I2G

INTERGEO

Deliverable N°: D3.6
i2g Common File Format Draft v2

The Intergeo Consortium
July 2009

Version: version of August 3, 2009 3:27 P.M.

Main Authors:

Maxim Hendriks (Technische Universiteit Eindhoven)
Ulrich Kortenkamp (University of Education Schwabisch
Gmund & Cinderella)

Yves Kreis (Université du Luxembourg & GeoGebra)
Daniel Marques (Maths for More & WIRIS)

Project co-funded by the European Community
under the eContentplus Programme

Deliverable D3.6

i2g Common File Format Draft v2

I2G

Project ref.no.

ECP 2006 EDU 410016

Project title

Intergeo - Interoperable Interactive Geometry
for Europe

Deliverable status

submitted

Contractual date of deliv-
ery

M22 - July 2009

Actual date of delivery

July 31th 2009

Deliverable title

i2g Common File Format Draft v2

Type

Presentation

Status & version

submited version of August 3, 2009 3:27 P.M.

Number of pages

40

WP contributing to the
deliverable

WP3

WP/Task responsible

Daniel Marqueés

Authors

René Grothmann (Katholische Universitat
Eichstatt-Ingolstadt & C.a.R.), Maxim Hendriks
(Technische Universiteit Eindhoven), Markus
Hohenwarter (Florida Atlantic University &
GeoGebra), Ulrich Kortenkamp (University of
Education Schwabisch Gmuind & Cinderella),
Yves Kreis (Université du Luxembourg & GeoGe-
bra), Jean-Marie Laborde (Cabrilog & Cabri), Paul
Libbrecht (DFKI GmbH), Daniel Marquées (Maths
for More & WIRIS), Ingo Schandeler (Université
du Luxembourg & GeoGebra)

EC Project Officer

Spyridon Pilos

Keywords dynamic geometric system, file format, open-
math, standard
License This document is available under the license

Creative Commons Attributions Sharealike Ger-
many 2.5 [Cre08]

©)lntergeo Consortium 2008

Page 2 of 40

INTERGEO

Deliverable D3.6

I2G

i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

Contents

1 Executive Summary

2 Introduction

2.1 The three layers of the file format specification

2.2 Design decisions: Constraints versus Constructions

2.3 Design Decisions: OpenMath

3 The container

4 intergeo.xml

4.1 Construction e

4.2 Elements

4.3 Constraints e

4.4 Display

4.5 Atomicvalues

4.5.3 Complex numbers

4.5.4 Referencestoobjects

4.5.5 Output references to objects

4.6 intergeo.xml XML-Schema

5 Symbol list

6 First (partial) implementations

6.1 Saving e
6.2 Opening
6.3 Implementation,
6.4 Testing

©)lntergeo Consortium 2008

Page 3 of 40

Deliverable D3.6
i2g Common File Format Draft v2

I2G

INTERGEO

7 Future Work and Request For Comments

7.1 More Elements and Polymorphism
7.2 Circle Coordinates
7.3 Ambiguity Resolving oL
7.4 Styling Information oL
7.5 Functions and Scripting
7.6 Mathematical Typesetting
7.7 Sending Commands to Constructions
7.8 Macro Constructions
7.9 Number Representation
7.10Acyclicity of Construction Dependencies
7.11Library Support

7.12Higher Dimensional Geometry

Appendix A : Intergeo file format OpenMath symbols

Al Theelementspart
A.1.1 Auxiliarysymbols.
A.2 The constructionpart
A3 Thedisplaypart.,
A.3.1 Auxiliarysymbols.

Bibliography

©)lntergeo Consortium 2008

Page 4 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

1 Executive Summary

The present document is the specification of the second version of the In-
tergeo File Format Draft, as of July 2009. Once the specification is finally
released, by the end of the project, it will be renamed to Intergeo File Format
vl.

The specification is the result of intensive collaboration between Dynamic
Geometric System (DGS) software developers and experts. At the time of
this writing, the format has not been completely specified and several par-
tial implementations already exist; therefore, it is very likely that important
modifications will arise.

The Intergeo file format aims at the interchange of content between DGS's.
It is our goal to create a file format that could serve as a standard in the DGS
industry.

The introduction chapter justifies the objectives, the motivation and the ex-
pected success of the Intergeo file format. It is specially important to note
that among the authors of the Intergeo file format are some of the leading
DGS’s manufacturers. In the introduction it is also explained how the format
is split into three specifications: the container, the file intergeo.xml and the
symbol list.

The container specification explains how all necessary files used to define a
construction are bundled into a single ZIP file. It also contains the important
file intergeo.xml.

The intergeo.xml file is the core of the format and is explained in detail. It
comprises three differentiated parts. The elements part declares all geo-
metric objects. The constraints part provides the relationships of the ob-
jects and, thus, defines the dynamic (or interactive) behaviour. The display
part describes the styles and how the geometric objects are drawn. The
XML schema that should validate any intergeo.xml file is presented with the
skeleton of the elements, constraints and display part. The children of the
elements, constraints and display part can be specified with their respective
XML schema fragments. However, these fragments are not written in this
document because they can be generated dynamically from the list of sym-
bols. Thus, different templates are introduced according to the elements,
constraints and display parts. Some additional restrictions are described
without using XML schema.

The separation of the possible geometric elements and constraints from the
file format implementation is done through the so called list of symbols which
is a collection of OpenMath symbols classified in Content Dictionaries. Some
generalities about the list of symbols are presented. The complete list of
symbols is included in Appendix A. Such a list is important because choos-
ing correctly its content is crucial to achieve the successful interoperability
between all DGS’s.

©)lntergeo Consortium 2008 Page 5 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

Differences with the previous version The main improvement is the
amount of new symbols introduced in this version. The previous version
only contained symbols concerning linear geometry. The current coverage
is the common features that all DGS must share: linear geometry, conics
and locus. A proposed list of symbols for the display part is also new in
this version. The core of the format is the XML file intergeo.xml and an XML-
Schema is introduced. The implementation of the File Format by the different
DGS has also been evolving. But, it is not until deliverable 3.8 (Report on
Implementations of File Formats) when we will provide full details.

©)lntergeo Consortium 2008 Page 6 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

2 Introduction

The Intergeo file format is a file format designed to describe any construction
created with a Dynamic Geometry System (DGS). As a first application, the
format can be used to interchange content between geometric software. At
present, the format is restricted to the geometry in the plane, although it
does not seem difficult to extend it, in the future, to the space.

Dynamic Geometry Systems (DGS) is a kind of software used to experiment
with geometry. A construction, a drawing with geometric elements, is dis-
played to the user. But the most exciting part of a DGS is that it is possible
to move some of the elements with the mouse pointer and the whole con-
struction is recomputed while keeping predefined geometric relationships,
which are the object of study. Although the origin of DGS is geometry, they
can be applied to the study of other areas of mathematics or even subjects
like, for example, physics.

A wide variety of DGS exists. Before this project, each system used incom-
patible proprietary file formats to store its data. Thus, most of the DGS
makers have joined to provide a common file format that will be adopted
either in the core of the systems or just as a way to interchange content.

The file format proposed in this document aims to be the convergence of
the common features of the current DGS together with the vision of future
developments and the opinion of external experts. In addition, we state the
following objectives:

e The resulting file format will be adopted by the manufacturers that are
authors of this specification.

e The files that satisfy this specification should be interchangeable be-
tween the different DGS.

e The format will be based on modern technologies.

e The format will be extensible. In particular, this will allow capturing the
flavour of the different DGS.

Providing a file format for DGS is a task related, but not equal, to express
geometric constructions in general. However, some additional issues arise.
For example, styling (colours, point sizes, etc.) and the capability of moving
the objects with the mouse (interactivity) are very important for a DGS while
they have not sense at all in geometry as a theoretical mathematical disci-
pline. We conclude remarking that traditional techniques used to describe a
geometry figure are not always suitable for a DGS.

©)lntergeo Consortium 2008 Page 7 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

2.1

The three layers of the file format specification

The Intergeo file format specification is split into three layers. Each layer is
different in nature and can exist by itself.

The following diagram shows the structure of the layers

container

intergeo.xml

symbol list

Figure 1: Specification structure in layers

The container layer specification describes the container as a ZIP file.

The

The

This means that the container is a bundle of compressed files. It con-
tains the important file intergeo.xml and other files like media (im-
ages, audio, video), data, text and a preview of the construction.

intergeo.xml layer specification describes which rules must follow
an XML file to be a valid DGS construction. Such a file is self-contained
except for media files that are located in the container. An XML-schema
is provided to help specifying and validating any construction. This layer
specifies the general structure of the file, how the different statements
are constructed from the symbols and how the most atomic values like
(real or complex) numbers, variables, text and formulas have to be en-
coded. However, the list of symbols that is the origin of the statements
is not part of this layer.

symbol list layer is an OpenMath collection of Content Dictionaries.
OpenMath is a standard used to express mathematical content through
a series of functions, relations and constants called symbols which are
specified with Content Dictionaries (CD). Each CD is an XML file that
collects the description of a coherent set of symbols. This part of the
specification is an exhaustive enumeration of valid geometric elements,
constraints and styles that can be used to generate a construction. Al-
though the symbols have been chosen to be part of a DGS construction,
actually, they could live independently and be used for other purposes.
Another difference with the intergeo.xml specification is that DGS’s
are free to create their own extensions (at the expense of losing inter-
operability with other systems).

©)lntergeo Consortium 2008 Page 8 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

2.2 Design decisions: Constraints versus Constructions

The general framework was clear from the outset: to design a semantically
rich format, that could be interpreted by at least all DGS in the consortium.
But also possibly by others, and maybe by other types of programs as well,
for example computer algebra systems or proof assistants. One main design
decision in this respect consists of the choice of constructions, as opposed
to constraints. We will describe this in more detail now.

DGS deal with sets of geometrical objects that have certain relations. We
call such a set of objects with given relations a figure. We conceive of these
objects in some underlying space, for example the Euclidean plane. In prin-
ciple, if nothing else is said about them, objects can move around freely in
this space. The relations then specify constraints on the movement of these
objects.

Example 1 Two points P and Q, together with a line [; there is the following
constraints:

line lis incident to both points P and Q.

Example 2 A ccircle T, a point P, a line [and the constraints

Pisonl
lis tangentto I’
the distance of P to the center of T" is 10.

We can make the simple observation that the constraints do not determine
the positions of the objects uniquely. This causes multiple problems that lie
at the heart of dynamic geometry.

First there is the problem of how to create an instance of the figure. (We say
this has to do with the static aspect of the figure.) In example 1, the points P
and Q could still lie anywhere on the line [as it stands. For any instance, we
must specify where [, P and Q should be. But once we have specified one,
the other two are not completely free anymore. This particular example is
not hard. Example 2, although more difficult, is still doable. But in general, it
is very difficult to give any particular solution for a set of constraints. There
is not even a quick method to decide whether there are any instances: a set
of constraints could be too restrictive and leave none.

Second, there is the dynamic behaviour of a figure, caused by the freedom
still left by the constraints. In example 1, what should the user be able to
move? May the line be picked up and translated or rotated in its entirety,
the points being translated and rotated with it? Can the user only move
one of the two points, the line being adjusted accordingly? Constraints of a

©)lntergeo Consortium 2008 Page 9 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

strictly classical geometrical nature, such as the ones stated above, do not
say anything about this behaviour. For the approach of a DGS, this is not
enough.

A natural way to shed light on both these problems is a more precise speci-
fication of how the objects depend on each other. We could stipulate first of
all which objects are free, meaning that they can be varied over the whole
range of possibilities in the underlying space (think of the plane) by the user.
We would then proceed step by step saying which objects depend only on
the free objects, which ones depend only on these new objects and the free
objects, etcetera. Such a specification is called a construction. It allows for
an algorithm to rapidly create instances or decide that there are none. It also
enables a DGS to give more consistent dynamic behaviour: objects are only
movable insofar as they still have some degrees of freedom left if the objects
they depend on are kept fixed. The behaviour for all different cases (e.g. a
line through a fixed point) can be decided in advance. Other objects depen-
dent on the object being varied have to change as well, and this still leads
to decision problems, but they are less severe. We could give a construction
for example 1 as follows:

Example 3 Two points P and Q, together with a line |, and the following
construction:

free_point(P)
line_through _point((,P)
point_on_line(Q,1)

The line [would then depend on where P is placed. That point could be varied
freely. The line could then be rotated around P (and Q would most logically
rotate with it), and while P and [are kept fixed, Q could still slide over the
line. Note that such information could not be gleaned from the figure.

It thus seems like a figure might be too general to be practical, and we
might be better off with a construction. We therefore decided to go with con-
structions. This decision implies less interoperability with constraint-based
systems, since some of their resources will not be encodable into the for-
mat. But it ensures that construction-based DGS will be able to interpret the
resources, which they might not if we used figures. Indeed, although there
are systems like Geometry Expressions [Sal08] that take a constraint-based
approach, and some systems like Geometer’s Sketchpad [KCP08] support it,
most systems only use constructions.

Another effect of the decision is the explosion of keywords. We have to dis-
tinguish between “line_through_point” and “point_on_line”. This is in sharp
contrast to figures, where one relation “incident” would suffice, as can be
seen from the plangeo Content Dictionaries. In general, if there are n dif-
ferent types of objects, the construction approach now forces n? different

©)lntergeo Consortium 2008 Page 10 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

types of incidence on us. This means a more bloated specification of the
file format. On the other hand, it is easier for software developers to parse
constructions, so it saves trouble there.

2.3 Design Decisions: OpenMath

As stated in the Description of Work, OpenMath will be used for the file for-
mat. The advantage of using OpenMath as opposed to a self-chosen xml-
format lies in the fact that the use of a Content Dictionary makes for a flex-
ible, open, and reusable standard. First of all, the use of OpenMath enables
Intergeo to use other Content Dictionaries already in existence, so it not only
saves development time, but relies on already existing mathematical con-
siderations for, e.g., algebraic expressions. Second, other kinds of software
that want to use the format in the future can combine it with other Content
Dictionaries to enrich its expressive power.

We started looking at the plangeo Content Dictionaries already present on
the OpenMath platform (http://www.openmath.org/). It turned out that
they were aimed more at a constraint-based approach, and the WP3 mem-
bers decided this was not the road they wanted to take, as elaborated above.
The problems having to do with OpenMath that remain are about details of
implementation.

A list of all the OpenMath symbols defined so far is listed in appendix A.

©)lntergeo Consortium 2008 Page 11 of 40

http://www.openmath.org/

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

3 The container

The container is the topmost structure of Intergeo file format. It is composed
of a collection of files stored as a directory hierarchy in a ZIP file format.

The container comprises the construction description as well as other data,
for example, media (images, sound, video, ...), previews (PDF, SVG or PNG),
metadata or private data/legacy file formats that some software may keep,
among other information. Thus, instead of encoding everything in a single
XML file it is more natural to store all such information in a standard format
like a ZIP package and, in addition, benefit of the compression.

The proposed directory structure is the following

construction/ mandatory
construction/intergeo.xml mandatory
construction/preview. pdf optional
construction/preview.svg optional
construction/preview.png optional
metadata/ optional
metadata/i2g-lom.xml optional
resources/ optional
resources/<image-files> optional
resources/<audio-files> optional
resources/<video-files> optional
resources/<data-files> optional
resources/<text-files> optional
private/ optional
private/<domain-name>/ optional
private/<domain-name>/<files> | optiona

Figure 2: Containter structure

The construction folder is always mandatory and contains the important
file intergeo.xml. The specification does not enforce any preview format,
however all files should be named preview.*. Files with hames other than
intergeo.xml or preview. * are not allowed in this part. Thus, any auxiliary
file should be placed in the resources folder.

The whole construction can contain optionally metadata. We do not impose
any specific format but we recommend including a file named i2g-lom.xml
with the metadata as specified in the document [HLCMDO0S8].

The resources directory contains any media or data file needed by the
intergeo.xml or preview files. Constructions must be possible to open with
solely the intergeo.xml and the resource files. Inside the resources folder
it is permitted to add any hierarchy of subdirectories. However, we rec-
ommend placing the images, audio, video, data and text under the folders

©)lntergeo Consortium 2008 Page 12 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

images, audio, video, data and text, respectively. The valid file formats
for the resources depend on their usage. It is not the responsibility of the
container specification to impose any specific format type for the media.

DGS’s are free to store any file within their private directory and ignore com-
pletely the private directories belonging to other systems. Note that if a file is
referred from the intergeo.xml it should be always placed in the resources
directory. We strongly recommend placing all files inside a directory name
based on the domain name of an organization. For example, if my organiza-
tion has the domain My0rg.net, the recommended directory name would be
net.myorg (note the use of lowercase). This is done in order to distinguish
my private directory from the private directories of other software develop-
ers.

©)lntergeo Consortium 2008 Page 13 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

4 intergeo.xml

This is an XML file that contains the full description of the construction.
The file must be always named and placed at construction/intergeo.xml
when it appears inside the container. Except for other auxiliary media files,
this file is always self contained. This means that this file alone, when it does
not depend on media files, should be readable by DGS'’s.

There are three main distinct parts:

1. The elements part is a static view of all objects. The description of
the objects in this part is minimal; it only indicates how the objects are
constructed (their coordinates) and displayed (without styling).

2. The constraints part explains the geometric relations between ob-
jects. Some relations are purely algorithmic (an object can be con-
structed directly from existing ones) while others are constraint based
(an object should satisfy a given property but, at the same time, it keeps
a certain degree of freedom). Thus, the objective of this part is describ-
ing how some figures are recomputed when points (or other objects)
are moved by the mouse pointer.

3. The display part comprises information necessary to render the ob-
jects. The display contains the styles and non-mathematical behaviour
of the elements.

(Intergeo File Format XML schema

General structure and atomic Static part
values
Elements, constraints and Dynamic part

display

Figure 3: Intergeo file format XML schema

The splitting of data into these parts has some advantages. For example, it is
possible to have more than one view or display for the same set of elements
and constraints.

Because intergeo.xml is an XML file it is important to provide an XML
schema (a file, also in XML format, that describes the structure of a family
of XML files). There is not one single schema. Instead, there is one schema
for each set of geometric symbols. The schema is composed of a static part
which defines the general structure of the XML file and the atoms (leaves of
the XML-tree). This static part is the same for all XML schemas. The dynamic
part is generated automatically from the list of geometric symbols.

©)lntergeo Consortium 2008 Page 14 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

The current XML-schema that corresponds to the minimal set of symbols can
be found at [Int09].

4.1 Construction

The construction is the root element of the intergeo.xml file. The schema
fragment is the following

<xs:element name="construction">
<xs:complexType>
<xs:sequence>
<xs:element ref="elements" />
<xs:element ref="constraints"/>
<xs:element ref="display" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>

and an example is

<construction>
<elements>

</elements>
<constraints>

</constraints>
<display>

</display>
</construction>

4.2 Elements

The <elements> element comprises the enumeration of objects that will
be part of the construction. They will be often geometric objects like points,
lines, circles, ... But it can hold also any object that can be drawn like images,
slider bars, buttons, etc.

<xs:element name="elements">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<!—— here goes the list of available elements —>
<xs:element ref="point"/>

©)lntergeo Consortium 2008 Page 15 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

</xs:choice>
</xs:complexType>
</Xs:element>

The previous schema fragment should be filled with all elements specified in
the elements part of the symbols list.

The schema for each element has the form

<xs:element name=element—name>
<xs:complexType>
<xs:sequence>
enumeration—of—arguments
</Xs:sequence>
</xs:complexType>
<xs:attribute name="id" type="xs:Name"
use="required" />
</xs:element>

For example, for the point with homogeneous or Euclidean coordinates:

<xs:element name="point">
<xs:complexType>
<xs:sequence>
<xs:element ref="homogeneous coordinates" />
</Xs:sequence>
<xs:attribute name="id" type="xs:Name"
use="required" />
</xs:complexType>
</xs:element>

And an extra definition for homogeneous_coordinates is needed:

<xs:element name="homogeneous coordinates">
<xs:complexType>
<xs:sequence>
<xs:group ref="scalar"/>
<xs:group ref="scalar"/>
<xs:group ref="scalar"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

Note that both point and homogeneous_coordinates are specified with Con-
tent Dictionaries and the atomic elements scalar at the end of this chapter.

An example of the elements part is

©)lntergeo Consortium 2008 Page 16 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

<elements>
<point id="A">
<homogeneous_coordinates>
<double>3.55</double>
<double>—4</double>
<double>0</double>
</homogeneous_coordinates>
</point>
</elements>

4.2.1 Additional elements restrictions

There are other restrictions that cannot be expressed with an XML schema
and are described here.

Unique identifiers restriction. All values of the id attribute are used
to identify the geometric objects and they must be used only once (unique
identifiers).

Only constants allowed restriction. A declaration in this part is not al-
lowed to refer to other objects. For example, each point needs coordinates
and an XML coordinates element must appear as its child. Thus, scalars must
be explicitly instantiated as real or complex floating numbers and cannot be
replaced by variables or expressions pending to be evaluated.

Elements symbols restriction. Symbols are declared to be in the ele-
ments, the constraints or in the display part. Only symbols declared to be in
the elements part can appear in the elements part.

4.3 Constraints

The <constraints> describes the relations between objects. Sometimes this
relation is just a description of how an object is to be built and other times it
explains how the object is constrained and partially free movable.

The schema is quite similar to the elements part:

<xs:element name="constraints">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<!— here goes the list of available
constraints —

©)lntergeo Consortium 2008 Page 17 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

<xs:element ref="line_through_two_points"/>

</Xs:choice>
</xs:complexType>
</xs:element>

The list of available constraints is specified with Content Dictionaries. The
schema for each constraint has the form:

<xs:element name=constraint-name>
<xs:complexType>
<Xxs:sequence>
enumeration—of—-arguments
</Xs:sequence>
</xs:complexType>
</xs:element>

For example, for the line_trough_two_points constraint the schema is:

<xs:element name="line_through_two_points">
<xs:complexType>
<xs:sequence>
<xs:element name="line"
type="output—reference" />
<xs:element name="point" type="reference"/>
<xs:element name="point" type="reference"/>
</Xxs:sequence>
</xs:complexType>
</xs:element>

where output-reference and reference are defined below and are speci-
fied to act as references to objects using their id’s. Example

<constraints>
<line_through_two_points>
<line out="true">I</line>
<point>A</point>
<point>B</point>
</line_through_two_points>
</constraints>

4.3.1 Additional constraints restrictions

Defined input references restriction. All input and output references
must be defined previously in the elements part.

©)lntergeo Consortium 2008 Page 18 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

Composition of constraints forbidden restriction. The arguments of
the constraints cannot be other constraints. It is allowed only to refer to
valid geometric objects, using the id’s. Note that this rule still permits using
constants in the arguments.

Unique output reference usage restriction. An identifier can be used
only once as output reference except for some declarations. These declara-
tions are based on symbols that explicitly declare that can coexist with other
declarations with the same output reference.

Constraints symbols restriction. Symbols are declared to be in the ele-
ments, the constraints or in the display part. Only symbols declared to be in
the constraints part can appear in the constraints part.

4.4 Display

Note. The display part is already under development.

The display contains the styles and non-mathematical behaviour of the ele-
ments.

Styling consists on specifying visual properties (like colours, line widths,
point sizes, labels, etc.) and the interactive properties (fixed) of the ele-
ment. While the elements and constrains parts are close to mathematical
properties and behaviour, the display part contains visual properties and the
behaviour that can not be formalized mathematically.

Each system will provide default values for the styles which may depend on
the type of the element: points might be blue while lines might be red.

Styles will be specified individually in the display part.

The current version of the styling system for Intergeo is inspired by the SVG
and CSS standards. Thus, some symbols like fill, stroke, stroke width are
taken from the SVG and CSS standards but point_size, label and fixed are
specific of the Intergeo File Format.

More than one display can be present and each one represents a possible
view of the representation.

The display contains a <style> for each element to be described.

<xs:element name="display">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="style"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

©)lntergeo Consortium 2008 Page 19 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

The style must refer to an existing element and comprises the different pos-
sible styles of the element.

<xs:element name="style">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="label"/>
<xs:element ref="fill"/>

</Xs:choice>

<xs:attribute name="ref" type="xs:Name" use="required" />

</xs:complexType>
</xs:element>

For example, the XML-Schema for <label> is:

<xs:element name="label" type="xs:string"/>

A complete example of a point with styles is

<construction>
<elements>
<point id="P">
<homogeneous_coordinates>
<double>4</double>
<double>5</double>
<double>1</double>
</homogeneous _coordinates>
</point>
</elements>
<constraints>
<l— —
</constraints>
<display>
<style ref="P">
<label>The point P</label>
<fil |I>#FFFFFF</fill>
<stroke>#222222</stroke>
<stroke width>2</stroke width>
<point_size>5</point_size>
</style>
</display>
</construction>

©)lntergeo Consortium 2008 Page 20 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

4.4.1 Additional restrictions

Defined reference restriction The reference must point to an existing
element described in the elements part.

Single style node by element restriction All styles of an element must
be specified in a single <style>.

4.5 Atomic values

Atomic values are the simplest ingredients of the Intergeo file format. They
are specified also with an appropriate schema fragment.

Note: We might add more atoms in the future.

4.5.1 Scalars

Scalars represent either double or complex double numbers:

<xs:group name="scalar">
<xs:choice>
<xs:element ref="double" />
<xs:element ref="complex" />
</xs:choice>
</Xxs:group>

4.5.2 Double numbers

Doubles follow the [IEEE 754-1985] standard.

<xs:element name="double" type="xs:double" />

Example
<double>4.37589837073</double>

4.5.3 Complex numbers

©)lntergeo Consortium 2008 Page 21 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

<xs:element name="complex">
<xs:complexType>
<xs:sequence>
<xs:element name="double" type="xs:double" />
<xs:element name="double" type="xs:double" />
</Xs:sequence>
</xs:complexType>
</xs:element>

Example

<complex>
<double>2.4689</double>
<double>-5.78231659</double>
</complex>

4.5.4 References to objects

Constraints accept as arguments references to objects.

<xs:complexType name="reference">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>

4.5.5 Output references to objects

Constraints usually have one argument that is the output. The output is the
name of the object that is going to be computed from the other ones.

<xs:complexType name="output—-reference">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="out" use="required"
fixed="true" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>

©)lntergeo Consortium 2008 Page 22 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

4.6 intergeo.xml XML-Schema

As we have already said, the XML-schema is generated from the set of sym-
bols and its signatures. The project that generates such schema can be get
from the SVN repository http://svn.activemath.org/intergeo/Drafts/
Format/xml.

Although the original idea was using the OpenMath Content Dictionaries and
their associated Small Type System files, we decided to write a very simple
and single XML file with all symbols and generate the XML-Schema from
it. Such XML file can be found at http://svn.activemath.org/intergeo/
Drafts/Format/xml/symbols.xml.

The symbols.xml is an XML file that contains essentially declarations like, for
example,

<element name="point">
<argument type="homogeneous_coordinates" />
</element>

for declaring elements and

<constraint name="line_through_two_points">
<argument type="line" out="true"/>
<argument type="point"/>
<argument type="point"/>

</constraint>

for the constraints.

The declarations in the symbols.xml file are much simpler than the corre-
sponding ones at the XML-schema. Thus, it is possible to add more symbols
to the schema without any advanced knowledge of XML. Another advantage
of this approach is the possibility of generating different schemas addressing
different purposes. For example, generate a schema that validates not only
the official symbols of the format, but the proprietary ones. Another possi-
bility is getting a schema to validate the file format for constrained based
systems (as opposed to construction based which mainly targets the Inter-
geo File Format).

©)lntergeo Consortium 2008 Page 23 of 40

http://svn.activemath.org/intergeo/Drafts/Format/xml
http://svn.activemath.org/intergeo/Drafts/Format/xml
http://svn.activemath.org/intergeo/Drafts/Format/xml/symbols.xml
http://svn.activemath.org/intergeo/Drafts/Format/xml/symbols.xml

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

5 Symbol list

Symbols are the main ingredients used to describe a construction. They
define how objects are built and their behaviour. Each icon in a DGS palette
is roughly associated to one or more symbols; styles like colours, point sizes,
line widths are also represented in the file format using symbols. All DGS’s
share a big set of common features that will be covered by the Intergeo
official symbols. However, for additional features it is acceptable to use
proprietary symbols that one day might become official.

The list of symbols is divided in three categories: elements, constraints and
display depending on the part of intergeo.xml they appear in. Symbols for
the elements and constraints categories are not primarily specified using a
XML-Schema but with Content Dictionaries, which are part of the OpenMath
standard. With some knowledge of how the atoms are expressed in XML, the
description of the symbols with Content Dictionaries and their signature with
the Small Type System (STS), the XML schema can be generated automati-
cally.

The complete list of official symbols can be found in Appendix A or at http:
//svn.activemath.org/intergeo/Drafts/Format/.

There will be a process for Content Dictionaries to become an official part
of the file format. How this process will be structured and how new official
Content Dictionaries can be added after the Intergeo project’s lifetime is to
be decided.

©)lntergeo Consortium 2008 Page 24 of 40

http://svn.activemath.org/intergeo/Drafts/Format/
http://svn.activemath.org/intergeo/Drafts/Format/

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

6 First (partial) implementations

As soon as version 1 of the file format got more concrete, some software de-
velopers started to investigate its practical usage by integrating it (partially)
into their software. Ulrich Kortenkamp started by making Cinderella able to
store (intersection) points and (parallel or perpendicular) lines. Then René
Grothmann added read support into C.a.R. and successfully opened a demo
file stored by Cinderella. This demonstrated that the file format is usable to
exchange (at least simple) constructions between different applications. Af-
terwards Yves Kreis, Markus Hohenwarter and Ingo Schandeler investigated
both procedures inside GeoGebra.

These implementations were discussed in the first deliverable and later on
again by all members of the work package. As a result other software part-
ners started to implement the preliminary version of the file format: Arnault
loualalen wrote a translator to and from the TracenPoche proprietary for-
mat; Alfred Wassermann created an import library for JSXGraph; Ulrich Ko-
rtenkamp extended his implementation to be able to store files and the WIRIS
team made first investigations of coding the file format.

Some results and implementation decisions will be described in the follow-
ing subsections to enrich the ongoing discussion. A live view on the im-
plementation compatibility is available at http://i2geo.net/xwiki/bin/
view/About/I2GformatImplementations.

6.1 Saving

Saving requires the translation of the internal format of the application to the
common file format. As the internal representation is quite different in each
implementation this part needs to be done individually by each software
partner.

6.2 Opening

To be able to read a construction stored in the common file format it needs
to be parsed and then the elements and the constraints need to be handled.
The experience shows that any XML parser is able to parse the file format out
of the box. An event-driven library might be interesting but the translation
from the common file format to the internal representation is most of the
work which needs to be done anyway by each partner. Besides the different
programming languages used for the different applications were not in favor
of such a library so far, but its necessity is unbroken.

No investigations have been made either with random orders of constraints.
Using demo files where the constraints were stored in their acyclic represen-

©)lntergeo Consortium 2008 Page 25 of 40

http://i2geo.net/xwiki/bin/view/About/I2GformatImplementations
http://i2geo.net/xwiki/bin/view/About/I2GformatImplementations

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

tation (see Sec. 7.10 on p. 30) file exchange between multiple applications
have been successfully demonstrated at conferences and during workshops.

6.3 Implementation

The projective dynamic geometry systems like Cinderella, GeoGebra and JSX-
Graph have easily and successfully implemented (part of) the current file
format. Their internal representation of the objects is quite close to the one
used in the file format which facilitates the translation.

In WIRIS however creating a construction that behaves like a DGS requires
writing a sequence of commands: a program. Thus the implementation is
challenging for them which explains why they do currently not use the official
test cases and do not yet support saving/opening of the common file format.

6.4 Testing

The development of an official test suite for the common file format has
begun. A first test case for points is available at http://i2geo.net/xwiki/
bin/view/About/I2GformatTestSuite-Elements and has been passed by
most of the available implementations. More test cases will follow to build a
complete test suite for all elements and constraints.

Different levels of compliance are possible for each element/constraint:

The application can

e read the element/constraint and represent it internally with the correct
semantics

e read the element/constaint and represent it internally, though maybe
with wrong or missing semantics

e read the element/constraint technically - without throwing exceptions
etc. - so it can at least be ignored

¢ not read the element/constraint technically

The result of the test case is currently the lowest compliance level of the
different objects. However the final algorithm to combine the different ob-
jects and/or the different test cases needs to be discussed and agreed upon
quickly to be able to hand out compliance badges as soon as the file format
has become stable.

©)lntergeo Consortium 2008 Page 26 of 40

http://i2geo.net/xwiki/bin/view/About/I2GformatTestSuite-Elements
http://i2geo.net/xwiki/bin/view/About/I2GformatTestSuite-Elements

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

7 Future Work and Request For Comments

As for version 1 of the file format we postponed some decisions that should
be made with the help of other developers of DGS. We explicitly invite those
to join the discussion and propose solutions or give remarks.

We suggest to read [Kor99] for further mathematical details.

Despite the fact that we are listing a lot of yet to be solved issues, we are
confident that the first version of the i2g file format is capable of handling
any design decisions that result from the following discussion.

7.1 More Elements and Polymorphism

Currently, we focused on a restricted subset of possible geometric elements.
This restriction enabled us to agree on the structure and basic composition
of the i2g format.

Further elements that should be available are purely geometric elements like
conics, loci or polygons, and more general ones like functions or numbers, as
well as stylistic elements like text objects or images. A task for the next ver-
sion of the i2g format is to collect and specify all elements that are currently
in geometry software.

Certain elements are very similar to others, for example, segments and rays
can be used instead of lines in many cases. Other examples are arcs of
circles in comparison to plain circles. The next version of the i2g format has
to be able to handle this kind of polymorphism.

Some objects can also be replaced by others in certain special cases, for ex-
ample, a circle might degenerate to a line, or a conic might degenerate to
two lines. Although currently no DGS uses these degenerations, this could
be desirable for the future. A DGS might construct a parallel line to a de-
generate circle through three collinear points — with our current specification
and typing mechanism it is not possible to capture this in the file format.
However, we request advise from DGS developers on this issue.

7.2 Circle Coordinates

Each DGS uses its own representation of coordinates for the basic elements.
In the case of points and lines we could easily agree on standard representa-
tions, i.e. homogeneous or Cartesian coordinates. For the case of circles it is
not as easy: Usually, circles can be specified by a center and a radius. If the
center is “at infinity” and/or the radius is not representable by a real number,
then it might be easier to represent the circle by a (symmetric) matrix that

©)lntergeo Consortium 2008 Page 27 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

specifies the parameters of its quadratic equation, together with the matrix
for the dual conic.

It was agreed that the matrix representation of the quadratic equation is
to be used, since it is the most general. Because several DGS developers
said they would not be able to handle this representation directly, Ulrich
Kortenkamp offered to add functions to the Java library that can offer con-
versions into a more other representations such as (center,radius) whenever
possible.

7.3 Ambiguity Resolving

Ambiguity Resolving is crucial for finding the correct positions of elements in
stored construction after loading, also known as the persistent naming prob-
lem [MPO2] from parametric CAD. Assume that an intersection point of two
circles is used in a construction. If the two circles are moved into a tangent
position, and then the construction is stored, then both intersections have
the same coordinates and thus cannot be distinguished. If the circles are
moved into a position where both intersection points can be distinguished,
then it is essential to pick the correct intersection point.

Most DGS solve this problem by having an implicit order of multiple out-
puts. This order is dependent on the implementation details of the algo-
rithms and cannot be part of a specification. Also, a point might switch
branches later due to homotopy-conserving implementations. This means
that this approach cannot be used for a cross-software file format.

For the current version v2 of the file format we introduced circles and conics.
The order of the inputs can be determined from the coordinates of the inter-
section points when they exist and differ from each other. For all other cases,
the order is still unspecified. This will lead to problems when files are stored
and exchanged. However, we decided that we can only solve this problem if
we have test files that expose them.

7.4 Styling Information

With version 2, the file format includes styling information that is loosely
based on SVG.

Some of the DGS support parametrized styles, for example a color that
changes according to the position of an element. This cannot be specified in
the file format currently. See the next section for a discussion of the prob-
lems that are specific to including parametrized values using functions.

©)lntergeo Consortium 2008 Page 28 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

7.5 Functions and Scripting

Almost all DGS support functions, used for plotting graphs, defining element
dependencies, or changing the style of elements dynamically. All of these
use a different language to specify the functions, though many aspects are
shared. The conformance to standards varies wildly from OpenMath compli-
ance to unspecified.

Right now it seems impossible to homogenize the various dialects. Actu-
ally, the translation from one language to the other can be done easily by
humans if an automatic conversion fails, so we decided that all functions
should be specified in the private sections of the file format. Each DGS may
try to interpret the other function specification, of course, and store its own
interpretation as well.

For this, we need a notion of “alternatives”, which should be specified in an
upcoming version of the i2g format.

Another difficulty in dealing with functions is that some DGS extend the no-
tion of function to a general-purpose functional programming language. This
proves that it is impossible to find equivalent functions algorithmically. Nev-
ertheless, in many cases, mostly non recursive algebraic expressions, the
translation is straightforward, and so it might be sufficient to use a heuristic
approach.

7.6 Mathematical Typesetting

The de-facto standard for mathematical typesetting is TeX [Knu84], and the
browser-compliant way is to use MathML [CIM08]. DGS software use both
approaches, while the TeX implementation used is usually only a subset of
the full TeX system as created by Knuth?.

A logical solution to storing typesetting information would be to use the ex-
isting OpenMath syntax. It has not been decided yet how to handle the
situation, and it is unclear whether it has practical relevance at all. We could
not agree on a definitive way to typeset formulae. We suggest that a solu-
tion for the function specification problem above will be a solution for this
problem as well.

7.7 Sending Commands to Constructions

Sending commands to constructions is now handled in the Intergeo API spec-
ification document [KorQ9].

1Some use the hoteqn library, others use custom implementations

©)lntergeo Consortium 2008 Page 29 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

7.8 Macro Constructions

So far there is no notion of Macro constructions. We expect that macros are
basically sub-constructions, and it is probably sufficient to add an additional
inmacro attribute to the constraints and elements. This has to be postponed
until the first version can be used successfully for saving and loading of more
complex constructions.

7.9 Number Representation

Currently, the specification of coordinates uses the IEEE standard for doubles
(see Sec. 4.5.2 on p. 21). While this is probably sufficient for most purposes,
it lacks the ability to describe real coordinates, for example the irrational
numbers 1 or ¥/5. As there are constructions even in elementary geometry
that require such numbers, it is desirable to be able to express them. The
OpenMath standard supports this, however, the i2g format cannot be based
on the full OpenMath specification as most DGS developers cannot afford the
necessary implementation work.

For the time being, we will restrict the number representation to the IEEE
standard. This should not be the cause of severe problems, because the
coordinates of dependent elements can be recalculated up to arbitrary pre-
cision by the DGS itself. If there is a need for other number representations,
we will extend the mechanism as described in Sec. 4.5.2.

7.10 Acyclicity of Construction Dependencies

Most construction-based DGS require that the dependency graph of a con-
struction be acyclic, but there are some systems (both constraint-based as
well as construction-based DGS) that allow for certain circular dependencies.
Therefore, we do not enforce this property, and we do not impose a special
order for the constraints in the constraint part of the i2g format.

This implies that each DGS has to be able to handle cycles. The easiest
resolution is to drop those constraints that close a cycle. Another solution is
to add all constraints and break the cycles on-the-fly whenever an element
moves. If the DGS can handle the additional constraint, then it should add it.

7.11 Library Support

In order to make it easier to work with the i2g format we will try to provide an
open-source library in Java to read (and possibly write) the format, see also
Section 6. We already applied for a corresponding sourceforge project that
will host this open source library. The library will consist of a basic XML parser

©)lntergeo Consortium 2008 Page 30 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

that offers an APl to access the various nodes in the i2g file. In particular,
it should be possible to request the coordinates of elements in Cartesian or
homogeneous form if possible, regardless of how they are stored.

This library should enable third parties to work with the i2g format, and thus
enhance the accessibility of the format as well as the visibility of the Intergeo
project and provide sustainability for the future.

7.12 Higher Dimensional Geometry

With the availability of three-dimensional DGS it is necessary to extend the
i2g format to 3D. The basic structure should be similar to what we have now,
but more elements and constraint symbols are necessary.

©)lntergeo Consortium 2008 Page 31 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

Appendix A : Intergeo file format OpenMath sym-
bols

The following is a list of OpenMath symbols that we agreed on until 31-07-
2009. It will be developed further during the course of the project. At any
time, the newest version can be found on http://svn.activemath.org/
intergeo/Drafts/Format/. In the list, the keyword is listed first, in bold-
face. On the next line, the types of its arguments are listed. The order of the
arguments is fixed.

A.1 The elements part

point

coordinates

This will represent a point in the space. It will have coordinates for initializa-
tion.

line

coordinates

This will represent a line. The coordinates are the homogeneous coordinates
of the line; this is, (2, 3, 5) represents the line 2x + 3y + 5 =0.

line_segment

coordinates, coordinates [,coordinates]

This will represent a segment from a straight line; the name is due in con-
sideration to possible future implementations of other kinds of segments. A
line_segment is indicated by providing the coordinates of its twoendpoints;
additionally, a third optional point, called via point, may be used in projec-
tive geometry to indicate a point in the middle of the segment to specify
which of the two possible segments is meant. For instance, line_segment
([0,0],1[0,2]1,[0,1]) would represent the "normal" segment from (0, 0) to
(0, 2), while line_segment ([0, 0], [0, 2], [0, 10]) would represent the projec-
tive segment that starts at (0, 0), goes to (—o0, 0), and then continues from
(o0, 0) to (0, 2).

directed_line_segment

coordinates, coordinates [,coordinates]

A line_segment with associated direction; instead of two endpoints it has a
starting point and an endpoint. The same remarks for the via point apply as
in the case of line_segment.

ray

coordinates, direction | coordinates, coordinates

This will represent a ray (half line) which starts at the given point and pro-
ceeds to infinity in the direction provided, or via a second point (alternative
option). Projective DGS may treat it as a special form of a directed_line_segment.
If the given coordinates are at infinity the notion or ray does not make sense,

but a DGS can choose to use the line at infinity instead.

©)lntergeo Consortium 2008 Page 32 of 40

http://svn.activemath.org/intergeo/Drafts/Format/
http://svn.activemath.org/intergeo/Drafts/Format/

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

conic

matrix [,dualmatrix]

This will represent a general conic. The coefficients of its associated quadratic
form are provided in a 3 x 3 matrix of (possibly complex) numbers. An ad-
ditional 3 x 3 matrix may be given, being the matrix of the dual conic. This
can assist if the conic is a degenerate case (two lines, etc)

The following symbols are special kinds of conics. Their initial position is
stored in the same format as a general conic. A difference with the conic
symbol is that a DGS may opt to only accept reading a circle and request
the intergeo java library to convert the matrix to a different form, whereas it
might reject a general conic.

circle
matrix [,dualmatrix]
This will represent a circle, indicated in the same way as general conics.

ellipse
matrix [,dualmatrix]
This will represent an ellipse, indicated in the same way as general conics.

parabola
matrix [,dualmatrix]
This will represent a parabola, indicated in the same way as general conics.

hyperbola
matrix [,dualmatrix]
This will represent a hyperbola, indicated in the same way as general conics.

locus

void | a set of points

This will represent a locus. Its initial value can either not be provided (it will
then have to calculated by the DGS) or a finite set of tracer points (specified
together with the corresponding values of the mover point).

A.1.1 Auxiliary symbols

direction

(homogeneous) 2-vector

Directions are auxiliary symbols, used mainly to construct rays. Is specified
either as (a, b) or projectively (homogeneously) as (a: b : ¢).

linear_equation

coefficient vector, number
A linear equation can be used to describe a line in the plane.

©)lntergeo Consortium 2008 Page 33 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

A.2 The construction part

The new or output arguments (that is, the dependent element of the con-
struction) are indicated with the word “new”. The first argument is always
a new argument. The arguments which are not new are identifiers of exist-
ing objects upon which the new arguments depend. These objects must be
declared in the elements part of the file.

Remark: Whenever distances or angles are mentioned in this document we
refer to Euclidean measurements, unless otherwise stated.

free_point
new point
A completely unconstrained point.

free_line
new line
A completely unconstrained line.

point_on_line
new point, line
A new point restricted to lie on a given line.

point_on_line_segment
new point, line_segment
A new point restricted to lie on a given line_segment.

point_on_circle
new point, circle
A new point restricted to lie on a given circle.

line_through_point

new line, point

A new line that goes through a given point. The line can still be rotated
around the point by the user.

line_through_two points

new line, point, point

A new line that goes through two given points. If the two points are equal,
the line is undefined.

line_angular_bisector_of three_points

new line, point, point, point

A new line that is the angular bisector of three given points (in Euclidean
measurements); it must pass through the second one. Degenerate cases: If
the three points are the same, the line will be undefined. If two of the points
are equal, but not all three, then the line returned will be the one containing
these three points.

line_angular_bisectors_of two_lines
new line, new line, line, line

©)lntergeo Consortium 2008 Page 34 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

Two lines that are the angular bisectors of the two given lines (in Euclidean
measurements). If the lines are coincident, one bisector will be the common
line and the other will be undefined. If they are parallel and not coincident,
then one bisector is the line at infinity and the other bisector is undefined.
A DGS can choose to use the line with the same Euclidean distance to both
defining lines as the other bisector, as it is the continuous completion.

line_segment_by points

new line_segment, point, point [,point]

A new line_segment passing through the first two points and, optionally, for
those DGS that can handle projective geometry, also through the third. If the
third point is equal to the first or the second, then the behaviour is undefined
and each DGS can return an undefined value or what it thinks is the best
line_segment.

directed_line_segment_by points

new line_segment, point, point [,point]

A new directed _line_segment passing through the first two points and, op-
tionally, for those DGS that can handle projective geometry, also through the
third. If the third point is equal to the first or the second, then the behaviour
is undefined and each DGS can return an undefined value or what it thinks
is the best line_segment.

ray_from_point_in_direction
new ray, point, direction
A new ray that starts at the point and moves in the direction provided.

ray_from_point_via_point

new ray, point, point

A new ray that starts at the first point and goes through/via the second to
infinity.

line_parallel_to_line

new line, line

A line which can be moved with the mouse while it remains parallel to the
given one.

line_parallel_to_line_through_point
new line, line, point
A new line that is parallel to a given line and goes through a given point.

line_perpendicular_to _line

new line, line

A new line which can be moved with the mouse while it remains perpendic-
ular to the given one.

line_perpendicular_to_line_through_point

new line, line, point

A new line that is perpendicular to a given line and goes through a given
point.

©)lntergeo Consortium 2008 Page 35 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

point_intersection_of two_lines

new point, line, line

A new point that is the intersection point of two given lines. In the degener-
ate case the point is undefined, or a DGS may use an continuos completion.

midpoint_of_two_points

new point, point, point

A new point that is the middle point (in Euclidean measurements) between
two given points.

midpoint_of line_segment
new point, line_segment
A new point that is the midpoint of a given line segment.

endpoints_of line_segment
new point, new point, line_segment
A set of two points that form the end points of the given line_segment.

carrying_line_of _line_segment

new line, line_segment

The unique line that contains the given line_segment. Degenerate cases: if
the segment is constructed to be always a point, the carrying line is unde-
fined.

starting_point_of_directed_line_segment
new point, directed_line_segment
The starting point of a directed_line_segment.

end_point_of _directed_line_segment
new point, directed line_segment
The end point of a directed_line_segment.

line_segment_of_directed_line_segment

new line_segment, directed line_segment

The unique line_segment whose endpoints are the starting point and the end
point of the given directed_line_segment.

direction_of _ray
new direction, ray
The direction of a ray.

starting_point_of_ray
new point, ray
The new point is the starting point of a ray.

carrying_line_of_ray
new line, ray
The new line is the unique line that contains the ray.

circle_by center_and_radius
new circle, point, line_segment

©)lntergeo Consortium 2008 Page 36 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

A new circle with a given point as center and a radius as long as the given
line_segment.

circle_by center_and _point
new circle, point, point
A circle whose center is the first point and passes through the second.

circle_by three_points

new circle, point, point, point

A circle that passes through the three provided points. Degenerate cases:
if the three points are by construction collinear (but not equal), a DGS may
give an error or return the line through the points (as a line or a degenerate
conic). If the three points are by construction the same, a DGS may give an
error or return the point (as a point or a degenerate conic).

intersection_points_of two _circles

new point, new point, circle, circle

The intersection points of two circles. If there are fewer than two intersec-
tion points, a DGS may return the same point twice (in case of tangency),
“undefined” or points with complex coordinates. If the circles are equal by
construction, a DGS may give an error or return the common circle.

other_intersection_point_of_two_circles

new point, point, circle, circle

The new point is an intersection point of the two circles, and is different to
the provided point.

intersection_points_of circle_and line

new point, new point, circle, line

The intersection points of a circle and a line. If there are less than two inter-
section points, each DGS is free to return repeated points, undefined values,
or points with complex coordinates.

other_intersection_point_of circle_and_line

new point, point, circle, line

The new point is the intersection point of the circle and the line, and is dif-
ferent to the provided point.

intersection_points_of_two_conics

new point, new point, new point, new point, conic, conic

The up to four intersection points between two conics. If there are less than
four real intersection points, each DGS is free to return repeated points, un-
defined values, or points with complex coordinates. However, the algebraic
multiplicity of the intersections has to be respected.

intersection_points_of conic_and line

new point, new point, conic, line

The up to two intersection points between a conic and a line. If there are
less than two intersection points, each DGS is free to return repeated points,
undefined values, or points with complex coordinates. If the conic was de-

©)lntergeo Consortium 2008 Page 37 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

generate and contained a line coincident with the intersecting line, a DGS
may return “undefined” or the intersection line.

circle_tangent_lines_by point

new line, new line, circle, point

The two lines which are tangent to a circle and pass through a point. If the
point is on the circle and so there is only one tangent, a DGS may return
the tangent (repeated), or the tangent and “undefined”, or just “undefined”.
If the point was inside the circle, one or two times “undefined” may be re-
turned. If the circle has radius zero and the point coincides with the center,
two times “undefined” must be returned.

foci_of_conic

new point, new point, conic

The new points are the two foci of a conic. If the conic is degenerate and
has only one focus, a DGS may return the focus (repeated), or the focus
and an undefined value. One could also give circles, parabolas, ellipses and
hyperbolas instead of conics, the former being subtypes of the latter.

center_of circle
new point, circle
The new point is the center of the given circle.

locus_defined_by point_on_line

new locus, point, point, line

Defines a locus as the trace of the first point when the second point moves
over the line.

locus_defined_by point_on_line_segment

new locus, point, point, line_segment

Defines a locus as the trace of the first point when the second point moves
over the line_segment.

locus_defined by point_on circle

new locus, point, point, circle

Defines a locus as the trace of the first point when the second point moves
over the circle.

locus_defined_by point_on_locus

new locus, point, point, locus

Defines a locus as the trace of the first point when the second point moves
over the locus.

locus_defined_by line_through_point

new locus, point, line, point

Defines a locus as the trace of the first point when the line moves around
the second point.

©)lntergeo Consortium 2008 Page 38 of 40

Deliverable D3.6 12G
i2g Common File Format Draft v2 (version of August 3, 2009 3:27 P.M.) ™™=

A.3 The display part

Since the display part does not add mathematical information to the re-
source, this part will not have an OpenMath equivalent.

fill

Fill is used to specify whether the paths have to be filled and which color.
The value has to be given as a paint.

fixed
Fixed specifies whether a given graphical object can not be moved by the
user. Possible values are “true” and “false”.

label

Label is the text that is displayed as the label of an element. This should
be viewed as the visible name of the object, handy for the user but not
necessarily unique, as opposed to the identifier name, the unique identifier
the software uses. Possible values are plain text (anything valid as XML
text). The current format does not allow any mathematical specific format
like TEX/IBTEXor MathML.

point_size

Point_size specifies the size of the points. Points are usually displayed as
circles with diameter equal to the value of this style. The value has to be
given as a length.

stroke
Stroke is used to specify whether a path has to be drawn and with which
color. The value has to be given as a paint.

stroke_width
Stroke_width specifies the stroke width of the path. The value has to be
given as a length.

A.3.1 Auxiliary symbols

length

Length specifies a length. Lengths are decimal numbers (e.g. 12.345) that
represent pixels. For simplicity, units are not allowed. Note that a given
length measures the same independently of the scale of a construction.

paint
Paint can be none or a color.

color
Color has the form #RRGGBB where RR,GG and BB stands for the 0-255
hexadecimal values of the red, green and blue component of the color.

©)lntergeo Consortium 2008 Page 39 of 40

Deliverable D3.6 IZG
i2g Common File Format Draft v2 menese

Bibliography

[CIMO8] David Carlisle, Patrick lon, and Robert Miner. Mathematical
markup language (mathML) version 3.0. World Wide Web Con-
sortium, Working Draft WD-MathML3-20080409, April 2008.

[Cre08] Creative Commons Inc. (CC). Namensnennung-Weitergabe unter
gleichen Bedingungen 2.0 Deutschland. Available on the web,
May 2008.

[HLCMDO08] Maxim Hendriks, Paul Libbrecht, Albert Creus-
Mir, and Michael Dietrich. Metadata specification.
http://svn.activemath.org/intergeo/Deliverables/WP2/D2.4-
Metadata/D2.4-Metadata-Spec.pdf, June 2008.

[Int09] Intergeo. Intergeo file format xml-schema for intergeo.xml.
http://svn.activemath.org/intergeo/Drafts/Format/xml/intergeo.xsd,
20009.

[KCPO8] KCP Technologies Inc. Geometer’s sketchpad v4, 2008.

[Knu84] Donald E. Knuth. The TeXbook. Addison-Wesley, Reading, Mas-
sachusetts, 1984.

[Kor99] Ulrich Kortenkamp. Foundations of Dynamic Geometry. Disser-
tation, ETH Zurich, Institut fur Theoretische Informatik, Zurich,
11 1999.

[Kor09] Ulrich Kortenkamp. 12g api specification. Deliverable D3.5, The
Intergeo Consortium, 2009.

[MPO2] David Marcheix and Guy Pierra. A survey of the persistent nam-
ing problem. In SMA '02: Proceedings of the seventh ACM sym-
posium on Solid modeling and applications, pages 13-22, New
York, NY, USA, 2002. ACM.

[Sal08] Saltire Software. Geometry expressions v1.1, 2008.

©)lntergeo Consortium 2008 Page 40 of 40

	Executive Summary
	Introduction
	The three layers of the file format specification
	Design decisions: Constraints versus Constructions
	Design Decisions: OpenMath

	The container
	intergeo.xml
	Construction
	Elements
	Additional elements restrictions

	Constraints
	Additional constraints restrictions

	Display
	Additional restrictions

	Atomic values
	Scalars
	Double numbers
	Complex numbers
	References to objects
	Output references to objects

	intergeo.xml XML-Schema

	Symbol list
	First (partial) implementations
	Saving
	Opening
	Implementation
	Testing

	Future Work and Request For Comments
	More Elements and Polymorphism
	Circle Coordinates
	Ambiguity Resolving
	Styling Information
	Functions and Scripting
	Mathematical Typesetting
	Sending Commands to Constructions
	Macro Constructions
	Number Representation
	Acyclicity of Construction Dependencies
	Library Support
	Higher Dimensional Geometry

	Appendix A : Intergeo file format OpenMath symbols
	The elements part
	Auxiliary symbols

	The construction part
	The display part
	Auxiliary symbols

	Bibliography

