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Abstract The use of multi-rotor UAVs in industrial and civil applications
has been extensively encouraged by the rapid innovation in all the technolo-
gies involved. In particular, deep learning techniques for motion control have
recently taken a major qualitative step, since the successful application of
Deep Q-Learning to the continuous action domain in Atari-like games. Based
on these ideas, Deep Deterministic Policy Gradients (DDPG) algorithm was
able to provide outstanding results with continuous state and action domains,
which are a requirement in most of the robotics-related tasks. In this context,
the research community is lacking the integration of realistic simulation sys-
tems with the reinforcement learning paradigm, enabling the application of
deep reinforcement learning algorithms to the robotics field.

In this paper, a versatile Gazebo-based reinforcement learning framework
has been established and validated with a continuous UAV landing task. The
UAV landing maneuver on a moving platform has been solved by means of
the novel DDPG algorithm and our reinforcement learning framework. Sev-
eral experiments have been performed in a wide variety of conditions for both
simulated and real flights, demonstrating the generality of the approach. As
an indirect result, a powerful work flow for robotics has been validated, where
robots can learn in simulation and perform properly in real operation envi-
ronments. To the best of the authors knowledge, this is the first work that
addresses the continuous UAV landing maneuver on a moving platform by
means of a state-of-the-art deep reinforcement learning algorithm, trained in
simulation and tested in real flights.
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1 Introduction

In recent years, considerable research has been conducted regarding the de-
sign, development, and operation of autonomous Unmanned Aerial Vehicles
(UAVs). Multi-rotor UAVs are potentially useful in a wide variety of scenar-
ios, from natural disasters (conflagrations, earthquakes, etc.) to automation
in a broad range of industries (energy, manufacture, construction, etc.). Nev-
ertheless, these fields of application impose enormous constraints for normal
operation tasks such as taking-off, navigation, object detection, environment
interaction or landing. Thus, due to their level of complexity, researchers have
approached these tasks separately in a diverse set of research lines [18,24,
35,23,38] and international competitions [34,12], e.g. International Micro-Air
Vehicles competition (IMAV)1.

In this context, for the last decade, the research community has focused
on providing multi-rotor UAVs with the required level of autonomy for every
of the previously stated tasks, from navigation in unstructured environments
[7] to landing on moving platforms. In particular, the landing maneuver plays
a significant role for long-term operations due to the UAV limitation of rapid
battery discharge [33]. Moreover, in multi-robot operations, such as in com-
bination with Unmanned Ground Robots (UGVs), landing and/or target fol-
lowing become necessary [9]. Indeed, these facts can be limiting for providing
multi-rotor UAVs with the required level of autonomy in long-term missions.
Due to this reason, the landing maneuver on a moving platform has been on
the focus of several research lines for years [14,3,6,42,5,20,46,15].

Traditionally, the landing maneuver on a moving platform has been ap-
proached by means of a wide variety of techniques, which are able to solve the
problem in an analytic manner and to perform properly in some specific con-
ditions. Most of these strategies are mainly based on perception and relative
pose estimation [6,42,5], as well as trajectory optimization and control [29,1,
20,46,15].

Nevertheless, classical techniques have their limitations, in terms of model
design, non-linearities approximation, disturbances rejection and efficiency of
computation. In this context, machine learning techniques have proven to in-
creasingly overcome most of these limitations, having generated high expecta-
tions in the research community since 1971, when Ivakhnenko [19] trained a
8-layer neural network using the Group Method of Data Handling (GMDH) al-
gorithm. Nowadays, machine learning has evolved to more complex techniques,
such as deep learning strategies which are capable of generalizing from large
datasets of raw data information. Deep learning has opened up important re-
search and application fields in the context of unsupervised feature extraction,
where Convolutional Neural Networks (CNNs) were able to provide outstand-
ing results in comparison to traditional computer vision techniques [26].

In the context of machine learning (and reinforcement learning) for con-
tinuous control, there are uprising problems to cope with, such as divergence

1 https://imavs.org
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of learning, temporal correlation of data, data efficiency or continuous nature
of inputs and outputs. These issues have been limiting machine learning and
reinforcement learning strategies for continuous control over the last years.
However, recent advances in the reinforcement learning field, such as Deep-
Mind Technologies Deep Q-Network (DQN) [31], have unveiled a new set of
possibilities to solve complex human-level problems by means of novel deep
reinforcement learning strategies. The key advances of DQN were the inclusion
of an experience replay buffer (to overcome data correlation), and a different
approach for the target Q-Network, whose weights change with the update of
the main Q-Network in order to break the correlation between both networks
(in contrast with the targets used for traditional supervised learning, which
are fixed before learning begins) [31]. The state of the DQN algorithm is the
raw image and it has been widely tested with Atari games. DQN established
the base for a novel line of deep reinforcement learning solutions, but it was
not designed for continuous states, which are deeply related to robotic control
problems.

Based on the key improvements of DQN and the actor-critic paradigm
established by Richard S. Sutton and Andrew G. Barto in their renowned
reinforcement learning book [43], Lillicrap et al. proposed Deep Determinis-
tic Policy Gradients (DDPG) [28] as an algorithm to solve continuous con-
trol problems by integrating neural networks in the reinforcement learning
paradigm. DDPG is able to perform remarkably well with low dimensional
continuous states and actions, but is also capable of learning from raw pixels
[28].

In this work, the novel deep reinforcement learning algorithm (DDPG) has
been utilised to solve a complex high level task, such as UAV autonomous
landing on a moving platform. This task has been solved in simulation and
real flights by means of a Gazebo-based reinforcement learning framework.
The training phase has been carried out in Gazebo2 [48] and RotorS simulator
[13], which provide realistic simulations that help to a quick transition to real
flight scenarios. The testing phase has been performed in both simulated and
real flights.

1.1 Related work

The problem of UAV autonomous landing on both static and moving platforms
is of utmost importance for real world applications [33,9]. Given the complexity
of the challenge, a number of previous works focus mostly on specific solutions
for components such as perception and relative pose estimation [6,42,5] or
such as trajectory optimization and control [29,1,20,46,15]. Other research
lines explore coupled methods mostly related to Image-Based Visual Servoing
[27] and, in this direction, novel advanced algorithms which also incorporate
constant force disturbance estimation have been proposed [39].

2 http://gazebosim.org
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Regarding the control maneuvers when the relative state of the vehicles is
assumed to be known, popular techniques include different kinds of guidance
and rendezvous laws [15,20] which sometimes are augmented with velocity
controllers for a faster approaching phase [3]. When a desired meeting point is
obtained, incorporating feedforward inputs allows for a faster response against
track following errors [29] and the determination of optimal rendezvous tra-
jectories can also take wind disturbances into account [1]. PID controllers are
the preferred option for aggressive landing from relatively short distances [47,
5,3], while an adaptive control schema presents enhanced robustness [18,24].
A discrete-time non-linear model predictive controller which optimizes both
the trajectories and the landing time was developed to address the difficult
problem of landing on top of moving inclined platforms [46].

Even if only tested on static platform landing tasks, innovative bio-inspired
strategies have proven to perform well in the real world, employing a time-to-
contact (TTC) indicator [22]. Intelligent control and machine learning based
methods are very promising too, since they provide the ability to deal with dif-
ferent system dynamics in different environments and landing circumstances
[4]. Recent contributions have proposed neural network backpropagation con-
trollers [4] for landing on top of a static platform and classical discrete rein-
forcement learning approaches have also been used in the literature, such as
the approach proposed by Shaker et al. [40], where an LSPI algorithm was
used to land on top of a static platform. Both state and actions were part
of a discrete space and the main sensor to estimate the state was a camera.
The UAV was able to perform a landing maneuver on a static platform in a
simulated environment.

The previously mentioned novel reinforcement learning methodologies are
strongly related to deep learning strategies, since their theory is intrinsically
linked. Concerning deep learning for UAV indoor navigation tasks, recent ad-
vances have driven to a successful application of CNNs in order to map images
to high-level behaviour directives (e.g. turn left, turn right, rotate left, rotate
right) [35,23]. In [35], the Q function is estimated through a CNN, which is
trained in simulation and successfully tested in real experiments. In [23], dis-
crete actions are directly mapped from raw images. In all stated methods,
the learned model is run offboard, usually taking advantage of a GPU in an
external laptop.

In [16], a Deep Neural Network (DNN) model was trained to map image to
action probabilities (turn left, go straight or turn right) with a final softmax
layer, and tested onboard by means of an Odroid-U3 processor. The perfor-
mance is later compared to two automated methods (SVM and a method in
[38]) and two human observers.

On the other hand, deep learning for low-level motion control is challenging,
since dealing with continuous and multi-variable action spaces can become
an intractable problem. Nevertheless, some recent advances have proposed
novel methods to learn low-level control policies from imperfect sensor data
in simulation [49,21]. In [49], a Model Predictive Controller (MPC) was used
to generate data at training time in order to train a DNN policy, which was
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allowed to access only raw observations from the UAV onboard sensors. In
testing time, the UAV was able to follow an obstacle-free trajectory even in
unknown situations. In [21], the well-known Inception v3 model (pre-trained
CNN) was adapted in order to enable the final layer to provide six action
nodes (three transitions and three orientations). After re-training, the UAV
managed to cross a room filled with a few obstacles in random locations.

On the side of deep reinforcement learning, some recent algorithms are able
to perform slightly better than DDPG, in terms of training time and for low-
dimensional continuous tasks. In [17], Normalized Advantage Functions (NAF)
or continuous deep Q-learning algorithm is able to solve continuous problems
in simulation, by the use of a neural network that separately outputs a value
function V (x) and an advantage term A(x, u) [17]. This representation allows
to simplify more standard actor-critic style algorithms, while preserving the
benefits of non-linear value function approximation [17]. In [30], several agents
(from 1 to 16) are run in parallel threads, enabling the possibility of stable
training of neural networks with both value-based and policy-based methods,
off-policy as well as on-policy methods, and in discrete as well as continuous
domains. Also, Asynchronous Advantage Actor-Critic (A3C) shows that stable
online Q-learning is possible without experience replay [30]. Both [17] and [30]
have been tested in simulated environments, such as MuJoCo [44] and/or
TORCs [11].

Finally, concerning the framework for training and testing novel deep re-
inforcement learning algorithms for robotics, recent developments point to
extend the OpenAI Gym3 reinforcement learning training/test bench to a
widely-used robotics simulator, such as Gazebo simulator. In [48], a complete
open source test bench is released, with simulation frequency up to real time
and meant for an specific model of UAV and UGV.

1.2 Contributions

Our proposed method differs from previous work in the following aspects: (i)
A Gazebo-based reinforcement learning framework has been established. This
framework is versatile-enough to be adapted to other types of algorithms,
environments and robots. (ii) A novel deep reinforcement learning algorithm
(DDPG) has been adapted and integrated into our Gazebo-based simulation
framework. (iii) The landing maneuver on a moving platform has been solved
by means of a deep reinforcement learning algorithm, in both simulated and
real flights.

Please note that we address the full problem, with continuous state and
actions spaces. Also, as an indirect result, we have demonstrated the feasibility
of a powerful work flow, where robots can be trained in simulation and tested
in real operation environments. To the best of the authors knowledge, this is
the first work that addresses the UAV landing maneuver on top of a moving

3 Open test bench for reinforcement learning algorithms: https://gym.openai.com

https://gym.openai.com


6 Alejandro Rodriguez-Ramos et al.

platform by means of a state-of-art deep reinforcement learning algorithm,
trained in simulation and tested in real flights.

The remainder of the paper is organized as follows: Section 2 presents a
brief introduction on the reinforcement learning theory and a short explana-
tion on the basics of DDPG algorithm. Section 3 details the presentation and
description of our Gazebo-based reinforcement learning framework and the
design of the experiment which meets all the constraints required in the deep
reinforcement learning paradigm for autonomous UAV landing on a moving
platform. Section 4 presents the simulated and real-flight experiment results.
Finally, Section 5 provides conclusions and future work optimizations and re-
search lines.

2 Background

In reinforcement learning, an agent is defined to interact with an environment,
seeking to find the best action for each state at any time step. The agent must
balance exploration and exploitation of the state space in order to find the
optimal policy which maximizes the accumulated reward from the interaction
with the environment. In this context, an agent modifies its behaviour or policy
with the awareness of the states, actions taken and rewards for every time step.
Indeed, reinforcement learning involves an optimization process throughout
the whole state space, in order to maximize the accumulated reward. Robotic
problems are often task-based with temporal structure. These type of problems
are suitable to be solved by means of a reinforcement learning framework [25].

The standard reinforcement learning theory states that an agent is able to
obtain a policy, which maps every state s ∈ S to an action a ∈ A, where S is the
state space (possible states of the agent in the environment) and A is the finite
action space. The inner dynamics of the agent are represented by the transition
probability model p(st+1|st, at) at time t. The policy can be stochastic π(a|s),
with a probability associated to each possible action, or deterministic π(s).
In each time step, the policy determines the action to be chosen and the
reward r(st, at) is observed from the environment. The goal of the agent is

to maximize the accumulated discounted reward Rt =
∑T
i=t γ

i−tr(si, ai) from
a state at time t to time T (T = ∞ for infinite horizon problems) [43]. The
discount factor γ is defined to allocate different weights for the future rewards.

For a specific policy π, the value function V π in Eq. 1 is a representation of
the expectation of the accumulated discounted reward Rt for each state s ∈ S
(assuming a deterministic policy π(st)).

V π(st) = E[Rt|st, at = π(st)] (1)

An equivalent of the value function is represented by the action-value func-
tion Qπ in Eq. (2) for every action-state pair (st, at).

Qπ(st, at) = r(st, at) + γ
∑
st+1

p(st+1|st, at)V π(st+1) (2)
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The optimal policy π∗ shall be the one which maximizes the value function
(or equivalently the action-value function), as in Eq. (3).

π∗ = arg max
π

V π(st) = arg max
at

Q∗(st, at) (3)

A general problem in real robotic applications is that the state and action
spaces are often continuous spaces. A continuous state and/or action space
can make the optimization problem intractable, due to the overwhelming set
of different states and/or actions. Reinforcement learning methods, as a gen-
eral framework for representation, are enhanced through deep learning to aid
the design for feature representation, which is known as deep reinforcement
learning.

In the context of state-of-the-art deep reinforcement learning algorithms,
DDPG represents one successful application of neural networks to the re-
inforcement learning paradigm, and it is able to solve continuous control
problems. As previously stated, DDPG [28] is a policy-based deep reinforce-
ment learning algorithm designed to work with both continuous state and
actions spaces. Policy-based reinforcement learning methods aim towards di-
rectly searching the optimal policy π∗, which provides a feasible framework for
continuous control. If the target policy π∗ is a deterministic policy µ, the Q
function (see Eq. 4) can be learned off-policy, using transitions (from an envi-
ronment E) which are generated from a different stochastic behaviour policy
β [28].

Q(st, at) = Ert,st+1∼E [r(st, at) + γQµ(st+1, µ(st+1))] (4)

A function approximator, parametrized by θQ, is considered in DDPG to
approximate the Q function. It is optimized by minimizing the loss L(θQ) of
Eq. 5.

L(θQ) = Est∼ρβ ,at∼β,rt∼E [(Q(st, at|θQ)− yt)2] (5)

where

yt = r(st, at) + γQ(st+1, µ(st+1)|θQ) (6)

The key changes for this large non-linear approximators to converge (in
discrete spaces) were: the use of a replay buffer, and a separate target network
for calculating yt, as firstly proven by DQN [31]. In order to deal with large
continuous state and action spaces, DDPG adapted the actor-critic paradigm
introduced in [41], with two neural networks to approximate a greedy deter-
ministic policy (actor) and the Q function (critic). DDPG method learns with
an average factor of 20 times fewer experiences steps than DQN [28].

The actor network is updated by following and applying the chain rule to
the expected return from the start distribution J with respect to the actor
parameters (see Eq. 7).

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)] (7)
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An advantage of the off-policy methods is that exploration can be treated
independently from learning. In this case, exploration is carried out throughout
autocorrelated Ornstein-Uhlenbeck exploration noise [45].

3 Proposed approach

In this section, a complete explanation of our Gazebo-based reinforcement
learning framework is included. Furthermore, the formulation of the UAV
landing on a moving platform problem, within the reinforcement learning
paradigm, is detailed.

3.1 Reinforcement learning simulation framework

Traditionally, reinforcement learning algorithms have been tested and vali-
dated by means of generic tools for simulation (e.g. Matlab, Simulink). The
performance of other classic reinforcement learning algorithms was not power-
ful enough to overcome high-level and complex problems, neither in the context
of continuous states and actions spaces, or working with continuous physics
in realistic simulators (e.g. Gazebo simulator). Nevertheless, since there has
been an increasing improvement in the performance of this kind of algorithms,
simulation systems have been following this complexity trend, allowing a fea-
sible and stable training of reinforcement learning agents under realistic and
continuous simulators.

OpenAI Gym is an open-source toolkit for developing and comparing re-
inforcement learning algorithms [8]. Currently, most of the available environ-
ments for testing in OpenAI Gym are 2D or Atari-like games, with a diverse
range of complexity examples, but lacking more realistic environments for
robotic simulation. In robotics, this type of training/testing environments are
not directly available for the research community.

On the other hand, the Gazebo simulator is often a prime example of a
versatile and realistic simulation system for robotics, normally aided by the
well-known Robot Operating System (ROS) middleware [32]. Hence, taking
advantage of the versatility of this broadly-used simulation system, we have
designed and implemented a Gazebo-based reinforcement learning framework.
The aim of this framework is to provide a predefined interface between the
reinforcement learning algorithm, the environment interface and the Gazebo
simulator (or other type of simulators). Also, it has been designed in such a
way that it can be extended in the future to different types of reinforcement
learning algorithms, environments and robots.

As previously stated, in reinforcement learning, an agent interacts with an
environment and tries to maximize the accumulated reward in each time step.
In our framework, the communication channel between the agent and the en-
vironment is implemented through commonly-used ROS communication tools,
which provide a standardized way of communication (see Figure 1). Also, some
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Fig. 1: Diagram of our reinforcement learning simulation framework. The
theoretical concept of the reinforcement learning environment is highlighted

in pale red. Simulation systems or multi-purpose architectures are
highlighted in pale green.

reinforcement learning problems require the simulation time to be deliberately
iterated (the clock is paused), in order to complete computationally-expensive
training steps. In this scenario, where the Gazebo simulator clock is paused,
communication via ROS tools is not possible, since ROS uses Gazebo clock to
forward its messages through the network. In order to overcome these issues,
an additional shared memory communication channel has been implemented,
which can be used in case the Gazebo clock is paused and the simulation is
being actively iterated. This functionality provides the developer with full con-
trol on the simulation time, allowing the interaction of a Gazebo plugin with
Gazebo simulator and the shared memory interface, which can be a require-
ment in several real world problems.

Furthermore, in our framework, the agent component which represents the
classical reinforcement learning agent, is capable of receiving experience vec-
tors and rewards from the environment in order to find the optimum action
to be taken in each time step. Our implementation of the agent is also capa-
ble of logging representative data which can be used to determine whether it
is actually learning or whether the algorithm has otherwise diverged. On the
other hand, the environment interface shown in Figure 1 represents a partial
implementation of the classical reinforcement learning environment, since in
this case, Gazebo simulator and Aerostack architecture [37] constitute an im-
portant part of the whole reinforcement learning environment. Aerostack is
a system architecture and open-source multi-purpose software framework for
autonomous multi-UAV operation. It has been used to enable the operation
of the UAVs in both training and testing time, though its full explanation is
out of the scope of this work. For further information, please refer to [37].

In this framework, the environment interface shown in Figure 1 imple-
ments an interface between Gazebo/Aerostack and the agent, being in charge
of parsing all the incoming data, in order to adapt it to an intelligible struc-
ture which the agent can use. Furthermore, taking into consideration future
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Fig. 2: Architecture of the experiment.

extensions of either agents, environments, robots or simulation systems, the
framework has been designed in a versatile manner at a programming level.
Since all the communication interfaces are standard and cross-language, both
the agent and the environment interface can be implemented in a wide variety
of programming languages, such as C++, Python, or Java.

Finally, our framework is designed to be used with Gazebo, but it can be
adapted to any other simulation systems (as well as simulated robots), due to
the standard nature of its communications. Also, the simulation time can be
speeded up or slowed down, in order to reduce training times and to adapt
the simulation to computationally-expensive experiments, respectively.

3.2 Reinforcement learning based formulation

In the context of reinforcement learning, the formulation of the experiment can
be decisive for the algorithm to converge, since there are an increasing number
of possible designs which ideally would lead to the same result. In practice,
the formulation of the state and action spaces, as well as the design of the
reward function, determines the speed of convergence and even the possibility
of divergence of the reinforcement learning algorithm. We have designed the
state, action and reward function in a way that it minimizes information passed
to the agent, speeds up learning and avoids learning divergence.

As previously stated, a reinforcement learning experiment is defined by the
state space s ∈ S, the action space a ∈ A and the reward function r. In our
proposed approach, the state space S is defined by Eq. 8.

S = {px, py, pz, vx, vy, C} (8)

Where px, py and pz are the positions of the UAV with respect to the
Moving Platform (MP) in x, y and z axes respectively at time t, vx and vy are
the velocities of the UAV with respect to the MP in x and y axes respectively
at time t and C is the binary state of a pressure sensor located on the top
of the horizontal surface of the MP. All the sensory information is retrieved
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from Gazebo simulator and parsed by the environment interface component,
as shown in Figure 2. Regarding the action space A, it is defined by Eq. 9.

A = {ax, ay} (9)

Where ax and ay are the reference velocities, input of the velocity controller
(see Figure 2), in x and y axes at time t. In this paper, the velocity reference in
the z axis has not been included in the action space. This is due to the fact that
we are tackling a complex problem with continuous state and action spaces
and the full behaviour is completely self-learned in simulation, by means of
a deep reinforcement learning algorithm not previously tested on this type of
robotic tasks. Hence, the inclusion of z axis has been left as future work since
it involves a much higher order of complexity out of the scope of this study.
Instead, a constant velocity reference is commanded in the z axis in each time
step. This fact simplifies the action space, increasing the speed of convergence
of the algorithm without losing generality of the approach. The resulting state
and action spaces are a continuous 6-dimensional space and a continuous 2-
dimensional space respectively, with normalized variables ranging from +1 to
-1 values.

The reward function is one of the most important components in the re-
inforcement learning framework. A proper design of the reward function can
lead to a faster convergence of the algorithm and a better performance at
testing time. In our proposed approach, where the agent is meant to generate
continuous control actions, the reward function shall be designed in such a
way that it rewards smooth actions with respect to time. The resulting reward
function r is defined by Eq. 10 and Eq. 11.

shapingt = −100
√
p2x + p2y − 10

√
v2x + v2y −

√
ax2 + ay2

+10C(1− |ax|) + 10C(1− |ay|)
(10)

r = shapingt − shapingt−1 (11)

As can be inferred from Eq. 10, the reward function explicitly differentiates
between the importance of minimizing the position with respect to the MP,
the velocity with respect to the MP and the generated actions (each variable
is weighted by a different coefficient). Following this fashion, the agent is able
to coarsely learn to minimize its position with respect to the MP and to
subsequently optimize its behaviour in order to generate smoother velocity
references, which leads to a less aggressive movement. Also, the C coefficient
rewards the agent as soon as the UAV lands on the MP and the velocity
references are decreased to their absolute minimum.

In addition, shaping is a popular method for speeding up reinforcement
learning in general, and goal-directed exploration in particular [10]. It increases
the speed of convergence of a reinforcement learning algorithm by transferring
knowledge about the current progress on the task to be solved, in this case,
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with respect to the previous state of the agent. Nevertheless, it requires signifi-
cant design effort, and results in less autonomous agents. Also, it may alter the
optimal solution, leading to unexpected final behaviour. In this work, a shap-
ing method is applied in an non-invasive trend, by informing the agent about
its instantaneous progress and avoiding instability and algorithm divergence.

Also, it is assumed that both the position and velocity of the UAV and the
MP are available at training time (ground truth data). Nevertheless, as stated
in this section, the agent is only aware of its position and velocity with respect
to the MP, enabling this approach to work also in the absence of absolute
positioning systems, such as Global Navigation Satellite Systems (GNSS). It
has to be noted that even if the agent has been trained with ground truth
data, it is capable of performing the landing maneuver with noisy simulated
and real data, as shown in section 4.2.

The training procedure is based on an adapted implementation of stated
DDPG algorithm included in our framework. In our case, the actor and critic
neural networks (and their corresponding target networks) are feed-forward
neural networks with two hidden layers of 200 and 100 units each. The activa-
tion function of each unit of a hidden layer is a Recified Linear Unit (ReLU).
The input and output layer dimensions of the actor network are based on the
state and action dimensions (6 and 2 units), respectively (see Eq. (8) and (9)).
The activation function of the output layer is a tanh function, bounded to
the range of [-1,1]. The output layer of the critic network has one unit with a
linear activation function in order to provide an estimation of the Q-function.

4 Experiments and results

This section aims to provide a full explanation about the experiments designed
and implemented to validate the whole training and testing pipeline. A detailed
description of the training experiments in simulation, as well as the testing
experiments in both simulation and real flights, is included. Results are shown
and discussed, as well the hardware and software specifications which have
been used to carry out the described experiments. A complete video of the
whole set of training and testing experiments can be found in https://vimeo.

com/235350807.

4.1 Experimental setup

In this section, the proposed experimental setup for simulated and real flights is
described. The agent has been implemented in Python 2.7, due to the availabil-
ity of the most common machine learning libraries. In this work, the Tensorflow
library [2] has been used as the main basis of the algorithm and it can run on
both Central Processing Unit (CPU) and Graphical Processing Unit (GPU).
The GPU involved in the training phase was a Nvidia GeForce GTX970 and
in the testing phase was a Nvidia GeForce GTX950M. In the case of the en-
vironment interface, it has been implemented in C++ (under the standard

https://vimeo.com/235350807
https://vimeo.com/235350807
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(a) UAV and MP in the training and testing
simulation environment.

(b) UAV and MP in the testing real
environment.

Fig. 3: Simulation and real environment scenarios.

C++11), in order to take advantage of the benefits of our Aerostack architec-
ture [37]. ROS Kinetic has been used as the communication framework. The
operating system utilised for running the processes involved in both simulated
and real flights is Ubuntu 16.04 LTS.

4.1.1 Simulated training and testing phases

A simulated environment has been created in Gazebo 7 for both simulated
training and testing phases. A UAV model and a minimalistic model of a MP
(see Figure 3a) have been included in an adapted version of RotorS simulator
[13]. RotorS simulator emulates the autopilot and all the required sensors for
a UAV to perform autonomous maneuvers, such as Inertial Measurement Unit
(IMU), lidar and/or cameras (RGB or RGB-D). We have selected an AsTec
Hummingbird as the UAV to perform the landing maneuver in simulation. A
simulated pressure sensor has been included on the surface of the MP, in order
to inform the agent about whether the UAV has properly landed or not.

The environment interface, which is in charge of parsing all the incoming
data, receives position and velocity ground truth data from the Gazebo sim-
ulator and sends the velocity references to the Aerostack velocity controller
via ROS topics. The state and reward is sent back to the agent via ROS
services. The whole simulated training and testing phases have been carried
out in a real-time Gazebo simulation, with an agent frequency of 20 Hz, an
asynchronous environment interface, a velocity controller frequency of 30 Hz
and Gazebo ground truth frequency of 100 Hz. The main differences between
simulated training and testing phases are:

1. Simulated training phase The trajectory of the MP is linear and periodic
with a maximum velocity of 1 m/s. The measured position and velocity
of both the UAV and the MP are ground truth data with no noise. The
permitted horizontal area for the UAV to fly is a rectangle of 3 m x 6 m
(it has been heuristically set to provide the minimum feasible area which
allows to learn the landing maneuver).
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2. Simulated testing phase The trajectory of the MP can be linear and periodic
with a maximum velocity of 1 m/s or non-linear and non-periodic with a
maximum velocity of 1 m/s. The measured position and velocity of both
the UAV and the MP are ground truth data with Gaussian noise (µ = 0
and σ = 1) in every variable of the agent state. The permitted horizontal
area for the UAV to fly is a rectangle of 5 m x 9 m.

4.1.2 Real-flight testing phase

A replica of the simulated environment has been created for the real-flight
testing phase. The MP, which was designed and built for previous works on
autonomous landing [34,36], is able to move in linear periodic trajectories
(with rails) and in arbitrary trajectories. The selected UAV platform was a
Parrot Bebop4 due to its small size, robust control and higher flight velocity
(see Figure 3b). This UAV platform is provided with an on-board autopilot
which can be commanded throughout a wireless WiFi channel. The remain-
ing processes, such as the agent, the environment interface and the Aerostack
components are run off-board. Tensorflow library calls are computed on a lap-
top GPU (Nvidia GTX950M). The rest of the required routines are computed
on the CPU. The UAV and MP position and velocity information is provided
by an Optitrack Motion Capture system (MoCap) which covers an area of ap-
proximately 4 m x 6 m. The frequency of the agent is 20 Hz, the environment
interface is asynchronous, the velocity controller runs at 30 Hz and the mo-
tion capture system frequency is 100 Hz. The communication with the UAV
is carried out trough WiFi at 2.4GHz.

4.2 Results and discussion

In this work, the full landing maneuver has been trained in simulation through-
out 4500 episodes (approximately 720k training steps over 10 hours). In this
setup, an episode consists of a full landing trial on top of the MP and it is
composed by a maximum of 900 training steps. As previously stated, the agent
interacts with the environment every 0.05 s (at a frequency of 20 Hz), which
corresponds to one training step. In each training step both actor and critic
network weights are being optimized by means of Adam optimizer and with
a learning rate of 10−4 and 10−3, respectively. The selected minibatch size
has been 64. In every episode, the UAV and the MP are initialized at a ran-
dom position of the horizontal plane (x and y axes). The experiment finishes
when the UAV touches the ground or the number of training steps exceeds
the maximum per episode. Following this trend, the experiment is repeated in
a wide variety of conditions to provide a complete range of experiences which
the agent can learn from in order to maximize its accumulated reward over
time.

4 http://global.parrot.com/mx/productos/bebop-drone/

http://global.parrot.com/mx/productos/bebop-drone/
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(a) Moving average and standard deviation of the accumulated reward per episode
(moving window of 100 episodes) for the full simulated training phase.

(b) Moving average and standard deviation of the accumulated reward per episode (moving
window of 3 episodes) for the full simulated testing phase (within the learning process).

Fig. 4: Average and standard deviation of the accumulated reward, for both
simulated training and testing phases.

In Figure 4, the moving average and standard deviation of the accumulated
reward for the full simulated training and testing phase are depicted. In the
training phase, an Ornstein-Uhlenbeck exploration noise [45] is added to the
actions provided by the agent. For this reason, the evolution of the accumulated
reward of the training phase is not stable (only its average is stable), as shown
in Figure 4a. Nevertheless, the evolution of the accumulated reward shows an
improvement after the first 400 episodes, and subsequently a stabilization of
the moving average and standard deviation for the rest of the training phase.
Thus, the representation of the moving average and standard deviation of the
accumulated reward in the training phase is helpful but does not show the real
performance of the agent.

In Figure 4b, the moving average and standard deviation of the accumu-
lated reward, for the simulated testing phase, are shown. Every 500 episodes of
the training phase, 10 episodes of the testing phase have been carried out. In a
test episode, the actions provided by the agent are directly mapped (without
adding noise) to the environment as a way of determining its real performance.
As shown in Figure 4b, the average accumulated reward increases until episode
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4500, where it remains approximately stable. As explained in the rest of the
subsection, episode 4500 has been chosen as the first episode where the agent
is fully trained, due to the stabilization of the average accumulated reward
and the performance shown in the actions provided.

Every experiment included in this section corresponds to a successful land-
ing trial on top of the MP. In Figure 5a, part of the state and action signals of
episode 500 of the simulated testing phase are depicted. The most important
components of the state, in terms of representation of the performance of the
agent, are the position of the UAV with respect to the MP (px, py) and the ve-
locity of the UAV with respect to the MP (vx, vy). These components allow to
infer the performance in the x and y axes (parallel to the ground plane), since
the performance in the z axis remained constant in these experiments (refer to
Section 3.2). Also, the actions provided by the agent (ax, ay) are determinant
to validate the performance for a real application. As shown in Figure 5a, the
actions generated by the agent in the episode 500 are not optimum, since it
keeps on generating velocity reference commands even when landed. Neverthe-
less, as suggested by Figure 4a, after episode 400, the behaviour of the agent is
close to the optimum, being able to perform a full landing maneuver in most
of the testing episodes, but with oscillating control actions when touching the
MP.

In Figure 5b, both position and velocity with respect to the MP converge to
approximately zero (exact zero is not practically possible either in the context
of a realistic simulation or in a real flight), and in a continuous and smooth
trend, which is the desired behaviour. Furthermore, the velocity reference com-
mands generated by the agent converge approximately to zero as well. Figure
5b represents the optimum performance of the agent in the absence of noise
for the setup presented in this work. Note that due to the lack of friction of
the simulated MP, the UAV is able to land on approximately the center of
the MP, but it slightly slippers from this position over time and the agent
has learned to compensate this effect (see supplementary video provided in
the beginning of Section 4). Nevertheless, the UAV is still on top of the MP,
which is considered a successful landing.

On the other hand, in order to test the capability of generalization and
robustness of the DDPG algorithm in simulation, a test experiment with added
noise has been performed. In this experiment, a Gaussian random variable
(µ = 0 and σ = 1) has been added to every component of the agent state,
resulting in the plots of Figure 6. As shown, both the position and velocity
of the UAV with respect to the MP are signals with a high level of gaussian
noise, but the agent is still able to perform a proper landing maneuver (the
position of the UAV with respect to the MP still converges to the origin). The
velocity reference commands generated by the agent are notably noisy, which
can be problematic in some other velocity control strategies (it may lead to
over oscillation). However, in the context of a linear velocity controller, the
final behaviour is more erratic but does not become unstable.

Additionally, in order to further validate our selected network from episode
4500, an extensive evaluation in two different scenarios has been performed
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(a) Partial state and actions signals of episode 500 (test). (Top) Position of the UAV with
respect to the MP, in x and y axes. The final position of the UAV with respect to the MP

is 0.44 m and 0.42 m, in x and y axes respectively. (Middle) Velocity of the UAV with
respect to the MP, in x and y axes. (Bottom) Velocity reference commands (actions)

generated by the agent, in world coordinates and in x and y axes.

(b) Partial state and actions signals of episode 4500 (test). (Top) Position of the UAV with
respect to the MP, in x and y axes. The final position of the UAV with respect to the MP

is 0.14 m and -0.37 m, in x and y axes respectively. (Middle) Velocity of the UAV with
respect to the MP, in x and y axes. (Bottom) Velocity reference commands (actions)

generated by the agent, in world coordinates and in x and y axes.

Fig. 5: Partial state and actions signals of two test episodes (simulated
testing phase).
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Fig. 6: Partial state and actions signals of episode 4500 (simulated testing
phase). (Top) Position of the UAV with respect to the MP with Gaussian

noise, in x and y axes. The final position of the UAV with respect to the MP
is 0.15 m and 0.42 m, in x and y axes respectively. (Middle) Velocity of the

UAV with respect to the MP with Gaussian noise, in x and y axes. (Bottom)
Velocity reference commands (actions) generated by the agent, in world

coordinates and in x and y axes.

Table 1: Mean and standard deviation metrics over 150 landing trials in two
different simulated scenarios (for our selected actor network of episode 4500).

Scenario tland (s) x (m) SR (%)
y (m)

Slow 13.5 ± 1.56 -0.01 ± 0.38 90.6
0.06 ± 0.47

Fast 17.76 ± 1.52 0.04 ± 0.42 73.3
-0.11 ± 0.49

over 150 test episodes. Both the UAV and the MP start at a random position
in each episode (see testing phase area of Section 4.1). Two scenarios has been
designed and several metrics have been provided. Slow scenario corresponds
to a rectilinear periodic trajectory of the MP with a maximum velocity of
0.4 m/s. Fast scenario corresponds to a rectilinear periodic trajectory of the
MP with a maximum velocity of 1.2 m/s. tland represents the required time
to perform the full landing maneuver (until the UAV touches the MP); x and
y represent the final position of the UAV with respect to the center of the
MP in x and y axes, respectively; and the Success Rate (SR) represents the
percentage of successful landing trials with respect to the whole set (over 150
episodes). A failure in the landing maneuver is mostly due to the fact that
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velocity in z axis is constant and the target MP can become out of range, from
where the agent is not able to recover the MP position. Nevertheless, the SR
suggests that this approach has succeeded in learning the landing maneuver.
Also, both the tland and the final position of the UAV with respect to the MP
shows a proper performance.

The robustness of DDPG algorithm can be further validated in real flights,
due to the difference in sensors and dynamics of the UAV used. It has to be
noted that no additional tuning of the actions provided by the actor network
was required when moving from simulation to real flights. Furthermore, as
previously stated, the AscTec Hummingbird included in simulation training
and testing phases, and the Parrot Bebop used in real-flight testing have a
similar size but the simulated dynamics differ from the real ones. The dynamics
of the AscTec Hummingbird were not required to be adjusted in simulation
to fit Parrot Bebop dynamics. The explanation of this fact is twofold. First,
our approach aims to prove a powerful workflow, where a robot can be trained
in simulation and tested in real flights, even when the robot is not being
precisely simulated (e.g. different dynamics or autopilot). In this context, the
generalization capability of the DDPG algorithm was enough to overcome
stated differences. Second, our approach performs high level control (velocity
reference control), so that differences in dynamics can be partially absorbed
by a proper tuning of the velocity and autopilot controllers.

In Figure 7, two real-flight plots are shown. In these real-flight experiments,
the UAV is automatically commanded to land when the altitude with respect
to the MP is lower than a certain threshold th (th = 35 cm), in order to avoid
unsafe maneuvers that do not add value to the final performance. Also, the
UAV is commanded a constant velocity in z axis. However, due to the Parrot
Bebop autopilot design it can sometimes have sudden altitude changes due to
missestimation of the UAV altitude in a certain instant (see supplementary
video). Figure 7a, shows the performance of the UAV when the MP follows
a linear periodic trajectory. This experiment seeks to replicate the scenario
which has been used to train the agent in simulation, in order to prove that
it is possible to describe a similar behaviour in a real flight. As seen in Figure
7a, the position of the UAV with respect to the MP converges to the origin
and the velocity reference commands generated by the agent are stable with
respect to time. Furthermore, in order to test the capability of generalization
of the DDPG algorithm, a more complex experiment has been designed. In
this new experiment, the MP describes a random trajectory in both x and
y axes of the horizontal space (ground plane). This scenario has never been
experienced by the agent, so that the approach can be proven to be robust
and generic enough to overcome the uprising differences, as shown in Figure
7b. The results shown in Figure 7b depict a similar convergence, compared
to previous results, leading to a proper landing of the UAV on the MP and
with a stable generation of actions. The final high level performance of the
UAV remains stable, smooth and robust against new experiences. Regarding
these results, we can conclude that DDPG algorithm is capable of learning a
complex and continuous landing maneuver task. In addition, it is feasible for a
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(a) Partial state and actions signals of a real flight (test with a periodic trajectory of the
MP). (Top) Position of the UAV with respect to the MP, in x and y axes. The final
position of the UAV with respect to the MP is 0.01 m and -0.07 m, in x and y axes
respectively. (Middle) Velocity of the UAV with respect to the MP, in x and y axes.
(Bottom) Velocity reference commands (actions) generated by the agent, in world

coordinates and in x and y axes.

(b) Partial state and actions signals of a real flight (test with a random trajectory of the
MP). (Top) Position of the UAV with respect to the MP, in x and y axes. The final
position of the UAV with respect to the MP is -0.01 m and -0.17 m, in x and y axes
respectively. (Middle) Velocity of the UAV with respect to the MP, in x and y axes.
(Bottom) Velocity reference commands (actions) generated by the agent, in world

coordinates and in x and y axes.

Fig. 7: Partial state and actions signals of two test episodes (real-flight
testing phase).
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UAV to be trained in simulation and tested in the real world without further
parameter tuning in a diverse range of conditions.

5 Conclusions and Future Work

In this paper, the problem of autonomous landing of a UAV on a moving
platform has been solved by means of a deep reinforcement learning algorithm.
The state-of-the-art DDPG algorithm was integrated and adapted into our
novel Gazebo-based reinforcement learning simulation framework, enabling the
possibility of training complex continuous tasks in a realistic simulation. The
UAV landing maneuver task was trained in simulation, and tested in simulation
and real flights. This fact has validated a powerful work flow for robotics,
where robots can learn in simulation and properly perform in real flights.
The experiments have been run in a wide variety of conditions, demonstrating
the generality of the approach. To the best of the authors knowledge, this is
the first work that addresses the UAV landing maneuver on top of a moving
platform by means of a state-of-the-art deep reinforcement learning algorithm,
trained in simulation and tested in real flights. Concerning the complexity of
the landing problem (and other type of robotic problems), other continuous
deep reinforcement learning algorithms can be integrated in our reinforcement
learning simulation framework, since there is an ongoing innovation in this
type of algorithms. As an immediate future work, the altitude (z axis) can be
included in the states and actions space and some prediction-based solution
can be tested. Furthermore, the input to the algorithm can be changed from
a continuous space of variables to raw pixels, in order to test its capability of
generalization from a higher amount of noisy information.
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36. Sampedro, C., Bavle, H., Rodŕıguez-Ramos, A., Carrio, A., Fernández, R.A.S., Sanchez-
Lopez, J.L., Campoy, P.: A fully-autonomous aerial robotic solution for the 2016 inter-
national micro air vehicle competition. In: Unmanned Aircraft Systems (ICUAS), 2017
International Conference on, pp. 989–998. IEEE (2017)

37. Sanchez-Lopez, J.L., Fernández, R.A.S., Bavle, H., Sampedro, C., Molina, M., Pestana,
J., Campoy, P.: Aerostack: An architecture and open-source software framework for
aerial robotics. In: Unmanned Aircraft Systems (ICUAS), 2016 International Conference
on, pp. 332–341. IEEE (2016)

38. Santana, P., Correia, L., Mendonça, R., Alves, N., Barata, J.: Tracking natural trails
with swarm-based visual saliency. Journal of Field Robotics 30(1), 64–86 (2013)

39. Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.: Landing of a quadrotor
on a moving target using dynamic image-based visual servo control. IEEE Transactions
on Robotics 32(6) (2016)

40. Shaker, M., Smith, M.N., Yue, S., Duckett, T.: Vision-based landing of a simulated
unmanned aerial vehicle with fast reinforcement learning. In: Emerging Security Tech-
nologies (EST), 2010 International Conference on, pp. 183–188. IEEE (2010)

41. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic
policy gradient algorithms. In: Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 387–395 (2014)

42. Skoczylas, M.: Vision analysis system for autonomous landing of micro drone. Acta
Mechanica et Automatica (2015)

43. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT press
Cambridge (1998)

44. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control. In:
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pp. 5026–5033. IEEE (2012)

45. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian motion. Physical review
36(5), 823 (1930)

46. Vlantis, P., Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Quadrotor landing on
an inclined platform of a moving ground vehicle. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA) (2015)

47. Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a
miniature uav on a moving carrier vehicle. Journal of Intelligent & Robotic Systems
(2011)



24 Alejandro Rodriguez-Ramos et al.

48. Zamora, I., Lopez, N.G., Vilches, V.M., Cordero, A.H.: Extending the openai gym for
robotics: a toolkit for reinforcement learning using ros and gazebo. arXiv preprint
arXiv:1608.05742 (2016)

49. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for au-
tonomous aerial vehicles with mpc-guided policy search. In: Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pp. 528–535. IEEE (2016)


	Introduction
	Background
	Proposed approach
	Experiments and results
	Conclusions and Future Work

