
Deliverable No: D3.10
i2g Common File Format Final Ver-
sion
The Intergeo Consortium

June 2010
Version: version of August 24, 2010 1:38 P.M.

Main Authors:
Santiago Egido (Maths for More & WIRIS)
Maxim Hendriks (Technische Universiteit Eindhoven)
Yves Kreis (Université du Luxembourg & GeoGebra)
Ulrich Kortenkamp (PH Karlsruhe & Cinderella)
Daniel Marquès (Maths for More & WIRIS)

Project co-funded by the European Community
under the eContentplus Programme

Deliverable D3.10
i2g Common File Format Final Version

Project ref.no. ECP 2006 EDU 410016

Project title Intergeo - Interoperable Interactive Geometry
for Europe

Deliverable status submitted

Contractual date of deliv-
ery

M33 – June 2010

Actual date of delivery June 30th 2010

Deliverable title i2g Common File Format Final Version

Type Presentation

Status & version submited version of August 24, 2010 1:38 P.M.

Number of pages 44

WP contributing to the
deliverable

WP3

WP/Task responsible Daniel Marquès

Authors Santiago Egido (Maths for More & WIRIS), Maxim
Hendriks (Technische Universiteit Eindhoven),
Markus Hohenwarter (Johannes Kepler Univer-
sität Linz & GeoGebra), Ulrich Kortenkamp (PH
Karlsruhe & Cinderella), Yves Kreis (Univer-
sité du Luxembourg & GeoGebra), Jean-Marie
Laborde (Cabrilog & Cabri), Paul Libbrecht (DFKI
GmbH), Daniel Marquès (Maths for More &
WIRIS)

EC Project Officer Krister Olson

Keywords dynamic geometric system, file format, open-
math, standard

License This document is available under the license
Creative Commons Attributions Sharealike Ger-
many 2.5 [Cre08]

©Intergeo Consortium 2008 Page 2 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

Contents

1 Executive Summary 5

2 Introduction 7

2.1 The three layers of the file format specification 8

2.2 Design decisions: Constraints versus Constructions 9

2.3 Other design decisions . 11

3 The container 12

4 intergeo.xml 14

4.1 Construction . 15

4.2 Elements . 15

4.2.1 Additional elements restrictions 17

4.3 Constraints . 17

4.3.1 Additional constraints restrictions 18

4.4 Display . 19

4.4.1 Additional restrictions . 21

4.5 Atomic values . 21

4.5.1 Scalars . 21

4.5.2 Double numbers . 21

4.5.3 Complex numbers . 22

4.5.4 References to objects . 22

4.5.5 Output references to objects 22

4.6 intergeo.xml XML-Schema . 23

5 Symbol list 24

6 How to Identify Objects of the I2G Format 25

©Intergeo Consortium 2008 Page 3 of 44

Deliverable D3.10
i2g Common File Format Final Version

7 The Intergeo ASBL, Future Work and Request For Comments 27

7.1 Handling of degenerate cases . 27

7.2 Ambiguity Resolving . 28

7.3 Dynamic Styling Information . 28

7.4 Functions and Scripting . 28

7.5 Mathematical Typesetting . 29

7.6 Sending Commands to Constructions 29

7.7 Macro Constructions . 29

7.8 Number Representation . 29

7.9 Acyclicity of Construction Dependencies 30

7.10Library Support . 30

7.11Higher Dimensional Geometry . 30

Appendix A : Intergeo file format symbols 31

A.1 The elements part . 31

A.1.1 Families . 33

A.1.2 Auxiliary symbols . 33

A.2 The construction part . 34

A.3 The display part . 39

A.3.1 Auxiliary symbols . 41

Appendix B : Differences with the previous version 42

Appendix C : OpenMath implementation of the symbol list 43

References 44

©Intergeo Consortium 2008 Page 4 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

1 Executive Summary

The present document is the specification of the Intergeo File Format, Inter-
geo File Format v1, as of June 2010.

It is emphasized that the Intergeo File Format will continue to grow; in or-
der to maintain it, the Intergeo ASBL (Association Sans But Lucratif - non-
profit organization) has been constituted. See Section 7 for a list of future
improvements. Note that all expected changes are additions; with several
implementations already working, it is felt that the basic structure of the file
format is sound, and no essential modifications are planned. At the time of
this writing, the file format is rich enough that it can represent almost all
high-school level geometrical constructions.

This specification is the result of intensive collaboration between Dynamic
Geometric System (DGS) software developers and experts, and aims at cre-
ating a file format that could serve as a standard in the DGS industry. Hence
the interest in describing existing implementations and providing some help
to new implementors.

The format is split into three specifications: the container, the file inter-
geo.xml and the symbol list. The container specification explains how all
necessary files used to define a construction are bundled into a single ZIP
file. It also contains the important file intergeo.xml, which is the core of the
format and is explained in detail. It comprises three differentiated parts. The
elements part declares all geometric objects. The constraints part provides
the relationships of the objects and, thus, defines the dynamic (or interac-
tive) behaviour. The display part describes the styles and how the geometric
objects are drawn.

The XML schema that should validate any intergeo.xml file is presented with
the skeleton of the elements, constraints and display part. The children of
the elements, constraints and display part can be specified with their re-
spective XML schema fragments. However, these fragments are not written
in this document because they can be generated dynamically from the list
of symbols. Thus, different templates are introduced according to the ele-
ments, constraints and display parts. Some additional restrictions are de-
scribed without using XML schema.

The separation of the possible geometric elements and constraints from the
file format implementation is done through the so called list of symbols. The
complete list of symbols is included in Appendix A. Such a list is important
because choosing correctly its content is crucial to achieve the successful
interoperability between all DGS’s.

Differences with the previous version The main improvement with re-
spect to the version, described in Deliverable D3.6 [HKKM09], is the amount

©Intergeo Consortium 2008 Page 5 of 44

Deliverable D3.10
i2g Common File Format Final Version

of new symbols introduced in this version. New elements have been added,
such as polygons and vectors. The list of display symbols has grown, so that
common visual styles can be specified. Some new constraints have been
added, too, most noticeably symmetries and translations. A mechanism for
polymorphism is provided: families. Additional options have been added to
the intersection constraints, so that now it is possible to specify whether an
element such as a line segment has to be extended into a line in order to
find intersection points.

©Intergeo Consortium 2008 Page 6 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

2 Introduction

The Intergeo file format is a file format designed to describe any construction
created with a Dynamic Geometry System (DGS). As a first application, the
format can be used to interchange content between geometric software. At
present, the format is restricted to the geometry in the plane, although it
does not seem difficult to extend it, in the future, to the space.

Dynamic Geometry Systems (DGS) is a kind of software used to experiment
with geometry. A construction, a drawing with geometric elements, is dis-
played to the user. But the most exciting part of a DGS is that it is possible
to move some of the elements with the mouse pointer and the whole con-
struction is recomputed while keeping predefined geometric relationships,
which are the object of study. Although the origin of DGS is geometry, they
can be applied to the study of other areas of mathematics or even subjects
like, for example, physics.

A wide variety of DGS exists. Before this project, each system used incom-
patible proprietary file formats to store its data. Thus, most of the DGS
makers have joined to provide a common file format that will be adopted
either in the core of the systems or just as a way to interchange content.

The file format proposed in this document aims to be the convergence of
the common features of the current DGS together with the vision of future
developments and the opinion of external experts. In addition, we state the
following objectives:

� The resulting file format will be adopted by the manufacturers that are
authors of this specification.

� The files that satisfy this specification should be interchangeable be-
tween the different DGS.

� The format will be based on modern technologies.

� The format will be extensible. The use of name spaces and additional
files will allow for capturing the flavour of the different DGS’s, since they
will be able to use their most representative features. To mention two
examples, Dynamic Styling (see Subsection 7.3) could be achieved by
adding files to the container so that some DGS might retrieve from them
the information it requires; and Number Representation (see Subsection
7.8) could be achieved by those DGS capable of symbolic manipulations
by adding scripts. These additions would interfere with the workings of
other DGS’s.

Providing a file format for DGS is a task related, but not equal, to express
geometric constructions in general. However, some additional issues arise.
For example, styling (colours, point sizes, etc.) and the capability of moving

©Intergeo Consortium 2008 Page 7 of 44

Deliverable D3.10
i2g Common File Format Final Version

the objects with the mouse (interactivity) are very important for a DGS while
they have not sense at all in geometry as a theoretical mathematical disci-
pline. We conclude remarking that traditional techniques used to describe a
geometry figure are not always suitable for a DGS.

2.1 The three layers of the file format specification

The Intergeo file format specification is split into three layers. Each layer is
different in nature and can exist by itself.

The following diagram shows the structure of the layers

container

intergeo.xml

symbol list

Figure 1: Specification structure in layers

The container layer specification describes the container as a ZIP file.
This means that the container is a bundle of compressed files. It con-
tains the important file intergeo.xml and other files like media (im-
ages, audio, video), data, text and a preview of the construction.

The intergeo.xml layer specification describes which rules must follow
an XML file to be a valid DGS construction. Such a file is self-contained
except for media files that are located in the container. An XML-schema
is provided to help specifying and validating any construction. This layer
specifies the general structure of the file, how the different statements
are constructed from the symbols and how the most atomic values like
(real or complex) numbers, variables, text and formulas have to be en-
coded. However, the list of symbols that is the origin of the statements
is not part of this layer.

The symbol list layer will be used to allow for each DGS to create its own
extensions to i2g, by possibly adding files to the container that can
be read and handled in system dependent ways. The symbol list is
a collection of Content Dictionaries describing symbols; in particular,
some symbols have been chosen to be part of a DGS construction. See
Appendix C for a more detailed description of its implementation.

©Intergeo Consortium 2008 Page 8 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

2.2 Design decisions: Constraints versus Constructions

The general framework was clear from the outset: to design a semantically
rich format, that could be interpreted by at least all DGS in the consortium.
But also possibly by others, and maybe by other types of programs as well,
for example computer algebra systems or proof assistants. One main design
decision in this respect consists of the choice of constructions, as opposed
to constraints. We will describe this in more detail now.

DGS deal with sets of geometrical objects that have certain relations. We
call such a set of objects with given relations a figure. We conceive of these
objects in some underlying space, for example the Euclidean plane. In prin-
ciple, if nothing else is said about them, objects can move around freely in
this space. The relations then specify constraints on the movement of these
objects.

Example 1 Two points P and Q, together with a line ; there is the following
constraints:

line  is incident to both points P and Q.

Example 2 A circle , a point P, a line  and the constraints

P is on 
 is tangent to 

the distance of P to the center of  is 10.

We can make the simple observation that the constraints do not determine
the positions of the objects uniquely. This causes multiple problems that lie
at the heart of dynamic geometry.

First there is the problem of how to create an instance of the figure. (We say
this has to do with the static aspect of the figure.) In example 1, the points P
and Q could still lie anywhere on the line  as it stands. For any instance, we
must specify where , P and Q should be. But once we have specified one,
the other two are not completely free anymore. This particular example is
not hard. Example 2, although more difficult, is still doable. But in general, it
is very difficult to give any particular solution for a set of constraints. There
is not even a quick method to decide whether there are any instances: a set
of constraints could be too restrictive and leave none.

Second, there is the dynamic behaviour of a figure, caused by the freedom
still left by the constraints. In example 1, what should the user be able to
move? May the line be picked up and translated or rotated in its entirety,
the points being translated and rotated with it? Can the user only move
one of the two points, the line being adjusted accordingly? Constraints of a

©Intergeo Consortium 2008 Page 9 of 44

Deliverable D3.10
i2g Common File Format Final Version

strictly classical geometrical nature, such as the ones stated above, do not
say anything about this behaviour. For the approach of a DGS, this is not
enough.

A natural way to shed light on both these problems is a more precise speci-
fication of how the objects depend on each other. We could stipulate first of
all which objects are free, meaning that they can be varied over the whole
range of possibilities in the underlying space (think of the plane) by the user.
We would then proceed step by step saying which objects depend only on
the free objects, which ones depend only on these new objects and the free
objects, etcetera. Such a specification is called a construction. It allows for
an algorithm to rapidly create instances or decide that there are none. It also
enables a DGS to give more consistent dynamic behaviour: objects are only
movable insofar as they still have some degrees of freedom left if the objects
they depend on are kept fixed. The behaviour for all different cases (e.g. a
line through a fixed point) can be decided in advance. Other objects depen-
dent on the object being varied have to change as well, and this still leads
to decision problems, but they are less severe. We could give a construction
for example 1 as follows:

Example 3 Two points P and Q, together with a line , and the following
construction:

free_point(P)
line_through_point(,P)

point_on_line(Q,)

The line  would then depend on where P is placed. That point could be varied
freely. The line could then be rotated around P (and Q would most logically
rotate with it), and while P and  are kept fixed, Q could still slide over the
line. Note that such information could not be gleaned from the figure.

It thus seems like a figure might be too general to be practical, and we
might be better off with a construction. We therefore decided to go with con-
structions. This decision implies less interoperability with constraint-based
systems, since some of their resources will not be encodable into the for-
mat. But it ensures that construction-based DGS will be able to interpret the
resources, which they might not if we used figures. Indeed, although there
are systems like Geometry Expressions [Sal08] that take a constraint-based
approach, and some systems like Geometer’s Sketchpad [KCP08] support it,
most systems only use constructions.

Another effect of the decision is the explosion of keywords. We have to dis-
tinguish between “line_through_point" and “point_on_line". This is in sharp
contrast to figures, where one relation “incident" would suffice, as can be
seen from the plangeo Content Dictionaries. In general, if there are n dif-
ferent types of objects, the construction approach now forces n2 different

©Intergeo Consortium 2008 Page 10 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

types of incidence on us. This means a more bloated specification of the
file format. On the other hand, it is easier for software developers to parse
constructions, so it saves trouble there.

2.3 Other design decisions

Several decisions have been made in teleconferences or in the mail list that
deserve recording, even though they are not truly important. It is thought
that describing them here will help understand why the Common File Format
has been designed this way.

In constraints, the output element will keep the out=“true" mark. Even
though strictly speaking it is redundant, it improves human reading.

It was also decided to recommend the use of free_point and free_line. Even
though they may seem unnecessary, if no constraint is used the behaviour
of the element is unspecified. They are also useful in writing the file and in
doing topological sort, so please use them.

During the discussion on how to implement polygons, whose constructors
have to handle a variable number of vertices, it was decided that constraints
will have a fixed number of arguments, some of which may be auxiliary ele-
ments with a variable number of inner arguments. Hence, a polygon element
has only one argument, a list_of_vertices_coordinates, and it is this list the
one which has a variable number of arguments.

Symmetries will accept as input and output elements of any kind, not nec-
essarily of the same type. While using atypical combinations of types in a
reflection might be a door open to incompatibilities between DGS, it was felt
that writing a list of allowed combinations would be awkward. For instance,
reflecting arcs on circles may result in segments or rays. This decision will
extend to other transformations, such as rotations, translations and dilations.

Building regular polygons given a side and a number of vertices is compli-
cated in non-euclidean geometries. It was decided to leave this constraint
for later.

Specifying the style of highlighted elements (those with the mouse focus)
was considered and dismissed. Existing DGS indicate which element has
the focus by using many visual aspects (colors, brightness, borders, sizes,
opacities), and so too many new styles would be needed to specify all possi-
ble behaviours, which in addition would possibly result in some ugly effects.
Hence, it was decided that each DGS would handle highlighting in its own
way. Because of the same reasons, many default values for styles have not
been specified; instead, they have been left system dependent (through the
whole deliverable, some feature will be said to be “system dependent" when
its availability or functionality depends on which DGS is being used).

©Intergeo Consortium 2008 Page 11 of 44

Deliverable D3.10
i2g Common File Format Final Version

3 The container

The container is the topmost structure of Intergeo file format. It is composed
of a collection of files stored as a directory hierarchy in a ZIP file format.

The container comprises the construction description as well as other data,
for example, media (images, sound, video, ...), previews (PDF, SVG or PNG),
metadata or private data/legacy file formats that some software may keep,
among other information. Thus, instead of encoding everything in a single
XML file it is more natural to store all such information in a standard format
like a ZIP package and, in addition, benefit of the compression.

The proposed directory structure is the following

construction/ mandatory
construction/intergeo.xml mandatory
construction/preview.pdf optional
construction/preview.svg optional
construction/preview.png optional
metadata/ optional
metadata/i2g-lom.xml optional
resources/ optional
resources/<image-files> optional
resources/<audio-files> optional
resources/<video-files> optional
resources/<data-files> optional
resources/<text-files> optional
private/ optional
private/<domain-name>/ optional
private/<domain-name>/<files> optional

Figure 2: Containter structure

The construction folder is always mandatory and contains the important
file intergeo.xml. The specification does not enforce any preview format,
however all files should be named preview.*. Files with names other than
intergeo.xml or preview.* are not allowed in this part. Thus, any auxiliary
file should be placed in the resources folder.

The whole construction can contain optionally metadata. We do not impose
any specific format but we recommend including a file named i2g-lom.xml
with the metadata as specified in the document [HLCMD08].

The resources directory contains any media or data file needed by the
intergeo.xml or preview files. Constructions must be possible to open with
solely the intergeo.xml and the resource files. Inside the resources folder
it is permitted to add any hierarchy of subdirectories. However, we rec-
ommend placing the images, audio, video, data and text under the folders

©Intergeo Consortium 2008 Page 12 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

images, audio, video, data and text, respectively. The valid file formats
for the resources depend on their usage. It is not the responsibility of the
container specification to impose any specific format type for the media.

DGS’s are free to store any file within their private directory and ignore com-
pletely the private directories belonging to other systems. Note that if a file is
referred from the intergeo.xml it should be always placed in the resources
directory. We strongly recommend placing all files inside a directory name
based on the domain name of an organization. For example, if my organiza-
tion has the domain MyOrg.net, the recommended directory name would be
net.myorg (note the use of lowercase). This is done in order to distinguish
my private directory from the private directories of other software develop-
ers.

©Intergeo Consortium 2008 Page 13 of 44

Deliverable D3.10
i2g Common File Format Final Version

4 intergeo.xml

This is an XML file that contains the full description of the construction.
The file must be always named and placed at construction/intergeo.xml
when it appears inside the container. Except for other auxiliary media files,
this file is always self contained. This means that this file alone, when it does
not depend on media files, should be readable by DGS’s.

There are three main distinct parts:

1. The elements part is a static view of all objects. The description of
the objects in this part is minimal; it only indicates how the objects are
constructed (their coordinates) and displayed (without styling).

2. The constraints part explains the geometric relations between ob-
jects. Some relations are purely algorithmic (an object can be con-
structed directly from existing ones) while others are constraint based
(an object should satisfy a given property but, at the same time, it keeps
a certain degree of freedom). Thus, the objective of this part is describ-
ing how some figures are recomputed when points (or other objects)
are moved by the mouse pointer.

3. The display part comprises information necessary to render the ob-
jects. The display contains the styles and non-mathematical behaviour
of the elements.

Intergeo File Format XML schema

General structure and atomic
values

Elements, constraints and
display

Static part

Dynamic part

Figure 3: Intergeo file format XML schema

The splitting of data into these parts has some advantages. For example, it is
possible to have more than one view or display for the same set of elements
and constraints.

Because intergeo.xml is an XML file it is important to provide an XML
schema (a file, also in XML format, that describes the structure of a family
of XML files). There is not one single schema. Instead, there is one schema
for each set of geometric symbols. The schema is composed of a static part
which defines the general structure of the XML file and the atoms (leaves of
the XML-tree). This static part is the same for all XML schemas. The dynamic
part is generated automatically from the list of geometric symbols.

©Intergeo Consortium 2008 Page 14 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

The current XML-schema that corresponds to the minimal set of symbols can
be found at [Int09].

4.1 Construction

The construction is the root element of the intergeo.xml file. The schema
fragment is the following

<xs:element name="construction">
<xs:complexType>

<xs:sequence>
<xs:element ref="elements" />
<xs:element ref="constraints " />
<xs:element ref="display " minOccurs="0"

maxOccurs="unbounded" />
</ xs:sequence>

</xs:complexType>
</ xs:element>

and an example is

<construction>
<elements>
. . .

</elements>
<constraints>
. . .

</ constraints>
<display>
. . .

</ display>
</ construction>

4.2 Elements

The <elements> element comprises the enumeration of objects that will
be part of the construction. They will be often geometric objects like points,
lines, circles, ... But it can hold also any object that can be drawn like images,
slider bars, buttons, etc.

<xs:element name="elements">
<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<!−− here goes the l i s t of available elements −−>
<xs:element ref="point " />

©Intergeo Consortium 2008 Page 15 of 44

Deliverable D3.10
i2g Common File Format Final Version

. . .
</ xs:choice>

</xs:complexType>
</ xs:element>

The previous schema fragment should be filled with all elements specified in
the elements part of the symbols list.

The schema for each element has the form

<xs:element name=element−name>
<xs:complexType>

<xs:sequence>
enumeration−of−arguments

</ xs:sequence>
</xs:complexType>
<xs:attr ibute name=" id " type="xs:Name"

use="required" />
</ xs:element>

For example, for the point with homogeneous or Euclidean coordinates:

<xs:element name="point ">
<xs:complexType>

<xs:sequence>
<xs:element ref="homogeneous_coordinates" />

</ xs:sequence>
<xs:attr ibute name=" id " type="xs:Name"

use="required" />
</xs:complexType>

</ xs:element>

And an extra definition for homogeneous_coordinates is needed:

<xs:element name="homogeneous_coordinates">
<xs:complexType>

<xs:sequence>
<xs:group ref=" scalar " />
<xs:group ref=" scalar " />
<xs:group ref=" scalar " />

</ xs:sequence>
</xs:complexType>

</ xs:element>

Note that both point and homogeneous_coordinates are specified with Con-
tent Dictionaries and the atomic elements scalar at the end of this chapter.

An example of the elements part is

©Intergeo Consortium 2008 Page 16 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

<elements>
<point id="A">

<homogeneous_coordinates>
<double>3.55</ double>
<double>−4</ double>
<double>0</ double>

</homogeneous_coordinates>
</ point>

</elements>

4.2.1 Additional elements restrictions

There are other restrictions that cannot be expressed with an XML schema
and are described here.

Unique identifiers restriction. All values of the id attribute are used
to identify the geometric objects and they must be used only once (unique
identifiers).

Only constants allowed restriction. A declaration in this part is not al-
lowed to refer to other objects. For example, each point needs coordinates
and an XML coordinates element must appear as its child. Thus, scalars must
be explicitly instantiated as real or complex floating numbers and cannot be
replaced by variables or expressions pending to be evaluated.

Elements symbols restriction. Symbols are declared to be in the ele-
ments, the constraints or in the display part. Only symbols declared to be in
the elements part can appear in the elements part.

4.3 Constraints

The <constraints> describes the relations between objects. Sometimes this
relation is just a description of how an object is to be built and other times it
explains how the object is constrained and partially free movable.

The schema is quite similar to the elements part:

<xs:element name="constraints ">
<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<!−− here goes the l i s t of available

constraints −−>

©Intergeo Consortium 2008 Page 17 of 44

Deliverable D3.10
i2g Common File Format Final Version

<xs:element ref=" line_through_two_points" />
. . .

</ xs:choice>
</xs:complexType>

</ xs:element>

The list of available constraints is specified with Content Dictionaries. The
schema for each constraint has the form:

<xs:element name=constraint−name>
<xs:complexType>

<xs:sequence>
enumeration−of−arguments

</ xs:sequence>
</xs:complexType>

</ xs:element>

For example, for the line_trough_two_points constraint the schema is:

<xs:element name=" line_through_two_points">
<xs:complexType>

<xs:sequence>
<xs:element name=" l ine "

type="output−reference" />
<xs:element name="point " type="reference" />
<xs:element name="point " type="reference" />

</ xs:sequence>
</xs:complexType>

</ xs:element>

where output-reference and reference are defined below and are speci-
fied to act as references to objects using their id’s. Example

<constraints>
<line_through_two_points>

<l ine out="true">l</ l ine>
<point>A</ point>
<point>B</ point>

</ line_through_two_points>
</ constraints>

4.3.1 Additional constraints restrictions

Defined input references restriction. All input and output references
must be defined previously in the elements part.

©Intergeo Consortium 2008 Page 18 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

Composition of constraints forbidden restriction. The arguments of
the constraints cannot be other constraints. It is allowed only to refer to
valid geometric objects, using the id’s. Note that this rule still permits using
constants in the arguments.

Unique output reference usage restriction. An identifier can be used
only once as output reference except for some declarations. These declara-
tions are based on symbols that explicitly declare that can coexist with other
declarations with the same output reference.

Constraints symbols restriction. Symbols are declared to be in the ele-
ments, the constraints or in the display part. Only symbols declared to be in
the constraints part can appear in the constraints part.

4.4 Display

The display part contains the styles and non-mathematical behaviour of the
elements and the whole construction area.

Styling consists on specifying visual properties (like colours, line widths,
point sizes, labels, etc.) and the interactive properties (fixed) of the ele-
ment. While the elements and constraints parts are close to mathematical
properties and behaviour, the display part contains visual properties and the
behaviour that can not be formalized mathematically.

The current version of the styling system for Intergeo is inspired by the SVG
and CSS standards. Thus, some symbols like fill, stroke, stroke-width are
taken from the SVG and CSS standards but point-size, label and fixed are
specific of the Intergeo File Format.

Each system will provide default values for the styles which may depend
on the type of the element: points might be blue while lines might be red.
Movable points might have a color different to fixed points. The point which
currently has the mouse focus and is being moved might be distinguished
with particular combinations of colors, borders, opacities, etc.

More than one display can be present and each one represents a possible
view of the representation. A DGS could open two windows and changes in
one would reflect in the other; each display would describe what is to be
seen in each window.

Styles for elements will be specified individually in each display part. For
instance, the same point could be movable in one window but not in another.

Each display can contain also styles applying to the whole construction, as
opposed to one particular element; for instance, background-color, viewport,
or axes.

©Intergeo Consortium 2008 Page 19 of 44

Deliverable D3.10
i2g Common File Format Final Version

The display contains a <style> for each element to be described.

<xs:element name="display ">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref=" style " />

</ xs:sequence>
</xs:complexType>

</ xs:element>

The style must refer to an existing element and comprises the different pos-
sible styles of the element.

<xs:element name=" style ">
<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref=" label " />
<xs:element ref=" f i l l " />
. . .

</ xs:choice>
<xs:attr ibute name=" ref " type="xs:Name" use="required" />

</xs:complexType>
</ xs:element>

For example, the XML-Schema for <label> is:

<xs:element name=" label " type=" xs:str ing " />

A complete example of a point with styles is

<construction>
<elements>

<point id="P">
<homogeneous_coordinates>

<double>4</ double>
<double>5</ double>
<double>1</ double>

</homogeneous_coordinates>
</ point>

</elements>
<constraints>

<!−− −−>
</ constraints>
<display>

<style ref="P">
<label>The point P</ label>
< f i l l>#FFFFFF</ f i l l>
<stroke>#222222</ stroke>

©Intergeo Consortium 2008 Page 20 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

<stroke−width>2</ stroke−width>
<point−size>5</ point−size>

</ style>
</ display>

</ construction>

4.4.1 Additional restrictions

Defined reference restriction The reference must point to an existing
element described in the elements part.

Single style node by element restriction All styles of an element must
be specified in a single <style>.

4.5 Atomic values

Atomic values are the simplest ingredients of the Intergeo file format. They
are specified also with an appropriate schema fragment.

Note: We might add more atoms in the future.

4.5.1 Scalars

Scalars represent either double or complex double numbers:

<xs:group name=" scalar ">
<xs:choice>

<xs:element ref="double" />
<xs:element ref="complex" />

</ xs:choice>
</ xs:group>

4.5.2 Double numbers

Doubles follow the [IEEE 754-1985] standard.

<xs:element name="double" type="xs:double" />

Example

<double>4.37589837073</ double>

©Intergeo Consortium 2008 Page 21 of 44

Deliverable D3.10
i2g Common File Format Final Version

4.5.3 Complex numbers

<xs:element name="complex">
<xs:complexType>

<xs:sequence>
<xs:element name="double" type="xs:double" />
<xs:element name="double" type="xs:double" />

</ xs:sequence>
</xs:complexType>

</ xs:element>

Example

<complex>
<double>2.4689</ double>
<double>−5.78231659</ double>

</complex>

4.5.4 References to objects

Constraints accept as arguments references to objects.

<xs:complexType name="reference">
<xs:simpleContent>

<xs:extension base=" xs:str ing " />
</ xs:simpleContent>

</xs:complexType>

4.5.5 Output references to objects

Constraints usually have one argument that is the output. The output is the
name of the object that is going to be computed from the other ones.

<xs:complexType name="output−reference">
<xs:simpleContent>

<xs:extension base=" xs:str ing ">
<xs:attr ibute name="out" use="required"

fixed="true" />
</ xs:extension>

</ xs:simpleContent>
</xs:complexType>

©Intergeo Consortium 2008 Page 22 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

4.6 intergeo.xml XML-Schema

As we have already said, the XML-schema is generated from the set of sym-
bols and its signatures. The project that generates such schema can be get
from the SVN repository http://svn.activemath.org/intergeo/Format/
xml. Several examples of valid files can be found at http://i2geo.net/
xwiki/bin/view/I2GFormat/FileFormatSymbols.

Although the original idea was using the OpenMath Content Dictionaries and
their associated Small Type System files, we decided to write a very simple
and single XML file with all symbols and generate the XML-Schema from
it. Such XML file can be found at http://svn.activemath.org/intergeo/
Format/xml/symbols.xml.

The symbols.xml is an XML file that contains essentially declarations like, for
example,

<element name="point ">
<argument type="homogeneous_coordinates" />

</element>

for declaring elements and

<constraint name=" line_through_two_points">
<argument type=" l ine " out="true" />
<argument type="point " />
<argument type="point " />

</ constraint>

for the constraints.

The declarations in the symbols.xml file are much simpler than the corre-
sponding ones at the XML-schema. Thus, it is possible to add more symbols
to the schema without any advanced knowledge of XML. Another advantage
of this approach is the possibility of generating different schemas addressing
different purposes. For example, generate a schema that validates not only
the official symbols of the format, but the proprietary ones. Another possi-
bility is getting a schema to validate the file format for constrained based
systems (as opposed to construction based which mainly targets the Inter-
geo File Format).

©Intergeo Consortium 2008 Page 23 of 44

http://svn.activemath.org/intergeo/Format/xml
http://svn.activemath.org/intergeo/Format/xml
http://i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols
http://i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols
http://svn.activemath.org/intergeo/Format/xml/symbols.xml
http://svn.activemath.org/intergeo/Format/xml/symbols.xml

Deliverable D3.10
i2g Common File Format Final Version

5 Symbol list

Symbols are the main ingredients used to describe a construction. They
define how objects are built and their behaviour. Each icon in a DGS palette
is roughly associated to one or more symbols; styles like colours, point sizes,
line widths are also represented in the file format using symbols. All DGS’s
share a big set of common features that will be covered by the Intergeo
official symbols. However, for additional features it is acceptable to use
proprietary symbols that one day might become official.

The list of symbols is divided in three categories: elements, constraints and
display depending on the part of intergeo.xml they appear in. Symbols for
the elements and constraints categories are not primarily specified using a
XML-Schema but with Content Dictionaries, which are part of the OpenMath
standard. With some knowledge of how the atoms are expressed in XML, the
description of the symbols with Content Dictionaries and their signature with
the Small Type System (STS), the XML schema can be generated automati-
cally.

The complete list of official symbols can be found in Appendix A or at http:
//i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols.

There will be a process for Content Dictionaries to become an official part
of the file format. How this process will be structured and how new official
Content Dictionaries can be added after the Intergeo project’s lifetime is to
be decided.

©Intergeo Consortium 2008 Page 24 of 44

http://i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols
http://i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

6 How to Identify Objects of the I2G Format

This section specifies ways of naming files that should be recognized as I2G
files in the common file format. This part is normative, developers should
follow them strictly so as to ensure that interoperability can be started.

Format name: Intergeo

Media type name: application

Media subtype name: vnd.intergeo

Encoding: binary
(This media type may require encoding on transports not capable of handling
binary.)

Security considerations: There has been no examination of possible se-
curity risks associated with I2G files.

Interoperability considerations: This file format is cross-platform. Files
are encoded in UTF-8 and compressed using zip.

Published specification: this specification (Intergeo’s Deliverable D3.10:
i2g Common File Format Final Version).

Applications which use this media : Cinderella, GeoGebra, GEONExT,
JSXGraph, Cabri, WIRIS,...

Additional information:
1. Magic number(s) : NOT USED
2. File extension(s) : i2g
3. Apple Macintosh file type code : NOT USED
4. Object Identifiers: NOT USED
5. MicroSoft Windows Clipboard Names: I2G
6. Apple Macintosh Uniform Type Identifier: eu.inter2geo extends public.archive
and public.zip-archive

Person to contact for further information :
1. Name : Intergeo ASBL
2. Email : asbl@inter2geo.eu

Intended usage: Common
This mime type shall be used to identify data files for the common file format
for interactive geometry software.

Author/Change controller: Intergeo ASBL (asbl@inter2geo.eu)

Procedures taken to ensure such names A media type registration has
been filed to the Internet Assigned Numbers Authority for the media-type
Intergeo and granted from them as can be seen at: http://www.iana.org/
assignments/media-types/application/vnd.intergeo.

©Intergeo Consortium 2008 Page 25 of 44

http://www.iana.org/assignments/media-types/application/vnd.intergeo
http://www.iana.org/assignments/media-types/application/vnd.intergeo

Deliverable D3.10
i2g Common File Format Final Version

The text above is based on this registration and extends it. It is the intention
of the consortium to update that registration to match the above text.

This text contains recommendations for implementors of desktop applica-
tions to run on MicroSoft Windows and Apple Macintosh operating systems.
Conforming to Apple’s documentation (http://developer.apple.com/mac/
library/documentation/FileManagement/Conceptual/understanding_utis/)
about Uniform Type Identifiers, it is enough for applications to declare their
support for this file format within their application descriptor. Conforming to
MicroSoft’s documentation (http://msdn2.microsoft.com/en-us/library/
ms649013.aspx), it is enough for applications to call the appropriate func-
tions at startup.

©Intergeo Consortium 2008 Page 26 of 44

http://developer.apple.com/mac/library/documentation/FileManagement/Conceptual/understanding_utis/
http://developer.apple.com/mac/library/documentation/FileManagement/Conceptual/understanding_utis/
http://msdn2.microsoft.com/en-us/library/ms649013.aspx
http://msdn2.microsoft.com/en-us/library/ms649013.aspx

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

7 The Intergeo ASBL, Future Work and Request For
Comments

The Intergeo Common File Format is not completely finished for two main
reasons:

� Some new functionalities are wanted; see, for instance, the wish list
page at http://i2geo.net/xwiki/bin/view/I2GFormat/WishList.

� Some problems common to DGS have not been fixed. Shortly we list
some of them; note that they include hard research problems which
would be difficult to solve even within one DGS. For a deeper discussion
of these mathematical issues, we suggest to read [Kor99].

We explicitly invite those interested to join the discussion and propose solu-
tions or give remarks.

In order for the Intergeo Common File Format to continue being developed
after the Intergeo project ends, the Intergeo ASBL (Association Sans But Lu-
cratif - non-profit organization) was constituted in 2010 under luxembourgish
law. For more details, see http://asbl.i2geo.net/, which will be available
soon with all informations.

The Intergeo ASBL has already reserved the application tree vnd.intergeo
from IANA for the file format. The first general assembly - after the con-
stitutional one - will be held during the I2GEO conference 2010 allowing all
partners of the Intergeo project to join the non-profit organization and to
continue the fruitful work together.

Despite the fact that we are listing a lot of yet to be solved issues, we are
confident that the first version of the i2g file format is capable of handling
any design decisions that result from the following discussion.

7.1 Handling of degenerate cases

Some objects can also be replaced by others in certain special cases, for
example, a circle might degenerate to a line, or a conic might degenerate
to two lines. Although currently most DGS do not use these degenerations
(there are exceptions such as Cabri II plus and Cabri 3D), this could be de-
sirable for the future. A DGS might construct a parallel line to a degenerate
circle through three collinear points – with our current specification and typ-
ing mechanism it is not possible to capture this in the file format. However,
we request advise from DGS developers on this issue.

©Intergeo Consortium 2008 Page 27 of 44

http://i2geo.net/xwiki/bin/view/I2GFormat/WishList
http://asbl.i2geo.net/

Deliverable D3.10
i2g Common File Format Final Version

7.2 Ambiguity Resolving

Ambiguity Resolving is crucial for finding the correct positions of elements in
stored construction after loading, also known as the persistent naming prob-
lem [MP02] from parametric CAD. Assume that an intersection point of two
circles is used in a construction. If the two circles are moved into a tangent
position, and then the construction is stored, then both intersections have
the same coordinates and thus cannot be distinguished. If the circles are
moved into a position where both intersection points can be distinguished,
then it is essential to pick the correct intersection point.

Most DGS solve this problem by having an implicit order of multiple out-
puts. This order is dependent on the implementation details of the algo-
rithms and cannot be part of a specification. Also, a point might switch
branches later due to homotopy-conserving implementations. This means
that this approach cannot be used for a cross-software file format.

In the current version of the file format, the order of the inputs can be deter-
mined from the coordinates of the intersection points when they exist and
differ from each other. For all other cases, the order is still unspecified. This
will lead to problems when files are stored and exchanged.

7.3 Dynamic Styling Information

Some of the DGS support parametrized styles, for example a color that
changes according to the position of an element. This cannot be specified in
the file format currently. See the next section for a discussion of the prob-
lems that are specific to including parametrized values using functions.

7.4 Functions and Scripting

Almost all DGS support functions, used for plotting graphs, defining element
dependencies, or changing the style of elements dynamically. All of these
use a different language to specify the functions, though many aspects are
shared. The conformance to standards varies wildly from OpenMath compli-
ance to unspecified.

Right now it seems impossible to homogenize the various dialects. Actu-
ally, the translation from one language to the other can be done easily by
humans if an automatic conversion fails, so we decided that all functions
should be specified in the private sections of the file format. Each DGS may
try to interpret the other function specification, of course, and store its own
interpretation as well.

For this, we need a notion of “alternatives", which should be specified in an
upcoming version of the i2g format.

©Intergeo Consortium 2008 Page 28 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

Another difficulty in dealing with functions is that some DGS extend the no-
tion of function to a general-purpose functional programming language. This
proves that it is impossible to find equivalent functions algorithmically. Nev-
ertheless, in many cases, mostly non recursive algebraic expressions, the
translation is straightforward, and so it might be sufficient to use a heuristic
approach.

7.5 Mathematical Typesetting

A de-facto standard for mathematical typesetting is TeX [Knu84], and the
browser-compliant way is to use MathML [CIM08]. DGS software use both
approaches, while the TeX implementation used is usually only a subset of
the full TeX system as created by Knuth1.

A logical solution to storing typesetting information would be to use the ex-
isting OpenMath syntax. It has not been decided yet how to handle the
situation, and it is unclear whether it has practical relevance at all. We could
not agree on a definitive way to typeset formulae. We suggest that a solu-
tion for the function specification problem above will be a solution for this
problem as well.

7.6 Sending Commands to Constructions

Sending commands to constructions is now handled in the Intergeo API spec-
ification document [Kor09].

7.7 Macro Constructions

So far there is no notion of Macro constructions. We expect that macros are
basically sub-constructions, and it is probably sufficient to add an additional
inmacro attribute to the constraints and elements.

7.8 Number Representation

Currently, the specification of coordinates uses the IEEE standard for doubles
(see Sec. 4.5.2 on p. 21). While this is probably sufficient for most purposes,
it lacks the ability to describe real coordinates, for example the irrational
numbers π or

p
5. As there are constructions even in elementary geometry

that require such numbers, it is desirable to be able to express them. The
OpenMath standard supports this, however, the i2g format cannot be based

1Some use the hoteqn library, others use custom implementations

©Intergeo Consortium 2008 Page 29 of 44

Deliverable D3.10
i2g Common File Format Final Version

on the full OpenMath specification as most DGS developers cannot afford the
necessary implementation work.

For the time being, we will restrict the number representation to the IEEE
standard. This should not be the cause of severe problems, because the
coordinates of dependent elements can be recalculated up to arbitrary pre-
cision by the DGS itself. If there is a need for other number representations,
we will extend the mechanism as described in Sec. 4.5.2.

7.9 Acyclicity of Construction Dependencies

Most construction-based DGS require that the dependency graph of a con-
struction be acyclic, but there are some systems (both constraint-based as
well as construction-based DGS) that allow for certain circular dependencies.
Therefore, we do not enforce this property, and we do not impose a special
order for the constraints in the constraint part of the i2g format.

This implies that each DGS has to be able to handle cycles. The easiest
resolution is to drop those constraints that close a cycle. Another solution is
to add all constraints and break the cycles on-the-fly whenever an element
moves. If the DGS can handle the additional constraint, then it should add it.

7.10 Library Support

In order to make it easier for new implementors to work with the i2g format,
and hence improve the Intergeo project sustainability, it was considered cre-
ating a library to read and write i2g files, and a corresponding sourceforge
project was applied for. However, it remain to be seen whether some gen-
eral purpose software could be used for this, and so this effort has been
suspended.

7.11 Higher Dimensional Geometry

With the availability of three-dimensional DGS it is necessary to extend the
i2g format to 3D. The basic structure should be similar to what we have now,
but more elements and constraint symbols are necessary.

©Intergeo Consortium 2008 Page 30 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

Appendix A : Intergeo file format symbols
The following is a list of symbols that we agreed on as of June 2010. It will
be developed further by the Intergeo ASBL.

At any time, HTML documentation on the newest version can be found at
http://i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols; even
though not accessible to everybody, a second source, more convenient to
download files, is the SVN server at http://svn.activemath.org/intergeo/
Format/ .

In the following list, the keyword is listed first, in boldface. On the next line,
the types of its arguments are listed. The order of the arguments is fixed.
Optional arguments are enclosed between [and] characters. Arguments
that can be repeated any number of times are indicated with a *.

Observe that the word “undefined" is used with, at least, two different mean-
ings. When the result of a computation is said to be undefined, it is meant
a DGS dependent value that indicates error or voidness. When, under some
circumstances, it is said that the behaviour of some operation is undefined,
what is meant is that each DGS is free to provide its most sensible result;
for example, two circles may or may not have intersections depending on
whether the DGS handles complex coordinates.

A.1 The elements part

point
point_coordinates
This represents a point in space. It will have coordinates for initialization.

line
homogeneous_coordinates
This represents a line. The coordinates are the homogeneous coordinates of
the line; this is, (2,3,5) represents the line 2+ 3y+ 5 = 0.

line_segment
point_coordinates, point_coordinates [,point_coordinates]
This represents a segment from a straight line; the name is due in consid-
eration to possible future implementations of other kinds of segments. A
line_segment is indicated by providing the coordinates of its two endpoints;
additionally, a third optional point, called via point, may be used in projec-
tive geometry to indicate a point in the middle of the segment to specify
which of the two possible segments is meant. For instance, line_segment
([0,0], [0,2], [0,1]) would represent the “normal" segment from (0,0) to
(0,2), while line_segment ([0,0], [0,2], [0,10]) would represent the projec-
tive segment that starts at (0,0), goes to (−∞,0), and then continues from
(∞,0) to (0,2).

directed_line_segment
point_coordinates, point_coordinates [,point_coordinates]

©Intergeo Consortium 2008 Page 31 of 44

http://i2geo.net/xwiki/bin/view/I2GFormat/FileFormatSymbols
http://svn.activemath.org/intergeo/Format/
http://svn.activemath.org/intergeo/Format/

Deliverable D3.10
i2g Common File Format Final Version

A line_segment with associated direction; instead of two endpoints it has a
starting point and an endpoint. The same remarks for the via point apply as
in the case of line_segment.

ray
point_coordinates, direction | point_coordinates, point_coordinates
This represents a ray (half line) which starts at the given point and proceeds
to infinity in the direction provided, or via a second point (alternative option).
Projective DGS may treat it as a special form of a directed_line_segment.
If the given coordinates are at infinity the notion or ray does not make sense,
but a DGS can choose to use the line at infinity instead.

polygon
list_of_vertices_coordinates
A polygon is constructed from a list of vertices. No restrictions are imposed
on the vertices, so that all degenerate cases are possible: two consecutive
vertices can be the same, three consecutive vertices can be collinear, sides
can intersect, the border does not have to be a simple curve.

vector
point_coordinates
Constructs a vector going from the origin to the point with the specified
coordinates.

conic
matrix [,dualmatrix]
This will represent a general conic. The coefficients of its associated quadratic
form are provided in a 3 × 3 matrix of (possibly complex) numbers. An ad-
ditional 3 × 3 matrix may be given, being the matrix of the dual conic. This
can assist if the conic is a degenerate case (two lines, etc)

The following symbols are special kinds of conics. Their initial position is
stored in the same format as a general conic. A difference with the conic
symbol is that a DGS may opt to only accept reading a circle and request
the intergeo java library to convert the matrix to a different form, whereas it
might reject a general conic.

circle
matrix [,dualmatrix]
This will represent a circle, indicated in the same way as general conics.

ellipse
matrix [,dualmatrix]
This will represent an ellipse, indicated in the same way as general conics.

parabola
matrix [,dualmatrix]
This will represent a parabola, indicated in the same way as general conics.

hyperbola
matrix [,dualmatrix]
This will represent a hyperbola, indicated in the same way as general conics.

©Intergeo Consortium 2008 Page 32 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

locus
void | a set of points
This will represent a locus. Its initial value can either not be provided (it will
then have to calculated by the DGS) or a finite set of tracer points (specified
together with the corresponding values of the mover point).

A.1.1 Families

Four families have been defined. They are not elements, but sets of ele-
ments. They are used to specify the arguments that some constraints can
have, and so they provide constraints with a form of polymorphism.

� line_family = {line, ray, line_segment, directed_line_segment}

� circle_family = {circle, arc}

� conic_family = {circle, circle arc, conic, parabola, ellipse, hyperbola}

� element_family = {all elements}

A.1.2 Auxiliary symbols

point_coordinates
homogeneous_coordinates | euclidean_coordinates | polar_coordinates
The coordinates of a point, or the components of a vector, can be specified
using any of the following three symbols:

homogeneous_coordinates
scalar, scalar, scalar
Provides the coordinates of a point in projective geometry; unlike the follow-
ing two symbols, this one can be used also to provide for the coefficients of
a line equation, see the symbol line above.

euclidean_coordinates
scalar, scalar
Provides the Euclidean coordinates of a point in the plane.

polar_coordinates
scalar, scalar
Provides the radius and argument of a point in the plane.

direction
scalar, scalar | scalar, scalar, scalar
Directions are auxiliary symbols, used to construct rays. They are specified
either euclideanly as (, b) or projectively (homogeneously) as (, b, c).

©Intergeo Consortium 2008 Page 33 of 44

Deliverable D3.10
i2g Common File Format Final Version

list_of_vertices_coordinates
point*
This auxiliary symbol is used only by the polygon element.

list_of_vertices
point_reference*
This is not exactly an auxiliary symbol, but rather an auxiliary XML element
(tag) used only within constraint polygon_by_vertices. It plays the same role
as list_of_vertices_coordinates, only for constraints instead of elements, and
it contains the references to the vertices as opposed to their coordinates.

A.2 The construction part

The new or output arguments (that is, the dependent element of the con-
struction) are indicated with the word “new". The first argument is always
a new argument. The arguments which are not new are identifiers of exist-
ing objects upon which the new arguments depend. These objects must be
declared in the elements part of the file.

Remark: Whenever distances or angles are mentioned in this document we
refer to Euclidean measurements, unless otherwise stated.

free_point
new point
A completely unconstrained point.

free_line
new line
A completely unconstrained line. Note that the user interface of many DGS
does not allow for controlling lines directly, but rather two points are moved
to control their common line; hence, many DGS cannot implement this con-
straint.

point_on_line
new point, line_family
A new point restricted to lie on a given line.

point_on_line_segment
new point, line_segment
A new point restricted to lie on a given line_segment.

point_on_circle
new point, circle_family
A new point restricted to lie on a given circle.

line_through_point
new line, point
A new line that goes through a given point and can be rotated by the user, by
moving the mouse. Note that the user interface of many DGS does not allow

©Intergeo Consortium 2008 Page 34 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

directly for this operation, but rather an intermediate point which can be
moved can be used to construct the line which passes through both points;
hence, many DGS cannot implement directly this constraint.

line_through_two_points
new line, point, point
A new line that goes through two given points. If the two points are equal,
the line is undefined.

line_angular_bisector_of_three_points
new line, point, point, point
A new line that is the angular bisector of three given points (in Euclidean
measurements); it must pass through the second one. Degenerate cases: If
the three points are the same, behaviour is undefined. If the first and third
point are the same, then the line returned must be the line containing three
points. If the second point is equal to the first or third, then the behaviour is
undefined.

line_angular_bisectors_of_two_lines
new line, new line, line_family, line_family
Two lines that are the angular bisectors of the two given lines (in Euclidean
measurements). If the lines are coincident, one bisector will be the common
line and the other will be undefined. If they are parallel and not coincident,
then one bisector is the line at infinity (for those DGS that support projective
geometry) and the other bisector is undefined. A DGS can choose to use
the line with the same Euclidean distance to both defining lines as the other
bisector, as it is the continuous completion.

line_segment_by_points
new line_segment, point, point [,point]
A new line_segment passing through the first two points and, optionally, for
those DGS that can handle projective geometry, also through the third. If the
third point is equal to the first or the second, then the behaviour is undefined
and each DGS can return an undefined value or what it thinks is the best
line_segment.

directed_line_segment_by_points
new line_segment, point, point [,point]
A new directed_line_segment passing through the first two points and, op-
tionally, for those DGS that can handle projective geometry, also through the
third. If the third point is equal to the first or the second, then the behaviour
is undefined and each DGS can return an undefined value or what it thinks
is the best line_segment.

ray_from_point_and_vector
new ray, point, vector
A new ray that starts at the point and moves in the direction specified by the
vector.

ray_from_point_through_point

©Intergeo Consortium 2008 Page 35 of 44

Deliverable D3.10
i2g Common File Format Final Version

new ray, point, point
A new ray that starts at the first point and goes through the second to infinity.

line_parallel_to_line_through_point
new line, line_family, point
A new line that is parallel to a given line and goes through a given point.

line_perpendicular_to_line_through_point
new line, line_family, point
A new line that is perpendicular to a given line and goes through a given
point.

point_intersection_of_two_lines
new point, line_family, line_family
Elements in the line_family can be extended to lines; see Appendix B. A new
point that is the intersection point of two given lines. In the degenerate case
the point is undefined, or a DGS may use an continuous completion.

midpoint_of_two_points
new point, point, point
A new point that is the middle point (in Euclidean measurements) between
two given points.

midpoint_of_line_segment
new point, line_segment
A new point that is the midpoint of a given line segment.

endpoints_of_line_segment
new point, new point, line_segment
A set of two points that form the end points of the given line_segment.

carrying_line_of_line_segment
new line, line_segment
The unique line that contains the given line_segment. Degenerate cases: if
the segment is constructed to be always a point, the carrying line is unde-
fined.

starting_point_of_directed_line_segment
new point, directed_line_segment
The starting point of a directed_line_segment.

end_point_of_directed_line_segment
new point, directed_line_segment
The end point of a directed_line_segment.

line_segment_of_directed_line_segment
new line_segment, directed_line_segment
The unique line_segment whose endpoints are the starting point and the end
point of the given directed_line_segment.

vector_of_ray
new vector, ray

©Intergeo Consortium 2008 Page 36 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

Returns the vector that indicates the direction of a ray; note that it is not
uniquely defined.

starting_point_of_ray
new point, ray
The new point is the starting point of a ray.

carrying_line_of_ray
new line, ray
The new line is the unique line that contains the ray.

circle_by_center_and_radius
new circle, point, line_segment
A new circle with a given point as center and a radius as long as the given
line_segment.

circle_by_center_and_point
new circle, point, point
A circle whose center is the first point and passes through the second.

circle_by_three_points
new circle, point, point, point
A circle that passes through the three provided points. Degenerate cases:
if the three points are by construction collinear (but not equal), a DGS may
give an error or return the line through the points (as a line or a degenerate
conic). If the three points are by construction the same, a DGS may give an
error or return the point (as a point or a degenerate conic).

intersection_points_of_two_circles
new point, new point, circle_family, circle_family
The intersection points of two circles. Elements in the circle_family can be
extended to circles; see Appendix B. If there are fewer than two intersec-
tion points, a DGS may return the same point twice (in case of tangency),
“undefined" or points with complex coordinates. If the circles are equal by
construction, a DGS may give an error or return the common circle.

other_intersection_point_of_two_circles
new point, point, circle_family, circle_family
The new point is an intersection point of the two circles, and is different to
the provided point. Elements in the circle_family can be extended to circles;
see Appendix B.

intersection_points_of_circle_and_line
new point, new point, circle_family, line_family
The intersection points of a circle and a line. If there are less than two in-
tersection points, each DGS is free to return repeated points, undefined val-
ues, or points with complex coordinates. Elements in the line_family and
circle_family can be extended to lines and circles; see Appendix B.

other_intersection_point_of_circle_and_line
new point, point, circle_family, line_family

©Intergeo Consortium 2008 Page 37 of 44

Deliverable D3.10
i2g Common File Format Final Version

The new point is the intersection point of the circle and the line, and is differ-
ent to the provided point. Elements in the line_family and circle_family can
be extended to lines and circles; see Appendix B.

intersection_points_of_two_conics
new point, new point, new point, new point, conic_family, conic_family
The up to four intersection points between two conics. If there are less than
four real intersection points, each DGS is free to return repeated points, un-
defined values, or points with complex coordinates. However, the algebraic
multiplicity of the intersections has to be respected. If any of the elements
intersected is an arch, it can be extended into a circle; see Appendix B.

intersection_points_of_conic_and_line
new point, new point, conic_family, line_family
The up to two intersection points between a conic and a line. If there are less
than two intersection points, each DGS is free to return repeated points, un-
defined values, or points with complex coordinates. If the conic was degen-
erate and contained a line coincident with the intersecting line, a DGS may
return “undefined" or the intersection line. If the element in the conic_family
is an arc, it can be extended into a circle; and the element in the line_family
can be extended into a line, see Appendix B.

other_intersection_point_of_conic_and_line
new point, point, conic_family, line_family
Returns the intersection point of a conic and line which is different to a pro-
vided point. The behaviour of this function must be consistent with that of
intersection_points_of_conic_and_line. If the element in the conic_family is
an arc, it can be extended into a circle; and the element in the line_family
can be extended into a line, see Appendix B.

circle_tangent_lines_by_point
new line, new line, circle_family, point
The two lines which are tangent to a circle and pass through a point. If the
point is on the circle and so there is only one tangent, a DGS may return
the tangent (repeated), or the tangent and “undefined", or just “undefined".
If the point was inside the circle, one or two times “undefined" may be re-
turned. If the circle has radius zero and the point coincides with the center,
two times “undefined" must be returned.

foci_of_conic
new point, new point, conic_family
The new points are the two foci of a conic. If the conic is degenerate and
has only one focus, a DGS may return the focus (repeated), or the focus
and an undefined value. One could also give circles, parabolas, ellipses and
hyperbolas instead of conics, the former being subtypes of the latter.

center_of_circle
new point, circle_family
The new point is the center of the given circle (or arc).

©Intergeo Consortium 2008 Page 38 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

locus_defined_by_point_on_line
new locus, point, point, line
Defines a locus as the trace of the first point when the second point moves
over the line.

locus_defined_by_point_on_line_segment
new locus, point, point, line_segment
Defines a locus as the trace of the first point when the second point moves
over the line_segment.

locus_defined_by_point_on_circle
new locus, point, point, circle
Defines a locus as the trace of the first point when the second point moves
over the circle.

locus_defined_by_point_on_locus
new locus, point, point, locus
Defines a locus as the trace of the first point when the second point moves
over the locus.

locus_defined_by_line_through_point
new locus, point, line, point
Defines a locus as the trace of the first point when the line moves around
the second point.

symmetry_by_point
new element_family, element_family, point
Reflects an element about a point (central symmetry).

symmetry_by_line
new element_family, element_family, line
Reflects an element about a line (axial symmetry).

symmetry_by_circle
new element_family, element_family, circle
Reflects an element about a circle (circle inversion).

translate
new element_family, element_family, vector
Translates an element as indicated by the vector.

A.3 The display part

Since the display part does not add mathematical information to the re-
source, this part will not have an OpenMath equivalent.

Most default values of visual aspects are system dependent, as explained in
Subsection 2.3.

stroke
Stroke is used to specify whether a path has to be drawn and with which

©Intergeo Consortium 2008 Page 39 of 44

Deliverable D3.10
i2g Common File Format Final Version

color. Its default value is system dependent and, in particular, may depend
on the type of element being painted. The value has to be given as a paint.

stroke-width
Stroke-width specifies the stroke width of the path. The value has to be given
as a length. See also borderwidth. (The name of this style was changed,
previously it had a _ instead of a –.)

stroke-dasharray
Can be either “none", the default value that indicates that the element is
to be painted with solid strokes, or a list of lengths specifying in pixels the
lengths of alternating dashes and gaps. Each length is a positive real num-
ber. If an odd number of lengths is provided, then the list of values is re-
peated to yield an even number of values. Thus, the length list 5,3,2 is
equivalent to 5,3,2,5,3,2. By default, strokes are solid.

borderwidth
A real number, measured in pixels. Applies to elements that have a border,
and so its applicability may be system dependent. It is used to indicate the
width of the region painted with the “stroke" color as opposed to the “fill"
color. The value has to be given as a length. See also stroke-width; as an
example to illustrate the difference, some DGS allow lines to have borders,
and so stroke-width would be the with of the line and borderwidth would be
the width of the line border.

border-opacity
A number between 0 and 1, default value 1, indicating how opaque the bor-
der must be. Default value is 1. (The name of this style was changed,
previously it had a _ instead of a –.)

fill
Fill is used to specify whether the interior of an element (such as a polygon)
has to be filled and with which color. The value has to be given as a paint.

fill-opacity
This provides a number between 0 and 1 indicating how opaque is the inte-
rior of an element (such as a polygon). (The name of this style was changed,
previously it had a _ instead of a –.)

point-size
Point-size specifies the size of the points. Points are usually displayed as
circles with diameter equal to the value of this style. The value has to be
given as a length. (The name of this style was changed, previously it had a
_ instead of a –.)

point-style
A string indicating the shape of points; such as “circle", “star", etc. No par-
ticular values have been specified yet. (The name of this style was changed,
previously it had a _ instead of a –.)

label
Label is the text that is displayed as the label of an element. This should

©Intergeo Consortium 2008 Page 40 of 44

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

be viewed as the visible name of the object, handy for the user but not
necessarily unique, as opposed to the identifier name, the unique identifier
the software uses. Possible values are plain text (anything valid as XML
text). The current format does not allow any mathematical specific format
like TEX/LATEXor MathML.

visible
Indicates whether the element is visible (default) or must be hidden, maybe
because it is just an uninteresting mid step in a construction. Possible values
are “true" or “false".

fixed
Fixed specifies whether a given graphical object can not be moved by the
user. Possible values are “true" and “false".

background-color
It specifies the background color of the drawing area. This is not a real style,
since it does not affect a particular element.

A.3.1 Auxiliary symbols

length
Length specifies a length. Lengths are decimal numbers (e.g. 12.345) that
represent pixels. For simplicity, units are not allowed. Note that a given
length measures the same independently of the scale of a construction.

paint
Paint can be none or a color.

color
Color has the form #RRGGBB where RR, GG and BB stands for the 0–255
hexadecimal values of the red, green and blue component of the color.

©Intergeo Consortium 2008 Page 41 of 44

Deliverable D3.10
i2g Common File Format Final Version

Appendix B : Differences with the previous version
Two of the issues described in the Future Work section of Deliverable 3.6
[HKKM09] have been incorporated into the Intergeo File Format v1. These
are:

� Families. A family is a set of element types that can be treated as an el-
ement type, and so it provides for the polymorphism that was needed
to prevent the format from having an excessive number of constraints.
For instance, the line_family consists of lines, rays, line_segments, and
directed_line_segments. For a complete list of families, see http://
i2geo.net/xwiki/bin/view/I2GFormat/families.

� Styling. Many symbols have been added to the display section; see
section A.3.

In addition, other new features in Intergeo File Format v1 are:

� Polygons and vectors have been incorporated. Also, rays and di-
rected_line_segments have really included, even though it had been
decided earlier to add them.

� Symmetries and translations have been added. See constraints
symmetry_by_line, symmetry_by_point, symmetry_by_circle and trans-
late in the appendix A.2. Some other constraints have been added.

� Extended intersections. All the intersection constraints, including
the other_intersection constraints, allow their arguments to belong in
families; for instance, point_intersection_of_two_lines can be used also
to intersect segments. The same happens with rays and lines, and arcs
and circles (actually, arcs have not yet been formally included in the
format). Segments which are not "parallel" might not intersect because
they end before reaching the common point. It is sometimes useful to
be able to intersect not the segments themselves, but the lines that
contain them. Hence, the intersection constraints allow for intersect-
ing not the elements provided, but their extending elements. The ex-
tending elements of line_segments and rays are lines; the extending
elements of arcs are circles.

One example: this is the intersection of a line and the line that contains
a segment; note that within the line_segment tag it is specified that it
has to be extended:

<point_intersection_of_two_lines>
<point out="true">P</point>
<line>l</line>
<line_segment extended="true">s</line_segment>

</point_intersection_of_two_lines>

©Intergeo Consortium 2008 Page 42 of 44

http://i2geo.net/xwiki/bin/view/I2GFormat/families
http://i2geo.net/xwiki/bin/view/I2GFormat/families

Deliverable D3.10
i2g Common File Format Final Version (version of August 24, 2010 1:38 P.M.)

Appendix C : OpenMath implementation of the sym-
bol list
OpenMath is a standard used to express mathematical content through a
series of functions, relations and constants called symbols which are speci-
fied within Content Dictionaries (CD). Each CD is an XML file that collects the
description of a coherent set of symbols.

The symbol list will be implemented as a set of Content Dictionaries, which
will provide an exhaustive enumeration of valid geometric elements, con-
straints and styles that can be used to generate a construction. These files
may be inserted within the container layer and, if present, can overwrite de-
fault definitions. Although the symbols have been chosen to be part of a DGS
construction, actually, they could live independently and be used for other
purposes.

The advantage of using OpenMath as opposed to a self-chosen xml-format
lies in the fact that the use of a Content Dictionary makes for a flexible, open,
and reusable standard. First of all, the use of OpenMath enables Intergeo to
use other Content Dictionaries already in existence, so it not only saves de-
velopment time, but relies on already existing mathematical considerations
for, e.g., algebraic expressions. Second, other kinds of software that want to
use the format in the future can combine it with other Content Dictionaries
to enrich its expressive power.

Unlike in the intergeo.xml specification, DGS’s are free to create their own
extensions (at the expense of losing interoperability with other systems).

©Intergeo Consortium 2008 Page 43 of 44

Deliverable D3.10
i2g Common File Format Final Version

References

[CIM08] David Carlisle, Patrick Ion, and Robert Miner. Mathematical
markup language (mathML) version 3.0. World Wide Web Con-
sortium, Working Draft WD-MathML3-20080409, April 2008.

[Cre08] Creative Commons Inc. (CC). Namensnennung-Weitergabe unter
gleichen Bedingungen 2.0 Deutschland. Available on the web,
May 2008.

[HKKM09] Maxim Hendriks, Ulrich Kortenkamp, Yves Kreis, and
Daniel Marquès. i2g common file format draft v2.
http://svn.activemath.org/intergeo/Deliverables/WP3/D3.6/D3.6-
Common-File-Format-v2.pdf, July 2009.

[HLCMD08] Maxim Hendriks, Paul Libbrecht, Albert Creus-
Mir, and Michael Dietrich. Metadata specification.
http://svn.activemath.org/intergeo/Deliverables/WP2/D2.4-
Metadata/D2.4-Metadata-Spec.pdf, June 2008.

[Int09] Intergeo. Intergeo file format xml-schema for intergeo.xml.
http://svn.activemath.org/intergeo/Format/xml/intergeo.xsd,
2009.

[KCP08] KCP Technologies Inc. Geometer’s sketchpad v4, 2008.

[Knu84] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, Mas-
sachusetts, 1984.

[Kor99] Ulrich Kortenkamp. Foundations of Dynamic Geometry. Disser-
tation, ETH Zürich, Institut für Theoretische Informatik, Zürich,
11 1999.

[Kor09] Ulrich Kortenkamp. I2g api specification. Deliverable D3.5, The
Intergeo Consortium, 2009.

[MP02] David Marcheix and Guy Pierra. A survey of the persistent nam-
ing problem. In SMA ’02: Proceedings of the seventh ACM sym-
posium on Solid modeling and applications, pages 13–22, New
York, NY, USA, 2002. ACM.

[Sal08] Saltire Software. Geometry expressions v1.1, 2008.

©Intergeo Consortium 2008 Page 44 of 44

	Executive Summary
	Introduction
	The three layers of the file format specification
	Design decisions: Constraints versus Constructions
	Other design decisions

	The container
	intergeo.xml
	Construction
	Elements
	Additional elements restrictions

	Constraints
	Additional constraints restrictions

	Display
	Additional restrictions

	Atomic values
	Scalars
	Double numbers
	Complex numbers
	References to objects
	Output references to objects

	intergeo.xml XML-Schema

	Symbol list
	How to Identify Objects of the I2G Format
	The Intergeo ASBL, Future Work and Request For Comments
	Handling of degenerate cases
	Ambiguity Resolving
	Dynamic Styling Information
	Functions and Scripting
	Mathematical Typesetting
	Sending Commands to Constructions
	Macro Constructions
	Number Representation
	Acyclicity of Construction Dependencies
	Library Support
	Higher Dimensional Geometry

	Appendix A : Intergeo file format symbols
	The elements part
	Families
	Auxiliary symbols

	The construction part
	The display part
	Auxiliary symbols

	Appendix B : Differences with the previous version
	Appendix C : OpenMath implementation of the symbol list
	References

