of the variable accDist
(i.e., the cumulative time distance) by the value of variable numPairs (i.e., the number of matched
pairs). This value is passed to function evalBound , together with the value of parameters ./ and
n. This function evaluates the bound stated in the property, according to the relational operator
./ and the numeric constant n; the result is then returned by the algorithm, representing the
Boolean verdict of the trace checking procedure.

3.3.2 Checking the “average number of events” pattern

Function checkPatternAVG, whose pseudocode is shown in Algorithm 2, takes as input a
sub-trace and the parameters of an object representing an average number of events pattern in
TemPsy-AG: the event a, the length of the time windowK, the length of the observation interval
h, a bound expressed with a relational operator ./, and a numeric constant n. The function re-
turns a Boolean value indicating whether the pattern holds on the input sub-trace, i.e., whether
the average number of occurrences of event a, aggregated over the observation intervals that
are included in the time window, satisfies the given bound.

First, the algorithm computes the temporal boundaries of the sub-trace to consider: the
right boundary RB is the timestamp of the last element of the sub-trace; the left boundary LB
depends on the value of the time window and on the value of the observation interval and is
equal to RB − bKh c ∗ h.

2We consider the time window interval closed to the right, open to the left.

20

3.3. Model-driven trace checking of TemPsy-AG properties

Algorithm 1: checkPatternAVGRT
Input: a trace segment subtrace and the parameters of an instance of the average response

time pattern of the form avgRT(a,b) withinK tu ./ n:
Output: true if the pattern holds on subtrace; false otherwise

1 accDist ← 0, numPairs ← 0
inPair ← false, lastSeenTS ← null

2 RB ← subtrace.last().timestamp, LB ← RB − k
3 foreach elem ∈ subtrace such that

LB < elem.timestamp ≤ RB do
4 if elem.event = a then
5 inPair ← true
6 lastSeenTS ← elem.timestamp

7 else if elem.event = b then
8 if inPair = true then
9 accDist ← accDist + (elem.timestamp − lastSeenTS)

10 numPairs ← numPairs + 1
11 inPair ← false

12 return evalBound
(

accDist
numPairs , ./, n

)
Algorithm 2: checkPatternAVG

Input: a trace segment subtrace and the parameters of an instance of the average number
of events pattern of the form
average a withinK tu every h tu ./ n:

Output: true if the pattern holds on subtrace; false otherwise
1 RB ← subtrace.last().timestamp, LB ← RB − bKh c ∗ h
2 totalOccurrences ← count(subtrace,(LB ,RB),a)
3 numIntervals ← bKh c
4 return evalBound

(
totalOccurrences
numIntervals , ./, n

)
Then the algorithm computes two values:
• the number of occurrences of event a occurring in the interval (LB ,RB], computed using

the auxiliary function count and stored in variable totalOccurrences ;
• the number of observation intervals over which to compute the aggregate value, which is

equal to bKh c according to the semantics of the pattern (see section 2.3); this value is stored
in variable numIntervals .

The average number of events is then computed by dividing the value of totalOccurrences
by the value of numIntervals. The resulting value is passed to function evalBound , together with
the value of parameters ./ and n, to evaluate the bound stated in the property and determine

21

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

Algorithm 3: checkPatternMAX
Input: a trace segment subtrace and the parameters of an instance of the maximum

number of events pattern of the form
maximum a withinK tu every h tu ./ n

Output: true if the pattern holds on subtrace; false otherwise
1 RB ← subtrace.last().timestamp
2 intervals ← getIntervals(RB ,K,h)
3 foreach itv ∈ intervals do
4 numOccurrences .append(count(subtrace,itv ,a))

5 return evalBound (max (numOccurrences) , ./, n)

the verdict of the trace checking procedure.

3.3.3 Checking the “maximum number of events” pattern

Function checkPatternMAX, whose pseudocode is shown in Algorithm 3, takes as input a
sub-trace and the parameters of an object representing a maximum number of events pattern
in TemPsy-AG: the event a, the length of the time window K, the length of the observation
interval h, a bound expressed with a relational operator ./, and a numeric constant n. The
function returns a Boolean value indicating whether the pattern holds on the input sub-trace,
i.e., whether the maximum number of occurrences of event a, aggregated over the observation
intervals that are included in the time window, satisfies the given bound.

First, the algorithm computes in variable RB the temporal right boundary of the trace,
i.e., the timestamp of the last element. Then it determines—by calling the auxiliary function
getIntervals—the left and right temporal boundaries of each observation interval in the sub-
trace, based on the values of RB , K, and h. Function getIntervals will return a list with

⌈
K
h

⌉
in-

tervals; these intervals are open to the left and closed to the right. In this list, stored in variable
intervals , the first

⌈
K
h

⌉
−1 intervals have length h and have the form (RB − (m+ 1)h,RB −mh]

for 0 ≤ m ≤
(
bKh c − 1

)
h; the last interval (i.e., the left-most on the timeline) in the list will be(

max
(
RB −K,RB −

⌈
K
h

⌉)
,RB − bKh ch

]
, to take into account the possibility of having a tail

interval shorter than h, according to the semantics of the pattern described in section 2.3.

Afterwards, the loop at lines 3–4 computes (through the auxiliary function count), for each
interval itv in the list intervals , the number of occurrences of event a in itv and stores this value
in the set numOccurrences .

The maximum number of events is then determined by computing the maximum value over
the set numOccurrences . This value is passed to function evalBound , together with the value of
parameters ./ and n, to evaluate the bound stated in the property and determine the verdict of
the trace checking procedure.

22

3.4. Evaluation

3.3.4 Tool implementation

We have implemented our approach in TEMPSY-CHECK-AG, as an extension of the publicly
available TEMPSY-CHECK [DBB17b] tool. The extension includes the OCL code to deal with the
service provisioning patterns; we have also extended the TemPsy DSL editor to support the new
expressions in the TemPsy-AG language.

Our extension uses the same toolchain as TEMPSY-CHECK: it takes as input a trace in CSV
format and a text file following the DSL syntax, with the properties to check on the trace; the
evaluation of the OCL constraints corresponding to the input properties to check is performed
using the OCL checker included in the Eclipse OCL distribution.

3.4 Evaluation

We evaluated the scalability of our approach—in terms of the execution time—with respect to
the length of the trace and other parameters used in the specification of TemPsy-AG properties.
We also compared the performance of our approach with SOLOIST-Translator, the state-of-the-
art tool for (non-distributed) trace checking of SOLOIST specifications [BGKSP14, BBG+14].
More specifically, we evaluated our approach implemented in TEMPSY-CHECK-AG by answer-
ing the following research questions:

RQ1: How does TemPsy-AG scale with respect to the trace length when checking properties expressed
using the three main service provisioning patterns (S1, S3, S4)? (section 3.4.2.1)

RQ2: How does TemPsy-AG scale with respect to the number of observation intervals induced by the
values of the parameters K and h, when checking properties expressed using patterns S3 and S4?
(section 3.4.2.2)

RQ3: How does TemPsy-AG fare with respect to SOLOIST-Translator, a state-of-the-art tool for check-
ing properties expressed using the three main service provisioning patterns (S1, S3, S4)? (sec-
tion 3.4.2.3)

3.4.1 Evaluation Settings

3.4.1.1 Temporal Properties

We used the three following property templates to answer all three research questions, one for
each type of service provisioning pattern:

• P1: globally avgRT(a,b) within K tu < 5 (for pattern S1)

• P3: globally average a within K tu every h tu < 5 (for pattern S3)

• P4: globally maximum a within K tu every h tu < 5 (for pattern S4)

23

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

where a and b are event names and K,h are parameters that are varied according to the evalu-
ation methodology (described below). Notice that all properties are expressed using the “glob-
ally” scope: we made this choice following the evaluation methodology proposed in existing
work on model-driven trace checking [DBB17a]. Indeed, properties with the “globally” scope
are the most challenging in terms of scalability, since the semantics of this scope guarantees that
the pattern (used in the property to check) will be evaluated throughout the entire length of the
trace.

3.4.1.2 Trace Generation Strategy

Following the evaluation guidelines proposed in existing work [BBG+16, DBB17a] on trace
checking, we used synthesized traces for the evaluation. The use of synthesized traces over
real ones allows us to systematically control the factors (e.g., the trace length, the number of
intervals) that are relevant for our research questions, while setting other factors randomly, to
avoid any bias.

We extended the trace generator program included in the TEMPSY-CHECK distribution with
new generator strategies specific to the service provisioning patterns. The generator program
takes as input a TemPsy-AG property, the desired length of the trace to generate, and additional
parameters depending on the type of property given in input and the factors one wants to
control. The position and the order of events are generated randomly taking into account the
temporal and timing constraints prescribed by the semantics of the pattern used in the input
property. Positions in the trace that are deemed not relevant for the evaluation of the property
are filled with a dummy event, so that the number of events in the trace is equal to the parameter K
used in patterns S1, S3, S4. In other words, between two adjacent events in the trace we assume
a time difference of 1 time unit, possibly indicated by the presence of a dummy event. Given
the semantics of the service provisioning patterns and taking into account their formalization in
TemPsy-AG (see section 3.2), this case corresponds to the worst-case scenario (from a scalability
point of view), in which the time window over which the properties with aggregations are
evaluated includes all the elements of the trace. Below we sketch the trace generation strategies
for the three new patterns.

Average response time (P1). For a given value of the parameter K we generate a trace of
length K, containing X pairs of events (a, b), where X is a random value between 2 and K

2 .
We require that these pairs are distributed over the trace such that the average time distance
between the individual occurrences of events a and the corresponding occurrences of b satisfies
the bound indicated in the property. We use the Z3 constraint solver [DMB08] to get the value
of the X distances (one for each events pair) that satisfy the property bound. Then we ran-
domly allot the pairs of (a, b) events over the trace according to a uniform distribution, while
maintaining for each pair the distance determined by the solver.

Average number of events (P3). For a given value of the parameters K and h, we generate a
trace of length K; the number of observation intervals I is computed as I = bKh c. We then need
to determine the number of occurrences of event a in each of these I intervals, such that their

24

3.4. Evaluation

distribution on the trace satisfies the property bound. We use the Z3 constraint solver to find an
assignment for the I variables that represent the number of event occurrences in each interval.
Finally, within each interval, we randomly generate (with a uniform distribution on the range
induced by h) the required number of occurrences of events a in that interval.

Maximum number of events (P4). For a given value of the parametersK and h, we generate
a trace of length K; the number of observation intervals I is computed as I = dKh e. We then
need to determine the number of occurrences of event a in each of these I intervals, such that
their distribution on the trace satisfies the property bound. For example, if the bound used in
the property is “< n”, in each observation interval we will generate occurrences of event awith
a uniform distribution on the range [0,n].

3.4.1.3 Computer Settings

The results reported in this section have been measured using the Unix time program on a
desktop computer with a 2.5 GHz Intel Core i7 CPU and 16 GB of memory, running Eclipse
DSL Tools v. 4.6.2 (Neon Milestone 2), JavaSE-1.7 (Java SE v. 1.8.0_121, Java HotSpot (TM) 64-
Bit Server VM v. 25.121-b13, mixed mode), Eclipse OCL v. 6.1.2, and SOLOIST-Translator (most
recent version, commit 65684d1). All measurements reported correspond to the average value
over 5 runs of the trace checking procedure (on the same trace, for the same property).

3.4.2 Evaluation Results

3.4.2.1 Scalability with respect the to trace length

Methodology. To answer RQ1, we ran TEMPSY-CHECK-AG on traces of different length (i.e.,
value of the parameter K in the input property), ranging from 100K to 1M in steps of 100K; on
each trace, we checked the three properties shown above. For P3 and P4 properties, we varied
h so that the number of intervals was fixed to 10.

Results. The execution time measured for our approach is shown in Figure 3.3a. Overall, the
execution time varies from 2218 ms, for checking property P1 (with the “average response time”
pattern) on a 100K trace, to 15339 ms, for checking property P3 (with the “average number of
events” pattern) on a 1M trace. We also notice that checking properties with the “average/max-
imum number of events” patterns requires longer than checking properties with the “average
response time” pattern.

The answer to RQ1 is that our approach scales linearly with respect to the length of the trace
for all three types of service provisioning patterns.

3.4.2.2 Scalability with respect to the number of observation intervals

Methodology. To address RQ2, we generated traces with length varying from 100K to 500K in
steps of 100K; for each of these trace lengths, we considered 10 different values for the number

25

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

2,500

5,000

7,500

10,000

12,500

15,000

trace length

cp
u

(m
s)

P4
P3
P1

(a)

10 20 30 40 50 60 70 80 90 100

10,000

20,000

30,000

40,000

50,000

#Time intervals

cp
u

(m
s)

100K
200K
300K
400K
500K

(b)

10 20 30 40 50 60 70 80 90 100

10,000

20,000

30,000

40,000

50,000

#Time intervals

cp
u

(m
s)

100K
200K
300K
400K
500K

(c)

500 600 700 800 900 1,000 1,100

5,000

10,000

trace length

cp
u

(m
s)

SOLOIST-Translator
TEMPSY-CHECK-AG

(d)

Figure 3.3: Scalability in terms of execution time with respect to the trace length (a); scalability
in terms of the number of observation intervals for P3 properties (b) and P4 properties (c);
comparison between the execution time of TEMPSY-CHECK-AG and of SOLOIST-Translator for
checking P1 properties (d)

of observation intervals (used in the context of patterns S3 and S4), ranging from 10 to 100 in
steps of 10. In practice, to vary the number of observation intervals, we varied the value of
parameter h in properties P3 and P4 such that, when combined with the value of parameter K,
it yields the desired value for the number of observation intervals. For example, in the case of a
property with the “average number of events” pattern, the value of h for obtaining 30 intervals
on a 100K long trace is h = b100000

30 c = 3333. Notice that in the case of the “maximum number
of events” pattern, when K mod h 6= 0, the tail interval will have a length shorter than h and
there is a range of values for h that yield the same number of observation intervals; in this case,
we chose the lowest value for h to get the largest possible tail interval. We executed TEMPSY-
CHECK-AG on all the generated traces, for the different values of K and h, to check properties
P3 and P4.

Results. The execution time for checking properties with pattern S3 “average number of events”
and with pattern S4 “maximum number of events” is shown in Figure 3.3b and Figure 3.3c,
respectively. Overall, the execution time ranges from 3138 ms, for checking a property with pat-
tern S3 on a 100K long trace with 10 time intervals, to 53183 ms, for checking a property with
pattern S3 on a 500K long trace with 100 time intervals. In line with the results discussed for
RQ1, the execution time for checking properties P3 and P4 is similar, i.e., checking patterns S3
and S4 has a similar cost.

26

3.4. Evaluation

The answer to RQ2 is that TEMPSY-CHECK-AG scales linearly with respect to the number
of time intervals for patterns S3 and S4. With the same number of observation time intervals,
the higher the length of the trace, the longer it takes to complete the trace checking procedure.

3.4.2.3 Comparison with SOLOIST-Translator

Methodology. To answer RQ3, we compared the performance (in terms of execution time) of
TEMPSY-CHECK-AG with SOLOIST-Translator, the only publicly available tool for non-distributed
trace checking of properties written in SOLOIST, a language that supports the same service pro-
visioning patterns as TemPsy-AG.

However, the two non-distributed trace checking algorithms for SOLOIST proposed in the
literature [BGKSP14, BBG+14], implemented in SOLOIST-Translator, do not scale well in terms
of the length of the trace [BGK14]. A preliminary set of experiments that we conducted reported
similar results to those published in [BGKSP14, BBG+14]: SOLOIST-Translator cannot handle
traces longer than 1500 for checking properties with patterns S3 and S4, and traces longer than
1200 for checking properties with pattern S1. This is due to the internal translation of input
traces done by the tool, which takes into account the granularity of the timestamps of the trace
elements. For these reasons, we could only use small traces to compare the two tools:

• For properties with pattern S1, we generated traces with length varying from 500 to 1100
in steps of 100.

• For properties with patterns S3 and S4, we generated traces with length varying from
1000 to 1500 in steps of 100, and varied the number of observation intervals (by setting the
parameter h) through the values 2, 10, 50, 100.

Results. The results indicate that SOLOIST-Translator displays a steep linear growth of the
execution time for traces with a short length, whereas our approach takes almost a constant
time. For space reasons, we only show (in Figure 3.3d) the results for the case of properties
with pattern S1 “average response time”. For a trace with length 1100 (the largest length we
considered), SOLOIST-Translator took 12864 ms, whereas TEMPSY-CHECK-AG took 1243 ms. We
remark that the execution time taken by SOLOIST-Translator for checking pattern S1 on a trace
with length 1100 is more than twice the time (6250 ms) taken by TEMPSY-CHECK-AG for checking
a similar property on a 1M trace (see Figure 3.3a).

For the case of properties with the “average number of events” pattern, when varying the
number of time intervals from 2 to 100, the execution time of SOLOIST-Translator ranges from
7929 ms to 8285 ms for a trace with length 1000, and from 17614 ms to 18 254 ms for a trace with
length 1500. On the other hand, TEMPSY-CHECK-AG takes from 1260 ms to 1446 ms for a trace
with length 1000, and from 1247 ms to 1574 ms for a trace with length 1500. We observed similar
values for the case of properties with the “maximum number of events”.

The answer to RQ3 is that TEMPSY-CHECK-AG can handle much larger traces than SOLOIST-
Translator (with up to a 1000x increase in length) and exhibits faster execution times.

27

3. A MODEL-DRIVEN APPROACH TO TRACE CHECKING OF TEMPORAL PROPERTIES WITH

AGGREGATIONS

3.4.3 Discussion

The results presented above indicate that the execution time of TEMPSY-CHECK-AG is ac-
ceptable from a practical standpoint: temporal properties with aggregation operators can be
checked on a trace with millions of events within seconds. Furthermore, the comparison with
SOLOIST-Translator, a state-of-the-art tool that supports the same service provisioning pat-
terns (S1, S3, S4) as TEMPSY-CHECK-AG, shows that our approach can handle much larger
traces than SOLOIST-Translator (with up to a 1000x increase in length) and exhibits faster ex-
ecution times. Overall, these results show that extending a model-driven trace checking ap-
proach [DBB17a] with support for a larger range of properties yield a scalable and viable solu-
tion for verifying, in offline settings, temporal properties with aggregation operators.

Threats to validity. One of the main threats is the use of synthesized traces in the evaluation.
Real execution traces might be different, in terms of events occurrences and time distances.
However, this threat does not affect our research questions on scalability, as we want to analyze
the execution time as a function of a number of parameters (e.g., trace length), while varying
randomly other aspects. Another threat is the representativeness of the properties templates
used for the evaluation. These property templates, although simple, represent the type of prop-
erties (with service provisioning patterns) that can be written in realistic scenarios, since they
are based on those extracted in a study [BGPS12] of specifications written in industrial settings;
furthermore, similar templates have been used in existing work [BGKSP14, BBG+14, BGS13]
on trace checking of the same service provisioning patterns. Another threat is given by the
use of Eclipse OCL; one could get different results by using another OCL checker, with lower
performance. We chose Eclipse OCL for its scalability. Finally, as for the comparison with
SOLOIST-Translator, we remark that its specification language (SOLOIST) is more expressive
than TemPsy-AG (e.g., by supporting first-order quantification and the full set of metric tem-
poral logic modalities); hence the performance of SOLOIST-Translator could have been nega-
tively affected by the more complex implementation needed to support a richer specification
language.

3.5 Related work

Besides the work revolving around the SOLOIST language [BGKSP14, BBG+14, BGS13], there
are other approaches that focus on run-time verification of properties with aggregation opera-
tors [SW95, FSS05, DSS+05, Rap16, BKMZ15]. Among the most recent, Basin et al. [BKMZ15]
present an extension of the MFOTL logic that supports aggregation on data, i.e., terms used in
the logical predicates, and the corresponding monitoring algorithm; Rapin [Rap16] proposes a
dense-time specification language (and the monitoring algorithm), in which aggregation oper-
ators can be used to specify invariants of hybrid, signal-based systems. The main difference of
these approaches from ours is the specific type of aggregation operators considered: in all the
aforementioned approaches, the aggregation is done on the values of data/signals whereas the

28

3.6. Summary

service provisioning patterns supported by TemPsy-AG aggregate events. LarvaStat [CGP10]
is an extension of the Larva monitoring tool [CP17] with support for collecting statistical data
of the execution, through point- and interval-statistics operators; however, the definition of
these operators is quite operational, requiring explicitly to specify the update rules for the ag-
gregations and the conditions characterizing the intervals. In contrast, TemPsy-AG provides
high-level aggregation operators, with pre-defined semantics.

One of the key features of Complex Event Processing (CEP) systems [Luc01] is to aggregate
data from multiple sources, using aggregating operators similar to those included in TemPsy-
AG. One of the main difference between CEP approaches and RV ones is that the former com-
pute the result of a query on a event trace, whereas the latter evaluate a property on a trace [Hal16].
Approaches like BeepBeep [Hal16] combine CEP and RV, allowing the evaluation of properties
(possibly temporal) over event streams processed (e.g., by means of aggregating operators)
through a CEP-like pipeline. Conceptually, TemPsy-AG adopts a similar approach, since in the
OCL constraints the events are aggregated according to the pattern semantics before the evalu-
ation of the relational expression in the property.

3.6 Summary

The verification of complex software systems often requires to check temporal properties that
contain aggregation operators. When specifying such properties, a software engineer can lever-
age an existing catalogue of property specification patterns, called “service provisioning pat-
terns” [BGPS12]. Nevertheless, existing solutions for trace checking of these properties suf-
fer from scalability limitations. In this chapter we have presented our solution for scalable
trace checking of temporal properties with aggregation operators, extending an existing model-
driven approach for trace checking. Our approach is based on an optimized mapping into
OCL constraints (on a meta-model of execution traces) of the main service provisioning pat-
terns. We have implemented our approach in the tool TEMPSY-CHECK-AG and evaluated its
performance: the results show that our approach can check temporal properties with aggrega-
tion operators on a trace with millions of event within seconds, scales linearly with respect to
the length of the input trace, and can deal with much larger traces than a state-of-the-art tool.
Furthermore, the results indicate the feasibility and viability of extending model-driven trace
checking [DBB17a], a promising run-time verification approach enabled by MDE technologies,
with support for a larger class of properties, while retaining acceptable performance from a
practical standpoint.

29

Chapter 4

Signal-Based Properties: Taxonomy and
Logic-based Characterization

4.1 Overview

Expressing requirements in terms of SBTPs poses a number of challenges for system and soft-
ware engineers; 1) the possibility to detect and characterize signal behaviors (e.g., a spike) us-
ing different features (and parameters), without a proper guideline for selecting some of these
features/parameters and 2) the availability of specification languages with different levels of
expressiveness, which also requires a guideline to properly choose the appropriate language
for the specification of SBTPs, while taking into account the corresponding trace checking tools,
if any (for more details about these challenges, refer to section 1.1).

In this chapter, we tackle these challenges by proposing a taxonomy of the most common
types of SBTPs and a logic-based characterization of such properties. Based on industrial ex-
perience and a thorough review of the literature, our goal is to provide system and software
engineers, as well as researchers working on CPSs, with a reference guide to systematically
identify and characterize signal behaviors, to support both requirements specification and V&V
activities. More specifically, we address the first challenge by providing, through the taxon-
omy, a comprehensive and detailed description of the different types of signal-based behaviors,
with each property type precisely characterized in terms of a temporal logic. As a result, an
engineer can be guided by the precise characterization of the property types included in our
taxonomy, to derive—from an informal requirements specification—a formal specification of
a property, which can then be used in the context of V&V activities (e.g., as test oracle). We
take on the second challenge by reviewing the expressiveness of the main temporal logics that

31

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

have been proposed in the literature for specifying Signal-based Temporal Properties (i.e., STL,
STL* [BDŠV14], SFO [BFHN18] - Signal First-Order Logic), in terms of the property types iden-
tified in the taxonomy. In this way, we can guide engineers to choose a specification formalism
based on their needs in terms of property types to express.

We developed our taxonomy of SBTPs based on practical experience in analyzing temporal
requirements in CPS domains like the aerospace industry, and by reviewing the literature in the
area of verification of cyber-physical systems, starting from the recent survey of specification
formalisms in reference [BDD+18]. We identified and included in our taxonomy seven property
types:

For each of these types, we provide a logic-based characterization using SFO and also dis-
cuss alternative formalizations—when applicable—using also STL and STL*. In this way, we are
able to report on the expressiveness of state-of-the-art temporal logics with respect to the prop-
erty types included in our taxonomy: SFO is the only language among the three we considered
in which we can express all the property types of our taxonomy.

We also report on the application of our taxonomy to classify the requirements specifications
of an industrial case study in the aerospace domain. Through this case study we show:

• The feasibility of expressing requirements specifications of a real-world CPS using the
property types included in our taxonomy. Indeed, in the vast majority of the cases, the
mapping from a specification written in English to its corresponding property type de-
fined in the taxonomy was straightforward.

• The completeness of our taxonomy: all requirements specifications of the case study could
be defined using the property types included in our taxonomy.

To summarize, the main contributions of this chapter are:

• a taxonomy of SBTPs;

• a logic-based characterization of the various property types included in the taxonomy;

• a discussion on the expressiveness of state-of-the-art temporal logics with respect to the
property types included in our taxonomy;

• the application of our taxonomy to classify the requirements specifications of an industrial
case study in the aerospace domain.

The rest of this chapter is structured as follows. Section 4.2 illustrates our taxonomy of SBTPs
and provides a logic-based characterization of each property type. In section 4.3 we discuss the
expressiveness of state-of-the-art temporal logics with respect to the property types included in
our taxonomy. Section 4.4 presents the application of our taxonomy to an industrial case study.
Section 4.5 discusses how this chapter contributions can support the research community and
practitioners. Section 4.6 discusses related work.

32

4.2. Taxonomy of signal-based Temporal properties

4.2 Taxonomy of signal-based Temporal properties

One of the main challenges in using Signal-based Temporal Properties for expressing require-
ments of CPSs is the lack of precise descriptions of signal behaviors. First, a signal behavior
(e.g., a spike or an oscillation) can be “described” in different ways, i.e., it can be characterized
using various features; for example, a total of 16 different features (and eight parameters) have
been identified in the literature [AMM+14] to detect a spike in a signal. Given the large variety
of options, (software and system) engineers may choose various subsets of features for charac-
terizing the same type of signal behavior, leading to ambiguity and inconsistency in the specifi-
cations. In addition, slightly different features may have similar names (e.g., “peak amplitude”
and “peak-to-peak amplitude”), potentially leading to mistakes when writing specifications. It
is then important to define proper guidelines for selecting the features most appropriate in a
certain context, and provide engineers with a precise characterization of such features.

In this section, we tackle this challenge by proposing a taxonomy of the most common types
of Signal-based Temporal Properties and a logic-based characterization of such properties. Our
goal is to provide system and software engineers, as well as researchers working on CPSs, with
a reference guide to systematically identify and characterize signal behaviors, so that they can
be defined precisely and used correctly during the development process of CPSs, in particular
during the activities related to requirements specification and V&V.

Our taxonomy provides a comprehensive and detailed description of the different types of
signal-based behaviors, with each property type precisely characterized in terms of a tempo-
ral logic. As a result, an engineer can be guided by the precise characterization of the property
types included in our taxonomy, to derive—from an informal requirements specification—a for-
mal specification of a property, which can be used in other development activities (e.g., V&V).

We developed this taxonomy based on our general understanding of temporal requirements
in CPS domains like the aerospace industry, and by reviewing the literature in the area of veri-
fication of cyber-physical systems, starting from the recent survey in reference [BDD+18]. The
taxonomy focuses on properties specified in the time domain; we purportedly leave out prop-
erties specified in the frequency domain [NKJ+17, DMB+12] because in our context (V&V of
CPS) the properties of interest are mainly specified in the time domain.

The taxonomy with the acronyms of signal-based property types is shown in figure 4.1. At
the top level, it includes three main signal-based property types:

Data assertion (DA): properties expressing constraints on the value of a signal.

Signal behavior (SB): properties on the behavior represented by a signal shape. We further
distinguish among two property subtypes:

• properties on signals exhibiting spikes (SPK) ;
• properties on signals manifesting oscillatory behaviors (OSC).

Relationship between signals (RSH): properties characterizing relationships between signals.
This type includes two further property subtypes:

33

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

Signal-based property

Data Assertion
(DA)

Signal Behavior
(SB)

Spike
(SPK)

Oscillatory
behavior

(OSC)

Relationship
between signals

(RSH)

Order
(RSH-O)

Transient
behavior

Rise time
(RT)

Fall time
(FT)

Overshoot
(OSH)

Undershoot
(USH)

Functional
(RSH-F)

Figure 4.1: Taxonomy of Signal-based Temporal Properties

• functional, based on the application of a signal transforming function (RSH-F);

• order, describing sequences of events/states related to signal behaviors (RSH-F). In
this category we also include properties of transient behaviors of a signal when
changing from the current value to a new target value, such as:

– properties on signals exhibiting a rising (Rise Time - RT) or a falling (Fall Time -
FT) behavior;

– properties on signals exhibiting an overshoot (OSH) or an undershoot (USH)
behavior.

In the following subsections we provide the detailed description of each property type, in-
cluding a mathematical formalization and examples. We use (a variant of) SFO to formalize
the various property types; anticipating the results of section 4.3, the reason for the adoption
of SFO is its expressiveness, which allows us to express all the property types considered in this
chapter. We also provide examples of properties in STL and STL* (when applicable).

4.2.1 Data assertion

A data assertion specifies a constraint on the value of a signal. This constraint is expressed
through a signal predicate of the form s ./ expr , where expr is an SFO value term defined over the
value domain of the signal s and ./ ∈ Rel . A data assertion property holds on the signal if the

34

4.2. Taxonomy of signal-based Temporal properties

assertion predicate evaluates to true . Data assertions can be combined to form more complex
expressions through the standard logical connectives. We distinguish between untimed data
assertions, which are evaluated through the entire domain of definition Is of a signal s, and
time-constrained data assertions, which are evaluated over one or more distinct sub-intervals of
the signal domain of definition.

More formally, let H be a set of time intervals H = {I1, . . . , IK}, such that Ik ⊆ Is, 1 ≤ k ≤
K, and for all i, j ∈ {1, . . .K}, i 6= j implies Ii ∩ Ij = ∅. A data assertion defined over the time
intervals in H holds on a signal s if and only if (iff) the SFO formula

∧
h∈H ∀i ∈ h : s(i) ./ expr

evaluates to true. Notice that an untimed data assertion over a signal s is defined by having
H = {Is}.

For example, let us consider the property pDA: “The signal value shall be less than 3 between
2 tu and 6 tu and between 10 tu and 15 tu”, where “tu” is a generic time unit (which has to be
set according to the application domain, e.g., seconds). This property is a time-constrained data
assertion over the two intervals [2, 6] and [10, 15]; it can be expressed in SFO as:

S
FO pDA ∀t ∈ [2, 6] : s(t) < 3 ∧ ∀t ∈ [10, 15] : s(t) < 3

Figure 4.2 shows two signals, s1 plotted with a thick line (), and s2 plotted with a thin line
(); the threshold on the signal value specified by the property is represented with a dashed
horizontal line. Property pDA does not hold for s2 as its value is above the threshold of 3 in the
intervals [2, 6] and [10, 15]; however, it holds for s1 because its value is below the threshold in
both intervals.

0 5 10 15 20 25
0

1

2

3

4

5

2 6
time (tu)

value

Figure 4.2: Two signals used to evaluate property pDA: signal s1 () satisfies the property
whereas signal s2 () violates it.

35

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

f VP1 PP VP2
g

s(VP2)

s(VP1)

s(PP)

a1 a2

w

sp1 sp2

time (tu)

value

(a)

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

time (tu)

value

(b)

Figure 4.3: (a) Main features used to define a spike based on [DRS82]. (b) two signals used to
evaluate property pSPK1: signal s1 () satisfies the property, whereas s2 () violates it.

4.2.1.1 Alternative formalizations

Data assertion properties like pDA can be also expressed in STL and STL*:

S
TL pDA ≡

S
TL

*

pDA G[2,6](s < 3) ∧ G[10,15](s < 3)

4.2.2 Spike

A spike1 can be informally defined as a short-lived, (relatively) large increase or decrease of the
value of a signal. Such a signal behavior is typically undesirable [BDD+18]. However, there are
situations in which a spike characterized by a set of specific features is desirable, as it is the case
for the discovery pulse [Nič15] in the discovery mode of the DSI3 protocol [DSI11]. Inspired by
the definitions in the bio-medical domain [DRS82], we consider

four main features to characterize a spike, based on three extrema of the function corre-
sponding to the signal shape, which are local extrema with respect to an observation interval
[f, g] ⊂ Is. These three points (with their respective coordinates) are: the peak point (PP , s(PP))
representing the local maximum of the signal and characterizing the actual spike2, and the
two surrounding valley points (VP1, s(VP1)) and (VP2, s(VP2)) representing the local min-
ima (closest to the peak point) of the first and second half of the spike, respectively. These three
local extrema are shown in figure 4.3a; we refer the reader to reference [DRS82] for a detailed
description of how to detect these points. The four features (also shown in figure 4.3a) charac-
terizing a spike are:

• Amplitude a of the spike, defined as a = ψ(a1, a2), where a1 is the amplitude of the first-
half of the spike shape a1 = abs (s(PP)− s(VP1)), a2 is the amplitude of the second-half

1A spike is also called bump, peak, or pulse in the literature.
2In the following we only characterize and formalize spikes corresponding to an increase of the signal value; the

case of a decrease of the signal value is the dual.

36

4.2. Taxonomy of signal-based Temporal properties

of the spike shape a2 = abs (s(PP)− s(VP2)), and ψ is a generic amplitude function3;

• slope sp1 between the peak point and the valley point of the first half of the spike shape,
sp1 = abs

(
s(PP)−s(VP1)

PP−VP1

)
;

• slope sp2 between the peak point and the valley point of the second half of the spike shape,
sp2 = abs

(
s(PP)−s(VP2)

PP−VP2

)
;

• spike width w between the two consecutive valley points, w = VP2 − VP1. Note that the
width w can be also defined as w = w1 +w2, where w1 = PP −VP1 and w2 = VP2 −PP .

The four features a, sp1, sp2, andw can be opportunely combined to define a spike of a particular
shape4.

A spike property specifies a constraint on the existence of a spike with certain features; it
evaluates to true when the signal exhibits a spike whose features satisfy certain criteria. More
specifically, when defining a spike property, an engineer has to specify—for each feature—a
predicate with a threshold criterion whose value depends on the application context. The signal
predicates of each feature are then logically conjoined for characterizing the spike.

Formally, given the threshold criteria for the four features (specified as SFO terms over the
value domain of signal s) Γa ,Γsp1

,Γsp2
,Γw , a spike property holds on a signal s iff the following

SFO formula evaluates to true:

∃VP1,PP ,VP2 ∈ [f, g] : local_min(VP1, f,PP)∧
local_max (PP ,VP1, g)∧
local_min(VP2,PP , g)∧

a ./ Γa ∧ sp1 ./ Γsp1
∧ sp2 ./ Γsp2

∧ w ./ Γw

(4.1)

where ./ ∈ Rel , local_min and local_max ∈ Aux are predicates identifying local extrema, and
a, sp1, sp2, w are SFO terms defined as shown above using the three variables VP1,VP2, and
PP .

In essence, formula (4.1) requires a) the existence of the three local extrema in a proper order
characterizing the spike shape (i.e., a local minimum followed by a local maximum, followed
by another local minimum), and b) the satisfaction of the constraints for all the features. More
relaxed formulations can be obtained by omitting some of the spike features from the above
definition.

3This function depends on the application domain; for example, in the context of bio-medical systems [DRS82],
ψ is the minimum function.

4Although other spike features have been proposed in the spike detection literature—such as different types of
width, amplitude, and slope [AG04, Acı05, AOK+05, LZY02, DJCF93], as well as the area under the curve [Häg95]—
we decided not to adopt them since the features we have selected are sufficient to describe (and specify) the spike
behaviors we consider in this paper.

37

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

The predicate local_min(x, y, z) (respectively, local_max (x, y, z)) returns true if the time point
x is a local minimum (respectively, local maximum) with respect to the interval [y, z]. These
predicates can be defined in several ways; below we provide three possible definitions.

Definition 1 (local extrema through punctual derivatives) Some specification languages allow for
defining expressions corresponding to punctual derivatives. For example, in SFO the punctual deriva-
tives can be defined as language terms as follows:

s′p(t) ≡
s(t+ ε)− s(t)

ε
and s′′p(t) ≡ s′p(s′p(t))

with ε being an arbitrary, small constant5. The local extrema predicates can then be defined in SFO as
follow:

local_min(x , y , z) ≡ ∃x ∈ [y, z] : s′p(x) = 0 ∧ s′′p(x) > 0

local_max (x , y , z) ≡ ∃x ∈ [y, z] : s′p(x) = 0 ∧ s′′p(x) < 0

Definition 2 (local extrema - analytical formulation) Another way to characterize local extrema is
to write a logical expression corresponding to their analytical definition; in SFO we have

local_min(x , y , z) ≡ ∃x ∈ [y, z] : ∀t ∈ [y, z], x 6= t : s(x) ≤ s(t)
local_max (x , y , z) ≡ ∃x ∈ [y, z] : ∀t ∈ [y, z], x 6= t : s(x) ≥ s(t)

Definition 3 (local extrema through pre-computed derivatives) When the first and second order
derivatives of a signal are available as (pre-computed), separate signals, the local extrema can be
characterized using such signals. Let s′c and s′′c be the first and second order derivatives of signal s; the
local extrema predicates can defined in SFO as follow:

local_min(x , y , z) ≡ ∃x ∈ [y, z] : s′c(x) = 0 ∧ s′′c (x) > 0

local_max (x , y , z) ≡ ∃x ∈ [y, z] : s′c(x) = 0 ∧ s′′c (x) < 0

The choice of which definition to use for defining local extrema predicates depends on the
specification language and the application context; as shown above, all three definitions can be
used with SFO.

For example, let us characterize spikes through features width w and amplitude a, with the
latter defined by using the maximum function as the amplitude function ψ; let us consider the
evaluation of property pSPK1: “In a signal, there is a spike with a maximum width of 20 tu and a
maximum amplitude of 1”. For this property, the parameters of an instance of specification (4.1)

5In the context of a discrete signal, the ε constant can be replaced with the sampling interval ∆.

38

4.2. Taxonomy of signal-based Temporal properties

are Γa = 1 and Γw = 20; the resulting SFO formula is:
S

FO pSPK1 ∃t, t′, t′′ ∈ [f, g] : local_min(t, f, t′)∧

local_max (t′, t, g)∧
local_min(t′′, t′, g)∧

max(abs (s(t′)− s(t)), abs (s(t′′)− s(t′))) ≤ 1 ∧ abs (t′′ − t) ≤ 20

In figure 4.3b, we show two signals, s1 plotted with a thick line () and s2 plotted with
a thin line (). To evaluate property pSPK1 on these signals, we first need to evaluate the
local extrema predicates in specification (4.1) (according to one of the three definitions above):
signal s1 exhibits a spike where VP1 = 10, PP = 20, and VP2 = 30, while s2 exhibits a spike
where VP1 = 10, PP = 25, and VP2 = 35. In both cases, the three points satisfy the local
extrema predicates. The second step is to evaluate the threshold criteria of the spike features.
We calculate the amplitude as1 and the width ws1 of the spike in s1 as:
as1 = max(abs (s1(PP)− s1(VP1)), abs (s1(PP)− s1(VP2)))=
max(abs (s1(20)− s1(10)), abs (s1(20)− s1(30))) = max(abs (2− 1), abs (2− 1)) = 1
and ws1 = VP2−VP1 = 30−10 = 20. Signal s1 satisfies property pSPK1 because the expression
as1 ≤ 1 ∧ ws1 ≤ 20 ≡ 1 ≤ 1 ∧ 20 ≤ 20 evaluates to true. Following a similar computation, the
amplitude as2 and the width ws2 of the spike in s2 are as2 = max(1.5, 1) = 1.5 and ws2 = 25;
signal s2 violates property pSPK1 because the expression as2 ≤ 1∧ws2 ≤ 20 ≡ 1.5 ≤ 1∧ 25 ≤ 20
evaluates to false.

Another definition, proposed in the context of automotive control applications [KDJ+16],
characterizes a spike using two parameters, w and m = a

w , where w is the spike width and a
the spike amplitude. Formally, a signal s exhibits a spike with parameters m and w (defined as
numerical constants) iff the following SFO formula evaluates to true:

∃t ∈ Is : s′(t) > m ∧ ∃t′ ∈ [t, t+ w] : s′(t′) < −m (4.2)

where s′, denoting the first order derivative of s, can be either a pre-computed, separated signal
s′c or the punctual derivative s′p introduced above. This characterization identifies two time
instants: the first in which the signal derivative is greater than parameter m and another one in
which the signal derivative is less than −m; the distance between these two points is the spike
width w.

The main limitation of this formulation is that it does not allow to express precise constraints
on the absolute value of the amplitude of a spike; instead, it uses parameter m that is a quo-
tient between amplitude and width. We illustrate this with the example in figure 4.4, with the
signals s1 plotted with a thick line () and s2 plotted with a thin line (). Let us consider the
evaluation of property pSPK2: “In a signal, there exists a spike with a maximum width of 20 tu
and an amplitude greater than 2”. This property cannot be captured by an instance of specifi-
cation (4.2), since the latter does not take into account the concept of amplitude; the property
needs to be adapted. Based on the desired values of width and amplitude in property pSPK2,

39

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

0 10 20 30 40 50 60

1

2

3

time (tu)

value

Figure 4.4: Characterization of the spike in two signals s1 () and s2 () based on the definition
in [KDJ+16], with parameters m = 0.1, w = 20.

the parameters of an instance of specification (4.2) would bem = 0.1, w = 20. Therefore, instead
of property pSPK2, one can consider the following alternative pSPK3: “In a signal, there exists
a spike with a maximum width of 20 tu and parameter m equal to 0.1”, which can be captured
by an instance of specification (4.2); the corresponding SFO formula is:

S
FO pSPK3 ∃t ∈ Is : s′(t) > 0.1 ∧ ∃t′ ∈ [t, t+ 20] : s′(t′) < −0.1

This formula will evaluate to true for both s1 and s2. However, signal s1 should not satisfy
the property, since its peak point does not reach a magnitude (amplitude) of 2 as was required
in the original formulation of the property (pSPK2). This spurious spike characterization hap-
pens with specification (4.2) because signal s1 follows the same shape as signal s2 in the points
in which the signal derivative s′ is compared to m. We remark that the application of specifi-
cation (4.1) to the evaluation of property pSPK2 would correctly characterize the spike only in
signal s2. Given a lack of precision in specification (4.2), in the following we will consider spikes
defined according to specification (4.1).

4.2.2.1 Alternative formalizations

STL Our characterization of a spike through the SFO formulation (4.1) relies on the existence
of three extrema in the function corresponding to the signal shape. In STL, the existence of these
extrema could be formalized through proper nesting of the “eventually” and “once” operators,
in conjunction with a constraint on the width of the spike. However, it would not be possible
to include in such a formulation a constraint on the amplitude or on the slope, since in STL one
cannot refer to the value of the signal at an arbitrary time point. For all these reasons, we cannot
express a property like pSPK1 in STL.

On the other hand, spike properties characterized through the SFO formulation (4.2) can
be expressed in STL when the pre-computed signal derivatives are available. For example,
property pSPK3 can be expressed as

S
TL pSPK3 F[0,|s|)(s

′ > 0.1 ∧ F[0,20]s
′ < −0.1)

40

4.2. Taxonomy of signal-based Temporal properties

STL* Differently from STL, STL* can refer to the value of the signal at a certain time point in
which a local formula holds thanks to the freeze operator; below we discuss how it can be used
to express properties pSPK1 and pSPK3.

(Using local extrema expressed through punctual derivatives) Definition 1 for local ex-
trema uses the values of the signal at two consecutive time points, within a small distance ε.
However, in STL* it is not possible to explicitly reference the signal value at time points that
are not associated with the evaluation of a local (sub-)formula; hence, properties defined using
punctual derivatives cannot be specified using STL*6.

(Using local extrema expressed through the analytical formulation) We can characterize
local extrema using the analytical formulation (definition 2) by assuming a variant of STL* with
past operators7 and using a 3D frozen time vector.

S
TL

*

pSPK1 F[f,g] ∗1 (G[0,w1](s > s∗1)

∧ F[0,w1] ∗2 (H[0,w1](s < s∗2)

∧ F[0,w2] ∗3 (H[0,w2](s > s∗3)

∧max(abs(s∗1 − s∗2), abs(s∗2 − s∗3)) ≤ 1 ∧ w1 + w2 ≤ 20)))

In the formula above, the expression in the first row states the existence of the first local
minimum by checking for the existence, within the observation interval [f, g], of a point (whose
time instant is frozen in the first component of the frozen time vector) for which the correspond-
ing signal value is smaller than all other signal values in the interval [0, w1]; this condition is
captured by the sub-formula with the “globally” operator. The expression on the second row,
nesting the “historically” operator within the “eventually”, states the existence of the local max-
imum (whose time instant is frozen in the second component of the frozen time vector), such
that all the signal values between the first local minimum and such a point are indeed smaller
than the local maximum. Notice that the distance between the first local minimum and the
local maximum is equal to w1

8. The expression on the third row checks in a similar way for
the existence of the second local minimum within an interval [0, w2] from the local maximum.
The expression on the fourth row checks the constraints on the spike amplitude and on the
spike width. For the former, it uses the values of the signal in correspondence of the first local
minimum (s∗1), of the local maximum (s∗2), and of the second local minimum (s∗3).

Note that this property relies on a particular sequence of local extrema (i.e., valley-peak-
valley); other variants of this property can be specified by changing the order of the sub-

6Such a restriction could be lifted when using discrete signals, since the distance between two consecutive time
points is known and is equal to the sampling interval ∆.

7Although the version of STL* presented in [BDŠV14] does not use past operators, the addition of such operators
would be done along the lines of the definition of STL with past operators in [MN13].

8If the spike shape is symmetrical, the distance between all local extrema is equal to w
2

.

41

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

formulae stating the existence of a certain extremum. Furthermore, we remark that the specifi-
cation of this property assumes the knowledge of the signal shape, since it uses the two compo-
nents of the width w1 and w2 as defined on page 36. However, making such an assumption in
practice is not reasonable because typically the shape of a spike is unknown.

(Using local extrema defined through pre-computed derivatives) Property pSPK1 can be
expressed using definition 3 for local extrema, assuming the existence of signals s′ and s′′ and a
3D frozen time vector.

S
TL

*

pSPK1 F[f,g] ∗1
(
s′ = 0 ∧ s′′ > 0 ∧ F[0,w1] ∗2 (s′ = 0 ∧ s′′ < 0 ∧ F[0,w2] ∗3 (s′ = 0 ∧ s′′ > 0

∧max(abs(s∗1 − s∗2), abs(s∗2 − s∗3)) ≤ 1 ∧ w1 + w2 ≤ 20))
)

The structure of the formula above is similar to the one for the case of using definition 2 for
local extrema, except for the direct use of the first and second order derivatives, available as
pre-computed signals. The same remarks made above in terms of assuming the knowledge of
the signal shape also apply in this case.

Furthermore, pre-computed derivative signals can be used to specify property pSPK3 in
STL* in the same way as it was done above using STL.

4.2.3 Oscillation

An oscillation can be informally described as a repeated variation over time of the value of
a signal, possibly with respect to a reference value; often, in the context of CPS, oscillations
represent an undesirable signal behavior.

Figure 4.5 depicts an analog signal s exhibiting an oscillatory behavior with respect to a
reference value ref , within an observation interval oscI = [a, b] ⊂ Is. Such a behavior is char-
acterized by the existence, within the observation interval, of M extrema of the function corre-
sponding to the signal shape; these points are marked with blue squares () in the figure. A
cycle (i.e., a complete oscillation) occurs when the signal value swings from one extremum to the
adjacent extremum of the same type, by traversing an extremum of the other type; for exam-
ple, in the figure there is one complete oscillation when the signal goes from p3 to p5 (two peak
points) through p4 (a valley point). The figure also shows two additional features typically used
to characterize oscillations:

• the (peak) amplitude, denoted by oscA, is the distance between the maximum magnitude
of the signal and its reference value;

• the period, denoted by oscP , is the time required to complete one cycle. Its reciprocal,
called frequency, represents the number of complete oscillations occurring in a unit of time.

42

4.2. Taxonomy of signal-based Temporal properties

a b

ref

p1

p2

p3 p5

p4

oscA

oscP

time (tu)

value

Figure 4.5: A signal exhibiting an oscillatory behavior; the reference value ref is shown in red.

An oscillation property specifies a constraint on the existence, in a signal, of an oscillatory
behavior with certain features; it evaluates to true when the signal exhibits an oscillatory be-
havior whose features satisfy certain criteria. More specifically, these criteria are expressed as
relational expressions, on the oscillation amplitude and/or period, with an application-specific
threshold. More formally, given the SFO terms representing the threshold criteria ΓoscP (for
the period) and ΓoscA (for the amplitude), an oscillation property holds on a signal s in the
observation interval [a, b] iff the following SFO formula evaluates to true:

∀t ∈ [a, b] : (∃t′, t′′ ∈ [t, b] :

local_min(t, a, t′)→
(local_max (t′, t, b) ∧ local_min(t′′, t′, b)

∧ checkOsc(t, t′, t′′, ./P ,ΓoscP , ./A,ΓoscA))

∧ local_max (t, a, t′)→
(local_min(t′, t, b) ∧ local_max (t′′, t′, b)

∧ checkOsc(t, t′, t′′, ./P ,ΓoscP , ./A,ΓoscA)))

(4.3)

where local_min(x, y, z) (respectively, local_max (x, y, z)) is a predicate that returns true if the
time point x is a local minimum (respectively, local maximum) with respect to the interval [y, z]
(see section 4.2.2); checkOsc(t, t′, t′′, ./P ,ΓoscP , ./A,ΓoscA) is a predicate that returns whether the
expression oscA ./A ΓoscA ∧ oscP ./P ΓoscP evaluates to true for the oscillation (with amplitude
oscA and period oscP) determined by its first three arguments t, t′, t′′; ./P and ./A are relational
operators in Rel of Σ.

In essence, formula (4.3) requires a) the existence of the three local extrema in a proper order
characterizing the complete oscillation (i.e., either a local minimum followed by a local maxi-

43

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

0 10 20 30 40 50 60
0

1

2

3

4π
12π

time (tu)

value

Figure 4.6: Two signals used to evaluate property pOSC: signal s1 () satisfies the property,
whereas s2 () violates it.

mum followed by another local minimum, or a local maximum followed by a local minimum
followed by another local maximum), and b) the satisfaction of the constraints on the oscillation
features evaluated in the checkOsc predicate.

As an example, let us consider property pOSC: “Within an observation interval of 60 time
units (starting from the beginning of the signal), in the signal there exist oscillations with a pe-
riod less than 20 and an amplitude less than 3”. For this property the parameters of an instance
of specification (4.3) are a = 0, b = 60,ΓoscP = 20, ΓoscA = 3, ./A=./P=<. For evaluating the
property, we show two signals in figure 4.6: s1 (drawn with a thick line) corresponds to a sine
wave defined as y = sin(x2) + 1; s2 (drawn with a thin line) is defined by y = sin(x6) + 1. In
both signals, oscillations have a peak amplitude equal to 1, which satisfies the constraint on the
amplitude. The period of signal s1, calculated from its sine definition, is equal to 4π; similarly,
the period of s2 is equal to 12π (see figure 4.6). Signal s1 satisfies property pOSC because it
oscillates by exhibiting alternating local minima and maxima, with a period and an amplitude
satisfying the thresholds (4π < ΓoscP and 1 < ΓoscA). However, signal s2 violates the property
because its period is greater than the threshold value of 20 (12π > ΓoscP).

The pure sine wave shown in Figure 4.5 is characterized by a constant period and by a con-
stant amplitude. However, in the context of CPSs, signals may be noisy; this means that the
amplitude and the period of their oscillatory behaviors may vary over time. Furthermore, a
reference value may be unknown, making the computation of the oscillation amplitude chal-
lenging. In such cases one may use an aggregation function (e.g., average, maximum, mini-
mum) over different amplitude values (e.g., peak-to-peak). In the following, we introduce the
concepts of average amplitude and average period; these definitions can easily be adapted to take
into account other aggregation functions.

44

4.2. Taxonomy of signal-based Temporal properties

To deal with situations in which the reference value is not known, we will consider the
peak-to-peak amplitude, i.e., the difference between two adjacent extrema, denoted by oscAPP .
The average peak-to-peak amplitude oscAPP can then be computed as the arithmetic mean of
the peak-to-peak amplitude between adjacent extrema. More formally, given the sequence

p1, . . . , pM−1, pM of local extrema, oscAPP =

∑M−1
i=1 abs (s(pi)− s(pi+1))

M − 1
. Other definitions of

amplitude (such as the root mean square) can be used too, depending on the application do-
main.

The average period can be defined as the arithmetic mean of the period of each complete
oscillation of the signal, computed over pairs of extrema of the same type. More formally,
given the sequence p1, . . . , pM−1, pM of local extrema, we define the number oscN of complete
oscillations within the observation interval of the signal as oscN =

⌊
M−1

2

⌋
; the average period

oscP is then defined as oscP =

∑oscN
i=1 abs (p2i−1 − p2i+1)

oscN
.

When the concepts of average amplitude and average period are used to characterize an
oscillatory behavior, specification (4.3) has to be adapted accordingly; more precisely, predicate
checkOsc has to be redefined to consider the average amplitude oscAPP and the average period
oscP .

Damped/Driven oscillations In the real world, oscillatory behaviors may be subject to var-
ious forces that reduce or increase their amplitude. More precisely, we distinguish between
damped and driven oscillations: for the former the amplitude decays monotonically, whereas for
the latter the amplitude increases monotonically.

The characterization of these specific behaviors can be done by constraining the change of
the amplitude of the oscillatory signal. For example, given the sequence p1, . . . , pM−1, pM of
local extrema, we say that an oscillatory signal s (formalized according to specification (4.3))
exhibits damped oscillations iff the following SFO formula evaluates to true:

∀j ∈ [1,M − 2] : abs (s(pj)− s(pj+1)) ≥ abs (s(pj+1)− s(pj+2)) (4.4)

The case for driven oscillations is similar and can be obtained from the expression above by
replacing the relational operator with its dual.

The amplitude of signals may not change monotonically; in such cases, statistical trends
(e.g., a linear trend) in amplitude changes may be observed. We could account for statistical
trends by specifying that, on average, the difference in amplitude tends to decrease/increase;
such a constraint would then be included in the formula above.

4.2.3.1 Alternative formalizations

STL Similar to the case of spike properties (see section 4.2.2), our formalization in SFO of
oscillation properties relies on the existence of local extrema in the signal. Converting such for-
malization to STL would rely on the use of properly nested “eventually” and “once” operators,

45

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

in conjunction with a constraint on the oscillation period. However, a constraint on the ampli-
tude could not be expressed because in STL one cannot refer to the value of the signal at an
arbitrary time point.

STL* The specification of oscillatory behaviors is one of the main motivations behind the def-
inition of STL*. Below, we discuss how to specify property pOSC1 in STL* using the three local
extrema characterization approaches introduced in section 4.2.2.

(Using local extrema expressed through punctual derivatives) As discussed for the case
of spike properties (see page 41), properties referring to local extrema expressed according
to definition 1 cannot be specified using STL* because they would require to explicitly refer-
ence the signal value at time points that are not associated with the evaluation of a local (sub-
)formula.

(Using local extrema expressed through the analytical formulation) We can express local
extrema using their analytical formulation (definition 2) by assuming a variant of STL* with
past operators. Property pOSC can be specified in the following way using a 3D frozen time
vector:

S
TL

*

pOSC G[a,b](F[0,b]∗1(G
[0,

ΓoscP
2

]
(s > s∗1)→

F
[0,

ΓoscP
2

]∗2
(H

[0,
ΓoscP

2
]
(s < s∗2)

∧F
[0,

ΓoscP
2

]∗3
(H

[0,
ΓoscP

2
]
(s > s∗3)

∧ abs (s∗1 − s∗2) < 3)))

∧F[0,b]∗1(G
[0,

ΓoscP
2

]
(s < s∗1)→

F
[0,

ΓoscP
2

]∗2
(H

[0,
ΓoscP

2
]
(s > s∗2)

∧F
[0,

ΓoscP
2

]∗3
(H

[0,
ΓoscP

2
]
(s < s∗3)

∧ abs (s∗1 − s∗2) < 3))))

In the formula above, the expression on the first row prescribes the existence of the first
local minimum, by checking all points within the observation interval [a, b] for the existence
of a point (whose time instant is frozen in the first component of the frozen time vector) for
which the corresponding signal value is smaller than all other signal values in the interval
[0, ΓoscP

2]; this condition is captured by the sub-formula with the second “globally” operator.
The expression on the second row, nesting the “historically” operator within the “eventually”,
states the presence of a local maximum (whose time instant is frozen in the second component
of the frozen time vector), such that all the signal values between the first local minimum and
such a point are indeed smaller than the local maximum. Notice that the distance between

46

4.2. Taxonomy of signal-based Temporal properties

two neighboring extrema for an oscillation with period ΓoscP is equal to ΓoscP
2 . The expression

on the third row checks for the existence of the second local minimum in a similar way; the
expression on the fourth row checks the constraint on the peak-to-peak amplitude using the
values of the signal in correspondence of the first local minimum and of the local maximum.
The remaining part of the formula has the same structure and considers the dual case, in which
the first extremum in the oscillatory behavior is a local maximum.

We remark that this specification assumes that the oscillation is regular, i.e., its period is
constant and the constraint on the period is specified as “oscP=ΓoscP ". However, making such an
assumption in practice is not reasonable because typically the shape of oscillations is unknown.

(Using local extrema defined through pre-computed derivatives) Property pOSC can be
expressed using definition 3 for local extrema, assuming the existence of pre-computed deriva-
tives as separate signals s′c and s′′c and a 3D frozen time vector.

S
TL

*

pOSC G[a,b](F[0,b]∗1((s′ = 0 ∧ s′′ > 0)→

F
[0,

ΓoscP
2

]∗2
((s′ = 0 ∧ s′′ < 0)

∧F
[0,

ΓoscP
2

]∗3
((s′ = 0 ∧ s′′ > 0)

∧ abs (s∗1 − s∗2) < 3)))

∧F[0,b]∗1((s′ = 0 ∧ s′′ < 0)→
F

[0,
ΓoscP

2
]∗2

((s′ = 0 ∧ s′′ > 0)

∧F
[0,

ΓoscP
2

]∗3
((s′ = 0 ∧ s′′ < 0)

∧ abs (s∗1 − s∗2) < 3))))

The structure of the formula above is similar to the one for the case of using definition 2 for
local extrema, except for the direct use of the first and second order derivatives, available as pre-
computed signals. The signal values frozen at the local extrema points are used to compute the
peak-to-peak amplitude of the oscillations. The same remarks made above in terms of assuming
the knowledge of the signal shape also apply in this case.

4.2.4 Relationship between signals

The property types illustrated in the previous sections deal with only one signal; in this sec-
tion we present property types characterizing relationships between two (or more) signals. We
consider two types of signal relationships:

• functional, based on the application of a signal transforming function;

• order, describing sequences of events/states related to signal behaviors.

47

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

0 10 20 30 40
0

1

2

3

4

time (tu)

value

Figure 4.7: Signals used to evaluate property pRSH-F: the source signals are s1 () and s2 (),
the target signal is sT (); Signal sT satisfies the property.

4.2.4.1 Functional Relationship

The concept of a functional relationship between two (or more) signals is captured by the ap-
plication of a signal transforming function to the signals, which yields a new signal based on
the semantics of the function. Formally, let ξ : D1 × D2 → D3 (with ξ ∈ Aux) be an application-
dependent signal transforming function9 and let s1 and s2 be two signals (called source sig-
nals), with value domains D1 and D2 respectively, and domains of definition Is1 = Is2 = Is;
the application of ξ to s1 and s2 yields a target signal sT over the value domain D3 defined as
sT (t) = ξ (s1(t), s2(t)) , ∀t ∈ Is. The target signal can then be referred to in the specification of
other properties. More precisely, let P be an instance of one of the property types seen in the
previous subsections (e.g., a data assertion), with ξ the signal transforming function defined
above for the source signals s1 and s2. We say that property P holds on the signal representing
the functional relationship between s1 and s2 captured by ξ iff P holds on the target signal sT
returned by the application of ξ.

For example, let us consider property pRSH-F:“The difference between the values of signal
s1 and signal s2 shall be equal to 1”, which contains two parts: a functional relationship part
“The difference between the values of signal s1 and signal s2. . . ” and a data assertion part “The
[difference . . .] shall be equal to 1”. This property is expressed in SFO as follows:

S
FO pRSH-F ∀t ∈ [0, |s|) : abs(s1(t)− s2(t)) = 1 (4.5)

Figure 4.7 shows the two source signals, s1 plotted with a continuous line () and s2 plotted
with a dash-dotted line (), as well as the target signal sT , plotted with a thick line (). Signal
sT is obtained by the application of the signal transforming function ξ defined as ξ((s1(t), s2(t)) ≡
abs (s1(t)− s2(t)),∀t ∈ Is. This signal is then used for the actual evaluation of the data asser-
tion contained in property pRSH-F, as if the latter was rewritten as “The value of signal sT shall
be equal to 1”; since signal sT is equal to 1 across its domain of definition, property pRSH-F
evaluates to true.

9To keep the notation light and without loss of generality, we only consider a signal transforming function with
arity 2.

48

4.2. Taxonomy of signal-based Temporal properties

b c

2

time (tu)

value

(a)

c

2

time (tu)

value

(b)

Figure 4.8: (a) A signal being in the state characterized by property pDAs in the interval [b,c]. (b)
A signal changing its value to 2 at time instant c, satisfying property pDAe.

4.2.4.2 Order Relationship

This type of signal relationships prescribes a sequence of events/states corresponding to signal
behaviors; in practice, it captures the precedence and response temporal specification patterns pro-
posed in the literature [DAC99], including their real-time extension [KC05]. More specifically,
a precedence property specifies that an event/state (cause) precedes another event/state (effect);
dually, a response property requires that an event/state (effect) responds to the occurrence of
another event/state (cause). Notice that a response property allows effects to occur without
causes, whereas a precedence property allows causes to occur without subsequent effects. Fur-
thermore, in the context of real-time systems, both a precedence and a response property can
include an additional constraint on the temporal distance between a cause and an effect.

When dealing with signals, the events/states used to express order relationships correspond
to specific signal behaviors, which can be further expressed (and identified) using one of the
property types seen above. More specifically, we define a signal event as a change in the signal
value [CP99] occurring at a specific time instant, whereas a signal state is a signal behavior that
holds over an interval delimited by two time boundaries or by the occurrence of two events.
In the following, we discuss the concepts of signal events/states in the context of the property
types described in the previous sections.

Data assertions The typical use of data assertions10 is to represent signal states, as in property
pDAs: “The signal value shall be greater than or equal to 2”. For example, figure 4.8a shows a
signal that satisfies this property in the interval [b,c].

Another formulation of this type of properties corresponds to signal events. As an example,
let us consider property pDAe: “The signal value shall become equal to 2”. Informally, this
property corresponds to a predicate that captures the event of the signal becoming equal to 2,

10For simplicity, in the following we consider data assertion properties defined on one time interval.

49

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

i.e., changing from a value different from 2 to the actual value of 2. This behavior can be seen
in the signal plotted in figure 4.8b: property pDAe holds at time instant c.

Notice that signal events can be used to characterize the boundaries of a signal state: for
example, the time instants delimiting the interval in which the state represented by property
pDAs holds correspond to the time instants in which the event represented by property pDAe
and by its negation (i.e., “signal s becoming different from 2”) occur.

Spike When a signal satisfies a spike property following the specification template (4.1) on
page 37, the spike behavior of the signal can be associated with three different events, corre-
sponding to the time instants in which the peak point and the two valley points of the spike
shape (see section 4.2.2) occur. The actual choice of the most relevant event among these three
is application-specific. Furthermore, the state induced by such a property type is defined over
the interval [VP1,VP2]; such a state lasts for a duration corresponding to the spike width w.

Oscillation When a signal satisfies an oscillation property following the specification tem-
plate (4.3) in section 4.2.3, the oscillatory behavior of the signal can be associated with distinct
events, corresponding to the time instants in which the extrema points of the oscillations occur.
The choice among these events is application-specific. Moreover, the state induced by such a
property type is defined over the interval bounded by the first and last observed extrema of the
oscillation.

Functional relationship between signals Similar to data assertions, functional relationship
between signals can represent either signal events (captured by a predicate “becomes”) or signal
states.

Formalization After defining the concepts of events and states associated with signal prop-
erty types, we are now ready to formalize the concept of order relationship between signal
behaviors.

Given a signal s and an instance P of one of the signal property types described above, we
define the signal event boolean projection of P on s as the predicate σBes,P (t), which evaluates to
true iff the event associated with the signal behavior specified in P occurs in signal s at time
instant t; similarly, we define the signal state boolean projection of P on s as the predicate σBss,P (t),
which evaluates to true iff the state associated with the signal behavior specified in P holds on
signal s at time instant t.

Given two signals s1 and s2 with domains of definition Is1 = Is2 = [0, r) and lengths |s1| =
|s2| denoted with |s|, and two signal-based properties P1 and P2, we say that the event captured
by P2 in s2 responds to (following the “response” pattern in [DAC99]) the event captured by P1

in s1 iff the following SFO formula evaluates to true:

∀t ∈ [0, |s|) : ↑ σBes1,P1
(t)→

(
∃k ∈ (t, |s|) : ↑ σBes2,P2

(k)
)

(4.6)

50

4.2. Taxonomy of signal-based Temporal properties

0 10 20 30 40
0

0.5

1

1.5

2

2.5

27
time (tu)

value

Figure 4.9: Signals s1 () and s2 () used to evaluate property pRSH-O; the property holds.

where ↑ denotes the rising edge operator, defined as ↑ s(t) ≡ s(t) = 1 ∧ ∃c ∈ (0, t) : ∀c′ ∈ (0, c) :
s(t− c′) = 0.

If the relevant behavior captured by a property results in a state instead of an event, the
formula above becomes:

∀t ∈ [0, |s|) : σBss1,P1
(t)→

(
∃k ∈ (t, |s|) : σBss2,P2

(k)
)

(4.7)

Similarly, we say that the event captured by P1 in s1 precedes (following the “precedence”
pattern in [DAC99]) the event captured by P2 in s2 iff the following formula evaluates to true:

∀t ∈ [0, |s|) : ↑ σBes2,P2
(t)→

(
∃k ∈ [0, t) : ↑ σBes1,P1

(k)
)

(4.8)

When the relevant behavior captured by a property results in a state instead of an event, the
formula above becomes:

∀t ∈ [0, |s|) : σBss2,P2
(t)→

(
∃k ∈ [0, t) : σBss1,P1

(k)
)

(4.9)

In some cases, an order relationship may prescribe a temporal distance between the cause
and the effect. We assume this distance to be specified as a bound of the form ./ n, where
./ ∈ Rel and n ∈ R. In this case the formulae above have to be extended to take the distance into
account, by conjoining the clause abs (k − t) ./ n to the consequent. For example, formula (4.6)
will become:

∀t ∈ [0, |s|) : ↑ σBes1,P1
(t)→

(
∃k ∈ (t, |s|) : ↑ σBes2,P2

(k) ∧ abs (k − t) ./ n
)

(4.10)

Notice that when one property induces a state and the other induces an event, the resulting
formula for the corresponding order relationship is obtained by opportunely combining the
occurrences of the signal boolean projection functions for states and events, following one of
the above templates.

Order relationship properties can be defined recursively, i.e., when the cause and/or effect
sub-property is also an order relationship. In these cases, we consider an event-based interpre-
tation of the cause/effect sub-property.

51

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

As an example of order relationship property, let us consider the following response prop-
erty pRSH-O: “If in signal s1 there is a spike with a maximum width of 30 tu and a maximum
amplitude of 1, then—within 10 tu—the value of signal s2 shall become less than 0.5”. Assum-
ing we use an event-based interpretation of both cause and effect sub-properties, we can rewrite
the property as pRSH-O′ : “If there is an event corresponding to [signal s1 having a spike with
a maximum width of 30 tu and a maximum amplitude of 1] then—within 10 tu—there shall be
an event corresponding to [signal s2 becoming less than 0.5]”. In this instance of the response
pattern, the cause is represented by the spike property “In signal s1 there is a spike with a max-
imum width of 30 tu and a maximum amplitude of 1”, whereas the effect is represented by the
data assertion property “Signal s2 shall become less than 0.5”; furthermore, the temporal dis-
tance between the cause and the effect can be at most 10 tu. We refer to the cause and effect
sub-properties as P1 and P2, respectively.

The specification of property pRSH-O in SFO is the following:

S
FO pRSH-O ∀t ∈ [0, |s1|) : ↑ σBes1,P1

(t)→(
∃k ∈ (t, |s2|) : ↑ σBes2,P2

(k) ∧ abs (k − t) ≤ 10
) (4.11)

where σBes1,P1
and σBes2,P2

are the signal event boolean projection predicates.
We evaluate the property with respect to the two signals shown in figure 4.9, s1 plotted with

a continuous line () and s2 plotted with a dash-dotted line (). In this example, we assume
that the signal boolean projection predicate for spike properties (used for the evaluation of the
cause sub-property) is defined such that it is true at the actual time instant at which the spike
peak point occurs (i.e., 20 tu). By looking at figure 4.9, we see that property pRSH-O holds
on s1 and s2 because the event captured by the effect sub-property (the change of value of s2

happening at time instant 27 tu) responds to the occurrence of the event associated with the
cause sub-property within the prescribed time bound (since abs (27 tu− 20 tu) = 7 tu < 10 tu).

4.2.4.3 Transient Behaviors

We consider transient signal behaviors (i.e., behaviors of a signal when changing from the cur-
rent value to its target value) as a special case of order relationship. This category includes rise
time (and fall time) and overshoot (and undershoot) properties.

Rise time (Fall time) We say that a signal exhibits a rising (dually, falling) behavior when its
value increases (decreases) towards a target value. Informally speaking, a property on the rise
(fall) time defines a constraint on the time by which the signal reaches the target value. More
specifically, it defines a constraint on the temporal distance between two events: 1) a (generic)
cause event, also called trigger event, that coincides with the signal starting to manifest a tran-
sient behavior; 2) an effect event that represents the signal reaching the target value.

Figure 4.10a depicts a signal exhibiting a rising behavior starting from time instant st . The
signal rises monotonically from the value s(st) and reaches the target value starget at time instant

52

4.2. Taxonomy of signal-based Temporal properties

c; the time interval [st , c] is called rise interval. The left bound of the rise interval, also called
trigger time, corresponds to the time instant at which the trigger event occurs. The right bound
of the rise interval corresponds to the occurrence of the effect event, in which signal s reaches
the target value. The trigger time can also be expressed in terms of an absolute time reference
value; in such a case, the trigger event is the event in which a special clock signal reaches a
certain value.

A rise time property defines a constraint on the right bound of the rise interval. More for-
mally, given two signals str and s with domains of definition Istr = Is = [0, r), let Ptr and P
be two signal-based properties. Property Ptr captures the trigger event defined in terms of the
behavior of str ; property P captures the event of s reaching the target value. A rise time property
bounds the rise time of s by a threshold RT ∈ N (indicated by the end-user); such a property
holds iff the following SFO formula evaluates to true:

∀st ∈ [0, |str |) : ↑ σBestr ,Ptr
(st)→

(
∃k ∈ [st , st + RT] : ↑ σBes,P (k)

)
(4.12)

A stricter definition requiring signal s to rise (strictly) monotonically can be expressed by adding
the conjunct ∀j ∈ [st , st + k) : ∀j′ ∈ (j, st + k] : s(j) < s(j′) to the consequent in the formula
above.

A fall time constraint can be expressed in a similar way, replacing the relational operators
with their duals.

As an example, let us consider the rise time property pRT: “If signal str becomes greater than
1, then signal s shall reach the target value of 2 within at most 8 tu”. The trigger event in this
property is represented by the data assertion property Ptr : “The value of signal str becomes
greater than 1”. The effect sub-property of this order relationship property can be specified
with the data assertion property P : “The value of signal s shall become greater than 2”. The
constraint on the rise time is 8 tu. Property pRT can be expressed in SFO as:

S
FO pRT ∀st ∈ [0, |str |) : ↑ σBestr ,Ptr

(st)→
(
∃k ∈ [st , st + 8] : ↑ σBes,P (k)

)
(4.13)

We evaluate property pRT with respect to signal s on the two signals shown in Figure 4.10b:
s1 plotted with a thick line () and s2 plotted with a thin line (). In the figure, an arrow
at timestamp 4 tu denotes the trigger time st corresponding to the trigger event captured by
property Ptr for signal str drawn with a dash-dotted line (). The maximum allowed value for
the right bound of the rise interval (st + RT = 4 + 8 = 12 tu) is indicated with a red, vertical
dashed line. Signal s1 satisfies the property because it reaches the target value (2) at time instant
9 tu < st +RT . Signal s2 violates the property because it does not reach the target value by time
instant st + RT = 12 tu.

The variant pRT-monot of property pRT with a monotonicity constraint can be expressed in
SFO as:

S
FO pRT-monot ∀st ∈ [0, |str |) : ↑ σBestr ,Ptr

(st)→(
∃k ∈ [st , st + 8] : ↑ σBes,P (k) ∧ ∀j ∈ [st , st + k) : ∀j′ ∈ (j, st + k] : s(j) < s(j′)

) (4.14)

53

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

st c st + RT

starget

time (tu)

value

(a)

0 2 4 6 8 10 12 14
0

1

2

3

9
time (tu)

value

(b)

Figure 4.10: (a) Main concepts related to the specification of rise time. (b) two signals used to
evaluate property pRT: signal s1 () satisfies the property, whereas s2 () violates it.

Overshoot (Undershoot) We say that a signal exhibits an overshoot (dually, undershoot) behav-
ior when it exceeds (goes below) its target value11. Informally speaking, an overshoot property
specifies the maximum signal value, above the target value, that a signal can reach when over-
shooting within a certain time interval; an undershoot property is defined dually.

Figure 4.11a depicts a signal exhibiting an overshoot behavior starting from time instant st .
This time instant is the trigger time and can be specified in different ways, as discussed above
in the context of rise time properties. The signal rises from the value s(st) and overshoots the
target value starget after time instant c, reaching the maximum magnitude smax at time instant
b. The time interval [c, c + OI] is called overshoot interval; its width OI is specified by the end-
user. This signal overshoots the target value starget by an overshoot value Os = smax − starget . An
overshoot property defines a boundary on the overshoot value within the overshoot interval;
such a boundary is expressed either with an absolute value or with a relative value with respect
to the target value.

Similarly to the case of rise time specification, given two signals str and s, let Ptr and P
be two signal-based properties. Property Ptr captures the trigger event defined in terms of the
behavior of str ; property P captures the event of signal s reaching the target value. An overshoot
property bounds the overshoot of s by a threshold OI ∈ N; such a property holds iff the following
SFO formula evaluates to true:

∀st ∈ [0, |str |) : ↑ σBestr ,Ptr
(st)→ (∃k ∈ [st , |s|) : ↑ σBes,P (k)

∧∀i ∈ [k, k + OI] : s(i) ≤ smax)
(4.15)

A monotonicity constraint can be added to the formula above in the same way as done for
the case of rise time properties. An undershoot constraint can be expressed in a similar way,
replacing the relational operators with their duals.

11Other definitions of overshoot also constrain the behavior of the signal after it exceeds (goes below) the target
value, e.g., by requiring it to converge back to the target value.

54

4.2. Taxonomy of signal-based Temporal properties

st c b c+ OI

starget

smax

OI

time (tu)

value

(a)

0 2 4 6 8 10 12 14
0

1

2

3

4

2 5 7 11 13
time (tu)

value

(b)

Figure 4.11: (a) Main concepts related to the specification of overshoot. (b) two signals used to
evaluate property pOSH: signal s1 () satisfies the property, whereas s2 () violates it.

As an example, let us consider property pOSH: “If signal str becomes greater than 1, then
signal smay overshoot the target value of 1 by at most 2 within an overshoot interval of at most
6 tu”. As we did above for the pRT property, the trigger event in pOSH is represented by the data
assertion property Ptr. The remaining part of the property represents the effect sub-property.
The corresponding SFO formula is the following:

S
FO pOSH ∀st ∈ [0, |str |) : ↑ σBestr ,Ptr

(st)→ (∃k ∈ [st , st + |s|) : ↑ σBes,P (k)

∧∀i ∈ [k, k + 6] : s(i) ≤ 3)
(4.16)

The variant of property pOSH-monot with a monotonicity constraint can be expressed in
SFO as:

S
FO pOSH-monot ∀st ∈ [0, |str |) : ↑ σBestr ,Ptr

(st)→ (∃k ∈ [st , st + |s|) : ↑ σBes,P (k)

∧∀i ∈ [k, k + 6] : s(i) ≤ 3 ∧ ∀j ∈ [st , st + k) : ∀j′ ∈ (j, st + k] : s(j) < s(j′))
(4.17)

We evaluate property pOSH with respect to signal s on the two signals shown in figure 4.11b:
s1 plotted with a thick line () and s2 plotted with a thin line (). In the figure, an arrow
at timestamp 2 tu denotes the trigger time st corresponding to the trigger event captured by
property Ptr for signal str , drawn with a dash-dotted line (). After this time instant, both s1

and s2 rise reaching the target value of 1 at time instants 7 tu and 5 tu, respectively. We consider
a threshold expressed as a relative value with respect to the target value; i.e., smax = starget +2 =
1 + 2 = 3. The maximum allowed value for the right bound of the overshoot interval for s1

(7 tu + OI = 7 tu + 6 tu = 13 tu) is indicated with a red, vertical dashed line. Similarly, in the
case of s2, the right bound for the overshoot interval (5 tu + OI = 5 tu + 6 tu = 11 tu) is drawn
with a blue, dotted vertical line. Signal s1 satisfies the property because its overshoot value is
below the threshold within the overshoot interval [7 tu, 13 tu]; signal s2 violates the property as
its overshoot value exceeds the threshold within the overshoot interval [5 tu, 11 tu].

55

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

4.2.4.4 Alternative formalizations

The capability of expressing functional relationship properties in STL and STL* depends on the
possibility, in the chosen language, of expressing a certain property type on the target signal
resulting from the transforming function.

Similarly, expressing order relationship properties in STL and STL* requires that the cause
and effect sub-properties can be expressed in the chosen formalism. For example, the cause
sub-property of property pRSH-O cannot be expressed in STL; however, it can be expressed in
STL* as explained in section 4.2.2 (page 41).

The same remarks made above for the general case of order relationships apply also to the
case of rise time and overshoot properties. In addition, we remark that the specification of such
properties containing a monotonicity constraint requires keeping track of the signal values seen
throughout the rise/overshoot interval; this is not supported in STL but can be expressed in
STL* using the freeze operator.

4.3 Expressiveness

Another challenge in using Signal-based Temporal Properties for expressing requirements of
CPSs is the expressiveness of the specification languages used for defining such properties.
Starting from the seminal work on STL, there have been several proposals of languages that
extend more traditional temporal logics like LTL to support the specification of signal-based
behaviors. For example, in the previous section, we formally specified all property types in-
cluded in our taxonomy using SFO and, when applicable, also using STL and STL*. All these
languages have different levels of expressiveness when it comes to describing certain signal
behaviors.

In this section, we summarize and discuss the expressiveness of these state-of-the-art tem-
poral logics with respect to the property types included in our taxonomy. We remark that we do not
aim to provide a complete and formal treatment of the expressiveness of these temporal logics;
our main goal is to guide engineers to choose a specification formalism based on their needs in
terms of the property types to express.

Table 4.1 provides an overview of the expressiveness of STL, STL*, and SFO with respect
to the property types included in the taxonomy. The “+” and “−” symbols denote, respec-
tively, support (or lack of support) for a certain property type; the “±” symbol indicates that
the property type can be expressed under certain assumptions. Note that in the table, we also
list property subtypes based on a particular feature. For example, “SPK with amplitude” indi-
cates a spike property type (see figure 4.1 for the acronyms) with a constraint on the amplitude.
In addition, we list as property subtypes (e.g., “SPK pre-computed derivatives”) the three def-
initions to express the predicates for local extrema for spikes and oscillations (introduced in
section 4.2.2, page 38). In the second column, we provide examples of properties corresponding
to the property (sub)type indicated in the first column.

56

4.3. Expressiveness

Table 4.1: Expressiveness of STL, STL*, and SFO with respect to the property types included in
the taxonomy in Fig. 4.1

Property Type Example
Formalism

STL STL* SFO

Data assertions (DA) pDA + + +

Spikes
SPK with amplitude pSPK1 − + +

SPK with slope n/a − + +
SPK with width pSPK1 − ± +

SPK - punctual derivatives − − +
SPK analytical formulation − + +

SPK pre-computed derivatives pSPK3 + + +
Oscillations

OSC with amplitude pOSC − ± +
OSC with period pOSC ± ± +

OSC punctual derivatives − − +
OSC analytical formulation − + +

OSC pre-computed derivatives + + +

Relationship between signals
RSH-F pRSH-F ± ± +
RSH-O pRSH-O ± ± +

Transient Behaviors
RT (FT) with monotonicity pRT-monot − + +

RT (FT) pRT + + +
OSH (USH) with monotonicity pOSH-monot − + +

OSH (USH) pOSH + + +

At a glance, the table shows that SFO can be used to express all the property types con-
sidered in this paper. STL* can be used to express most of the property types included in our
taxonomy, provided that some assumptions are made (see below). STL cannot be used to ex-
press all the property types; this is due to the lack of support for referring to signal values at an
instant in which a certain property was satisfied. This limitation impacts on the specification of
properties that constrain signal values at different time instants, such as spike and oscillation
properties. In the following, we discuss the expressiveness for the various property types in
details, mainly focusing on STL and STL*.

Data assertion All three formalisms can express data assertion properties. This is expected
since the three logics we have considered were proposed with the goal of expressing predicates
on a signal value.

57

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

Spike A formalism supports our definition of spike properties if it allows for the definition of
1) two predicates for detecting local extrema, and 2) constraints on features of the signal shape
(e.g., amplitude).

STL can be used to define the predicates for detecting local extrema only through definition 3
(as indicated with the “+" mark in the table), which assumes the availability of the first and
second order derivatives of a signal. Furthermore, it cannot be used to express spike properties
that constrain the spike amplitude or slope, since they refer to signal values at different points in
the signal timeline. For example, the only spike property among those presented in the previous
section that can be expressed in STL is pSPK3, because it uses pre-computed derivative signals
and does not constrain the spike amplitude.

STL* can be used to define the predicates for detecting local extrema using two of the defini-
tions we propose (definition 2 - analytical formulation, and definition 3 - pre-computed deriva-
tives). Furthermore, it can be used to express constraints on the different features of the signal
shape. However, to do so, one has to assume the knowledge of the signal shape, since it uses
the two components of the width w1 and w2 as defined on page 37. However, making such
an assumption in practice is not reasonable because typically the shape of a spike is unknown.
Finally, since STL* (and STL) cannot refer to the value of the signal at arbitrary time points,
properties defined using local extrema expressed according to definition 1 (punctual deriva-
tives) cannot be specified.

Oscillation The expressiveness results in terms of oscillation properties mirror those for spike
properties, since the former property type can be seen as an extension of the latter.

STL can be used to express oscillation properties when the oscillatory behavior is defined
through the sequence of alternating local extrema, in which the latter are expressed using defi-
nition 3. However, as in the case of spike properties, STL cannot be used to express constraints
on the oscillation amplitude.

Again, similarly to the case of spike properties, STL* supports definition 2 and definition 3
for defining local extrema and can be used to express constraints on the different features of
an oscillatory behavior. However, such formulations (including the one based on definition 3
for STL) require to assume that 1) the oscillation is regular; 2) its period is known a priori.
These assumptions are required to express distance constraints between local extrema. Once
again, in practice these assumptions are not realistic because typically the shape of an oscillatory
behavior is unknown.

Relationship between signals Expressing functional relationship properties boils down to
expressing a certain property type on the target signal resulting from the transforming function.
The type of the property in which the target signal is used ultimately affects (e.g., in case of a
spike property) the expressiveness for this type of properties. Furthermore, one has to consider
whether the transformed (target) signal is available as a pre-computed signal or as function of
other signals; in the latter case, only SFO supports function symbols.

58

4.3. Expressiveness

A necessary requirement to express order relationship properties is the support for temporal
operators that can capture the precedence and response temporal specification patterns [DAC99].
This is possible in STL and STL* through the “Until” operator and in SFO by means of explicit
quantification on the time variable. Another requirement is that the properties corresponding
to the “cause” and “effect” of an order relationship can be expressed in the chosen formalism;
as shown in Table 4.1, only SFO fulfills such a requirement.

Transient behaviors Transient behavior properties without monotonicity constraints can be ex-
pressed with all three formalisms, assuming the trigger property can be expressed in the chosen
formalism. When a monotonicity constraint is used (as it is the case in properties pRT-monot and
pOSH-monot), properties cannot be expressed in STL because one cannot compare the value of
the signals at two different time instants.

Monitoring algorithms and tools When discussing the expressiveness of specification lan-
guages, it is also important to review the complexity of the corresponding verification algo-
rithms and the availability of tools implementing them. Below we discuss the computational
complexity of tools for (offline) monitoring of STL, STL*, and SFO properties; we focus on moni-
toring because it is one of the most used V&V techniques for CPSs [BDD+18].

The complexity of monitoring STL is O(k · n) where k is the number of sub-formulae and
n is the number of intervals on which the signal is defined [MN04]. For STL*, the monitoring
complexity is (similarly to STL) polynomial in the number of intervals on which the signal is
defined and the size of the syntactic parse tree of the formula; however, it is exponential in
the number of nested freeze operators in the formula [BDŠV14]. The monitoring complexity of

SFO is 2(m+n)2O(k+l)

, where n is the length of the trace, m is the length of the formula, k is the
number of quantifiers in the formula, and l is the number of occurrences of function symbols in
the formula; for a fragment of SFO in which intervals have bounded duration, the complexity

is n · 2(m+j)2O(k+l)

, where n,m, k, l are defined as above, and j is the maximum number of linear
segments in the trace during any time period as long as the sum of the absolute values of all
time constants in the formula [BFHN18]. In general, one can see that the complexity of the
monitoring problem becomes harder for more expressive languages like STL* and SFO.

In terms of monitoring tools, STL is supported both by offline tools—such as AMT [NLM+18,
NM07] (a stand-alone GUI tool with qualitative semantics), Breach [Don10] and S-Taliro [FSUY12]
(two Matlab ® plugins with quantitative semantics)—and by online tools, such as the rtamt li-
brary [NY20], which automatically generates online monitors with robustness semantics from
STL specifications.

For STL*, a prototype implementation in Matlab is mentioned in the original paper [BDŠV14]
but it has not been made available; furthermore, robustness analysis is supported by an exten-
sion of the Parasim tool [BVvF13]. No tool implementation is available for SFO at the time of
writing this paper.

59

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

Recently, some of the authors have developed SB-TemPsy [BMB+20], a model-driven trace
checking approach for the property types included in the taxonomy proposed in this chapter.
SB-TemPsy includes SB-TemPsy-DSL, a domain-specific specification language for SBTPs, as well
as the corresponding monitoring algorithm and tool, called SBTemPsy-Check. The complexity of
the pattern-specific trace checking algorithm implemented in SBTemPsy-Check is polynomial in
the size of the trace for all property types included in this taxonomy except for data assertions,
for which the complexity is linear (in the size of the trace).

In conclusion, with respect to the property types identified in our taxonomy, STL has limited ex-
pressiveness, restricting its application in practice to simple property types (e.g., data assertion);
nevertheless, it has a good support from a number of tools. STL* is more expressive than STL
provided that some assumptions (e.g., on the signal shape) are made; however, such assump-
tions are impractical. In addition, STL* suffers from the limited tool support. SFO is the most
expressive language for the property types defined in our taxonomy; however, its application in
V&V activities is still challenging given the computational complexity of associated monitoring
algorithms and the lack of tools.

4.4 Application to an Industrial Case Study

We applied our taxonomy of SBTPs to classify the requirements specifications of a case study
provided by our industrial partner LuxSpace Sàrl12, a system integrator of micro-satellites. Our
goal is to show (1) the feasibility of expressing requirements specifications of a real-world CPS
using the property types included in our taxonomy; (2) the completeness of our taxonomy, so
that all requirements specifications of the case study can be defined using the property types
included in our taxonomy.

The case study deals with a satellite sub-system called Attitude Determination and Control
System (ADCS), which is responsible for autonomously controlling the attitude of the satellite,
i.e., its orientation with respect to some reference point. The ADCS is mainly composed of
sensors (e.g., gyroscope, sun sensors), actuators (e.g., reaction wheels, magnetic torquer), and
on-board software (e.g., control algorithms). During flight, the ADCS can be in four different
modes (represented with an enumeration as integer values), which determine the capabilities
of the satellite: idle (IDLE), Safe Mode (SM), Normal Mode Coarse (NMC), and Normal Mode Fine
(NMF); the logic controlling the switch among modes is encoded in a state machine. Overall,
this sub-system has the typical characteristics of a CPS, with a deep intertwining of hardware
and software.

The documentation of the ADCS includes 41 specifications written in English. Two of the
authors carefully analyzed these specifications, discussed and (in some cases) refined them with
a domain expert, and finally classified them using one of the property types in our taxonomy;
the resulting classification was then validated by the domain expert. Table 4.2 shows the num-
ber of specifications classified for each property type (column “Total (Main)”); since properties

12https://luxspace.lu/

60

4.4. Application to an Industrial Case Study

Table 4.2: Distribution of property types in the case study

Property Type Total (Main) Total (Sub)

Data assertion 7 49
Spike 1 1
Oscillation 1 0
Functional relationship 17 0
Order relationship 15 0
B Fall Time 0 1

Table 4.3: Data assertion properties in the case study

ID Property

Untimed Data Assertions

P1
The value of signal currentADCSMode shall be equal to NMC, NMF or SM

P2
The value of signal pointing_error_above_20 shall be equal to 0 or 1

P3
The value of signal pointing_error_under_15 shall be equal to 0 or 1

P4
The value of signal RWs_angular_velocity shall be equal to 816.814 rad/s

Time-Constrained Data Assertions

P5
Starting from 2000 s, the value of signal pointing_error shall be less than 2°

P6
Between 1500 s and 2000 s, the value of signal RWs_angular_momentum shall be less than
0.35 N ·m · s

P7
At 2000 s the value of signal pointing_error shall be between 0° and δ°

of type functional and order relationship include additional properties as sub-properties (e.g.,
the type of the “cause” or “effect” sub-property in an order relationship), we indicate their num-
ber separately under column “Total (Sub)”. From the table we can conclude that all requirements
specifications of the case study could be classified using the property types included in our taxonomy;
this is an indication of the completeness of our taxonomy. In the following we provide some
insights for each property type, derived from our classification exercise. We remark that the sig-
nal names used in the specifications correspond to the signals of a FES (Functional Engineering
Simulator) in Matlab; when possible, we preserved the original signal name.

61

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

Table 4.4: Spike and oscillation properties in the case study

ID Property

Spike

P8
Between 2000 s and 7400 s, in signal pointing_error there shall exist a spike with a max-
imum width of 20 s

Oscillation

P9
Between 2000 s and 7400 s, signal pointing_error shall exhibit oscillations with a period
greater than or equal to 0.01 s

Data assertion properties (Table 4.3) This is the most represented category, if one considers
the sub-properties included in the properties of type functional and order relationship. The
three time-constrained data assertions show different interval types used in such properties. For
example, in property P6 both boundaries of the interval are explicitly mentioned. In property
P5, only the left boundary is explicitly indicated (with the expression “Starting from 2000 s”),
whereas the right boundary is implicit and is assumed to be the end of the (finite) signal. Finally,
in property P7 the interval is singular (i.e., the two boundaries coincide) and corresponds to a
single time point (as in the expression “At 2000 s”). To express the latter using one of the logic-
based formalizations illustrated above, which does not allow singular intervals (e.g., STL), one
has to rewrite a singular interval [a, a] as [a− ε, a+ ε], for a small ε > 0.

We remark that time-constrained data assertions can be used to specify system-level proper-
ties such as system stabilization. For example, property P5 was originally expressed as “The sta-
bilization time of signal pointing_error, when stabilizing below 2 degrees, shall be under 2000 s”;
through the interaction with the domain expert, we further refined it into the version shown in
Table 4.3. The refinement step was straightforward and consisted of rewriting the system-level
property (i.e., stabilization) into a low-level one (of type “data assertion”), by expanding the
definitions of domain concepts.

Spike and oscillation properties (Table 4.4) We identified one spike property (P8); further-
more an additional spike property is included in an order relationship property (P41). Both
spike properties refer to one feature (“width”).

We also identified one oscillation property (P9), which refers to the “period” feature. Ini-
tially, the property was defined in the frequency domain (which we did not discuss in this
paper). After discussing it with the domain expert, we converted it into a property defined
on the time domain by changing the corresponding constraint. This type of transformation is
straightforward as it only requires to convert the units in the property (e.g., a 100 Hz frequency
is converted into a 0.01 s period).

62

4.4. Application to an Industrial Case Study

Table 4.5: Properties of type “functional relationship” in the case study

ID Property Subtype

P10
The modulus of signal sat_init_angular_velocity_degree shall be less than or
equal to 3 °/s

DA

P11
After 2000 s, the modulus of signal sat_real_angular_velocity shall be less than
or equal to 1.5 °/s

DA

P12
The modulus of signal sat_target_attitude shall be equal to 1 DA

P13
After 2000 s, the modulus of signal sat_target_angular_velocity shall be less
than or equal to 1.5 °/s

DA

P14
The modulus of signal sat_estimated_attitude shall be equal to 1 DA

P15
After 2000 s, the modulus of signal sat_estimated_angular_velocity shall be less
than or equal to 1.5 °/s

DA

P16
The modulus of signal sat_angular_velocity_measured shall be less than or
equal to 1.5 °/s

DA

P17
The modulus of signal earth_mag_field_in_body_measured shall be less than or
equal to 60 000 nT

DA

P18
The modulus of signal sun_direction_ECI shall be equal to 1 DA

P19
After 2000 s, the modulus of signal sat_target_angular_velocity_safe_spin_mode
shall be less than or equal to 1.5 °/s

DA

P20
The modulus of signal RWs_torque shall be less than or equal to 0.015 N ·m DA

P21
The elements sum of vector sun_sensor_availability elements shall be at most
3

DA

P22
At 2000 s, the angular difference between signals q_real and
q_estimate_attitude shall be between 0° and δ°

DA

P23
At 2000 s, the angular difference between signals q_target_attitude and
q_estimate shall be between 0° and δ°

DA

P24
The difference between signal sat_estimated_angular_velocity and signal
sat_real_angular_velocity shall be between 0 °/s and δ°/s

DA

P25
The difference between signal sat_angular_velocity_measured and signal
sat_real_angular_velocity shall be between 0 °/s and δ°/s

DA

P26
The difference between signal RWs_torque and the derivative of signal
RWs_angular_momentum shall be equal to 0 N ·m

DA

63

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

Table 4.6: Properties of type “order relationship” in the case study

ID Property SubType

P27
If the value of signal not_Eclipse is equal to 0, then the value of signal sun_currents
shall be equal to 0

DA-DA

P28
If the value of signal pointing_error_under_15 is equal to 1, then the value of signal
pointing_error_above_20 shall be different from 1

DA-DA

P29
If the value of signal pointing_error_above_20 is equal to 1, then the value of signal
pointing_error_under_15 shall be different from 1

DA-DA

P30
If the value of signal RWs_command is equal to 0, then the value of signal
RWs_angular_velocity shall monotonically decrease to 0 rad/s within 60 s

DA-FT

P31
If the value of signal RWs_angular_momentum is greater than 0.35 N ·m · s, then
the value of signal RWs_torque shall be equal to 0 N ·m

DA-DA

P32
If the value of signal currentADCSMode is equal to NMC, then the value of signal
control_error shall be greater than or equal to 10°

DA-DA

P33
If the value of signal control_error is less than 10°, then the value of signal cur-
rentADCSMode shall be equal to NMF

DA-DA

P34
If the value of signal currentADCSMode is equal to NMF, then the value of signal
control_error shall be less than or equal to 15°

DA-DA

P35
If the value of signal currentADCSMode is equal to NMF, then if the value of sig-
nal RWs_command becomes greater than 0, then the value of signal pointing_error
shall be less than 2° within 180 s

DA-DA-DA

P36
If the value of signal currentADCSMode is equal to NMF, then if the value of sig-
nal RWs_command becomes greater than 0, then the value of signal control_error
shall be less than 0.5° within 180 s

DA-DA-DA

P37
If the value of signal currentADCSMode is equal to NMF, then if the value of
signal Not_eclipse becomes 1, then the value of signal knowledge_error shall be
less than 1 within at most 900 s

DA-DA-DA

P38
If the value of signal currentADCSMode is equal to SM, then if the value
of signal RWs_command becomes greater than 0, then the value of signal
RWs_angular_momentum shall be less than 0.25 N ·m · s within at most 900 s

DA-DA-DA

P39
If the value of signal currentADCSMode is equal to SM, then the difference be-
tween signal real_Omega and signal target_Omega shall be equal to 0 within at
most 10 799 s

DA-DA

P40
If the value of signal not_Eclipse is equal to 1, then the value of signal sun_angle
shall be less than 45°

DA-DA

P41
If, starting from 16 200 s, the value of signal pointing_error goes below the point-
ing accuracy threshold of 2°, then in signal pointing_error there shall exist a spike
with a maximum width of 600 s in an interval of 5400 s

DA-SPK

64

4.4. Application to an Industrial Case Study

All three properties include an observation interval. In properties P8 and P9, it is defined
explicitly using absolute time boundaries (with the expression “between 2000 s and 7400 s”). In
property P41, the observation interval is defined through the event representing the left bound-
ary (denoted with “the value of signal pointing_error after 16 200 s goes below the pointing ac-
curacy threshold of 2°”) and the duration (5400 s) representing the right boundary.

Functional relationship properties (Table 4.5) These properties were expressed using several
signal transforming functions, such as modulus (P10–P20), vector elements sum (P21), angular
difference (P22–P23), scalar difference (P24–P26), and differentiation (P26). Notice that property
P26 contains nested applications of signal transforming functions (i.e., the second operand of
the scalar difference is the result of the application of the derivative).

In all properties, the signal resulting from the application of the transforming function is
used in a data assertion property (see column “Subtype” in Table 4.513).

Order relationship properties (Table 4.6) All the order relationship properties we classified
were instances of the “response” pattern (see section 4.2.4.2); we did not encounter any instance
of the “precedence” pattern.

Some properties (P35–P38) contain nested properties of type “order relationship”, meaning
that the effect of the response pattern is represented by another property of type “order relation-
ship”. For example, in property P36, the top-level response property has “the value of signal
currentADCSMode is equal to NF” as cause and “if the value of signal RWs_command becomes
greater than 0, then the value of signal pointing_error shall be less than 2°” as effect. The latter is
another response property that can be further decomposed into the cause “the value of signal
RWs_command becomes greater than 0” and the effect “the value of signal pointing_error shall
be less than 2°”. The same group of properties also includes a temporal distance constraint
(expressed with “within”) as part of the nested response property.

As shown in column “Subtype” of Table 4.6, all the sub-properties used as “cause” and
the vast majority of the sub-properties used as “effect” were data assertions. For example, in
property P27 both the cause “the value of signal not_Eclipse is equal to 0” and the effect “the
value of signal sun_currents shall be equal to 0” are data assertions. This is reflected in the third
column of Table 4.6, with the notation “DA-DA”.

Regarding transient behaviors, we only encountered one property of type “fall time”, used
as effect of the response property P30. Other types of properties (e.g., rise time, overshoot) were
not present in this case study.

Summing up, through this case study we have shown the feasibility of expressing require-
ments specifications of a real-world CPS using the property types included in our taxonomy. In
the vast majority of the cases, the mapping from a specification written in English to its corre-
sponding property type defined in the taxonomy was straightforward. In two cases, the specifi-
cations had to be refined, either by expressing a system-level property into a low-level one (e.g.,

13See Figure 4.1 for the acronyms used in column “Subtype” of Tables 4.5 and 4.6.

65

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

stabilization being expressed as a (time-constrained) data assertion) or by converting a property
defined in the frequency domain into the corresponding one defined in the time domain (e.g.,
in the case of an oscillation property); both types of refinement were simple and intuitive (with
the help of a domain expert). Furthermore, the case study has shown the completeness of our
taxonomy, since all requirements specifications of the case study could be classified using the
property types included in our taxonomy.

Guided by the mapping to one of the property types included in our taxonomy, and by
means of the formalization presented in section 4.2, an engineer can obtain a formal specifica-
tion of a property (e.g, in SFO), which can then be used in the context of V&V activities (e.g., as
test oracle).

Threats to validity The results regarding the feasibility of expressing requirements specifica-
tions of a real-world CPS and the completeness of our taxonomy, have been obtained through one
large industrial case study, involving a domain expert; this is a threat to the generalization of the
results. We tried to mitigate this threat by selecting a case study with a rich set of requirements
extracted from the documentation of a complex, production-grade system. Such requirements
are representative, in many ways, of those defined in the satellite and other cyber-physical do-
mains. Nevertheless, some CPS domains (e.g., healthcare) may have specific types of require-
ments (e.g., supporting frequency-domain in the temporal specifications), which could lead to
different results.

4.5 Applications

In this section, we discuss how the main contributions of the papers can support the research
community and practitioners working in the CPS domain.

Application of the taxonomy The taxonomy of signal-based temporal properties can be used
by researchers to design new specification languages, whose constructs can be directly mapped
to the main property types identified in the taxonomy. This type of impact has been already
observed for similar contributions in the literature, such as the seminal work of [DAC99] on
temporal specification patterns, which has influenced the design of many domain-specific lan-
guages for temporal specifications (e.g., Temporal OCL [KT13], OCLR [DBB14], VISPEC - graph-
ical formalism [HMF15], TemPsy [DBB17a], ProMoboBox - property language [MVDS20],
FRETISH [GPMS20]), and the work on service provisioning patterns [BGPS12], which has led
to the design of new specification languages and tools [BGS13, BBG+14, BGK14, BGKSP14,
BBB19]. For instance, as mentioned in section 4.3, some of the authors have already developed
SB-TemPsy-DSL [BMB+20], a domain-specific specification language for SBTPs based on the
taxonomy proposed in this chapter.

The property types included in our taxonomy can also be used to assess the expressiveness
of existing languages, in a way similar to what we have done in section 4.3. By doing so, re-

66

4.6. Related Work

searchers can identify expressiveness gaps in existing languages, which could then be extended
to support specific constructs. For instance, the motivating example for the development of
STL* [BDŠV14] was the impossibility of expressing oscillatory behaviors in STL.

Furthermore, practitioners can use the taxonomy as a reference guide to systematically iden-
tify and characterize signal behaviors, so that the latter can be defined precisely and used correctly
during the development process of CPSs (e.g., when defining system requirements or test ora-
cles).

Application of the logic-based characterization Researchers can leverage the logic-based char-
acterization of the property types included in our taxonomy to define the formal semantics of the
constructs of a new language, which has been inspired by the taxonomy itself. In this sense,
the logic-based characterization can guide the implementation of the core, pattern-specific algo-
rithms of a verification tool, which can be used for checking properties expressed in a language
containing constructs derived from the property types included in our taxonomy.

For instance, the formal semantics of the aforementioned SB-TemPsy-DSL language and the
corresponding trace checking algorithm implemented in SBTemPsy-Check [BMB+20] have been
developed based on the logic-based characterization introduced in this chapter.

Expressiveness results The expressiveness results of state-of-the-art temporal logics with re-
spect to the property types included in our taxonomy, presented in section 4.3, can be used
by practitioners to carefully select the language to use for defining SBTPs, based on the type of
requirements they are going to define, the expressiveness of the candidate specification lan-
guage(s), and the availability of suitable tools.

4.6 Related Work

To the best of our knowledge, this is the first work that presents a comprehensive taxonomy of
Signal-based Temporal Properties describing signal behaviors in the CPS domain. The closest
work is the taxonomy of automotive controller behaviors presented in [KJD+16], in which be-
haviors are captured in ST-Lib, a catalogue of formal requirements written in STL. Although the
ST-Lib catalogue contains several types of Signal-based Temporal Properties (e.g., spike, over-
shoot, rise time), the treatment of some property types is limited (e.g., oscillatory behaviors are
only discussed for the case of short-period behaviors, i.e., ringing). Furthermore, as we have
shown in section 4.2.2, the formalization of spike properties proposed in [KJD+16] has some
limitations. A specific type of Signal-based Temporal Properties (i.e., oscillations) is discussed
in [BDŠV14] and used as a motivation for introducing STL*.

Similarly to what we did in section 4.2, most of the papers dealing with the specification
or verification of signal-based temporal properties also include examples of such properties
written using a specific temporal logic. We systematically reviewed the example properties,
used throughout this chapter, dealing with specification, verification, and monitoring of CPS,

67

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

cited in a recent survey on these topics [BDD+18]; we excluded papers using spatio-temporal
and frequency domain properties since they are out of the scope of this work. Table 4.7 shows,
for each of the reviewed papers, the property types (from our taxonomy) to which the examples
included in this chapter correspond, as well as the temporal logic used for their specification;
treatment or lack thereof of a property type is denoted by a “+” or “-” symbol, respectively.
One can see that data assertion and relationship between signals are the most common property
types covered in the literature, whereas transient behaviors (e.g., rise time, overshoot) properties
are the least common; spike and oscillation properties have a similar coverage.

To summarize, we propose in this chapter the first comprehensive taxonomy of SBTPs, for-
malized in a consistent and precise manner, which accounts for all reported property types in
the literature.

4.7 Summary

Requirements of cyber-physical systems are usually expressed using Signal-based Temporal
Properties, which characterize the expected behaviors of input and output signals processed
by sensors and actuators. Expressing such requirements is challenging because of the many
ways to characterize a signal behavior (e.g., using certain features). To avoid ambiguous or in-
consistent specifications, we argue that engineers need precise definitions of such features and
proper guidelines for selecting the features most appropriate in a certain context. Furthermore,
given the broad variation in expressiveness of the specification languages used for defining
Signal-based Temporal Properties, our experience indicates that engineers need guidance for
selecting the most appropriate specification language, based on the type of requirements they
are going to define and the expressiveness of each language. To tackle these challenges, in this
chapter we have presented a taxonomy of the most common types of Signal-based Temporal
Properties, accompanied by a comprehensive and detailed description of signal-based behav-
iors and their precise characterization in terms of a temporal logic (SFO). Engineers can rely on
such characterization to derive—from informal requirements specifications—formal specifica-
tions to be used in various V&V activities. Furthermore, we have reviewed the expressiveness
of state-of-the-art signal-based temporal logics (i.e., STL, STL*, SFO) in terms of the property
types identified in the taxonomy, while also taking into account the complexity of monitoring
algorithms and the availability of the corresponding tools. Our analysis indicates that SFO is
the most expressive language for the property types of our taxonomy; however, the application of SFO
in V&V activities is still challenging given the computational complexity of the corresponding
monitoring algorithm and the lack of tools. We have also applied our taxonomy to classify the
requirement specifications of an industrial case study in the aerospace domain. The case study
has shown the feasibility of expressing requirements specifications of a real-world CPS using
the property types included in our taxonomy, and has provided evidence of the completeness
of our taxonomy.

68

4.7. Summary

Table 4.7: Coverage of property types (from our taxonomy, see figure 4.1 for acronyms) in ex-
ample specifications from the literature.

Reference Formalism DA SPK RT (FT) OSH (USH) OSC RSH

[MN04] STL + - - - - +
[MN13] STL/PSL + - + - - +

[KJD+16] PSTL + + + + - +
[BDŠV14] STL* + - - - + -

[AF10] MTL + - - - - +
[AFS+13] MTL + - - - - +
[ARB+17] CTMTL + - - - - -
[ARB+17] XCTL + - - - - +
[ARB+17] CLTL + - - - - +
[BGK+13] STL + + - - - +

[AH15] STL + - - - - +
[AH15] AVSTL + - - - - +
[BBN13] STL + - - - - +

[BBNS15] STL + + - - + +
[BCMT09] KSL + - - - - +
[BMS15] MITL + - - - - -
[BBS+14] MITL + - - - - -

[DDG+17] STL + - - - + +
[DDG+15] STL + - - - + +
[DZS+15] MTL + - - - - -
[DM10] STL + - - - - +

[DDD+15] STL + - - - - -
[Fer16] TRE + + - - - +

[HMF15] STL + - - - - +
[JBGN16] STL + - - - - +
[JDJS14] STL + - - - - +
[JDJS14] PSTL + - - - - -

[CFMS15] MTL + - - - - +
[NSF+10] MTL + - - - - +
[DHF14] MTL + - - - - +
[DHF15] MITL + - - - + +
[DHF15] STL + - - - - +
[NN16] STL + + - - - +

[JDDS15] STL + + - - - +
[JDDS15] PSTL + + - + - +

69

4. SIGNAL-BASED PROPERTIES: TAXONOMY AND LOGIC-BASED CHARACTERIZATION

Table 4.7: (continued)

Reference Formalism DA SPK RT (FT) OSH (USH) OSC RSH

[Don10] MITL + - - - - +
[DFG+11] STL + - - - + +

[EF07] PSL + - - - - +
[FP06] MTL + - - - - +
[FP06] MITL + - - - - -
[FP06] MTL + - - - - +

[FSUY12] MTL + - - - - +
[FMNU15] TRE + + - - - -
[HBA+14] PMTL + - - - - -
[HBA+14] MTL + - - - - +
[HDF18] MTL + - - - - +
[HDF18] PMTL + - - - - +
[JBG+15] STL + - - - + +
[Kan15] BMTL + - - - - +

[MNP08] STL + - - - - +
[Nic08] MITL + - - - - +
[Nic08] STL + - - - - +
[Nic08] STL/PSL + - + - - +
[Nic08] MTL-B + - - - - +
[NM07] STL/PSL + - - - - +

[PMS+14] CTL + - - - - +
[RBFS08] LTL(R) + - - - + -
[RBFS08] QFLTL(R) + - - - + -

[SF12] MTL + - - - - +
[SJN+17] STL + + + - - -
[SJN+17] TRE + + + - - -
[SDB+13] STL + - - - - -
[UFAM14] TRE + - - - + +
[YHF12] PMTL + - - - - -

Total 64 10 5 2 10 48

70

Chapter 5

Trace-Checking Signal-based Temporal
Properties: A Model-Driven Approach

5.1 Overview

In this chapter we consider a specific subset of trace-checking tools, which can be defined using
the concepts recently introduced in a taxonomy for run-time verification tools [FKRT18]:

• supporting explicit, declarative, temporal specifications, i.e., tools that require users to for-
mally express the requirements to be checked, using a declarative specification formalism that
allows for expressing constraints over time;

• deployed at the offline stage, i.e., tools that run after the system has finished its execution,
which has been recorded in traces;

• yielding a verdict as output, i.e., an indication (e.g., a Boolean value) of whether the input
trace satisfies the property being checked.

In such tools, the requirements to check are expressed using a declarative specification for-
malism such as (temporal) logic-based or domain-specific languages. Temporal logic-based lan-
guages (e.g., LTL, MTL, MLTL [LVR19], QTL [HPU17]) provide mathematical-based constructs
to express arbitrarily complex requirements using a basic set of temporal operators. Domain-
specific languages (DSLs) for temporal specifications (e.g., PROPEL - DNL [SACO02], Struc-
tured English Grammar for real-time specifications [KC05], Temporal OCL [KT13], OCLR [DBB14],
VISPEC - graphical formalism [HMF15], TemPsy [DBB17a], TemPsy-AG [BBB19], ProMoboBox
- property language [MVDS20], FRETISH [GPMS20]) provide a set of predefined constructs that
concisely capture certain types of requirements that are specific to a certain domain, possibly
relying on property specification patterns [AGL+15]. In terms of applicability for requirement

71

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

specifications, logic-based languages typically require a strong mathematical background, limit-
ing their adoption among practitioners. On the other hand, DSLs are more accessible for domain
experts since they make available, as first-class constructs in the language, concepts (or patterns)
that are specific to the domain. For example, two recent empirical studies [CANZ19, CZss] pro-
vide evidence that high-level languages based on property specification patterns result into a
higher level of understandability than logic-based languages like LTL.

Typically, for both types of specification languages, the expressiveness of the language is
inversely related to the efficiency of the corresponding trace-checking procedure. Therefore, the
main challenge faced when defining a trace-checking approach suitable for industrial contexts,
is finding a reasonable trade-off between these two conflicting aspects.

In this chapter, we consider the problem of trace-checking SBTPs (see 4.2 for more details).
SBTPs are usually evaluated on traces that are collected by recording the values of signals over
time. Trace entries can be recorded at fixed or variable sampling rates, meaning that trace entries
are recorded at time instants that are separated by fixed or variable-time intervals, respectively.
System and software engineers have to assess, either manually or by means of tools, whether
the recorded traces satisfy or violate the system requirements. Although there exist several
logic-based (e.g., STL [MN04], STL* [BDŠV14], SFO [BFHN18], RFOL [MNGB19]) and domain-
specific [BOV+19] languages that have been proposed in the literature to express SBTPs, such
languages either do not support the specification of important types of properties [BJB+20], or
are not supported by (efficient) trace-checking procedures [BDŠV14, BFHN18].

We propose SB-TemPsy, a trace-checking approach for SBTPs that strikes a good balance in
industrial contexts as it can be efficiently trace-checked and covers the most important types of
properties in practice across CPS domains. SB-TemPsy provides:

• SB-TemPsy-DSL, a domain-specific language that allows the specification of SBTPs cover-
ing the most frequent requirement types in CPS domains;

• an efficient trace-checking procedure, implemented in a prototype tool called SB-TemPsy-
Check.

SB-TemPsy-DSL is a pattern-based specification language. It has been defined in collab-
oration with system engineers in the satellite domain and supports the specification of the
most common types of SBTPs in CPS, recently identified in a taxonomy [BJB+20]. SB-TemPsy-
DSL differs from the pattern-based specification languages for temporal properties mentioned
above, since it is tailored to express SBTPs. Its syntax provides constructs that allow engineers
to specify in a simple and precise way complex signal-based behaviors such as spikes and oscil-
lations, without requiring a strong theoretical background in logic-based languages for SBTPs.

Our trace-checking procedure is based on the idea of model-driven trace checking, originally
proposed by [DBB17a] for the verification of temporal properties based on [DAC99]’s speci-
fication patterns (and thus not supporting SBTPs). Using a model-driven trace checking ap-
proach, we reduce the problem of checking an SB-TemPsy-DSL property over an execution
trace to the problem of evaluating an Object Constraint Language (OCL) constraint, that is

72

5.2. Case Study and Motivations

semantically equivalent to the SB-TemPsy-DSL property, on a model of the execution trace.
We made this choice since OCL is a standardized constraint specification language defined by
OMG [OMG12] and, as a result, is supported by a mature constraint checking technology, such
as the constraint checker included in Eclipse OCL [Ecl20]. Based on these observations and
the encouraging efficiency results reported in the literature for model-driven trace checking
approaches [DBB17a, BBB19], we surmised that this choice would allow the development of a
trace-checking tool able to analyze complex requirements on real-world execution traces within
practical time limits. The evaluation of this conjecture was part of our empirical investigation.

We evaluated our solution by assessing the expressiveness of our specification language
SB-TemPsy-DSL and the applicability of our trace-checking tool SB-TemPsy-Check to a repre-
sentative industrial case study in the satellite domain; we also compared them to state-of-the-
art approaches. Using SB-TemPsy-DSL, we could express 98 out of 101 requirements of our
case study. SB-TemPsy-DSL was considerably more expressive than STL, which is supported
by publicly available trace-checking tools. Furthermore, in most cases (≈ 87%), SB-TemPsy-
Check completed the verification of these requirements on industrial execution traces within a
set time-out of two hours, which we deemed practical based on the development context of our
case study. Overall, the results of our empirical investigation show that SB-TemPsy represents a
viable trade-off between an expressive specification language for SBTPs (SB-TemPsy-DSL) and
an efficient trace-checking procedure (SB-TemPsy-Check). Furthermore, the results suggest that
SB-TemPsy could be combined with existing approaches efficiently supporting STL. In this way,
we show we can make optimal use of a given verification budget while avoiding most time-outs
by relying on the best tool option depending on the type of the checked property.

The rest of this chapter is organized as follows. Section 5.2 presents our case study in the
satellite domain and discusses the motivations for this work. Section 5.3 provides a detailed
introduction of the traces and the corresponding notations used in the rest of the chapter. Sec-
tion 5.4 provides an overview of SB-TemPsy, further detailed in section 5.5 (which presents
SB-TemPsy-DSL) and in section 5.6 (which presents our model-driven trace checking procedure
implemented in SB-TemPsy-Check). Section 5.7 reports on the empirical investigation of our
contributions. Section 5.8 discusses related work.

5.2 Case Study and Motivations

LuxSpace, our industrial partner, has developed, in collaboration with ESA [ESA20b] and Ex-
actEarth [exa20], a maritime micro-satellite to collect AIS (automatic identification system) track-
ing information from vessels operating on Earth and to relay those data to the ground.

Throughout the satellite development, our partner follows different development phases.
This work is set in the context of the design phase (i.e., phases B–C in the satellite domain [ESA20a])1,
which includes several activities, such as the definition of the system requirements and inter-

1We remark that our solution can also be applied in phases D–E.

73

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

faces, the definition of the spacecraft, payload, launcher and ground segment, and the design
and development of the on-board satellite software (OBSW).

The OBSW is a complex mission-critical software component, which includes several mod-
ules that control and monitor the operations and the physical behavior of the satellite. Its main
modules are the on-board data handling (controlling the satellite platform and payload, and col-
lecting and storing the data), the electric power system (regulating the power of the satellite),
the telemetry and tele-command (receiving tele-commands from and sending data to the ground),
the thermal control (ensuring that each component of the satellite remains within its operational
temperature ranges), and the ADCS - attitude determination and control system (estimating and
regulating the satellite attitude).

V&V play a crucial role during the development of the OBSW, given the complexity of the
physical behavior being controlled by the OBSW, and the various hardware components (e.g.,
sensors and actuators) and software modules involved. For example, a typical V&V step is an
in-depth testing of the ADCS module of the OBSW [MNGB19, MNBYI20].

At the very last stage of the development, testing is performed on the actual hardware-
based facilities and involves all the software modules of the OBSW. As in many other cyber-
physical domains, our industrial partner relies on a multi-purpose simulator [PPM+19] that
supports test execution both on the actual hardware components of the satellite and on software
stubs replacing such components. This feature allows developers to anticipate testing activities,
when hardware components are not yet available, and to reduce the risk of hardware damages,
by running high-risk test cases relying on simulation and thus ensuring beforehand there is
no unexpected and harmful behavior. During OBSW testing, a specific configuration of the
satellite (software/hardware components) is loaded on the simulator for each test case; then,
the satellite behavior over a given time is simulated and data are collected in traces2. Due to the
complexity of the physical models involved during simulation, itself resulting from the complex
physical behavior being controlled by OBSW, the time to complete a simulation and generate
the corresponding trace is on the order of several days.

In the current practice, LuxSpace engineers are using ad hoc solutions to inspect whether
these traces satisfy the system requirements. In the case of the OBSW, requirements are complex
properties constraining the behavior of an input or output signal (e.g., in terms of the type of
oscillations allowed); we will present examples of these properties in section 4.2.

In this context, the main challenge is to automate the checking of system requirements (ex-
pressed as complex SBTPs) on simulation traces, by means of an efficient offline run-time veri-
fication (i.e., trace-checking) procedure.

Although this case study is set in the satellite domain, it is in many ways representative of
other complex cyber-physical domains, where the behavior being controlled involves convo-
luted physical dynamics (such as the satellite attitude) and the system requirements are there-
fore expressed as complex properties on the shape of the input and output signals (e.g., spikes

2Note that simulation is used in its broad sense, generally indicating a simulation scenario. As such, a simulation
also considers the case in which all the hardware components of the satellite are in place.

74

5.3. Traces

and oscillations).

5.3 Traces

A simulation trace, yielded at the end of the simulation, contains entries with the value of a
subset of the signals and the simulation time at which they were recorded. More precisely,
let S={s1, s2 . . . sn} be a set of signals. We use the symbol T to indicate the sequence T =
(t1, t2, . . . , tm) containing the progressive simulation times associated with the entries of a sim-
ulation trace. We also use si = v to denote a record assigning the value v ∈ R to signal si. Let A
be the universe of all possible assignments for the signals in S. A trace π is a tuple 〈T, f〉, with
T defined as above and f : T → 2A. An entry is a tuple 〈t, f(t)〉 that contains the simulation
time t ∈ T at which the entry was sampled, and a set of records f(t) that specify the values of
the signals at time t. We say that a signal s is assigned a value v at time t if there exists a record
(s = v) ∈ f(t), for t ∈ T .

We now introduce some useful notations used in the rest of this chapter. Let π = 〈T, f〉 be
a trace, s be an arbitrary element of S (i.e., a signal) and t ∈ T be a simulation time. The initial
value of s, denoted by init(π, s), is v if v is the value assigned to s through the first assignment
performed on s in π; we assume that such an initial assignment always exists, as part of the
initialization of the simulation. The last-seen value of s at time t, denoted by last(π, s, t), is the
value v if (1) s is assigned v at time t or (2) s was assigned v in the most recent assignment to s
in π at a simulation time preceding t or (3) v is equal to init(π, s) if s still has not been assigned
a value since the initialization. The next-seen value of s at time t, denoted by next(π, s, t), is the
value v if (1) s is assigned v at time t or (2) s is assigned v in the first assignment to s in π at a
simulation time ensuing t.

5.4 The SB-TemPsy Approach

Model-driven trace checking [DBB17a] is an approach that reduces the problem of checking a
temporal property φ over a trace π to the problem of evaluating an OCL constraint, that is
semantically equivalent to φ, on a model of the trace (equivalent to π).

In this chapter, we present our model-driven approach, SB-TemPsy, for trace checking of
SBTPs. We have decided to follow a model-driven paradigm for trace checking because OCL is
a standardized constraint specification language defined by OMG [OMG12] and, as a result, is
supported by a mature constraint checking technology, such as the constraint checker included
in Eclipse OCL [Ecl20]. Furthermore, existing approaches for model-driven trace checking
(for checking linear temporal logic properties [DBB17a] and properties with temporal aggre-
gations [BBB19]) have been shown to yield encouraging efficiency results. Hence, we surmise
that choosing a model-driven approach allows the development of a trace-checking tool able
to analyze SBTPs on real-world execution traces within practical time limits; we report on the
empirical investigation of this conjecture in section 5.7.

75

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

Our SB-TemPsy approach is illustrated in figure 5.1; it takes as input a trace π and a property
to check φ; it returns a Boolean verdict, indicating whether π satisfies or violates property φ.
The trace π records the values of signals sampled at different simulation times, as discussed in
section 5.3. The property φ represents a requirement of a CPS, expressed using one of the types
of SBTPs, already defined in the previous chapter (see section 4.2).

We have defined an expressive, pattern-based domain-specific language to ease the spec-
ifications of such requirements as SBTPs. The language, called SB-TemPsy-DSL (Signal-Based
Temporal Properties made easy), has been defined in collaboration with LuxSpace system en-
gineers. It draws inspiration from TemPsy [DBB17a]—an existing pattern-based language for
the specification of temporal properties—and supports the specification of the most common
types of SBTPs in CPS (e.g., spike, oscillation), recently identified in a taxonomy [BJB+20] and
presented in section 4.2.

SB-TemPsy-DSL differs from existing pattern-based specification languages for temporal
properties (such as PROPEL - DNL [SACO02], Structured English Grammar for real-time speci-
fications [KC05], Temporal OCL [KT13], OCLR [DBB14], VISPEC - graphical formalism [HMF15],
TemPsy [DBB17a], TemPsy-AG [BBB19], ProMoboBox - property language [MVDS20]), since it
is tailored to express SBTPs. Furthermore, differently from existing logic-based specification
languages for SBTPs (e.g., STL [MN04], STL* [BDŠV14], RFOL [MNGB19], SFO [BFHN18]), SB-
TemPsy-DSL enables practitioners to specify in a precise way key requirements of CPS (which
in many cases are not supported by the aforementioned languages, see [BJB+20]), without re-
quiring a strong theoretical background.

Our approach for trace checking, called SB-TemPsy-Check and implemented in a prototype
tool, includes two main steps: pre-processing, which prepares the trace for the verification, and
model-driven trace checking, which computes the verification verdict.

Pre-processing. As discussed in section 5.3, the trace π is obtained by recording the values of
a set of signals sampled at different simulation times; therefore, at a given simulation time, a
signal may be unassigned. The pre-processing step analyzes the trace π = 〈T, f〉 and generates,
using an interpolation function η, a new trace π̄ = 〈T, f̄〉 that includes assignments to signals
for the simulation times at which such signals were unassigned in π. We discuss function f̄ , the
interpolation function η, and the pre-processing step in more detail in section 5.6.1.

Model-driven trace checking. This step (detailed in section 5.6.3) checks whether property
φ (expressed in SB-TemPsy-DSL) holds over the trace π by (a) converting the pre-processed
trace π̄ into an instance of a trace meta-model; (b) evaluating an OCL constraint semantically
equivalent to φ over the model of π̄.

5.5 The SB-TemPsy-DSL Language

5.5.1 Syntax

The syntax of SB-TemPsy-DSL is shown in figure 5.2; optional items are enclosed in square
brackets; the symbol | separates alternatives. A property (non-terminal φ) is defined using a

76

5.5. The SB-TemPsy-DSL Language

Pre-processing

SB-TemPsy

Model-Driven
Trace-checking

pre-processed
trace

Verification
Verdict

Property
(SB-TemPsy-DSL)

Trace

SB-TemPsy-Check

π π

"

_

Figure 5.1: Overview of SB-TemPsy

scope (non-terminal 〈sc〉) or as a Boolean expression over other properties.

A scope operator constrains a pattern (non-terminal 〈p〉) to hold within a given time inter-
val delimited either by absolute time instants (denoted by, 〈t〉, 〈t1〉, and 〈t〉2) or by events, i.e.,
occurrences of a pattern, (denoted by 〈p〉, 〈p〉1, and 〈p〉2). For example, the “between 〈t〉1 and
〈t〉2 〈p〉” scope operator specifies that pattern 〈p〉 holds between the time instants 〈t〉1 and 〈t〉2.
The scope operators supported by SB-TemPsy-DSL are inspired by those proposed by [DAC99]
(globally, before, after, between and): they support not only events (i.e., in the form
of occurrences of a pattern) but also absolute time instants as scope boundaries. Furthermore,
SB-TemPsy-DSL includes a punctual scope (at) to reference a specific time instant.

A pattern specifies a constraint on the behavior of one or more signals. For example, pattern
“exist oscillations in 〈s〉 with p2pAmp 〈v〉1 period 〈v〉2” specifies that the value of sig-
nal 〈s〉 shows an oscillatory behavior with a peak-to-peak amplitude (denoted by the keyword
p2pAmp) equal to value 〈v〉1 and a period (denoted by the keyword period) that is equal to
value 〈v〉2; it corresponds to the property type “oscillation” discussed in section 4.2.

A condition (non-terminal 〈c〉) is a logical predicate on a signal 〈s〉 (of the form “〈s〉 ∼ 〈v〉”,
with ∼∈ {<,>,=, 6=,≤,≥}) or a logical expression over predicates.

Below we show how the example properties from our case study, presented in English in
section 4.2, can be expressed in SB-TemPsy-DSL (for simplicity, we omitted the corresponding
scopes):

77

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

Property φ ::= φ1 and φ2 | φ2 or φ1 | not φ | 〈sc〉

Scope 〈sc〉 ::= globally 〈p〉 | before 〈t〉 〈p〉 | after 〈t〉 〈p〉 | at 〈t〉 〈p〉 | before 〈p〉1 〈p〉
after 〈p〉1 〈p〉 | between 〈t〉1 and 〈t〉2 〈p〉| between 〈p〉1 and 〈p〉2 〈p〉

Pattern 〈p〉 ::= assert 〈c〉 | 〈s〉 becomes ∼ 〈v〉 | if 〈p〉1 then [within ./ 〈t〉] 〈p〉2 |
exists spike in 〈s〉 [with [width ∼ 〈v〉1][amplitude ∼ 〈v〉2]] |
exist oscillations in 〈s〉 [with [p2pAmp ∼ 〈v〉1][period ∼ 〈v〉2]] |
〈s〉 rises [monotonically] reaching 〈v〉 |
〈s〉 falls [monotonically] reaching 〈v〉 |
〈s〉 overshoots [monotonically] 〈v〉1 by 〈v〉2 |
〈s〉 undershoots [monotonically] 〈v〉1 by 〈v〉2

./ ::= exactly | at most | at least

Condition 〈c〉 ::= 〈c〉1 and 〈c〉2 | 〈c〉1 or 〈c〉2 | not 〈c〉 | 〈s〉 ∼ 〈v〉
〈t〉, 〈t〉1, 〈t〉2 ∈ R; 〈v〉, 〈v〉1, 〈v〉2 ∈ R; ∼∈ {<,>,=, 6=,≤,≥};
〈s〉 is a signal in S or a mathematical expression over the signals in S

Figure 5.2: SB-TemPsy-DSL syntax

pDA assert (s1 >= -90 and s1 <= 90)
pSK exists spike in s2 with amplitude < 90
pOS exist oscillations in s3 with p2pAmp <= 8000

period <= 10800
pRT s4 rises monotonically reaching 3650
pOV s4 overshoots 3650 by 50
pOR if assert (s5 == 1) then

assert (s5 == 2) within at most 120

5.5.2 Formal Semantics

Figure 5.3 presents the formal semantics of SB-TemPsy-DSL. The semantics is defined over a
pre-processed trace π̄ = 〈T, f̄〉, with T = (t1, t2, . . . , tm); optional items are enclosed in square
brackets with a Greek letter subscript. We use the notation fp(t, s) to denote the value x assigned
to signal s at time t in the pre-processed trace π̄ = 〈T, f̄〉, if (s = x) ∈ f̄(t) for t ∈ T . We omit the
semantic definition of language elements for which the dual is available (i.e., fall time vs rise
time, overshoot vs undershoot) and whose semantics can be easily derived.

Conditions are constraints on signals that should hold punctually, i.e., in a specific time in-
stant t ∈ T . We use the notation π̄, t |= 〈c〉 to indicate that condition 〈c〉 holds in the pre-
processed trace π̄ at time t. For example, the predicate 〈s〉 ∼ 〈v〉 holds at time t if the value
fp(t, s) assigned to signal 〈s〉 at time t satisfies the predicate fp(t, s) ∼ 〈v〉.

Patterns are evaluated over a time interval [tl, tu], where tl, tu ∈ T and tl < tu. We use the
notation π̄, [tl, tu] |= 〈p〉 to indicate that pattern 〈p〉 holds in the pre-processed trace π̄ within
the time interval [tl, tu]. The semantics of the spike and oscillation patterns rely on the auxil-
iary predicates uni_m_min , uni_sm_min , uni_m_max , and uni_sm_max defined in Table 5.1.
These predicates evaluate to true if, within a given time interval, the signal has an extremum

78

5.5. The SB-TemPsy-DSL Language

Property

π̄ |= 〈sc〉 ⇔ π̄, [t1, tm] |= 〈sc〉

Condition

π̄, t |= 〈s〉 ∼ 〈v〉 ⇔ fp(t, s) ∼ 〈v〉
π̄ |= φ1 and φ2 ⇔ (π̄ |= φ1) and (π̄ |= φ2) π̄, t |= 〈c〉1 and 〈c〉2 ⇔ (π̄, t |= 〈c〉1) and

(π̄, t |= 〈c〉2)
π̄ |= φ1 or φ2 ⇔ (π̄ |= φ1) or (π̄ |= φ2) π̄, t |= 〈c〉1 or 〈c〉2 ⇔ (π̄, t |= 〈c〉1) or (π̄, t |= 〈c〉2)
π̄ |= not φ⇔ (π̄ 6|= φ) π̄, t |= not 〈c〉 ⇔ (π̄, t 6|= 〈c〉)

Absolute
Scope

Event
Scope

π̄, [tl, tu] |= globally 〈p〉 ⇔ π̄, [tl, tu] |= before 〈p〉1 〈p〉 ⇔
π̄, [tl, tu] |= 〈p〉 ∀t1, t2, tl < t1 < t2 ≤ tu, π̄, [t1, t2] |= 〈p〉1
π̄, [tl, tu] |= before 〈t〉 〈p〉 ⇔ and ∃t3, t4, tl < t3 < t4 < t1, π̄, [t3, t4] |= 〈p〉
tl ≤ 〈t〉 ≤ tu and π̄, [tl, 〈t〉] |= 〈p〉 π̄, [tl, tu] |= after 〈p〉1 〈p〉 ⇔
π̄, [tl, tu] |= after 〈t〉 〈p〉 ⇔ ∀t1, t2, tl < t1 < t2 ≤ tu, π̄, [t1, t2] |= 〈p〉1
tl ≤ 〈t〉 ≤ tu and π̄, [〈t〉, tu] |= 〈p〉 and ∃t3, t4, t2 < t3 < t4 < tu, π̄, [t3, t4] |= 〈p〉
π̄, [tl, tu] |= between 〈n〉 and 〈m〉 〈p〉 ⇔ π̄, [tl, tu] |= between 〈p〉1 and 〈p〉2 〈p〉 ⇔
tl ≤ 〈n〉 < 〈m〉 ≤ tu and π̄, [〈n〉, 〈m〉] |= 〈p〉 ∀t1, t2, t3, t4, tl ≤ t1 < t2 < t3 < t4 ≤ tu,
π̄, [tl, tu] |= at 〈t〉 〈p〉 ⇔

(
π̄, [t1, t2] |= 〈p〉1 and [t3, t4] |= 〈p〉2

)
⇒

∃t, tl ≤ 〈t〉 ≤ tu and π̄, [〈t〉, 〈t〉] |= 〈p〉 π̄, [t2, t3] |= 〈p〉

Data
Assertion

π̄, [tl, tu] |= assert 〈c〉 ⇔ ∀t ∈ [tl, tu], (π̄, t |= 〈c〉)
π̄, [tl, tu] |= 〈s〉 becomes ∼ 〈v〉 ⇔ ∃t ∈ (tl, tu], (fp(t, 〈s〉) ∼ 〈v〉 and ∀t1 ∈ (tl, t), (fp(t1, 〈s〉) 6∼ 〈v〉))

Spike π̄, [tl, tu] |= exists spike in 〈s〉
[
with [width ∼ 〈v〉1]β [amplitude ∼ 〈v〉2]γ

]
α
⇔

∃t1, t2, t3 ∈ [tl, tu], t1 < t2 < t3,(
(uni_m_min (π̄, s, t1, [tl, t2]) and uni_sm_max (π̄, s, t2, [t1, t3]) and uni_m_min (π̄, s, t3, [t2, tu])) or

(uni_m_max (π̄, s, t1, [tl, t2]) and uni_sm_min (π̄, s, t2, [t1, t3]) and uni_m_max (π̄, s, t3, [t2, tu]))[[
and |t3 − t1| ∼ 〈v〉1

]
β

[
and max (|fp(t1, 〈s〉)− fp(t2, 〈s〉)| , |fp(t2, 〈s〉)− fp(t3, 〈s〉)|) ∼ 〈v〉2

]
γ

]
α

)
Oscillation π̄, [tl, tu] |= exist oscillations in 〈s〉

[
with

[
p2pAmp ∼ 〈v〉1

]
β

[
period ∼ 〈v〉2

]
γ

]
α
⇔

∃t1, t2, t3, t4, t5 ∈ [tl, tu], t1 < t2 < t2 < t3 < t4 < t5,(
(uni_sm_min (π̄, s, t2, [t1, t3]) and uni_sm_max (π̄, s, t3, [t2, t4]) and uni_sm_min (π̄, s, t4, [t3, t5])) or

(uni_sm_max (π̄, s, t2, [t1, t3]) and uni_sm_min (π̄, s, t3, [t2, t4]) and uni_sm_max (π̄, s, t4, [t3, t5]))[[
and |fp(t2, 〈s〉)− fp(t3, 〈s〉)| ∼ 〈v〉1 and |fp(t3, 〈s〉)− fp(t4, 〈s〉)| ∼ 〈v〉1

]
β

[
and (t4 − t2) ∼ 〈v〉2

]
γ

]
α

)
Rise Time π̄, [tl, tu] |= 〈s〉 rises [monotonically]α reaching 〈v〉 ⇔ ∃t ∈ (tl, tu],(

fp(t, 〈s〉) ≥ 〈v〉 and ∀t1 ∈ (tl, t), (fp(t1, 〈s〉) < 〈v〉)
[
and ∀t2 ∈ (tl, t), ∀t3 ∈ (t2, t], (fp(t2, 〈s〉) < fp(t3, 〈s〉))

]
α

)
overshoot π̄, [tl, tu] |= 〈s〉 overshoots [monotonically]α 〈v〉1 by 〈v〉2 ⇔ ∃t ∈ (tl, tu],(

fp(t, 〈s〉) ≥ 〈v〉1 and ∀t1 ∈ (t, tu],
(
fp(t1, 〈s〉) ≤ 〈v〉1 + 〈v〉2

)
[and ∀t2 ∈ (tl, t), ∀t3 ∈ (t2, t], (fp(t2, 〈s〉) < fp(t3, 〈s〉))

]
α

)
Order
Relationship

π̄, [tl, tu] |= if 〈p〉1 then [within (./) 〈t〉]α 〈p〉2 ⇔ ∀t1, t2 ∈ [tl, tu], t1 < t2,(
π̄, [t1, t2] |= 〈p〉1 ⇒ ∃t3, t4 ∈ [t2, tu], t3 < t4,

(
π̄, [t3, t4] |= 〈p〉2

[
and (t3 − t2) J./K 〈t〉

]
α

))
where ./∈ {exactly,at most,at least}
andJ./K is defined such that JexactlyK ≡ ‘=’, Jat mostK ≡ ‘<=’, Jat leastK ≡ ‘>=’

〈t〉, 〈t〉1, 〈t〉2 ∈ R; 〈v〉, 〈v〉1, 〈v〉2 ∈ R; ∼ ∈ {<,>,=, 6=,≤,≥}; 〈s〉 is a signal in S or a mathematical expression over
the signals in S; 〈sc〉 is a scope; 〈p〉 is a pattern.

Figure 5.3: SB-TemPsy-DSL formal semantics

79

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

Table 5.1: Definition of predicates uni_m_max , uni_sm_max (predicates
uni_m_min, uni_sm_min are the dual)

Predicate Mathematical Formulation Description

uni_m_max (π̄, s, t, [tl, tu]) fp(t, 〈s〉) = x and ∀t1 ∈ [tl, tu],
fp(t1, 〈s〉) < x and ∀t1, t2 ∈ [tl, t],
if t1 < t2 then fp(t1, 〈s〉) ≤ fp(t2, 〈s〉)
and ∀t1, t2 ∈ [tl, t],
if t1 < t2 then fp(t1, 〈s〉) ≥ fp(t2, 〈s〉)

The value x of signal s at time instant
t is the minimum value assigned to s
within the interval [tl, tu]. Furthermore,
the value of x changes according to a uni-
modal function, i.e., for every time instant
in [tl, t] the value of s is monotonically
increasing and for every time instant in
[t, tu] the value of s is monotonically de-
creasing.

uni_sm_max (π̄, s, t, [tl, tu]) fp(t, 〈s〉) = x and ∀t1 ∈ [tl, tu],
fp(t1, 〈s〉) < x and ∀t1, t2 ∈ [tl, t],
if t1 < t2 then fp(t1, 〈s〉) < fp(t2, 〈s〉)
and ∀t1, t2 ∈ [tl, t],
if t1 < t2 then fp(t1, 〈s〉) > fp(t2, 〈s〉)

As above, except that for every time in-
stant in [tl, t] the value of s is strictly
monotonically increasing and for every
time instant in [t, tu] the value of s is
strictly monotonically decreasing.

(minimum or maximum) and its value changes in a certain way (see column “Description”
in Table 5.1 for the complete description). For example, in the case of the oscillation pattern,
the semantics requires the signal to exhibit a maximum followed by a minimum followed by
a maximum, or viceversa (see also section 4.2). In addition, in the first case, the value of the
signal shall increase strictly monotonically (1) before the first maximum and (2) between the
minimum and the second maximum, and shall decrease strictly monotonically (1) between the
first maximum and the minimum and (2) after the second maximum.

Also scopes are evaluated over a time interval [tl, tu]. For example, the semantics of the
“between 〈t〉1 and 〈t〉2 〈p〉” scope operator evaluates pattern 〈p〉 in the time interval [〈t〉1, 〈t〉2].

The semantics of a property is defined by evaluating the satisfaction of a scope 〈sc〉 within
the time interval [t1, tm], where t1 and tm are, respectively, the first and last simulation time
in the time sequence T of the pre-processed trace π̄. The semantics of properties obtained by
composing other properties through Boolean operators follows the standard semantics of such
operators.

Finally, we define the semantics for checking an SB-TemPsy-DSL property over an input
trace. Let π be a trace, η be an interpolation function, and φ be an SB-TemPsy-DSL property.
We say that the trace π satisfies the property φ (when using the interpolation function η in the
pre-processing), denoted by π |=η φ, if the pre-processed trace π̄ obtained from π using the
interpolation function η is such that π̄ |= φ.

5.6 SB-TemPsy-Check

In this section, we present the main steps of and the artifacts used within SB-TemPsy-Check.
Section 5.6.1 describes the pre-processing step, Section 5.6.2 illustrates the meta-model of the

80

5.6. SB-TemPsy-Check

pre-processed trace, and Section 5.6.3 explains how the OCL constraint solver is used to perform
trace checking.

5.6.1 Pre-processing

The pre-processing step converts the original simulation trace, in which signal values are recorded
at different simulation times, to a new trace in which signal values are recorded for every entry.

Our conversion relies on an interpolation function to generate the missing signal values.
More precisely, let η : R× R→ R be an interpolation function over real values, and S and π be,
respectively, the set of signals and the simulation trace as defined in section 5.3; the pre-processed
trace obtained from π = 〈T, f〉 and denoted by π̄ is defined as π̄ = 〈T, f̄〉, where f̄ is a function
such that for all t ∈ T and for all s ∈ S, the assignment (s = η(last(π, s, t),next(π, s, t))) ∈
f̄(t). Intuitively, in the pre-processed trace, at every time instant ti the value of signal s is
the interpolation between the last-seen value and the next-seen value of s at ti. Note that this
definition is compatible with the case in which signal s is actually assigned a value v in the
record sampled at time ti. Indeed, in such a case both function last and function next yield
v, and we have η(v, v) = v. Users can choose different interpolation functions (e.g., piecewise
constant, linear, cubic) depending on the domain of the values of the signals, and their expected
variation over time. We discuss the choice of the interpolation for our case study in section 5.7.

Before doing this conversion, our pre-processing step also performs some filtering on the
trace. A trace contains records for many signals; however, a property to be checked on the trace
may refer to only a subset of these signals. Hence, we remove from the trace all the entries that
do not contain any record with a signal referred to by the property to be checked.

5.6.2 Trace Meta-model

Our trace meta-model of the pre-processed trace is an extension of the one proposed by [DBB17a],
tailored to the CPS domain to support (i) SBTPs and (ii) trace entries recording the values of sev-
eral signals at a certain time instant.

The trace meta-model includes the basic entities that are used to represent a trace when
a new instance is created from a trace file. These entities are accessed by the OCL functions
during the model-driven trace checking step.

The model, depicted in Fig. 5.4 with a UML class diagram, contains a Trace, which is
composed of a sequence of Entrys. A Entry has an attribute representing the simulation time
at which the record has been sampled, and contains one or more Records (one for each signal).
A Record has two attributes, representing the signal identifier and its value.

5.6.3 Model-driven Trace Checking

Our model-driven trace checking procedure checks whether an SB-TemPsy-DSL property φ
holds over a trace π by evaluating an OCL constraint semantically equivalent to φ over a model

81

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

* *

Trace Entry

simulationTime: Double

Record

signalID: String
value: Double

Figure 5.4: UML Class Diagram of the Trace Meta-model

1 def: checkPatternOscillation(trace:OrderedSet(trace::TraceElement), pattern::
Oscillation, tl:Real,tu:Real): Boolean =

2 let s : String = pattern.s in
3 trace->exists(el1,el2| tl<= el1.simulationTime and el1.simulationTime < el2.

simulationTime
4 trace->exists(el3,el4| el2.simulationTime< el3.simulationTime and el3.

simulationTime < el4.simulationTime
5 trace->exists(el5 | el4.generationTime< el5.generationTime and el5.

generationTime <=tu and
6 ((isLMax(trace,el2,el1,el3,s) and isLMin(trace,el3,el2,el4,s)

and isLMax(trace,el4,el3,el5,s))
7 or (isLMin(trace,el2,el1,el3,s) and isLMax(trace,el3,el2,el4,s)

and isLMin(trace,el4,el3,el5,s)))
8 and checkFeatures(trace,el1,el2,el3,el4,el5,pattern))))

Figure 5.5: OCL function for the oscillation pattern of SB-TemPsy-DSL

(i.e., an instance of the trace meta-model described in section 5.6.2) of the pre-processed trace π̄
(derived from π). This check is done using a standard OCL checker, such as Eclipse OCL.

Input preparation phase. First, our approach (1) builds an instance π̄obj of the trace meta-
model from the pre-processed trace π̄ and (2) translates the property φ into an OCL constraint
φOCL. The translation from SB-TemPsy-DSL properties to OCL constraints is syntax-directed
and covers all the constructs of SB-TemPsy-DSL defined in figure 5.2. As an example, below we
illustrate the OCL function (shown in figure 5.5) corresponding to the oscillation pattern.

This function takes as input a trace, an object representing the parameters of the oscillation
pattern, and the bounds of the trace interval on which the pattern should be evaluated. Notice
that the OCL variables tl and tu correspond to the variables tl and tu used in the definition of
the semantics of the oscillation pattern in figure 5.3. The function first saves the value of the pat-
tern parameter 〈s〉 (signal name) in the corresponding variable s (line 2), which is used inside
the expression at lines 6–7. This expression encodes the semantics of the pattern presented in
figure 5.3. For instance, lines 3–5 constrain the existence of five trace entries el1, el2, el3, el4
and el5 such that they have consecutive simulation times. In addition, lines 6–7 express the
presence of consecutive maxima and minima according to the semantics presented in figure 5.3.
Functions isLMin and isLMax implement functions uni_sm_min and uni_sm_max described
in section 5.5.2. In addition, line 8 checks the optional constraints (on the peak-to-peak ampli-
tude and/or the period) associated with the pattern.

Constraint evaluation phase. The second and final phase uses the OCL checker to evaluate the
constraint φOCL on the object π̄obj , denoted by EVAL(π̄obj , φOCL). The result of this evaluation

82

5.7. Evaluation

is a Boolean value that corresponds to the verdict of checking property φ over trace π. More
formally, we have that π |=η φ if and only if EVAL(π̄obj , φOCL) yields true.

Correctness. The correctness of our procedure (intuitively) follows from these observations.
The semantics of SB-TemPsy-DSL presented in section 5.5.2 depends on the interpolation func-
tion selected by the user. More precisely, given a user-selected interpolation function η, the
semantics specifies that property φ is satisfied on trace π, i.e., π |=η φ, if the pre-processed π̄
trace obtained using the interpolation function η satisfies the property φ, i.e., π̄ |= φ. Since
(i) the π̄obj object is built from π̄, which is obtained from the pre-processing step described in
section 5.6.1 using the η interpolation function, and (ii) the OCL constraint φOCL is obtained
from φ with a one-to-one mapping from the formal semantics defined in figure 5.3, our proce-
dure is correct, i.e., the verdict returned by our trace-checking procedure is consistent with the
semantics presented in Section 5.5.2.

Time complexity. The time complexity of our procedure depends on the size of the trace
and on the OCL definitions for the different constructs of SB-TemPsy-DSL. The evaluation of
constructs like “condition”, “property” and “absolute scope” does not depend on the size of the
trace since “condition” is evaluated at a specific time instant, “property” is evaluated at the first
time instant, and “absolute scope” is evaluated by setting the values of the time bound where
the pattern is evaluated. The evaluation of the assert variant of the “data assertion” construct
is linear in the size of the trace. The evaluation of all the other constructs is polynomial in the
size of the trace. For example, the encoding of the oscillation pattern presented in Listing 5.5
contains five nested existential operators, leading to a procedure with a time complexity of
O(|π̄|5).

In light of these complexity results, we defined an alternative, semantically equivalent OCL
definition, which relies on an optimized usage of OCL collections, specialized for each con-
struct. More specifically, the optimization replaces the use of first-order quantifiers with collec-
tion operations, in particular iterate expressions. Thanks to these optimizations, the com-
plexity of evaluating the “data assertion”, “spike”, “oscillation”, “rise/fall time”, and “over-
shoot/undershoot” patterns is linear in the size of the trace; the complexity of evaluating the
“event” scope and “order relationship” pattern is still polynomial in the size of the trace. We
used this alternative OCL definition for our empirical investigation (section 5.7).

5.7 Evaluation

In this section, we report on the evaluation of our contributions. First, we evaluate our specifi-
cation language SB-TemPsy-DSL in terms of expressiveness, and compare with state-of-the-art
specification languages. Second, we evaluate the performance of the implementation of our
model-driven trace checking approach SB-TemPsy-Check, and compare it to a state-of-the-art
tool for trace checking of SBTPs. In both cases, as properties to express and check, we consider
the requirements of our industrial case study (see section 5.2). Summing up, we evaluated our
contributions by answering the following research questions:

83

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

RQ1 To which extent can SB-TemPsy-DSL express requirements of real-world, industrial CPS applica-
tions and how does it compare with state-of-the-art specification languages in terms of expressive-
ness? (section 5.7.1)

RQ2 Can SB-TemPsy-Check verify SBTPs on real-world execution traces within practical time and how
does it compare with a state-of-the-art tool? (section 5.7.2)

RQ1 focuses on the expressiveness of SB-TemPsy-DSL, whereas RQ2 focuses on the applicability
(in industrial settings) of SB-TemPsy-Check.

5.7.1 Expressiveness of SB-TemPsy-DSL

To answer RQ1, we assessed the suitability of SB-TemPsy-DSL for expressing the requirements
of our industrial case study. We also tried to express the same requirements with state-of-the-
art specification languages for SBTPs, i.e., STL [MN04] and SFO [BFHN18], and compared the
result with that of SB-TemPsy-DSL.

OBSW Requirements. We defined 101 requirements, expressed in English, through a series
of meetings (cumulatively lasting about 80 hours) with a senior software engineer leading the
development of the OBSW. The engineer defined the requirements and also validated the cor-
responding SB-TemPsy-DSL properties written by two of the authors.

Results. Out of these 101 requirements, we could express 98 in SB-TemPsy-DSL. In the vast
majority of the cases, the translation from English to SB-TemPsy-DSL was straightforward; only
in two cases we had to rephrase the original requirement into an equivalent form that could
then be mapped to SB-TemPsy-DSL. Out of the three requirements that we could not express in
SB-TemPsy-DSL, two were constraints on the number of occurrences of a certain signal pattern
(e.g., spike behavior) and would have required a counting/aggregate operator [Rap16]; the
other requirement was a constraint on the signal value in two consecutive time instants, which
would have required a modality for referring to the value of a signal in a previous time instant.
We plan to extend SB-TemPsy-DSL with these constructs as part of future work.

Table 5.2 shows the occurrences of the various scopes (left-hand side) and patterns (right-
hand side) of SB-TemPsy-DSL across the requirements of our case study. The pattern distribu-
tion is in line with the findings of a recent taxonomy of SBTP [BJB+20], in which data assertion
(assert pattern in SB-TemPsy-DSL) is the most represented pattern type, followed by the order
relationship (if then in SB-TemPsy-DSL). The globally and at scopes are the most used;
we observed they are usually combined with data assertions to specify invariants that should
hold during the entire simulation and conditions that should hold at specific time instants.

Using state-of-the-art specification languages, out of the 101 requirements, we could express
59 in STL and 101 in SFO. The lower number of requirements expressible in STL is due to the
lack of a modality that allows for referring to (and comparing) signal values at different time
instants. Such a modality would be required to specify spike, oscillation, rise/fall time, and
overshoot/undershoot patterns. On the other hand, STL can express data assertions and also
order relationship properties, when in the latter the “cause” and “effect” sub-properties are
data assertions (as it was the case in our case study) or (recursively) other order relationship

84

5.7. Evaluation

Table 5.2: Occurrences of the SB-TemPsy-DSL scopes (left) and patterns (right) in the require-
ments of the case study

Scope Type #Req

‘globally’ 74
‘before’ 1
‘after’ 9
‘at’ 28
‘between’ 9

Pattern Type #Req Pattern Type #Req

‘assert’ 91 ‘rises’ 3
‘becomes’ 9 ‘falls’ 7
‘if’ ‘then’ 31 ‘overshoots’ 3
‘oscillations’ 24 ‘undershoots’ 5
‘spike’ 3

sub-properties. SFO allows us to express all 101 requirements, thanks to its support for first-
order quantification. These expressiveness results for STL and SFO are in line with previous
findings [BJB+20], which assessed the expressiveness of STL and SFO (and STL*) with respect
to different types of SBTPs.

The answer to RQ1 is that, when using SB-TemPsy-DSL, we could express 98 out of 101 re-
quirements of a real-world, industrial system in the satellite domain. This result shows the high
expressiveness of SB-TemPsy-DSL for specifying SBTPs of CPS. When compared with state-of-
the-art logic-based specification languages, SB-TemPsy-DSL could express many more require-
ments than STL, since STL can not express spike, oscillation, rise/fall time, and overshoot/un-
dershoot patterns. Nevertheless, SB-TemPsy-DSL is slightly less expressive than SFO (98 vs.
101). However, there is no tool support for SFO trace-checking. While we could have imple-
mented such a tool, it would have likely exhibited low performance since the time complexity
of trace-checking SFO formulae is exponential in the number of quantifiers, function symbols
and length of the SFO formula, as well as in the length of the trace [BFHN18]. On the other
hand, as discussed in section 5.6, the time complexity of the trace-checking procedure for SB-
TemPsy-DSL is polynomial in the length of the trace for the “order relationship” pattern and the
“event” scope, and is linear in all other cases. Such a lower time complexity is likely to result in
wider applicability in industrial contexts; we will experimentally investigate the performance
of our trace checking approach for SB-TemPsy-DSL in the next section.

5.7.2 Applicability of SB-TemPsy-Check

To answer RQ2, we assessed the applicability of SB-TemPsy-Check on execution traces from our
industrial case study. Furthermore, we also compared—in terms of applicability of the trace
checking procedure—SB-TemPsy-Check with Breach [DFM13], a state-of-the-art (offline) trace
checking tool for SBTPs expressed in STL. We chose Breach among other similar tools listed in
a recent survey [BDD+18] (i.e., AMT [NLM+18] and S-TaLiRo [ALFS11]), because AMT 2.0, in
contrast to Breach, is not publicly available, and also because Breach has been shown [DFM13]
to be faster than S-TaLiRo.

Dataset. Our dataset consists of 18 traces provided by our industrial partner. These traces
have been obtained by simulating the behavior of the OBSW in different scenarios, with a sim-
ulation time ranging approximately from one hour to 18 h. Their size (in number of entries)

85

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

ranges from 41844 to 1202241 entries (avg = 389771, StdDev = 393718); the corresponding file
size ranges from ≈1.7 MB to ≈58.9 MB (avg ≈17.6 MB, StdDev ≈19.4 MB).

Methodology and settings. Our dataset contains traces recorded while a satellite system was
tested in different environmental conditions (see section 5.2); the entries in each trace contain
only signals whose behavior was relevant to the specific test performed. Consequently, for each
trace in the dataset, our industrial partner indicated which properties had to be checked, based
on the signals recorded in the trace and the signals referred to in the properties. Overall, we ran
SB-TemPsy-Check over 217 distinct combinations3 of traces and properties.

The final trace size (in number of entries) ranged from 12 to 13068 entries (avg = 6187,StdDev =
4456); the corresponding file size ranged from≈255 B to≈4.7 MB (avg ≈0.4 MB,StdDev ≈0.8 MB).

We configured SB-TemPsy-Check to use linear interpolation as interpolation function for the
pre-processing step (see section 5.6.1). We chose this function since it is relatively simple and
produces reasonably good approximations of the signal behavior, suitable for checking typical
SBTPs (e.g., oscillation, spike).

As for the comparison with Breach, we used version 1.7 (installed on Matlab version 2018a)
and only ran the tool for the 59 properties that could be expressed both in SB-TemPsy-DSL and
in STL (see section 5.7.1). Overall, we ran Breach over 110 distinct combinations of traces and
properties.

We carried out the experiments on one node (using four cores) of the HPC facilities of the
University of Luxembourg [VBCG14]. Each run (checking a distinct combination of a trace and
a property) was repeated 10 times, to account for variations in the performance of the HPC. We
set the timeout of each run to 2 h, which is a relatively short and practical time when compared
to the time (in the order of several days) taken by the OBSW simulator to generate a trace in
our dataset (see section 5.2). The total wall-clock time to run all the experiments was ≈ 12 days,
reduced to about three days by exploiting the parallelization mechanisms of the underlying
HPC infrastructure.

In total, we measured the execution time over 2170 runs for SB-TemPsy-Check and over 1100
runs for Breach. The execution time of SB-TemPsy-Check was measured using the Unix time
utility for the pre-processing step and the System.currentTimeMillis() method (from the
Java library) for the invocation of the OCL checker; the execution time of Breach was measured
using the tic and toc functions of the stopwatch timer integrated within Matlab.

Results. SB-TemPsy-Check yielded a verdict within the timeout in ≈ 87% of the runs (1884
out of 2170). On average, SB-TemPsy-Check took 5.98 s (min = 0.35 s, max = 103 s) for the
pre-processing and 48.7 s (min = 0.18 s, max = 7076.8 s) for the trace checking through the OCL
solver. Overall, SB-TemPsy-Check took less than 10 s to check properties (i) whose pattern is
different from “order relationship”, and (ii) whose scope is of type “absolute”; such properties
account for ≈ 99% of the completed runs (1870 out of 1884).

In the remaining 286 runs (≈ 13%) in which SB-TemPsy-Check did not finish within the
timeout, the property to be verified contained either an instance of the “order relationship” pat-

3We also removed 13 combinations in which the trace had less than 10 entries.

86

5.7. Evaluation

tern or an “event” scope. As discussed in section 5.6.3, checking these types of properties has a
time complexity that is polynomial in the length of the trace. We remark that SB-TemPsy-Check
was still able to return a verdict in 14 out of the 300 runs in which the property contained the
aforementioned pattern type or scope type; in all these cases, the trace did violate the property
and the violation was found before the timeout.

As for the 1100 runs that checked one of the 59 properties that could be expressed both in
SB-TemPsy-DSL and in STL (and thus could be checked by Breach), Breach finished within the
timeout in 100% of the runs, with an average execution time of 0.01 s (min = 0.006 s, max =
0.15 s); SB-TemPsy-Check finished within the timeout in ≈ 97% of the runs (1064 out of 1100).
For these runs, SB-TemPsy-Check took on average 85.28 s (min = 0.18 s, max = 7076.8 s). For
the remaining ≈ 3% of the runs in which SB-TemPsy-Check did not finish within the timeout,
the property to be checked contained an “order relationship” pattern; the same observations
made above about the complexity of checking such properties apply also here.

In terms of execution time, when considering the ≈ 97% runs in which both SB-TemPsy-
Check and Breach terminated within the timeout, though SB-TemPsy-Check was slower than
Breach, it was able to yield a verdict within 10 s for all the properties (i) whose pattern is dif-
ferent from “order relationship”, and (ii) whose scope is of type “absolute”; such properties
account for the vast majority of the completed runs (1050 out of 1064, ≈ 99%). This cost is rea-
sonable given that SB-TemPsy-Check supports the verification of a much larger set of property
types than Breach.

Summing up, the answer to RQ2 is that, in 87% of the runs SB-TemPsy-Check could com-
plete within practical time limits (i.e., the timeout determined based on the development con-
text of our case study) the verification of SBTPs (expressed in SB-TemPsy-DSL) over industrial
traces, with an average checking time of 48.7 s. We deem this time to be reasonable for practi-
cal applications, since it is orders of magnitude lower than the time needed for simulation and
trace generation (as discussed in section 5.2). In other words, it allows engineers to integrate
SB-TemPsy-Check within the development process at a negligible cost. Furthermore, though
SB-TemPsy-Check was slower than Breach, it was always able to yield a verdict within 10 s in
≈ 99% of the cases, despite supporting the verification of a much larger set of property types.

5.7.3 Discussion and Threats to Validity

The results of our empirical investigation show that SB-TemPsy represents a viable trade-off be-
tween an expressive specification language for SBTPs (SB-TemPsy-DSL) and an efficient trace-
checking procedure (SB-TemPsy-Check). Using SB-TemPsy-DSL, we could express 98 out of
101 requirements of an industry-grade CPS. SB-TemPsy-DSL was considerably more expressive
than STL, which is a temporal logic for SBTPs supported by publicly available trace-checking
tools. Furthermore, SB-TemPsy-Check completed the verification of these requirements on real-
world execution traces within practical time limits (determined based on the development con-
text of our case study) in ≈ 87% of the runs. This also confirms our conjecture that a model-
driven approach is a viable solution for trace checking of SBTPs.

87

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

Supporting an expressive specification language like SB-TemPsy-DSL comes with a perfor-
mance loss in terms of the trace checking procedure. For the 59 requirements of our case study
that could be expressed in STL, in ≈ 97% of the runs in which SB-TemPsy-Check terminated,
it was slower than Breach but it was able to yield a verdict within 10 s for ≈ 99% of the cases.
Furthermore, differently from SB-TemPsy-Check, Breach always terminated within the timeout.

Based on the above observations, taking advantage of the complementary strengths of both
approaches, we propose to combine SB-TemPsy and Breach. SB-TemPsy-DSL properties that
can also be expressed in STL (i.e., logical expressions of data assertions) should be checked with
Breach, since it yields better performance. More complex SBTPs (which cannot be expressed in
STL) should then be checked with SB-TemPsy-Check, since it is the only tool that can efficiently
verify them. Overall, this complementary usage of the two verification tools would significantly
reduce the execution time and number of timeouts of the trace checking procedure.

As mentioned in Section 5.6.3, although our model-driven trace checking approach is cor-
rect, the interpolation function used in the pre-processing step influences the verdicts returned
by SB-TemPsy-Check and Breach. In practical scenarios, engineers may want to consider dif-
ferent interpolations functions depending on the expected signals’ behaviors. For this reason,
we plan to (i) provide additional interpolation functions, and (ii) allow the selection of a differ-
ent interpolation function for each signal. Engineers can then choose the interpolation function
based on the type and the domain of the signal, and on their domain knowledge. Since signals
usually represent the state either of some CPS software components or of their environment,
engineers usually have a precise, yet intuitive, understanding of how these signals will change
over time. Therefore, they can easily select the most appropriate interpolation function given
their usage scenario.

Threats to validity. In our evaluation, we used a set of requirements and traces coming
from one industrial case study from the satellite domain. Though the targeted system and
requirements are in many ways representative of what can be found in satellite and other
cyber-physical domains—where the behavior being controlled involves convoluted physical
dynamics and the system requirements are expressed as complex SBTPs—this could influence
the generalization of our results.

Another threat to the validity of the evaluation results is the presence of coding errors in the
implementation of SB-TemPsy-Check. We tried to mitigate it by thoroughly testing the tool.

5.8 Related Work

Our approach is related to work done in the areas of (i) specification languages for SBTPs,
(ii) trace-checking methods, and (iii) model-driven approaches for trace checking.

Specification languages. STL [MN04] has been one of the first logic-based languages proposed
for specifying SBTPs. STL* [BDŠV14] is an extension of STL with the signal-value freezing op-
erator, which binds the value of a signal at a precise time instant. SFO [BFHN18] is a first-order
temporal logic for signals. [BJB+20] compared the expressiveness of STL, STL*, and SFO analyti-

88

5.8. Related Work

cally, based on different formulations of the main types of SBTPs (see section 4.2); in contrast, we
have empirically compared the expressiveness of SB-TemPsy-DSL, STL and SFO as part of our
evaluation (section 5.7.1), using properties from a representative industrial case study. [BB19]
proposed an extension of STL with (i) a new form of until operator, (ii) support for computable
aggregate function over a sliding window, and (iii) formulae having the possibility of produc-
ing and manipulating real-valued output signals. These extensions give the possibility of ex-
pressing some SBTP patterns (e.g., stabilization, maximum/minimum value, linear increase,
spike) without the need for more expressing languages like STL* or SFO. [MNGB19] have re-
cently proposed RFOL, a logic that is more expressive than STL and less expressive than SFO.
We did not consider RFOL since this work is focused on offline trace-checking, whereas RFOL
is supported by an online trace checker. SB-TemPsy-DSL is also related to other DSLs for ex-
pressing temporal properties, such as PROPEL - DNL [SACO02], Structured English Grammar
for real-time specifications [KC05], Temporal OCL [KT13], OCLR [DBB14], VISPEC - graphical
formalism [HMF15], TemPsy [DBB17a], SpeAR [FWH+17], TemPsy-AG [BBB19], ProMoboBox
- property language [MVDS20], FRETISH [GPMS20]. The majority of them is based on some
property specification patterns [AGL+15, DAC99]; none of them support SBTPs. The contract
language proposed by [BOV+19] is the closest to SB-TemPsy-DSL, since it is pattern-based and
has been developed for the CPS domain; however, it supports only STL-like properties, and
thus cannot express more complex behaviors such as spikes and oscillations.

SB-TemPsy-DSL supports the main types of SBTPs identified in [BJB+20]’s taxonomy, which
also provides a formalization of the properties in SFO. For SB-TemPsy, we have refined such
a formalization since our goal was to develop a trace-checking procedure for SB-TemPsy-DSL
properties, rather than providing a mere formalization in a temporal logic. For example, our
OCL definition of the SB-TemPsy-DSL semantics uses different predicates for determining the
local extrema (see table 5.1), since they are more appropriate (by requiring the signal value to
change according to a unimodal function) to model the signal behavior in the context of trace
checking.

Trace-checking methods and tools. Among the temporal logics for SBTPs discussed above, STL
is supported by tools (such as AMT [NLM+18], Breach [Don10], and S-Taliro [ALFS11]) for
offline trace checking; a tool is also available for the STL extension proposed in [BB19]. No
tools are available for STL* and SFO. RFOL is supported by an online trace-checking procedure
(SOCRaTEs [MNGB19]). The contract language proposed by [BOV+19] is translated into STL
and then relies on Breach for verification.

Model-driven approaches for trace checking. Model-driven trace checking has been originally
proposed by [DBB17a] for the verification of simple temporal properties. The work in [DBB17a]
has been extended by [BBB19] to support service provisioning specification patterns [BGPS12,
BGS13] using aggregate operators. In this work we have applied the idea of model-driven trace
checking from [DBB17a] in the context of SBTP through the development of the SB-TemPsy
approach. The main differences with [DBB17a] are:

(i) The SB-TemPsy-DSL language has constructs specific to the domain of SBTP, based on
the property types proposed in a recent taxonomy [BJB+20]; also, the scope operators,

89

5. TRACE-CHECKING SIGNAL-BASED TEMPORAL PROPERTIES: A MODEL-DRIVEN

APPROACH

though inspired by [DAC99]’s work, have been tailored to the domain of SBTP (e.g., to
support absolute time instants). On the other hand, the TemPsy language [DBB17a] (and
its predecessor OCLR [DBB14]) are only based on [DAC99]’s specification patterns (and
thus do not support SBTPs).

(ii) SB-TemPsy-Check includes a pre-processing step, to deal with trace entries with missing
signal values and recorded both at fixed and at variable sampling rates.

(iii) SB-TemPsy-Check sports an improved trace meta-model, to support trace entries record-
ing the values of several signals at a certain time instant.

(iv) The mapping of the semantics of SB-TemPsy-DSL into OCL constraints is completely new,
since it is based on the semantics presented in section 5.5.2.

To the best of our knowledge, SB-TemPsy is the first approach to provide model-driven trace
checking of SBTPs.

5.9 Summary

In this chapter, we propose SB-TemPsy, a model-driven approach for checking Signal-based
Temporal Properties (SBTPs) on execution traces of CPSs. SB-TemPsy includes SB-TemPsy-DSL,
a domain-specific language for specifying SBTPs that cover the most frequent requirement types
in CPSs, and SB-TemPsy-Check, an efficient trace-checking procedure that reduces the problem
of checking an SB-TemPsy-DSL property over a trace to the problem of evaluating an OCL
constraint on a model of the trace.

We evaluated SB-TemPsy by assessing the expressiveness of SB-TemPsy-DSL and the appli-
cability of SB-TemPsy-Check to a representative CPS in the satellite domain. The results of our
empirical investigation show that our approach—when compared, from a practical standpoint,
to state-of-the-art alternatives—strikes a better trade-off between expressiveness and perfor-
mance as it supports a much larger set of property types that can be checked, in most cases,
within practical time limits. Moreover, the results suggest that SB-TemPsy could be combined
with existing approaches efficiently supporting STL. In this way, we show we can make opti-
mal use of a given verification budget while avoiding most time-outs by relying on the best tool
option depending on the type of the checked property.

90

Chapter 6

Trace Diagnostics for Signal-based
Temporal Properties

6.1 Overview

Trace checkers typically rely on qualitative semantics, returning a Boolean verdict: true, if the
requirement is satisfied by the execution trace, and false, if it is violated. A requirement violation
indicates that the system did not behave as expected. In this case, engineers need to understand
the cause of the violation and address it. In most industrial CPS applications, this still largely
remains a manual activity supported by ad-hoc solutions: engineers manually inspect the input
signals through plotting their values over time, trying to understand the cause(s) of the viola-
tion. As traces typically come with a large number of trace records (each trace record represents
a signal value at a specific time instant), manually determining the cause of a requirement vio-
lation is extremely difficult.

Pattern-based trace-checking tools like SB-TemPsy evaluate temporal properties based on a
specific catalogue of property specification patterns; each of these patterns encodes a recurrent
requirement that is checked by system developers. For example, a requirement (pSpk) that
constrains the existence of a spike behavior in an input signal (e.g., signal spk4 in figure 6.1) can
be expressed in English as follow: “the signal spk4 shall show a spike with an amplitude greater than
1.5 and with a width less than 2”. The corresponding property specification in SB-TemPsy-DSL is:
exists spike in spk4 with amplitude >1.5 with width <2.

When using a pattern-based trace-checking tool like SB-TemPsy, a property violation can
be represented as one or more distinct signal shapes. Engineers can systematically analyze and
classify these signal shapes under a specific class of signal behaviors. We propose to represent

91

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

each of these classes as a diagnostics pattern. The intuition is that, since the property of interest
is already defined based on a specific specification pattern, each of its possible violations also
follows a specific diagnostics pattern. In other words, the latter captures a significant class of
signal behaviors that leads to the violation of the property of interest. For example, when a
spike-based property is violated, the violation might be caused by:

1. the existence of a spike with a violation of one or more feature-based predicate(s) (e.g.,
width-based predicate), as in spk1/spk2 in figure 6.1. Note that a feature violation is based
on the feature-based predicate defined in the property.

2. The absence of a strict local extremum (maximum or minimum) value from the signal
records. Based on figure 6.1, this is the case for a flat signal (spk5), a decreasing signal
(spk4) or an increasing signal (spk5).

These diagnostics patterns can be captured using logical formulae, which map each pattern
to its semantics. They can be defined based on domain knowledge provided by engineers,
who can identify — for each property pattern — the most critical and meaningful violations to
capture.

Each diagnostics pattern can be associated with a violation type, through which we precisely
classify and distinguish between the possible signal behaviors causing the property violation.
For example, let us consider signal spk3 depicted in figure 6.1 as the execution trace for the eval-
uation of the following spike requirement: in signal spk3 , there shall exist a spike with a maximum
amplitude of 1. As depicted in the figure, signal spk3 is flat. In this case, we can characterize this
faulty behavior as a NSExt violation type, which stands for Non Shown Extremum(Extrema).

From a practical point of view, an effective trace diagnostics approach should provide in-
formative verdicts, i.e., it should provide some diagnostics information that explains the cause
of a property violation. For this reason, we propose to associate each diagnostics pattern with
the corresponding diagnostics information. For example, identifying a decreasing signal (spk4 in
figure 6.1) does not reveal any information about the range of values over which that signal
decreases. Nevertheless, an informative verdict containing some information about the signal
records, showing the maximum and the minimum signal values, could provide more details
about how the signal decreases, from the highest to the lowest value.

Based on the needs for trace diagnostics identified above, in this chapter we introduce TD-
SB-TemPsy, a model-driven trace diagnostics approach for SBTPs expressed in SB-TemPsy-DSL
and previously checked with SB-TemPsy-Check.

The rest of this chapter is organized as follows. Section 6.2 presents an overview of TD-SB-
TemPsy; our pattern-based trace diagnostics approach. Section 6.3 defines the formal semantics
of the diagnostics patterns and the corresponding diagnostics information. Section 6.4 illustrates
and details the different diagnostics patterns and the corresponding diagnostics information, for
each pattern type. Section 6.5 discusses the preliminary evaluation we conducted to evaluate
the implementation of TD-SB-TemPsy. Section 6.6 discussed related work.

92

6.2. Overview of TD-SB-TemPsy

1 2 3 4 5 6 7

1

2

3

4

5

6

7

spk1/spk2

a1 > v2

w > v1

spk3

spk4

spk5

time

signal value

Figure 6.1: Examples of signal shapes that violate a spike property pattern.

6.2 Overview of TD-SB-TemPsy

An overview of TD-SB-TemPsy is presented in figure 6.2. TD-SB-TemPsy takes as input a prop-
erty φ and a pre-processed trace π̄ (see details about trace pre-processing in section 5.6.1). The
property is obtained by instantiating a pattern1 pwith a list v of parameter values. For example,
the spike pattern used to define property pSpk specifies that signal spk4 shows a spike behavior
with constraints over the width (which shall be lower than 2) and the amplitude (which shall
be greater than 1.5) features. Note that the threshold values used in the features represent some
of the parameters of the spike pattern. For example, let us consider a spike pattern (p = spike)
defined in 5.3 as follows:

exists spike in 〈s〉 with [width ∼1 〈v_1〉]_β [amplitude ∼2 〈v_2〉]_γ]_α
The list of parameters v defined by that pattern are arguments representing the input values

that shall be supplied by the users. These arguments are the following: 1) the signal name
(〈s〉), 2) the relational operator (∼1), 3) the width value 〈v_1〉, 4) the relational operator (∼2) and
5) the amplitude value 〈v_2〉. The parameter values (s 7→ spk4, ∼1 7→ ‘ <′, v1 7→ 2, ∼2 7→ ‘ >′ and
v2 7→ 1.5) then lead to the spike property φ (see section 6.1 for the SB-TemPsy-DSL specification
of property pSpk). More formally, given a property pattern p, and a set of parameters v used to
define the pattern, we use the notation φ←pv, to indicate that the pattern p, parametrized with
the parameter values v, leads to the property φ. Based on a specific property φ, we determine
a set DP of diagnostics patterns. Each diagnostics pattern dp instance is obtained by instantiating
the corresponding parameters values dpv1, dpv2, ..., dpvn. As a result, each diagnostics pattern dp

1In this chapter, we assume, without loss of generality, that a property is always bounded by a globally scope
(see section 5.5), which is then omitted from the definition to keep the notation light.

93

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

Figure 6.2: Overview of TD-SB-TemPsy

generates an instance formula φ′, i.e., φ′←dpv. More generally, based on property φ, we get the
set DP = {φ′1, φ′2, ..., φ′n}, where each φ′i is obtained by the instantiation of the corresponding
dpvi. Based on the set of diagnostics patterns DP and the pre-processed trace φ′, TD-SB-TemPsy
returns the following diagnostics information:

1. the signal name that is responsible of the property violation;

2. the violation details, which consist of information on one or more trace records (a times-
tamp, a signal value, or both) that represent relevant details about an unexpected behav-
ior, characterized as a diagnostics pattern. These violation details result from the signal shape
exhibiting a behavior compliant with diagnostics patterns for the corresponding property
type (see details in § 6.3.2);

3. the violation type that describes the signal behavior identified by the diagnostics pattern.

6.3 Diagnostics patterns and Diagnostics Information: formal
definition

A diagnostics pattern is a logical formula that formally defines and characterizes a specific shape
of a signal that corresponds to a violation of a certain property type. Since each diagnostics pat-
tern should characterize a set of signals that lead to the violation of the property of interest, we
should ensure that, whenever the pattern holds on an execution trace, the property of interest
shall be violated by that trace.

94

6.3. Diagnostics patterns and Diagnostics Information: formal definition

Table 6.1: Spike Diagnostics Patterns

‘spike’ A signal 〈s〉 has a spike within the interval [tl, tu] if there exists a strict maximum at time instant
t2 (the maximum of the spike) surrounded by two (non strict) minima respectively at time
instant t1 and t3. The width width(〈s〉, t1, t3) of the spike constraints the size of the time interval
[t1, t3]. The amplitude amp(〈s〉, t2, t3, t4) constraints the maximum amplitude of the spike.

spk1
∗ None of the spikes satisfies the amplitude constraint (NSF_a): ∀t1, t2, t3 ∈ [tl, tu]((t1 <

t2 < t3 ∧ ((uni_m_min(s, t1, [tl, t2])∧ uni_sm_max (s, t2, [t1, t3])∧ uni_m_min(s, t3, [t2, tu]))∨
(uni_m_max (s, t1, [tl, t2]) ∧ uni_sm_min(s, t2, [t1, t3]) ∧ uni_m_max (s, t3, [t2, tu])))) →
¬amp(〈s〉, t1, t2, t3))

spk2
∗ None of the spikes satisfies the width constraint (NSF_p): ∀t1, t2, t3 ∈ [tl, tu]((t1 <

t2 < t3 ∧ ((uni_m_min(s, t1, [tl, t2])∧ uni_sm_max (s, t2, [t1, t3])∧ uni_m_min(s, t3, [t2, tu]))∨
(uni_m_max (s, t1, [tl, t2]) ∧ uni_sm_min(s, t2, [t1, t3]) ∧ uni_m_max (s, t3, [t2, tu])))) →
¬width(〈s〉, t1, t3))

spk3 The signal 〈s〉 is constant (NSExt): ∀t ∈ [tl, tu](fp(t, 〈s〉) = fp(tl, 〈s〉))
spk4 The signal 〈s〉 always decreases (NSExt): ∀t1 ∈ [tl, tu)(∀t2 ∈ (t1, tu](fp(t1, 〈s〉) ≥ fp(t2, 〈s〉)))
spk5 The signal 〈s〉 always increases (NSExt): ∀t1 ∈ [tl, tu)(∀t2 ∈ (t1, tu](fp(t1, 〈s〉) ≤ fp(t2, 〈s〉)))

amp(〈s〉, t1, t2, t3) ≡ max (|fp(t2, 〈s〉)− fp(t1, 〈s〉)| , |fp(t2, 〈s〉)− fp(t3, 〈s〉)|) ∼2 〈v_2〉
width(〈s〉, t1, t2) ≡ (t2 − t1) ∼1 〈v_1〉

More in details, let p be a property pattern, v be a set of parameter values and φ be a property
specified using an instantiation of p based on the corresponding parameter values, i.e., φ←pv;
a diagnostics pattern dp for p, is a pattern such that, when parameterized2 with the values in v,
it generates the instance formula φ′ (formally, φ′←dpv) that satisfies the following diagnostics
relation (on any execution trace π̄)

if π̄ |= φ′ then π̄ 6|= φ

This diagnostics relation defines a diagnostics pattern. It ensures that, if the instance formula of
the diagnostics pattern dp parametrized with v holds, then the instance formula of the property
pattern p parametrized with v does not hold.

6.3.1 Diagnostics Patterns Definition: Methodology

To define our diagnostics patterns and to ensure that they satisfy the diagnostics relation, we
performed three steps: behavior analysis, semantics definition, and verification of the diagnostics
relation.

Behavior Analysis. We identified classes of undesired signal behaviors that lead to property
violations and described each of these behaviors. Each class of signal behaviors is associated
with a pattern. For example, Figure 6.1 reports five possible signal behaviors, belonging to five
different classes of undesired signal behaviors we identified, that lead to the violation of the
spike property pattern defined above. The signal shapes we capture are the following:

• spk1 : in a similar signal shape, all spike instances violate the amplitude constraint, show-
ing a violation of type Non-Satisfied amplitude Feature (NSFa);

2Each pattern p has a different set of parameters.

95

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

• spk2 : all spikes in the signal violate the width constraint, showing a violation of type
Non-Satisfied Feature width (NSFw);

• spk3 : the signal is flat with a violation type Non-Shown Extremum (Extrema) (NSExt);

• spk4 : the signal does not show any spike; instead, it decreases showing a violation of type
NSExt;

• spk5 : the signal does not show any spike; instead, it increases showing a violation of type
NSExt.

Semantics Definition. We then characterized each behavior through a diagnostic pattern dp.
For each class, we used a logical formula that is satisfied only when a signal belongs to that
class, i.e., satisfies the semantics of the pattern. The semantics of each diagnostics pattern de-
fines specific constraints on an execution trace π̄, taking into account its pattern dp and the
corresponding parameter values from the set v. For example, the following semantics (which
correspond to the 5-th row in table 6.1) of the diagnostics pattern spk4 (related to the decreasing
signal spk4 in figure 6.1)

∀t1 ∈ [tl, tu) (∀t2 ∈ (t1, tu] (fp(t1, 〈s〉) ≥ fp(t2, 〈s〉))) (6.1)

specifies that for any time instant t1 from the left-closed interval delimited by the lower and
the upper boundaries (tl and tu, respectively), the value (fp(t2, 〈s〉) of the signal 〈s〉 at any time
instant t2 that comes after t1 shall be lower than the value fp(t1, 〈s〉). By associating the signal
name parameter of the diagnostics pattern spk4 with the corresponding value in v, the obtained
instance formula from this diagnostics pattern instantiation (dp) is then (φ′) (e.g., signal spk4).
Let us consider the diagnostics pattern spk1 that comes with a more complex semantics than
spk4 defined and explained above. The semantics definition of spk1 is: (see also the 2-d row in
table 6.1)

∀t1, t2, t3 ∈ [tl, tu]((t1 < t2 < t3∧
((uni_m_min(s, t1, [tl, t2]) ∧ uni_sm_max (s, t2, [t1, t3]) ∧ uni_m_min(s, t3, [t2, tu]))∨
(uni_m_max (s, t1, [tl, t2]) ∧ uni_sm_min(s, t2, [t1, t3]) ∧ uni_m_max (s, t3, [t2, tu]))))→
¬amp(〈s〉, t1, t2, t3)) (6.2)

specifies that for all the detected spike instances (line 1 of the formula), each showing either
a strict local maximum surrounded by two local minima (line 2 of the formula) or a strict lo-
cal minimum surrounded by two local maxima (line 3 of the formula), the predicate over the
amplitude spike feature shall be violated (line 4 of the formula). The semantics comes with 3
parameters, instantiated through associating the corresponding parameter values as follows:

1) the signal name spk1 ;

96

6.3. Diagnostics patterns and Diagnostics Information: formal definition

2) the relational operator ∼2 related to the amplitude predicate (see the corresponding seman-
tics (semantics of amp(〈s〉, t1, t2, t3)) right below table 6.1) and

3) the amplitude value v2 defined in the property definition

We denote by ζ a Boolean function that takes as input a pre-processed trace π̄, a specification
pattern p or a diagnostic pattern dp, and the corresponding set of parameters v.

Function ζ(π̄, p, v) returns true when the property φ resulting from instantiating pattern p
with the corresponding parameter values v holds over the execution trace π̄. More formally,
ζ(π̄, p, v) is true if (and only if) φ← pv and π̄ |= φ.

Similarly, function ζ(π̄, dp, v), taking in the pre-processed trace π̄, the diagnostics pattern dp
and the corresponding set of parameters v, return true when the property φ′ resulting from in-
stantiating the diagnostics pattern dp with the corresponding parameter values v holds over the
execution trace π̄. More formally, ζ(π̄, dp, v) is true if (and only if) φ′ ← dpv and π̄ |= dp.

Verification of the Diagnostics Relation. To check for the satisfaction of the diagnostics relation,
as a way to ensure that the the latter holds for each of the diagnostics patterns we defined, we
checked whether

ζ(π̄, dp, v)→ ¬ζ(π̄, p, v) (6.3)

holds for each diagnostics pattern.
To automatically check whether ζ(π̄, dp, v)→ ¬ζ(π̄, p, v), we consider the formula

Ψ ≡ ¬(ζ(π̄, dp, v)→ ¬ζ(π̄, p, v)) (6.4)

and checked whether Ψ is satisfiable. If Ψ is unsatisfiable, then ζ(π̄, dp, v) → ¬ζ(π̄, p, v) holds
and the diagnostics pattern guarantees the satisfaction of the diagnostics relation.

We use the Microsoft Z3 3 SMT solver to check for the satisfiability of Ψ. For example, Z3
returns an unsat result when the formula Ψ, obtained by considering the semantics of the spk4

diagnostics pattern and the original spike pattern, is evaluated. This proves that the diagnostics
pattern spk4 satisfies the diagnostics relation for the spike property. In other words, a signal
shape that always decreases (signal spk4 in figure 6.1) indicates one possible violation of the
spike property φ, which requires the signal to show a spike shape conforming to the features-
based predicates used in the property definition. This is formalized by formula spk4 in table 6.1.

A property can be violated for several reasons. This implies that more than one diagnostics
pattern can be satisfied by TD-SB-TemPsy. For this reason, we design our tool in such a way that
we prioritize over a list of defined diagnostics patterns, that characterize the possible violations.
The priority list is defined based on the user’s needs.

3https://github.com/Z3Prover/z3

97

https://github.com/Z3Prover/z3

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

6.3.2 Diagnostics Information

The diagnostics information concisely describes why a diagnostics pattern is matched. For example,
signal spk4 in figure 6.1 shows a violation of type NSExt. The violation details consist of the
information about two records of the signal (see semantics of spk4 −NSExt violation details in
table 6.8), which correspond to its last-seen maximum and first-seen minimum values (6.5 and
2, at timestamps 1 and 5, respectively). These two extrema illustrate the range of values over
which the signal changes.

Figure 6.3 shows an example of the OCL implementation, based on the spk1 diagnostics
pattern and the corresponding diagnostics information. Function reportPatternSpike takes

1 def: reportPatternSpike(trace:OrderedSet(trace::TraceElement), pattern::Spike, tl:
Real,tu:Real):

2
3 <vSignal:String,violationDetails:Sequence{Tuple},vType:String>: Tuple =
4 let s : String = pattern.s in
5 if trace->forAll(t1, t2, t3| tl<= t1 and t1.simulationTime < t2.simulationTime
6 and t2.simulationTime < t3.simulationTime and t3.simulationTime <=

tu
7 and (isLMax(trace,t1,tl,t2,s) and isLMin(trace,t2,t1,t3,s) and

isLMax(trace,t3,t2,tu,s)
8 or (isLMin(trace,t1,tl,t2,s) and isLMax(trace,t2,t1,t3,s) and

isLMin(trace,t3,t2,tu,s)))
9 implies Not(p2p(s,t1,t2,t3)))

10 then
11 if (getValue(s,t1)-getValue(s,t2).abs()>getValue(s,t2)-getValue(s,t3).abs

()) then
12 <vSignal=s,
13 violationDetails=Sequence{
14 Tuple{timestamp=t1.simulationTime, signalValue=getValue(s,

t1)},
15 Tuple{timestamp=t2.simulationTime, signalValue=getValue(s,

t2)}},
16 vType=NSF_p2p>
17 else
18 <vSignal=s,
19 violationDetails=Sequence{
20 Tuple{timestamp=t2.simulationTime, signalValue=getValue(s,

t2)},
21 Tuple{timestamp=t3.simulationTime, signalValue=getValue(s,

t3)}},
22 vType=NSF_p2p>
23 endif
24 endif

Figure 6.3: OCL function for the spike pattern based on spk −NSFa diagnostics pattern

98

6.4. Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property
types

as input a trace, a spike pattern and two boundaries (tl and tu, standing for the left and right
boundaries that delimit the trace to a sub-trace over which we are interested in reporting di-
agnostics information in case of the spike property violation). Function reportPatternSpike
selects the first satisfied diagnostics pattern formula (lines 5–9) from the priority list of diagnos-
tics patterns. The diagnostics pattern illustrated in the figure matches the spk1 diagnostics pattern
in table 6.1. The satisfied diagnostics pattern comes with diagnostics information (lines 11–23);
the function returns a tuple with three elements (line 3): 1) the signal name from the property
definition (vSignal), 2) a sequence of tuples of violation details (violationDetails), returning the
two extrema from the spike instance, that determine its amplitude value that is closest to the
satisfaction of the amplitude-based predicate and 3) a violation type vType set to NSFa .

6.4 Defining Diagnostic Patterns and Diagnostic Information for
SB-TemPsy-DSL property types

In this section, we describe the diagnostics patterns and the corresponding diagnostics information
for each property (pattern) type supported by SB-TemPsy-DSL.

6.4.1 Data Assertion

A data assertion property might come in two distinct variants: an event-based and a state-based
data assertion. For the event-based data assertion, based on the original property definition (see
semantics in the first line of the third row of table 5.3), the existence of at least one record that
violates the predicate is sufficient to trigger the violation of the original property. For example,
let us consider the following property: “Signal eDA shall be always less than the value of 4”. As
depicted in figure 6.4a, the signal violates the property at timestamp 4 showing a value equal
to 5. This type of property violation is: Non − SatisfiedEvent(NSE). For the state-based data
assertion, based on the original property definition (see semantics in the second line of the third
row of table 5.3), three possible signal shapes might cause the property violation. For example,
the violation of property pSDA: “the signal shall become less than 3” might be caused by one of
the following signal shapes (depicted in figure 6.4b):

• sDA1 : the signal is always below the value of 3, showing a violation of type Non-Shown
State (NSS);

• sDA2 : the signal is above the value of 3 over a left-open boundary interval, showing a
violation of the same type as for the previous signal shape (NSS);

• sDA3 : the signal shows a dual behavior (a behavior different from the one expected from
the property definition pSDA). The signal becomes greater than 3, instead of going below
that value). This type of property violation is Shown-Dual State (SDS).

99

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

eDA

time

signal value

(a) event-based data assertion

1 2 3 4 5 6 7

1

2

3

4

5

6

7

sDA2

sDA1

sDA3

time

signal value

(b) state-based data assertion

Figure 6.4: Examples of signal shapes that violate a ‘data assertion’ pattern

Table 6.2: Data assertion Diagnostics Patterns

‘assert’ For every time instant the condition 〈c〉 holds
eDA There exists a time instant where the condition 〈c〉 does not hold (NSE): ∃t ∈ [tl, tu] (π̄, t 6|= 〈c〉)

‘becomes’ There exists a time instant t where fp(t, 〈s〉) ∼ 〈v〉 is true, and for any time instant t1 that
precedes t, fp(t1, 〈s〉) 6∼ 〈v〉

sDA1 The value fp(t, 〈s〉) of the signal 〈s〉 at any time instant t does never satisfy the relation
fp(t, 〈s〉) ∼ 〈v〉 (NSS): ∀t ∈ (tl, tu]

(
fp(t, 〈s〉) 6∼ 〈v〉)

sDA2 Every time instant t is preceded by a time instant t1 where fp(t1, 〈s〉) ∼ 〈v〉 is satisfied (NSS):
∀t ∈ (tl, tu]

(
∃t1 ∈ (tl, t)(fp(t1, 〈s〉) ∼ 〈v〉)

)
sDA3 The value of the signal 〈s〉 satisfies the predicate ∼ 〈v〉, until time instant t. Starting from t

onwards, the value of 〈s〉 satisfies 6∼ 〈v〉 (SDS): ∃t ∈ (tl, tu)(∀t1 ∈ [tl, t)(fp(t1, 〈s〉) ∼ 〈v〉)∧∀t2 ∈
[t, tu](fp(t2, 〈s〉) 6∼ 〈v〉))

We provide diagnostics patterns (see details in table 6.2) as formalizations of the signal shapes
identified earlier. For each diagnostics pattern, we provide a short description in English, the
corresponding violation type (text in bold) and the formal semantics. Note that the first row in
the table presents our diagnostics pattern (annotated as eDA) for an event-based data assertion
while the second row defines and formalizes the possible diagnostics patterns of a state-based
data assertion violation (sDA1,sDA2 and sDA3).

The violation details for properties of type data assertion are the following:

• eDA-NSE; when an event-based data assertion property is violated, we return the first-
seen record by which the signal violated the predicate;

• sDA1 −NSS/sDA2 −NSS ; when a state-based data assertion is violated due to always
satisfying the predicate or always violating it, we return two records from the signal such

100

6.4. Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property
types

Table 6.3: Violation Details associated with Data Assertion Diagnostics Patterns defined in Ta-
ble 6.2.

eDA One time instant t and signal value fp(t, 〈s〉) that do not satisfy the condition 〈c〉:
〈t, fp(t, s)〉 | tl ≤ t ≤ tu ∧ fp(t, s) 6|= 〈c〉 ∧ ∀t′ ∈ [tl, t)(fp(t

′, s) |= 〈c〉)
sDA1/sDA2 The time instants t1 and t2 and the values fp(t1, 〈s〉) and fp(t2, 〈s〉) of the first maximum and

the minimum of the signal 〈s〉:
〈〈t1, fp(t1, s)〉, 〈t2, fp(t2, s)〉〉| tl ≤ t1 ≤ tu ∧ tl ≤ t2 ≤ tu ∧ ∃t3, t4 ∈
[tl, tu]((uni_m_max (s, t1, [tl, t3]) ∧ uni_m_min(s, t2, [t3, t4])) ∨ (uni_m_min(s, t1, [tl, t3]) ∧
uni_m_max (s, t2, [t3, t4])))

sDA3 The last timestamp t1 at which the signal 〈s〉 satisfies the predicate ∼ 〈v〉, and the next times-
tamp t2 at which the signal violates it:
〈〈t1, fp(t1, s)〉, 〈t2, fp(t2, s)〉〉|tl ≤ t1 < t2 ≤ tu ∧ fp(t1, 〈s〉) ∼ 〈v〉 ∧ fp(t2, 〈s〉) 6∼ 〈v〉 ∧ ¬∃t3 ∈
[tl, tu](t1 < t3 < t2)

that they show the minimum and maximum values;

• sDA3 − SDS; when a state-based property is violated due to a dual behavior (the signal
goes above the value of 3, instead of becoming less than this value in property pSDA), we
return the last-seen record by which the signal was satisfying the predicate followed by
the very first-seen record by which the signal violates it.

Overall, the full set of reported diagnostics information (considering the sDA3 diagnostics pattern)
consists of:

1. the signal name (sDA3), retrieved from the property definition,

2. the following violation details: the last seen record that satisfies the pattern predicate (times-
tamp t1 with the value fp(t1, s)), and the first seen record (occurs at timestamp t2, right
after t1) where the pattern predicate is satisfied, and

3. the violation type (already associated to the corresponding diagnostics pattern) which is set
to SDS.

6.4.2 Rise Time (and Fall Time)

We distinguish between four possible signal shapes for a rise time property violation. Let us
consider property “the signal shall rise (possibly monotonically) reaching the value of 3”. A possible
violation might be due to one of the following signal shapes (see also figure 6.5):

• rt1: the signal is always below the value of 3, with a violation type NSS;

• rt2: the signal is always above the value of 3, with a violation type NSS;

• rt3: the signal rises reaching the target value with a violation of the monotonicity con-
straint, showing a violation of type Non-Satisfied Monotonicity (NSM);

101

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

1 2 3 4 5 6 7

1

2

3

4

5

6

7

rt1

rt2

rt3

rt4
time

signal value

Figure 6.5: Examples of signal shapes that violate a ‘rise time’ pattern.

Table 6.4: Rise Time diagnostics patterns

‘rises’ There exists a time instant t where fp(t, 〈s〉) ≥ 〈v〉 is true, and for any time instant t1 that
precedes t, fp(t1, 〈s〉) < 〈v〉. An optional construct can be used to force the signal to rise mono-
tonically.

rt_1 The signal value is always below 〈v〉
(NSS):

rt_2 The signal value is always above 〈v〉
(NSS):

∀t ∈ [tl, tu](f(t, 〈s〉) < 〈v〉) ∀t ∈ [tl, tu](f(t, 〈s〉) ≥ 〈v〉)
rt_3 The signal rises, but not monotonically (NoMONOT): ∃t ∈ (tl, tu](fp(t, 〈s〉) ≥ 〈v〉 ∧ ∀t1 ∈

[tl, t)(fp(t1) < v) ∧ ¬(∀t2 ∈ [tl, t)(∀t3 ∈ (t2, t](fp(t2) < fp(t3))))))
rt_4 The value of the signal is initially above the threshold 〈v〉 and remains above that threshold

for a certain amount of time. Then, it drops and remain below the threshold 〈v〉 (SDS): ∃t ∈
(tl, tu)(∀t1 ∈ [tl, t)(fp(t1, 〈s〉) ≥ 〈v〉) ∧ ∀t2 ∈ [t, tu](fp(t2, 〈s〉) < 〈v〉))

• rt4: the signal falls instead of rising, showing a dual behavior with a violation type SDS.

We define diagnostics patterns (see table 6.4) of a rise time behavior w.r.t the signal shapes
identified above.

Table 6.5 shows the violation details we report for a rise time(and fall time) signal behavior.
These details are the following:

• rt1 −NSS/rt2 −NSS ; when a signal does not rise reaching the target value (it remains
always above or below that value). Similarly to sDA1 and sDA2 diagnostics patterns of
data assertion, we report information about its maximum and minimum values through
returning the two corresponding records;

102

6.4. Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property
types

Table 6.5: Violation Details associated with Rise Time Diagnostics Patterns defined in Table 6.4.

‘rises’
rt_1-NSS1 The values fp(ta, 〈s〉) and fp(ti, 〈s〉)) of the first maximum and the minimum of the signal 〈s〉

and their time instants ta and ti.

rt_2-NSS2

〈(ti, fp(ti, s)), (ta, fp(ta, s))〉| tl ≤ ti ≤ tu ∧ tl ≤ ta ≤ tu ∧ ∀t ∈ [tl, tu)((fp(t, s) ≥ fp(ti, s)) ∧
(fp(t, s) ≤ fp(ta, s))) ∧ ∀t1 ∈ [tl, ti)(fp(t1, s) > fp(ti, s)) ∧
∀t2 ∈ [tl, ta)(fp(t2, s) < fp(ta, s))

rt_3-NSM Two consecutive signal values and their timestamps t1 and t2 that do not satisfy the mono-
tonicity constraint.
〈〈t1, fp(t1, s)〉, 〈t2, fp(t2, s)〉〉|

tl ≤ t1 < t2 < ts ∧ ∃ts ∈ (tl, tu](fp(ts, 〈s〉) ≥ v) ∧
fp(t1, 〈s〉) < v ∧ fp(t2, 〈s〉) < v ∧ fp(t1, 〈s〉) ≥ fp(t2, 〈s〉) ∧
6 ∃t ∈ (t1, t2)((fp(t, s) < v)))

rt_4-SDS The last timestamp ts at which the signal 〈s〉 is greater than or equal to the target value 〈v〉,
and the next timestamp tv at which the signal falls, going below 〈v〉.
〈〈ts, fp(ts, s)〉, 〈tv, fp(tv, s)〉〉| ∧ tl ≤ ts < tv ≤ tu ∧ fp(ts, 〈s〉) ≥ 〈v〉∧

fp(tv, 〈s〉) < 〈v〉 ∧ ¬∃t ∈ [tl, tu](ts < t < tv)

• rt3 −NSM ; when the signal rises reaching the target value, but not monotonically when
the monotonicity constraint is required in the property definition, we report information
about two consecutive records that violate this constraint while the signal already rises to
reach the target value;

• rt4 − SDS; when the signal falls instead of rising, we need to capture informative details
about this violation, through returning the last seen record by which the signal satisfied
the predicate and the first seen record by which it violates it.

For example, rt3−NSM represents the violation details associated with the rt3 diagnostics pattern
from table 6.4. The reported diagnostics information then consist of:

• the signal name (s) from the property definition;

• the following violation details: two consecutive records whose values are less than the
target value, set to the 3 in signal rt3 of figure 6.5 and that do not satisfy the monotonicity
constraint in diagnostics pattern rt3 (at timestamps 3 and 4) such that the signal value of
the first record is less than or equal to the value of the second one (fp3, s ≤ fp(4, s)); where
the condition (fp3, s > fp(4, s)) shall be satisfied instead;

• the violation type which is set to NSM .

6.4.3 Overshoot

We distinguish between four possible signal shapes for an overshoot property violation. Let us
consider the property “the signal shall overshoot (possibly monotonically) reaching the value of 3 by

103

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

1 2 v1 v2 5 6 7

1

2

v1

v2

5

6

7

osh1

osh2

osh3

osh4

time

signal value

Figure 6.6: Examples of signal shapes that violate an ‘overshoot’ pattern.

a maximum of 1”. A possible violation might be due to one of the following signal shapes (see
figure 6.6:

• osh1: the signal is always below the value of 3, with a violation type NSS ;

• osh2: the signal goes above the sum of the target value and the maximum value (v1 + v2)
and remains above this threshold, coming with a violation type NSS ;

• osh3: the signal undershoots below the target value, showing a violation of SDS;

• osh4: the signal overshoots the target value without exceeding the possible threshold
(v1 + v2), but it violates the monotonicity constraint before it reaches the target value v1,
showing a violation of type NSM .

We define four diagnostics patterns (details are in table 6.6), each characterizing a signal shape
from the ones we identified above. Table 6.7 shows the violation details corresponding to each
diagnostics pattern, which are the following:

• osh1 −NSS/osh2 −NSS : the corresponding violation details and the violation type are as
same as the ones of rt1 −NSS and rt2 −NSS ; we return the records showing the mini-
mum and the maximum values the signal takes;

• osh3 − SDS : same violation details as rt4 − SDS (see table 6.5) apply here;

• osh4 −NSM ; same violation details as rt3 −NSM .

For example, the full reported diagnostics information osh3 − SDS , corresponding to signal osh3
consist of:

104

6.4. Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property
types

Table 6.6: Overshoot Diagnostics Patterns

‘overshoots’ The value of a signal 〈s〉 exceeds its target value 〈v〉1. After overshooting, the value of 〈s〉
remains below 〈v〉1 + 〈v〉2. An optional construct can be used to force the signal to rise mono-
tonically before exceeding the target value 〈v〉1.

osh_1 The signal 〈s〉 does not exceed 〈v〉1 (NSS1): ∀t ∈ [tl, tu](fp(t, 〈s〉) < 〈v〉1)
osh_2 The value of 〈s〉 exceeds 〈v〉1 + 〈v〉2 and remains above this threshold (NSS1): ∃t ∈

[tl, tu](fp(t, 〈s〉) > v1 + v2 ∧ ∀t1(t, tu](fp(t1, 〈s〉) > v1 + v2))
osh_3 The value of 〈s〉 stays between 〈v1〉 and 〈v1〉 + 〈v2〉 for a certain time interval and then goes

below the threshold 〈v1〉 (SDS): ∃t ∈ (tl, tu](∀t1 ∈ [tl, t](fp(t1, 〈s〉) ≥ 〈v1〉 ∧ fp(t1, 〈s〉) ≤
〈v1〉+ 〈v2〉) ∧ ∀t2(t, tu](fp(t2) < 〈v1〉))

osh_4 The signal overshoots, but not monotonically (NoMONOT): ∃t ∈ (tl, tu](f(t, 〈s〉) ≥ v1 ∧
f(t, 〈s〉) ≤ v1 + v2 ∧ ∀t1 ∈ (t, tu](fp(t1, 〈s〉) ≤ v1 + v2 ∧ fp(t1, 〈s〉) ≥ v1) ∧ ¬(∀t2 ∈ [tl, t)(∀t3 ∈
(t2, t](fp(t2, 〈s〉) < fp(t3, 〈s〉)))))

Table 6.7: Violation Details associated with Overshoot Diagnostics Patterns defined in Table 6.6.

‘overshoots’
osh_1-NSS The values fp(ta, 〈s〉) and fp(ti, 〈s〉)) of the first maximum and the minimum of the signal 〈s〉

and their time instants ta and ti.

osh_2-NSS

〈(ti, fp(ti, s)), (ta, fp(ta, s))〉| tl ≤ ti ≤ tu ∧ tl ≤ ta ≤ tu ∧ ∀t ∈ [tl, tu)((fp(t, s) ≥ fp(ti, s))∧
(fp(t, s) ≤ fp(ta, s))) ∧ ∀t1 ∈ [tl, ti)(fp(t1, s) > fp(ti, s))∧
∀t2 ∈ [tl, ta)(fp(t2, s) < fp(ta, s))

osh_4-NSM Two consecutive signal values and their timestamps t1 and t2 that do not satisfy the mono-
tonicity constraint.
〈〈t1, fp(t1, s)〉, 〈t2, fp(t2, s)〉〉| tl ≤ t1 < t2 < ts ∧ ∃ts ∈ (tl, tu](fp(ts, 〈s〉 ≥ v1∧

fp(ts, 〈s〉 ≤ v1 + v2)) ∧ fp(t1, 〈s〉) < v1 ∧ fp(t2, 〈s〉) < v1∧
fp(t1, 〈s〉) ≥ fp(t2, 〈s〉) ∧ 6 ∃t ∈ (t1, t2)((fp(t, s) < v1)))

osh_3-SDS The last timestamp ts at which the signal 〈s〉 is bounded by v1 and v1 + v2 and the next
timestamp tv at which the signal falls, going below 〈v1〉.
〈〈ts, fp(ts, s)〉, 〈tv, fp(tv, s)〉〉| ∧ tl ≤ ts < tv ≤ tu ∧ fp(ts, 〈s〉) ≥ 〈v1〉∧

fp(ts, 〈s〉) ≤ 〈v1 + v2〉 ∧ fp(tv, 〈s〉) < 〈v1〉∧
¬∃t ∈ [tl, tu](ts < t < tv)

105

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

• the signal name (osh3) from the property definition;

• the following violation details: two consecutive records that show a violation of the mono-
tonicity constraint: the record at timestamp 2 with value 3.5 and the record at timestamp
3 showing value 1;

• the violation type which is set to NSM .

6.4.4 Spike

As illustrated and detailed in section 6.3, we distinguish between five possible signal shapes for
a spike property violation (see figure 6.1).

For each diagnostics pattern of a spike behavior, we define violation details as shown in table 6.8
and described below:

• spk1 −NSFa : returns the time interval of the spike that is closer to satisfying the am-
plitude (a)-based predicate among all spike instances in the signal. It also returns the
amplitude of that spike instance;

• spk2 −NSFw : returns the time interval of the spike that is closer to satisfying the width(w)-
based predicate among all spike instances in the signal. It also returns the width of that
spike instance;

• spk3 −NSExt : returns the lower and the upper boundary throughout which the signal is
flat, and the signal value;

• spk4 −NSExt/spk5 −NSExt ; return two records from the decreasing/ increasing signal
with the minimum and the maximum values.

For example, as shown in table 6.8, spk3−NSExt represents the violation details associated with
the spk3 diagnostics pattern from table 6.1. The reported diagnostics information consists of:

• the signal name (s) from the property definition;

• the following violation details: the timestamps of the first and the third local extrema from
the detected spike shape (2 and 4, respectively), the width of the detected spike (4−2 = 2)
such that that width is the closest spike width to satisfying the width-based predicate from
the property definition;

• the violation type, which is set to NSFw .

106

6.4. Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property
types

Table 6.8: Violation Details associated with Spike Diagnostics Patterns defined in Table 6.1.

spk1 −NSFa∗ Returns the amplitude a and the time interval [t1, t2] of the spike that is closest to satisfy-
ing the amplitude constraint: 〈[t1, t2], p2p〉|(∃t3, t4, t5 ∈ [tl, tu] : (spk(〈s〉, t3, t1, t4, t2, t5) ∧
¬p2p(〈s〉, t1, t4, t2) ∧ ∀t6, t7, t8, t9, t10 ∈ [tl, tu] : ((t7 6= t1 ∧ t8 6= t4 ∧ t9 6= t2 ∧
spk(〈s〉, t6, t7, t8, t9, t10))→ ampv(〈s〉, t1, t4, t2) < ampv(〈s〉, t7, t8, t9)))).

spk2 −NSFw∗ Returns the width w and the time interval [t1, t2] of the spike that is closest to satis-
fying the width constraint: 〈[t1, t2], w〉|(∃t3, t4, t5 ∈ [tl, tu] : (spk(〈s〉, t3, t1, t4, t2, t5) ∧
¬width(〈s〉, t1, t2) ∧ w = widthv(〈s〉, t1, t2) ∧ ∀t6, t7, t8, t9, t10 ∈ [tl, tu] : ((t7 6= t1 ∧ t8 6=
t4∧ t9 6= t2∧ spk(〈s〉, t6, t7, t8, t9, t10))→ widthv(〈s〉, t1, t2) ? widthv(〈s〉, t7, t9)))). The symbol
? is equal to > or < depending on whether the property requires the width to be greater than
or lower than a certain value.

spk3 −NSExt The first and the last time stamps (t1 and t2) delimiting the exact interval throughout which
the signal is flat and the signal value: 〈[t1, t2], v〉|t1 ≤ tl∧ tu ≤ t2∧∀t3 ∈ [t1, t2] : (fp(t3, 〈s〉) =
v ∧ ¬(∃t4 ∈ [tf , t1) : (∀t5 ∈ (t4, t1) : (fp(t5, 〈s〉) = v))) ∧ ¬(∃t6 ∈ (t2, te] : (∀t7 ∈ (t6, te] :
(fp(t7, 〈s〉) = v))))

spk4 −NSExt/
spk5 −NSExt Returns the last seen maximum (fp(t1, s)) and the first seen minimum (fp(t2, s)) values of the

signal and respectively the first (t1) and the last (t2) timestamps at which they are reached:
〈〈t1, fp(t1, s)), 〈t2, fp(t2, s)〉〉|tl ≤ t1 ≤ t2 ≤ tu ∧ ∀t3 ∈ [tl, t1)(fp(t3, s) = fp(t1, s)) ∧ ∀t4 ∈
(t1, tu](fp(t4, s) < fp(t1, s)) ∧ ∀t5 ∈ [t2, tu)(fp(t5, s) = fp(t2, s)) ∧ ∀t6 ∈ [tl, t2)(fp(t6, s) >
fp(t2, s))

∗ spk(〈s〉, t1, t2, t3, t4, t5) = (uni_m_min(s, t2, [t1, t3]) ∧ uni_sm_max (s, t3, [t2, t4]) ∧ uni_m_min(s, t4, [t3, t5])) ∨
(uni_sm_max (s, t2, [t1, t3]) ∧ uni_m_min(s, t3, [t2, t4]) ∧ uni_sm_max (s, t4, [t3, t5]))
widthv(〈s〉, t1, t2) = t2 − t1
ampv(〈s〉, t1, t2, t3) = |max (|fp(t2, 〈s〉)− fp(t1, 〈s〉)| , |fp(t2, 〈s〉)− fp(t3, 〈s〉)|)− 〈v2〉|

1 2 3 4 5 6 7

1

2

3

4

5

6

7

osc1/osc2a1 > v1

p > v2
osc3

osc4

osc5
time

signal value

Figure 6.7: Examples of signal shapes that violate an ‘oscillations’ pattern.

107

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

6.4.5 Oscillations

We distinguish between seven possible signal shapes for an oscillatory behavior-based property
violation. (see figure 6.7):

• osc1 : all oscillatory-behaviors in the signal violate the peak-to-peak (p2p) amplitude con-
straint, showing a violation of type NSFp2p ;

• osc2 : all oscillatory-behaviors in the signal violate the period (p) constraint, showing a
violation of type NSFp ;

• osc3 : the signal does not oscillate. It only shows one strict extremum (minimum or maxi-
mum), the violation here is of type NSExt;

• osc4 : the signal does not oscillate. It rather shows two strict extrema (a minimum followed
by a maximum, or vise versa), the violation here is of type NSExt;

• osc5 : the signal is flat, with a violation type NSExt ;

Moreover, we also capture two more signal shapes, that we do not show in figure 6.1 as they are
similar to the two spike signal shapes spk6 and spk7 . These additional signals are, respectively:

• osc6 : the signal does not oscillate. It decreases instead coming with a violation of type
NSExt ;

• osc7 : the signal does not oscillate. It increases instead, showing the same violation type,
NSExt .

Table 6.9 presents our diagnostics patterns for the oscillations pattern type, w.r.t the signal
shapes considered in figure 6.7.

Below, we illustrate the violation details that match each oscillations diagnostics pattern as
shown in table 6.10.

• osc1 −NSFp2p : returns the time interval of the oscillations that are closer to satisfying the
predicate (based on the peak-to-peak amplitude) among all oscillations instances in the
signal. It also returns the peak-to-peak amplitude of that oscillatory behavior;

• osc2 −NSFp : returns the time interval of the oscillation that is closer to satisfying the
width-based predicate among all oscillations instances in the signal. It also returns the
corresponding period;

• osc3 −NSExt : returns the record that shows to be a strict extremum (maximum or mini-
mum);

• osc4 −NSExt : returns two records that represent two different strict extrema (maximum
followed by a minimum, or vise versa);

108

6.4. Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property
types

Table 6.9: Oscillations Diagnostics Patterns

‘oscillation’ A signal 〈s〉 shows an oscillation within the interval [tl, tu] if there exists a strict maximum at
time instant t2 surrounded by two strict minima respectively at time instant t1 and t3. The pe-
riod period(〈s〉, t1, t3) of the oscillation constraints the size of the time interval [t1, t3]. The peak-
to-peak-amplitude construct p2p(〈s〉, t1, t2, t3) constraints the maximum peak-to-peak ampli-
tude of the oscillation.

osc1
∗ None of the oscillations satisfies the peak-to-peak amplitude constraint (NSFeat_p2p):

∀t1, t2, t3, t4, t5 ∈ [tl, tu](t1 < t2 < t3 < t4 < t5 ∧ ((uni_sm_min(s, t2, [t1, t3]) ∧
uni_sm_max (s, t3, [t2, t4]) ∧ uni_sm_min(s, t4, [t3, t5])) ∨ (uni_sm_max (s, t2, [t1, t3]) ∧
uni_sm_min(s, t3, [t2, t4]) ∧ uni_sm_max (s, t4, [t3, t5])))→ ¬p2p(〈s〉, t1, t2, t3))

osc2
∗ None of the oscillations satisfies the period constraint (NSFeat_p): ∀t1, t2, t3, t4, t5 ∈

[tl, tu](t1 < t2 < t3 < t4 < t5 ∧ ((uni_sm_min(s, t2, [t1, t3]) ∧ uni_sm_max (s, t3, [t2, t4]) ∧
uni_sm_min(s, t4, [t3, t5])) ∨ (uni_sm_max (s, t2, [t1, t3]) ∧ uni_sm_min(s, t3, [t2, t4]) ∧
uni_sm_max (s, t4, [t3, t5])))→ ¬period(π̄, 〈s〉, t1, t3))

osc3 The signal 〈s〉 contains only one local minimum/maximum (NSExt): ∃t1 ∈
[tl, tu)(∃t2, t3(tl, tu](t1 < t2 < t3 ∧ uni_sm_max (s, t2, [t1, t3]) ∨ uni_sm_min(s, t2, [t1, t3]))) ∧
∀t4, t5, t6 ∈ [tl, tu]((t5 6= t2 ∧ t4 < t5 < t6) → ¬(uni_sm_max (s, t5, [t4, t6]) ∨
uni_sm_min(s, t5, [t4, t6])))

osc4 The signal 〈s〉 shows only two local extrema (maxima/ minima) (NSExt): ∃t1 ∈
[tl, tu)(∃t2, t3(tl, tu](t1 < t2 < t3 ∧ uni_sm_max (s, t2, [t1, t3]) ∨ uni_sm_min(s, t2, [t1, t3]))) ∧
∃t4, t5, t6 ∈ [tl, tu]((t5 6= t2 ∧ t4 < t5 < t6) ∧ uni_sm_max (s, t5, [t4, t6]) ∨
uni_sm_min(s, t5, [t4, t6]) ∧ ∀t7, t8, t9 ∈ [tl, tu]((t8 6= t2 ∧ t8 6= t5 ∧ t7 < t8 < t9) ∧
¬(uni_sm_max (s, t8, [t7, t9]) ∨ uni_sm_min(s, t8, [t7, t9])))

osc5 The signal 〈s〉 is constant (NSExt): ∀t ∈ [tl, tu](fp(t, 〈s〉) = fp(tl, 〈s〉))
osc6 The signal 〈s〉 always decreases (NSExt): (∀t1 ∈ [tl, tu) (∀t2 ∈ (t1, tu](fp(t1, 〈s〉) ≥ fp(t2, 〈s〉))
osc7 The signal 〈s〉 always increases (NSExt): (∀t1 ∈ [tl, tu) (∀t2 ∈ (t1, tu](fp(t1, 〈s〉) ≤ fp(t2, 〈s〉))

Given the oscillations syntax (see table 5.2):

‘exist’ ‘oscillations’ ‘in’ 〈s〉
[
‘with’

[
‘p2pAmp’ ∼ 〈v〉1

]
β

[
‘period’ ∼ 〈v〉2

]
γ

]
α

we define p2p(〈s〉, t1 , t2 , t3) and period(〈s〉, t1, t2) functions such that:
p2p(〈s〉, t1, t2, t3) ≡ max (|fp(t2, 〈s〉)− fp(t1, 〈s〉)| , |fp(t2, 〈s〉)− fp(t3, 〈s〉)|) ∼1 〈v_1〉
period(〈s〉, t1, t2) ≡ (t2 − t1) ∼2 〈v_2〉

• osc5 −NSExt : returns the left and the right boundary of the signal, throughout which the
signal is flat;

• osc6 −NSExt /osc7 −NSExt ; returns two records from the decreasing/ increasing signal
with the minimum and the maximum values.

For example, as shows table 6.10, osc4 − NSExt represents the violation details associated
with diagnostics pattern osc4 . The full reported diagnostics information consists of:

• the signal name (osc4) from the property definition;

• the corresponding violation details: the first local extremum (occurring at timestamp 2
showing a value of 6.5) and the second distinct local extremum (occurring at timestamp 3
showing a value of 4);

• the violation type, which is set to NSExt .

109

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

Table 6.10: Violation Details associated with Oscillations diagnostics patterns defined in Table 6.9.

osc1 −NSFp2p∗ Returns the amplitude p2p and the time interval [t1, t2] of the closest oscillations to
satisfying the peak-to-peak amplitude constraint: 〈[t1, t5], p2p〉|(∃t2, t3, t4 ∈ [tl, tu] :
(osc(〈s〉, t1, t2, t3, t4, t5) ∧ ¬p2p(〈s〉, t2, t3, t4) ∧ ∀t6, t7, t8, t9, t10 ∈ [tl, tu] : ((t8 6= t2 ∧ t9 6=
t3 ∧ t10 6= t4 ∧ osc(〈s〉, t6, t8, t9, t10, t7))→ p2pv(〈s〉, t2, t3, t4) < p2pv(〈s〉, t8, t9, t10)))).

osc2 −NSFp∗ Returns the period and the time interval [t1, t2] of the closest oscillations to satisfy-
ing the period constraint: 〈[t1, t5], p2p〉|(∃t2, t3, t4 ∈ [tl, tu] : (osc(〈s〉, t1, t2, t3, t4, t5) ∧
¬p2p(〈s〉, t2, t3, t4) ∧ ∀t6, t7, t8, t9, t10 ∈ [tl, tu] : ((t8 6= t2 ∧ t9 6= t3 ∧ t10 6= t4 ∧
osc(〈s〉, t6, t8, t9, t10, t7))→ periodv(〈s〉, t2, t3, t4)?periodv(〈s〉, t8, t9, t10)))).
Where the symbol ? is equal to> or< depending on whether the property requires the period
to be greater than or lower than the threshold period. .

osc3 −NSExt∗ Returns the timestamp and the signal value of the record at which the only strict extremum
occurs in the signal:
〈t1, fp(t1, s)〉| ∃t2, t3 ∈ [tl, tu] : tl ≤ t2 < t1 ∧ t1 < t3 ≤ tu ∧ (smin(s, t1, [t2, t3]) ∨
smax(s, t1, [t2, t3])).

osc4 −NSExt∗ Returns the timestamps and the signal values of the records at which the only two strict ex-
trema occur in the signal:
〈t1, fp(t1, s), t4, fp(t4, s)〉| ∃t2, t3 ∈ [tl, tu] : tl ≤ t2 < t1 ∧ t1 < t4 ∧ t4 < t3 ≤ tu ∧
(smin(s, t1, [t2, t4])∨smax(s, t1, [t2, t4]))∧(smin(s, t4, [t1, t3])∨smax(s, t4, [t1, t3]))∧t4 6= t1.

osc5 −NSExt The first and the last timestamps (t1 and t2) delimiting the exact interval throughout which
the signal is flat: 〈[t1, t2], v〉|t1 ≤ tl∧ tu ≤ t2∧∀t3 ∈ [t1, t2] : (fp(t3, 〈s〉) = v∧¬(∃t4 ∈ [tf , t1) :
(∀t5 ∈ (t4, t1) : (fp(t5, 〈s〉) = v))) ∧ ¬(∃t6 ∈ (t2, te] : (∀t7 ∈ (t6, te] : (fp(t7, 〈s〉) = v))))

osc6 −NSExt/
osc7 −NSExt Returns the last seen maximum (fp(t1, s)) and the first seen minimum (fp(t2, s)) values of the

signal and respectively the first (t1) and the last (t2) timestamps at which they are reached:
〈〈t1, fp(t1, s)), 〈t2, fp(t2, s)〉〉|tl ≤ t1 < t2 ≤ tu ∧ ∀t3 ∈ [tl, t1)(fp(t3, s) = fp(t1, s)) ∧ ∀t4 ∈
(t1, tu](fp(t4, s) < fp(t1, s)) ∧ ∀t5 ∈ [t2, tu)(fp(t5, s) = fp(t2, s)) ∧ ∀t6 ∈ [tl, t2)(fp(t6, s) >
fp(t2, s))

∗ osc(〈s〉, t1, t2, t3, t4, t5) = (uni_sm_min(s, t2, [t1, t3]) ∧ uni_sm_max (s, t3, [t2, t4]) ∧ uni_sm_min(s, t4, [t3, t5])) ∨
(uni_sm_max (s, t2, [t1, t3]) ∧ uni_sm_min(s, t3, [t2, t4]) ∧ uni_sm_max (s, t4, [t3, t5]))
p2pv(〈s〉, t1, t2, t3) = |max (|fp(t2, 〈s〉)− fp(t1, 〈s〉)| , |fp(t2, 〈s〉)− fp(t3, 〈s〉)|)− 〈v1〉|
periodv(〈s〉, t1, t2) = t2 − t1

Note that we consider two more diagnostics patterns for oscillations (osc6 and osc7), which are
not in figure 6.10, because they are the same as the spk4 −NSExt and spk5 −NSExt violation
details of the spike behavior in figure 6.8.

6.5 Implementation and Preliminary Evaluation

To implement our TD-SB-TemPsy, we adopted a one-to-one mapping from the formal seman-
tics of the diagnostics patterns (e.g., diagnostics pattern spk1 in table 6.1) and the corresponding
diagnostics information to OCL code (see example in figure 6.3).

We conducted a preliminary evaluation to assess the applicability of TD-SB-TemPsy. Specif-
ically, to evaluate the performance of the implementation of TD-SB-TemPsy, we used a subset of
the pre-processed traces used to evaluate our trace-checking approach SB-TemPsy-Check, and

110

6.5. Implementation and Preliminary Evaluation

a subset of properties for which SB-TemPsy-Check reported a violation (see chapter 5 for more
details),

Methodology. For each pattern type discussed in this thesis, we selected one property and
checked it on traces of different length (defined in terms of the number of entries). Each of these
traces exhibits an unexpected behavior (signal shape) characterized as a diagnostics pattern. We
run TD-SB-TemPsy on each pair of 〈 property, trace 〉 and measured its execution time. We set a
timeout of 10 minutes.

Results. The preliminary results are show in table 6.11; each row indicates the property id,
the pattern type used in the property, the number of entries in the trace, the violation type
(column V-type), and the execution time. These results show that:

• the evaluation of event-based data assertion properties (p4 and p15) identified the same vio-
lation type NSE in a short execution time: less than one second for p4 on a trace with 4042
entries, and 1.57 s for p15 on a trace of 8714 entries;

• the execution time to identify a violation type NSS for state-based data assertion (np37), rise
time (pRt1) and overshoot properties (pOsh1) ranged from 4.19 s for np37 over a trace with
208 entries to 98.12 s over a trace with 2137 entries for pRt1. However, the tool timed out
for (np37) over a larger trace with 8714 entries, with the same violation type (NSS)

• the execution time to identify a violation type SDS for state-based data assertion (np37), rise
time (pRt1) and overshoot properties (pOsh1) ranged from 13.4 s for np37 over a trace with
208 entries to 59.21 s over a trace with 230 entries for pOsh1.

• the execution time to identify a violation type NSM for rise time (pRt2) and overshoot
(pOsh2) properties ranged from 50.63 s for pRt2 over a trace with 36 entries to 62.22 s
over a trace with 50 entries for pOsh2.

• the execution time to identify a violation type NSExt for spike and oscillations properties
(pSpk1, pSpk2, and pOsc1) ranged from 0.30 s over a trace with 10 entries to 124.31 s over
a trace with 70 entries. The difference in execution time is due to the complexity of the
different spike and oscillations diagnostics patterns formulations (and the corresponding di-
agnostics information).

• identifying a violation type NSFa for a spike property (pSpk1) over a trace with only 4
entries took 75.50 s. However, identifying the same violation type for the same property
on a slightly longer trace (with 10 entries) timed out. Similar considerations can be made
for identifying a violation type NSFw for a spike property (pSpk2).

• identifying violation types NSFp2p and NSFp for an oscillations property (pOsc1) over an
execution trace with 5 entries timed out.

Overall, the preliminary evaluation of TD-SB-TemPsy shows that our approach can iden-
tified diagnostics information for several violation types, except for the spike (NSFa , NSFw) and

111

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

Table 6.11: Preliminary Evaluation Results

property id (pattern- violation)-Type #Entries V-type execution time (s)

p4 DA-NSE 4042 NSE 0.44
p15 DA-NSE 8714 NSE 1.57
np37 DA-NSS 208 NSS 4.19
np37 DA-NSS 8641 - -
np37 DA-NSS 208 SDS 13.4
pRt1 RT-NSS 2137 NSS 98.12
pRt1 RT-SDS 56 SDS 2.06
pRt1 RT-SDS 230 SDS 52.73
pRt2 RT-NSM 36 NSM 50.63
pOsh1 OSH-NSS 2137 NSS 39.66
pOsh1 OSH-SDS 230 SDS 59.21
pOsh2 OSH-NSM 50 NSM 62.22
pSpk1 SPK-NSExt 37 NSExt 1.89
pSpk1 SPK-NSExt 51 NSExt 3.94
pSpk1 SPK-NSExt 311 NSExt 0.47
pSpk1 SPK-NSFp2p 4 NSFa 75.50
pSpk1 SPK-NSFp2p 10 - -
pSpk2 SPK-NSFp 4 NSFw 7.19
pSpk2 SPK-NSFp 10 - -
pOsc1 OSC-NSExt 37 NSExt 1.69
pOsc1 OSC-NSExt 51 NSExt 3.79
pOsc1 OSC-NSExt 311 NSExt 1.21
pOsc1 OSC-NSExt 10 NSExt 0.30
pOsc1 OSC-NSExt 30 NSExt 5.84
pOsc1 OSC-NSExt 70 NSExt 124.31
pOsc1 OSC-NSExt 100 - -
pOsc1 OSC-NSExt 10 NSExt 18.7
pOsc1 OSC-NSExt 30 NSExt 113.12
pOsc1 OSC-NSFp2p 5 - -
pOsc1 OSC-NSFp 5 - -

112

6.6. Related Work

the oscillations (NSFp2p , NSFp) violations types. We plan to address this limitation in the future
by optimizing the current OCL encoding for these four violation types to increase scalability,
similarly to what we did for SB-TemPsy-Check (see chapter 5 for more details).

6.6 Related Work

The seminal work by Dou et al. on model-driven trace diagnostics [DBB18] is the closest one
to TD-SB-TemPsy. The main difference is in terms of the supported language, since TD-SB-
TemPsy supports SB-TemPsy-DSL, which is more expressive than TemPsy and tailored to the
CPS domain. To the best of our knowledge, TD-SB-TemPsy is the first approach to provide a
model-driven trace diagnostics for Signal-based Temporal Properties.

An error diagnostics algorithm for trace diagnostics of STL formulae is proposed in [FMN15].
The algorithm relies on identifying implicants, which characterize small sub-signals (as ex-
planatory sub-models) that are sufficient to imply a property violation. By analogy, this is quite
similar to the diagnostics patterns we defined for TD-SB-TemPsy, in the sense that we rely on
the satisfaction of these patterns to conclude the violation of the whole property. However, in
TD-SB-TemPsy we characterize undesired behaviors that imply the property violation, rather
than looking for a minimal subformula (i.e., an implicant) that implies that violation.

The algorithm in [FMN15] has been adopted by many approaches that solve the trace diag-
nostics problem for Signal-based Temporal Properties in the CPS domain, and integrated into
several tools such as AMT2.0 [NLM+18], CPSDebug [BMM+19] and the Breach extension using
IA-STL formalism [FND+19]. For example, Bartocci et al. [BFMN18] propose epoch diagnostic,
an automated procedure that provides additional context, reported as segments (also called
epoch) that contribute to violation/ satisfaction of all the signals that are defined in the property.
The work proposed in [FND+19] enhances the algorithm defined in [BFMN18] by supporting a
robustness analysis that computes worst-case diagnostics. Such an enhancement relies on a ro-
bustness degree as a precise measurement of the property violation (e.g., capturing the distance
between the actual signal value and the target threshold).

In the context of model checking, counterexamples of a property are widely adopted as a
way to determine the reason for the violation of that property and to help with debugging.
Some of these approaches automate the process by dynamically constructing counterexam-
ples exploring possible (and best) witnesses that lead to the satisfaction of these counterex-
amples.(e.g., [CG07], [SQL04]). Counterexamples are similar to diagnostics patterns, in the sense
that they characterize an undesired behavior that leads to the property violation. However, in
TD-SB-TemPsy we do not generate our diagnostics patterns; we define them based on possible
signal shapes that lead to their satisfaction.

113

6. TRACE DIAGNOSTICS FOR SIGNAL-BASED TEMPORAL PROPERTIES

6.7 Summary

Many trace checking tools yield Boolean verdicts, which do not provide enough information to
understand the cause of a property violation. This makes the trace diagnostics activity tedious
and ineffective, especially when a property violation can be due to several, distinct causes.

In this chapter, we proposed TD-SB-TemPsy-Report, a model driven trace diagnostics ap-
proach for properties expressed in SB-TemPsy-DSL, which complements a trace checking tool
like SB-TemPsy-Check and provide informative verdicts about the cause of a property viola-
tion. At the basis of TD-SB-TemPsy-Report there is a characterization of diagnostic patterns,
which capture a significant class of signal behaviors that leads to the violation of the prop-
erty of interest. We formalized these diagnostic patterns for each property type supported by
SB-TemPsy-DSL; each diagnostic pattern is associated with the corresponding diagnostic infor-
mation, which explains the cause of a property violation.

114

Chapter 7

Conclusions & Future Work

7.1 Conclusions

The goal of this thesis is to develop methods and tools for the specification and trace checking
of two types of complex quantitative temporal properties:

• properties defined using aggregation operators;

• signal-based temporal properties from the Cyber Physical System (CPS) domain.

In this thesis we have made the following contributions towards the achievement of this
goal:

(i) TemPsy-AG, an extension of the TemPsy language, which supports the most used service
provisioning patterns identified in the study in [BGPS12];

(ii) TEMPSY-CHECK-AG, an extension of the model-driven approach TEMPSY-CHECK, which
relies on an optimized mapping of temporal requirements written in TemPsy-AG into OCL
constraints on a conceptual model of execution traces.

(iii) A comprehensive taxonomy of SBTPs describing signal behaviors in the CPS domain.

(iv) SB-TemPsy-DSL, an expressive specification language for SBTPs.

(v) SB-TemPsy-Check, an efficient model-driven trace-checking procedure for trace checking
SBTPs, expressed in SB-TemPsy-DSL; the tool has been released1 under an open-source

1https://github.com/SNTSVV/SB-TemPsy

115

https://github.com/SNTSVV/SB-TemPsy

7. CONCLUSIONS & FUTURE WORK

license. We assessed the scalability of SB-TemPsy by verifying real properties derived
from a case study of our satellite integrator partner on real execution-traces.

(vi) TD-SB-TemPsy-Report, a model-driven approach for trace diagnostics of SBTPs, to com-
plement SB-TemPsy-Check.

Contributions (i) and (ii) provides a framework for specifying and verifying temporal prop-
erties with aggregation. Contributions (iii)–(vi) provides a comprehensive specification frame-
work for defining the most common types of SBTPs in the CPS domain as well as a scalable
trace checking procedure for such properties, complemented by informative verdicts.

Our technological contributions rely on model-driven approaches for trace checking and trace
diagnostics. Such approaches consist in reducing the problem of checking (respectively, deter-
mining the diagnostics information of) a property ρ over an execution trace λ to the problem of
evaluating an OCL (Object Constraint Language) constraint (semantically equivalent to ρ) on
an instance (equivalent to λ) of a meta-model of the trace. The results — in terms of efficiency or
our model-driven tools — presented in this thesis are in line with those presented in previous
work [DBB17a, DBB18], and confirm that model-driven technologies can lead to the develop-
ment of tools that exhibit good performance from a practical standpoint, also when applied in
industrial contexts.

7.2 Future Research Directions

This dissertation sets the basis to follow different research directions in the future:

Extension of the taxonomy on signal-based temporal properties. We plan to extend the tax-
onomy proposed in chapter 4 by assessing the expressiveness of other temporal logics (such
as SCL - Signal Convolution Logic [SNBB18], the extension of STL proposed in [BB19], and the
shape expressions formalism [NQF+19]) in terms of the property types identified in the taxonomy.

Expressiveness of SB-TemPsy-DSL. We plan to extend SB-TemPsy-DSL with additional con-
structs, based on the expressiveness results of our evaluation.

Effectiveness of SB-TemPsy-Check. We are also going to develop alternative OCL definitions
in SB-TemPsy-Check, optimized to minimize the number of timeouts when checking specific
types of properties (e.g., properties with order relationship between signals pattern, properties with
an event-based scope). We also plan to investigate how different implementations of SB-TemPsy-
Check (e.g., using an SMT-based encoding as done in the Theodore [MVBB21], or another type
of logic-based encoding relying on tools like R2U2 [MRS17]) fare with respect to the one based
on OCL.

116

7.2. Future Research Directions

Distributed, model-driven trace checking. We plan to investigate the use of Big Data tech-
nologies to parallelize [SSA+19] our trace checking approaches implemented in TEMPSY-CHECK-
AG and SB-TemPsy-Check, inspired by the existing work on distributed trace checking [BBG+16,
BGK14, BCE+14, BKSB+12].

User studies. We plan to conduct several user studies to assess the usefulness of our languages
(TemPsy-AG and SB-TemPsy-DSL) and tools (TEMPSY-CHECK-AG, SB-TemPsy-Check, and TD-
SB-TemPsy-Report) for the application of trace checking in industrial contexts.

117

Bibliography

[Acı05] Nurettin Acır. Automated system for detection of epileptiform patterns in EEG by
using a modified RBFN classifier. Expert Systems with Applications, 29(2):455–462,
2005.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal
of the ACM, 49(2):172–206, March 2002.

[AF10] Y. S. R. Annapureddy and G. E. Fainekos. Ant colonies for temporal logic falsifica-
tion of hybrid systems. In Proc. 36th Annual Conference on IEEE Industrial Electronics
Society (IECON2010), pages 91–96, Nov 2010.

[AFS+13] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo Ivančić,
and Aarti Gupta. Probabilistic temporal logic falsification of cyber-physical sys-
tems. ACM Transactions on Embedded Computing Systems (TECS), 12(2s):95, 2013.

[AG04] Nurettin Acır and Cüneyt Güzeliş. Automatic spike detection in EEG by a two-
stage procedure based on support vector machines. Computers in Biology and
Medicine, 34(7):561–575, 2004.

[AGL+15] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. Aligning qualitative, real-time, and probabilistic property specification pat-
terns using a structured English grammar. IEEE Trans. Softw. Eng., 41(7):620–638,
2015.

[AH15] Takumi Akazaki and Ichiro Hasuo. Time robustness in MTL and expressivity in
hybrid system falsification. In Proc. International Conference on Computer Aided Ver-
ification (CAV2015), pages 356–374. Springer, 2015.

119

BIBLIOGRAPHY

[ALFS11] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. S-taliro: A tool for temporal logic falsification for hybrid systems. In
Proc. TACAS 2011, pages 254–257, Berlin, Heidelberg, 2011. Springer.

[AMM+14] A. Adam, N. Mokhtar, M. Mubin, Z. Ibrahim, M. Z. M. Tumari, and M. I. Shapiai.
Feature selection and classifier parameter estimation for EEG signal peak detection
using gravitational search algorithm. In Proc. 4th International Conference on Arti-
ficial Intelligence with Applications in Engineering and Technology (AIFU2014), pages
103–108, 2014.

[AOK+05] Nurettin Acir, Ibrahim Oztura, Mehmet Kuntalp, Baris Baklan, and Cuneyt
Guzelis. Automatic detection of epileptiform events in EEG by a three-stage pro-
cedure based on artificial neural networks. IEEE Transactions on Biomedical Engi-
neering, 52(1):30–40, 2005.

[ARB+17] Houssam Abbas, Alena Rodionova, Ezio Bartocci, Scott A Smolka, and Radu
Grosu. Quantitative regular expressions for arrhythmia detection algorithms.
In Proc. International Conference on Computational Methods in Systems Biology
(CMSB2017), pages 23–39. Springer, 2017.

[BB19] Alexey Bakhirkin and Nicolas Basset. Specification and efficient monitoring be-
yond STL. In Proc. International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS2019), pages 79–97. Springer, 2019.

[BBB19] Chaima Boufaied, Domenico Bianculli, and Lionel C. Briand. A model-driven ap-
proach to trace checking of temporal properties with aggregations. Journal of Object
Technology, 18(2):15:1–15:21, 2019. doi:10.5381/jot.2019.18.2.a15.

[BBG+14] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srd̄an Krstić, and Pier-
luigi San Pietro. SMT-based checking of SOLOIST over sparse traces. In Proc. of
FASE 2014, volume 8411 of LNCS, pages 276–290. Springer, April 2014.

[BBG+16] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srd̄an Krstić, and Pier-
luigi San Pietro. Efficient large-scale trace checking using mapreduce. In Proc.
ICSE2016, pages 888–898. ACM, 2016.

[BBN13] Ezio Bartocci, Luca Bortolussi, and Laura Nenzi. A temporal logic approach to
modular design of synthetic biological circuits. In Proc. International Conference
on Computational Methods in Systems Biology (CMSB2013), pages 164–177. Springer,
2013.

[BBNS15] Ezio Bartocci, Luca Bortolussi, Laura Nenzi, and Guido Sanguinetti. System de-
sign of stochastic models using robustness of temporal properties. Theoretical Com-
puter Science, 587:3–25, 2015.

120

https://doi.org/10.5381/jot.2019.18.2.a15

Bibliography

[BBS+14] Sara Bufo, Ezio Bartocci, Guido Sanguinetti, Massimo Borelli, Umberto Lucangelo,
and Luca Bortolussi. Temporal logic based monitoring of assisted ventilation in
intensive care patients. In Proc. International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA2014), pages 391–403. Springer
Berlin Heidelberg, 2014.

[BCE+14] David Basin, Germano Caronni, Sarah Ereth, Matúš Harvan, Felix Klaedtke, and
Heiko Mantel. Scalable offline monitoring. In Proc. RV2014, volume 8734 of LNCS,
pages 31–47. Springer, 2014.

[BCMT09] Ezio Bartocci, Flavio Corradini, Emanuela Merelli, and Luca Tesei. Model checking
biological oscillators. Electronic Notes in Theoretical Computer Science, 229(1):41–58,
2009.

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-
gineering in Practice: Second Edition. Morgan & Claypool Publishers, 2nd edition,
2017.

[BDD+18] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and applications. In
Lectures on Runtime Verification, pages 135–175. Springer, 2018.

[BDŠV14] Lubos Brim, P Dluhoš, D Šafránek, and Tomas Vejpustek. STL*: Extending signal
temporal logic with signal-value freezing operator. Information and Computation,
236:52–67, 2014.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to
runtime verification. In Lectures on Runtime Verification - Introductory and Advanced
Topics, volume 10457 of LNCS, pages 1–33. Springer, 2018.

[BFHN18] Alexey Bakhirkin, Thomas Ferrère, Thomas A. Henzinger, and Dejan Ničković.
The first-order logic of signals: Keynote. In Proc. International Conference on Embed-
ded Software (EMSOFT2018), EMSOFT ’18, pages 1:1–1:10. IEEE Press, 2018.

[BFMN18] Ezio Bartocci, Thomas Ferrère, Niveditha Manjunath, and Dejan Ničković. Local-
izing faults in simulink/stateflow models with stl. In Proceedings of the 21st Inter-
national Conference on Hybrid Systems: Computation and Control (part of CPS Week),
pages 197–206, 2018.

[BGK+13] Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka, Scott D. Stoller, Erez
Zadok, and Justin Seyster. Adaptive runtime verification. In Proc. International
Conference on Runtime Verification (RV2013), pages 168–182. Springer Berlin Heidel-
berg, 2013.

121

BIBLIOGRAPHY

[BGK14] Domenico Bianculli, Carlo Ghezzi, and Srd̄an Krstić. Trace checking of metric
temporal logic with aggregating modalities using MapReduce. In Proc. SEFM2014,
volume 8702 of LNCS, pages 144–158. Springer, 2014.

[BGKSP14] Domenico Bianculli, Carlo Ghezzi, Srdan Krstic, and Pierluigi San Pietro. Offline
trace checking of quantitative properties of service-based applications. In Proc.
SOCA2014, pages 9–16. IEEE, 2014.

[BGPS12] Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick Senti. Specifica-
tion patterns from research to industry: a case study in service-based applications.
In Proc. ICSE2012, pages 968–976. IEEE, 2012.

[BGS13] Domenico Bianculli, Carlo Ghezzi, and Pierluigi San Pietro. The tale of SOLOIST:
a specification language for service compositions interactions. In Proc. FACS2012,
volume 7684 of LNCS, pages 55–72. Springer, 2013.

[BJB+20] Chaima Boufaied, Maris Jukss, Domenico Bianculli, Lionel Claude Briand, and
Yago Isasi Parache. Signal-based properties: Taxonomy and logic-based character-
ization. Journal of Systems and Software, page 110881, 2020.

[BKMZ15] David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu. Monitor-
ing of temporal first-order properties with aggregations. Formal methods in system
design, 46(3):262–285, 2015.

[BKSB+12] Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin, Pierre-Antoine Ollivier,
and Sylvain Hallé. MapReduce for parallel trace validation of LTL properties. In
Proc. RV2012, volume 7687 of LNCS, pages 184–198. Springer, 2012.

[BMB+20] Chaima Boufaied, Claudio Menghi, Domenico Bianculli, Lionel Briand, and Yago
Isasi-Parache. Trace-checking Signal-based Temporal Properties: A model-driven
approach. In Proc. International Conference on Automated Software Engineering
(ASE2020). IEEE, September 2020.

[BMM+19] Ezio Bartocci, Niveditha Manjunath, Leonardo Mariani, Cristinel Mateis, and De-
jan Ničković. Automatic failure explanation in cps models. In International Confer-
ence on Software Engineering and Formal Methods, pages 69–86. Springer, 2019.

[BMS15] Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. U-check: Model check-
ing and parameter synthesis under uncertainty. In Proc. Quantitative Evaluation of
Systems (QEST2015), pages 89–104. Springer International Publishing, 2015.

[BOV+19] M. Bernaerts, B. Oakes, K. Vanherpen, B. Aelvoet, H. Vangheluwe, and J. Denil.
Validating industrial requirements with a contract-based approach. In Proc. MOD-
ELS 2019 (Companion)), pages 18–27, Los Alamitos, CA, USA, 2019. IEEE.

122

Bibliography

[BVvF13] L. Brim, T. Vejpustek, D. Šafránek, and J. Fabriková. Robustness analysis for value-
freezing signal temporal logic. In Proc. Second International Workshop on Hybrid
Systems and Biology (HSB2013), volume 125 of Electronic Proceedings in Theoretical
Computer Science, pages 20–36. Open Publishing Association, 2013.

[CANZ19] Christoph Czepa, Amirali Amiri, Evangelos Ntentos, and Uwe Zdun. Mod-
eling compliance specifications in linear temporal logic, event processing lan-
guage and property specification patterns: a controlled experiment on under-
standability. Software and Systems Modeling, 18(6):3331–3371, 2019. doi:10.1007/
s10270-019-00721-4.

[CFMS15] Fraser Cameron, Georgios Fainekos, David M Maahs, and Sriram Sankara-
narayanan. Towards a verified artificial pancreas: Challenges and solutions
for runtime verification. In Proc. International Conference on Runtime Verification
(RV2015), pages 3–17. Springer, 2015.

[CG07] Marsha Chechik and Arie Gurfinkel. A framework for counterexample generation
and exploration. International Journal on Software Tools for Technology Transfer, 9(5-
6):429–445, 2007.

[CGP10] Christian Colombo, Andrew Gauci, and Gordon Pace. Larvastat: Monitoring
of statistical properties. In Proc. RV2010, volume 6418 of LNCS, pages 480–484.
Springer, 2010.

[CP99] Marsha Chechik and Dimitrie O. Paun. Events in property patterns. In Proc. 5th and
6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN Model
Checking (SPIN1999), pages 154–167. Springer-Verlag, 1999.

[CP17] Christian Colombo and Gordon Pace. Runtime verification using larva. In Proc.
RV-CuBES2017, volume 3 of Kalpa Publications in Computing, pages 55–63. Easy-
Chair, 2017.

[CZss] C. Czepa and U. Zdun. On the understandability of temporal properties formal-
ized in linear temporal logic, property specification patterns and event processing
language. IEEE Transactions on Software Engineering, in press. doi: 10.1109/TSE.
2018.2859926.

[DAC99] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property
specifications for finite-state verification. In Proc. ICSE1999, pages 411–420. ACM,
1999.

[DBB14] Wei Dou, Domenico Bianculli, and Lionel Briand. OCLR: a more expressive,
pattern-based temporal extension of OCL. In Proc. ECMFA 2014, volume 8569 of
LNCS, pages 51–66, Heidelberg, Germany, July 2014. Springer.

123

https://doi.org/10.1007/s10270-019-00721-4
https://doi.org/10.1007/s10270-019-00721-4
10.1109/TSE.2018.2859926
10.1109/TSE.2018.2859926

BIBLIOGRAPHY

[DBB17a] Wei Dou, Domenico Bianculli, and Lionel Briand. A model-driven approach to
trace checking of pattern-based temporal properties. In Proc. MODELS2017, pages
323–333. IEEE Computer Society, 2017.

[DBB17b] Wei Dou, Domenico Bianculli, and Lionel Briand. TemPsy-Check: a tool for
model-driven trace checking of pattern-based temporal properties. In Proc. RV-
CuBES2017, volume 3 of Kalpa Publications in Computing, pages 64–70. EasyChair,
September 2017.

[DBB18] Wei Dou, Domenico Bianculli, and Lionel Briand. Model-driven trace diagnos-
tics for pattern-based temporal specifications. In Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, pages
278–288, 2018.

[DDD+15] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin,
and Jyotirmoy V. Deshmukh. Efficient guiding strategies for testing of temporal
properties of hybrid systems. In Proc. NASA Formal Methods (NFM2015), pages
127–142. Springer International Publishing, 2015.

[DDG+15] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A. Seshia. Robust online monitoring of signal temporal logic.
In Proc. International Conference on Runtime Verification (RV2015), pages 55–70.
Springer International Publishing, 2015.

[DDG+17] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A. Seshia. Robust online monitoring of signal temporal logic.
Formal Methods in System Design, 51(1):5–30, Aug 2017.

[DFG+11] Alexandre Donzé, Eric Fanchon, Lucie Martine Gattepaille, Oded Maler, and
Philippe Tracqui. Robustness analysis and behavior discrimination in enzymatic
reaction networks. PloS one, 6(9):e24246, 2011.

[DFM13] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring
for STL. In Proc. CAV 2013, pages 264–279, Berlin, Heidelberg, 2013. Springer.

[DHF14] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. On-line monitoring for
temporal logic robustness. In Proc. International Conference on Runtime Verification
(RV2014), pages 231–246. Springer, 2014.

[DHF15] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. Metric interval tempo-
ral logic specification elicitation and debugging. In Proc. International Conference
on Formal Methods and Models for Codesign (MEMOCODE2015), pages 70–79. IEEE,
2015.

124

Bibliography

[DJCF93] Alison A Dingle, Richard D Jones, Grant J Carroll, and W Richard Fright. A mul-
tistage system to detect epileptiform activity in the EEG. IEEE Transactions on
Biomedical Engineering, 40(12):1260–1268, 1993.

[DM10] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-
valued signals. In Proc. International Conference on Formal Modeling and Analysis of
Timed Systems (Formats2010), pages 92–106. Springer Berlin Heidelberg, 2010.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc.
TACAS2008, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[DMB+12] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and
Scott Smolka. On temporal logic and signal processing. In Proc. International Sym-
posium on Automated Technology for Verification and Analysis (ATVA2012), pages 92–
106. Springer, 2012.

[Don10] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In Proc. International Conference on Computer Aided Verification
(CAV2010), pages 167–170. Springer, 2010.

[Dou16] Wei Dou. A Model-Driven Approach to Offline Trace Checking of Temporal Properties.
PhD thesis, University of Luxembourg, 2016. URL: http://hdl.handle.net/
10993/29184.

[DRS82] Surya R Dumpala, S Narasimha Reddy, and Sushil K Sarna. An algorithm for
the detection of peaks in biological signals. Computer Programs in Biomedicine,
14(3):249–256, 1982.

[DSI11] DSI consortium. DSI3 bus standard, February 2011.

[DSS+05] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H.B.
Sipma, S. Mehrotra, and Z. Manna. Lola: runtime monitoring of synchronous
systems. In Proc. TIME 2005, pages 166–174. IEEE, june 2005.

[DZS+15] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G. Fainekos. Re-
quirements driven falsification with coverage metrics. In Proc. International Confer-
ence on Embedded Software (EMSOFT2015), pages 31–40, Oct 2015.

[Ecl20] Eclipse. Eclipse OCL tools. https://projects.eclipse.org/projects/
modeling.mdt.ocl, 2020.

[EF07] Cindy Eisner and Dana Fisman. A practical introduction to PSL. Springer Science &
Business Media, 2007.

125

http://hdl.handle.net/10993/29184
http://hdl.handle.net/10993/29184
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl

BIBLIOGRAPHY

[ESA20a] ESA. Building and testing spacecraft, 2020. URL: https://www.esa.
int/Science_Exploration/Space_Science/Building_and_testing_
spacecraft.

[ESA20b] The european space agency (esa), 2020. URL: https://www.esa.int/.

[exa20] exactearth, 2020. URL: https://www.exactearth.com/.

[Fer16] Thomas Ferrere. Assertions and measurements for mixed-signal simulation. PhD thesis,
University of Grenoble, 2016.

[FHR13] Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime verification.
In Engineering Dependable Software Systems, volume 34 of NATO Science for Peace and
Security Series, D: Information and Communication Security, pages 141–175. IOS Press,
2013.

[FKRT18] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A taxonomy for
classifying runtime verification tools. In Proc. RV 2018, volume 11237 of Lecture
Notes in Computer Science, pages 241–262, Cham, 2018. Springer.

[FMN15] Thomas Ferrère, Oded Maler, and Dejan Ničković. Trace diagnostics using tempo-
ral implicants. In Proc. ATVA2015), volume 9364 of LNCS, pages 241–258. Springer,
2015.

[FMNU15] Thomas Ferrere, Oded Maler, Dejan Ničković, and Dogan Ulus. Measuring with
timed patterns. In Proc. International Conference on Computer Aided Verification
(CAV2015), pages 322–337. Springer, 2015.

[FND+19] Thomas Ferrère, Dejan Nickovic, Alexandre Donzé, Hisahiro Ito, and James Kap-
inski. Interface-aware signal temporal logic. In Proceedings of the 22nd ACM Inter-
national Conference on Hybrid Systems: Computation and Control, pages 57–66, 2019.

[FP06] Georgios E Fainekos and George J Pappas. Robustness of temporal logic speci-
fications. In Formal Approaches to Software Testing and Runtime Verification, pages
178–192. Springer, 2006.

[FSS05] Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma. Collecting statis-
tics over runtime executions. Formal Methods in System Design, 27:253–274, 2005.

[FSUY12] Georgios E Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and Hakan Yazarel.
Verification of automotive control applications using s-taliro. In Proc. American
Control Conference (ACC2012), pages 3567–3572. Citeseer, 2012.

126

https://www.esa.int/Science_Exploration/Space_Science/Building_and_testing_spacecraft
https://www.esa.int/Science_Exploration/Space_Science/Building_and_testing_spacecraft
https://www.esa.int/Science_Exploration/Space_Science/Building_and_testing_spacecraft
https://www.esa.int/
https://www.exactearth.com/

Bibliography

[FWH+17] Aaron W. Fifarek, Lucas G. Wagner, Jonathan A. Hoffman, Benjamin D. Rodes,
M. Anthony Aiello, and Jennifer A. Davis. Spear v2.0: Formalized past ltl speci-
fication and analysis of requirements. In Proc. NFM 2017, pages 420–426, Cham,
2017. Springer International Publishing.

[GL06] Volker Gruhn and Ralf Laue. Patterns for timed property specifications. Electron.
Notes Theor. Comput. Sci., 153(2):117–133, 2006.

[GPMS20] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann
Schumann. Generation of formal requirements from structured natural language.
In Requirements Engineering: Foundation for Software Quality (REFSQ 2020), pages
19–35, Cham, 2020. Springer International Publishing.

[GPVN+18] Carlos Alberto Gonzalez Perez, Mojtaba Varmazyar, Shiva Nejati, Lionel Briand,
et al. Enabling model testing of cyber-physical systems. In Proc. 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS2018), pages 176–186, 2018.

[Häg95] Tore Hägglund. A control-loop performance monitor. Control Engineering Practice,
3(11):1543–1551, 1995.

[Hal16] Sylvain Hallé. When RV meets CEP. In Proc. RV2016, volume 10012 of LNCS,
pages 68–91. Springer, 2016.

[HBA+14] Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi, Yoshihiro
Kobayashi, and Georgios Fainekos. Towards formal specification visualization for
testing and monitoring of cyber-physical systems. In Proc. Int. Workshop on Design
and Implementation of Formal Tools and Systems (DIFTS2014), pages 1–9, 2014.

[HDF18] Bardh Hoxha, Adel Dokhanchi, and Georgios Fainekos. Mining parametric tempo-
ral logic properties in model-based design for cyber-physical systems. International
Journal on Software Tools for Technology Transfer, 20(1):79–93, 2018.

[HMF15] Bardh Hoxha, Nikolaos Mavridis, and Georgios Fainekos. Vispec: A graphical
tool for elicitation of mtl requirements. In Proc. IROS2015, pages 3486–3492, Los
Alamitos, CA, USA, 2015. IEEE.

[HPU17] K. Havelund, D. Peled, and D. Ulus. First order temporal logic monitoring with
BDDs. In Proc. FMCAD 2017, pages 116–123, Los Alamitos, CA, USA, 2017. IEEE.

[JBG+15] Stefan Jakšić, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen, and
Dejan Ničković. From signal temporal logic to FPGA monitors. In Proc. Formal
Methods and Models for Codesign (MEMOCODE2015), pages 218–227. IEEE, 2015.

127

BIBLIOGRAPHY

[JBGN16] Stefan Jakšić, Ezio Bartocci, Radu Grosu, and Dejan Ničković. Quantitative moni-
toring of STL with edit distance. In Proc. International Conference on Runtime Verifi-
cation (RV2016), pages 201–218. Springer International Publishing, 2016.

[JDDS15] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Min-
ing requirements from closed-loop control models. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(11):1704–1717, 2015.

[JDJS14] G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia. Cpsgrader: Synthesizing
temporal logic testers for auto-grading an embedded systems laboratory. In Proc.
International Conference on Embedded Software (EMSOFT2014), pages 1–10, Oct 2014.

[Kan15] Aaron Kane. Runtime monitoring for safety-critical embedded systems. PhD thesis,
Carnegie Mellon University, 2015.

[KC05] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Proc.
ICSE2005, pages 372–381. ACM, 2005.

[KDJ+16] James Kapinski, Jyotirmoy Deshmukh, Xiaoqing Jin, Hisahiro Ito, and Ken Butts.
Simulation-based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification tech-
niques. IEEE Control Systems Magazine, 36:45–64, 12 2016.

[KJD+16] James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, Alexandre Donze, Tomoya
Yamaguchi, Hisahiro Ito, Tomoyuki Kaga, Shunsuke Kobuna, and Sanjit Seshia.
St-lib: A library for specifying and classifying model behaviors. Technical report,
SAE Technical Paper, 2016.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
time systems, 2(4):255–299, 1990.

[KT13] Bilal Kanso and Safouan Taha. Temporal constraint support for OCL. In Proc. SLE
2012, volume 7745 of LNCS, pages 83–103, Berlin, Heidelberg, 2013. Springer.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78(5):293–303, May/June 2009.

[LS16] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Embedded Sys-
tems: A Cyber-Physical Systems Approach. The MIT Press, 2nd edition, 2016.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

128

Bibliography

[LVR19] Jianwen Li, Moshe Y Vardi, and Kristin Y Rozier. Satisfiability checking for
mission-time ltl. In Proc. CAV2019, pages 3–22, Cham, 2019. Springer.

[LZY02] He Sheng Liu, Tong Zhang, and Fu Sheng Yang. A multistage, multimethod ap-
proach for automatic detection and classification of epileptiform EEG. IEEE Trans-
actions on biomedical engineering, 49(12):1557–1566, 2002.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous
signals. In Proc. FTRTFT2004, pages 152–166. Springer, 2004.

[MN13] Oded Maler and Dejan Ničković. Monitoring properties of analog and mixed-
signal circuits. International Journal on Software Tools for Technology Transfer,
15(3):247–268, 2013.

[MNBB18] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann. Test generation and test
prioritization for Simulink models with dynamic behavior. IEEE Transactions on
Software Engineering, pages 1–1, 2018.

[MNBYI20] Claudio Menghi, Shiva Nejati, Lionel C. Briand, and Parache Yago Isasi.
Approximation-refinement testing of compute-intensive cyber-physical models:
An approach based on system identification. In Proc. ICSE 2020, New York, NY,
USA, 2020. ACM.

[MNGB19] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. Gener-
ating automated and online test oracles for simulink models with continuous and
uncertain behaviors. In Proc. ESEC/FSE 2019, pages 27–38, New York, NY, USA,
2019. ACM.

[MNP08] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal properties of
discrete, timed and continuous behaviors. In Pillars of computer science2008, pages
475–505. Springer, 2008.

[MRS17] Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. R2U2: Monitoring
and Diagnosis of Security Threats for Unmanned Aerial Systems. Formal Methods
in System Design, 51:31–61, April 2017. doi:10.1007/s10703-017-0275-x.

[MVBB21] Claudio Menghi, Enrico Viganò, Domenico Bianculli, and Lionel C Briand. Trace-
checking cps properties: Bridging the cyber-physical gap. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 847–859. IEEE, 2021.

[MVDS20] B. Meyers, H. Vangheluwe, J. Denil, and R. Salay. A framework for temporal
verification support in domain-specific modelling. IEEE Transactions on Software
Engineering, 46(4):362–404, 2020.

129

https://doi.org/10.1007/s10703-017-0275-x

BIBLIOGRAPHY

[Nic08] Dejan Nickovic. Checking timed and hybrid properties: Theory and applications. PhD
thesis, Université Joseph-Fourier-Grenoble I, 2008.

[Nič15] Dejan Ničković. Monitoring and measuring hybrid behaviors. In Proc. International
Conference on Runtime Verification (RV2015), pages 378–402. Springer International
Publishing, 2015.

[NKJ+17] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V Deshmukh, Ken
Butts, and Taylor T Johnson. Abnormal data classification using time-frequency
temporal logic. In Proc. 20th international conference on hybrid systems: Computation
and control (HSCC2017), pages 237–242. ACM, 2017.

[NLM+18] Dejan Ničković, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus.
AMT 2.0: Qualitative and quantitative trace analysis with extended signal tempo-
ral logic. In Proc. International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS2018), pages 303–319. Springer, 2018.

[NM07] Dejan Nickovic and Oded Maler. AMT: A property-based monitoring tool for
analog systems. In Proc. International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS2007), pages 304–319. Springer Berlin Heidelberg, 2007.

[NN16] Thang Nguyen and Dejan Nikovi. Assertion-based monitoring in practice check-
ing correctness of an automotive sensor interface. Science of Computer Programming,
118(C):40–59, March 2016.

[NQF+19] Dejan Ničković, Xin Qin, Thomas Ferrère, Cristinel Mateis, and Jyotirmoy Desh-
mukh. Shape expressions for specifying and extracting signal features. In Proc.
International Conference on Runtime Verification (RV2019), pages 292–309. Springer,
2019.

[NSF+10] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,
Aarti Gupta, and George J. Pappas. Monte-carlo techniques for falsification of
temporal properties of non-linear hybrid systems. In Proc. 13th ACM international
conference on Hybrid systems: computation and control (HSCC2010), HSCC ’10, pages
211–220. ACM, 2010.

[NY20] Dejan Ničković and Tomoya Yamaguchi. RTAMT: Online robustness monitors
from STL. In Proc. International Symposium on Automated Technology for Verification
and Analysis (ATVA 2020). Springer, October 2020.

[OMG12] OMG. ISO/IEC 19507 (OCL v2.3.1). http://www.omg.org/spec/OCL/ISO/
19507/PDF, April 2012.

130

http://www.omg.org/spec/OCL/ISO/19507/PDF
http://www.omg.org/spec/OCL/ISO/19507/PDF

Bibliography

[PMS+14] Miroslav Pajic, Rahul Mangharam, Oleg Sokolsky, David Arney, Julian Goldman,
and Insup Lee. Model-driven safety analysis of closed-loop medical systems. IEEE
Transactions on Industrial Informatics, 10(1):3–16, 2014.

[PPM+19] Yago Isasi Parache, Aleix Pinardell, Antonio Márquez, Christophe Molon-Noblot,
Alexander Wagner, Marc Gales, and Miroslav Brada. The esail multipurpose sim-
ulator. Poster at the Workshop on Simulation and EGSE for Space Programmes
(SESP 2019), 2019.

[Rap16] Nicolas Rapin. Reactive property monitoring of hybrid systems with aggregation.
In Proc. RV2016, volume 10012 of LNCS, pages 447–453. Springer, 2016.

[RBFS08] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. On a continu-
ous degree of satisfaction of temporal logic formulae with applications to systems
biology. In Proc. International Conference on Computational Methods in Systems Biology
(CMSB2008), pages 251–268. Springer, 2008.

[SACO02] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. Propel: an approach
supporting property elucidation. In Pro. ICSE 2002, pages 11–21, Los Alamitos,
CA, USA, 2002. IEEE.

[SDB+13] Szymon Stoma, Alexandre Donzé, François Bertaux, Oded Maler, and Gregory
Batt. STL-based analysis of trail-induced apoptosis challenges the notion of type
I/type II cell line classification. PLoS computational biology, 9(5):e1003056, 2013.

[SF12] Sriram Sankaranarayanan and Georgios Fainekos. Falsification of temporal prop-
erties of hybrid systems using the cross-entropy method. In Proc. 15th ACM inter-
national conference on Hybrid Systems: Computation and Control (HSCC2012), pages
125–134. ACM, 2012.

[SJN+17] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo Hafner,
Ezio Bartocci, Dejan Nickovic, and Radu Grosu. Runtime monitoring with re-
covery of the SENT communication protocol. In Proc. International Conference on
Computer Aided Verification (CAV2017), pages 336–355. Springer, 2017.

[SNBB18] Simone Silvetti, Laura Nenzi, Ezio Bartocci, and Luca Bortolussi. Signal convolu-
tion logic. In Proc. International Symposium on Automated Technology for Verification
and Analysis (ATVA2018), pages 267–283. Springer International Publishing, 2018.

[SQL04] ShengYu Shen, Ying Qin, and Sikun Li. Localizing errors in counterexample with
iteratively witness searching. In International Symposium on Automated Technology
for Verification and Analysis, pages 456–469. Springer, 2004.

131

BIBLIOGRAPHY

[SSA+19] César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci, Domenico
Bianculli, Christian Colombo, Yliès Falcone, Adrian Francalanza, Srdan Krstic,
João M. Lourenço, Dejan Nickovic, Gordon J. Pace, José Rufino, Julien Signoles,
Dmitriy Traytel, and Alexander Weiss. A survey of challenges for runtime veri-
fication from advanced application domains (beyond software). Formal Methods
Syst. Des., 54(3):279–335, 2019. doi:10.1007/s10703-019-00337-w.

[SW95] A Prasad Sistla and Ouri Wolfson. Temporal conditions and integrity constraints
in active database systems. In ACM SIGMOD Record, volume 24, pages 269–280.
ACM, 1995.

[UFAM14] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern
matching. In Proc. International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS2014), pages 222–236. Springer International Publishing, 2014.

[VBCG14] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management of an academic
hpc cluster: The ul experience. In Proc. of the 2014 Intl. Conf. on High Performance
Computing & Simulation (HPCS 2014), pages 959–967, Los Alamitos, CA, USA, July
2014. IEEE.

[YHF12] Hengyi Yang, Bardh Hoxha, and Georgios Fainekos. Querying parametric tem-
poral logic properties on embedded systems. In Proc. International Conference on
Testing Software and Systems (IFIP2012), pages 136–151. Springer, 2012.

132

https://doi.org/10.1007/s10703-019-00337-w

	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Research Contributions
	Dissemination
	Organization of the Thesis

	Background
	The TemPsy language
	Model-driven trace checking with TemPsy-Check
	Specification Patterns for Service Provisioning
	Signals
	Temporal Logics for Signal-based Properties
	Signal Temporal Logic (STL)
	STL*
	Signal First-Order Logic (SFO)

	A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations
	Overview
	Specifying temporal properties with aggregation operators through TemPsy-AG
	Model-driven trace checking of TemPsy-AG properties
	Checking the ``average response time'' pattern
	Checking the ``average number of events'' pattern
	Checking the ``maximum number of events'' pattern
	Tool implementation

	Evaluation
	Evaluation Settings
	Temporal Properties
	Trace Generation Strategy
	Computer Settings

	Evaluation Results
	Scalability with respect the to trace length
	Scalability with respect to the number of observation intervals
	Comparison with SOLOIST-Translator

	Discussion

	Related work
	Summary

	Signal-Based Properties: Taxonomy and Logic-based Characterization
	Overview
	Taxonomy of signal-based Temporal properties
	Data assertion
	Alternative formalizations

	Spike
	Alternative formalizations

	Oscillation
	Alternative formalizations

	Relationship between signals
	Functional Relationship
	Order Relationship
	Transient Behaviors
	Alternative formalizations

	Expressiveness
	Application to an Industrial Case Study
	Applications
	Related Work
	Summary

	Trace-Checking Signal-based Temporal Properties: A Model-Driven Approach
	Overview
	Case Study and Motivations
	Traces
	The SB-TemPsy Approach
	The SB-TemPsy-DSL Language
	Syntax
	Formal Semantics

	SB-TemPsy-Check
	Pre-processing
	Trace Meta-model
	Model-driven Trace Checking

	Evaluation
	Expressiveness of SB-TemPsy-DSL
	Applicability of SB-TemPsy-Check
	Discussion and Threats to Validity

	Related Work
	Summary

	Trace Diagnostics for Signal-based Temporal Properties
	Overview
	Overview of TD-SB-TemPsy
	Diagnostics patterns and Diagnostics Information: formal definition
	Diagnostics Patterns Definition: Methodology
	Diagnostics Information

	Defining Diagnostic Patterns and Diagnostic Information for SB-TemPsy-DSL property types
	Data Assertion
	Rise Time (and Fall Time)
	Overshoot
	Spike
	Oscillations

	Implementation and Preliminary Evaluation
	Related Work
	Summary

	Conclusions & Future Work
	Conclusions
	Future Research Directions

	Bibliography

