I2G

INTERGEO

Deliverable N°2: D3.5
12G API Specification

The Intergeo Consortium

Version: 1.0 of May 31, 2009
Based on: 12G Common File Format v1.0

Author:

Ulrich Kortenkamp (U. of Education Schwabisch Gmiind, Cinderella)

Project co-funded by the European Community
under the eContentplus Programme

Deliverable D3.5

I2G API Specification(1.0 of May 31, 2009)

I2G

INTERGEO

Project ref.no.

ECP-2006-EDU-410016

Project title

Intergeo - Interoperable Interactive Geometry
for Europe

Contractual date of deliv-
ery

M10

Actual date of delivery

June 1st, 2009

Deliverable title

API Specification

Type

Presentation

Status & version

submited 1.0 of May 31, 2009

Number of pages

18

WP contributing to the
deliverable

WP3

WP/Task responsible

Daniel Marqués

Contributors

Ulrich Kortenkamp (U. of Education Schwabisch
Gmiind, Cinderella), Yves Kreis (Université du
Luxembourg, GeoGebra), Paul Libbrecht (DFKI
GmbH), Daniel Marquées (Maths for More &
WIRIS)

EC Project Officer

Krister Olson

Keywords dynamic geometric system, file format, open-
math, API, standard
License This document is licensed under the Cre-

ative Commons License Namensnennung-
Keine Bearbeitung 3.0 Deutschland; see
http://creativecommons.org/licenses/
by-nd/3.0/de

©Intergeo Consortium 2009

Page 2 of 18

http://creativecommons.org/licenses/by-nd/3.0/de
http://creativecommons.org/licenses/by-nd/3.0/de

Deliverable D3.5
I12G API Specification (1.0 of May 31, 2009)

I2G

INTERGEO

Contents

1 Introduction

1.1 OVervieW o e e e e e

2 API Use Scenarios

2.1 Applet Communication
2.2 Standalone Communication
2.3 ServerSide Processing

2.4 SUMMANY . . . e e e e

3 API Layers

3.1 Transport Layer e
3.2 Command Layer. e
3.3 Datalayer

3.4 Additional Information

4 Transport Layers

4.1 Java TransportLayer e
4.2 JavaScript TransportLayer
4.3 TCP/IP Transport Layer. i it
4.4 REST TransportLayer
4.5 Clipboard Transport.
4.6 Scripting Languages e

5 Command Layer

5.1 Startupand File Access
5.1.1 IDloadFile(URI) i
5.1.2 IDload(i2g-data)
5.1.3 openView(ID, number)
5.1.4 closeView(ID, index)
5.1.5 addView(ID, display-specification)
5.1.6 writeFile(ID, URI, format)

5.1.7 image renderViewTolmage(ID, index, format)

5.2 Creation & Deletion

©Intergeo Consortium 2009

Page 3 of 18

Deliverable D3.5 IZG

I2G API Specification(1.0 of May 31, 2009)
5.2.1 ElementID createElement(ID, element-specification) 12
5.2.2 addConstraint(ID, constraint-specification) 12
5.2.3 deleteElement(ID, ElementID), 12
5.2.4 deleteElements(ID, (ElementID, ElementID,...)) 12

5.3 Data ACCess e 12
5.3.1 element-specification getElement(ID, ElementID) 12
5.3.2 constraint-specification getConstraints(ID, ElementID) 12
5.3.3 constraint-specification getDefinition(ID,ElementID) 13
5.3.4 display-specification getView(ID, index) 13
5.3.5 (ID,...) getConstructions() 13
5.3.6 (index, ...) getViews(ID) 13
5.3.7 double getX(ID, ElementID) 13
5.3.8 double getY(ID, ElementID) 13

5.4 Manipulation e 13
5.4.1 modifyElement(ID, element-specification) 13
5.4.2 modifyElementView(ID, display-specification) 13
5.4.3 movePoint(ID, ElementID, double x, doubley) 14

5.5 Communication and Scripting 14
5.5.1 execute(ID, script-language,code). 14

6 Data Layer 14

6.1 ID . . . e 14

6.2 AndeX 14

6.3 format 15

6.4 URI 15

6.5 ElementID e e 15

6.6 double e 15

6.7 i2g-data e 15

6.8 element-specification............., 15

6.9 constraint-specification, 15

6.10display-specification 16

6.11script-language. 16

6.12code e e 16

6.13dmage e 16

6. 14LIStS e e 16

©Intergeo Consortium 2009 Page 4 of 18

Deliverable D3.5 IZG

I12G API Specification (1.0 of May 31, 2009)
7 Approval Process 16
7.1 DOCUMENTES 17
7.2 ACEOIS . . o e 17
7.3 Decision Rules e e e 17
7.4 Release Cycle e e 17
7.5 LICENSING . . . o o e 17
8 Version History 18

©Intergeo Consortium 2009 Page 5 of 18

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

1 Introduction

This document describes the specification of a common API (Application Programming In-
terface) for Interactive Geometry software. An API is used to programmatically influence
the behavior of software, to exchange data between software, and to extend software with
new functionality. This usage is beyond (asynchronous) data exchange that can be handled
via a common file format, which is the reason why the Intergeo Consortium sees the need
to specify such an API.

As the API is still evolving, this document should not be seen as a programming man-
ual, but as the documentation of the design decisions and requirements as defined by the
working group within the Intergeo project. The actual code and the accompanying source
and APl documentation is specified using an iterative software development process. All
files necessary to implement the API are available through a SourceForge-hosted project at
http://intergeo.sourceforge.net/. The specification follows a cycle with development
and release builds. Thus, we can hope for the necessary sustainability of our approach.

1.1 Overview

We first describe some usage scenarios that guide the design of the API. Then we define
a layer structure, which we further describe in the following sections. Finally, we describe
the process that will be used to decide on the API specification that will be used during the
lifetime of the project and also thereafter.

2 API Use Scenarios

In this section we describe possible applications of the Intergeo APIl. Most of these are
inspired by existing uses of Interactive Geometry Software, however, all these approaches
are currently realized using proprietary interfaces.

2.1 Applet Communication

Almost every Interactive Geometry Software can be embedded into web pages, using either
Java, Flash, JavaScript/SVG, a dedicated plugin, or ActiveX. For the sake of simplicity, we
refer to all these approaches as “Applets”, although this name is usually meant for Java
applets only.

As soon as you have two applets on the same webpage, it might be useful to allow commu-
nication between them. Here, either both applets might show the same construction, but
in different views (1A — Inter-Applet-Communication, same construction), or different con-
structions that share some data (1B — Inter-Applet-Communication, different construction).
Views - the display of the construction — might differ in various ways. A construction may
be rendered in various mathematical models (Euclidean Plane, Poincare Model, 3D embed-
ding, textual description, ...), or with different parameters (change of color, visibility of
objects, zoom factor, ...).

©Intergeo Consortium 2009 Page 6 of 18

http://intergeo.sourceforge.net/

Deliverable D3.5 IZG
I2G API Specification (1.0 of May 31, 2009)

Note that it is not necessary for both applets to represent interactive geometry software;
one (or both) might be replaced by any other software that implements the Intergeo API.

It is useful to distinguish a third scenario. As any modern browser includes a JavaScript
engine, we also want to enable easy access to the applet from JavaScript (2 — Applet-
Javascript-Communication). This can be used, for example, to create alternative user inter-
faces, or to create assessment facilities (Exercisers).

2.2 Standalone Communication

Most interactive geometry systems are also available in a stand-alone version that runs
without the help of an enclosing browser. Stand-alone software has direct access to the
computer’s resources, in particular to the file system, works on- and offline, and might be
better suited for some applications than a web-based system.

It is desirable to also have a standardized way of communicating with these stand-alone
programs, for example when setting up script mechanisms to start up software in edu-
cational settings (3 — Standalone-Software-Control). Also, when running on a desktop
computer further computational tools (a CAS like Maple or Mathematica) or visualization
components (3D renderers like JReality) can be available. In order to use these, a bidi-
rectional communication between the interactive geometry software and the other tool
must be possible (4A — Standalone-Software-Communication). The communication can
also be handled using manual interaction of the user through the system clipboard (4B —
Standalone-Software-Communication (Clipboard)).

Another usage is the access to user interface and semantic events that are created by the
interactive geometry software, for example when recording students’ sessions for further
analysis using a tool like Jacareto (5 — Event Recording).

2.3 Server Side Processing

The third major area of application for the Intergeo API is server-side processing of geometry
content. On the 12Geo platform at http://i2geo.net we intend to use the API for at
least three purposes: To retrieve static preview images for constructions (6 — Construction
Processing), to convert proprietary files to the 12G format and vice-versa (7 — Construction
Conversion) and to retrieve the necessary HTML code to embed an applet into a page (8 -
Construction Information Retrieval). All these applications need a proper contextualization
of the construction, that is, the server might have more information than just a plain file.

2.4 Summary
Documents can refer to the sketched scenarios above using the following codes:

1A Inter-Applet-Communication, same construction
1B Inter-Applet-Communication, different construction

2 Applet-Javascript-Communication

©Intergeo Consortium 2009 Page 7 of 18

http://i2geo.net

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

3 Standalone-Software-Control
4A Standalone-Software-Communication
4B Standalone-Software-Communication (Clipboard)
5 Event Recording
6 Construction Processing
7 Construction Conversion
8 Construction Information Retrieval

9 Other (has to be specified)

All APIs should include a reference to at least one of these scenarios.

3 API Layers

In order to be both flexible and easy to extend, we define a three-tier architecture, the
transport layer which defines the possible ways to use the API; the command layer which
defines the possible commands; and the data layer, which details the low-level data struc-
tures.

3.1 Transport Layer

The transport layer defines the possible ways to communicate with an interactive geometry
software. This includes all local mechanisms (like direct calls into a Java application or
Scripting support) as well as network-based mechanisms (like TCP/IP communication or a
REST-API).

Included with every command layer is a description how commands are translated into the
specific syntax or mechanisms used by the transport layer.

3.2 Command Layer

The command layer defines all possible commands that can be send to an application
or applet. All commands may refer to an existing construction and can provide additional
arguments. The transport layer should provide easy mechanisms to work with constructions
as “resources” identifiable by unique IDs.

Software that implements the Intergeo APl may implement only a subset of the commands,
but some subsets of the commands are required to achieve Intergeo compliance. In par-
ticular, an “Intergeo Applet API,” an “Intergeo Application API,” and an “Intergeo Server
API” will be defined that include the commands needed for Inter-Applet communication, for
desktop applications, and for the 12G platform.

©Intergeo Consortium 2009 Page 8 of 18

Deliverable D3.5 IZG
I2G API Specification (1.0 of May 31, 2009)

3.3 Data Layer

All data that is used together with a command needs to be encoded. The data layer defines
the specifics of these encodings, in particular for constructions and mathematical objects.

3.4 Additional Information

All APl implementations need three additional files that provide additional information on
the implementation: LICENSE, AUTHORS and README. The files may have extensions like .txt
or .html that specify their content format.

LICENSE has to clarify the license of the APl implementation that has to be compatible with
the license of the API definition as available on http://intergeo.sourceforge.net.

AUTHORS has to clarify who is responsible for this particular implementation, including a
contact email.

README has to include documentation about partial implementations, limitations of the im-
plementation, and any necessary deviations from the standard APl semantics.

4 Transport Layers

In this section we suggest some transport layers. Not all of these have to be implemented
by a software that wishes to conform to the Intergeo API. However, if the Java API described
first is implemented, then the libraries provided by the consortium can be used to give
access to the others.

4.1)Java Transport Layer

Many Interactive Geometry Systems are implemented in the platform independent lan-
guage Java, which makes this a natural choice for the reference implementation of the
APl. Commands can be translated to either method calls in a singleton object! or instance
methods on a proxy object that references a construction.

For example, the loadFile command described in Sec. 5.1.1 would translate to a method
in an API object that implements the “static” part of the Intergeo API:

ConstructionProxy loadFile(java.net.URI filelocation)

This returns a proxy object for a construction, while the writeFile command described in
Sec. 5.1.6 would translate to a method

void writeFile(java.net.URI filelocation, String mimeType)

in a class that implements the construction proxy interface (i.e. ConstructionProxy).

IThis is necessary because it is not possible to inherit or overwrite static methods.

©Intergeo Consortium 2009 Page 9 of 18

http://intergeo.sourceforge.net

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

4.2 JavaScript Transport Layer

In particular for browser-embedded scenarios it is necessary to offer JavaScript-support for
the Java APIl. We will provide a bridge between JavaScript and Java implementations of the
API.

4.3 TCP/IP Transport Layer

Some software already offers remote protocols via TCP/IP (see http://www.iana.org/
assignments/port-numbers, in particular port 3770). Again, we intend to offer a bridge
between a generic TCP/IP transport and the Java transport.

4.4 REST Transport Layer

Recent webservices are usually realized using the REST architectural style. We can regard
any construction as a resource in that sense, and use the commands in suitable URIs. While
we do not define a discovery mechanism for software APIs, we still think that it is desirable
to offer access to at least the consortium-provided software via the API. This is in particular
useful for the server scenarios 6, 7 and 8 (see Sec. 2.3).

4.5 Clipboard Transport

Every operating system offers a concept like a system clipboard. While it is usually used
to transfer data only, we can also put commands as defined in the command layer on the
clipboard. This enables users to transfer actions from one software to the other using copy
& paste.

4.6 Scripting Languages

In addition to the JavaScript transport layer other bindings to scripting languages (Apple-
Script, Ruby, ...) could be useful, in particular in server scenarios (Sec. 2.3).

5 Command Layer

In this section we define groups of commands that the API should provide. This list is not
definitive and has to be approved through the community process as defined in Sec. 7.

All commands have a unique name, given in the title of the subsection. The translation
of this name into the syntax needed for the transport layer has to be specified by the
transport layer. The final specification of parameters and return values will be available in
the corresponding documentation at http://intergeo.sourceforge.net.

All commands that have an ID as first parameter should be local to a construction, as
defined in the transport layer.

©Intergeo Consortium 2009 Page 10 of 18

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://intergeo.sourceforge.net

Deliverable D3.5 IZG
I2G API Specification (1.0 of May 31, 2009)

5.1 Startup and File Access
5.1.1 ID loadFile(URI)

Load a construction file given by a URI and return a unique identifier for further access.
This should not open any views.

5.1.2 ID load(i2g-data)

Loads a construction file given by i2g-data and return a unique identifier for further access.

5.1.3 openView(ID, number)

Opens the view with the given number for the construction given by the ID. Views are
specified in the display-section of the I2G Common File Format v1.0.

The construction has to be loaded in advance.

See 5.1.1.

5.1.4 closeView(ID, index)

Close the view of the construction identified by ID which is given by the 0. See 5.1.3.

5.1.5 addView(ID, display-specification)

Adds a view to the construction identified by ID. The views properties are defined by
display-specification.

5.1.6 writeFile(ID, URI, format)
Write the construction given by ID to a file given by URI. The format can be specified by a

MIME type given in format.

5.1.7 image renderViewTolmage(ID, index, format)

Return the view with the given index to an image of the MIME type given by format.

©Intergeo Consortium 2009 Page 11 of 18

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

5.2 Creation & Deletion
5.2.1 ElementID createElement(ID, element-specification)

Create an element for the construction with the given ID. If the specification includes an
ElementID, this will be used for the element, unless an element with this ElementID al-
ready exists. The element does not have any constraints, these should be added using the
addConstraint command.

Returns the ElementID for the new element.

See 5.2.2.

5.2.2 addConstraint(ID, constraint-specification)

Add the constraint(s) given by constraint-specification. Constraints should only use
ElementID’s that are available in the construction. Use the data access methods given in
Sec. 5.3 to find out about available elements, or use the createElement command.

See 5.2.1

5.2.3 deleteElement(ID, ElementID)

Removes the element given by ElementID and all constraints referring to this element.

5.2.4 deleteElements(ID, (ElementID, ElementlID, ...))

Convenience method to remove a list of elements and the associated constraints.2

Removes all elements given by the list of ELlementID’s and all constraints referring to them.

5.3 Data Access

5.3.1 element-specification getElement(ID, ElementID)

Returns the element-specification of the element given by ElementID in the construc-
tion given by ID.

5.3.2 constraint-specification getConstraints(ID, ElementID)

Returns all constraint-specification’s available for the element ElementID.

2Remark: Currently (as of version 1 of the 12G file format), constraints do not have a unique identifier. So
the only way to access constraints is via the referenced elements.

©Intergeo Consortium 2009 Page 12 of 18

Deliverable D3.5 IZG
I2G API Specification (1.0 of May 31, 2009)

5.3.3 constraint-specification getDefinition(ID,ElementID)

Returns the constraint-specification for the element ElementID that list it as an output
element, if there is one.

5.3.4 display-specification getView(ID, index)

Returns the display-specification for a view of ID given by index.

5.3.5 (ID,...) getConstructions()

Returns a list of ID’s of all available constructions.

5.3.6 (index, ...) getViews(ID)

Returns a list of all available views.

5.3.7 double getX(ID, ElementID)

Convenience method to return the x-coordinate of a point given by ElementID.

5.3.8 double getY(ID, ElementID)

Convenience method to return the y-coordinate of a point given by ElementID.

5.4 Manipulation
5.4.1 modifyElement(ID, element-specification)

This general-purpose method can be used to change the properties of any element. If
some of the properties are impossible to achieve due to constraints, then the behavior is
unspecified.

5.4.2 modifyElementView(ID, display-specification)

Changes the view attributes of an element. The number of the view may be given in the
display-specification.

©Intergeo Consortium 2009 Page 13 of 18

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

5.4.3 movePoint(ID, ElementID, double x, double y)

This convenience command reflects the need for an easy way to change the (Euclidean)
coordinates of a point. The point referenced by ElementID will move to coordinates (X, y),
if possible.

5.5 Communication and Scripting
5.5.1 execute(ID, script-language, code)

Execute the script given by code. The script language is chosen by script-language.

Script languages may be proprietary. The access to elements of a construction and to the
API from within the script is not defined, but see Sec. 4.6 for further information about
access from scripting languages. A software may choose to enable access to the API for
scripting languages.

6 Data Layer

In this section we define the various data types that are needed in the command layer. The
encoding of the data is transport dependent.

All data types (in particular the ID data) may be encapsulated by objects. In that case
the API has to provide access methods to the objects that take native data types of the
underlying transport method as a parameter. We provide the native types used to refer to
these encapsulations in the Java layer as an example. A JavaScript implementation may
use JSON, for example.

6.1 ID

An ID identifies a construction temporarily, i.e. during the lifetime of the application or
server that implements the API.

In Java, the ID can be referred to by any String value.

As many commands refer directly to a construction given by an ID, it is often more efficient
to provide a proxy object to access these ‘instance methods”. This proxy object is defined
in the API implementation.

6.2 1index

An index identifying a view of construction. These views are defined in the display specifi-
cation of the 12G Common File Format v1.0.

In Java, index can be referred to by a positive integer value.

©Intergeo Consortium 2009 Page 14 of 18

Deliverable D3.5 IZG
I2G API Specification (1.0 of May 31, 2009)

6.3 format

A MIME type. We recommend that every software implementing the API that also provides
a proprietary or other standard file format registers a MIME type with IANA.

In Java, this can be specified as a String, for example "application/vnd.cinderella".

6.4 URI

A uniform resource identifier that locates data on the internet.

In Java, this can be specified using java.net.URI.

6.5 ElementID

An element identifier that refers to the name attribute of an element in the 12G Common
File Format v1.0.

In Java, this can be specified using a String value.

6.6 double

A numerical floating point value in double precision. Depending on the transport layer,
more precision may be available. It is not guaranteed that the software is able to handle
the precision. The implementation description should provide details on this.

6.7 i2g-data

The XML data of an 12G file in 12G Common File Format v1.0.

In Java, this can be specified using org.xml.sax.InputSource.

6.8 element-specification

The XML data for an element, as specified in the elements part of the 12G Common File
Format v1.0.

In Java, this can be specified using org.xml.sax.InputSource.

6.9 constraint-specification

The XML data for one or several constraints, as specified in the constraints part of the 12G
Common File Format v1.0.

In Java, this can be specified using org.xml.sax.InputSource.

©Intergeo Consortium 2009 Page 15 of 18

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

6.10 display-specification
The XML data for one or several specifications in the display part of the 12G Common File
Format v1.0.

In Java, this can be specified using org.xml.sax.InputSource.

6.11 script-language

An identifier specifying a (proprietary or standard) script language. The identification
should be unique to the application, using either a MIME-type like specification or the re-
verse domain name notation as customary in Java.

In Java, this can be specified using a String value.

6.12 code

A script, that is, program code in either a standard scripting language like JavaScript,
Python, or Ruby, or in a proprietary language like Mathematica, Maple, or CindyScript.

In Java, this can be specified using a String value. For larger scripts, an alternative spec-
ification method can be provided. This should be detailed in the README section of the
implementation. We urge all implementors to agree on a standard specification method.

6.13 image

Binary data describing an image.

In Java, this can be specified using a java.awt.image.BufferedImage.

6.14 Lists

All element types can potentially occur in form of lists of several objects of the same type.
The base type has to be specified.

In Java, a collection subclassing the generic java.awt.List<T> can be used.

7 Approval Process

The ongoing development of both Interactive Geometry Software and the Intergeo platform
requires a constant revision of the APl specification. We do not expect this document to
be the final revision of the API, but we foresee an evolution. This section specifies the
continuing process that will be used to submit, revise, and approve new versions of the API.

©Intergeo Consortium 2009 Page 16 of 18

Deliverable D3.5 IZG
I2G API Specification (1.0 of May 31, 2009)

7.1 Documents

The API is defined by the collection of files available at http://intergeo.sourceforge.
net.

The svn repository version of this document at http://svn.activemath.org/intergeo/
Deliverables/WP3/D3.5/D3.5-API-specification.tex contains the current draft for dis-
cussion of the document. Every time a new version is released, it will be added to the the
sourceforge repository. All older released versions will be archived in the documentation
tree of the sourceforge repository.

All references to the 12G format have to specify its version number.

7.2 Actors

WP3 Team. Those partners (consortium, associate and user) working actively in work
package 3, i.e. take part in discussions on the wp3 mailing list and in video con-
ferences of the wp3 group.

WP Leader. The work package leader as defined in the Description of Work of the Intergeo
project. Responsible for the organization of meetings and discussions of the WP3 team.

API Authors. Those persons designated by the WP3 team to write this document.

APl Implementors. All developers working on the SourceForge projectat http://intergeo.
sourceforge.net. New developers can join this project. The current SourceForge
project leaders are Yves Kreis and Ulrich Kortenkamp.

7.3 Decision Rules

Until September 2010 all decisions about the APl implementation are made by the API
implementors in unanimous decisions. They can be overruled by decisions of the WP3
Team.

The decision rules after that date have yet to be determined.

7.4 Release Cycle

This document and the accompanying APl implementation are in constant development. At
least every 3 months the then current version will be finalized with a new version number.
The document will be presented to the WP3 Team which will review it and, if it approves it,
release it.

7.5 Licensing

The API and the accompanying libraries will be licensed using an open-source license that
prohibits the distribution of altered versions under the same name, in order to maximize
redistribution and interoperability.

The exact license of the API will be specified at http://intergeo.sourceforge.net.

©Intergeo Consortium 2009 Page 17 of 18

http://intergeo.sourceforge.net
http://intergeo.sourceforge.net
http://svn.activemath.org/intergeo/Deliverables/WP3/D3.5/D3.5-API-specification.tex
http://svn.activemath.org/intergeo/Deliverables/WP3/D3.5/D3.5-API-specification.tex
http://intergeo.sourceforge.net
http://intergeo.sourceforge.net
http://intergeo.sourceforge.net

Deliverable D3.5 IZG
I2G API Specification(1.0 of May 31, 2009)

8 Version History

Version 1.0 - May 31, 2009 - First version published.

©Intergeo Consortium 2009 Page 18 of 18

	Introduction
	Overview

	API Use Scenarios
	Applet Communication
	Standalone Communication
	Server Side Processing
	Summary

	API Layers
	Transport Layer
	Command Layer
	Data Layer
	Additional Information

	Transport Layers
	Java Transport Layer
	JavaScript Transport Layer
	TCP/IP Transport Layer
	REST Transport Layer
	Clipboard Transport
	Scripting Languages

	Command Layer
	Startup and File Access
	ID loadFile(URI)
	ID load(i2g-data)
	openView(ID, number)
	closeView(ID, index)
	addView(ID, display-specification)
	writeFile(ID, URI, format)
	image renderViewToImage(ID, index, format)

	Creation & Deletion
	ElementID createElement(ID, element-specification)
	addConstraint(ID, constraint-specification)
	deleteElement(ID, ElementID)
	deleteElements(ID, (ElementID, ElementID, …))

	Data Access
	element-specification getElement(ID, ElementID)
	constraint-specification getConstraints(ID, ElementID)
	constraint-specification getDefinition(ID,ElementID)
	display-specification getView(ID, index)
	(ID, …) getConstructions()
	(index, …) getViews(ID)
	double getX(ID, ElementID)
	double getY(ID, ElementID)

	Manipulation
	modifyElement(ID, element-specification)
	modifyElementView(ID, display-specification)
	movePoint(ID, ElementID, double x, double y)

	Communication and Scripting
	execute(ID, script-language, code)

	Data Layer
	ID
	index
	format
	URI
	ElementID
	double
	i2g-data
	element-specification
	constraint-specification
	display-specification
	script-language
	code
	image
	Lists

	Approval Process
	Documents
	Actors
	Decision Rules
	Release Cycle
	Licensing

	Version History

