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Abstract. For a finite-type surface S, we study a preferred basis for the commutative
algebra C[XSL3(C)(S)] of regular functions on the SL3(C)-character variety, introduced by
Sikora and Westbury. These basis elements come from the trace functions associated to
certain tri-valent graphs embedded in the surface S. We show that this basis can be natu-
rally indexed by positive integer coordinates, defined by Knutson-Tao rhombus inequalities.
These coordinates are related, by the geometric theory of Fock and Goncharov, to the trop-
ical points at infinity of the dual version of the character variety.

For a finitely generated group Γ and a suitable Lie group G, a primary object of study in
low-dimensional geometry and topology is the character variety

XG(Γ) = {ρ : Γ −→ G} // G
consisting of group homomorphisms ρ from Γ to G, considered up to conjugation. Here, the
quotient is taken in the algebraic geometric sense of Geometric Invariant Theory [MFK94].
Character varieties can be explored using a wide variety of mathematical skill sets. Some
examples include the Higgs bundle approach of Hitchin [Hit92], the dynamics approach of
Labourie [Lab06], and the representation theory approach of Fock and Goncharov [FG06].

We are interested in the case where the group G is the special linear group SLn(C).
Adopting the viewpoint of algebraic geometry, one can study the SLn(C)-character variety
XSLn(C)(Γ) by means of its commutative algebra of regular functions C[XSLn(C)(Γ)]. An
example of a regular function is the trace function Trγ : XSLn(C)(Γ) → C associated to
an element γ ∈ Γ, sending a representation ρ to the trace Tr(ρ(γ)) ∈ C of the matrix
ρ(γ) ∈ SLn(C). A theorem of Procesi [Pro76] says that the trace functions Trγ generate the
algebra of functions C[XSLn(C)(Γ)] as an algebra, and also identifies all of the relations.

Sikora [Sik01] provided a geometric description of Procesi’s result in the case where Γ is
the fundamental group π1(S) of a topological space S; see also the earlier work of Bullock
[Bul97] for the case of SL2(C). Sikora extended the notion of a trace function to include func-
tions TrW ∈ C[XSLn(C)(S)] on the character variety XSLn(C)(S) = XSLn(C)(π1(S)) that are
associated to homotopy classes of certain n-valent graphs W , called webs, in the space S. He
proved that the trace functions TrW span the algebra of functions C[XSLn(C)(S)] as a vector
space, and he also represented the relations pictorially in terms of the associated graphs.

In the current work, we restrict our attention to the case where the Lie group is SL3(C)
and where the space S is a punctured finite-type surface, namely the space obtained by
removing finitely many points from a closed surface S. In particular, the surface S has
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empty boundary. Sikora and Westbury [SW07] proved that the collection of trace functions
TrW associated to non-elliptic webs W , which are certain planar webs embedded in the
surface S, forms a linear basis for the algebra of functions C[XSL3(C)(S)].

An analogous result [HP93, Prz91] in the case of SL2(C) says that the collection of trace
functions Trγ associated to planar multi-curves γ embedded in the surface S forms a linear
basis for the algebra of functions C[XSL2(C)(S)]. Now, a classical combinatorial fact is that
if the punctured surface S is equipped with an ideal triangulation λ, then the the geometric
intersection numbers ι(γ,E) of a curve γ with the edges E of λ furnish an explicit system
of positive integer coordinates on the collection of planar multi-curves γ. These coordinates
can be characterized completely by finitely many triangle inequalities and parity conditions.

Our main result generalizes these SL2-properties to the case n = 3.

Theorem 1. For a punctured surface S with empty boundary, equipped with an ideal triangu-
lation λ, the Sikora-Westbury SL3-web basis for the algebra of functions C[XSL3(C)(S)] admits
an explicit system of positive integer coordinates, which can be characterized completely by
finitely many Knutson-Tao rhombus inequalities [KT99] and modulo 3 congruence conditions.

In a companion paper [DSa] (see also [DSb]), we address the dependence on triangulations.

Theorem 2. The coordinates of Theorem 1 are natural with respect to the action of the
mapping class group of the surface S. More precisely, if a different ideal triangulation
λ′ is chosen, then the induced coordinate transformation takes the form of a tropicalized
A-coordinate cluster transformation, in the language of Fock and Goncharov [FG06, FG07].

This research was inspired by papers of Xie [Xie13], Kuperberg [Kup96], and Goncharov
and Shen [GS15].

At its heart, Theorem 1 is purely topological, merely describing how to assign coordinates
to pictures. We have motivated these web pictures W by their association with trace func-
tions TrW . So, it is desirable to tie directly the coordinates to the trace functions. Such
a relationship is well-known for SL2(C) (see, for instance, [Foc97]). In that case, the trace

functions Trγ for curves γ can be expressed as Laurent polynomials Trγ = Trγ(X
1/2
i ) in

N2-many variables X
1/2
i , where N2 is the number of coordinates. Moreover, the coordinates

of a curve γ can be read off as the exponents of the highest term of the trace polynomial

Trγ(X
1/2
i ). This is a manifestation of the tropical geometric nature of these coordinates.

There should be a similar story for SL3(C). Using Fock and Goncharov’s theory, one can

express the trace functions TrW for webs W as Laurent polynomials TrW = TrW (X
1/3
i ) in

N3-many variables X
1/3
i , where N3 is the number of coordinates appearing in Theorem 1.

Conjecturally, these coordinates are precisely the exponents of the highest term of the trace

polynomial TrW (X
1/3
i ). This idea was Xie’s [Xie13] point of departure, and our coordinates

are constructed following his lead.
Kuperberg’s landmark paper [Kup96] motivated Sikora and Westbury’s work, and laid

the topological foundation for ours as well. He proved that a basis for the vector space of
SL3(C)-invariant tensors, which lies inside a tensor product of finite-dimensional irreducible
representations of SL3(C), can be indexed by a collection of pictures drawn on an ideal poly-
gon Dk (equivalently, one can consider sl3(C)-invariant tensors for the Lie algebra sl3(C)).
Along the way, he showed how the pictures for the ideal polygon Dk can be obtained by glu-
ing together the more basic pictures for an ideal triangle D3. We apply Kuperberg’s “local”
pictorial ideas in order to analyze “global” pictures that are drawn on a triangulated surface
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(S, λ). We are also interested in how our work relates to other methods for studying webs,
such as the affine building approach of [FKK13] and the cluster algebra approach of [FP16].

Motivated in part by the Fock-Goncharov Duality Conjecture [FG06], Goncharov and
Shen [GS15] developed a general method by which bases of algebras of functions on moduli
spaces can be indexed by “positive integral tropical points”, namely the preimage points
mapping to Z>0 under a “tropicalized potential function” (for another approach to the Fock-
Goncharov Duality Conjecture, see [GHKK18, GS18]; and for a quantum SL2-version, see
[AK17]). These bases are defined abstractly, employing the geometric Satake correspondence.
Goncharov and Shen showed that, for an ideal triangle D3 equipped with a general linear
symmetry group, the positive integral tropical points correspond to solutions of the Knutson-
Tao rhombus inequalities. In Theorem 1, we also make use of these inequalities in order to
assign positive integer coordinates to pictures, in the rank 2 setting. We do not know the
extent to which our construction agrees with that of [GS15]. Preliminary computations
mentioned in [GHKK18] suggest that such a connection is likely, however highly non-trivial.
For another geometric application of the Goncharov-Shen potential function, see [HS19].

Frohman and Sikora [FS20] also recently constructed integer coordinates for a slightly more
general version of the SL3-web basis appearing in Theorem 1. They implement the same
topological strategy as we do, however their coordinates are different from ours. They do
not characterize the values taken by their coordinates, and they do not address the question
of naturality under changing the triangulation. Their proof is algebraic in nature, as it uses
the Sikora-Westbury theorem saying that the non-elliptic webs are linearly independent,
which ultimately relies on the Diamond Lemma from non-commutative algebra. On the
other hand, we give a purely topological-combinatorial proof of Theorem 1, which does not
require using this linear independence. A potential application of our work is to give an
alternative geometric proof of this Sikora-Westbury theorem, by using Theorem 1 together
with the SL3-quantum trace map [Dou, Dou20]; compare [BW11, §8] for the SL2-case.
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1. Global webs

We introduce the primary topological objects of study.

1.1. Topological setting. Let S be an oriented punctured surface with empty boundary
∂S = ∅, obtained by removing finitely many points P , called punctures, from a closed
surface S. We require that there is at least one puncture, and that the Euler characteristic
χ(S) of the punctured surface S is strictly less than zero, χ(S) < 0. These topological
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conditions guarantee the existence of an ideal triangulation λ of the punctured surface S,
namely a triangulation λ of the closed surface S whose vertex set is equal to the set of
punctures P . See Figure 1 for some examples of ideal triangulations.

We always assume that our ideal triangulations λ do not contain any self-folded triangles.
This means that all of the triangles in λ have three distinct edges. Such a λ always exists.

(a) Four times punctured sphere
(b) Once punctured torus

Figure 1. Ideal triangulations

1.2. Webs.

Definition 3. A simple global web, or just global web or web, W = {wi} on the surface S
is a finite collection of connected closed oriented tri-valent graphs or curves wi embedded
in S, such that the images of the components wi are mutually disjoint, and such that each
vertex of wi is either a source or a sink, namely the orientations either go all in or all out,
respectively. Here, closed means that the components wi have empty boundary.

For an example, in Figure 2 we show a web on the once punctured torus, which has four
components consisting of two tri-valent graphs and two curves.

Figure 2. Web

Definition 4. Two webs W and W ′ on the surface S are parallel-equivalent if W can be
taken to W ′, preserving orientation, by a sequence of moves of the following two types:

(1) an isotopy of the web, namely a smoothly varying family of webs;
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(2) a global parallel-move, exchanging two closed curves that together form the boundary
of an embedded annulus A in the surface S; see Figure 3.

In this case, we say that the webs W and W ′ belong to the same parallel-equivalence class.

Intuitively, we think of parallel-equivalent as meaning homotopic on the surface.

Figure 3. Global parallel-move

1.3. Faces.

Definition 5. A face D of a web W on the surface S is a contractible component of
the complement W c ⊆ S of the web. A n-face Dn is a face with n-sides, counted with
multiplicity. An alternative name for a 0-face D0, 2-face D2, 4-face D4, and 6-face D6 is a
disk-, bigon-, square-, and hexagon-face, respectively.

For an example, the web shown in Figure 2 above has one disk-face, one bigon-face, two
square-faces, and two hexagon-faces; these faces are shaded in the figure. Notice that one of
the hexagon-faces consists of five edges of the web, one edge being counted twice.

By orientation considerations, faces must have an even number of sides.
Bigon- and square-faces always consist of exactly two and four edges, respectively, of W .
In figures, we often omit the web orientations, as in Figure 4.

Figure 4. Prohibited square-face

1.4. Non-elliptic webs.

Definition 6. A web W on the surface S is called non-elliptic if it has no disk-, bigon-, or
square-faces. Otherwise, W is called elliptic.

Notice that if W is a non-elliptic web, and if W ′ is another web that is parallel-equivalent
to W , then W ′ is also non-elliptic. We denote the set of parallel-equivalence classes of
non-elliptic webs by WS.
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2. Local webs

As a technical device, we study webs-with-boundary in the disk.

2.1. Ideal polygons. For a non-negative integer k > 0, an ideal k-polygon Dk is the surface
D0−P obtained by removing k punctures P ⊆ ∂D0 from the boundary of the closed disk D0.

Observe that, when k > 0, the boundary ∂Dk of the ideal polygon consists of k ideal arcs.

2.2. Local webs.

Definition 7. A simple local web, or just local web, W = {wi} in an ideal polygon Dk

(k > 0) is a finite collection of connected compact oriented tri-valent graphs or curves wi
embedded in Dk, such that the images of the components wi are mutually disjoint, and such
that each vertex of wi is either a source or sink. We require that ∂W = W ∩ ∂Dk and that
each point v ∈ ∂W is considered as a mono-valent vertex.

For some examples of local webs, see Figure 5. There, k = 4.

(a) Connected (b) Not connected

Figure 5. Local webs

2.3. External faces.

Definition 8. A face D of a local web W in an ideal polygon Dk (k > 0) is a contractible
component of the complement W c ⊆ Dk of W that is puncture-free, meaning that D does
not limit to any punctures p ∈ P . A n-face Dn is a face with n-sides. Here, a maximal
segment α ⊆ (∂Dk)∩Dn of the boundary ∂Dk contained in the face Dn is counted as a side,
called a boundary side. An external face Dext (resp. internal face Dint) of the local web W
is a face having at least one (resp. no) boundary side.

In contrast to internal faces, external faces can have an odd number of sides. An alternative
name for an external 2-face Dext

2 , 3-face Dext
3 , 4-face Dext

4 with one boundary side, and 5-
face Dext

5 with one boundary side is a cap-, fork-, H-, and half-hexagon-face, respectively; see
Figure 6. Also, as for global webs (see Definition 5), an alternative name for an internal 0-face
Dint

0 , 2-face Dint
2 , 4-face Dint

4 , and 6-face Dint
2 is a disk-, bigon-, square-, and hexagon-face.

For example, the connected local web in Figure 5a has one fork-face, two H-faces, one half-
hexagon-face, one external 6-face, one bigon-face, one square-face, and one internal 8-face.
Also, the disconnected local web in Figure 5b has one cap-face, one fork-face, one H-face, one
half-hexagon-face, one external 6-face, two disk-faces, one bigon-face, and one square-face.
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Figure 6. Cap-, fork-, H-, external 4-, and half-hexagon-face

2.4. Combinatorial identity.

Proposition 9 (compare [Kup96, §6.1] ). Let W be a connected local web in the closed disk
D0 with non-empty boundary ∂W 6= ∅. Then,

2π =
∑

internal faces Dint
n

(
2π − π

3
n
)

+
∑

external faces Dext
n

(
π − π

3
(n− 2)

)
.

Proof. Since W is connected, its complement W c ⊆ D0 contains at most one annulus, which
necessarily contains the boundary ∂D0. Such an annulus does not exist, since W has non-
empty boundary ∂W 6= ∅. Thus, every component D of W c is contractible, and of course
puncture-free, so D is a face.

It follows that the closed disk D0 can be “tiled” by the dual graph of the local web W .
More precisely, the vertices of the dual graph are the faces of W , and the complement of
the dual graph consists of triangles. In Figure 7, we demonstrate this tiling procedure for
the connected local web with non-empty boundary W that we saw in Figure 5a above (after
forgetting the punctures).

This tiling gives rise to a flat Riemannian metric with conical singularities and piecewise-
geodesic boundary on the closed disk D0, by requiring that each triangle in the tiling is
Euclidean equilateral. The result follows by applying the Gauss-Bonnet theorem to this
singular flat surface. �

Figure 7. Tiling the closed disk with the dual graph of a local web

2.5. Non-ellipticity.

Definition 10. As for global webs, a local web W in an ideal polygon Dk is non-elliptic if
W has no disk-, bigon-, or square-faces. Otherwise, W is called elliptic; see Figure 8.
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(a) Three fork-faces (b) Four fork- and H-faces (c) Six H-faces

Figure 8. Non-elliptic local webs in the closed disk

Lemma 11. Let W be a non-elliptic local web in the closed disk D0 such that W is connected,
has non-empty boundary ∂W 6= ∅, and has at least one tri-valent vertex. Then W has at
least three fork- and/or H-faces.

Proof. We apply the formula of Proposition 9. For each internal face Dint
n of W , the internal

angle 2π − (π/3)n 6 0 is non-positive, since n > 6 by non-ellipticity. For each external face
Dext
n , necessarily n > 2, and the external angle π − (π/3)(n − 2) is 6 0 is non-positive if

and only if n > 5. By hypothesis, W has no cap-faces (else W would be an arc). So, those
external faces Dext

n with a positive contribution satisfy n = 3, 4. The result follows since
fork- and H-faces contribute 2π/3 and π/3, respectively, in the formula. �

Lemma 12. Non-elliptic local webs W in an ideal polygon Dk (k > 0) having empty boundary
∂W = ∅ do not exist.

Proof. Suppose otherwise. We may assume W is connected. Since W is non-elliptic, W is
not a loop (this uses that Dk is contractible). Then, the “rim” of W forms the boundary of
a smaller closed disk D′0 ⊆ Dk containing a sub-web W ′ ⊆ W that has non-empty boundary
∂W ′ 6= ∅. By non-ellipticity, W ′ does not have a cap-face, so W ′ has a tri-valent vertex.
Applying Lemma 11 to connected components of W ′, an analysis of inner-most components
leads to the fact that W ′ has at least one fork- or H-face. By non-ellipticity, W ′ does not have
an H-face, and it does not have a fork-face by orientation considerations applied to W . �

Lemma 12 plus a small argument allows us to relax the hypotheses of Lemma 11 as follows.

Proposition 13. Let W be a non-elliptic local web in the closed disk D0 such that W is
connected and has at least one tri-valent vertex. Then W has at least three fork- and/or
H-faces. If, in addition, W is assumed not to have any cap-faces, then the connectedness
hypothesis above is superfluous. �

2.6. Essential and rung-less local webs.

Definition 14. A local web W in an ideal polygon Dk (k > 0) is essential if the following
two conditions are satisfied:

(1) the local web W is non-elliptic;
(2) the local web W is taut, namely, for any compact arc α embedded in Dk whose

boundary ∂α lies in a single component E of the boundary ∂Dk, the number of
intersection points ι(W,E) of W with E does not exceed the number of intersection
points ι(W,α) of W with α, that is ι(W,E) 6 ι(W,α); see Figures 9 and 10.

Note that essential local webs cannot have any cap- or fork-faces, but can have H-faces.
Later, we will need the operation of adding or removing an H-face, depicted in Figure 11.
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Figure 9. Tautness condition for an essential local web

(a) Essential (b) Non-elliptic, but not essential

Figure 10. More non-elliptic webs

Figure 11. Adding or removing an H-face

Definition 15. A local web W in an ideal polygon Dk (k > 0) is rung-less if it does have
any H-faces; see Figure 12.

Remark 16.

(1) A consequence of Proposition 13, which we will not use, is that essential local webs
in the closed disk D0 or ideal monoangle D1 do not exist.

(2) Kuperberg [Kup96, §4, 6.1] uses the terminology “(core of a) non-convex non-elliptic
web in the k-clasped web space” for what we call a “(rung-less) essential local web
in the ideal k-polygon”.

2.7. Ladder-webs in ideal biangles. Another name for an ideal 2-polygon D2 is an ideal
biangle, or just biangle, denoted by B. The boundary ∂B consists of two ideal arcs E ′ and
E ′′, called the boundary edges of the biangle. We want to characterize essential local webs
W in the biangle B; compare (1) in Remark 16.
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(a) Essential and rung-less (b) Essential, but not rung-less

Figure 12. More essential webs

Definition 17. For any surface S′, possibly with boundary, an immersed multi-curve, or
just multi-curve, Γ = {γi} on S′ is a finite collection of connected compact oriented curves
γi embedded in S′, such that ∂γi = γi ∩ ∂S′. Note that different γi and γj might intersect
in S′. The component γi is a loop (resp. arc) if it has empty (resp. non-empty) boundary.

Definition 18. A symmetric strand-set pair S = (S ′, S ′′) for the biangle B is a pair of
finite sequences S = (S ′, S ′′) = {(s′i), (s′′j )}i,j=1,...,n of disjoint oriented strands located on the
boundary ∂B = E ′ ∪ E ′′, such that the strands s′i (resp. s′′j ) lie on the boundary edge E ′

(resp. E ′′), and such that the number of in-strands (resp. out-strands) on E ′ is equal to the
number of out-strands (resp. in-strands) on E ′′; see the left-most picture in Figure 13.

The local picture 〈W (S)〉 in the biangle B associated to a symmetric strand-set pair
S = (S ′, S ′′) is the unique (up to ambient isotopy of B) multi-curve obtained by connecting
the strands on E ′ to the strands on E ′′ in an “order preserving” and “minimally intersecting”
way, as illustrated in the middle picture in Figure 13. Notice that the multi-curve 〈W (S)〉
possesses only arc components.

A pair of arcs γ1 and γ2 in the local picture 〈W (S)〉 are oppositely-oriented with respect
to the biangle B if γ1 and γ2 go into (resp. out of) and out of (resp. into) E ′, respectively.
Observe that γ1 and γ2 intersect if and only if (1) they are oppositely-oriented, and (2) they
intersect exactly once. Let P(S) ⊆ B denote the set of intersection points p of pairs of
oppositely-oriented arcs in the local picture 〈W (S)〉.

The ladder-web W (S) in the biangle B obtained from a symmetric strand-set pair S =
(S ′, S ′′) is the unique (up to ambient isotopy of B) local web obtained by resolving each
intersection point p ∈ P(S) into two vertices connected by a “horizontal” edge, called a
rung ; see Figures 13 and 14.

The following statement is implicit in [Kup96, Lemma 6.7] and also appears in [FS20, §9].

Figure 13. Construction of a ladder-web
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Figure 14. Replacing a local crossing with an H

Proposition 19. The ladder-web W (S) is essential. Conversely, given an essential local
web W in the biangle B, there exists a unique symmetric strand-set pair S = (S ′, S ′′) such
that W = W (S). Thus, W is a ladder-web.

Proof. For the first statement, the non-ellipticity of W (S) follows because two oppositely-
oriented curves in the local picture 〈W (S)〉 do not cross more than once (if there were a
square-face, a pair of curves would cross twice), and the tautness of W (S) is immediate.

Conversely, let W be an essential local web in B. The collection of ends of W located on
the boundary edges E ′ ∪ E ′′ determines a strand-set pair S = (S ′, S ′′). We show that S is
symmetric and W = W (S). In particular, S is uniquely determined.

If W has a tri-valent vertex, let W denote the induced local web in the closed disk D0

underlying B, obtained by filling in the two punctures of B. Applying Proposition 13 to W
guarantees that W (possibly minus some arc components) has at least three fork- and/or
H-faces. At most two of these faces can “straddle” the two punctures of B, so we gather W
has one fork- or H-face Dext lying on E ′ or E ′′. Since W is taut, Dext is an H-face.

We can then remove this H-face from B (recall Figure 11), obtaining a local web W1

that is essential and has strictly fewer tri-valent vertices than W . Repeating this process, we
obtain a sequence of essential local webs W = W0,W1, . . . ,Wn such that Wn has no tri-valent
vertices and is obtained from W by removing finitely many H-faces. By non-ellipticity, Wn

consists of a collection of arcs γ
(n)
i (as opposed to loops), and since Wn is taut, each arc γ

(n)
i

connects to both boundary edges E ′ and E ′′ of the biangle B.
By replacing each removed H-face with a local crossing (Figure 14), we obtain a multi-

curve Γ in B consisting of arcs γ
(0)
i , each of which intersects both edges E ′ and E ′′, and such

that only oppositely-oriented arcs γ
(0)
i intersect; see Figure 15. In particular, the strand-set

pair S = (S ′, S ′′) is symmetric.
We claim Γ is the local picture 〈W (S)〉. Since only oppositely-oriented arcs intersect, Γ is

“order preserving”. It remains to show Γ is “minimally intersecting”, namely that no arcs
intersect more than once. Suppose they did. Then, because only oppositely-oriented arcs
intersect, there would be an embedded bigon B in the complement Γc ⊆ B; see the right side
of Figure 16. Such an embedded bigon B corresponds in the local web W to a square-face,
violating the non-ellipticity of W . We gather Γ = 〈W (S)〉, as claimed.

By definition of the multi-curve Γ and the local web W (S), it follows that W = W (S). �

For technical reasons, in §7 we will need the following concept.

Definition 20. The local picture 〈WB〉 associated to an essential local web WB in the bian-
gle B is the local picture 〈W (S)〉 (see Definition 18) corresponding to the unique symmetric
strand-set pair S = (S ′, S ′′) such that WB = W (S); see Figure 15.
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Figure 15. Essential local web WB in the biangle, and its corresponding
local picture 〈WB〉

Figure 16. Prohibited ladder-webs and local pictures

2.8. Honeycomb-webs in ideal triangles. Another name for an ideal 3-polygon D3 is
an ideal triangle, or just triangle, denoted by T. We want to characterize rung-less essential
local webs W in the triangle T.

Definition 21. For a positive integer n > 0, the n-out-honeycomb-web Hout
n (resp. n-in-

honeycomb-web H in
n ) in the triangle T is the local web Hn dual to the n-triangulation of T,

where the orientation of Hn is such that all the arrows go out of (resp. into) the triangle T.

For example, in Figure 17 we show the 5-out-honeycomb-web Hout
5 .

The following statement is implicit in [Kup96, Lemma 6.8] and also appears in [FS20, §10].

Proposition 22. A honeycomb-web Hn in the triangle T is rung-less and essential. Con-
versely, given a connected rung-less essential local web W in T having at least one tri-valent
vertex, there exists a unique honeycomb-web Hn = Hout

n or = H in
n such that W = Hn. Con-

sequently, a (possibly disconnected) rung-less essential local web W in T consists of a unique
(possibly empty) honeycomb Hn together with a collection of disjoint oriented arcs located on
the corners of T; see the left hand side of Figure 18.

Proof. The first statement is immediate.
Step 1. Let W be as in the second statement. Just like the proof of Proposition 19,

applying Proposition 13 to the induced web W in the underlying closed disk D0 guarantees
that W has at least three fork- and/or H-faces, at most three of which can straddle the three
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Figure 17. Honeycomb-web

Figure 18. Rung-less essential local web WT in the triangle, and its corre-
sponding local picture 〈WT〉 in the holed triangle

punctures of T. Since W is taut and rung-less, W has no fork- or H-faces. Thus, W has
exactly three fork- and/or H-faces, each of which straddles a puncture. Since these three
faces are the only ones with a positive contribution in the formula of Proposition 9, they
must be fork-faces. Moreover, since the total contribution of these three fork-faces is 2π,
every other face has exactly zero contribution. We gather that each interior face of W is a
hexagon-face and each external face of W is a half-hexagon-face.

Step 2. To prove that W is a honeycomb-web Hn, we argue by induction on n, showing
that the triangle T can be “tiled” by W face-by-face, starting from a corner of T.

(2.a) Assume inductively that some number of half-hexagon-faces have been laid down as
part of the bottom layer of faces sitting on the bottom edge E, illustrated in Figure 19.

The strand labeled s does one of three things: (1) it ends on the right edge E ′ of the
triangle T, thereby creating a fork straddling the right-most puncture and completing the
bottom layer of faces; (2) it ends at a vertex disjoint from the vertices previously laid, hence
the strand s is part of the boundary of the next half-hexagon-face; (3) it ends at one of the
vertices previously laid.

In case (1), we continue to the next step of the induction, which deals with laying down
the middle layers. In case (2), we repeat the current step. Lastly, we argue that case (3)
cannot occur. Indeed, suppose it did. The strand s is part of the boundary of the next
half-hexagon-face Dext

5 . But, as can be seen from the figure, the external face Dext
5 has > 6

sides, which is a contradiction.
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Figure 19. Laying down a honeycomb: 1 of 2

(2.b) Assume inductively that the bottom layer and some number of middle layers have
been laid down, and moreover that some number of faces have been laid down as part of the
current layer, illustrated in Figure 20. Consider the next face D shown in the figure.

Figure 20. Laying down a honeycomb: 2 of 2

The face D is either external or internal. If it is internal, then D is a hexagon-face. In
this case, the strands s and s′ end at the fifth and sixth vertices of the hexagon-face, and
we repeat the current step. Otherwise, D is external, so it is a half-hexagon-face, D = Dext

5 .
However, we see from the figure that in this case Dext

5 has > 6 sides, which is a contradiction.
To finish the induction, we repeat this step until the strand s′ does not exist, in which case

the strand s is part of the boundary of a half-hexagon-face lying on the boundary edge E ′.
Step 3. The last statement of the proposition follows since each honeycomb-web Hn

attaches to all three boundary edges of the triangle T. �

Later, in order to assign coordinates to webs, we will need to consider rung-less essential
local webs WT in a triangle T up to a certain equivalence relation. Say that a local parallel-
move applied to WT is a move swapping two arcs on the same corner of T; see Figure 21.

Definition 23. Let WT denote the collection of rung-less essential local webs in the trian-
gle T. We say that two local webs WT and W ′

T in WT are equivalent up to corner-ambiguity
if they are related by local parallel-moves. The corner-ambiguity equivalence class of a local
web WT ∈WT is denoted by [WT], and the set of corner-ambiguity classes is denoted [WT].

For technical reasons, in §7 we will need the following concept.
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Definition 24. Given a triangle T, a holed triangle T0 is the triangle minus an open disk
T0 = T− Int(D0); see the right hand side of Figure 18 above. Let WT be a rung-less essential
local web in T, which by Proposition 22 consists of a honeycomb-web Hn together with a
collection of disjoint oriented corner arcs {γi}. The local picture 〈WT〉 in T associated to WT

is the multi-curve (Definition 17) in the holed triangle T0 consisting of the corner arcs γi
together with 3n oriented arcs {γ′j} disjoint from each other and from the γi, and going either
all out of or all into the boundary ∂D0 of the removed disk, such that for each boundary
edge E of the triangle T there are n arcs γ′j ending on E; see again Figure 18.

Figure 21. Local parallel-move

3. Good position of a global web

Using the technical results about local webs from §2, we continue our study of the topology
of global webs W on the surface S. For the remainder of this article, we assume S is equipped
with an ideal triangulation λ; see §1.1.

3.1. Generic isotopies.

Definition 25. A web W on S is generic with respect to λ if none of its vertices intersect
the edges E of λ, and if in addition W intersects λ transversally.

Two generic webs W and W ′ are generically isotopic if they are isotopic through generic
webs; see Definition 4.

Whenever there is an ideal triangulation λ present, we always assume that “web” means
“generic web”. However, we distinguish between isotopies and generic isotopies.

3.2. Minimal position. Recall the notion of two parallel-equivalent webs; see Definition 4.

Definition 26. Given a web W on the surface S and given an edge E of the ideal triangu-
lation λ, the local geometric intersection number of the web W with the edge E is

I(W,E) = min
W ′

(ι(W ′, E)) ∈ Z>0 (W ′ is parallel-equivalent to W ) ,

where ι(W ′, E) is the number of intersection points of W ′ with E.
The web W is in minimal position with respect to λ if

ι(W,E) = I(W,E) ∈ Z>0 (for all edges E of λ) .

Let W ′ be a web, let T be a triangle in the ideal triangulation λ, and let W ′
T = W ′ ∩T be

the restriction of W ′ to T. Suppose that the local web W ′
T is not taut; see Defintion 14. Then

there is an edge E of λ and a compact arc α ending on E such that ι(W ′, E) > ι(W ′, α); see
Figure 22. We can then isotope the part of W ′ that is inside the bigon B, which is bounded
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by α and the segment E of E delimited by ∂α, into the adjacent triangle, resulting in a new
web W . This is called a tightening-move. Similarly, if the restriction W ′

T has an H-face, then
we may apply an H-move to push the H into the adjacent triangle; see again Figure 22.

Note that tightening- and H-moves can be achieved with an isotopy of the web, but not a
generic isotopy. Also, by definition, in order to apply an H-move, we assume that the shaded
region shown at the bottom of Figure 22 is empty, namely it does not intersect the web.

Figure 22. Tightening- and H-moves

We borrow the following result from [FS20, §7-8] and give essentially the same proof.

Proposition 27. If W ′ is a non-elliptic web on the surface S, then there exists a non-elliptic
web W that is parallel-equivalent to W ′ and that is in minimal position with respect to the
ideal triangulation λ; see Definition 6.

Moreover, given any two parallel-equivalent non-elliptic webs W and W ′ in minimal po-
sition, then W can be taken to W ′ by a sequence of H-moves, global parallel-moves, and
generic isotopies; see Definition 4.

Proof. We describe an algorithm that puts the web W ′ into minimal position W . If a
tightening-move can be applied, do so. Otherwise, stop. Since tightening-moves strictly
decrease the quantity ∑

E edge of λ

ι(W ′, E) ∈ Z>0,

the algorithm stops. We claim that the resulting non-elliptic web W is in minimal position.
Let W be as above. Let E be an edge of λ. By definition of the local geometric intersection

number I(W,E) there exists a non-elliptic web, which by abuse of notation we also call W ′,
parallel-equivalent to W such that ι(W ′, E) = I(W,E).

By applying global parallel-moves to W ′, we may assume that W and W ′ are isotopic,
by an ambient isotopy ϕt of the surface S such that ϕ0 is the identity and ϕ1(W ) = W ′.
We may also assume that the isotopy is fixed near the punctures and satisfies the property
that E and ϕ−11 (E) intersect finitely many times. A classical theorem in topology (see, for
instance, [Eps66]) guarantees the existence of an embedded bigon B bounded by a segment
E of E and a segment α of ϕ−11 (E); see Figure 23. Note that B ∩W may be non-empty.
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Figure 23. Relating W and W ′ by H-moves and generic isotopies

By removing the two intersection points E ∩ α from the bigon B, we obtain a biangle B.
The minimality properties of W and W ′ imply that the local web restriction WB is taut.
It is also non-elliptic since, essentially by hypothesis, W is non-elliptic. So WB is essential;
Definition 14. By Proposition 19, WB is a ladder-web.

Thus, by performing a finite number of H-moves to (retroactively) adjust W and W ′,
we may assume that WB consists of a finite number of arcs stretching from E to α; see
Figure 23. By further adjusting W and W ′ by generic isotopies, the bigon B can be removed
completely. Note that this process of adjusting W and W ′ by H-moves and generic isotopies
preserves the number of intersection points of W and W ′ with λ, respectively.

By repeating the above step finitely many times in order to remove all of the bigons B, we
may assume that the symmetry ϕ1 taking W to W ′ restricts to the identity mapping on the
edge E. Hence, ι(W,E) = ι(W ′, E) = I(W,E). Since the edge E was arbitrary, we are done.

The second statement of the proposition is achieved by applying the above argument to
each edge Ei of λ, one at a time. The key observation is that if the symmetry ϕ1 fixes
pointwise the edges E1, E2, . . . , Ek−1, then a bigon B formed between Ek and ϕ−11 (Ek) does
not intersect E1 ∪ E2 ∪ · · · ∪ Ek−1.

We gather that we may assume the symmetry ϕ1 sending W to W ′ restricts to the identity
mapping on a neighborhood of λ, and also maps T to itself for each triangle T of λ. To
finish, W can be brought to W ′ through a generic isotopy fixing pointwise λ (for instance,
by Smale’s theorem). As a remark, note that throughout this proof we never had to consider
the arbitrary behavior of the ambient isotopy ϕt between 0 < t < 1. �

3.3. Split ideal triangulations. From the ideal triangulation λ, we may form the split

ideal triangulation λ̂, uniquely defined up to ambient isotopy of the surface S, by doubling
every edge E of λ. In other words, we “fatten” each edge E into a biangle B; see Figure 24.

The notions of generic web and generic isotopy for webs with respect to the split ideal

triangulation λ̂ are the same as those for webs with respect to the ideal triangulation λ. We

always assume that webs are generic with respect to λ̂.
To avoid cumbersome notation, we identify the triangles T of the ideal triangulation λ to

the triangles T of the split ideal triangulation λ̂.

Remark 28. For a related usage of split ideal triangulations, in the SL2-case, see [BW11].
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3.4. Good position.

Definition 29. A web W on S is in good position with respect to the split ideal triangulation

λ̂ if the restriction WB = W ∩B (resp. WT = W ∩T) of W to each biangle B (resp. triangle

T) of λ̂ is an essential (resp. rung-less essential) local web; see Figure 25.

Figure 24. Split ideal triangulation

For a web W in good position, each restriction WB to a biangle B of λ̂ is a ladder-web; see
Definition 18, Proposition 19, and Figures 13 and 15. Also, each restriction WT to a triangle

T of λ̂ is a (possibly empty) honeycomb-web Hn together with a collection of disjoint oriented
corner arcs; see Definition 21, Proposition 22, and Figures 17 and 18.

Figure 25. (Part of) a web in good position

If W is a web in good position, then a modified H-move carries an H-face in a biangle B to
an H-face in an adjacent biangle B′, thereby replacing W with a new web W ′; see Figure 26.
If, in addition, W is non-elliptic, then W ′ is also in good position. The non-elliptic condition
for W is required to ensure that the new local web restriction W ′

B′ is non-elliptic.
Notice that the effect in the intermediate triangle T of a modified H-move is to swap two

“parallel” oppositely-oriented corner arcs; see again Figure 26.
Once more, the following result is implicit in [Kup96, Lemma 6.5 and the proof of Theorem

6.2, pp. 139-140] (in the setting of an ideal k-polygon Dk) and also appears in [FS20, §11].

Proposition 30. If W ′ is a non-elliptic web on the surface S, then there exists a non-elliptic
web W that is parallel-equivalent to W ′ and that is in good position with respect to the split

ideal triangulation λ̂.
Moreover, given any two parallel-equivalent non-elliptic webs W and W ′ in good position,

then W can be taken to W ′ by a sequence of modified H-moves, global parallel-moves, and
generic isotopies.
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Figure 26. Modified H-move

Proof. By Proposition 27, we can replace W ′ with a non-elliptic web W that is parallel-
equivalent to W ′ and that is in minimal position with respect to the ideal triangulation λ.

We proceed to construct the split ideal triangulation λ̂.
Let us begin by splitting each edge E of λ into two edges E ′ and E ′′ that are “very close”

to E. These split edges form a preliminary split ideal triangulation λ̂, whose triangles (resp.

biangles) are denoted by T̂ (resp. BE); see the left hand side of Figure 27.

Figure 27. Enlarging a biangle

By definition of minimal position, the restriction WT of W to a triangle T of the ideal
triangulation λ is taut. Since, in addition, W is non-elliptic, we have that WT is essential. If

the preliminary split ideal triangulation λ̂ is sufficiently close to λ, then the restriction WT̂

of W to the triangle T̂ ⊆ T associated to T is also an essential local web. If all of the local

webs WT̂ are rung-less, then W is in good position with respect to λ̂.

Otherwise, assume WT̂ has an H-face on an edge of λ̂, say the edge E ′. Then by isotopy
we can enlarge the biangle BE until it just envelops this H-face. In other words, we can

isotope the edge E ′ so that it cuts out this H-face from the triangle T̂; see Figure 27. The

result of this step is a new split ideal triangulation λ̂, retaining the property that the local
web restrictions WT̂ are essential. Repeating this process until all of the local webs WT̂ are

rung-less, we obtain the desired split ideal triangulation λ̂. Notice it might be the case that
there is more than one biangle into which an H-face can be moved; see again Figure 27.

For the second statement of the proposition, note that if a non-elliptic web W is in good

position with respect to λ̂, then W is minimal with respect to the ideal triangulation λ

(which, for the sake of argument, we can take to be contained in λ̂, that is λ ⊆ λ̂). Indeed,
this follows by the proof of the first part of Proposition 27. Similarly, W ′ is in minimal
position. Thus, applying the second part of Proposition 27, we gather that W can be taken
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to W ′ by a finite sequence of H-moves, global parallel-moves, and generic isotopies. The
result follows from the definition of good position and modified H-moves. �

4. Global coordinates for non-elliptic webs

Recall that WS denotes the collection of parallel-equivalence classes of non-elliptic webs
on the surface S; see just below Definition 6. Our goal in this section is to define a function
ΦFG
λ : WS → ZN>0 depending on the ideal triangulation λ, where N = −8χ(S) > 0 is a

positive integer depending only on the topology of S. In §5-7, we characterize the image of
ΦFG
λ and prove that it is injective. We think of ΦFG

λ as putting global coordinates on WS.

4.1. Dotted ideal triangulations. Consider a surface S′ = S or = T equipped with an
ideal triangulation λ, where, only in this sub-section, λ = T when S′ = T. The associated
dotted ideal triangulation is the pair consisting of λ together with N ′ = N or = 7 distinct
dots attached to the 1- and 2-cells of λ, where there are two edge-dots attached to each 1-cell
and there is one triangle-dot attached to each 2-cell; see Figure 28. Given a triangle T of
λ and an edge E of T, it makes sense to talk about the left-edge-dot and right-edge-dot as
viewed from T; see Figure 28b. Choosing an ordering for the N ′ dots lying on the dotted
ideal triangulation λ defines a one-to-one correspondence between functions {dots} → Z>0
and elements of ZN ′>0. We always assume that such an ordering has been chosen.

(a) Four times punctured sphere
(b) Ideal triangle

Figure 28. Dotted ideal triangulations

4.2. Local coordinate functions. Consider a dotted ideal triangle T; see Figure 28b.
Recall (Definition 23) that WT denotes the collection of rung-less essential local webs WT in
T, and that [WT] denotes the set of corner-ambiguity classes [WT] of local webs WT in WT.

Definition 31. An integer local coordinate function, or just local coordinate function,

ΦT : WT −→ Z7

is a function assigning to each local web WT in WT one integer coordinate per dot lying on
the dotted triangle T, satisfying the following properties:

(1) if a local web WT in WT can be written WT = W ′
T tW ′′

T as the disjoint union of two
local webs, each in WT, then

ΦT(WT) = ΦT(W ′
T) + ΦT(W ′′

T ) ∈ Z7;

(2) for an edge E of T, the ordered pair of coordinates (aLE, a
R
E) of the function ΦT assigned

to the left- and right-edge-dots lying on E, respectively, depends only on the pair
(nin

E , n
out
E ) of numbers of in- and out-strands of the local web WT ∈ WT on the edge

E; conversely, different pairs (nin
E , n

out
E ) yield different pairs of coordinates (aLE, a

R
E);
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(3) there are two symmetries; the first is that ΦT respects the rotational symmetry of the
triangle, and the second is that if the numbers nin

E and nout
E of in- and out-strands on

an edge E are exchanged, then the coordinates aLE and aRE are exchanged as well;
(4) observe that, by Property (1), the function ΦT(WT) = ΦT(W ′

T) agrees on local webs
WT and W ′

T in WT representing the same corner-ambiguity class [WT] = [W ′
T] in [WT],

consequently inducing a function

[ΦT] : [WT] −→ Z7;

we require that this induced function [ΦT] is an injection.

The coordinates assigned by ΦT to edge-dots (resp. triangle-dots) are called edge-coordinates
(resp. triangle-coordinates).

We illustrate properties (1), (2), (3) in Figures 29 and 30.

Figure 29. Property (1): ai = a′i + a′′i

Figure 30. Properties (2) and (3)

4.3. Local coordinates from Fock-Goncharov theory. We define an explicit Fock-
Goncharov local coordinate function ΦFG

T : WT → Z7
>0 valued in non-negative integers.

By Property (1) in Definition 31, it suffices to define ΦFG
T on connected local webs in

WT. By Proposition 22, these come in one of exactly eight types Hout
n , H in

n , R1, L1, R2,
L2, R3, L3 illustrated in Figure 31. In the figure, note that in the two top left triangles we
have, for visibility, drawn the local pictures 〈Hout

n 〉 and
〈
H in
n

〉
as a short-hand for the actual

n-out-honeycomb-web Hout
n and n-in-honeycomb-web H in

n , respectively; see Definition 24. It
is immediate that ΦFG

T satisfies property (3) and the first part of (2). The second part of (2)
follows by the invertibility of the matrix ( 2 1

1 2 ). We will check property (4) in §5.

Remark 32.

(1) Xie [Xie13] writes down the same local coordinates (up to a multiplicative factor of 3)
for R1, L1, R2, L2, R3, L3 as well as the 1-honeycomb-webs Hout

1 and H in
1 .
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(2) The definition of these local coordinates can be checked experimentally by studying
the highest terms of the Fock-Goncharov SL3-trace polynomials; see the Introduction.

(3) The analogous coordinates in the SL2-setting are geometric intersection numbers;
see the Introduction. In contrast, these SL3-coordinates depend crucially on the
orientation of the surface.

Figure 31. Fock-Goncharov local coordinate function ΦFG
T

4.4. Global coordinates from local coordinate functions. Assume that, for an abstract
dotted triangle T, we have chosen an arbitrary local coordinate function ΦT : WT → Z7. We
show that this induces a global coordinate function Φλ : WS → ZN that is well-adapted to
the choice of ΦT. The argument uses only properties (1), the first part of (2), and (3) of ΦT.

Step 1. Consider the split ideal triangulation λ̂ (§3.3). We put dots on each triangle T

of λ̂. The chosen local coordinate function ΦT can be associated to each of these dotted
triangles T; see the left hand side of Figure 32.

Figure 32. Local coordinates ΦT attached to the triangles T of λ̂ (left), and
the corresponding global coordinates Φλ attached to λ (right)

Step 2. Fix a non-elliptic web W on S that is in good position (Definition 29) with respect

to the split ideal triangulation λ̂. We assign to W one integer coordinate per dot lying on
the dotted ideal triangulation λ, namely an element Φλ(W ) in ZN .
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By good position, the local web restriction WT = W ∩T is in WT for each triangle T of λ̂.
So, we may evaluate the local coordinate function ΦT on WT, obtaining coordinates for each

of the seven dots lying on the dotted triangle T of λ̂. For instance, in this way we assign
coordinates to all of the dots shown on the left hand side of Figure 32 above. We claim that

these coordinates “glue together” along each biangle B of λ̂ in such a way that we obtain
one coordinate per dot lying on the dotted ideal triangulation λ; see Figure 32.

Indeed, suppose B is a biangle between two triangles T′ and T′′ of λ̂. Let E ′ and E ′′ be
the corresponding boundary edges of B, and let aLE′ and aRE′ (resp. aLE′′ and aRE′′) be the
coordinates assigned by ΦT′ (resp. ΦT′′) to the left- and right-edge-dots, respectively, lying
on E ′ (resp. E ′′) as viewed from T′ (resp. T′′). Also, denote by nin

E′ and nout
E′ (resp. nin

E′′ and
nout
E′′ ) the numbers of in- and out-strands of the local web restriction WT′ (resp. WT′′) lying

on the edge E ′ (resp. E ′′); see Figure 33.

Figure 33. Local coordinates attached to a biangle: aLE′ = aRE′′ and aRE′ = aLE′′

Since, by good position, the restriction WB = W ∩B is a ladder-web, we have nout
E′ = nin

E′′

and nin
E′ = nout

E′′ . It follows immediately from properties (3) and the first part of (2) that the
coordinates across from each other agree aLE′ = aRE′′ and aRE′ = aLE′′ . So, we may glue together
the two pairs of coordinates into two coordinates lying on the edge E of λ, as desired.

For an example on the once punctured torus S, using the Fock-Goncharov local coordinate
function ΦFG

T , see Figure 34. Note that the web W in the example has one hexagon-face. All
the other components of W c are not contractible. So W is indeed non-elliptic.

Step 3. For a general non-elliptic web W ′ on S, by the first part of Proposition 30 there
exists a non-elliptic web W that is parallel-equivalent to W ′ and that is in good position

with respect to the split ideal triangulation λ̂. Define Φλ(W
′) = Φλ(W ) in ZN .

To show that Φλ(W
′) is well-defined, suppose that W2 is another web such as W . By the

second part of Proposition 30, the non-elliptic webs W and W2 are related by a sequence of
modified H-moves and global parallel-moves. The effect of either one of these moves on a
web in good position is to swap, possibly many, “parallel” oppositely-oriented corner arcs in

the triangles T of λ̂; recall Figures 26 and 3 above, respectively. By property (1) of ΦT, we
thus have Φλ(W ) = Φλ(W2), as claimed.

From this point on, our approach diverges from that in [FS20]. In particular, our coordi-
nates are different from theirs.

Definition 33. The Fock-Goncharov global coordinate function

ΦFG
λ : WS −→ ZN>0



24 DANIEL C. DOUGLAS AND ZHE SUN

is the well-defined global coordinate function on WS, valued in non-negative integers, induced
by the Fock-Goncharov local coordinate function ΦFG

T .

Proposition 34. The Fock-Goncharov global coordinate function ΦFG
λ is an injection of sets.

This will be proved in §6-7.

Remark 35. Proposition 34 is valid for any global coordinate function Φλ : WS → ZN
induced by a local coordinate function ΦT : WT → Z7. The proof is the same as the one we
will give for the Fock-Goncharov global coordinate function ΦFG

λ . It turns out that proving
the injectivity of Φλ uses property (4), but not the second part of property (2). The latter
is needed to characterize the image of Φλ in terms of the image of the local function ΦT.

Figure 34. Tropical Fock-Goncharov A-coordinates for a non-elliptic web

5. Knutson-Tao cone

For N = −8χ(S) > 0, we construct a subset C+
λ ⊆ ZN>0 that we will show, in §6-7, is

the image C+
λ = ΦFG

λ (WS) of the mapping ΦFG
λ : WS → ZN>0 constructed in §4. The subset

C+
λ is called the Knutson-Tao cone associated to the ideal triangulation λ, and is defined by

finitely many Knutson-Tao rhombus inequalities and modulo 3 congruence conditions.

5.1. Integer cones.

Definition 36. An integer cone, or just cone, C is a sub-monoid of Zn for some positive
integer n. In other words, C ⊆ Zn is a subset that contains 0 and is closed under addition.
An element c ∈ C is called a cone point.

A partition of C is a decomposition C = C1 t C2 t · · · t Ck as a disjoint union of subsets.
A positive integer cone, or just positive cone, C+ is a cone that is contained in Zn>0.

We define notions of independence for cones.

Definition 37. Let C ⊆ Zn ⊆ Qn be a cone, and let Ω ⊆ Q be a subset such that 0 ∈ Ω.
Let c1, c2, . . . , ck be a collection of cone points in C. We say that the cone points {ci}

(1) span the cone C if every cone point c ∈ C can be written as a Z>0-linear combination
of the cone points {ci};

(2) are weakly independent over Ω if

ω1c1 + · · ·+ ωkck = 0 ∈ Qn =⇒ ω1 = · · · = ωk = 0 (ω1, . . . , ωk ∈ Ω) ;

(3) form a weak basis of C if they span C and are weakly independent over Ω = Z>0 ⊆ Q;
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(4) are strongly independent over Ω if

ω1c1 + · · ·+ ωkck = ω′1c1 + · · ·+ ω′kck ∈ Qn =⇒ ω1 = ω′1, . . . , ωk = ω′k
(
ωi, ω

′
j ∈ Ω

)
.

As a warm-up:

• strongly independent over Ω =⇒ weakly independent over Ω;
• strongly independent over Z>0 ⇐⇒ weakly independent over Z ⇐⇒ linearly inde-

pendent over Q (the usual definition from Linear Algebra).

The following technical fact is immediate from the definitions.

Lemma 38. Let C,C′ ⊆ Zn be two cones. Consider a Z>0-linear bijection ψ : C′ → C that

extends to a Q-linear isomorphism ψ̃ : Qn → Qn. Let {ci} be cone points of C and let {c′i}
be cone points of C′, such that ψ(c′i) = ci. Then,

(1) if the cone points {c′i} span C′, then the cone points {ci} span C;
(2) if the {c′i} are weakly independent over Z>0, then so are the {ci};
(3) therefore, if the {c′i} form a weak basis of C′, then the {ci} form a weak basis of C;
(4) if the {c′i} are strongly independent over Z>0, then so are the {ci};
(5) the function ψ sends partitions of C′ to partitions of C. �

5.2. Local Knutson-Tao cone. Let T be a dotted ideal triangle (§4.1); recall Figure 28b
above. In this section, we are going to order the dots on T so that if the dots are labeled as
in the left hand side of Figure 35, then a point c ∈ Z7 will be written

(∗) c = (a11, a12, a21, a22, a31, a32, a) ∈ Z7.

Figure 35. Rhombus numbers

Let Z/3 ⊆ Q denote the set of integer thirds within the rational numbers, namely Z/3 is
the image of the map Z→ Q sending n 7→ n/3. Note that Z ⊆ Z/3.

To each point c ∈ Z7, as in Equation (∗), associate a 9-tuple of rhombus numbers

r(c) = (r11, r12, r13, r21, r22, r23, r31, r32, r33) ∈ (Z/3)9

by the linear equations (see Figure 35 above)

r12 = (a+ a32 − a11 − a31) /3, r11 = (a22 + a31 − a− 0) /3,

r13 = (a21 + a− a12 − a22) /3;

r22 = (a+ a12 − a21 − a11) /3, r21 = (a32 + a11 − a− 0) /3,

r23 = (a31 + a− a22 − a32) /3;

r32 = (a+ a22 − a31 − a21) /3, r31 = (a12 + a21 − a− 0) /3,

r33 = (a11 + a− a32 − a12) /3.
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Definition 39. The local Knutson-Tao positive cone, or just local Knutson-Tao cone or local
cone, C+

T associated to the dotted ideal triangle T is defined by

C+
T =

{
c ∈ Z7; r(c) = (r11, r12, r13, r21, r22, r23, r31, r32, r33) ∈ Z9

>0 ⊆ (Z/3)9
}
.

By linearity, this indeed defines a cone contained in Z7. We will prove below in this
sub-section that C+

T ⊆ Z7
>0 is, in fact, a positive cone.

Remark 40. The inequalities 3rij > 0 are known as the Knutson-Tao rhombus inequalities;
see [KT99, Appendix 2] and [GS15, §3.1]. Note that 3rij is always in Z by definition. We
impose the additional modulo 3 congruence condition that the rij are integers. This is
analogous to the parity condition imposed in [Foc97, §3.1] in the case of SL2.

To see that C+
T is non-trivial, one checks that the image ΦFG

T (WT) of the Fock-Goncharov
local coordinate function ΦFG

T : WT → Z7
>0 (§4.3) lies in the local cone ΦFG

T (WT) ⊆ C+
T . By

property (1) in Definition 31, it suffices to check this on the connected local webs in WT;
recall Figure 31 above. Specifically, using the convention in Equation (∗), we have

c(R1) = ΦFG
T (R1) = (0, 0, 1, 2, 2, 1, 1) , c(L1) = ΦFG

T (L1) = (0, 0, 2, 1, 1, 2, 2) ,

c(R2) = ΦFG
T (R2) = (2, 1, 0, 0, 1, 2, 1) , c(L2) = ΦFG

T (L2) = (1, 2, 0, 0, 2, 1, 2) ,

c(R3) = ΦFG
T (R3) = (1, 2, 2, 1, 0, 0, 1) , c(L3) = ΦFG

T (L3) = (2, 1, 1, 2, 0, 0, 2) ,

c(H in
n ) = ΦFG

T (H in
n ) = (2n, n, 2n, n, 2n, n, 3n) ,

c(Hout
n ) = ΦFG

T (Hout
n ) = (n, 2n, n, 2n, n, 2n, 3n) .

The associated 9-tuples of rhombus numbers are

r(c(R1)) = (1, 0, 0, 0, 0, 0, 0, 0, 0) , r(c(L1)) = (0, 1, 1, 0, 0, 0, 0, 0, 0) ,

r(c(R2)) = (0, 0, 0, 1, 0, 0, 0, 0, 0) , r(c(L2)) = (0, 0, 0, 0, 1, 1, 0, 0, 0) ,

r(c(R3)) = (0, 0, 0, 0, 0, 0, 1, 0, 0) , r(c(L3)) = (0, 0, 0, 0, 0, 0, 0, 1, 1) ,

r(c(H in
n )) = (0, 0, n, 0, 0, n, 0, 0, n) ,

r(c(Hout
n )) = (0, n, 0, 0, n, 0, 0, n, 0) .

By rank considerations, the eight cone points c(R1), c(L1), c(R2), c(L2), c(R3), c(L3),
c(H in

n ), c(Hout
n ) have a linear dependence relation over Z. For instance,

c(Hout
n ) + c(H in

n ) = n (c(L1) + c(L2) + c(L3)) ∈ C+
T .

See Figure 36. Nevertheless, we can say the following:

Figure 36. Linear dependence relation over Z
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Proposition 41. The collection of eight cone points

c(R1), c(L1), c(R2), c(L2), c(R3), c(L3), c(H
in
1 ), c(Hout

1 ) ∈ ΦFG
T (WT) ⊆ C+

T

forms a weak basis of the Knutson-Tao local cone C+
T .

Among these eight cone points, the seven points

c(R1), c(L1), c(R2), c(L2), c(R3), c(L3), c(H
in
1 )

are strongly independent over Z>0, and the seven points

c(R1), c(L1), c(R2), c(L2), c(R3), c(L3), c(H
out
1 )

are strongly independent over Z>0. Moreover, each cone point c in C+
T can be uniquely

expressed in exactly one of the following three forms:

c = n1c(R1) + n2c(L1) + · · ·+ n6c(L3),

c = n1c(R1) + n2c(L1) + · · ·+ n6c(L3) + nc(H in
1 ),

c = n1c(R1) + n2c(L1) + · · ·+ n6c(L3) + nc(Hout
1 ), (ni ∈ Z>0, n ∈ Z>0) .

Corollary 42. The local Knutson-Tao cone satisfies the property that C+
T = ΦFG

T (WT) ⊆ Z7
>0.

In particular, C+
T is a positive cone. �

Corollary 43. The Fock-Goncharov local coordinate function ΦFG
T : WT → C+

T satisfies
property (4) in Definition 31, namely, the induced function [ΦFG

T ] : [WT] ↪→ C+
T , defined on

the collection of corner-ambiguity classes [WT] of local webs WT in WT, is an injection.

Proof. Assume ΦFG
T (WT) = ΦFG

T (W ′
T) ∈ C+

T . This cone point falls into one of the three
families in Proposition 41. For the sake of argument, suppose

ΦFG
T (WT) = ΦFG

T (W ′
T) = n1c(R1)+n2c(L1)+· · ·+n6c(L3)+nc(H in

1 ) (ni ∈ Z>0, n ∈ Z>0) .

Note that nc(H in
1 ) = c(H in

n ) in C+
T ; see Figure 31. By the uniqueness property in Proposition

41 together with property (1) in Definition 31, we gather that WT and W ′
T have 1 +

∑6
i=1 ni

connected components, one of which is a n-in-honeycomb H in
n , and n1 (resp. n2, n3, n4, n5,

n6) of which are corner arcs R1 (resp. L1, R2, L2, R3, L3). The only ambiguity is how these
corner arcs are permuted on their respective corners, that is [WT] = [W ′

T] in [WT]. �

Proof of Proposition 41. Define two subsets (C+
T )in and (C+

T )out of C+
T by

(C+
T )in = SpanZ>0

(c(R1), c(L1), c(R2), c(L2), c(R3), c(L3)) + Z>0 · c(H in
1 ),(#)

(C+
T )out = SpanZ>0

(c(R1), c(L1), c(R2), c(L2), c(R3), c(L3)) + Z>0 · c(Hout
1 ).(##)

(Here, A+B = {a+ b; a ∈ A and b ∈ B}.) Put

c1 = c(R1), c2 = c(L1), c3 = c(R2), c4 = c(L2),

c5 = c(R3), c6 = c(L3), c7 = c(H in
1 ), c8 = c(Hout

1 ).

By Lemma 38, with C = C+
T , in order to prove Proposition 41 it suffices to establish:

Claim 44. There exists

(1) a cone C′ ⊆ Z7;
(2) a collection of cone points c′1, . . . , c

′
8 in C′;

(3) a partition C′ = (C′)>0 t (C′)<0;
(4) a Z>0-linear bijection ψ : C′ → C+

T ;
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(5) an extension ψ̃ of ψ to a Q-linear isomorphism ψ̃ : Q7 → Q7;

such that

(1) we have ψ(c′i) = ci;

(2) we have ψ((C′)>0) = (C+
T )in and ψ((C′)<0) = (C+

T )out;
(3) the eight cone points c′1, . . . , c

′
6, c
′
7, c
′
8 form a weak basis of the cone C′;

(4) the seven cone points c′1, . . . , c
′
6, c
′
7 are strongly independent over Z>0;

(5) the seven cone points c′1, . . . , c
′
6, c
′
8 are strongly independent over Z>0.

We prove the claim. Define C′ ⊆ Z6
>0 × Z ⊆ Z7 by

(∗∗) C′ =
{

(r11, r12, r21, r22, r31, r32, x) ∈ Z6
>0 × Z; −x 6 min (r12, r22, r32)

}
.

It follows from the definition that C′ is a cone. Put

c′1 = (1, 0, 0, 0, 0, 0, 0) , c′2 = (0, 1, 0, 0, 0, 0, 0) ,

c′3 = (0, 0, 1, 0, 0, 0, 0) , c′4 = (0, 0, 0, 1, 0, 0, 0) ,

c′5 = (0, 0, 0, 0, 1, 0, 0) , c′6 = (0, 0, 0, 0, 0, 1, 0) ,

c′7 = (0, 0, 0, 0, 0, 0, 1) , c′8 = (0, 1, 0, 1, 0, 1,−1) .

One checks that c′1, . . . , c
′
8 are in C′. Define

(C′)>0 = C′ ∩
(
Z6
>0 × Z>0

)
, (C′)<0 = C′ ∩

(
Z6
>0 × Z<0

)
.

Then C′ = (C′)>0 t (C′)<0 is a partition.
First, we show c′1, . . . , c

′
6, c
′
7, c
′
8 spans C′. We see that

(†) (C′)>0 = SpanZ>0
(c′1, . . . , c

′
6) + Z>0 · c′7

(
= Z6

>0 × Z>0
)
.

If c′ ∈ (C′)<0, then its last coordinate is x 6 −1. Since −x > 0 and −x 6 min(r12, r22, r32),

c′ = (r11,−x+ r′12, r21,−x+ r′22, r31,−x+ r′32,−x · −1)

for some r11, r
′
12, r21, r

′
22, r31, r

′
32 ∈ Z>0 and −x ∈ Z>0. That is,

c′ = r11c
′
1 + r′12c

′
2 + r21c

′
3 + r′22c

′
4 + r31c

′
5 + r′32c

′
6 + (−x) c′8 ∈ SpanZ>0

(c′1, . . . , c
′
6) + Z>0 · c′8.

Thus,

(††) (C′)<0 = SpanZ>0
(c′1, . . . , c

′
6) + Z>0 · c′8,

where the ⊇ containment follows since SpanZ>0
(c′1, . . . , c

′
6) + Z>0 · c′8 ⊆ Z6

>0 × Z<0.

Next, we show c′1, . . . , c
′
6, c
′
7, c
′
8 are weakly independent over Z>0. Indeed, if n1c

′
1 + · · · +

n8c
′
8 = 0, then n1 = n3 = n5 = 0 and n2+n8, n4+n8, n6+n8, n7−n8 = 0. Since all ni ∈ Z>0,

it follows that n2 = n4 = n6 = n8 = 0, and so n7 = n8 = 0, as desired.
We gather that c′1, . . . , c

′
6, c
′
7, c
′
8 form a weak basis of C′.

Next, we show c′1, . . . , c
′
6, c
′
7 are strongly independent over Z>0. This is equivalent to being

linearly independent over Q, which follows from the definitions. Similarly, it follows from
the definitions that c′1, . . . , c

′
6, c
′
8 are strongly independent over Z>0.

We now define a Z>0-linear bijection ϕ : C+
T → C′. Its inverse will be the desired Z>0-linear

bijection ψ = ϕ−1 : C′ → C+
T . Let c be a cone point in C+

T , written as in Equation ∗. Put

x = (a11 − a12 + a21 − a22 + a31 − a32) /3
= r13 − r12 = r23 − r22 = r33 − r32
> −r12 and− r22 and− r32
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where the rhombus numbers rij are in Z>0 since c ∈ C+
T ; see Figure 37. Thus,

x > max(−r12,−r22,−r32) = −min(r12, r22, r32).

Therefore, recalling C′ ⊆ Z6
>0×Z (Equation (∗∗)), we may define the function ϕ : C+

T → C′ by

ϕ(c) = (r11, r12, r21, r22, r31, r32, x).

It follows from the definition that ϕ : C+
T → C′ is Z>0-linear. One checks that ϕ(ci) = c′i.

Since the c′i span C′, it follows that ϕ is surjective. Thus, by Equations (#),(##),(†),(††),

ϕ
(

(C+
T )in

)
= (C′)>0 and ϕ

(
(C+

T )out
)

= (C′)<0.

Figure 37. Four ways to view the tropical Fock-Goncharov X-coordinate x

The formula for ϕ extends to define a Q-linear isomorphism ϕ̃ : Q7 → Q7, and its inverse

is the desired Q-linear isomorphism ψ̃ = ϕ̃−1 : Q7 → Q7. Indeed, the bijectivity of ϕ̃ follows
by computing the values on the standard column basis of Q7, giving the invertible matrix

ϕ̃(~e1, ~e2, ~e3, ~e4, ~e5, ~e6, ~e7) =
1

3



0 0 0 1 1 0 −1
−1 0 0 0 −1 1 1
1 0 0 0 0 1 −1
−1 1 −1 0 0 0 1
0 1 1 0 0 0 −1
0 0 −1 1 −1 0 1
1 −1 1 −1 1 −1 0


.

So ψ̃ = ϕ̃−1 is defined. Since ϕ̃ is an injection, so is its restriction ϕ : C+
T → C′. Also, since,

as we argued above, ϕ is a surjection, we gather ϕ is a bijection. Thus, ψ = ϕ−1 : C′ → C+
T

is defined. This completes the proof of the claim, thereby establishing the proposition. �

5.3. Global Knutson-Tao cone. Given the dotted ideal triangulation λ on the surface S,
an element c of ZN corresponds to a function {dots on λ} → Z; see §4.1. If T is a dotted
triangle of λ, then an element c of ZN induces a function {dots on T} → Z, which likewise
corresponds to an element cT of Z7.

Definition 45. The global Knutson-Tao positive cone, or just Knutson-Tao cone or global
cone, C+

λ ⊆ ZN>0 is defined by

C+
λ =

{
c ∈ ZN ; cT is in C+

T ⊆ Z7
>0 for all triangles T of λ

}
.

It follows from the definition that C+
λ is indeed a positive cone.

In §4, we defined the global coordinate function ΦFG
λ : WS → ZN>0; see Definition 33. Since

the image ΦFG
T (WT) ⊆ C+

T (which is, in fact, an equality by Corollary 42), it follows by the
construction of ΦFG

λ that the image ΦFG
λ (WS) ⊆ C+

λ ; recall, for instance, Figure 34 above.
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Proposition 46. We have, moreover,

ΦFG
λ (WS) = C+

λ .

This will be proved in §6-7.

6. Main theorem: global coordinates

We summarize what we have done so far. Consider a punctured surface S with empty
boundary; see §1. Let WS denote the collection of parallel-equivalence classes of global non-
elliptic webs on S. Assume that S is equipped with an ideal triangulation λ. For N =
−8χ(S), in §4 we defined the Fock-Goncharov global coordinate function ΦFG

λ : WS → ZN>0,
depending on the choice of the ideal triangulation λ. Proposition 34, which still needs to be
proved, says that the mapping ΦFG

λ is injective. In §5, we defined the global Knutson-Tao
positive cone C+

λ ⊆ ZN>0, which also depends on the ideal triangulation λ. By construction,
the image ΦFG

λ (WS) ⊆ C+
λ . According to Proposition 46, which also still needs to be proved,

ΦFG
λ maps WS onto C+

λ . Therefore, assuming Propositions 34 and 46 to be true, we have
proved the following main result.

Theorem 47. The Fock-Goncharov global coordinate function

ΦFG
λ : WS

∼−→ C+
λ

is a bijection of sets. �

Remark 48. The appropriate extension of this result should hold in the more general setting
of surfaces-with-boundary, with similar proofs; compare [FS20]. We have chosen to focus on
the case of empty boundary for the sake of clarity.

6.1. Inverse mapping. Our strategy for proving Propositions 34 and 46 (equivalently, The-
orem 47) is to construct an explicit inverse mapping

ΨFG
λ : C+

λ −→WS

namely a function that is both a left and a right inverse for the function ΦFG
λ . The definition

of the mapping ΨFG
λ is relatively straightforward, and it will be automatic that it is an inverse

for ΦFG
λ . The more challenging part will be to show that ΨFG

λ is well-defined.

6.2. Inverse mapping: ladder gluing construction. Recall that for a triangle T we
denote by WT the collection of rung-less essential local webs WT in T; see Definition 23. We

will once again make use of the split ideal triangulation λ̂; see §3.3.

Definition 49. A collection {WT}T∈λ̂ of local webs WT ∈WT, varying over the triangles T

of λ̂, is compatible if for each biangle B, with boundary edges E ′ and E ′′, sitting between
two triangles T′ and T′′, respectively, the number of out-strands (resp. in-strands) of WT′ on
E ′ is equal to the number of in-strands (resp. out-strands) of WT′′ on E ′′.

For example, see the third row of Figure 38.
To a compatible collection {WT}T∈λ̂ of local webs, we will associate a global web W on S

that need not be non-elliptic and that is in good position with respect to λ̂; recall Definition

29. The global web W is well-defined up to ambient isotopy of S respecting λ̂.
Construction of W . Consider a biangle B sitting between two triangles T′ and T′′. The

local webs WT′ and WT′′ determine strand sets S ′ and S ′′ on the boundary edges E ′ and E ′′,
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respectively. By the compatibility property, the strand-set pair S = (S ′, S ′′) is symmetric;
see Definition 18. Let WB = WB(S) be the induced ladder-web in B; see again Definition 18.

Define W to be the global web obtained by gluing together the local webs {WT}T∈λ̂ and
{WB}B∈λ̂ in the obvious way; see the fourth row and the left side of the fifth row of Figure 38.

Definition 50. We say that the global web W has been obtained from the compatible
collection {WT}T∈λ̂ of local webs by applying the ladder gluing construction.

The following statement is immediate.

Lemma 51. A global web W obtained via the ladder gluing construction is in good position

with respect to λ̂. Conversely, if W is a global web in good position, then W can be recovered
as the result of applying the ladder gluing construction to {WT = W ∩ T}T∈λ̂. �

If the global web W is obtained via the ladder gluing construction, then W could be (1)
non-elliptic, for example see the left side of the fifth row of Figure 38, or (2) elliptic, for
example see the fourth row of Figure 38.

6.3. Inverse mapping: resolving an elliptic web. Recall the notion of a local parallel-
move; see Figure 21. Note that if {W ′

T}T∈λ̂ is a compatible collection of local webs, and if
WT is related to W ′

T by a sequence of local parallel-moves, then {WT}T∈λ̂ is also compatible.

Lemma 52. Given a compatible collection {W ′
T}T∈λ̂ of local webs, there exist local webs

{WT}T∈λ̂ such that WT is related to W ′
T by a sequence of local parallel-moves, and the global

web W obtained by applying the ladder gluing construction to {WT}T∈λ̂ is non-elliptic.

Proof. Suppose that the global web W ′ obtained by applying the ladder gluing construction
to the local webs {W ′

T}T∈λ̂ is elliptic.
Step 1. We show that the elliptic global web W ′ has no disk- or bigon-faces. If there

were a disk- or bigon-face, then it could not lie completely in a triangle T or biangle B of

λ̂, for this would violate that the local web restriction W ′
T or W ′

B is essential (in particular,
non-elliptic) by Lemma 51. Consequently, there is a cap- or fork-face lying in some T or B,
contradicting that the local web restriction W ′

T or W ′
B is essential (in particular, taut).

Step 2. We consider the possible positions of square-faces relative to the split ideal tri-

angulation λ̂. We claim that a square-face can only appear as demonstrated at the top of
Figure 39, namely having two H-faces in two (possibly identical) biangles B and, in between,
having opposite sides traveling “parallel” through the intermediate triangles T and biangles
B. Indeed, otherwise there would be a square-, cap-, or fork-face, similar to Step 1.

Step 3. We remove the square-faces. Since the square-faces are positioned in this way,
given a fixed square-face there is a well-defined “state” into which the square-face can be
“resolved”, illustrated in Figure 39. The resulting global web W1 is in good position with

respect to λ̂. Also, W1 is less complex than W ′, where the complexity of a global web in
good position is measured by the total number of vertices lying in the union ∪BB of all of
the biangles B. Note that resolving a square-face decreases the complexity by 4.

The effect of resolving a square-face is to perform, in each triangle T, some number (pos-
sibly zero) of local parallel-moves. Thus, the original local webs {W ′

T}T∈λ̂ are replaced with
new local webs {(W1)T}T∈λ̂ such that (W1)T is equivalent to W ′

T up to corner-ambiguity.
Step 4. By a complexity argument, we can repeat the previous step until we obtain

a sequence W ′ = W0,W1,W2, . . . ,Wn = W of global webs in good position such that
{(Wi+1)T}T∈λ̂ is related to {(Wi)T}T∈λ̂ by a sequence of parallel-moves, and such that W has
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Figure 38. Ladder gluing construction. Shown are two different ways of
assigning the local webs, differing by permutations of corner arcs. On the left,
the result of the gluing is a non-elliptic web. On the right, the result is an
elliptic web, which has to be resolved by removing a square before becoming a
non-elliptic web. The two non-elliptic webs obtained in this way are equivalent

no square-faces. By Lemma 51, W is recovered by applying the ladder gluing construction
to {WT}T∈λ̂. Also, by Step 1, W has no disk- or bigon-faces. Thus, W is non-elliptic. �

We refer to the algorithm used in the proof of Lemma 52 as the square removing algorithm.
For example, see the fourth row and the right side of the fifth row of Figure 38.

Note that the algorithm removes the square-faces at random, thus the local webs {WT}T∈λ̂
satisfying the conclusion of Lemma 52 are not necessarily unique. For example, see Figure 40.
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Figure 39. Resolving a square-face

Figure 40. Elliptic web resulting from the ladder gluing construction (top),
and two different applications of the square removing algorithm, yielding dif-
ferent, but parallel-equivalent, non-elliptic webs (bottom)

6.4. Inverse mapping: definition. Let c be a cone point in the global cone C+
λ ; see

Definition 45. Our goal is to associate to c a parallel-equivalence class ΨFG
λ (c) ∈WS of global

non-elliptic webs on S. Equivalently, we want to associate to c a non-elliptic web Ψ̃FG
λ (c)

on S well-defined up to parallel-equivalence; see Definition 4. Recall that we identify the

triangles T of the ideal triangulation λ with the triangles T of the split ideal triangulation λ̂.

Construction of Ψ̃FG
λ (c). The global cone point c determines a local cone point cT in

the local cone C+
T for each triangle T of λ; see just before Definition 45. By the triangle

identifications between λ and λ̂, the local cone point cT ∈ C+
T is assigned to each triangle T

of λ̂; see the first and second rows of Figure 38.
Note that, by construction, corresponding edge-coordinates located across a biangle B

take the same value. More precisely, if B sits between two triangles T′ and T′′ and if the
boundary edges of B are E ′ and E ′′, respectively, then the coordinate aLE′ (resp. aRE′) lying
on the left-edge-dot (resp. right-edge-dot) as viewed from T′ agrees with the coordinate aRE′′
(resp. aLE′′) lying on the right-edge-dot (resp. left-edge-dot) as viewed from T′′; see Figure 38.
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By Corollaries 42 and 43, for each local cone point cT ∈ C+
T assigned to a triangle T

of λ̂, there exists a unique corner-ambiguity class [WT] of local webs WT in WT such that
ΦFG

T (WT) = cT for any representative WT of [WT].
Crucially, we now make a choice of such a representative WT for each T. Two different

choices WT and W ′
T of local webs representing [WT] = [W ′

T] are, by definition, related by
local parallel-moves; see the third row of Figure 38.

Since, by above, corresponding edge-coordinates across biangles agree, the collection
{WT}T∈λ̂ of local webs is compatible (Definition 49). Indeed, this follows by properties
(2) and (3) in Definition 31 (the argument uses the fact that if WT ∈WT, then the opposite
web W op

T obtained by reversing all of the orientations of WT is also in WT).
By Lemma 52, this critical choice of a compatible collection {WT}T∈λ̂ of local webs can

be made (in a non-unique way) such that the global web W on S obtained by applying the

ladder gluing construction to {WT}T∈λ̂ is non-elliptic. Finally, we define Ψ̃FG
λ (c) = W . In

order for the global web Ψ̃FG
λ (c) to be well-defined up to parallel-equivalence, we require:

Main Lemma 53. Assume that each of {WT}T∈λ̂ and {W ′
T}T∈λ̂ is a compatible collection

of local webs in WT, satisfying

(1) for each triangle T, the local webs WT and W ′
T are equivalent up to corner-ambiguity;

(2) both global webs W and W ′, obtained from the compatible collections {WT}T∈λ̂ and
{W ′

T}T∈λ̂, respectively, by applying the ladder gluing construction, are non-elliptic.

Then, the non-elliptic webs W and W ′ represent the same parallel-equivalence class in WS.

Definition 54. The inverse mapping

ΨFG
λ : C+

λ −→WS

is defined by sending a cone point c in the global Knutson-Tao cone C+
λ to the parallel-

equivalence class in WS of the global non-elliptic web Ψ̃FG
λ (c) on S.

Proof of Propositions 34 and 46. Assuming Main Lemma 53 to be true, it follows immedi-
ately from the constructions that the well-defined mapping ΨFG

λ : C+
λ → WS is the set-

functional inverse of the Fock-Goncharov global coordinate function ΦFG
λ : WS → C+

λ . �

In summary, we have reduced the proof of Theorem 47 to proving the main lemma.

7. Proof of the main lemma

In this section, we prove Main Lemma 53. In particular, we provide an explicit algorithm
taking one web to the other by a sequence of modified H-moves and global parallel-moves.

7.1. Preparation: global pictures on the surface. We introduce a technical device. For

a web W on S in good position with respect to the split ideal triangulation λ̂, the restrictions

WB = W ∩B and WT = W ∩ T in the biangles B and triangles T of λ̂ are essential and
rung-less essential local webs, respectively. By Definitions 20 and 24, we may consider the
corresponding local pictures 〈WB〉 and 〈WT〉, which are in particular immersed multi-curves
in the biangle B and the holed triangle T0, respectively; see Definition 17 and Figures 15
and 18.

Definition 55. The holed surface S0 is the surface S minus one open disk per triangle T

of λ̂. The global picture 〈W 〉 corresponding to a web W in good position with respect to λ̂
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is the multi-curve on the holed surface S0 obtained by gluing together in the obvious way
the collection of local pictures {〈WB〉}B∈λ̂ and {〈WT〉}T∈λ̂ associated to the biangles B and

triangles T of λ̂, well-defined up to ambient isotopy of S0 respecting λ̂.

For an example, see Figure 41.
Figure 42 depicts how a modified H-move between webs W and W ′ in good position looks

when viewed from the perspective of the global pictures 〈W 〉 and 〈W ′〉; see Figure 26.

By definition, the global picture 〈W 〉 has no U-turns on any edge of λ̂, meaning there are no

bigons formed between a component γ of 〈W 〉 and λ̂. We call this the no-switchbacks property.

Figure 41. (Parts of) two webs W and W ′ in good position on the surface,
and their corresponding global pictures 〈W 〉 and 〈W ′〉 on the holed surface.
Note that, over triangles, W and W ′ differ by a permutation of corner arcs

Figure 42. Modified H-move from the perspective of global pictures

Definition 56. A based multi-curve (Γ, {xj0}) on the holed surface S0 is a multi-curve
Γ = {γi} equipped with a base point xj0 ∈ γj for each loop component γj of Γ, such that the

base points xj0 do not lie on any edges of the split ideal triangulation λ̂; see Definition 17.
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7.2. Preparation: sequences. A connected subset I ⊆ Z of the integers is a subset such
that if n,m ∈ I are integers, then all the integers between n and m are in I.

A sequence (ai)i∈I valued in a set A is a function I → A, i 7→ ai, where I ⊆ Z is a
connected subset of the integers.

Given a sequence (ai)i∈I , a subsequence (aik)k∈K is the sequence K → A induced by a
connected subset K ⊆ Z together with an order preserving function K → I, k 7→ ik.

Given a sequence (ai)i∈I , a connected subsequence (aik)k∈K is a subsequence such that the
image I ′ of K in I under the function K → I is a connected subset of Z.

Given two sequences (ai)i∈I and (bj)j∈J taking values in the same set, a common subse-
quence {(aik)k∈K , (bjk)k∈K} is a pair of subsequences having the same indexing set K, such
that aik = bjk for all k ∈ K. For convenience, we always assume 0 ∈ K.

A connected common subsequence {(aik)k∈K , (bjk)k∈K} is a common subsequence such that
both subsequences (aik)k∈K and (bjk)k∈K are connected.

A maximal connected common subsequence {(aik)k∈K , (bjk)k∈K} is a connected common
subsequence, such that there does not exist the following: I ⊆ I ′, J ⊆ J ′, K ( K ′, a pair of
sequences (a′i′)i′∈I′ and (b′j′)j′∈J ′ , and a connected common subsequence {(a′i′k)k∈K′ , (b

′
j′k

)k∈K′},
satisfying a′i = ai for i ∈ I, b′j = bj for j ∈ J , and i′k = ik and j′k = jk for k ∈ K.

7.3. Preparation: edge-sequences and the Fellow-Traveler Lemma. Let W be a web

on S in good position with respect to λ̂ such that its global picture (〈W 〉 , {xj0}) is based.
Let γ be a loop or arc in 〈W 〉. Associated to the component γ is an edge-sequence (Ei)i∈I

where Ei is an edge of the split ideal triangulation λ̂. More precisely, the sequence (Ei)i∈I
describes the i-th edge crossed by γ listed in order according to γ’s orientation. In the case
where γ is an arc, we put I = {0, 1, . . . , n} ⊆ Z, and the edge-sequence is well-defined. In
the case where γ is a loop with base point x0, we put I = Z, and the edge-sequence is
well-defined by sending 0 to the first edge E0 encountered by γ after passing x0.

We also associate an inverse edge-sequence (E−1i )i∈I−1 to the inverse curve γ−1, defined
as follows. In the case of an arc put I−1 = {−n, . . . , 1, 0}, and in the case of a loop put
I−1 = Z. Then the inverse edge-sequence is defined by E−1i = E−i for all i ∈ I−1.

Another name for a loop or arc γ in the global picture 〈W 〉 is a traveler. Another name
for an inverse curve γ−1 is a past-traveler. The edge-sequence (Ei)i∈I associated to a traveler
γ is called its route, and the edge-sequence (E−1i )i∈I−1 associated to a past-traveler γ−1 is
called its past-route; see Figure 43. Two travelers γ in 〈W 〉 and γ′ in 〈W ′〉 are called fellow-
travelers if they have the same routes (Ei)i∈I = (E ′i)i∈I′ , I = I ′. In particular, if γ is a loop
(resp. arc), then γ′ is also a loop (resp. arc).

The following statement is the key to proving the main lemma.

Figure 43. Route and past-route
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Lemma 57 (Fellow-Traveler Lemma). Fix local webs {WT}T∈λ̂ and {W ′
T}T∈λ̂ in WT satisfy-

ing the hypotheses of Main Lemma 53, and let W and W ′ be the induced global webs obtained
by the ladder gluing construction. Then, there exists a natural one-to-one correspondence

γ ←→ γ′ = ϕ(γ)

between the collection of travelers γ in the global picture 〈W 〉 and the collection of travelers
γ′ = ϕ(γ) in 〈W ′〉, and there exists a choice of base points x0 and x′0 for the loops γ and γ′ in
〈W 〉 and 〈W ′〉, respectively, such that γ and γ′ = ϕ(γ) are fellow-travelers for all travelers γ.

For an example of the Fellow-Traveler Lemma on the once punctured torus, see Figure 44.

Figure 44. Fellow-Traveler Lemma

Proof of Lemma 57. Let E be an edge of λ̂. This is associated to a unique triangle T of λ̂ con-

taining E in its boundary. Let S(E)out = (s
(E)out
i )i=1,...,nout

E
(resp. S ′(E)out = (s

′(E)out
i )i=1,...,n′outE

)

denote the sequence of out-strands of the global picture 〈W 〉 (resp. 〈W ′〉) lying on the edge
E, ordered, say, from left to right as viewed from T. Note that, by hypothesis, nout

E = n′outE .

Let γ
(E)
i denote the unique traveler in 〈W 〉 containing the strand s

(E)out
i . Similarly, define

travelers γ
′(E)
i with respect to 〈W ′〉. The mapping ϕ is defined by

ϕ
(
γ
(E)
i

)
= γ

′(E)
i

(
i = 1, 2, . . . , nout

E = n′outE

)
.

Note that every traveler γ in 〈W 〉 (resp. γ′ in 〈W ′〉) is of the form γ
(E)
i (resp. γ

′(E)
i ).

To establish that ϕ is well-defined, we show that γ
(E1)
i1

= γ
(E2)
i2

implies γ
′(E1)
i1

= γ
′(E2)
i2

. This
property follows immediately from:

Claim 58. For some k ∈ {1, 2, . . . , nout
E = n′outE }, let s

(E)out
k ∈ S(E)out and s

′(E)out
k ∈ S ′(E)out

be out-strands of 〈W 〉 and 〈W ′〉, respectively, lying on an edge E of a triangle T of λ̂. Note
that each of these strands, according to its orientation, enters via the edge E into a biangle
B, exits via an edge E2 into a triangle T2, and then either

(1) turns left in T2, ending as a strand s or s′, respectively, lying on an edge E3;
(2) turns right in T2, ending as a strand s or s′, respectively, lying on an edge E3;
(3) terminates in a honeycomb Hn.

The claim is that if the forward motion of the strand s
(E)out
k is described by item (i) above

for i ∈ {1, 2, 3}, then the forward motion of the strand s
′(E)out
k is also described by item (i).

Consequently, in cases (1) or (3), there exists some k3 ∈ {1, 2, . . . , nout
E3

= n′outE3
} such that

s = s
(E3)out
k3

∈ S(E3)out and s′ = s
′(E3)out
k3

∈ S ′(E3)out.
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The claim is true since, by hypothesis, on each corner of each triangle, 〈W 〉 and 〈W ′〉
have the same number of clockwise-oriented (resp. counterclockwise-oriented) corner arcs,
together with the fact that only oppositely-oriented arcs cross in the biangles; see Figure 45.

Having established that ϕ is well-defined, it follows by the definition that ϕ is a bijection.
Another consequence of Claim 58 is that if γ is an arc, then γ′ = ϕ(γ) is an arc such that

γ and γ′ are fellow-travelers. Also, if γ = γ
(E)
i is a loop, then γ′ = ϕ(γ) = γ

′(E)
i is a loop.

Choosing base points x0 and x′0 on the out-strands s
(E)out
i and s

′(E)out
i , respectively, just

before the strands cross the edge E makes the loops γ and γ′ into fellow-travelers. �

Figure 45. Cases (1) (left) and (3) (right) in Claim 58

7.4. Preparation: shared-routes. As in the previous sub-section, let W be a web on S

in good position with respect to λ̂ such that its global picture (〈W 〉 , {xj0}) is based.
Let γ be a traveler in 〈W 〉 having route (Ei)i∈I . For some i ∈ I indexing an edge Ei,

by definition of the route there is a corresponding point yi of γ lying on Ei. Consider the
associated segment γi of γ lying between the points yi and yi+1. Similarly, define segments

(γ−1)i associated to the past-traveler γ−1 with respect to its past-route (E−1i )i∈I−1 .

Definition 59. Let γ1, γ2 be travelers in 〈W 〉 and γ−11 , γ−12 the corresponding past-travelers,
with routes (E1

i )i∈I and (E2
j )j∈J and past-routes ((E1)−1i )∈I−1 and ((E2)−1j )∈J−1 .

An oppositely-oriented shared-route, or just shared-route, SR for the ordered pair (γ1, γ2)
of travelers is a maximal connected common subsequence SR = {(E1

ik
)k∈K , ((E

2)−1jk )k∈K} for

the route (E1
i )i∈I of γ1 and the past-route ((E2)−1j )∈J−1 of γ−12 .

A shared-route is open (resp. closed) if its domain K is not equal to (resp. equal to) Z.
A shared-route is crossing if there exists an index k ∈ K such that the associated segments

(γ1)ik and (γ2)
−1
jk

intersect, say at a point pk. We call pk an intersection point of the crossing

shared-route. Note that an intersection point must lie inside a biangle B of λ̂. A shared-route
is non-crossing if it has no intersection points.
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For some examples, see Figures 46 and 47. Our pictures for crossing shared-routes and
open non-crossing shared-routes, such as in Figures 46 and 47a, are only schematics, since
the actual shared-route might cross the same edge multiple times. That is, there might
exist k 6= k′ such that E1

ik
= (E2)−1jk = E1

ik′
= (E2)−1jk′ . Alternatively, one could think of

these pictures at the level of the universal cover. On the other hand, our pictures for closed
non-crossing shared-routes, such as in Figure 47b, are actually as they are seen on the surface.

Figure 46. Crossing shared-route

(a) Open (b) Closed

Figure 47. Non-crossing shared-routes

Lemma 60. Assume in addition that W is non-elliptic. Then any shared-route SR has at
most one intersection point p. In particular, a crossing shared-route is necessarily open.

Proof. The second statement follows from the first since otherwise the oriented holed surface
S0 would contain a Möbius strip.

Suppose, for an ordered pair (γ1, γ2) of travelers, there were a crossing shared-route
{(E1

ik
)k∈K , ((E

2)−1jk )k∈K} that has more than one intersection point. There are only finitely-
many intersection points, denoted pk1 , pk2 , . . . , pkm with ki < ki+1. The intersection points
pk1 and pk2 form the “tips” of an immersed bigon B, which we formalize as the connected
common subsequence B = {(E1

ik
)k16k6k2+1, ((E

2)−1jk )k16k6k2+1}; see the bottom of Figure 48.
Alternatively, we think of B as “bounded” by the segments of γ1 and γ2 between pk1 and pk2 .

Let p be the projection map from the universal cover S̃0 to the holed surface S0. Equip

S̃0 with the lifted split ideal triangulation
˜̂
λ = p−1(λ̂). For a traveler γ, consider one of its

lifts γ̃ in S̃0. By the no-switchbacks property (§7.1), and the fact that the dual graph of
˜̂
λ

in S̃0 is a tree, the lifted curve γ̃ does not cross the same edge Ẽ in the universal cover S̃0

more than once. Therefore, the immersed bigon B lifts to an actual embedded topological

bigon B̃ in S̃0, bounded by segments of lifts γ̃1 and γ̃2 of the curves γ1 and γ2; see Figure 48.
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Figure 48. Immersed bigons do not exist: 1 of 2

Now, the preimage W̃ = p−1(W ) of the web W is a web in S̃0. Moreover, W̃ is in good

position with respect to
˜̂
λ. Since W is non-elliptic, so is W̃ . Indeed, a face D̃ of W̃ projects

to a face D of W . If D̃ had at most 4 sides, then so would D, violating non-ellipticity. Let〈
W̃
〉

be the global picture associated to W̃ . Note that the lifted curves γ̃1 and γ̃2 are in〈
W̃
〉

. Observe that it is possible for int(B̃) ∩
〈
W̃
〉
6= ∅ to be non-empty; see Figure 49.

However, by the no-switchbacks property, there are no closed curves of
〈
W̃
〉

in this interior.

The rest of the proof is similar to the proof of Proposition 19; see Figure 16. Here, the
web orientation plays a crucial role. Specifically, since only (locally) oppositely-oriented

(with respect to biangles) curves in the global picture
〈
W̃
〉

can intersect, it follows by the

no-switchbacks property that if a curve γ̃ enters the embedded bigon B̃ via a boundary edge
E, then γ̃ must leave through E as well. Consequently, there exists an inner-most embedded

bigon B̃′ ⊆ B̃ whose interior does not intersect
〈
W̃
〉

; see Figure 49. But then B̃′ corresponds

to a square-face D̃ in the lifted non-elliptic web W̃ , which is a contradiction. �

Definition 61. Consider a crossing shared-route SR for an ordered pair (γ1, γ2) of travelers
in 〈W 〉, which is open by Lemma 60.

We say that the source-end E of the shared-route SR is the unique end E of SR such that
the traveler γ1 enters the shared-route SR through the end E.

We say that the unique intersection point p in the crossing shared-route SR lies in the i-th
shared-route-biangle Bi, denoted p ∈SR Bi, i > 0, if γ1 crosses γ−12 (at the point p) inside
the i-th biangle through which γ1 travels after entering SR through the source-end E.
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For example, in Figure 46, the source-end E of SR is the end labeled L.
Also, in Figure 46, p is in the shared-route-biangle p ∈SR B2. Note that there is a unique

index i such that p ∈SR Bi. This definition, albeit somewhat clumsy, will be very important
later on. It is specially designed to circumvent the situation where Bi and Bj represent the
same biangle B on the surface for different indices i 6= j. For example, in Figure 46, even
if, say, B5 represented the same biangle B as B2, we would say p ∈SR B2 and p /∈SR B5.
Alternatively, one could think of this distinction at the level of the universal cover.

Figure 49. Immersed bigons do not exist: 2 of 2

7.5. Preparation: oriented shared-routes. As previously, let W be a web on S in good

position with respect to λ̂ such that its global picture (〈W 〉 , {xj0}) is based.
We say that a non-crossing shared-route SR for an ordered pair (γ1, γ2) of travelers in 〈W 〉

is left-oriented (resp. right-oriented) if for either of the travelers γ1 or γ2, call it γ, the other
traveler appears on the left (resp. right) of γ with respect to γ’s orientation; see Figure 47.

Definition 62. The web W is closed-left-oriented (resp. closed-right-oriented) if all of 〈W 〉’s
closed non-crossing shared-routes are left-oriented (resp. right-oriented); see Figure 47b.

Observe that W can always be replaced with a closed-left-oriented or closed-right-oriented
web by performing a sequence of global parallel-moves; see Figure 3.

We also want to define a notion of orientation for crossing shared-routes. Unlike for
non-crossing shared-routes, this will depend crucially on the ordering of the pair (γ1, γ2).

With this goal in mind, we say that a crossing shared-route SR for an ordered pair (γ1, γ2)
of travelers in 〈W 〉 is left-oriented (resp. right-oriented) if its source-end E is left-oriented
(resp. right-oriented) in the same sense as for non-crossing shared-routes; see Definition 61.

For example, the crossing shared-route shown in Figure 46 is left-oriented.

7.6. Proof of the main lemma: intersection points. We now begin the formal proof
of Main Lemma 53. Fix local webs {WT}T∈λ̂ and {W ′

T}T∈λ̂ in WT satisfying the hypotheses
of the main lemma, and let W and W ′ be the induced global webs obtained by the ladder
gluing construction. By applying global parallel-moves, we may assume that both W and W ′

are closed-left-oriented, say. Assume that the global pictures (〈W 〉 , {xj0}) and (〈W ′〉 , {x′j0 })
are based, and that the base points xj0 and x′j0 satisfy the conclusion of the Fellow-Traveler
Lemma 57. Throughout, for each traveler γ in 〈W 〉 we denote by γ′ the corresponding
traveler in 〈W ′〉 as provided by the Fellow-Traveler Lemma.

Let P (resp. P′) denote the set of intersection points p of all travelers in 〈W 〉 (resp. 〈W ′〉).
Recall, by Lemma 60, that crossing shared-routes SR have a unique intersection point p.
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Definition 63. Let p ∈ P. We define the left-oriented crossing shared-route generated by p,
denoted SR(p), to be the left-oriented crossing shared-route in 〈W 〉 whose unique intersection
point is p. (Technically speaking, the shared-route SR(p) = {(E1

ik
)k∈K , ((E

2)−1jk )k∈K} is only

uniquely determined after choosing the two edges E1
i0

= (E2)−1j0 assigned by 0 ∈ K.)

Corollary 64. There is a natural bijection ϕ : P
∼→ P′. We write p′ = ϕ(p).

Proof. Consider the left-oriented crossing shared-route SR(p) in 〈W 〉 generated by the inter-
section point p. By the Fellow-Traveler Lemma, there is a corresponding shared-route SR′

in 〈W ′〉, which is necessarily open; see Figure 46. Moreover, the ends E′ of SR′ have orien-
tations matching those of the ends E of SR(p). It follows that SR′ is crossing. Its unique
intersection point p′ is the desired image of p; see Figure 50. (Notice that since SR(p) is
left-oriented, so is SR′ = SR′(p′).) �

Figure 50. Natural one-to-one correspondence between intersection points

Recall that a crossing shared-route SR for the ordered pair (γ1, γ2) comes with an ordering
of the shared-route-biangles Bi appearing along γ1’s route, starting from the source-end E;
see Definition 61. If p and p′ are intersection points as in Corollary 64 and its proof, then
the crossing shared-routes SR(p) and SR′(p′) have the same associated sequence of shared-
route-biangles Bi. However, if p ∈SR(p) Bi and p′ ∈SR′(p′) Bj (see again Definition 61), it
need not be true that i = j; see Figure 50.

Definition 65. We say that two corresponding intersection points p and p′, as in Corollary
64, lie in the same shared-route-biangle if there is an index i such that p ∈SR(p) Bi 3SR′(p′) p′,
where the sequence of shared-route-biangles {Bi} is defined with respect to the left-oriented
crossing shared-routes SR(p) and SR′(p′) generated by p and p′, respectively.

For example, in Figure 50, even if it were true that B0 and B2 represented the same biangle
B on the surface, we would not say that p and p′ lie in the same shared-route-biangle.

Lemma 66. There is a sequence of modified H-moves applicable to the web W and a sequence
of modified H-moves applicable to W ′, after which the bijection P ↔ P′ from Corollary
64 satisfies the property that each intersection point p in the global picture 〈W 〉 and its
corresponding intersection point p′ in 〈W ′〉 lie in the same shared-route-biangle Bi.

Before giving the proof, we first reduce the proof of the main lemma to that of Lemma 66.
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7.7. Proof of the main lemma: finishing the argument. Assuming corresponding
intersection points lie in the same shared-route-biangle, we claim that we are done, W = W ′.

By the proof of the Fellow-Traveler Lemma, not only is there a natural bijection of travelers

γ ↔ γ′, moreover for each edge E of λ̂ there is a natural bijection of oriented strands s↔ s′

of 〈W 〉 and 〈W ′〉, respectively, on E. This satisfies that s lies in γ if and only if s′ lies in γ′,
and s is an out-strand (resp. in-strand) if and only if s′ is an out-strand (resp. in-strand).

Fix an edge E adjacent to a triangle T. Let S = (si) be the full sequence of oriented
strands on the edge E measured from left to right, say, with respect to T. In particular,
both in- and out-strands occur in S. Similarly, define S ′ = (s′i).

Lemma 67. Assuming corresponding intersection points lie in the same shared-route-biangle,

we have that S = S ′, for every edge E of λ̂; see Definition 65.

Proof of Main Lemma 53. By Lemma 66, we may assume that corresponding intersection
points lie in the same shared-route-biangle. Initially, the webs W and W ′ differ over triangles
T by permutations of corner arcs. However, we gather from Lemma 67 that they in fact
have the same orderings of corner arcs in each triangle T. Also, since the ladder-webs in
the biangles B are uniquely determined by their boundary-edge sequences, it follows that
W and W ′ have the same ladder-web in each biangle B; see Proposition 19. �

Proof of Lemma 67. It suffices to prove the following statement.

Claim 68. If sout is an out-strand of S, and if sin is an in-strand of S, then

sout lies to the left of sin ⇐⇒ s′out lies to the left of s′in.

See Figure 51. To prove the forward direction of the claim, suppose otherwise, that is
suppose s′out lies to the right of s′in. Let SR (resp. SR′) be a shared-route containing
sout and sin (resp. s′out and s′in). By the Fellow-Traveler Lemma, SR is crossing (resp.
open/closed non-crossing) if and only if SR′ is crossing (resp. open/closed non-crossing).
In addition, again by the Fellow-Traveler Lemma, in the case that SR is open, then the
orientations of the ends E of SR agree with those of the ends E′ of SR′.

Figure 51. Identical oriented strand-sequences on each edge

Suppose SR is crossing. Then we may assume that SR and SR′ have been chosen as the
left-oriented crossing shared-routes generated by their unique intersection points p and p′,
respectively; see Definition 63. In particular, they are open by Lemma 60. By hypothesis, p
and p′ lie in the same shared-route-biangle, call it Bi, that is p ∈SR(p) Bi 3SR′(p′) p′. This
immediately leads to a contradiction, specifically, that each traveler in 〈W ′〉 making up the
shared-route SR′(p′) is oriented in two directions at once; see Figure 52.

Similarly, if SR and SR′ are non-crossing, then the contradiction is that one of the shared-
routes is left-oriented, and the other is right-oriented; see §7.5. Indeed, in the open case
(Figure 47a), this violates that their ends have matching orientations, and in the closed case
(Figure 47b), this violates that we are assuming that both W and W ′ are closed-left-oriented;
see the beginning of §7.6.

The backward direction of the claim is proved by symmetry. �



44 DANIEL C. DOUGLAS AND ZHE SUN

(a) Case 1 (b) Case 2

Figure 52. Proof of Claim 68, by contradiction

7.8. Proof of the main lemma: proof of Lemma 66. We have reduced the proof of the
main lemma to proving Lemma 66. We begin by laying some groundwork.

Let B be a biangle, and let PB = P ∩B be the set of intersection points of 〈W 〉 in B.
Let E be a boundary edge of the biangle B, and let B1 and B2 be the two biangles opposite
B across the triangle T adjacent to the edge E; see Figure 53.

Let p ∈ PB be an intersection point in B of two travelers γ1 and γ2 in 〈W 〉. We denote by
γ1(p, E) the half-segment of γ1 connecting p to E. Define similarly γ2(p, E). The pyramid
∆(p, E) bounded by p and E is the triangular subset of the biangle B bordered by the
boundary edge E and the two half-segments γ1(p, E) and γ2(p, E); see Figure 53.

Let P ⊆ PB be a subset of intersection points. We call P saturated with respect to E if

PB ∩

(⋃
p∈P

∆(p, E)

)
= P ⊆ PB.

In other words, there are no intersection points in the pyramids ∆(p, E) that are not in P .
An intersection point p ∈ PB is movable with respect to E if, after crossing E, the half-

segments γ1(p, E) and γ2(p, E) extend “parallel” to each other across the adjacent triangle
T, thus landing in the same opposite biangle, either B1 or B2; see Figure 53, where on the
left, six points are movable, in the middle, four points are movable, and on the right, none
are movable. We say a subset P ⊆ PB is movable with respect to E if each p ∈ P is movable.

Claim 69. Let P ⊆ PB be a subset of intersection points that is saturated and movable with
respect to E. Then, there exists a sequence W = W0, W1, . . . ,Wn of webs and a sequence
P−1 = ∅ ( P0 ( P1 ( · · · ( Pn−1 = P ⊆ PB of intersection points of 〈W 〉 in the biangle B,
such that Wi+1 is obtained from Wi by a finite number of modified H-moves in such a way
that the points Pi−Pi−1 are carried into the two biangles B1 ∪B2 and no other intersection
points are moved. After this process is complete, P has been moved into B1 ∪B2 and all of
the other intersection points P− P remain un-moved in their original biangles.

The proof of the claim will use the upcoming fact. First, we give a definition.
We say that p ∈ PB is immediately movable with respect to E if it is movable and there are

no other intersection points in the pyramid ∆(p, E), that is ∆(p, E)∩PB = {p}. Equivalently,
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Int(∆(p, E))∩ 〈W 〉 = ∅, hence a modified H-move can be applied to carry p across the edge
E, across the adjacent triangle T, and into one of the opposite biangles B1 or B2; see Figure
53, where on the left and in the middle, two and three points are immediately movable.

The following statement is immediate from the ladder-web structure in the biangle B.

Fact 70 (Nested pyramids). If q ∈ PB ∩ ∆(p, E) is an intersection point in the pyramid
∆(p, E), then ∆(q, E) ⊆ ∆(p, E). Consequently, if p is movable, then so is q. Therefore, if
p is movable, then there exists an inner-most q in ∆(p, E) that is immediately movable. �

Proof of Claim 69. By induction, assume Wi and Pi−1 are given. At this stage, the intersec-
tion points Pi−1 have been moved into B1 ∪B2, and the intersection points P − Pi−1 6= ∅
are still in B. Note that, since P is saturated in 〈W 〉, P − Pi−1 is saturated in 〈Wi〉, that is

P − Pi−1 = P
(i)
B ∩

(
∪p∈P−Pi−1

∆(i)(p, E)
)
⊆ 〈Wi〉 .

Since by hypothesis each p ∈ P − Pi−1 is movable, by Fact 70 the subset

Qi = {q ∈ P
(i)
B ∩ (∪p∈P−Pi−1

∆(i)(p, E)); q is immediately movable} 6= ∅,
is non-empty. In particular, Qi ⊆ P − Pi−1. We can thus apply modified H-moves to Wi to
move the intersection points Qi from the biangle B into the two biangles B1 ∪B2, yielding
the new web Wi+1. Putting Pi = Pi−1 ∪Qi finishes the induction step; see Figure 53. �

Figure 53. Pushing a saturated movable set P out of the biangle into adja-
cent biangles

The following statement is immediate from Fact 70.

Fact 71 (Saturation of a subset of intersection points). For any subset Q ⊆ PB, the set

P = PB ∩

(⋃
q∈Q

∆(q, E)

)
⊆ PB,

is saturated with respect to E. �

We continue moving toward the proof of Lemma 66. We are now dealing with two webs
W and W ′. Let E, T, B, B1, B2 be as before. We begin by setting some notation.

Given a subset P ⊆ PB, put

P ′(P,E) = P′B ∩

 ⋃
{p∈P ; p and p′ lie in the same shared-route-biangle}

∆(p′, E)

 ⊆ P′B.



46 DANIEL C. DOUGLAS AND ZHE SUN

In other words, P ′(P,E) consists of the points in P′B lying in the pyramids ∆(p′, E) generated
by those intersection points p′ in P′B whose corresponding intersection point p lies in the same
shared-route-biangle as p′ and satisfies p ∈ P . Symmetrically, given a subset P ′ ⊆ P′B, put

P (P ′, E) = PB ∩

 ⋃
{p′∈P ′; p′ and p lie in the same shared-route-biangle}

∆(p, E)

 ⊆ PB.

Note that (1) the above shared-route-biangles necessarily represent the biangle B, and (2)
generally, either of the sets P ′(P,E) or P (P ′, E) may be empty.

Fact 72. The union of movable sets is movable. Let P ⊆ PB (resp. P ′ ⊆ P′B) be movable
with respect to E. Then P ′(P,E) ⊆ P′B (resp. P (P ′, E) ⊆ PB) is movable with respect to E.

Proof. The first statement is obvious. For the second, if p ∈ P is movable and if p′ lies in the
same shared-route-biangle as p, then, by the Fellow-Traveler Lemma, p′ is movable. By Fact
70, P′B ∩∆(p′, E) ⊆ P′B is movable. Thus, by the first statement, P ′(P,E) is movable. �

Proof of Lemma 66. Step 1. Let N equal the cardinality N = |P| = |P′|. Define

N(W,W ′) = |{p ∈ P; p and p′ lie in the same shared-route-biangle}| ∈ Z>0.

If N(W,W ′) = N , then we are done. Assume N(W,W ′) < N .
Step 2. Let E, T, B, B1, B2 be as above.

Claim 73. Let p0 ∈ PB be movable with respect to E. Then, there exist subsets p0 ∈ P (p0) ⊆
PB and P ′(p0) ⊆ P′B, and webs W1 and W ′

1 obtained by applying finitely many modified H-
moves to W and W ′, respectively, such that, in 〈W1〉 and 〈W ′

1〉 the subsets P (p0) and P ′(p0)
have been moved into B1 ∪B2, and P− P (p0) and P′ − P ′(p0) are un-moved. Moreover,

(∗) N > N(W1,W
′
1) > N(W,W ′) ∈ Z>0.

We prove the claim. Our main task is to define two subsets P (p0) ⊆ PB and P ′(p0) ⊆ P′B
that are saturated and movable with respect to E, satisfying the property that

p ∈ P (p0), p and p′ lie in the same shared-route-biangle

⇐⇒(∗∗)
p′ ∈ P ′(p0), p′ and p lie in the same shared-route-biangle.

We do this simultaneously by a kind of “ping-pong” procedure.
Put P1 = PB∩∆(p0, E) and P ′1 = P ′(P1, E) ⊆ P′B. Having defined Pi ⊆ PB and P ′i ⊆ P′B,

put Pi+1 = Pi ∪ P (P ′i , E) and P ′i+1 = P ′i ∪ P ′(Pi+1, E). This defines two nested infinite
sequences P1 ⊆ P2 ⊆ · · · ⊆ PB and P ′1 ⊆ P ′2 ⊆ · · · ⊆ P′B. Since PB and P′B are finite, these
sequences stabilize: Pi = Pi+1 and P ′i = P ′i+1 for all i > i0. Set P (p0) = Pi0 and P ′(p0) = P ′i0 .

Note that, by construction, there exists Q ⊆ PB and Q′ ⊆ P′B such that

P (p0) = PB ∩

(⋃
q∈Q

∆(q, E)

)
and P ′(p0) = P′B ∩

( ⋃
q′∈Q′

∆(q′, E)

)
.

By Fact 71, P (p0) and P ′(p0) are saturated with respect to E.
Observe also that since p0 ∈ PB is movable by hypothesis, P1 = PB ∩∆(p0, E) is movable

by Fact 70, hence P (p0) ⊆ PB and P ′(p0) ⊆ P′B are movable by Fact 72.
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To check Equation (∗∗), by symmetry it suffices to check one direction. Assume p ∈ P (p0)
and that p and p′ lie in the same shared-route-biangle. Let i be such that p ∈ Pi. Then

p′ ∈ P′B ∩∆(p′, E) ⊆ P ′(Pi, E) ⊆ P ′i ⊆ P ′(p0).

To prove Equation (∗), we use Claim 69 to move the saturated and movable sets P (p0) and
P ′(p0), and only these sets, into the opposite biangles B1 ∪B2 via finitely many modified
H-moves applied to W and W ′, yielding the desired webs W1 and W ′

1. If p ∈ P (p0) moves
into the biangle B1 (resp. B2), and if p′ lies in the same shared-route-biangle as p, so that
p′ ∈ P ′(p0) by Equation (∗∗), then by the Fellow-Traveler Lemma p′ also moves into the
biangle B1 (resp. B2), and similarly if the roles of p and p′ are reversed.

Step 3. To finish the proof, assume that p and p′ do not lie in the same shared-route-
biangle. Then it makes sense to talk about which of p or p′ is farthest away from the source-
end E or E′ of the left-oriented crossing shared-route SR(p) or SR′(p′) which it generates,
respectively. More precisely, if p ∈SR(p) Bi and p′ ∈SR′(p′) Bj, i, j > 0, then i 6= j and p
being farthest away is equivalent to i > j.

Assume p is farthest away, so that i > j. By applying Claim 73, we can push p one step
closer to the source-end E, that is we can push p into Bi−1. For this step, p′ either (1)
stays in Bj, (2) is pushed into Bj−1, or (3) is pushed into Bj+1; see Figure 54. Notice that,
crucially, by the no-switchbacks property, case (3) can only happen if j < i− 1. Also, again
by Claim 73, as a result of this step the number N(W,W ′) only increases or stays the same.

After multiple applications of this step, since the indices i,j are bounded below, eventually
p and p′ fall into the same shared-route-biangle, at which point N(W,W ′) strictly increases.
Repeating this procedure for each pair p and p′ completes the proof of Lemma 66. �

Figure 54. Moving intersection points into the same shared-route-biangle
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