I2G

INTERGEO

Deliverable N2: D3.3

Common File Format v1
The INTERGEO Consortium
July 2008

Version: version of August 1, 2008 9:00 A.M.

Main Authors:

Maxim Hendriks (Technische Universiteit Eindhoven)
Ulrich ~ Kortenkamp (University of Education
Schwibisch Gmiind & Cinderella)

Yves Kreis (Université du Luxembourg & GeoGebra)
Daniel Marques (Maths for More & WIRIS)

Project co-funded by the European Community
under the eContentplus Programme

Deliverable D3.3
12G Common File Format v1

12G

INTERGEO

Project ref.no.

IST-507826

Project title

INTERGEO - Interoperable Interactive Geometry for Eu-
rope

Deliverable status

submitted

Contractual date of delivery

M10 — July 2008

Actual date of delivery

July 31t 2008

Deliverable title

Common File Format v1

Type

Presentation

Status & version

submited version of August 1, 2008 9:00 A.M.

Number of pages

34

WP contributing to the de-
liverable

WP3

‘WP /Task responsible

Daniel Marques

Authors

René Grothmann (Katholische Universitdt Eichstétt-
Ingolstadt & C.a.R.), Maxim Hendriks (Technische Uni-
versiteit Eindhoven), Markus Hohenwarter (Florida At-
lantic University & GeoGebra), Ulrich Kortenkamp
(University of Education Schwébisch Gmiind & Cin-
derella), Yves Kreis (Université du Luxembourg & Ge-
oGebra), Jean-Marie Laborde (Cabrilog & Cabri), Paul
Libbrecht (DFKI GmbH), Daniel Marques (Maths for
More & WIRIS), Ingo Schandeler (Université du Lux-
embourg & GeoGebra)

EC Project Officer

Spyridon Pilos

Keywords dynamic geometric system, file format, openmath, stan-
dard
License This document is available under the license Creative

Commons Attributions Sharealike Germany 2.5 [Cre08]

©INTERGEO Consortium 2008

Page 2 of 34

Deliverable D3.3
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.)

I2G

INTERGEO

Contents

1 Executive Summary

2 Introduction

2.1 The three layers of the file format specification
2.2 Design decisions: Constraints versus Constructions

2.3 Design Decisions: OpenMath

3 The container

4 intergeo.xml

4.1 Construction
4.2 Elements
4.2.1 Additional elements restrictions
4.3 Constraints L
4.3.1 Additional constraints restrictions
4.4 Display
4.5 Atomicwvalueso
4.5.1 Scalars.
4.5.2 Double numbers oL
4.5.3 Complex numbers
4.5.4 References toobjects

4.5.5 Output references to objects

5 Symbol list

6 First (partial) implementations

6.1 Saving L
6.2 Opening L
6.3 Testing L

©INTERGEO Consortium 2008

Page 3 of 34

Deliverable D3.3
12G Common File Format v1

12G

INTERGEO

7 Future Work and Request For Comments

7.1 More Elements and Polymorphism
7.2 Circle Coordinates
7.3 Ambiguity Resolving
7.4 Styling Information oL
7.5 Functions and Scripting oL
7.6 Mathematical Typesetting
7.7 Sending Commands to Constructions
7.8 Macro Constructions L.
7.9 Number Representation
7.10 Acyclicity of Construction Dependances
7.11 Library Support
7.12 Higher Dimensional Geometry

Appendix A : Intergeo file format OpenMath symbols

A.1 Theelements part
A.2 The construction part
A3 Thedisplay part

Appendix B : Testing (intergeo.xml)

Bibliography

©INTERGEO Consortium 2008

24

Page 4 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

1 Executive Summary

The present document is the specification of the first version of the Intergeo file format.
The specification is the result of intensive collaboration between Dynamic Geometric
System (DGS) software developers and experts. During a period of 24 months we expect
substantial modifications of this specification, provided that some implementations will
be done by DGS developers and a lot of practical issues will arise.

The Intergeo file format aims at the interchange of content between DGS’s. It is on our
goal to create a file format that could serve as a standard in the DGS industry

The introduction chapter justifies the objectives, the motivation and the expected success
of the Intergeo file format. It is specially important to note that among the authors of the
Intergeo file format are some of the leading DGS’s manufacturers. In the introduction
it is also explained how the format is split into three specifications: the container, the
file intergeo.xml and the symbol list.

The container specification explains how all necessary files used to define a construction
are bundled into a single ZIP file. It also contains the important file intergeo.xml.

The intergeo.xml file is the core of the format and is explained in detail. It comprises
three differentiated parts. The elements part declares all geometric objects. The con-
straints part provides the relationships of the objects and, thus, defines the dynamic
(or interactive) behaviour. The display part describes the styles and how the geometric
objects are drawn. The XML schema that should validate any intergeo.xml file is pre-
sented with the skeleton of the elements, constraints and display part. The children of
the elements, constraints and display part can be specified with their respective XML
schema fragments. However, these fragments are not written in this document because
they can be generated dynamically from the list of symbols. Thus, different templates
are introduced according to the elements, constraints and display parts. Some additional
restrictions are described without using XML schema.

The separation of the possible geometric elements and constraints from the file format
implementation is done through the so called list of symbols which is a collection of
OpenMath symbols classified in Content Dictionaries. Some generalities about the list
of symbols are presented. The complete list of symbols is included in Appendix A. Such
list is important because choosing correctly its content is crucial to achieve the successful
interoperability between all DGS’s.

©INTERGEO Consortium 2008 Page 5 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

2 Introduction

Intergeo file format is a file format designed to describe any construction created with
a Dynamic Geometry System (DGS). As a first application, the format can be used to
interchange content between geometric software. At present, the format is restricted to
the geometry in the plane, although it does not seem difficult to extend it, in the future,
to the space.

Dynamic Geometry Systems (DGS) is a kind of software used to experiment with geom-
etry. A construction, a drawing with geometric elements, is displayed to the user. But
the most exciting part of a DGS is that it is possible to move some of the elements with
the mouse pointer and the whole construction is recomputed while keeping predefined
geometric relationships, which are the object of study. Although the origin of DGS is
the geometry, they can be applied to the study of other areas of mathematics or even
subjects like, for example, physics.

A wide variety of DGS exist. Before this project, each system used incompatible pro-
prietary file formats to store its data. Thus, most of the DGS makers have joined to
provide a common file format that will be adopted either in the core of the systems or
just as a way to interchange content.

The file format proposed in this document aims to be the convergence of the common
features of the current DGS together with the vision of future developments and the
opinion of external experts. In addition, we state the following objectives:

e The resulting file format will be adopted by the manufacturers that are authors of
this specification.

e The files that satisfy this specification should be interchangeable between the dif-
ferent DGS.

e The format will be based on modern technologies.

e The format will be extensible. In particular, this will allow capturing the flavour
of the different DGS.

Providing a file format for DGS is a task related, but not equal, to express geometric
constructions in general. However, some additional issues arise. For example, styling
(colours, point sizes, etc.) and the capability of moving the objects with the mouse
(interactivity) are very important for a DGS while they have not sense at all in geom-
etry as a theoretical mathematical discipline. We conclude remarking that traditional
techniques used to describe a geometry figure are not always suitable for a DGS.

©INTERGEO Consortium 2008 Page 6 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

2.1 The three layers of the file format specification

Intergeo file format specification is split into three layers. Each layer is different in nature
and can exist by itself.

The following diagram shows the structure of the layers

container

intergeo.xml

symbol list

Figure 1: Specification structure in layers

The container layer specification describes the container as a ZIP file. This means
that the container is a bundle of compressed files. It contains the important file
intergeo.xml and other files like media (images, audio, video), data, text and a
preview of the construction.

The intergeo.xml layer specification describes which rules must follow an XML file
to be a valid DGS construction. Such file is self-contained except for media files
that are located in the container. An XML-schema is provided to help specifying
and validating any construction. This layer specifies the general structure of the
file, how the different statements are constructed from the symbols and how the
most atomic values like (real or complex) numbers, variables, text and formulas
have to be encoded. However, the list of symbols that is the origin of the statements
is not part of this layer.

The symbol list layer is an OpenMath collection of Content Dictionaries. OpenMath
is a standard used to express mathematical content through a series of functions,
relations and constants called symbols which are specified with Content Dictionar-
ies (CD). Each CD is an XML file that collects the description of a set of cohesive
symbols. This part of the specification is an exhaustive enumeration of valid geo-
metric elements, constraints and styles that can be used to generate a construction.
Although the symbols have been chosen to be part of a DGS construction, actually,
they could live independently and be used for other purposes. Another difference
with the intergeo.xml specification is that DGS’s are free to create their own
extensions (at the expense of losing interoperability with other systems).

2.2 Design decisions: Constraints versus Constructions

The general framework was clear from the outset: to design a semantically rich format,
that could be interpreted by at least all DGS in the consortium. But also possibly by

©INTERGEO Consortium 2008 Page 7 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

others, and maybe by other types of programs as well, for example computer algebra
systems or proof assistants. One main design decision in this respect consists of the
choice of constructions, as opposed to constraints. We will describe this in more detail
now.

DGS deal with sets of geometrical objects that have certain relations. We call such a set
of objects with given relations a figure. We conceive of these objects in some underlying
space, for example the euclidean plane. In principle, if nothing else is said about them,
objects can move around freely in this space. The relations then specify constraints on
the movement of these objects.

Example 1 Two points P and @, together with a line l; there is the following con-
straints:

line 1 is incident to both points P and Q.

Example 2 A circle I', a point P, a line | and the constraints

P isonl
l is tangent to T
the distance of P to the center of I is 10.

We can make the simple observation that the constraints do not determine the positions
of the objects uniquely. This causes multiple problems that lie at the heart of dynamic
geometry.

First there is the problem of how to create an instance of the figure. (We say this has
to do with the static aspect of the figure.) In example 1, the points P and @ could still
lie anywhere on the line [as it stands. For any instance, we must specify where [, P
and @ should be. But once we have specified one, the other two are not completely free
anymore. This particular example is not hard. Example 2, although more difficult, is
still doable. But in general, it is very difficult to give any particular solution for a set of
constraints. There is not even a quick method to decide whether there are any instances:
a set of constraints could be too restrictive and leave none.

Second, there is the dynamic behaviour of a figure, caused by the freedom still left by the
constraints. In example 1, what should the user be able to move? May the line be picked
up and translated or rotated in its entirety, the points being translated and rotated with
it? Can the user only move one of the two points, the line being adjusted accordingly?
Constraints of a strictly classical geometrical nature, such as the ones stated above, do
not say anything about this behaviour. For the approach of a DGS, this is not enough.

A natural way to shed light on both these problems is a more precise specification of how
the objects depend on each other. We could stipulate first of all which objects are free,

©INTERGEO Consortium 2008 Page 8 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

meaning that they can be varied over the whole range of possibilities in the underlying
space (think of the plane) by the user. We would then proceed step by step saying which
objects depend only on the free objects, which ones depend only on these new objects
and the free objects, etcetera. Such a specification is called a construction. It allows for
an algorithm to rapidly create instances or decide that there are none. It also enables
a DGS to give more consistent dynamic behaviour: objects are only movable insofar
as they still have some degrees of freedom left if the objects they depend on are kept
fixed. The behaviour for all different cases (e.g. a line through a fixed point) can be
decided in advance. Other objects dependant on the object being varied have to change
as well, and this still leads to decision problems, but they are less severe. We could give
a construction for example 1 as follows:

Example 3 Two points P and Q, together with a line [, and the following construction:

free_point(P)
line_through_point(l,P)
point_on_line(Q,l)

The line [would then depend on where P is placed. That point could be varied freely.
The line could then be rotated around P (and @ would most logically rotate with it), and
while P and [are kept fixed, @) could still slide over the line. Note that such information
could not be gleaned from the figure.

It thus seems like a figure might be too general to be practical, and we might be better
of with a construction. We therefore decided to go with constructions. This decision
implies less interoperability with constraint-based systems, since some of their resources
will not be encodable into the format. But it ensures that construction-based DGS will
be able to interpret the resources, which they might not if we used figures. Indeed,
although there are systems like Geometry Expressions [Sal08] that take a constraint-
based approach, and some systems like Geometer’s Sketchpad [KCP08] support it, most
systems only use constructions.

Another effect of the decision is the explosion of keywords. We have to distinguish be-
tween “line_through_point” and “point_on_line”. This is in sharp contrast to figures,
where one relation “incident” would suffice, as can be seen from the plangeo Content
Dictionaries. In general, if there are n different types of objects, the construction ap-
proach now forces n? different types of incidence on us. This means a more bloated
specification of the file format. On the other hand, it is easier for software developers to
parse constructions, so it saves trouble there.

2.3 Design Decisions: OpenMath

As stated in the Description of Work, OpenMath will be used for the file format. The
advantage of using OpenMath as opposed to a self-chosen XML-format lies in the fact

©INTERGEO Consortium 2008 Page 9 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

that the use of a Content Dictionary makes for a flexible, open, and reusable standard.
First of all, the use of OpenMath enables INTERGEO to use other Content Dictionaries
already in existence, so it saves development time. Second, other kinds of software that
want to use the format in the future can combine it with other Content Dictionaries to
enrich its expressive power.

We started looking at the plangeo Content Dictionaries already present on the Open-
Math platform (http://www.openmath.org/). It turned out that they were aimed more
at a constraint-based approach, and the WP3 members decided this was not the road
they wanted to take, as elaborated above. The problems having to do with OpenMath
that remain are about details of implementation.

A list of all the OpenMath symbols defined sofar is listed in appendix A.

©INTERGEO Consortium 2008 Page 10 of 34

http://www.openmath.org/

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

3 The container

The container is the topmost structure of Intergeo file format. It is composed of a
collection of files stored as a directory hierarchy in a ZIP file format.

The container comprises the construction description as well as other data, for example,
media (images, sound, video, ...), previews (PDF, SVG or PNG), metadata or private
data/legacy file formats that some software may keep, among other information. Thus,
instead of encoding everything in a single XML file it is more natural to store all such
information in a standard format like a ZIP package and, in addition, benefit of the
compression.

The proposed directory structure is the following

construction/ mandatory
construction/intergeo.xml mandatory
construction/preview.pdf optional
construction/preview.svg optional
construction/preview.png optional
metadata/ optional
metadata/i2g-lom.xml optional
resources/ optional
resources/<image-files> optional
resources/<audio-files> optional
resources/<video-files> optional
resources/<data-files> optional
resources/<text-files> optional
private/ optional
private/<domain-name>/ optional
private/<domain-name>/<files> | optional

Figure 2: Containter structure

The construction folder is always mandatory and contains the important file intergeo . xm1.
The specification does not enforce any preview format, however all files should be named
preview.*. Files with names other than intergeo.xml or preview.* are not allowed in
this part. Thus, any auxiliary file should be placed in the resources folder.

The whole construction can contain optionally metadata. We do not impose any specific
format but we recommend including a file named i2g-lom.xml with the metadata as
specified in the document [HLCMDOS].

The resources directory contains any media or data file needed by the intergeo.xml
or preview files. Constructions must be possible to open with solely the intergeo.xml
and the resource files. Inside the resources folder it is permitted to add any hierarchy

©INTERGEO Consortium 2008 Page 11 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

of subdirectories. However, we recommend placing the images, audio, video, data and
text under the folders images, audio, video, data and text, respectively. The valid
file formats for the resources depend on their usage. It is not the responsibility of the
container specification to impose any specific format type for the media.

DGS’s are free to store any file at within their private directory and ignore completely
the private directories belonging to other systems. Note that if a file is referred from
the intergeo.xml it should be always placed in the resources directory. We strongly
recommend placing all files inside a directory name based on the domain name of an
organization. For example, if my organization has the domain MyOrg.net, the recom-
mended directory name would be net.myorg (note the use of lowercase). This is done in
order to distinguish my private directory from the private directories of other software
developers.

©INTERGEO Consortium 2008 Page 12 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

4 intergeo.xml

This is an XML file that contains the full description of the construction. The file must
be always named and placed at construction/intergeo.xml when it appears inside
the container. Except for other auxiliary media files, this file is always self contained.

This means that this file alone when do not depends on media files might be readable
by DGS’s.

There are three main distinct parts:

1. The elements part is a static view of all objects. The description of the objects
in this part is minimal; it only indicates how the objects are constructed and
displayed (without styling).

2. The constraints part explains the geometric relations between objects. Some
relations are purely algorithmic (an object can be constructed directly from existing
ones) while others are constraint based (an object should satisfy a given property
but, at the same time, it keeps a certain degree of freedom). Thus, the objective
of this part is describing how some figures are recomputed when points (or other
objects) are moved by the mouse pointer.

3. The display part comprises information necessary to render the objects. The
definition of the plot area and styles are its objectives.

The splitting of data into these parts has some advantages. For example, it is possible
to have more than one view or display for the same set of elements and constraints.

Because intergeo.xml is an XML file it is important to provide an XML schema (a file,
also XML, that describes the structure of a family of XML files). There is not one single
schema. Instead, there is one schema for each set of geometric symbols. The schema is
composed of a static part which defines the general structure of the XML file and the
atoms (leaves of the XML-tree). This static part is the same for all XML schemas. The
dynamic part is generated automatically from the list of geometric symbols.

(Intergeo File Format XML schema

values

General structure and atomic Static part

Elements, constraints and
display

Dynamic part

Figure 3: Intergeo file format XML schema

©INTERGEO Consortium 2008 Page 13 of 34

Deliverable D3.3 I 2G
12G Common File Format v1 INTERGEO

4.1 Construction

The construction is the root element of the intergeo.xml file. The schema fragment is
the following

<xs:element name="construction”>
<xs:complexType>
<xs:sequence>
<xs:element ref="elements” />
<xs:element ref="constraints” />
<xs:element ref="display” minOccurs="0"
maxOccurs="unbounded” />
</xs:sequence>
</xs:complexType>
</xs:element>

and an example is

<construction>
<elements>

</elements>
<constraints>

</constraints>
<display>

</display>
</construction>
4.2 Elements
The <elements> element comprises the enumeration of objects that will be part of the

construction. They will be often geometric objects like points, lines, circles, ... But it
can hold also any object that can be drawn like images, slider bars, buttons, etc.

<xs:element name="elements”>
<xs:complexType>
<xs:choice>
<!—— here goes the list of available elements —>
<xs:element name="point” />

</xs:choice>
</xs:complexType>

©INTERGEO Consortium 2008 Page 14 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

‘</xs:element> ‘

The previous schema fragment should be filled with all elements specified in the elements
part of the symbols list.

The schema for each element has the form

<xs:element name=element—name>
<xs:complexType>
<xs:sequence>
enumeration—of—arguments
</xs:sequence>
</xs:complexType>
<xs:attribute name="id” type="xs:Name”
use="required” />
</xs:element>

For example, for the point with homogeneous or euclidean coordinates:

<xs:element name="point”>
<xs:complexType>
<xs:choice>
<xs:element name="homogeneous_coordinates” />
<xs:element name="euclidean_coordinates” />
</xs:choice>
<xs:attribute name="id” type="xs:Name”
use="required” />
</xs:complexType>
</xs:element>

And an extra definition for homogeneous_coordinates is needed:

<xs:element name="homogeneous_coordinates”>
<xs:complexType>
<xs:sequence>
<xs:group ref="scalar” />
<xs:group ref="scalar” />
<xs:group ref="scalar” />
</xs:sequence>
</xs:complexType>
</xs:element>

Note that both point and homogeneous_coordinates are specified with Content Dictio-
naries and the atomic elements scalar at the end of this chapter.

An example of the elements part is

©INTERGEO Consortium 2008 Page 15 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

<elements>
<point id="A">
<homogeneous_coordinates>
<double>3.55</double>
<double>—4</double>
<double>0</double>
</homogeneous_coordinates>
</point>
</elements>

4.2.1 Additional elements restrictions

There are other restrictions that cannot be expressed with an XML schema and are
described here.

Unique identifiers restriction. All values of the id attribute are used to identify
the geometric objects and they must be used only once (unique identifiers).

Only constants allowed restriction. A declaration in this part is not allowed to refer
to other objects. For example, each point needs coordinates and an XML coordinates
element must appear as its child. Thus, scalars must be explicitly instantiated as real or
complex floating numbers and cannot be replaced by variables or expressions pending
to be evaluated.

Elements symbols restriction. Symbols are declared to be in the elements, the
constraints or in the display part. Only symbols declared to be in the elements part can
appear in the elements part.

4.3 Constraints

The <constraints> describes the relations between objects. Sometimes this relation is
just a description of how an object is to be built and other times it explains how the
object is constrained and partially free movable.

The schema is quite similar to the elements part:

<xs:element name="constraints”>
<xs:complexType>
<xs:choice>
<!— here goes the list of awvailable
constraints —>

©INTERGEO Consortium 2008 Page 16 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

<xs:element name="line_through_two_points” />

</xs:choice>
</xs:complexType>
</xs:element>

The list of available constraints is specified with Content Dictionaries. The schema for
each constraint has the form:

<xs:element name=constraint—name>
<xs:complexType>
<xs:sequence>
enumeration—of—arguments
</xs:sequence>
</xs:complexType>
</xs:element>

For example, for the line_trough two_points constraint the schema is:

<xs:element name="line_through_two_points”>
<xs:complexType>
<xs:sequence>
<xs:element name="line”
type="output—reference” />
<xs:element name="point” type="reference” />
<xs:element name="point” type="reference” />
</xs:sequence>
</xs:complexType>
</xs:element>

where output-reference and reference are defined below and are specified to act as
references to objects using their id’s. Example

<constraints>
<line_through_two_points>
<line out="true”>l</line>
<point>A</point>
<point>B</point>
</line_through_two_points>
</constraints>

4.3.1 Additional constraints restrictions

Defined input references restriction. All input and output references must be
defined previously in the elements part.

©INTERGEO Consortium 2008 Page 17 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

Composition of constraints forbidden restriction. The arguments of the con-
straints cannot be other constraints. It is allowed only to refer to valid geometric objects,
using the id’s. Note that this rule still permits using constants in the arguments.

Unique output reference usage restriction. An identifier can be used only once as
output reference except for some declarations. These declarations are based on symbols
that explicitly declare that can coexist with other declarations with the same output
reference.

Constraints symbols restriction. Symbols are declared to be in the elements, the
constraints or in the display part. Only symbols declared to be in the constraints part
can appear in the constraints part.

4.4 Display
More than one display can be present and each one represents a possible view of the
representation.

A display describes general information like axes, grid, viewport, background colour,
snap properties, default styles, etc.

And, for each geometric object, it describes its styles. The current status of this docu-
ment does not specify the display part. This will be achieved in the future.

4.5 Atomic values

Atomic values are the simplest ingredients of the Intergeo file format. They are specified
also with an appropriate schema fragment.

Note: We might add more atoms in the future.

4.5.1 Scalars

Scalars represent either double or complex double numbers:

<xs:group name="scalar”>
<xs:choice>
<xs:element ref="double” />
<xs:element ref="complex” />
</xs:choice>
</xs:group>

©INTERGEO Consortium 2008 Page 18 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

4.5.2 Double numbers

Doubles follow the [IEEE 754-1985] standard.

<xs:element name="double” type="xs:double” />

Example

<double>4.37589837073</double>

4.5.3 Complex numbers

<xs:element name="complex”>
<xs:complexType>
<xs:sequence>
<xs:element name="double” type="xs:double” />
<xs:element name="double” type="xs:double” />
</xs:sequence>
</xs:complexType>
</xs:element>

Example

<complex>
<double>2.4689</double>
<double>—-5.78231659</double>
</complex>

4.5.4 References to objects

Constraints accept as arguments references to objects.

<xs:complexType name="reference”>
<xs:simpleContent>
<xs:extension base="xs:string” />
</xs:simpleContent>
</xs:complexType>

4.5.5 Output references to objects

Constraints usually have one argument that is the output. The output is the name of
the object that is going to be computed from the other ones.

©INTERGEO Consortium 2008 Page 19 of 34

Deliverable D3.3 I 2G
12G Common File Format v1 INTERGEO

<xs:complexType name="output—reference”>
<xs:simpleContent>
<xs:extension base="xs:string”>
<xs:attribute name="out” use="required”
fixed="true” />
</xs:extension>
</xs:simpleContent>
</xs:complexType>

©INTERGEO Consortium 2008 Page 20 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

5 Symbol list

Symbols are the main ingredients used to describe a construction. They define how
objects are built and their behaviour. Each icon in a DGS palette is roughly associated
to one or more symbols; styles like colours, point sizes, line widths are also represented
in the file format using symbols. All DGS’s share a big set of common features that
will be covered by the Intergeo official symbols. However, for additional features it is
acceptable to use proprietary symbols that one day might become official.

The list of symbols is divided in three categories: elements, constraints and styles de-
pending on the part of intergeo.xml they appear in. They are not primarily specified
using a XML-Schema but with Content Dictionaries, which are part of the OpenMath
standard. With some knowledge of how the atoms are expressed in XML, the descrip-
tion of the symbols with Content Dictionaries and their signature with the Small Type
System (STS), the XML schema can be generated automatically.

The complete list of official symbols can be found in Appendix A or at http://svn.
activemath.org/intergeo/Drafts/Format/.

There will be a process for Content Dictionaries to become an official part of the file
format. How this process will be and whether we will admit new Content Dictionaries
after the Intergeo project is to be decided.

©INTERGEO Consortium 2008 Page 21 of 34

http://svn.activemath.org/intergeo/Drafts/Format/
http://svn.activemath.org/intergeo/Drafts/Format/

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

6 First (partial) implementations

As soon as version 1 of the file format got more concrete, some software developers
started to investigate its practical usage by integrating it (partially) into their software.
Ulrich Kortenkamp started by making Cinderella able to store (intersection) points and
(parallel or perpendicular) lines. Then René Grothmann added read support into C.a.R.
and successfully opened a demo file stored by Cinderella. This demonstrated that the
file format is usable to exchange (at least simple) constructions between different ap-
plications. Finally Yves Kreis, Markus Hohenwarter and Ingo Schandeler investigated
both procedures inside GeoGebra. Their results and implementation decisions will be
described in the following subsections to enrich the ongoing discussion. This is important
because their parser/handler will be made available as open source (library) indepen-
dently of GeoGebra and thus be available to every DGS developer willing to implement
the Intergeo File Format. A live view on the implementation compatibility is available
at http://svn.activemath.org/intergeo/Drafts/Format/implementation.txt.

6.1 Saving

Few changes were required to store the Intergeo file format from GeoGebra as its own
proprietary file format is XML-based. The elements and constraints were simply written
in its acyclic representation and the elements contained the display information. In the
Intergeo file format these informations are separated into three parts (see page 13). This
allows a different parsing of the file (see next section). Besides the <display> part allows
to have different views of the same construction.

6.2 Opening

To be able to read a construction stored in the common file format it needs to be parsed
and then the elements and the constraints need to be handled.

GeoGebra uses an event based parser similar to the famous SAX parser, but with much
less functionality. No changes to the parser were required to switch from its proprietary
XML-based format to the Intergeo file format. Thus any XML parser is probably able
to parse the file format out of the box.

A new handler was written to deal with the elements and the constraints. Logically it is
event based as well. GeoGebra is able to read the file in one step as long as the constraints
are stored in its acyclic representation (see Sec. 7.10 on p. 27). No investigations have
been made with random orders of constraints, but probably some ordering needs to be
done before processing them.

First all elements are created as free objects and get their coordinates assigned. This cre-
ates a first representation of the construction and defines all input/output elements used

©INTERGEO Consortium 2008 Page 22 of 34

http://svn.activemath.org/intergeo/Drafts/Format/implementation.txt

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

later in the constraints. As a consequence we get an increased probability that a con-
struction can be opened even if some constraints cannot be fulfilled as the software might
be unable to deal with them. As an example take the constraint <line_through_point>
which is not available in all DGS. Its output element of type <line> is however avail-
able in all DGS, will thus be created using the provided coordinates and nevertheless be
available as input for further constraints like <point_on_line>.

Then all constraints are handled. As mentioned before only ordered constraints can be
handled at the moment by GeoGebra. The typed input/output elements provide an easy
way to check the corresponding type of the free elements created in the previous step
and thus help detect errors in the file. Before handling the constraint, the free element
is removed from the construction to free the id, but its coordinates are remembered.
Then the constraint is executed and finally the id and coordinates of the output element
adjusted to the ones of the removed free one. Using the previously stored coordinates of
the output elements is one way to (partially) perform ambiguity resolving (see Sec. 7.3
on p. 25). As an example let’s consider the intersection points of two circles. The order
of the intersection points is dependant on the implementation details of the algorithms
and probably different in the available DGS. By overwriting the output elements using
the stored elements the starting order will be the same everywhere. It doesn’t however
solve all the problems mentioned in the subsection 7.3.

6.3 Testing

For testing purposes we provide a simple construction using (intersection) points and
(parallel or perpendicular) lines only. The construction in the test file looks like Fig. 4
and can be stored and opened in the latest beta version of GeoGebral.

d ¢ f b

Figure 4: Expected rendering of the test file

The corresponding intergeo.xml is provided in Appendix B on page 31.

LGeoGebra beta v3.1.10.0, by Yves Kreis, Markus Hohenwarter and Ingo Schandeler, available at
http://www.geogebra.org/webstart/beta/geogebra-beta. jnlp

©INTERGEO Consortium 2008 Page 23 of 34

http://www.geogebra.org/webstart/beta/geogebra-beta.jnlp

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

7 Future Work and Request For Comments

As for version 1 of the file format we postponed some decisions that should be made with
the help of other developers of DGS. We explicitly invite those to join the discussion
and propose solutions or give remarks.

We suggest to read [Kor99] for further mathematical details.

Despite the fact that we are listing a lot of yet to be solved issues, we are confident that
the first version of the i2g file format is capable of handling any design decisions that
result from the following discussion.

7.1 More Elements and Polymorphism

Currently, we focused on a restricted subset of possible geometric elements. This restric-
tion enabled us to agree on the structure and basic composition of the i2g format.

Further elements that should be available are purely geometric elements like conics, loci
or polygons, and more general ones like functions or numbers, as well as stylistic elements
like text objects or images. A task for the next version of the i2g format is to collect
and specify all elements that are currently in geometry software.

Certain elements are very similar to others, for example, segments and rays can be used
instead of lines in many cases. Other examples are arcs of circles in comparison to
plain circles. The next version of the i2g format has to be able to handle this kind of
polymorphism.

Some objects can also be replaced by others in certain special cases, for example, a circle
might degenerate to a line, or a conic might degenerate to two lines. Although currently
no DGS uses these degenerations, this could be desirable for the future. A DGS might
construct a parallel line to a degenerate circle through three collinear points — with our
current specification and typing mechanism it is not possible to capture this in the file
format. However, we request advise from DGS developers on this issue.

7.2 Circle Coordinates

Each DGS uses its own representation of coordinates for the basic elements. In the case
of points and lines we could easily agree on standard representations, i.e. homogeneous
or cartesian coordinates. For the case of circles it is not as easy: Usually, circles can
be specified by a center and a radius. If the center is “at infinity” and/or the radius is
not representable by a real number, then it might be easier to represent the circle by a
(symmetric) matrix that specifies the parameters of its quadratic equation.

For the current version, we could not agree on the right way of specifying the coordinates
of circles, as the matrix representation was considered to be to general for some, while
the point-radius representation was considered to be not general enough by others.

©INTERGEO Consortium 2008 Page 24 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

7.3 Ambiguity Resolving

Ambiguity Resolving is crucial for finding the correct positions of elements in stored
construction after loading, also known as the persistent naming problem [MP02] from
parametric CAD. Assume that an intersection point of two circles is used in a construc-
tion. If the two circles are moved into a tangent position, and then the construction
is stored, then both intersections have the same coordinates and thus cannot be distin-
guished. If the circles are moved into a position where both intersection points can be
distinguished, then it is essential to pick the correct intersection point.

Most DGS solve this problem by having an implicit order of multiple outputs. This
order is dependent on the implementation details of the algorithms and cannot be part
of a specification. Also, a point might switch branches later due to homotopy-conserving
implementations. This means that this approach cannot be used for a cross-software file
format.

As soon as circle (or conic) intersections are introduced, we will have to find a solution
to this problem.

7.4 Styling Information

Currently, the file format does not store any styling information. This problem has been
considered easy to solve once we are able to exchange construction data. Proposals for
a solution range from very basic styling support specifying colors and thickness up to
full SVG-compatibility. The latter seems to be out of reach for many DGS, though.

We reserved the <display> section of the file (see page 13) for this kind of information.
This is in particular due to the fact that styling information for a single element could
be different for each view.

Some of the DGS support parametrized styles, for example a color that changes according
to the position of an element. See the next section for a discussion of the problems that
are specific to including parametrized values using functions.

7.5 Functions and Scripting

Almost all DGS support functions, used for plotting graphs, defining element dependen-
cies, or changing the style of elements dynamically. All of these use a different language
to specify the functions, though many aspects are shared. The conformance to standards
varies wildly from OpenMath compliance to unspecified.

Right now it seems impossible to homogenize the various dialects. Actually, the trans-
lation from one language to the other can be done easily by humans if an automatic

©INTERGEO Consortium 2008 Page 25 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

conversion fails, so we decided that all functions should be specified in the private sec-
tions of the file format. Each DGS may try to interpret the other function specification,
of course, and store its own interpretation as well.

For this, we need a notion of “alternatives”, which should be specified in an upcoming
version of the i2g format.

Another difficulty in dealing with functions is that some DGS extend the notion of
function to a general-purpose functional programming language. This proves that it is
impossible to find equivalent functions algorithmically. Nevertheless, in many cases the
translation is straightforward, and so it might be sufficient to use a heuristic approach.

7.6 Mathematical Typesetting

The de-facto standard for mathematical typesetting is TeX [Knu84|, and the browser-
compliant way is to use MathML [CIMO08]. DGS software uses both approaches, while
the TeX implementation used is usually only a subset of the full TeX system as created
by Knuth?.

We could not agree on a definitive way to typeset formulae. Probably it would be a
good idea to support MathML, but most of the DGS developers do not want to adopt
it, as it seems. So this is currently unspecified and mathematical typesetting has to
be specified in the private part of a construction. We suggest that a solution for the
function specification problem above will be a solution for this problem as well.

7.7 Sending Commands to Constructions

A common way to interact with constructions is to use Javascript or another scripting
language to send commands to the geometry kernel that changes the properties of a
construction. We will specify this API in a later revision of the file format. The basic
commands will include loading of (parts of) a construction, movement of free elements,
and change of stylistic information (for example, show/hide/recolor elements). The
specification can be based on the i2g format, as all actions represent changes of the
construction.

7.8 Macro Constructions

So far there is no notion of Macro constructions. We expect that macros are basically
sub-constructions, and it is probably sufficient to add an additional inmacro attribute
to the constraints and elements. This has to be postponed until the first version can be
used successfully for saving and loading of more complex constructions.

2Some use the hoteqn library, others use custom implementations

©INTERGEO Consortium 2008 Page 26 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

7.9 Number Representation

Currently, the specification of coordinates uses the IEEE standard for doubles (see
Sec. 4.5.2 on p. 19). While this is probably sufficient for most purposes, it lacks the
ability to describe real coordinates, for example the irrational numbers = or v/5. As
there are constructions even in elementary geometry that require such numbers, it is
desirable to be able to express them. The OpenMath standard supports this, however,
the i2g format cannot be based on the full OpenMath specification.

For the time being, we will restrict the number representation to the IEEE standard.
This should not be the cause of severe problems, because the coordinates of dependent
elements can be recalculated up to arbitrary precision by the DGS itself. If there is a
need for other number representations, we will extend the mechanism as described in
Sec. 4.5.2.

7.10 Acyclicity of Construction Dependances

Most construction-based DGS require that the dependency graph of a construction be
acyclic, but there are some systems (both constraint-based as well as construction-based
DGS) that allow for certain circular dependencies. Therefore, we do not enforce this
property, and we do not impose a special order for the constraints in the constraint part
of the i2g format.

This implies that each DGS has to be able to handle cycles. The easiest resolution is
to drop those constraints that close a cycle. Another solution is to add all constraints
and break the cycles on-the-fly whenever an element moves. If the DGS can handle the
additional constraint, then it should add it.

7.11 Library Support

In order to make it easier to work with the i2g format we will try to provide an open-
source library in Java to read (and possibly write) the format, see also Section 6. We
already applied for a corresponding sourceforge project that will host this open source
library. The library will consist of a basic XML parser that offers an API to access
the various nodes in the i2g file. In particular, it should be possible to request the
coordinates of elements in cartesian or homogeneous form if possible, regardless of how
they are stored.

This library should enable third parties to work with the i2g format, and thus enhance
the accessibility of the format as well as the visibility of the Intergeo project and provide
sustainability for the future.

©INTERGEO Consortium 2008 Page 27 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

7.12 Higher Dimensional Geometry

With the availability of three-dimensional DGS it is necessary to extend the i2g format
to 3D. The basic structure should be similar to now, but there are more elements and
constraint symbols necessary.

©INTERGEO Consortium 2008 Page 28 of 34

Deliverable D3.3 T 2G
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.) TNTERGES

Appendix A : Intergeo file format OpenMath symbols

The following is a list of OpenMath symbols that we agreed on until 31-07-2008. It will
be developed further during the course of the project. At any time, the newest version
can be found on http://svn.activemath.org/intergeo/Drafts/Format/. In the list,
the keyword is listed first, in boldface. On the next line, the types of its arguments are
listed.

A.1 The elements part

point
coordinates
This will represent a point in the space. It will have coordinates for initialization.

line
coordinates
This will represent a line. The coordinates are the homogeneous coordinates of the line.

A.2 The construction part

In the list for the construction keywords, the order of the arguments is fixed. More-
over, the first argument of every keyword is always the new, dependent element of the
construction. The other arguments are the existing objects this new object depends on.
The arguments will be identifiers of objects declared in the elements part of the file.

free_point
new point
A completely unconstrained point.

free_line
new line
A completely unconstrained line.

point_on_line
new point, line
A new point restricted to lie on a given line.

line_through_point
new line, point
A new line that goes through a given point. The line can still rotate around the point.

line_through_two_points
new line, point, point
A new line that goes through two given points (being thereby completely determined).

©INTERGEO Consortium 2008 Page 29 of 34

http://svn.activemath.org/intergeo/Drafts/Format/

Deliverable D3.3
12G Common File Format v1

12G

INTERGEO

line_perpendicular_to_line
new line, line
A new line that is perpendicular to a given line.

line_perpendicular_to_line_through point
new line, line, point
A new line that is perpendicular to a given line and goes through a given point.

line_parallel_to_line
new line, line
A new line that is parallel to a given line.

line_parallel _to_line_through_point
new line, line, point
A new line that is parallel to a given line and goes through a given point.

point_intersection_of_two_lines
new point, line, line
A new point that is the intersection point of two given lines.

angular_bisector_of_three_points
new line, point, point, point
A new line that is the angular bisector of three given points.

angular_bisectors_of_two_lines
new line, line, line
A new line that is the angular bisector of two given lines.

A.3 The display part

Since the display part does not add mathematical information to the resource, this part
will not have an OpenMath equivalent. However, for the sake of being able to transmit

the labels of objects to other software, this specific keyword has to be present.

label
string

A label is a string that can be displayed to the user for identification purposes, e.g. a
label “P” for a point, or “1” for a line. This should be viewed as a “front-end” name of
the object, handy for the user but not necessarily unique, as opposed to the “back-end”

name, the unique identifier the software uses.

©INTERGEO Consortium 2008 Page 30 of 34

Deliverable D3.3
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.)

I2G

INTERGEO

Appendix B : Testing (intergeo.xml)

The construction in the test file looks like:

d c f b
A
a
AB
k
g D
h

Figure 5: Expected rendering of the test file

The corresponding intergeo.xml written by GeoGebra 3.1.10.0 is:

<?xml version="1.0"7>
<!—
Intergeo File Format Version 1.00.20080731
written by GeoGebra 8.1.10.0 (July 81, 2008)
—>
<construction>
<elements>
<point id="A">
<homogeneous_coordinates>
<double>—2.4</double>
<double>4.0</double>
<double>1.0</double>
</homogeneous_coordinates>
</point>
<point id="B”">
<homogeneous_coordinates>
<double>2.28</double>
<double>4.04</double>
<double>1.0</double>
</homogeneous_coordinates>
</point>
<line id="a”>
<homogeneous_coordinates>
<double>—0.040000000000000036</double>
<double>4.68</double>
<double>—18.816</double>
</homogeneous_coordinates>
</line>
<line id="b">
<homogeneous_coordinates>
<double>—4.68</double>

©INTERGEO Consortium 2008

Page 31 of 34

Deliverable D3.3
12G Common File Format v1

12G

INTERGEO

<double>—0.040000000000000036</double>
<double>10.831999999999999</double>
</homogeneous_coordinates>
</line>
<line id="c¢”>
<homogeneous_coordinates>
<double>—4.68</double>
<double>—-0.040000000000000036</double>
<double>—11.072</double>
</homogeneous_coordinates>
</line>
<point id="C">
<homogeneous_coordinates>
<double>0.32</double>
<double>1.96</double>
<double>1.0</double>
</homogeneous_coordinates>
</point>
<line id="d”>
<homogeneous_coordinates>
<double>2.04</double>
<double>2.7199999999999998</double>
<double>—5.984</double>
</homogeneous_coordinates>
</line>
<line id="e”>
<homogeneous_coordinates>
<double>—-2.08</double>
<double>1.9599999999999997</double>
<double>—3.176</double>
</homogeneous_coordinates>
</line>
<line id="f">
<homogeneous_coordinates>
<double>—4.68</double>
<double>—0.040000000000000036</double>
<double>1.576</double>
</homogeneous_coordinates>
</line>
<point id="D">
<homogeneous_coordinates>
<double>29.223679999999995</double>
<double>5.90784</double>
<double>12.647999999999998</double>
</homogeneous_coordinates>
</point>
<line id="g”">
<homogeneous_coordinates>
<double>—0.5059200000000004</double>
<double>59.19263999999999</double>
<double>—26.479743999999997</double>
</homogeneous_coordinates>
</line>
<point id="E">
<homogeneous_coordinates>
<double>—21.828159999999997</double>
<double>—8.16608</double>
<double>9.255999999999998</double>
</homogeneous_coordinates>
</point>
<line id="h">
<homogeneous_coordinates>
<double>—-0.3702400000000003</double>
<double>43.31807999999999</double>
<double>37.34412799999999</double>
</homogeneous_coordinates>
</line>
<point id="F">
<homogeneous_coordinates>
<double>3357.5491937894385</double>
<double>28.697001656320015</double>
<double>7.105427357601002E—15</double>
</homogeneous_coordinates>
</point>
<line id="k”>
<homogeneous_coordinates>
<double>—28.697001656320015</double>
<double>3357.5491937894385</double>
<double>—-6571.613379297277</double>
</homogeneous_coordinates>
</line>
</elements>
<constraints>

©INTERGEO Consortium 2008

Page 32 of 34

Deliverable D3.3
12G Common File Format v1 (version of August 1, 2008 9:00 A.M.)

I2G

INTERGEO

<free_point>
<point out="true”>A</point>
</free_point>
<free_point>
<point out="true”>B</point>
</free_point>
<line_through_two_points>
<line out="true”>a</line>
<point>A</point>
<point>B</point>
</line_through_two_points>
<line_parallel_to_line_through_point>
<line out="true”>b</line>
<point>B</point>
<line>a</line>
</line_parallel_to_line_through_point>
<line_parallel_to_line_through_point>
<line out="true”>c</line>
<point>A</point>
<line>a</line>
</line_parallel_to_-line_through_point>
<free_point>
<point out="true”>C</point>
</free_point>
<line_through_two_points>
<line out="true”>d</line>
<point>A</point>
<point>C</point>
</line_through_two_points>
<line_through_two_points>
<line out="true”>e</line>
<point>C</point>
<point>B</point>
</line_through_two_points>
<line_perpendicular_to_-line_-through_point>
<line out="true”>f</line>
<point>C</point>
<line>c</line>
</line_perpendicular_to_-line_through_point>
<point_intersection_of_two_lines>
<point out="true”>D</point>
<line>b</line>
<line>d</line>
</point_intersection_of_two_lines>
<line_perpendicular_to_line_through_point>
<line out="true”>g</line>
<point>D</point>
<line>a</line>
</line_perpendicular_to_line_through_point>
<point_-intersection_of_two_lines>
<point out="true”>E</point>
<line>c</line>
<line>e</line>
</point_intersection_of_two_-lines>
<line_perpendicular_to_line_through_point>
<line out="true”>h</line>
<point>E</point>
<line>a</line>
</line_perpendicular_to_line_through_point>
<point_intersection_of_two_lines>
<point out="true”>F</point>
<line>g</line>
<line>h</line>
</point_intersection_of_two_lines>
<line_through_two_points>
<line out="true”>k</line>
<point>C</point>
<point>F</point>
</line_through_two_points>
</constraints>
<display>
<point id="C">
<label>S_{AB}</label>
</point>
</display>
</construction>

©INTERGEO Consortium 2008

Page 33 of 34

Deliverable D3.3 I ZG
12G Common File Format v1 INTERGEO

Bibliography

[CIMOS] David Carlisle, Patrick Ion, and Robert Miner. Mathematical markup
language (mathML) version 3.0. World Wide Web Consortium, Working
Draft WD-MathML3-20080409, April 2008.

[Cre08] Creative Commons Inc. (CC). Namensnennung-Weitergabe unter gleichen
Bedingungen 2.0 Deutschland. Available on the web, May 2008.

[HLCMDO08] Maxim Hendriks, Paul Libbrecht, Albert Creus-
Mir, and Michael Dietrich. Metadata specification.
http://svn.activemath.org/intergeo/Deliverables/ WP2/D2.4-
Metadata/D2.4-Metadata-Spec.pdf, June 2008.

[KCPOg] KCP Technologies Inc. Geometer’s sketchpad v4, 2008.

[Knu84] Donald E. Knuth. The TgXbook. Addison-Wesley, Reading, Massachusetts,
1984.
[Kor99] Ulrich Kortenkamp. Foundations of Dynamic Geometry. Dissertation,

ETH Zirich, Institut fiir Theoretische Informatik, Zurich, 11 1999.

[MP02] David Marcheix and Guy Pierra. A survey of the persistent naming prob-
lem. In SMA °02: Proceedings of the seventh ACM symposium on Solid
modeling and applications, pages 13—22, New York, NY, USA, 2002. ACM.

[Sal0g] Saltire Software. Geometry expressions v1.1, 2008.

©INTERGEO Consortium 2008 Page 34 of 34

	Executive Summary
	Introduction
	The three layers of the file format specification
	Design decisions: Constraints versus Constructions
	Design Decisions: OpenMath

	The container
	intergeo.xml
	Construction
	Elements
	Additional elements restrictions

	Constraints
	Additional constraints restrictions

	Display
	Atomic values
	Scalars
	Double numbers
	Complex numbers
	References to objects
	Output references to objects

	Symbol list
	First (partial) implementations
	Saving
	Opening
	Testing

	Future Work and Request For Comments
	More Elements and Polymorphism
	Circle Coordinates
	Ambiguity Resolving
	Styling Information
	Functions and Scripting
	Mathematical Typesetting
	Sending Commands to Constructions
	Macro Constructions
	Number Representation
	Acyclicity of Construction Dependances
	Library Support
	Higher Dimensional Geometry

	Appendix A : Intergeo file format OpenMath symbols
	The elements part
	The construction part
	The display part

	Appendix B : Testing (intergeo.xml)
	Bibliography

