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Abstract—This paper considers a sparse precoding design for
sum-rate maximization in a cloud radio access network (Cloud-
RAN). Constrained by the fronthaul link capacity and transmit
power limit at each remote radio head (RRH), the sparse design
amounts to determine the precoders at the RRHs as well as
the set of serving RRHs for each mobile user. In this work,
we first formulate the fronthaul link constraints as non-convex
and discontinuous constraints with sparsity terms. These sparsity
terms are then iteratively approximated into linear forms by
means of reweighted `1-norm with conjugate functions. Finally,
to determine the beamforming vectors, the non-convex sum-rate
maximization problem with linear constraints is transformed into
an equivalent problem of iterative weighted mean-squared error
minimization. Convergence of the proposed iterative algorithm
is then proved and verified by the presented numerical results.
In addition, numerical results demonstrate the superior perfor-
mance by the proposed algorithm over a previously proposed one
in literature.

I. INTRODUCTION

Recently, cloud radio access network (Cloud-RAN) has
been considered as a network architecture for the future
wireless networks. Cloud-RAN can provide high capacity to
cope with a tremendous growth in mobile data traffic [1], [2].
In this system, all baseband signal units (BBUs) are shifted
into the cloud to generate a centralized processing pool. In ad-
dition, the signal processing functionality is also shifted to the
cloud to take advantage of the cloud’s computational power.
The access points (radio remote heads (RRHs)) containing
only the RF transmission modules become much simple and
easy for deployment, especially in dense networks. Thanks
to centralized joint scheduling and signal processing, the
interference can be jointly managed. Hence, the network can
achieve significant performance improvements [3] over tradi-
tional wireless network deployment. In additional, deployment
of simple RRHs can also reduce both the network expenditure
(CAPEX) and operating expense (OPEX) [4]. While showing
lots of potential, Cloud-RAN also poses various technical
challenges in its design and deployment. Specifically, one
must efficiently utilize the processing resource in the cloud,
the fronthaul capacity, and design suitable communication
schemes for baseband signal processing.

Some of the technical problems in Cloud-RAN have been
studied in recent works which are briefly summarized as
follows. In [5], Fan et al. proposed an efficient clustering
algorithm to reduce the computations at the cloud when the
number of RRHs is very large. In [6], Liu and Lau studied
the joint optimization of antenna selection, regularization, and
power allocation to maximize the average weighted sum-rate.

The works in [7], [8] tried to design the beamforming vectors
for all RRHs to minimize the total power consumption of
the network. In general, these problems are formulated into
sparse beamforming design problem where the sparsity term
is stated in the objective function. Therefore, the solutions can
be readily obtained by directly applying compressive sensing
techniques [9], [10].

In this paper, we consider the coordinated transmission
problem for downlink sum-rate maximization in Cloud-RAN
while considering practical constraints on the transmit power
and fronthaul capacity at each RRH. Due to the limited
fronthaul capacity, a sparsity term (`0-norm) will be placed
in the constraint. This constraint, which is nonconvex, makes
the beamforming design non-trivial. Thus, a newly devised
solution approach is needed to deal with the non-convex
fronthaul constraints. To the best of our knowledge, the nearest
work relating to ours was introduced in [11] where the re-
weighted `1-norm technique in compressive sensing is applied.
However, convergence of the proposed algorithm in [11] is
not guaranteed nor proven. In this work, we take a different
approach in dealing with the `0-norm by employing the
step function approximation in conjunction with a conjugate
function. As a result, the non-convex `0-norm constraint can be
transformed into a linear constraint. In addition, the considered
solution approach allows a tighter approximation to the `0-
norm after each iteration. While all the constraints can now
be stated in linear forms, the sum-rate objective function
is still non-convex. To determine the optimal beamforming
design for this non-convex problem, we transform it into
an equivalent problem of iterative minimization of weighted
mean-squared error (IWMMSE). Convergence of the proposed
iterative algorithm is then proved and verified by the presented
numerical results. The numerical results also illustrate that our
proposed algorithm is able to converge faster and noticeably
outperform the existing one in [11].

The remaining of this paper is organized as follows. We
describe the system model and problem formulation in Section
II. In Section III-IV, we present the main contribution of this
paper by proposing a low complex algorithm to solve our
problem. Next, numerical results are presented in Section V
followed by conclusion in Section VI. For notation, we use
XH , Tr(X) and rank(X) to denote Hermitian transpose, trace,
and rank of matrix X, respectively. 1x×y , 0x×y denote the
matrix of ones, matrix of zeros whose dimensions are x× y,
respectively. diag(x) is the diagonal matrix constructed from
the elements of vector x.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and Transmission Strategy

Fig. 1. The Cloud-RAN architecture.

As illustrated in Fig. 1, the general architecture of Cloud-
RAN consists of three main components, namely (i) central-
ized processors or BBUs pool, (ii) the optical transport net-
work (i.e., fronthaul links), and (iii) RRH access units located
at remote sites. The processing center, which comprises a
large pool of BBUs, is the focal point of this architecture.
At the processing center, BBUs operate as virtual base sta-
tions to process baseband signals for users and optimize the
network resource allocation tasks for the system. The transport
network, connecting the central processing pool and the dis-
tributed RRHs, is usually deployed with optical fiber links. The
RRHs, functioning as the RF front-ends, then transmit the RF
signals to the users by converting the baseband signals received
from BBUs. By conducting most signal processing functions
in the cloud (i.e., by the BBU pool), the signal processing
function at the RRHs can be much simplified.

In this work, we consider the coordinated downlink trans-
mission in a Cloud-RAN network with K RRHs and M
users. Let K and U be the sets of RRHs and users in the
network, respectively. Suppose that RRH k is equipped with
Nk antennas (k ∈ K) and each user in U is equipped a single
antenna. In this system, we assume that each user can be
served by a group of assigned RRHs. Likewise, a RRH can
serve a multiple users in the network. When a RRH assigned to
serve a particular user, say RRH k and user i, RRH k receives
user i’s corresponding baseband signal from the cloud. RRH k
then converts and transmits this baseband signal to the RF band
with a pre-determined precoding vector. We assume that user
i receives symbol sequence xi ∈ C of unit power, which can
be transmitted by any RRH in K upon receiving the processed
baseband signals from the cloud. Denote vki ∈ CNk×1 as
the precoding vector at RRH k corresponding to the signal
transmitted to user i, and vi = [v1T

i , . . . ,vKTi ]T as the
precoding vector of all K RRHs for user i, i.e., vi ∈ CN×1

where N =
∑
k∈KNk. Then, the corresponding baseband

signal yi received at user i can be written as

yi = hHi vixi +
∑
j∈U/i

hHi vjxj + ηi, (1)

where hi = [h1T
i , . . . ,hKTi ]T , hki ∈ CNk×1 denotes the

channel coefficients between RRH k and user i, and ηi is
the AWGN at user i with the power spectral density σ2. The

achieved SINR at user i is then given by

Γi =

∣∣hHi vi
∣∣2∑

j∈U/i

∣∣hHi vj
∣∣2 + σ2

, (2)

where σ2 is the noise power.
Denote pki as the transmit power of the RF signal from RRH

k to user i, which can be expressed as

pki =
∥∥vki ∥∥2

, (3)

where ‖a‖ indicates the square-norm of vector a. Let pk =
[pk1 , . . . , p

k
M ]T be the transmit power vector at RRH k. Herein,

pki > 0 implies that RRH k is serving user i. The fronthaul
link from the cloud to RRH k is then taken for carrying the
baseband signal of user i. Therefore, the number of baseband
signals carried by the fronthaul link to RRH k is indicated
by the non-zero elements in the transmit power vector pk.
Mathematically, the number of baseband signals carried by
the fronthaul link connecting the cloud and RRH k can be
written as

Ck = ‖pk‖0, (4)

where ‖a‖0 indicates the `0-norm of vector a.

B. Problem Formulation

In this section, we present the formulations for the
Fronthaul-Constrained Sum-Rate Maximization (FC-SRM)
problem. Our design aims to determine the set of RRHs
serving each user and the corresponding precoding vectors
for all RRHs that maximize the system sum-rate under the
constraints on the fronthaul capacity and transmit power at
each RRH. In particular, we assume that the transport network
connecting the cloud and RRH k is capable of carrying at most
C̄k baseband signals for users. This can be transferred into the
following fronthaul capacity constraint:

Ck = ‖pk‖0 ≤ C̄k. (5)

Depending on the setting of C̄k, only a few elements in
pk might be positive. Effectively, the fronthaul capacity
constraints at the RRHs enforce a sparse structure on the
beamforming vector for each user.1 In addition, the transmit
power of RRH k is imposed by its maximum power budget
Pk, i.e.,∑

i∈U
pki = ‖pk‖1 =

∑
i∈U

∥∥vki ∥∥2 ≤ Pk, ∀k ∈ K, (6)

where ‖a‖1 indicates the `1-norm of vector a. The FCPM
problem then can be stated as

(PFC−SRM) min
{vi},{pk}

∑
i∈U

log (1 + Γi) (7)

subject to constraints (3), (6), and (5).

It is noted that problem (PFC−SRM) is non-convex and
thus non-trivial to solve. In particular, constraints (5), which
involve the `0-norm, constitute non-convex and discrete sets.

1Hereafter, the fronthaul capacity constraint is also referred to as the
sparsity constraint.
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Moreover, the objective function is non-convex due to the
presence of the mutual inter-user interference terms in the
denominator of each user’s SINR. In the following sections,
we sequentially tackle the non-convexity of the constraint
sets and the objective function in problem (PFC−SRM). We
subsequently propose an iterative algorithm to obtain at least
a locally optimal solution to the problem.

III. ADAPTIVE REWEIGHTED `1-NORM METHOD

This section is to address the non-convexity of the `0-norm
constraints in problem (PFC−SRM). In compressive sensing
literature, the approximation of the non-convex `0-norm into
a convex weighted `1-norm has been widely utilized [9], [10].
The main idea behind this method is the iterative update of the
weights to the elements in the `1-norm such that a weight is
enlarged if its corresponding element is getting closer to zero.
It has been shown that this method is well-suited for solv-
ing sparsity minimization problems. However, applying this
method to deal with the sparsity constraints as in our problem
requires more a rigorous design to guarantee the convergence
of the iterative `0-norm approximation procedure. Moreover,
the obtained solution must satisfy the sparsity constraints at
all time, which were not considered in [11]. In this work,
we utilize the concave duality method in [12] to update the
weights so that there is a calculated term to fill the gap between
the sparsity constraint and the relaxing weighted `1-norm term.
Consequently, the solution will satisfy the constraint and is
enhanced after each iteration. The convergence to the iterative
`0-norm approximation is also guaranteed.

Since the `0-norm can be considered as the sum of step
function of its elements, the concave duality method first
utilizes the relaxation of step function as

‖pk‖0 ≈
∑
i∈M

f (k,i)
apx (pki ), (8)

where the approximation function fapx(x) is defined as

fapx(x) = 1− e−Ψx, (Ψ� 1). (9)

By this approximation, the problem (PFC−SRM) can be rewrit-
ten as

(Prlx) max
{vi}

∑
i∈U

log (1 + Γi)

subject to constraints (3), (6),∑
i∈M

fapx(p
k
i ) ≤ C̄k, ∀k ∈ K. (10)

Because the function fapx(p
k
i ) is concave with respect to

pki , the new relaxed constraint (10) is still non-convex. To
circumvent this obstacle, we transform this constraint into a
linear form, based on the duality property of the conjugate of
a convex function [12]. In particular, the function f

(k,i)
apx (pki )

can be stated as

fapx(p
k
i ) , inf

zki

[
zki p

k
i − f∗apx(zki )

]
, (11)

where f∗apx(z) is the conjugate function of fapx(w). Vice versa,
f∗apx(z) can be described as

f∗apx(z) , inf
w

[zw − fapx(w)] (12)

=
z

Ψ

[
1− log

( z
Ψ

)]
− 1,

which is obtained by determining the optimal w for a given
z. Furthermore, after substituting (12) into (11), it is easy to
find that the optimization problem in the right hand side of
(11) achieves its minimum value at

ẑki = ∇fapx(w)|w=pki
= Ψe−Ψpki . (13)

As a consequence of equation (11), constraint (5) at RRH k
can be rewritten in a linear form∑

i∈U
ẑki p

k
i ≤ C̄k +

∑
i∈U

f∗apx(ẑ
k
i ), (14)

for a given
{
ẑki
}

. In summary, the problem (Prlx) can be
relaxed into

max
{vi}

∑
i∈U

log

1 +

∣∣hHi vi
∣∣2∑

j∈U/i
∣∣hHi vj

∣∣2 + σ2

 (15)

subject to
∑
i∈U

Tr
{
Akviv

H
i } ≤ Pk, ∀k ∈ K (16)∑

i∈U
Tr
{
Zki viv

H
i } ≤ Bk, ∀k ∈ K, (17)

where Ak = diag [0N1×1, ...,1Nk×1, ...,0NK×1], Zi = zkiA
k,

and Bk = C̄k +
∑
i∈U f

∗
apx(z

k
i ). Interestingly, problem (15)–

(17) is now the well-known multiuser sum-rate maximization
problem with multiple linear constraints. While problem (15)–
(17) is still non-convex, a solution approach to the problem
will be given in the following section.

IV. PROPOSED MMSE PRECODER

In this section, we tackle the nonconvex sum-rate maxi-
mization problem (Prlx) by relating it to a weighted sum-
MSE minimization problem as mentioned in the following
Proposition.

Proposition 1. The sum-rate maximization problem (15) is
equivalent to the following weighted sum-MSE minimization
problem

min
{vi,δi,ωi}

∑
i∈U

(
ωiE

[∣∣xi − δiyi∣∣2]− logωi

)
(18)

subject to constraints (16) and (17)

where ωi and δi denote the MSE weight and the receive
coefficient for user i, respectively.

Proof. The proof for this proposition is similar to that in [13]
for the case of a single sum-power constraint. We omit the
details for brevity.

It is noted that the optimization in problem (18) is taken
over the beamforming vector vi’s, the receive coefficients δi’s
as well as the weights ωi’s. While problem (18) is not jointly
convex, it is convex over each set of variables {vi}, {δi}, and
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{ωi}, i ∈ U . Thus, it is possible to solve problem (18) by
alternately optimizing over one set of variables while keeping
the other two fixed.

For given beamforming vectors {vi}’s, the receive coeffi-
cient δ?i to minimize the MSE at user i is the Weiner filter,
i.e., MMSE receiver

δ?i = arg min
δi

E
{
|xi − δiyi|2

}
=

(∑
j∈U

∣∣hHi vj
∣∣2 + σ2

)−1

vHi hi. (19)

Then, fixing the beamforming vectors vi’s and the receive
coefficients δi’s, the MSE weights ω?i ’s can be determined by
the unconstrained optimization

ω?i = arg min
ωi>0

ωiei − logωi

= e−1
i =

∑
j∈U

∣∣hHi vj
∣∣2 + σ2∑

j∈U/i
∣∣hHi vj

∣∣2 + σ2
, (20)

where ei = E
[∣∣xi − δiyi∣∣2]. Finally, for given receive co-

efficients δi’s and MSE weights ωi’s, the optimal transmit
beamforming vectors vi’s can be obtained by the following
optimization

min
v1,...,vM

∑
i∈U

ωiE

[∣∣∣∣xi − δi(∑
j∈U

hHi vjxj + ηi

)∣∣∣∣2
]

(21)

subject to
∑
i∈U

Tr
{
Akviv

H
i } ≤ Pk, ∀k ∈ K.∑

i∈U
Tr
{
Zki viv

H
i } ≤ Bk, ∀k ∈ K.

Since the above problem is a convex quadratic program, it
can be readily solved by the standard Lagrangian duality. The
Lagrangian of problem (21) is given by
L({vi} ,β,γ)

=
∑
i∈U

ωiE

[∣∣∣∣xi − δi(∑
j∈U

hHi vjxj + ηi

)∣∣∣∣2
]

+
∑
k∈K

βk

(∑
i∈U

Tr
{
Akviv

H
i } − Pk

)
+
∑
k∈K

γk

(∑
i∈U

Tr
{
Zki viv

H
i } −Bk

)

=
∑
i∈U

vHi

[∑
j∈U

ωj |δj |2hjhHj +
∑
k∈K

(
βkA

k + γkZ
k
i

) ]
vi

+
∑
i∈U

ωi
(
1− δ′ivHi hi − δihHi vi

)
−
∑
k∈K

(βkPk + γkBk) ,

where β = [β1, . . . , βK ]T and γ = [γ1, . . . , γK ]T are the
Lagrangian multipliers with respect to the constraints (16) and
(17), respectively. For given β and γ, the beamforming vectors
{v?i } are given in closed-form as

v?i = arg min
vi

L({vi} ,β,γ) (22)

=

[∑
j∈U

ωj |δj |2hjhHj +
∑
k∈K

(
βkA

k + γkZ
k
i

) ]−1

hiδ
′
iωi.

Algorithm 1 ITERATIVE SPARSE BEAMFORMING DESIGN
FOR SUM-RATE MAXIMIZATION

1: Initialize by setting v
(0)
i = θ1N×1 for all i ∈ U , where θ

(> 0) is small enough to satisfy the constraint (10), and
setting l = 0.

2: repeat
3: Update B(l)

k by calculating
{
z
k,(l)
i

}
as in (13) for all

(k, i).
4: Update

{
δ

(l)
i

}
as in (19).

5: Update
{
ω

(l)
i

}
as in (20).

6: Update
{
v

(l)
i

}
as in as in (22) in conjunction with the

sub-gradient update (24)-(25) until convergence.
7: Update l = l + 1.
8: until Convergence.

The dual function g(β,γ) is then defined as g(β,γ) =
inf{vi} L({vi} ,β,γ), and the dual problem can be stated as

max
β,γ

g(β,γ) (23)

subject to βk, γk ≥ 0,∀k ∈ K.

Proposition 2. The dual function g(β,γ) is a concave func-
tion and its sub-gradient at βk is

∑
i∈U Tr

{
Akviv

H
i } − Pk

and at γk is
∑
i∈U Tr

{
Zki viv

H
i }−Bk, where the beamforming

vectors {vi} is obtained from (22), accordingly to β and γ.

Proof. The dual function is a concave function by nature [14].
The choice of

∑
i∈U Tr

{
Akviv

H
i } − Pk as the sub-gradient

for βk is justified by the fact that βk is the Lagrangian mul-
tiplier associated with the constraint

∑
i∈U Tr

{
Akviv

H
i } ≤

Pk. Similarly,
∑
i∈U Tr

{
Zki viv

H
i } − Bk is the sub-gradient

for γk. The detailed proof for this proposition is omitted for
brevity.

Due to proposition 2, the dual variables can be updated as

β
(n+1)
k = β

(n)
k + rn

(∑
i∈U

Tr
{
Akviv

H
i } − Pk

)
, (24)

γ
(n+1)
k = γ

(n)
k + tn

(∑
i∈U

Tr
{
Zki viv

H
i } −Bk

)
, (25)

equation where
{
v

(n)
i

}
are the beamforming vectors at time-

n, rn and tn are suitable small step-sizes. If rn, tn
n→∞−→ 0,

the above sub-gradient method is guaranteed to converge to
the optimal solution of problem (23).

By iteratively updating {vi, δi, ωi}, we obtain the MMSE
beamforming the RRHs. Combined with the iterative approxi-
mation of the `0 norm by updating zki ’s, a sparse structure
on the beamformers is then enforced. We summarize the
steps in designing the sparse beamformers for Cloud-RAN
sum-rate maximization in Algorithm 1. The properties of the
converging solution in Algorithm 1 are stated in the following
Proposition.

Proposition 3. Algorithm 1 has the following properties
1) Algorithm 1 converges to a locally optimal solution.
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2) The solution achieved by Algorithm 1 at convergence
satisfies all constraints of problem (Prlx).

Proof. The proof is given in Appendix A.

V. NUMERICAL RESULTS

 
Radio Remote Head User

Fig. 2. Small simulation system model.

In this section, the effectiveness of our proposed design
is validated through numerous simulations of the system
model illustrated in Fig. 2. We consider a network with
three equidistant RRHs whose inter-RRH distance is set at
500 m. The number of antennas at each RRH is set at 4
(N1 = N2 = N3 = 4), unless stated otherwise. There are
M = 6 users located inside a circle with radius of 125 m
at the center of 3 RRHs. The channel gains are generated
by considering both Rayleigh fading and path loss which is
modelled as Lku = 36.8log10(dku) + 43.8 + 20log10( fc5 ) where
dku is the distance from user u to RRH k; fc = 2.5 GHz. The
noise power is set equal to σ2 = 10−13 W. The parameter Ψ
is set at 103.

Firstly, we examine the convergence of our proposed algo-
rithm and compare it with the algorithm proposed in [11]. In
particular, the evolution of the network sum-rate is obtained
after each iteration by running the two algorithms and plotted
in Fig. 3. In this simulation, we set C̄1 = C̄2 = C̄3 =
CRRH = 2 and P1 = P2 = P3 = Pmax = 10dB. It
can be observed that our proposed algorithm can converge
faster than the algorithm in [11]. Specifically, the sum-rate
achieved by running the proposed algorithm is saturated after
about 20 iterations, while it requires over 40 iterations for
the algorithm in [11] to converge. Moreover, the figure also
presents a noticeable improvement in the achievable sum-rate
by the our proposed algorithm over the one given in [11].

In Fig. 4, we illustrate the network sum-rate of all users
achieved by these two algorithms versus the limited transmit
power of each RRH (Pmax) for CRRH = 2 and CRRH = 4.
As observed from the figure, the network sum-rate is enhanced
with increasing maximum power budget of the RRHs. While
the figure shows a relatively similar performance between
the two algorithms at the low regime of transmit power, our
proposed algorithm does outperform that in [11] at the high
regime.
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Fig. 3. The evolution of the network sum-rate achieved by our proposed
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Fig. 5 presents the variations of the system sum-rate
achieved at all users versus the capacity of fronthaul link
from cloud to each RRHs (CRRH ). As expected, the network
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sum-rate can be improved if the transport network between
cloud and RRHs is provided with higher capacity fronthaul
link. However, in the high regime of fronthaul capacity,
the achievable transmission rate becomes saturated. This is
probably because the transmission over the air interface is
approaching its capacity limit. Thus, providing more capacity
to the fronthaul links is no longer needed in this case.

Fig. 6 demonstrates the variations of network sum-rates
versus the number of antennas equipped at each RRH. As
can be observed, the increase of number of equipped antennas
results in increasing the total rate of all users in the network.
This is because a larger number of antennas equipped at
RRHs gain more degree-of-freedom for the network; hence,
the interference can be managed better and higher rate can be
achieved. Once again, the proposed algorithm always outper-
forms the algorithm in [11]. These confirm the effectiveness of
the proposed framework in maximizing the network sum-rate.

VI. CONCLUSION

In this work, we have considered the problem of sum-rate
maximization in a Cloud-RAN network with constrained fron-
thaul link capacity. We have presented an efficient algorithm
to obtain the sparse beamformers at each RRH in Cloud-
RAN while maintaining the fronthaul link requirement and
the transmit power constraint at the RRH. Numerical results
with various network parameter settings have illustrated the
efficacy of our proposed algorithms in improving the Cloud-
RAN network sum-rate.

APPENDIX A
PROOF OF PROPOSITION 3

Proof of the first statement: Let Ωl be the out-come solution
of problem (15) in iteration l. We will prove that Ωl increases
over each iteration; hence, our proposed algorithm converges.
Denote Fl as the feasible set of {vi} satisfying the constraints
(16) and (17) corresponding to iteration l. It needs to be
noted that this feasible set depends on the value of

{
z
k,(l)
i

}
.

Because
{
z
k,(l+1)
i

}
is calculated as in (13) based on the value

of
{
v

(l)
i

}
, we must have{

v
(l)
i

}
⊂ Fl+1. (26)

Moreover, similar to the spirit as in [13], the alternating
minimization process in Step 4–6 of our proposed algorithm
results in a monotonic improvement of the objective function
of the problem (18). Then, due to the Proposition 1, we must
have

Ωl ≤ Ωl+1, ∀l > 0. (27)

Due to the monotonic convergence of the proposed algorithm,
the resultant solution must be a locally optimal solution.

Proof of the second statement: Denote F as the feasible set
of problems (Prlx). Because fapx(pki ) = inf

zki

[
zki p

k
i − f∗apx(zki )

]
,

then if ∑
i∈U

z
k,(l)
i pki ≤ C̄k +

∑
i∈U

f∗apx(z
k,(l)
i ), (28)

we always have
fapx(p

k
i ) ≤ C̄k, (29)

for any value of
{
z
k,(l)
u

}
. Therefore, we have Fl ⊆ F for

iteration l, which means the out-come solution of problem
(15) in any iteration l satisfies all constraints of problem
(Prlx). Hence, Algorithm 1 returns the solution that satisfies
all constraints of problem (Prlx).
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