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Un enfant qui meurt de faim est un enfant assassiné.

Jean Ziegler

Damit hat die noematische Geltungsreflexion unter

allen Weisen des Denkens überhaupt, aber auch unter

allen Weisen der Reflexion eine absolute Vorrangstellung

erworben. Sie ist das Denken, das nicht einfach bloß

Theorien aufbaut, sondern als einziges Denken

gleichzeitig auch der Gültigkeit dessen, was es aufbaut,

absolut sicher zu sein vermag.

Hans Wagner, Philosophie und Reflexion

Many worlds might have been botched and bungled,

throughout an eternity, ere this system was struck

out; much labour lost, many fruitless trials made; and

a slow, but continued improvement carried on during

infinite ages in the art of world-making.

David Hume, Dialogues Concerning Natural Religion





Scattering Theory for the Hodge Laplacian and Covariant Riesz
Transforms

Abstract

Based on gradient estimates obtained by probabilistic Bismut type formulae for the

heat semigroup on the full exterior bundle of square-integrable Borel forms defined by

spectral calculus, we show results for two distinct problems:

I

We prove using an integral criterion the existence and completeness of the wave opera-

tors 𝑊±(Δ(𝑘)
ℎ , Δ(𝑘)

𝑔 , 𝐼 (𝑘)
𝑔,ℎ) corresponding to the Hodge Laplacians Δ(𝑘)

𝜈 acting on differential

𝑘-forms, for 𝜈 ∈ {𝑔, ℎ}, induced by two quasi-isometric Riemannian metrics 𝑔 and ℎ on a

complete open smooth manifold 𝑀 . In particular, this result provides a criterion for the

absolutely continuous spectra 𝜎ac(Δ(𝑘)
𝑔 ) = 𝜎ac(Δ(𝑘)

ℎ ) of Δ(𝑘)
𝜈 to coincide. By these localised

formulae, the integral criterion only requires local curvature bounds and some upper lo-

cal control on the heat kernel acting on functions provided the Weitzenböck curvature

endomorphism is in the Kato class, but no control on the injectivity radii. A consequence

is a stability result of the absolutely continuous spectrum under a Ricci flow. For applica-

tions we concentrate on the important case of conformal perturbations, and specify our

results under global curvature bounds and 𝜀-close Riemannian metrics.

II

We prove a Li-Yau type heat kernel bound of ∇𝑒−𝑡Δ(𝑘)
and an exponentially weighted 𝖫𝑝-

bound for the heat kernel of ∇𝑒−𝑡Δ(𝑘)
, if the curvature tensor and its covariant derivative

are bounded. We show that the covariant derivative of the heat semigroup acting on

𝑘-forms ∇𝑒−𝑡Δ(𝑘)
is bounded in 𝖫𝑝 for all 1 < 𝑝 < ∞ if the curvature tensor and its covari-

ant derivative are bounded. We derive a second order Davies-Gaffney estimate for small

times, if the Weitzenböck curvature endomorphism is bounded from below. Based on

these results, a Corollary is that the covariant local Riesz transform ∇(Δ(𝑘) +𝑎)−1/2 is weak

(1, 1) and bounded in 𝖫𝑝 for all 1 < 𝑝 ⩽ 2 without a volume doubling assumption. In par-

ticular, our Corollary implies the 𝖫𝑝-Calderón-Zygmund inequality for such 𝑝. From our

results we can formulate a conjecture for all 1 < 𝑝 < ∞, and explain its implications to

geometric analysis.

Key words Scattering theory, Wave operators, Bismut type derivative formulae, Hodge

Laplacian, Riesz transform, Heat kernel
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Introduction

The deep connection between Brownian motion and the Laplacian being its generator

seamlessly opens ways to study the local and global geometry of manifolds, or more gen-

erally vector bundles, by virtue of the paths of this stochastic process. Notably, so called

Bismut type formulae, first introduced by Bismut [Bis84] in 1984, provide probabilistic

derivative formulae for diffusion semigroups on possibly non-compact manifolds:

Let 𝑀 be a (possibly non-compact) complete Riemannian manifold (𝑀, 𝑔) without

boundary and Δ𝑀 be the Laplace-Beltrami operator on 𝑀 . A Brownian motion on a

manifold 𝑀 starting from 𝑥 at time 0 with lifetime 𝜁(𝑥) is given as the 𝑀 -valued pro-

cess 𝑋(𝑥) generated by 1
2Δ𝑀 . Let 𝑓 be bounded measurable and 𝑢(𝑥, 𝑡) = 𝑃𝑡𝑓(𝑥) be the

(minimal) solution to the heat equation

𝜕𝑡𝑢 = 1
2Δ𝑀 𝑢, 𝑢(⋅, 0) = 𝑓 .

Using Itô’s lemma we find the stochastic representation of the heat semigroup 𝑃𝑡 as

𝑃𝑡𝑓(𝑥) = 𝔼 (𝑓(𝑋𝑡(𝑥))𝟙{𝑡<𝜁(𝑥)}) . (1)

For any solution to this heat equation, we find the Bismut derivative formula [TW98; AT10]

⟨∇𝑃𝑡𝑓, 𝑣⟩ = −𝔼 (𝑓(𝑋𝑡(𝑥))𝟙{𝑡<𝜁(𝑥)} ∫
𝜏

0
⟨𝓠𝑠 ̇ℓ𝑠, d𝐵𝑠⟩) ∀𝑣 ∈ 𝖳𝑥𝑀 ∀𝑥 ∈ 𝑀, (2)

where:

• 𝜏 = 𝜏𝐷(𝑥) ∧ 𝑡, with

𝜏𝐷(𝑥) ∶= inf {𝑡 > 0 ∶ 𝑋𝑡(𝑥) ∉ 𝐷}
is the first exit time of 𝑋𝑡(𝑥) from some (arbitrary small) relatively compact open

neighbourhood 𝐷 of 𝑥
• 𝐵 is the associated anti-development of the Brownian motion 𝑋(𝑥), i.e. a Brownian

motion in 𝖳𝑥𝑀 related to 𝑋 qua d𝐵 ∶= //−1 ∘ d𝑋(𝑥), and //𝑡 ∶ 𝖳𝑥𝑀 → 𝖳𝑋𝑡𝑀 is the

stochastic parallel transport along 𝑋
• the process 𝓠 is a linear transform taking values in the group of linear automor-

phisms of 𝖳𝑥𝑀 , defined by the pathwise covariant ordinary differential equation

d
d𝑠 𝓠𝑡 = −1

2 Ric//𝑡(𝓠𝑡), 𝓠0 = id𝖳𝑥𝑀 ,

with Ric//𝑡 ∶= //−1
𝑡 ∘ Ric♯

𝑋𝑡
∘ //𝑡 is a linear transform in 𝖳𝑥𝑀 and we identify

⟨Ric♯
𝑧 𝑣, 𝑤⟩ = Ric𝑧(𝑣, 𝑤) for any 𝑣, 𝑤 ∈ 𝖳𝑧𝑀 (𝑧 ∈ 𝑀)

ix



x – Introduction

• ℓ is any bounded adapted process taking values in 𝖳𝑥𝑀 with absolutely continuous

paths such that (∫𝜏
0 | ̇ℓ𝑠|

2 d𝑠)
1/2

∈ 𝖫1+𝜀 for some 𝜀 > 0 and

ℓ0 = 𝑣, ℓ𝜏 = 0.

Note the remarkable fact that in the stochastic derivative formulae (2) Ricci curvature

only enters locally around the point 𝑥 and no derivative of the heat equation appears on

the righthand side of the equation. This potentially opens ways of studying gradient es-

timates. In addition, the process ℓ may be chosen nicely as long as it starts in 𝑣 ∈ 𝖳𝑥𝑀
(𝑥 ∈ 𝑀) and is 0 as Brownian motion hits the boundary of 𝐷. In comparison, the stochas-

tic representation of the semigroup (1) requires lower Ricci bounds as Brownian motion

explores the whole manifold for arbitrary small 𝑡 > 0. The idea in proving such formulae

is to use integration by parts to get a suitable local martingale, say 𝑁𝑠, and stay on the

local martingale level as long as possible. Using that a true martingale has constant ex-

pectation, one then shows that 𝑁𝑠 is indeed a martingale and takes expectations at times

𝑠 = 0 and 𝑠 = 𝑡 ∧ 𝜏 .

Formulae of the form (2) have been heavily investigated in and extended to various

contexts [EL94a; EL94b; Tha97; TW98; DT01; Hsu07; Hsu02; APT03; Tho19].

In this thesis, we make use of those methods to first derive local and global Bismut

type formulae, and prove localised gradient estimates for the heat semigroup defined by

spectral calculus on the full exterior bundle of square-integrable Borel forms in § 2. By

these formulae, we obtain results for two distinct problems:

In § 3, we prove using an integral criterion the existence and completeness of the

wave operators 𝑊±(Δ(𝑘)
ℎ , Δ(𝑘)

𝑔 , 𝐼 (𝑘)
𝑔,ℎ) corresponding to the Hodge Laplacians Δ(𝑘)

𝜈 acting on

differential 𝑘-forms, for 𝜈 ∈ {𝑔, ℎ}, induced by two quasi-isometric Riemannian metrics

𝑔 and ℎ on a complete open smooth manifold 𝑀 . In particular, this result provides a

criterion for the absolutely continuous spectra 𝜎ac(Δ(𝑘)
𝑔 ) = 𝜎ac(Δ(𝑘)

ℎ ) of Δ(𝑘)
𝜈 to coincide. The

integral criterion only requires local curvature bounds and some upper local control on

the heat kernel acting on functions provided the Weitzenböck curvature endomorphism

is in the Kato class, but no control on the injectivity radii. A consequence is a stability

result of the absolutely continuous spectrum under a Ricci flow § 3.6.1 and state the main

result in the case of differential 𝑘-forms § 3.6.2. As an application we concentrate on the

important case of conformal perturbations § 3.6.3, specify our results for global curvature

bounds § 3.6.4 and 𝜀-close Riemannian metrics § 3.6.5.

In § 4, we make use of the global and local covariant derivative formulae of the heat

semigroup developed in § 2: We show a Li-Yau type heat kernel bound of ∇𝑒−𝑡Δ(𝑘)
and

an exponentially weighted 𝖫𝑝-bound for the heat kernel of ∇𝑒−𝑡Δ(𝑘)
, if the curvature ten-

sor and its covariant derivative are bounded. We show that ∇𝑒−𝑡Δ(𝑘)
is bounded in 𝖫𝑝

for all 1 < 𝑝 < ∞ if the curvature tensor and its covariant derivative are bounded. In

addition, we derive a second order Davies-Gaffney estimate in this case for small times,

if the Weitzenböck curvature endomorphism is bounded from below. From these results,
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a Corollary is that the covariant local Riesz transform ∇(Δ(𝑘) + 𝑎)−1/2 is weak (1, 1) and

bounded in 𝖫𝑝 for all 1 < 𝑝 ⩽ 2 without a volume doubling assumption. In particular, our

Corollary implies the 𝖫𝑝-Calderón-Zygmund inequality. From our results we can formu-

late a conjecture for all 1 < 𝑝 < ∞, and explain its implications to geometric analysis.

Main results and outline of the thesis

In the § 1 we agree upon the notation used throughout this thesis and recall well-known

notions and results from differential theory, spectral theory, geometric analysis and

stochastic calculus.

The thesis presents a concise overview of the results that are contained in the following

papers:

PI Scattering Theory for the Hodge Laplacian, 45 p., submitted, arXiv:2007.06447.

PII Estimates for the covariant derivative of the heat semigroup on differential forms

and covariant Riesz transforms, joint work with Batu Güneysu & Baptiste Devyver,

39 p., arxiv.org:2107.00311.

Although the application may seem distant, both results are based on the same key

technical tool, to wit: global and local Bismut type formulae on the (full) exterior bundle

of square-integrable Borel forms developed in § 2. The thesis then splits into two parts.

Part I is concerned with the scattering theory of the Hodge Laplacian. Part II gives es-

timates for the covariant derivative of the heat semigroup and its kernel, the covariant

Riesz transform and implications to geometric analysis.

Bismut type formulae and gradient estimates

In § 2, we first elaborate on the techniques to prove Bismut type formulae in the ab-

stract setting of vector bundles and introduce the so called Kato class of potentials, i.e. a

sufficiently rich class of potentials for which we can still expect the Feynman-Kac formula

to make sense pointwise (cf. § 2.1). Using those methods, we then derive Bismut type for-

mulae on the full exterior bundle of square-integrable Borel forms: a global and a local

covariant Bismut formula in § 2.2 and Bismut formulae for the exterior derivative and

codifferential in § 2.3. From the localised Bismut formulae, we obtain localised gradient

estimates in § 3.3 that will be the key technical tool in the proof of our main result in § 3.

Scattering Theory for the Hodge Laplacian

The Hodge Laplacian Δ(𝑘)
𝑔 acting on differential 𝑘-forms carries important geometric and

topological information about 𝑀 , of particular interest is the spectrum 𝜎(Δ(𝑘)
𝑔 ) of Δ(𝑘)

𝑔 .

If 𝑀 is non-compact, then the spectrum contains some absolutely continuous part. A

natural question to ask is, to what extent can we control the absolutely continuous part

of 𝜎(Δ(𝑘)
𝑔 ) and under which assumptions on the geometry of (𝑀, 𝑔)?

https://arxiv.org/abs/2007.06447
https://arxiv.org/abs/2107.00311
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A systematic approach to control the absolutely continuous part of the spectrum

𝜎ac(Δ(𝑘)
𝑔 ) is inspired by quantum mechanics, namely scattering theory: Assume that there

is another Riemannian metric ℎ on 𝑀 such that ℎ is quasi-isometric to 𝑔, i.e. there exists

a constant 𝐶 ⩾ 1 such that (1/𝐶)𝑔 ⩽ ℎ ⩽ 𝐶𝑔. We show that under suitable assumptions

the wave operators

𝑊±(Δ(𝑘)
ℎ , Δ(𝑘)

𝑔 , 𝐼 (𝑘)
𝑔,ℎ) = s-lim

𝑡→±∞
e𝑖𝑡Δ(𝑘)

ℎ 𝐼 (𝑘)
𝑔,ℎe−𝑖𝑡Δ(𝑘)

𝑔 𝖯ac(Δ(𝑘)
𝑔 )

exist and are complete, where the limit is taken in the strong sense, and 𝐼 (𝑘)
𝑔,ℎ denotes

a bounded identification operator between the Hilbert spaces of equivalence classes of

square-integrable Borel 𝑘-forms on 𝑀 corresponding to the metric 𝑔 and ℎ respectively

(cf. Theorem 3.5 and § 3.2 for details). Then as well-known, it follows in particular that

𝜎ac(Δ(𝑘)
ℎ ) = 𝜎ac(Δ(𝑘)

𝑔 ).
Similar problems have been investigated: In [MS07; HPW14] considered Laplacians acting

on functions on 𝑀 . However, using analytics methods, strong assumptions are needed to

control the injectivity radii. Bei, Güneysu & Müller [BGM17] generalised previous results

in the case of conformally equivalent metrics on differential forms under a mild first or-

der control on the conformal factor. Recently, [GT20] established a rather simple integral

criterion induced by two quasi-isometric Riemannian metrics using stochastic methods.

In particular, no injectivity radii assumptions are made. Using a similar method, very re-

cently Boldt & Güneysu [BG20] extended the result to a non-compact spin manifold with

a fixed topological spin structure and two complete Riemannian metrics with bounded

sectional curvatures.

In this chapter, we address the natural question: Can we extend the results to the setting of

differential 𝑘-forms?

We will show that previous results can be extended to the setting of differential

𝑘-forms, for a large class of potentials (i.e. in the Kato class) assuming an integral cri-

terion only depending on a local upper bound on the heat kernel and certain explicitly

given local curvature bounds. Our main result of this chapter, Theorem 3.32, reads as

follows:

Main result. Assume that 𝑔 and ℎ are two geodesically complete and quasi-isometric Rieman-

nian metrics on 𝑀 , denoted 𝑔 ∼ ℎ, and assume that there exists 𝐶 < ∞ such that |𝛿
∇
𝑔,ℎ| ⩽ 𝐶 ,

and that for both 𝜈 ∈ {𝑔, ℎ}, |𝓡𝜈|𝜈 is in the Kato class and it holds

∫ max {𝛿𝑔,ℎ(𝑥), 𝛿∇
𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠), Ψ𝜈(𝑥, 𝑠)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0,

where

• vol𝜈 denotes the Riemannian volume measure with respect to the metric 𝜈,
• 𝓡𝜈 ∈ 𝝘(𝖤𝗇𝖽 Ω(𝑀, 𝜈)) denotes the Weitzenböck curvature endomorphism,

• Ψ𝜈(𝑥, 𝑠) ∶ 𝑀 → (0, ∞) is a function explicitly given terms of local curvature bounds and

a finite constant 𝑐𝛾 (𝓡−),
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• Ξ𝜈(⋅, 𝑠) ∶ 𝑀 → (0, ∞) is a function explicitly given in terms of Ψ𝜈(𝑥, 𝑠) and an additional

local bound on the derivative of curvature,

• Φ𝜈(⋅, 𝑠) ∶ 𝑀 → (0, ∞) is a local upper bound on the heat kernel acting on functions,

• 𝛿𝑔,ℎ ∶ 𝑀 → (0, ∞) a zeroth order deviation of the metrics from each other,

• 𝛿∇
𝑔,ℎ ∶ 𝑀 → [0, ∞) a first order deviation of the metrics.

Then the wave operators 𝑊±(Δℎ, Δ𝑔, 𝐼𝑔,ℎ) exist and are complete. Moreover, 𝑊±(Δℎ, Δ𝑔 , 𝐼𝑔,ℎ)
are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δℎ). In particular,

𝜎ac(Δ𝑔) = 𝜎ac(Δℎ).

In § 3.1 we briefly motivate the notion of wave operators (cf. Definition 3.2) and cite the

abstract Belopol’skii-Birman Theorem 3.5 which is a well-known tool to prove existence

and completeness of the wave operators. A direct consequence is that the absolutely

continuous spectra coincide. In the following Section § 3.2, we introduce notions needed,

of particular interest the quasi-isometry of two Riemannian metrics, cf. Definition 3.12.

It turns out that quasi-isometry can be characterised by boundedness of a zeroth order

deviation of the metrics from each other (3.14) defined in terms of a smooth vector bundle

morphism 𝓐𝑔,ℎ relating the two quasi-isometric metrics which is given by (3.9). In partic-

ular, we obtain estimates for the covariant derivative of 𝓐𝑔,ℎ and a representation of the

codifferential in the quasi-isometric metric (cf. Lemma 3.15). In § 3.3 we use the localised

gradient estimates obtained in § 2 to prove gradient estimates for the covariant deriva-

tive, exterior derivative and codifferential of the heat semigroup transformed by 𝓐𝑔,ℎ.

We then explain the main result of this chapter in § 3.4 and its proof in § 3.5. We close § 3

with applications to the Ricci flow § 3.6.1, state the main result in the case of differential

𝑘-forms 3.6.2, the particularly important cases of conformal perturbations § 3.6.3, specify

our results for global curvature bounds § 3.6.4 and 𝜀-close Riemannian metrics § 3.6.5.

Covariant derivative estimates and Riesz transforms

The Riesz transform ∇(Δ(0) + 𝜆)−1/2 on a Riemannian manifold, considered by Strichartz

[Str83], has been intensively studied and extended in various frameworks [Bak85a; Bak85b;

CD99; TW04; Aus+04]. A direct application to geometric analysis is given by the

𝖫𝑝-Calderón-Zygmund inequalities, cf. e.g. [GP15; Pig20]. However, the study of Riesz

transform normally involves assuming a volume doubling property of 𝑀 .

For the following results we only assume that the Riemann curvature tensor and its

covariant derivative are bounded by some constant 𝐴 < ∞, i.e.

max (‖𝖱‖∞ , ‖∇ 𝖱‖∞) ⩽ 𝐴, (3)

where ∇ denotes the Levi-Civita connection on 𝑀 , and ‖𝖱‖∞ the ‖⋅‖∞-norm of

𝖱 ∈ 𝝘𝖢∞(𝖳(0,4)𝑀) read as a (0, 4)-tensor, analogously for ∇ 𝖱 read as (0, 4 + 1)-tensor.

We first state our main results of this chapter. In Theorem 4.4 we show a Li-Yau type
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heat kernel bound for ∇𝑒−𝑡Δ(𝑘)
for all 1 ⩽ 𝑘 ⩽ 𝑚:

|∇𝑥e−𝑡Δ(𝑘)(𝑥, 𝑦)| ⩽ 𝐶
vol(𝖡(𝑥, √𝑡))

𝑡−1/2e𝐶𝑡e−𝐷 𝖽(𝑥,𝑦)2
𝑡 ∀𝑡 > 0 ∀𝑥, 𝑦 ∈ 𝑀,

where 𝖽(𝑥, 𝑦) denotes the geodesic distance and 𝖡(𝑥, 𝑟) the induced open balls. The positive

constants 𝐶 and 𝐷 only depend on 𝐴 and the dimension 𝑚 of 𝑀 .

From this theorem we can deduce an exponentially weighted 𝖫𝑝-bound for the heat

kernel of ∇𝑒−𝑡Δ(𝑘)
for all 1 ⩽ 𝑘 ⩽ 𝑚:

∫ |∇𝑥e−𝑡Δ(𝑘)(𝑥, 𝑦)|
𝑝

e
𝛾𝖽(𝑥,𝑦)2

𝑡 vol(d𝑥) ⩽ 𝐶e𝐶𝑡

𝑡𝑝/2 vol(𝖡(𝑦, √𝑡))𝑝−1
∀𝑡 > 0,

where the positive constant 𝐶 only depends on 𝐴, the dimension 𝑚 of 𝑀 and 𝑝.

Next, Theorem 4.6 states that ∇𝑒−𝑡Δ(𝑘)
is bounded in 𝖫𝑝, for all 1 < 𝑝 < ∞, i.e. we have,

for all 1 ⩽ 𝑘 ⩽ 𝑚,

‖∇e−𝑡Δ(𝑘)
|𝝘𝖫2∩𝖫𝑝 (⋀𝑘 𝖳∗𝑀)‖𝑝,𝑝

⩽ 𝐶e𝑡𝐶 𝑡−1/2 ∀𝑡 > 0, (4)

where the constant 𝐶 only depends on 𝐴, the dimension 𝑚 of 𝑀 and 𝑝.

A direct consequence is Corollary 4.7: the operator ∇(Δ(𝑘) + 𝜆)−1/2 is weak (1, 1) and,

by interpolation, the boundedness of the covariant local Riesz transform in 𝖫𝑝 for all

1 < 𝑝 ⩽ 2,

‖∇(Δ(𝑘) + 𝜆)−1/2
|𝝘𝖫2∩𝖫𝑝 (⋀𝑘 𝖳∗𝑀)‖𝑝,𝑝

⩽ 𝐶, (5)

where the positive constant 𝐶 only depends on 𝐴, the dimension 𝑚 of 𝑀 , 𝑝 and 𝜆.

In particular, Corollary 4.7 does not involve any volume assumptions and directly implies

the 𝖫𝑝-Calderón-Zygmund inequality, i.e. that there is a positive constant 𝐷 depending on

𝐴, the dimension 𝑚 of 𝑀 and 𝑝 such that

‖Hess 𝑢‖𝑝 ⩽ 𝐷 (‖Δ𝑢‖𝑝 + ‖𝑢‖𝑝) ∀𝑢 ∈ 𝖢∞
𝑐 (𝑀).

Based on our results, we can formulate Conjecture 4.8 that Corollary 4.7 holds for all

1 < 𝑝 < ∞. Our conjecture is based on a result by [Aus+04] in the case 𝑘 = 0, i.e. on

functions, that for 𝑝 > 2, estimate (4) implies (and is actually equivalent to) (5). We can

also generalise a central tool in the proof of the scalar case, i.e. a second order Davies-

Gaffney estimate for small times:

Theorem 4.11. There are universal constants 𝑐1, 𝑐2 > 0 such that for all 1 ⩽ 𝑘 ⩽ 𝑚 with

𝓡(𝑘) ⩾ −𝐴 for some constant 𝐴 ⩾ 0, all 𝑡 > 0, all Borel subsets 𝐸, 𝐹 ⊂ 𝑀 with compact

closure, and all 𝛼 ∈ 𝝘𝖫2(⋀𝑘 𝖳∗𝑀) with supp 𝛼 ⊂ 𝐸, we have

‖𝟙𝐹 e−𝑡Δ(𝑘)𝛼‖2
+ ‖𝟙𝐹 √𝑡∇e−𝑡Δ(𝑘)𝛼‖2

+ ‖𝟙𝐹 𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2
⩽ 𝑐1 (1 + √𝑡𝐴) e− 𝑐2𝜚(𝐸,𝐹 )2

𝑡 ‖𝟙𝐸𝛼‖2 .

It turns out, for this result, boundedness on the Weitzenböck curvature endomorphism

𝓡(𝑘) from below is sufficient. The Proof is given in § 4.6 and is based on analytics tools,
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to wit the Phragmen-Lindelöf’s inequality 4.16. Following the strategy of the proof given

in [Aus+04] the only part we could not adjust so far is where the local Poincaré inequality

is used explicitly.

In § 4.3, we prove the heat kernel bound for ∇𝑒−𝑡Δ(𝑘)
if the curvature tensor and its covari-

ant derivative are bounded by making use of the global Bismut formula, Theorem 2.24,

applied to Brownian bridge measure, and its Corollary 4.5 using Li-Yau estimates. In

§ 4.4, we prove that the covariant derivative formula of the heat semigroup on 𝑘-forms

is bounded in 𝖫𝑝 for all 1 < 𝑝 < ∞ if the curvature tensor and its covariant derivative are

bounded. We therefore use the covariant Bismut formula and similar techniques to prove

the gradient estimates developed on § 2 under global curvature bounds. In § 4.5 we prove

Corollary 4.7, i.e. that the operator ∇(Δ(𝑘) + 𝜆)−1/2 is weak (1, 1) and the boundedness of

the covariant local Riesz transform in 𝖫𝑝 for all 1 < 𝑝 ⩽ 2.
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Index of notation

Unless otherwise stated, functions are maps whose codomain is ℝ𝑚 whereas the term

map(ping) normally refers to a map between arbitrary manifolds. Binary operations between

functions such as 𝑓 ± 𝑔, 𝑓 ⋅ 𝑔, 𝑓 ∧ 𝑔, 𝑓 ∨ 𝑔, comparisons 𝑓 ⩽ 𝑔, 𝑓 < 𝑔 or limits 𝑓𝑗
𝑗→∞−−−−→ 𝑓 ,

lim𝑗 𝑓𝑗 , lim inf 𝑗 𝑓𝑗 , sup𝑗 𝑓𝑗 are understood pointwise. «Positive» and «negative» means «⩾ 0»

and «⩽ 0», respectively.

Throughout, we will use the notation

𝑥 ≲ 𝑦 ∶⟺ ∃𝐶 > 0 ∶ 𝑥 ⩽ 𝐶𝑦,

and

𝑥 ≃ 𝑦 ∶⟺ 𝑥 ≲ 𝑦 ∧ 𝑦 ≲ 𝑥.

Einstein Summation Convention If the same index variable appears twice in a term, both

as an upper and a lower index, it is assumed to be summed over all possible values of that

index (usually ranging from 1 to the dimension 𝑚 =∶ dim 𝑀). For example, we write

𝑎𝑖𝑏𝑖 instead of ∑
𝑖

𝑎𝑖𝑏𝑖 or 𝑎𝑖𝑗𝑘𝑙𝑏𝑖𝑙𝑐𝑗 instead of ∑
𝑖,𝑗,𝑘

𝑎𝑖𝑗𝑘𝑙𝑏𝑖𝑙𝑐𝑗 .

Analysis and measure theory

ℕ [ℕ0] natural numbers [incl. 0]

ℝ real numbers

inf ∅ inf ∅ = +∞
𝑎 ∧ 𝑏, 𝑎 ∨ 𝑏 minimum and maximum

𝟙𝐴 𝟙𝐴(𝑥) ∶=
{

1 𝑥 ∈ 𝐴
0 𝑥 ∉ 𝐴

pr𝐸 projection on 𝐸

Sets

𝑀̂ 𝑀̂ ∶= 𝑀 ∪ {∞}
𝐸∗ dual space of a set 𝐸

supp 𝑓 support of 𝑓 , {𝑓 ≠ 0}

supp 𝜂 support of 𝜂, {𝜂 ≠ 0}

Differential geometry

𝑀 smooth manifold

𝖳𝑀 [𝖳∗𝑀 ] [co]tangent bundle

𝖳𝑥𝑀 [𝖳∗
𝑥𝑀 ] [co]tangent space at 𝑥 ∈ 𝑀

𝜋 ∶ 𝐸 → 𝑀 fibre or vector bundle

𝝘(𝐸) smooth sections of fibre
bundle 𝐸 , 𝝘(𝐸) ≡ 𝝘𝖢∞(𝐸), 3

𝝘𝖫2(𝐸) 𝖫2-sections of fibre bundle 𝐸

xxi
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Ω𝑘(𝑀) smooth differential 𝑘-forms
on 𝑀 , Ω𝑘(𝑀) ≡ Ω𝑘

𝖢∞(𝑀), 4

Ω(𝑀) smooth differential forms on
𝑀 , Ω(𝑀) ≡ Ω𝖢∞(𝑀)

Ω𝑘
𝖫2(𝑀) 𝖫2 𝑘-forms on 𝑀

Ω𝖫2(𝑀) 𝖫2 total forms on 𝑀
♯, ♭ musical isomorphisms, 9

∇ covariant derivative, 5

grad gradient

tr trace, contraction

𝗱 exterior derivative, 4

𝗱(𝑘) ——— acting on 𝑘-forms

𝝳𝑔 codifferential (w.r.t. 𝑔), 11

𝝳(𝑘)
𝑔 ——— acting on 𝑘-forms

𝗗𝑔 Dirac operator 𝗱 + 𝝳𝑔

Δℝ𝑚 Laplace operator, ∑𝑖⩽𝑛 𝜕2
𝑖

Δ𝑀 Laplace-Beltrami operator, 10

Δ𝑔 Hodge-de Rham operator on
total forms, 12

Δ(𝑘)
𝑔 ——— acting on 𝑘-forms

□ ≡ ∇∗∇ connection Laplacian on
manifold 𝑀 , 42

𝑇 torsion tensor, 9

𝖱 curvature tensor, 12

Ric Ricci tensor, 12

𝓡 Weitzenböck curvature
endomorphism, 13

𝓡(𝑘) ——— acting on 𝑘-forms

𝑄 curvature operator, 51

vol𝑔 volume measure (w.r.t. 𝑔)

𝑔 = (⋅, ⋅)𝑔 Riemannian metric, 8

𝖬𝖾𝗍𝗋𝑀 smooth Riemannian metrics
on 𝑀

|⋅|𝑔 induced fibre norm

⟨⋅, ⋅⟩𝑔 inner product on 𝝘𝖫2(𝐸)
‖⋅‖𝑔 norm on 𝝘𝖫2(𝐸)

Spaces (of sets)

𝓑(𝐸) space of Borel-measurable
functions 𝑓 ∶ 𝐸 → ℝ

𝓑𝑏(𝐸) space of bounded,
Borel-measurable functions
𝑓 ∶ 𝐸 → ℝ

𝖢∞(𝐸) space of continuous functions
𝑓 ∶ 𝐸 → ℝ, 1

𝖢𝑐(𝐸) space of continuous functions
𝑓 ∶ 𝐸 → ℝ with compact
support, 1

𝖢∞
𝑐 (𝐸) space of smooth functions

𝑓 ∶ 𝐸 → ℝ with compact
support, 1

𝓢(𝐸) space of all continuous
semimartingales on 𝐸

𝓜(𝐸) space of all local martingales
on 𝐸

𝓐(𝐸) [𝓐0(𝐸)] space of all continuous finite
variation processes [starting
at zero] on 𝐸

𝖧𝗈𝗆(𝐸, 𝐹 ) space of all homomorphisms
from 𝐸 to 𝐹

𝖤𝗇𝖽(𝐸, 𝐹 ) space of all endomorphisms
from 𝐸 to 𝐹

Operator theory & spectral calculus

𝓛(𝓗1, 𝓗2) bounded linear operators
𝓗1 → 𝓗2, 16

𝓙𝑞 Schatten class operator of
order 𝑞, 16

𝓙1 trace class operators, 16

𝓙2 Hilbert-Schmidt class
operators, 16

𝓙∞ compact operators, 16

𝖽𝗈𝗆 𝗛 domain of an operator 𝗛
𝗋𝖺𝗇 𝗛 range of an operator 𝗛
𝗛∗ adjoint of an operator 𝗛
𝜎(𝗛) spectrum of an operator 𝗛, 17
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𝜎ac(𝗛) absolutely continuous
spectrum of 𝗛, 70

e−𝑠𝗛 semigroup generated by 𝗛

e−𝑠𝗛(𝑥, 𝑦) kernel corresponding to e−𝑠𝗛

𝑝(𝑘)
𝑡 (𝑥, 𝑦) heat kernel acting on 𝑘-forms

𝑝(0)
𝑡 (𝑥, 𝑦) heat kernel on functions

𝐪 sesquilinear form
corresponding to s.a. operator

𝑊±(𝗛2, 𝗛1, 𝐼) wave operators

|⋅|op operator norm

s-lim strong limit

s⟶ strong convergence

Scattering theory

𝑔 ∼ ℎ 𝑔 quasi-isometric to ℎ, 78

𝓐𝑔,ℎ(𝑥) vector bundle
homomorphism, 74

𝛿𝑔,ℎ(𝑥) 0th order deviation of
𝑔 and ℎ, 78

𝛿∇
𝑔,ℎ(𝑥) 1st order deviation of

𝑔 and ℎ, 78

𝐼𝑔,ℎ bounded identification
operator, 84

𝐼 (𝑘)
𝑔,ℎ ——— acting on 𝑘-forms

𝖪(𝑀) Kato class, 45

𝖣(𝑀) Dynkin class, 45

Probability theory

∼ distributed as

m= modulo local martingales

a.s. almost sure(ly)

a.e. almost every(where)

(Ω, 𝓕, ℙ) (underlying) probability space

𝔼( ⋅ | 𝓗) conditional expectation w.r.t.
a 𝜎-algebra 𝓗

Stochastic processes and SDEs

𝓕𝑡 = 𝓕𝑡+ 𝓕𝑡+ ∶= ⋂𝑟>𝑡 𝓕𝑟, 𝑡 ⩾ 0,
right-continuous filtration

𝑋𝑡 ∈ 𝓕𝑡 𝑋𝑡 measurable w.r.t 𝓕𝑡

𝜏 = 𝜏(𝑥, 𝑟) first exit time from the open
ball 𝖡(𝑥, 𝑟), 49

𝑋𝜏
𝑡 = 𝑋𝑡∧𝜏 stopped process 𝑋𝑡∧𝜏

𝜁 lifetime, 29

[𝑋] square bracket [𝑋, 𝑋]
(𝑃𝑡)𝑡⩾0 heat semigroup,

𝑃𝑡𝑓(𝑥) ∶= 𝔼𝑓(𝑋𝑡(𝑥))
𝐵 = (𝐵𝑡)𝑡⩾0 Brownian motion (BM)

BM(𝐸) BM on 𝐸 ⊂ ℝ𝑛

BM(𝑀, 𝑔) BM on (𝑀, 𝑔), 28

SDE Stochastic differential
equation

∘ Stratonovich circle, 29

𝖢𝖬(𝑡, 𝜉, 𝐸) finite energy process in 𝐸





Chapitre 1
Éléments d’Analyse Géométrique and Calcul Stochastique

Dans ce chapitre, nous introduisons les notions préliminaires nécessaires et convenons

de la notation utilisée. En particulier, nous revisiterons les définitions bien connues de la

théorie de géométrie différentielle et de la théorie des probabilités.

Remarque 1.1 (Convention de sommation d’Einstein). Désormais, nous utiliserons la con-

vention commode de sommation d’Einstein. Il s’agit d’une convention de notation impor-

tante qui est couramment utilisée dans la théorie des variétés, car nous devons souvent

traiter des vecteurs et des covecteurs et de l’inévitable superflu des signes de sommation:

si un index apparaît deux fois, une fois en indice et une fois en exposant, nous omettons

le symbole de sommation. Par exemple nous écrivons

𝑣𝑖𝜕𝑖, 𝜔𝑖𝗱𝑥𝑖, 𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝐹𝑖𝑗 ,

à la place de

𝑛

∑
𝑖=1

𝑣𝑖𝜕𝑖,
𝑛

∑
𝑖=1

𝜔𝑖𝗱𝑥𝑖,
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝐹𝑖𝑗 .

Par conséquent, donnée un espace vectoriel 𝑉 , nous faisons la distinction et écrivons les

vecteurs (contravariants) 𝑒1, ..., 𝑒𝑛 ∈ 𝑉 toujours avec un indice et les covecteurs du repère

dual correspondant 𝜀1, ..., 𝜀𝑛 ∈ 𝑉 ∗ avec un exposant.

Pour 𝑥 ∈ ℝ𝑚 et quelconque 𝑟 > 0, on dénote par

𝖡(𝑥, 𝑟) ∶= {𝑦 ∈ ℝ𝑚 ∶ ‖𝑥 − 𝑦‖ < 𝑟} et 𝖡[𝑥, 𝑟] ∶= {𝑦 ∈ ℝ𝑚 ∶ ‖𝑥 − 𝑦‖ ⩽ 𝑟} . 

la boule ouverte et la boule fermée, respectivement (dans le norme habituelle sur ℝ𝑚).

Notons par 𝖢∞(𝐸), 𝖢∞
𝑐 (𝐸), et 𝖢𝑐(𝐸), pour toutes les fonctions 𝑓 ∶ 𝐸 → ℝ𝑚 lisses, lisses

et disparaissant à l’infini et lisses à supports compacts.

On définit encore les espaces de courbes suivant: Soit 𝐼 ⊂ ℝ, on denote par 𝖢([𝑎, 𝑏], ℝ𝑚)
l’ensemble des courbes continues 𝛾 ∶ [𝑎, 𝑏] → ℝ𝑚 et 𝖫1([𝑎, 𝑏], ℝ𝑚) l’ensemble des courbes

intégrables. En outre, une courbe 𝛾 ∶ [𝑎, 𝑏] → ℝ𝑚 est absolument continue si pour tout

𝜀 > 0 il existe un 𝛿 > 0 tel que pour toute partition 𝑎 ⩽ 𝑠1 < 𝑡1 ⩽ … ⩽ 𝑠𝑛 < 𝑡𝑛 ⩽ 𝑏
𝑛

∑
𝑖=1

(𝑡𝑖 − 𝑠𝑖) < 𝛿 ⟹
𝑛

∑
𝑖=1

|𝛾(𝑡𝑖) − 𝛾(𝑠𝑖)| < 𝜀.

De manière équivalente une courbe 𝛾 ∶ [𝑎, 𝑏] → ℝ𝑚 est absolument continue si 𝛾 est

différentiable presque partout avec ̇𝛾 ∈ 𝖫1([𝑎, 𝑏], ℝ𝑚) et telle que

𝛾(𝑡) = 𝛾(𝑎) + ∫
𝑡

𝑎
̇𝛾(𝑥)d𝑠.

1
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Finalement, on définit l’espace

𝖫1,2([𝑎, 𝑏], 𝐸) ∶= {𝛾 ∶ [𝑎, 𝑏] → 𝐸 ∶ 𝛾 différentiable p.p. et ∫
𝑏

𝑎
| ̇𝛾(𝑡)|2 d𝑡 < ∞} .

1.1 Théorie de Géométrie Différentielle

Une introduction approfondie aux variétés différentielles est donnée dans [Lee18], à la

géométrie riemannienne dans [Jos17] et [Pet16]. Étant un lecteur allemand nous renvoyons

le lecteur à [HT94, Chapitre 7]. Une référence classique pour la géométrie différentielle

nécessaire est [KN63; KN69].

Soit 𝑀 une variété topologique de dimension dim 𝑀 =∶ 𝑚, i.e. un espace topologique de

Hausdorff et à base dénombrable assimilable localement à un espace euclidien. Combinée

avec une structure différentielle on appelle 𝑀 une variété différentielle.

1.1.1 Fibrés différentiels Un fibré (différentiel) est un espace qui est localement le pro-

duit de deux espaces, mais peut avoir une structure topologique différente globalement.

Nous nous limitons à des fibrés entre variétés de façon à ce que l’espace total 𝐸 est une

variété au lieu d’un espace topologique. Ainsi, les trivialisations deviennent des difféo-

morphismes (pas homeomorphismes).

Definition 1.2. Soient 𝐸, 𝑀 et F des variétés. Une application lisse 𝜋 ∶ 𝐸 → 𝑀 ou, plus

précisément, le quadruplet (𝐸, 𝑀, 𝜋, 𝖥) est appelé fibré (différentiel) sur 𝑀 de fibre 𝖥, si

𝜋 est une submersion surjective et pour tous 𝑝 ∈ 𝑀 il existe un voisinage 𝑈 de 𝑝 dans 𝑀
et un difféomorphisme 𝜑 ∶ 𝜋−1(𝑈) ∼⟶ 𝑈 × 𝐹 sur 𝑈 tel que le diagramme

𝜋−1(𝑈) 𝜑 //

𝜋
��

𝑈 × F

pr𝑈
zzttt

ttt
ttt

tt

𝑈
soit commutatif. On appelle 𝐸 l’espace total, 𝜋 la projection, 𝑀 la base et (𝑈, 𝜑) une

trivialisation locale du fibré. De plus, 𝖥 est la fibre et 𝐸𝑝 ∶= 𝜋−1 {𝑝} la fibre sur 𝑝 ∈ 𝑀 .

Définition 1.3. Un fibré vectoriel de rang 𝑘 sur 𝑀 est un fibré 𝜋 ∶ 𝐸 → 𝑀 de fibre

espace vectoriel 𝑉 de dimension 𝑘, avec trivialisations locales 𝜑𝑈 ∶ 𝜋(𝑈) → 𝑈 × 𝑉 telles

que toute restriction 𝜑𝑈 |𝑥 ∶ 𝐸𝑥 → {𝑥} × 𝑉 est un isomorphisme d’espaces vectoriels.

Définition 1.4. Le fibré dual d’un fibré 𝜋 ∶ 𝐸 → 𝑀 est le fibré

𝐸∗ ∶= ⋃
𝑥∈𝑀

𝐸∗
𝑥 → 𝑀, 𝑥 ∈ 𝑀,

où 𝐸∗
𝑥 = 𝖧𝗈𝗆ℝ(𝐸𝑥, ℝ) est l’espace vectoriel dual de 𝐸𝑥.

Définition 1.5. Si 𝜋 ∶ 𝐸 → 𝑀 est un fibré de fibre 𝐹 , une section est une application

différentiable 𝜎 ∶ 𝑀 → 𝐸 telle que 𝜋 ∘ 𝜎 = id𝑀 . L’espace des sections différentiable d’un
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fibré 𝐸 est donné par

𝝘(𝐸) ∶= {𝜎 ∶ 𝑀 → 𝐸 différentiable ∣ 𝜋 ∘ 𝜎 = id𝑀 }
≡ {𝜎 ∶ 𝑀 → 𝐸 différentiable ∣ 𝜎(𝑥) ∈ 𝖳𝑥𝑀 ∀𝑥 ∈ 𝑀} .

Exemple 1.6. (a) Le fibré trivial 𝐸 = 𝑀 × 𝖥 de fibre 𝖥 est la projection

𝜋 ∶= pr𝑀 ∶ 𝑀 × 𝐹 → 𝑀,

i.e. (𝑥, 𝑦) ↦ 𝑥. Si 𝐸 = 𝑀 × ℝ, les sections de 𝐸 sont les fonctions lisses à valeurs réels

sur 𝑀 , i.e. 𝝘∞(𝑀) = 𝖢∞(𝑀).
(b) Si 𝐸 = 𝑀 × ℝ𝑘 (𝑘 ∈ ℕ), les sections de 𝐸 sont les fonctions vectorielles sur 𝑀 .

Exemple 1.7. (a) Le fibré tangent sur 𝖳𝑀 𝜋⟶ 𝑀 est l’union disjointe des espaces tan-

gents 𝖳𝑀 = ⋃𝑥∈𝑀 𝖳𝑥𝑀 . Les sections 𝑋 ∈ 𝝘(𝖳𝑀) sont données par champ de

vecteurs sur 𝑀 . Comme d’habitude, on identifie les champs de vecteurs sur 𝑀 avec

les dérivations de 𝖢∞(𝑀) à valeurs dans 𝖢∞(𝑀), i.e.

𝝘(𝖳𝑀) ∶= 𝖣𝖾𝗋(𝖢∞(𝑀), 𝖢∞(𝑀))
∶= {𝐴 ∶ 𝖢∞(𝑀) → 𝖢∞(𝑀) ℝ-linear ∣ 𝐴(𝑓𝑔) = 𝑓𝐴(𝑔) + 𝑔𝐴(𝑓) ∀𝑓 , 𝑔 ∈ 𝖢∞(𝑀)} ,

où le champ de vecteurs 𝐴 ∈ 𝝘(𝖳𝑀) est considéré comme une ℝ-dérivation qua

𝐴(𝑓)(𝑥) ∶= (𝗱𝑓)𝑥𝐴(𝑥) ∈ ℝ, ∀𝑥 ∈ 𝑀,

utilisé le différential (ou push-forward) (𝑓𝑥)∗ = 𝗱𝑓𝑥 ∶ 𝖳𝑥𝑀 → ℝ de 𝑓 dans 𝑥.

(b) Le fibré cotangent sur 𝖳∗𝑀 𝜋⟶ 𝑀 est l’union disjointe des espaces cotangents

𝖳∗𝑀 = ⋃𝑥∈𝑀 𝖳∗
𝑥𝑀 , où 𝖳∗

𝑥𝑀 est l’espace vectoriel dual linéaire de l’espace tangent

𝖳𝑥𝑀 pour tout 𝑥 ∈ 𝑀 . Les sections 𝜂 ∈ 𝝘(𝖳∗𝑀) sont données par les formes différen-

tielles d’ordre un.

Exemple 1.8. (a) Le fibré tensoriel de type (𝑘, 𝑙) sur un fibré 𝜋 ∶ 𝐸 → 𝑀 est le produit

tensoriel

𝖳(𝑘,𝑙)𝐸 ∶= ⋃
𝑥∈𝑀

(𝐸∗
𝑥)⊕𝑘 ⊗ 𝐸⊕𝑙

𝑥 → 𝑀.

(b) Le 𝑘-ème produit extérieur d’un fibré 𝜋 ∶ 𝐸 → 𝑀 est le fibré

⋀𝑘𝐸 ∶= ⋃
𝑥∈𝑀

⋀𝑘𝐸𝑥 → 𝑀,

où ⋀𝑘𝐸𝑥 est le sous-espace de l’espace 𝖳(𝑘,𝑙)𝐸 défini par toutes 𝛼 ∈ 𝖳(𝑘,0)𝐸 alternée.

Si le fibré 𝐸 est de rang 𝑚, le fibré ⋀𝑘 𝐸 est de rang (
𝑚
𝑘).

(c) Le fibré des endomorphismes d’un fibré 𝜋 ∶ 𝐸 → 𝑀 est le fibré

𝖤𝗇𝖽 𝐸 ∶= ⋃
𝑥∈𝑀

𝖤𝗇𝖽 𝐸𝑥 → 𝑀,

où 𝖤𝗇𝖽 𝐸𝑥 est l’ensemble des applications linéaires sur chaque fibre 𝐸𝑥. En particulier,

il y a un isomorphisme de fibrés 𝖤𝗇𝖽 𝐸 ≅ 𝐸 ⊗ 𝐸∗.
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Exemple 1.9. Pour tout 𝑘 ⩾ 0, une forme différentielle d’ordre 𝑘 sur 𝑀 , ou 𝑘-forme,

est une section 𝜂 ∶ 𝑀 → ⋀𝑘𝖳∗𝑀 du 𝑘-ème produit extérieur du fibré cotangent, où

⋀0𝖳∗𝑀 = 𝑀 × ℝ. L’ensemble des 𝑘-formes différentielles sur 𝑀 est noté par

Ω𝑘(𝑀) = 𝝘(⋀𝑘𝖳∗𝑀).
En particulier, Ω0(𝑀) = 𝖢∞(𝑀), Ω𝑚(𝑀) est de rang 1 et Ω𝑘(𝑀) = 0 si 𝑘 > 𝑚.

Définition 1.10. Soient 𝐸 et 𝐸′ des fibrés vectoriels sur 𝑀 . Une application lisse

𝜑 ∶ 𝐸 → 𝐸′ est appelée un homomorphisme de fibrés vectoriels si linéaire sur chaque

fibre, i.e. 𝜋′ ∘ 𝜑 = 𝜋, et préservant les fibres

𝐸 𝜑 //

𝜋   A
AA

AA
AA

A 𝐸′

𝜋′}}||
||
||
||

𝑀

Définition 1.11 (Section, champ de vecteurs le long d’une application). Soit 𝑓 ∶ 𝑀 → 𝑁
une fonction lisse entre deux variétés, 𝐸 un fibré vectoriel sur 𝑁 . Les éléments de

𝝘(𝑓 ∗𝐸) ∶= {𝐴 ∶ 𝑀 → 𝐸 ∣ 𝐴 lisse avec 𝜋 ∘ 𝐴 = 𝑓}

s’appellent sections le long de 𝑓 , particulièrement dans le cas 𝝘(𝑓 ∗𝖳𝑁) il s’appelle champ

de vecteurs le long de 𝑓 . Soit 𝐼 ⊂ ℝ une intervalle et 𝛾 ∶ 𝐼 → 𝑁 une courbe continue,

on a que

𝝘(𝛾∗𝐼) = {𝜎 ∶ 𝐼 → 𝐸 ∣ 𝜎 lisse avec 𝜎(𝑡) ∈ 𝐸𝛾(𝑡) ∀𝑖 ∈ 𝐼} .

Le champ de vecteurs ̇𝛾 ∈ 𝝘(𝛾∗𝖳𝑁), ̇𝛾𝑡 ∶= ̇𝛾(𝑡), induit par 𝛾 est s’appelle champ de vecteurs

tangentiels le long de 𝛾 .

Lemme 1.12 (et Définition). Soit 𝑓 ∶ 𝑀 → 𝑁 une fonction lisse entre deux variétés. La

différentielle de 𝑓 est l’application 𝖽𝑓 ∶ 𝖳𝑀 → 𝖳𝑁 , définit par

(𝖽𝑓)𝑥𝑣 = d
d𝑡|𝑡=0

𝑓 ∘ 𝛾(𝑡),

où 𝛾 ∶ (−𝜀, 𝜀) → 𝑀 telle que 𝛾(0) = 𝑥 ∈ 𝑀 et ̇𝛾(0) = 𝑣 ∈ 𝖳𝑥𝑀 pour tout 𝜀 > 0. En particulìer,

pour tout 𝑥 ∈ 𝑀 on a (𝖽𝑓)𝑥 ∶ 𝖳𝑥𝑀 → 𝖳𝑓(𝑥)𝑀 et 𝖽(id𝑀 )𝑥 = id𝖳𝑥𝑀 .

Définition 1.13. On appelle différentielle extérieure l’opérateur unique

𝗱 ∶ Ω𝑘(𝑀) → Ω𝑘+1(𝑀), 𝜂 ↦ 𝗱𝜂, ∀𝑘 ⩾ 0,

avec les propriétés suivantes:

(i) 𝗱 est ℝ-linéaire.

(ii) 𝗱 est une dérivation graduée: Si 𝜂1 ∈ Ω𝑘(𝑀), 𝜂2 ∈ Ω𝑞(𝑀), alors

𝗱(𝜂1 ∧ 𝜂2) = 𝗱𝜂1 ∧ 𝜂2 + (−1)𝑘𝜂1 ∧ 𝗱𝜂2.

(iii) 𝗱 dérivation de carré nul: 𝗱2 = 𝗱 ∘ 𝗱 = 0.
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(iv) Pour tout 𝑓 ∈ Ω0(𝑀) ≡ 𝖢∞(𝑀), on a

𝗱𝑓(𝑋) = 𝑋𝑓 ∀𝑋 ∈ 𝝘(𝖳𝑀),

i.e. pour toute fonction lisse 𝑓 , la 1-forme 𝗱𝑓 est la différentielle de 𝑓 .

Remarque 1.14. Si nécessaire, on indique par 𝗱(𝑘) le degré 𝑘 de la forme différentielle sur

qui la différentielle extérieure agit.

Dans le cas 𝑘 = 0, on a

𝗱(0) ∶ 𝖢∞(𝑀) → Ω1(𝑀), 𝗱(0)𝑓(𝑋) = 𝑋𝑓, ∀𝑋 ∈ 𝝘(𝖳𝑀),

donc 𝗱(0)𝑓 coïncide avec la différentielle de 𝑓 , 𝖽𝑓 ∶ 𝑀 → 𝖳∗𝑀 , 𝑥 ↦ (𝖽𝑓)𝑥 avec

(𝖽𝑓)𝑥 ∶ 𝖳𝑥𝑀 → 𝖳𝑓(𝑥)ℝ ≅ ℝ, (𝖽𝑓)𝑥(𝑋𝑥) = 𝑋𝑥𝑓 ∶= 𝑋𝑖(𝑥)𝜕𝑥𝑖𝑓|𝑥.

De plus, dans le cas 𝑝 = 1, pour tout 𝑋, 𝑌 ∈ 𝝘(𝖳𝑀),

𝗱(1) ∶ Ω1(𝑀) → Ω2(𝑀), 𝗱(1)𝜂(𝑋, 𝑌 ) = 𝑋𝜂(𝑌 ) − 𝑌 𝜂(𝑋) − 𝜂([𝑋, 𝑌 ]),

où [𝑋, 𝑌 ] ∶= 𝑋𝑌 − 𝑌 𝑋 denote le crochet de Lie.

Définition 1.15. Le support d’une fonction 𝑓 sur 𝑀 est l’ensemble

supp 𝑓 ∶= {𝑥 ∈ 𝑀 ∶ 𝑓(𝑥) ≠ 0},

où • indique la fermeture topologique. De même, le support d’une forme différentielle

𝜂 sur 𝑀 est l’ensemble

supp 𝜂 ∶= {𝑥 ∈ 𝑀 ∶ 𝜂(𝑥) ≠ 0}.

1.1.2 Connexions et transport parallèle Étant donné un fibré vectoriel 𝐸 𝜋⟶ 𝑀 sur

𝑀 , p. ex. 𝐸 = 𝖳𝑀 , chaque fibre est un espace tangent dans un point 𝑥 ∈ 𝑀 . Soit

𝛾 ∶ [0, 1] → 𝑀 une courbe lisse avec 𝛾(0) = 𝑝 et 𝛾(1) = 𝑦. Un transport parallèle (ou de

manière équivalente une connexion) est un moyen naturel de transporter des éléments

d’une fibre à une autre avec leur géométrie locale de 𝑣 ∈ 𝐸𝑥 le long de 𝛾 à 𝐸𝑦. L’idée

clé des connexions est de généraliser la dérivée directionnelle d’un champ vectoriel d’une

manière invariante par changement de coordonnées.

Définition 1.16 (Connexion sur un fibré vectoriel). Une connexion sur 𝐸 est une applica-

tion ℝ-linéaire

∇ ∶ 𝝘(𝐸) → 𝝘(𝖳∗𝑀 ⊗ 𝐸),
∇(𝑓𝑋) = 𝗱𝑓 ⊗ 𝑋 + 𝑓∇𝑋, ∀𝑋 ∈ 𝝘(𝐸) ∀𝑓 ∈ 𝖢∞(𝑀).

Une section 𝑋 ∈ 𝝘(𝐸) est dite parallèle si ∇𝑋 = 0. Parce que, l’on a

𝝘(𝖳∗𝑀 ⊗ 𝐸) ≅ 𝖧𝗈𝗆𝐶∞(𝑀)(𝝘(𝖳𝑀), 𝝘(𝐸))
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on peut également voir ∇ comme une application ℝ-bilinéaire sur 𝐸

𝝘(𝖳𝑀) × 𝝘(𝐸) → 𝝘(𝐸)
(𝑋, 𝑌 ) ↦ ∇𝑋𝑌 ∶= (∇𝑌 )𝑋.

Donc

(i) 𝑋 ↦ ∇𝑋𝑌 est 𝖢∞(𝑀)-linéaire, c’est-à-dire,

∇𝑓𝑋1+𝑔𝑋2𝑌 = 𝑓∇𝑋1𝑌 + 𝑔∇𝑋2𝑌 , ∀𝑓 , 𝑔 ∈ 𝖢∞(𝑀)

(ii) et ∇𝑋𝑌 satisfait une règle du produit de type dérivation,

∇𝑋(𝑓𝑌 ) = 𝑓∇𝑋𝑌 + (𝑋𝑓)𝑌 , ∀𝑓 ∈ 𝖢∞(𝑀).

∇ est dit del et ∇𝑋𝑌 la dérivée covariante de 𝑌 dans la direction 𝑋.

Proposition 1.17. La différence entre deux connexions est une application

𝐴 ∶ 𝝘𝖢∞(𝖳𝑀) → 𝖤𝗇𝖽 𝝘(𝐸)

à valeurs dans 𝖤𝗇𝖽𝖢∞(𝑀) 𝝘(𝐸) ≅ 𝝘(𝖤𝗇𝖽 𝐸), i.e. une 1-forme différentielle à valeurs de 𝖤𝗇𝖽 𝖳𝑀

𝐴 ∈ 𝖧𝗈𝗆𝖢∞(𝑀) (𝝘𝖢∞(𝑀)(𝖳𝑀), 𝝘(𝖤𝗇𝖽 𝐸)) ≅ Ω1(𝑀) ⊗𝖢∞(𝑀) 𝝘(𝖤𝗇𝖽 𝐸) = Ω1(𝑀; 𝖤𝗇𝖽 𝐸).

Par conséquent, l’ensemble des connexions sur 𝐸 est un espace affine qui est isomorphe à

Ω1(𝑀; 𝖤𝗇𝖽 𝐸).

Proof. Soient ∇ et ∇̃ deux connexions sur 𝐸 et 𝐴 = ∇ − ∇̃. Alors pour tout 𝑋 ∈ 𝝘(𝖳𝑀)
et pour toute 𝑓 ∈ 𝖢∞(𝑀), 𝑌 ∈ 𝝘(𝐸), on a

𝐴𝑋(𝑓𝑌 ) = (∇ − ∇̃) (𝑓𝑌 ) = 𝑋𝑓 + 𝑓∇𝑋𝑌 − 𝑋𝑓 − 𝑓∇̃𝑋𝑌

= 𝑓 (∇𝑋 − ∇̃𝑋) (𝑌 ).

Donc, pour tout 𝑋 ∈ 𝝘(𝖳𝑀), l’application 𝐴𝑋 ∶ 𝝘(𝐸) → 𝝘(𝐸) est le push-forward d’un

morphisme 𝐸 → 𝐸, autrement dit 𝐴 ∶ 𝝘(𝖳𝑀) → 𝝘(𝖤𝗇𝖽 𝐸) provient d’un morphisme de

fibrés

𝖳𝑀 ⊗ 𝐸 ⟺ 𝐸 → 𝖳∗𝑀 ⊗ 𝐸
⟺ 𝖳𝑀 → 𝖤𝗇𝖽 𝐸 ⟺ 𝖳∗𝑀 ⊗ 𝖤𝗇𝖽 𝐸. ■

Définition 1.18. Soit 𝜋 ∶ 𝐸 → 𝑀 est un fibré vectoriel sur une variété 𝑀 . Une connexion

sur 𝐸 est une dérivée covariante d’𝐸 (ou équivalent un transport parallèle dans 𝐸, cf.

Définition 1.22 ci-dessous).

Une connexion sur 𝖳𝑀 est dite souvent connexion sur 𝑀 , c’est-à-dire, une application

∇ ∶ 𝝘(𝖳𝑀) ⊗ 𝝘(𝖳𝑀) → 𝝘(𝖳𝑀), (𝑋, 𝑌 ) ↦ ∇𝑋𝑌 ,

qui est 𝖢∞(𝑀)-linéaire dans la variable 𝑋 et une 𝖢∞(𝑀)-dérivation dans la variable 𝑌 .

Une connexion peut être également vue comme une dérivée covariante

∇ ∶ 𝝘(𝖳𝑀) → Ω1(𝑀) ≅ Ω1(𝑀) ⊗𝖢∞(𝑀) 𝝘(𝖳𝑀).
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Les symboles de Christoffel d’une telle connexion sont des fonctions locales Γ𝑘
𝑖𝑗 telles que

∇𝜕𝑖𝜕𝑗 = Γ𝑘
𝑖𝑗𝜕𝑘, pour tout 𝑖, 𝑗 = 1, ..., 𝑚.

Soit 𝛾 ∶ 𝐼 → 𝑀 une courbe lisse, où 𝐼 ⊂ ℝ est une intervalle. Un champ de vecteurs

le long de 𝛾 est une application lisse 𝛾 ∶ 𝐼 → 𝖳𝑀 avec 𝑣(𝑡) ∈ 𝖳𝛾(𝑡)𝑀 pour tout 𝑡 ∈ 𝐼 . En

utilisant la connexion ∇𝖳𝑀 sur 𝖳𝑀 on peut donner un sens à la dérivée directionnelle

d’un champ vectoriel le long d’une courbe.

Pour tous 𝑋 ∈ 𝝘(𝐸) et 𝑣 ∈ 𝖳𝑥𝑀 (𝑥 ∈ 𝑀) la dérivée covariante ∇𝑣𝑋 de 𝑋 dans la

direction 𝑣

∇𝑣𝑋 ∶= ∇ ̇𝛾 (𝑋 ∘ 𝛾)(0) ∈ 𝐸𝑝, (1.1)

est bien définie, où 𝛾 ∶ (−𝜀, 𝜀) → 𝑀 est une courbe lisse avec 𝛾(0) = 0 et ̇𝛾(𝑝) = 𝑣.

Soit 𝑋 ∈ 𝝘(𝐸). Pour tout 𝑣 ∈ 𝖳𝑥𝑀 (𝑥 ∈ 𝑀) il existe 𝐴 ∈ 𝝘(𝖳𝑀) avec 𝐴𝑥 = 𝑣. Alors

∇𝑣𝑋 ∶= (∇𝐴𝑋)𝑥 ∈ 𝐸𝑥, la dérivée covariante de 𝑋 dans la direction de 𝑣, est bien définie.

Pour une section 𝑋 ∈ 𝝘(𝛾∗𝐸) le long de 𝛾 on appelée ∇𝐷𝑋 ∈ 𝝘(𝛾∗𝐸) parallèle le long de

𝛾 si 𝐷 = d
d𝑡 est le champ du vecteur canonique on 𝐼 .

Pour 𝑋 ∈ 𝝘(𝛾∗𝐸) le long de 𝛾 on appele ∇ ̇𝛾𝑋 ∈ 𝝘(𝛾∗𝐸) la dérivée covariante de 𝑋 le

long de 𝛾 . Donc 𝖣𝑡 = d
d𝑡 est le champ des vecteur canonique sur 𝐼 . Une section 𝑋 ∈ 𝝘(𝛾∗𝐸)

le long de 𝛾 est parallèle le long de 𝛾 (par rapport à ∇), si ∇ ̇𝛾𝑋 = 0. On note par 𝝘par(𝛾∗𝐸)
le sous-espace de 𝝘(𝛾∗𝐸), la famille de toutes sections parallèles le long de 𝛾 .

Définition 1.19 (Géodésique). Soit 𝑀 une variété et ∇ la dérivée covariante sur 𝑀 . Une

courbe lisse 𝛾 ∶ 𝐼 → 𝑀 sur 𝑀 s’appelle géodésique si son vecteur tangent ̇𝛾 ∈ 𝝘(𝛾∗𝖳𝑀)
est parallèle le long de 𝛾 (par rapport à ∇), i.e. si ∇ ̇𝛾 ̇𝛾 = 0.

Définition 1.20 (Variété complète). Une variété 𝑀 est dite (géodésiquement) complète

si toutes les géodésiques sont définies sur ℝ.

Theorem 1.21. Soit ∇ la dérivée covariante sur un fibré vectoriel 𝐸 sur 𝑀 et 𝛾 ∶ 𝐼 → 𝑀 une

courbe lisse, 𝑡0 ∈ 𝐼 et 𝑒 ∈ 𝐸𝛾(𝑡0). Alors il existe une unique section parallèle 𝑋 ∈ 𝝘par(𝛾∗𝐸) le
long de 𝛾 avec 𝑋𝑡0 = 𝑒.

Définition 1.22. Soit ∇ une dérivée covariante sur fibré vectoriel 𝐸 sur 𝑀 et 𝛾 ∶ 𝐼 → 𝑀
une courbe lisse. On définit un isomorphisme, pour tout 𝑠, 𝑡 ∈ 𝐼 ,

//𝑠,𝑡 ∶ 𝐸𝛾(𝑠) → 𝐸𝛾(𝑡)

//𝑠,𝑡(𝑒) ∶= 𝑋𝑡,

où 𝑋 ∈ 𝝘par(𝛾∗𝐸) avec 𝑋𝑠 = 𝑒, le transport parallèle //𝑠,𝑡 de 𝐸𝛾(𝑠) à 𝐸𝛾(𝑡) le long de 𝛾 .

Évidemment, on a //−1
𝑠,𝑡 = //𝑡,𝑠 et //𝑡,𝑡 = id𝐸𝛾(𝑡) . Donc, nous noterons //𝑡 ∶= //0,𝑡 pour faire

court.

Lemme 1.23. Le transport parallèle //𝑠,𝑡 constitue la dérivée covariante sous-jacent: Soit
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𝑋 ∈ 𝝘(𝐸), 𝑣 ∈ 𝖳𝑥𝑀 et 𝛾 ∶ 𝐼 → 𝑀 telle que ̇𝛾(0) = 𝑣. Alors on a

∇𝑣𝑋 = d
d𝑡 |𝑡=0 (//−1

𝑡 𝑋𝛾(𝑡)) ∈ 𝐸𝑝. (1.2)

Donc, le transport parallèle dans 𝐸 et la dérivée covariante sur 𝐸 définissent la même

structure.

1.1.3 Géométrie riemannienne Une métrique riemannienne est une structure supplé-

mentaire sur la variété 𝑀 en équipant 𝑀 avec un produit intérieur défini positif 𝑔 sur

chaque espace tangent 𝖳𝑥𝑀 en chaque point 𝑥 ∈ 𝑀 . Cette métrique permet de définir

la longueur d’un chemin entre deux points, le volume vol𝑔 sur 𝑀 , le plus important la

connexion de Levi-Civita qui donne naissance à une notion de courbure sur 𝑀 .

Définition 1.24. Une metrique riemannienne 𝑔 = (⋅, ⋅)𝑔 sur 𝑀 est une section globale

lisse en tout point définie positive du fibré vectoriel des formes bilinéaires symétriques

de 𝑀 . Une variété riemannienne est la paire (𝑀, 𝑔), où 𝑀 est variété différentielle de la

dimension 𝑚 ∶= dim 𝑀 et 𝑔(⋅, ⋅) = (⋅, ⋅)𝑔 est une métrique riemannienne sur 𝑀 .

Définition 1.25. Par 𝖬𝖾𝗍𝗋𝑀 on note l’ensemble de toutes les métriques riemanniennes

différentielles sur 𝑀 .

Localement, la métrique s’écrit, pour tout 𝑋 = 𝑋𝑖𝜕𝑖 et 𝑌 = 𝑌 𝑗𝜕𝑗

(𝑋𝑥, 𝑌𝑥)𝑔,𝑥 = 𝑋𝑖(𝑥)𝑌 𝑗(𝑥) (𝜕𝑖, 𝜕𝑗)𝑔,𝑥 = 𝑔𝑖𝑗𝑋𝑖(𝑥)𝑌 𝑗(𝑥),

où 𝑔𝑖𝑗 est la matrice 𝑔𝑖𝑗(𝑥) ∶= 𝑔(𝜕𝑖, 𝜕𝑗)(𝑥), i.e.

𝑔 = 𝑔𝑖𝑗𝗱𝑥𝑖 ⊗ 𝗱𝑥𝑗 .

Exemple 1.26. L’exemple le plus simple d’une variété riemannienne est 𝑀 = ℝ𝑚 avec

sa métrique euclidienne 𝑔 définie comme le produit scalaire sur chaque espace tangent

𝖳𝑥ℝ𝑚 ≅ ℝ𝑚 pour tout 𝑥 ∈ 𝑀 . En coordonnées cartésiennes, on a

𝑔 = 𝛿𝑖𝑗𝗱𝑥𝑖𝗱𝑥𝑗 = ∑
𝑖

𝗱𝑥𝑖𝗱𝑥𝑖 = ∑
𝑖

(𝗱𝑥𝑖)
2 . (1.3)

Alors, la matrice dans ces coordonnées est juste 𝑔 = 𝛿𝑖𝑗 . Appliquer aux vecteurs

𝑣, 𝑤 ∈ 𝖳𝑥𝑀 , cela donne

𝑔𝑥(𝑣, 𝑤) = 𝛿𝑖𝑗𝑣𝑖𝑤𝑗 =
𝑛

∑
𝑖=1

𝑣𝑖𝑤𝑖 = 𝑣 ⋅ 𝑤.

Par consequent, 𝑔 est le 2-champ tensoriel dont la valeur en chaque point est le produit

scalaire euclidien.

Définition 1.27 (Les isomorphismes musicaux). Une métrique riemannienne détermine

le produit scalaire sur chaque espace tangent 𝖳𝑥𝑀 , qui est généralement dénoté par

(𝑋, 𝑌 )𝑔 ∶= 𝑔(𝑋, 𝑌 ) pour tout 𝑋, 𝑌 ∈ 𝖳𝑥𝑀 .



1.1. Théorie de Géométrie Différentielle – 9

Par le théorème de représentation de Riesz A.2, 𝑔 fournit un isomorphisme naturel entre

l’espace tangent et cotangent donné par 𝑋 ↦ (𝑋, ⋅)𝑔 ,

𝖳𝑀
♭

⇄
♯

𝖳∗𝑀.

Plus précisément, on définit l’operateur bémol (flat operator)

♭𝑔 ∶ 𝖳𝑀 → 𝖳∗𝑀, 𝑋♭𝑔 (𝑌 ) ∶= 𝑔(𝑋, 𝑌 ).

En coordonnées, on a

𝑋♭𝑔 = (𝑋𝑖𝜕𝑖, ⋅)𝑔 = 𝑔(𝑋𝑖𝜕𝑖, ⋅) = 𝑔𝑖𝑗𝑋𝑖𝗱𝑥𝑗 = 𝑋𝑗𝗱𝑥𝑗 , où 𝑋𝑗 ∶= 𝑔𝑖𝑗𝑋𝑖.

Puisque 𝑔 est inversible, on définit l’operateur dièse (sharp operator) analoguement par

♯𝑔 ∶ 𝖳∗𝑀 → 𝖳𝑀, 𝜔(𝜂) = 𝑔(𝜔♯𝑔 , 𝜂),

en coordonnées locales l’on obtient

𝜔♯𝑔 = ♯𝑔(𝜔𝑖𝗱𝑥𝑖) = (𝜔𝑖𝗱𝑥𝑖, ⋅)𝑔 = 𝑔(𝜔𝑖𝗱𝑥𝑖, ⋅) = 𝑔𝑖𝑗𝜔𝑗𝜕𝑗 = 𝜔𝑖𝜕𝑖, où 𝜔𝑖 ∶= 𝑔𝑖𝑗𝜔𝑗 ,

et 𝑔𝑖𝑗 sont les composants de l’inverse du tenseur métrique, pour lesquels 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖 .

La métrique euclidienne induit la mesure de volume vol𝑔 sur 𝑀 (par rapport à la

métrique 𝑔), i.e. la mesure borélienne lisse vol𝑔 uniquement déterminée, telle que pour

chaque carte locale lisse ((𝑥1, … , 𝑥𝑚), 𝑈) et tout ensemble borélien 𝑁 ⊂ 𝑈 , on a

vol𝑔(𝑁) = ∫ √det 𝑔(𝑥)d𝑥1 ∧ … ∧ d𝑥𝑚,

où det 𝑔(𝑥) est le déterminant de la matrice 𝑔𝑖𝑗(𝑥) ∶= 𝑔(𝜕𝑖, 𝜕𝑗)(𝑥).

Exemple 1.28. Par Exemple 1.26, on a 𝑔 = 1. Donc sur 𝑀 = ℝ𝑚, on appelle forme volume

standard sur ℝ𝑚 la forme définie en coordonnées cartesiennes (𝑥1, ..., 𝑥𝑚) par

vol = d𝑥1 ∧ … ∧ d𝑥𝑚 =∶ d𝑥1 … d𝑥𝑚,

où d𝑥 ≡ d𝑥1 … d𝑥𝑚 est la mesure de Lebesgue sur ℝ𝑚.

Définition 1.29. (a) On appelle tenseur de torsion 𝑇 de la connexion ∇ l’application

𝑇 ∶ 𝝘(𝖳𝑀) × 𝝘(𝖳𝑀) → 𝝘(𝖳𝑀)
𝑇 (𝑋, 𝑌 ) = ∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋, 𝑌 ],

qui est 𝖢∞(𝑀)-linéaire dans les deux variables et antisymmétrique en 𝑋 et 𝑌 . La

torsion 𝑇 peut donc être vue comme un (1, 2)-tenseur 𝖢∞(𝑀)-linéaire

𝑇 ∶ 𝝘(𝖳𝑀) → Ω1(𝑀)

à valeurs dans les 1-forme, ou bien aussi comme une 2-forme 𝑇 ∈ Ω2(𝑀). La connex-

ion est dit symétrique ou à torsion nulle si sa torsion disparaît, i.e. si

∇𝑋𝑌 − ∇𝑌 𝑋 ≡ [𝑋, 𝑌 ]. (1.4)
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(b) Soit (𝑀, 𝑔) est une variété riemannienne. La métrique 𝑔 est parallèle ∇𝑔 ≡ 0, i.e. tous

champs du vecteurs 𝑋, 𝑌 , 𝑍 ∈ 𝝘(𝖳𝑀) satisfont la règle du produit suivant

𝑋 (𝑌 , 𝑍)𝑔 = (∇𝑋𝑌 , 𝑍)𝑔 + (𝑌 , ∇𝑋𝑍)𝑔 . (1.5)

Un exemple facile d’une connexion sur ℝ𝑚 est la connexion euclidienne, donnée par

∇𝑋(𝑌 𝑗𝜕𝑗) ∶= (𝑋𝑌 𝑗)𝜕𝑗 , (1.6)

i.e. ∇𝑋𝑌 est juste un champ du vecteur dont les composantes sont les dérivées direction-

nelles ordinaires des composantes de 𝑌 dans la direction 𝑋. De plus, ∇ a la propriété

agréable (1.5), qui peut être facilement vérifiée en calculant en termes de base standard.

Le théorème suivant montre que sur toute variété riemannienne, il existe naturellement

une connexion unique satisfaisant (1.5) et (1.4). Cela motive la définition de parallélisme

de 𝑔.

Théorème 1.30 (Levi-Civita). Soit (𝑀, 𝑔) une variété riemannienne. Alors il existe une unique

connexion ∇ sur 𝑀 , appelée connexion de Levi-Civita, telle que 𝑔 est parallèle et symétrique.

Définition 1.31. Soit 𝑀 une variété equipée avec une connexion lineáire ∇. Pour tout

𝜂 ∈ Ω1(𝑀) et 𝐴 ∈ 𝝘(𝖳𝑀) on définit ∇𝐴𝜂 ∈ Ω1(𝑀) d’une 1-forme par

∇𝜂(𝐴, 𝐵) ≡ ∇𝐴𝜂(𝐵) ∶= 𝐴(𝜂𝐵) − 𝜂(∇𝐴𝐵) ∀𝐵 ∈ 𝝘(𝖳𝑀). (1.7)

En particulier, si 𝜂 = 𝗱(0)𝑓 avec 𝑓 ∈ 𝖢∞(𝑀), on appelle

∇𝗱(0)𝑓 ∈ 𝝘(𝖳∗𝑀 ⊗ 𝖳∗𝑀)
∇𝐴𝗱(0)𝑓(𝐵) ≡ ∇𝗱(0)𝑓(𝐴, 𝐵) = 𝐴𝐵𝑓 − (∇𝐴𝐵)𝑓

le tenseur hessien de 𝑓 .

Définition 1.32. Soit (𝑀, 𝑔) une variété riemannienne et ∇ la connexion de Levi-Civita

sur 𝑀 . Pour 𝑓 ∈ 𝖢∞(𝑀) l’opérateur de Laplace-Beltrami Δ𝑀 est défini par

Δ𝑀 𝑓 ∶= tr ∇𝗱(0)𝑓 ∈ 𝖢∞(𝑀).

Plus précisément, ça veut dire pour tous repères orthonormals 𝑒1, … , 𝑒𝑚 de 𝖳𝑥𝑀 , on a

Δ𝑀 𝑓(𝑥) =
𝑚

∑
𝑖=1

∇𝗱(0)𝑓(𝑒𝑖, 𝑒𝑖).

Example 1.33. Soit 𝑀 = ℝ𝑚 avec sa métrique euclidienne 𝑔 (cf. Exemple 1.26 et ∇ la

connexion de Levi-Civita. En utilisant coordonnées locales il est bien connu que

∇𝜕𝑖𝜕𝑗 = 0, (1.8)

d’où

∇𝑣𝑤 def= 𝑣 𝑤𝑖𝜕𝑖 = 𝑣 𝑤𝑖𝑒𝑖 = (𝑣(𝑤1), ..., 𝑣(𝑤𝑛)) . (1.9)
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De plus,

∇𝗱(0)𝑓(𝜕𝑖, 𝜕𝑗) def= 𝜕𝑖𝜕𝑗𝑓 − ∇𝜕𝑖𝜕𝑗𝑓 (1.8)= 𝜕𝑖𝜕𝑗𝑓.

Donc, on retrouve l’opérateur laplacien euclidien

Δ𝑀 𝑓(𝑥) def= tr ∇𝗱(0)𝑓 =
𝑛

∑
𝑖=1

∇𝗱(0)𝑓(𝜕𝑖, 𝜕𝑖) =
𝑛

∑
𝑖=1

𝜕𝑖𝜕𝑖𝑓 =
𝑛

∑
𝑖=1

𝜕2
𝑖 𝑓.

1.1.4 Espace 𝖫2 de formes différentielles, la codifférentielle 𝝳 et le laplacien de Hodge-

de Rham, représentations métriques de 𝗱 et 𝝳 On pose Ω1
𝖫2(𝑀) ∶= 𝝘𝖫2(⋀1𝖳∗𝑀) pour

l’espace de Hilbert séparable de classes d’équivalence 𝛼 de 1-formes différentielles boréli-

ennes de carré sommable sur 𝑀 , i.e. la complétion de 𝖢∞
𝑐 (𝖳∗𝑀) par rapport au produit

scalaire

⟨𝜔1, 𝜔2⟩(1)
𝑔 ∶= ⟨𝜔1, 𝜔2⟩Ω1

𝖫2 (𝑀,𝑔) ∶= ∫𝑀
(𝜔1(𝑥), 𝜔2(𝑥))𝑔 vol𝑔(d𝑥) ∀𝜔1, 𝜔2 ∈ 𝝘𝖢∞

𝑐 (𝖳∗𝑀).

De façon similaire, le produit scalaire 𝑔 induit un produit scalaire 𝑔 sur chaque produit

tenseur 𝖳𝑀 ⊗ … ⊗ 𝖳𝑀 et donc sur chaque 𝑘-ème produit extérieur ⋀𝑘 𝖳∗𝑀 , et donc un

produit scalaire global

⟨𝜂1, 𝜂2⟩(𝑘)
𝑔 = ⟨𝜂1, 𝜂2⟩Ω𝑘

𝖫2 (𝑀,𝑔) ∶= ∫𝑀
(𝜂1(𝑥), 𝜂2(𝑥))𝑔 vol𝑔(d𝑥) ∀𝜂1, 𝜂2 ∈ 𝝘𝖢∞

𝑐 (⋀𝑘 𝖳∗𝑀).

La complétion est notée par Ω𝑘
𝖫2(𝑀) ∶= 𝝘𝖫2(⋀𝑘𝖳∗𝑀).

Définition 1.34. On appelle codifférentielle l’opérateur unique

𝝳(𝑘)
𝑔 ∶ Ω𝑘(𝑀, 𝑔) → Ω𝑘−1(𝑀, 𝑔), 𝜂 ↦ 𝝳(𝑘)

𝑔 𝜂, ∀𝑘 ⩾ 0,

défini comme l’opérateur adjoint de le différentielle extérieure, i.e.

⟨𝜂1, 𝝳(𝑘+1)
𝑔 𝜂2⟩𝑔

= ⟨𝗱(𝑘)𝜂1, 𝜂2⟩𝑔 , ∀𝜂1 ∈ Ω𝑘(𝑀, 𝑔) ∀𝜂2 ∈ Ω𝑘+1(𝑀, 𝑔).

Définition 1.35. Le produit intérieur correspond à la contraction de 𝛼 ∈ Ω𝑘(𝑀) avec un

champ de vecteurs 𝑋 ∈ 𝝘(𝖳𝑀), i.e.

𝑋 ⨼𝑔 𝛼(𝑋1, … , 𝑋𝑘−1) ∶= 𝛼(𝑋, 𝑋1, … , 𝑋𝑘−1), ∀𝑋1, … , 𝑋𝑘−1 ∈ 𝝘(𝖳𝑀),

et est une anti-dérivation:

𝑋 ⨼𝑔 (𝛼 ∧ 𝛽) = (𝑋 ⨼ 𝛼) ∧ 𝛽 + (−1)𝑘𝛼 ∧ (𝑋 ⨼ 𝛽) ∀𝛼 ∈ Ω𝑘(𝑀) ∀𝛽 ∈ Ω(𝑀).

Pour la preuve de notre résultat principal dans le chapitre 3, on profitera de la repre-

sentation métrique suivante de différentielle exterieure et codifférentielle. Deux preuves

distinctes peuvent être trouvées dans [Ros97, Lemma 2.39] ou [Jos17, Lemma 4.3.4].

Proposition 1.36. Soit (𝑒𝑖) est un repère local orthonormal et (𝜀𝑖) son repère dual, i.e. 𝜀𝑗(𝑒𝑖) =
𝛿𝑗

𝑖 . Soit ∇ la connexion de Levi-Civita. Alors

𝗱(𝑘) = 𝜀𝑖 ∧ ∇𝑒𝑖 et 𝝳(𝑘)
𝑔 = −𝑒𝑖 ⨼ ∇𝑒𝑖 . (1.10)
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Finalement, on définit l’opérateur laplacien sur les sections de fibré de formes différen-

tielles sur une variété riemannienne.

Définition 1.37. On défini l’opérateur  laplacien de Hodge-de Rham par

Δ(𝑘)
𝑔 ∶= 𝝳(𝑘+1)

𝑔 𝗱(𝑘) + 𝗱(𝑘−1)𝝳(𝑘)
𝑔 ∶ Ω𝑘(𝑀) → Ω𝑘(𝑀).

On note que Δ(𝑘)
𝑔 est symmétrique et non-négatif sur Ω𝖢∞

𝑐 (𝑀).

Example 1.38. Utilisant Proposition 1.36, on trouve que

Δ(0)
𝑔 𝑓 = 𝝳(1)

𝑔 𝗱(0)𝑓 = −𝑒𝑖 ⨼ ∇𝑒𝑖𝗱
(0)𝑓 = − tr ∇2𝑓 ∀𝑓 ∈ 𝖢∞(𝑀).

1.1.5 Courbure sur une variété Le grand motif de géométrie différentielle est de pou-

voir étudier des espaces non-plats. Ainsi on introduit la courbure d’une connexion 𝖱 en

examinant les pièces antisymétriques de «hessien» d’un champ de vecteur. La courbure

donne une mesure de détecter sur la façon dont notre espace est non-plat. Une variété

riemannienne est appelée plate si elle est localement isométrique à l’espace euclidien avec

le produit intérieur euclidien habituel. Il s’avère qu’un espace est plat si et seulement si

la courbure est zéro.

Définition 1.39. La courbure d’une connexion ∇ sur 𝑀 est une application 𝖢∞(𝑀)-
linéaire

𝖱 ∶ 𝝘(𝖳𝑀) ⊗𝖢 𝝘(𝖳𝑀) ⊗𝖢 𝝘(𝖳𝑀) → 𝝘(𝖳𝑀),
(𝑋, 𝑌 , 𝑍) ↦ 𝖱(𝑋, 𝑌 )𝑍 ∶= ∇𝑋∇𝑌 𝑍 − ∇𝑌 ∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍.

Étant anti-symmétrique en (𝑋, 𝑌 ), la courbure est une 2-forme 𝖱 ∈ Ω2(𝑀, 𝖤𝗇𝖽 𝖳𝑀).

Définition 1.40. On appelle courbure de Ricci de M l’application de trace

Ric ∶ 𝝘(𝖳𝑀) ⊗𝖢 𝝘(𝖳𝑀) → 𝖢∞(𝑀),
(𝑋, 𝑌 ) ↦ Ric(𝑋, 𝑌 ) ∶= tr (𝑍 ↦ 𝖱(𝑍, 𝑌 )𝑋) .

c’est-à-dire, localement, Ric s’exprime comme

Ric(𝜕𝑖, 𝜕𝑗) = tr (𝜕𝑘 ↦ 𝖱(𝜕𝑘, 𝜕𝑗)𝜕𝑖) = ∑
𝑘

𝖱𝑘
𝑘𝑗,𝑖 =∶ 𝖱𝑖𝑗 .

Donc, la courbure de Ricci est une mesure sur la façon dont le volume d’un petit

morceau d’une boule géodésique diffère de son homologue euclidien.

Comme on le verra au § 1.3.3 s’il est indispensable que la courbure de Ricci est bornée par

le bas pour assurer la complétude stochastique de variété. Il est également bien connu

que les bornes inférieures (locales) sur la courbure de Ricci sont un outil essentiel pour

les estimations de gradient, cf. [Wan14a] pour une étude détaillée.

1.1.6 La technique de Bochner ou comment associer les opérateurs laplaciens? Soit 𝜂
une 𝑘-forme différentielle, i.e. un tenseur d’ordre (0, 𝑘). Alors, ∇𝜂 est un tenseur d’ordre
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(0, 𝑘 + 1) et ∇2𝜂 un tenseur d’ordre (0, 𝑘 + 2). La trace est définie par la contraction

tensorielle

tr ∇2𝜂(•) ∶= ∑∇2𝜂(•, 𝑒𝑖, 𝑒𝑖),

qui est indépendant du choix de repère orthonormal (𝑒𝑖).

Lemme 1.41. Pour tous repères orthonormals (𝑒𝑖)𝑖∈ℕ, on peut decomposer

tr ∇2𝜂 = ∑
𝑖

(∇𝑒𝑖∇𝑒𝑖𝜂 − ∇∇𝑒𝑖 𝑒𝑖𝜂) ∀𝜂 ∈ Ω𝑘(𝑀).

La formule de Weitzenböck associe l’opérateur laplacien de Hodge-de Rham à la dérivée

covariante sur (𝑀, 𝑔). Le laplacien de Bochner est défini via la connexion

□ ∶= ∇∗∇ ∶ 𝝘(𝐸) ∇𝐸
−−→ 𝝘(𝖳∗𝑀 ⊗ 𝐸) ∇𝖳∗𝑀⊗𝐸

−−−−−−→ 𝝘(𝖳∗𝑀 ⊗ 𝖳∗𝑀 ⊗ 𝐸) tr⟶ 𝝘(𝐸),

i.e. un opérateur de second ordre agissant sur les sections du fibré 𝐸. Le laplacien de

Bochner ne diffère de l’opérateur Laplace-Beltrami que par un signe:

∇∗∇ = − tr ∇2.

Le Théorème 1.42 suivant montre que les deux diffèrent par un opérateur linéaire d’ordre

zéro n’impliquant que la courbure.

Théorème 1.42 (Formule de Weitzenböck). Pour toutes 𝑘-formes différentielles 𝜂 ∈ Ω(𝑀),
on a

Δ𝑔𝜂 = − tr ∇2𝜂 − 𝓡, (1.11)

où l’endomorphisme de courbure de Weitzenböck est donné par

𝓡 = −
𝑚

∑
𝑘,𝑙=1

𝑒♭
𝑙 ∧ (𝑒𝑘 ⨼ 𝖱(𝑒𝑙, 𝑒𝑘)) , (1.12)

pour tout repère orthonormal (𝑒𝑖)𝑖⩽𝑚.

La proposition suivant une conséquence directe.

Proposition 1.43 (Formule de Bochner). Pour toute 𝑘-forme différentielle 𝜂, on a

−1
2Δ𝑔 |𝜂|2 = − (Δ𝑔𝜂, 𝜂)𝑔 + |∇𝜂|2 + (𝜀𝑖 ∧ (𝑒𝑗 ⨼ 𝖱(𝑒𝑖, 𝑒𝑗)𝜂, 𝜂)𝑔 ,

pour tout repère orthonormal (𝑒𝑖)𝑖⩽𝑚 et repère dual (𝜀𝑖)𝑖⩽𝑚.

Corollaire 1.44. Pour toutes 1-formes différentielles 𝜂 ∈ Ω1(𝑀), on a

−1
2Δ𝑔 |𝜂|2 = − (Δ𝑔𝜂, 𝜂)𝑔 + |∇𝜂|2 + Ric(𝜂♯, 𝜂♯).
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1.1.7 Longueur, application exponentielle, boule géodésique et Théorème de Hopf-Rinow

Étant donné une courbe 𝛾 ∶ [𝑎, 𝑏] → 𝑀 , la longueur d’une courbe 𝖢1 par morceaux, est

définie par

𝖫(𝛾, [𝑎, 𝑏]) ∶= ∫
𝑏

𝑎
| ̇𝛾(𝑡)|𝑔(𝛾(𝑡)) d𝑡.

La longueur est invariante par reparamétrisation régulier et induit aussi une distance sur

𝑀 par

𝑑(𝑥, 𝑦) ∶= inf {𝖫(𝛾, [𝑎, 𝑏]) ∶ 𝛾 ∶ [𝑎, 𝑏] → 𝑀 , 𝖢1 par morceaux 𝛾(𝑎) = 𝑥, 𝛾(𝑏) = 𝑦}

Donc, avec cette distance, l’espace (𝑀, 𝑑) devient un espace métrique.

Pour 𝑣 ∈ 𝖳𝑥𝑀 , il existe une unique géodésique 𝛾𝑣 telle que 𝛾𝑣(0) = 𝑥 et de vecteur tan-

gent initial 𝛾′
𝑣(0) = 𝑣. On définit un sous-ensemble ℰ ⊂ 𝖳𝑀 , le domaine de l’application

exponentielle, par

ℰ ∶= {𝑣 ∈ 𝖳𝑀 ∶ 𝛾𝑉 définit sur une intervalle contenant [0, 1]} .

et encore une application différentiable, l’application exponentielle exp ∶ ℰ → 𝑀 , par

exp(𝑣) = 𝛾𝑣(1).

Pour tout 𝑥 ∈ 𝑀 , la restriction de l’application exponentielle exp𝑥 est la restriction d’exp
à l’ensemble 𝓔𝑥 ∶= 𝓔 ∩ 𝖳𝑥𝑀 . Alors exp𝑥(𝑡) = 𝛾𝑣(𝑡) pour tout 𝑡 ∈ ℝ. Soit 𝜀 > 0. Si

exp𝑥 ∶ 𝖡(0, 𝜀) → exp(𝖡(0, 𝜀))

est un difféomorphisme, alors

𝖡(𝑥, 𝜀) ∶= exp𝑥(𝐵(0, 𝜀)) = {𝑦 ∈ 𝑀 ∶ 𝖽(𝑥, 𝑦) < 𝜀}

est appelé la boule géodésique dans 𝑀 avec centre 𝑥 ∈ 𝑀 et de rayon 𝑟 > 0.

Si 𝑀 est (géodésiquement) complète, alors pour tout point 𝑥 ∈ 𝑀 l’application exponen-

tielle exp𝑥 d’origine 𝑥 est définie sur 𝖳𝑥𝑀 . Par le théorème de Hopf-Rinow [Jos17, Theorem

1.7.1.] pour toutes 𝑀 variétés riemanniennes connexes (sans bord) les propriétés suivantes

sont

équivalentes :

(i) 𝑀 est un espace métrique complet (i.e. toutes suites de Cauchy convergent)

(ii) 𝑀 est (géodésiquement) complète

(iii) les parties fermées et bornées sont compactes

1.2 Operator Theory and Spectral Calculus

Next, we recall well-known notions and results for self-adjoint operators and their rela-

tion to sesquilinear forms in Hilbert spaces. The main tool to define the heat semigroup

on the Hilbert space of square-integrable Borel forms on 𝑀 will be the Spectral Theo-

rem 1.50. A particularly important example is given by the Friedrichs realisation 1.62 giving
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a canonical self-adjoint extension of a non-negative densely defined symmetric operator.

We close this section by introducing and collecting necessary facts about smooth heat

kernels on metric vector bundles. For proofs, we refer the reader to Simon & Reed [RS72;

RS75; RS79] and Weidmann [Wei80; Wei00; Wei03]. We greatly benefited from Güneysu

[Gün17a] and Kato’s lovely monograph [Kat95], in particular, [Kat95, Chapter Six] gives a

detailed discussion about sesquilinear forms in Hilbert spaces and associated operators.

Let 𝓗 be a complex separable Hilbert space. The underlying scalar product (antilinear

in its first slot) will be denoted by ⟨⋅, ⋅⟩ and the induced norm (as well as the induced

operator norm) is denoted by ‖⋅‖. The convergence in 𝓗 is understood to be norm

convergence if not stated otherwise.

Given a linear operator 𝗧 in 𝓗, we denote by 𝖽𝗈𝗆 𝗧 ⊂ 𝓗 its domain, by 𝗋𝖺𝗇 𝗧 ⊂ 𝓗 its

range, and by 𝗄𝖾𝗋 𝗧 ⊂ 𝓗 its kernel.

An operator (𝗧, 𝖽𝗈𝗆 𝗧) is called an extension of (𝗦, 𝖽𝗈𝗆 𝗦), denoted 𝗦 ⊂ 𝗧, if

𝖽𝗈𝗆 𝗦 ⊂ 𝖽𝗈𝗆 𝗧 and 𝗧|𝖽𝗈𝗆 𝗦 = 𝗦.
An operator (𝗧, 𝖽𝗈𝗆 𝗧) is closed if the set

Γ𝗧 ∶= {(𝑢, 𝗧𝑢) ∶ 𝑢 ∈ 𝖽𝗈𝗆 𝗧 ⊂ 𝓑 × 𝓑 is closed in (𝓑 × 𝓑, ‖⋅‖)} .

An operator (𝗧, 𝖽𝗈𝗆 𝗧) is called closable if there exists a closed extension (𝗧̃, 𝖽𝗈𝗆 𝗧̃) and

𝗧̃ ⊂ 𝗧. The closure (𝗧, 𝖽𝗈𝗆 𝗧) of 𝗧 is the minimal closed extension of 𝗧.

1.2.1 Normal, adjoint, symmetric operators and operators semibounded from below

For any densely defined operator 𝗧, the adjoint (𝗧∗, 𝖽𝗈𝗆 𝗧∗) of 𝗧 is defined as

𝖽𝗈𝗆(𝗧∗) ∶= {∀𝑢 ∈ 𝓗 ∃𝑢∗ ∈ 𝓗 ∶ ⟨𝑢∗, 𝑣⟩   = ⟨𝑢, 𝗧𝑣⟩ ∀𝑣 ∈ 𝖽𝗈𝗆 𝗧}
and then 𝗧∗𝑢 ∶= 𝑢∗.

A densely defined 𝗧 is called symmetric if 𝗧 ⊂ 𝗧∗ (i.e. 𝗧∗ is an extension of 𝗧), self-

adjoint if 𝗧 = 𝗧∗ and normal if

𝖽𝗈𝗆 𝗧 = 𝖽𝗈𝗆 𝗧∗ and ‖𝗧𝑢‖ = ‖𝗧∗𝑢‖ ∀𝑢 ∈ 𝖽𝗈𝗆 𝗧.
Hence, typical examples of normal operators include symmetric and self-adjoint opera-

tors.

An operator 𝗧 is called semibounded (from below) if there is a constant 𝐶 ⩾ 0 such

that 𝗧 ⩾ −𝐶 , i.e.

⟨𝗧𝑢, 𝑢⟩ ⩾ −𝐶 ‖𝑢‖2 ∀𝑢 ∈ 𝖽𝗈𝗆 𝗧.
Using the polarisation equality, on complex Hilbert spaces, semibounded operators are

automatically symmetric.

If 𝗧 is symmetric, then 𝗧 is called essentially self-adjoint if 𝗧 is self-adjoint.

Proposition 1.45. Let 𝗧 be a bounded self-adjoint (normal) operator in a real (complex)

Hilbert space. Then

‖𝗧‖ = max
𝑧∈𝜎(𝗧)

|𝑧| .
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Let (𝓗1, ⟨⋅, ⋅⟩𝓗1) and (𝓗2, ⟨⋅, ⋅⟩𝓗2) be two Hilbert space (inner product space is suffi-

cient). An isometry 𝐴 ∶ 𝓗1 → 𝓗2 is an isomorphism such that

⟨𝐴𝑣, 𝐴𝑤⟩𝓗2 = ⟨𝑣, 𝑤⟩𝓗1 ∀𝑣, 𝑤 ∈ 𝓗1.

A linear operator 𝗨 ∶ 𝓗 → 𝓗 is called a partial isometry if the restriction 𝗨 into the

orthogonal complement of 𝗄𝖾𝗋 𝗨 is an isometry, i.e.

‖𝗨𝑥‖ = ‖𝑥‖ ∀𝑥 ∈ (𝗄𝖾𝗋 𝗨)⟂.
The space (𝗄𝖾𝗋 𝗨)⟂ is called initial space and the image 𝗋𝖺𝗇 𝗨 is called final space. In other

words, a partial isometry is an isometry between its initial space and final space.

Example 1.46. (a) Every isometry is partial isometries such that 𝗄𝖾𝗋 𝗨 = {0}. In particu-

lar, every unitary operator is a partial isometry.

(b) Any orthogonal projection 𝑃 ∶ 𝓗 → 𝓗 is one with common initial and final sub-

space.

Partial isometries play in important rôle in the polar decomposition of linear operators

which is reflected in the following Theorem. We will make use of this idea to define suit-

able bounded operators in the proof of the decomposition theorem, Lemma 3.36, needed

to prove our Main Result in § 3.

Lemma 1.47. (a) Every positive self-adjoint operator 𝗧 has exactly one positive self-adjoint

square root.

(b) Every densely defined closed operator 𝗧 ∶ 𝓗1 → 𝓗2 can be written in its polar decom-

position 𝗧 = 𝑈 ‖𝗧‖ with ‖𝗧‖ = (𝗧∗𝗧)1/2 and some partial isometry 𝑈 with initial space

𝗋𝖺𝗇 ‖𝗧‖ and final space 𝗋𝖺𝗇 𝗧. Moreover, 𝖽𝗈𝗆 ‖𝗧‖ = 𝖽𝗈𝗆 𝗧 and ‖|𝗧| 𝑥‖ = ‖𝗧‖ for all

𝑥 ∈ 𝖽𝗈𝗆 𝗧, i.e. 𝗧 and ‖𝗧‖ are metrically equivalent.

1.2.2 Schatten class of operators, trace class operators and Hilbert-Schmidt operators

Let 𝓗1, 𝓗2 be complex separable Hilbert spaces.

The linear space of bounded linear operators 𝓗1 → 𝓗2 is denoted by 𝓛(𝓗1, 𝓗2). If

𝓗 ∶= 𝓗1 ≡ 𝓗2, we simply write 𝓛(𝓗) ∶= 𝓛(𝓗, 𝓗).
For any orthonormal basis (𝑒𝑖) of 𝓗, we say that 𝗞 ∈ 𝓛(𝓗) is a Hilbert-Schmidt

operator if the Hilbert-Schmidt norm ‖𝗞‖HS is finite, i.e. ‖𝗞‖2
HS ∶= ∑𝑖 ‖𝗞𝑒𝑖‖

2 < ∞.

For any 𝑞 ∈ [1, ∞), an operator 𝗞 ∈ 𝓛(𝓗1, 𝓗2) is a Schatten operator of class 𝑞,

denoted 𝓙𝑞(𝓗1, 𝓗2), if tr |𝗞∗𝗞|
𝑞 < ∞, i.e. if for arbitrary orthonormal sequences (𝜑𝑖)

in 𝓗1 and (𝜓𝑖) in 𝓗2 we have ∑𝑖 |⟨𝗞𝜑𝑖, 𝜓𝑖⟩|
𝑞 < ∞. An operator 𝗞 ∈ 𝓛(𝓗1, 𝓗2) is

compact, denoted 𝗞 ∈ 𝓙∞(𝓗1, 𝓗2), if for every orthonormal sequence (𝜑𝑖) in 𝓗1 and

(𝜓𝑖) in 𝓗2 we have ⟨𝗞𝜑𝑖, 𝜓𝑖⟩
𝑛 → ∞⟶ 0. We write 𝓙•(𝓗1) ∶= 𝓙•(𝓗1, 𝓗1) for short.

Example 1.48. (i) The operator class 𝓙1 is called the trace class.

(ii) The operator class 𝓙2 is called the Hilbert-Schmidt class and every Hilbert-Schmidt

operator is compact.
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Given two metric vector bundles 𝐸, 𝐸 over a manifold 𝑀 and a bounded operator

𝗞 ∈ 𝓛(𝝘𝖫2(𝐸), 𝝘𝖫2(𝐸))

such that there exists a corresponding jointly smooth integral kernel 𝑘(𝑥, 𝑦) of 𝗞

𝑀 × 𝑀 ∋ (𝑥, 𝑦) ↦ 𝑘(𝑥, 𝑦) ∈ 𝖧𝗈𝗆 (𝐸𝑦, 𝐸𝑥) ,

the uniquely determined map such that we have

𝗞𝑎(𝑥) = ∫𝑀
𝑘(𝑥, 𝑦)𝑎(𝑦) vol•(d𝑦).

Then 𝗞 is Hilbert-Schmidt, if

∬𝑀×𝑀
|𝑘(𝑥, 𝑦)|2 vol•(d𝑥) vol•(d𝑦) < ∞.

It is well-known [RS79] that the product of two Hilbert-Schmidt operators is trace class,

and the product of a bounded operator and a trace class operator (resp. Hilbert-Schmidt

operator) is again trace class (resp. Hilbert-Schmidt).

1.2.3 Spectrum, spectral theorem and spectral calculus The spectral calculus or Borel

functional calculus is a rigorous way to apply an arbitrary Borel function to a normal (self-

adjoint) operator. By the Spectral Theorem 1.50, for any normal (self-adjoint) operator on

a Hilbert space 𝓗 we find a representation of a linear operator in form of an integral

with respect to a certain measure, the spectral measure (the spectral resolution).

The resolvent set 𝜚(𝗧) of 𝗧 is the set of all regular values of 𝗧, i.e. of all 𝑧 ∈ ℂ such that

𝗧 − 𝑧 is invertible as a linear map 𝖽𝗈𝗆 𝗧 → 𝓗 and bounded as a linear operator from

𝓗  → 𝓗. If 𝗧 is closed and (𝗧 − 𝑧)−1 is invertible, then (𝗧 − 𝑧)−1 is bounded by the closed

graph theorem. The complement of the resolvent set

𝜎(𝗧) ∶= ℂ ⧵ 𝜚(𝗧)

is the spectrum of 𝗧. As the resolvent set of closed operators are open, the spectrum of

a closed operator is always closed.

Given a set Ω, 𝜎-algebra 𝓕 and Hilbert space 𝓗, we define the spectral measure (or

projection-valued measure (PVM)) as the 𝜎-additive mapping 𝖤 ∶ 𝓕 → 𝓗 such that for

all 𝐹 ∈ 𝓕, 𝖤(𝐹 ) is idempotent and self-adjoint and such that 𝖤(∅) = 0 and 𝖤(Ω) = 𝐼 . In

particular, 𝖤 is monotone, i.e. for 𝐹1, 𝐹2 ∈ 𝓕 with 𝐹1 ⊂ 𝐹2 it follows 𝖤(𝐹1)𝓗 ⊂ 𝖤(𝐹2)𝓗,

and for two disjoint sets the corresponding spectral measures are orthogonal.

Example 1.49. Let 𝖤 be a spectral measure on (Ω, 𝓕, 𝓗). Let 𝑥, 𝑦 ∈ 𝓗 be fixed. Then

𝖤𝑥,𝑦 with

𝖤𝑥,𝑦 ∶= ⟨𝑥, 𝖤(𝐹 )𝑦⟩ , ∀𝐹 ∈ 𝓕, (1.13)

is a 𝜎-additive, complex measure on (Ω, 𝓕) and ‖𝖤𝑥,𝑦‖ ⩽ ‖𝑥‖  ‖𝑦‖. In particular, for 𝑥 = 𝑦
we get that 𝖤𝑥,𝑦 is a classical measure.
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Theorem 1.50 (Spectral theorem). Let 𝗧 ∈ 𝓛(𝓗) be a normal operator. Then there exists

a uniquely determined spectral measure on the Borel-𝜎-algebra 𝓑 of 𝜎(𝗧), such that

(i) 𝗧 can be written as 𝗧 = ∫𝜎(𝗧) 𝜆 𝖤(d𝜆), and moreover

𝑓(𝗧) = ∫𝜎(𝗧)
𝑓(𝜆) 𝖤(d𝜆) ∀𝑓 ∈ 𝓑(𝜎(𝗧)). (1.14)

(ii) If 𝑆 ∈ 𝜎(𝗧) is open and non-empty, then 𝖤(𝑆) ≠ 0, i.e. supp 𝐸 = 𝜎(𝗧).

The mapping

Φ𝗧 ∶
𝓑(Ω) → 𝓛(𝓗)

𝑓 ↦ 𝑓(𝗧) = ∫𝜎(𝗧)
𝑓(𝜆)𝖤(d𝜆)

is called Borel functional calculus.

Analogously to the theory of probability measures and their distribution functions, we

may define the spectral family via 𝖤𝜆 ∶ ℝ → 𝓛(𝓗), 𝖤𝜆 ∶= 𝖤(−∞, 𝜆] (𝜆 ∈ ℝ). Then 𝐸𝜆 is

an orthogonal projection, monotone, right-continuous, with 𝐸𝜆
s⟶

��-∞
0 and 𝐸𝜆

s⟶
��∞

𝐼 , and

supp {𝖤𝜆 ∶ 𝜆 ∈ ℝ} = {𝜆 ∈ ℝ ∶ 𝖤𝜆 ≠ 0, 𝖤𝜆 ≠ 𝐼}.

Moreover, if the support of (𝖤𝜆)𝜆∈ℝ is compact, we may also define an integral uniquely

determined by the relation

⟨(∫
∞

−∞
𝑓(𝜆)d𝖤𝜆) 𝑥, 𝑦⟩ = ∫

∞

−∞
𝑓(𝜆) d ⟨𝖤𝜆𝑥, 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝓗,

where the integral on the righthand side is defined in the Riemann-Stieltjes sense by

common approximation arguments. Thus

∫
∞

−∞
𝑓(𝜆)d𝖤𝜆 = ∫ℝ

𝑓(𝜆)𝖤(d𝜆).

Example 1.51. A spectral resolution 𝖯 on 𝓗 is a map 𝖯 ∶ ℝ → 𝓛(𝓗) such that

(i) 𝖯(𝜆) is an orthogonal projection, i.e. 𝖯(𝜆) = 𝖯(𝜆)∗ and 𝖯(𝜆)2 = 𝖯(𝜆) (𝜆 ∈ ℝ)

(ii) 𝖯 is monotone, i.e. for 𝜆1 ⩽ 𝜆2 ⟹ 𝗋𝖺𝗇 𝖯(𝜆1) ⊂ 𝗋𝖺𝗇 𝖯(𝜆2)
(iii) 𝖯 is right-continuous (in the strong topology of 𝓛(𝓗))

By definition, for every 𝑥 ∈ 𝓗, the function

𝜆 ↦ ⟨𝖯(𝜆)𝑥, 𝑥⟩ = ‖𝖯(𝜆)𝑥‖2 =∶ 𝜌𝑥(𝜆). (1.15)

is right-continuous and increasing. Constructing a Riemann-Stieljes integral this induces

a Borel measure on ℝ, denoted ⟨𝖯(d𝜆)𝑓 , 𝑓⟩ with total mass

⟨𝖯(ℝ)𝑥, 𝑥⟩ = ‖𝑥‖2 .

Given 𝖯 and further a Borel function 𝑓 ∶ ℝ → ℂ, the set

𝖣𝖯,𝑥 ∶= {𝑥 ∈ 𝓗 ∶ ∫ℝ
|𝑓 (𝜆)|2 ⟨𝖯(d𝜆)𝑥, 𝑥⟩ < ∞}
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is a dense linear subspace of 𝓗, and defines a linear operator 𝑓(𝖯) by 𝖽𝗈𝗆 𝑓(𝖯) ∶= 𝖣𝖯,𝑥
in 𝓗, where ⟨𝑓(𝖯)𝑥, 𝑦⟩ = ∫ 𝑓(𝜆)𝜌𝑥,𝑦(d𝜆) and 𝜌𝑥,𝑦 is defined by complex polarisation of the

identity (1.15).

In particular, such an operator has the following properties: Let 𝑓, 𝑔 ∶ ℝ → ℂ be Borel

functions, then

(i) the operator 𝑓(𝖯) is normal with 𝑓(𝖯)∗ = 𝑓(𝖯). In particular,

𝑓(𝖯) is self-adjoint   ⟺ 𝑓 is real-valued

(ii) we get ‖𝑓(𝖯)‖ ⩽ supℝ |𝑓 (𝖯)| ∈ [0, ∞]

(iii) if 𝑓 ⩾ −𝐾 for some constant 𝐾 ⩾ 0, then 𝑓(𝖯) is semibounded below with bound

−𝐾 , i.e. 𝑓(𝖯) ⩾ −𝐾

(iv) 𝑓(𝖯) + 𝑔(𝖯) ⊂ (𝑓 + 𝑔)(𝖯) with 𝖽𝗈𝗆(𝑓(𝖯) + 𝑔(𝖯)) = 𝖽𝗈𝗆((|𝑓 | + |𝑔|)(𝖯)

(v) 𝑓(𝖯)𝑔(𝖯) ⊂ (𝑓 + 𝑔)(𝖯) with 𝖽𝗈𝗆(𝑓(𝖯)𝑔(𝖯)) = 𝖽𝗈𝗆((𝑓𝑔)(𝖯)) ∩ 𝖽𝗈𝗆 𝑔(𝖯)

(vi) if 𝑔 is bounded, we get 𝑓(𝖯) + 𝑔(𝖯) = (𝑓 + 𝑔)(𝖯) and 𝑓(𝖯)𝑔(𝖯) = (𝑓𝑔)(𝖯)

(vii) for every 𝑥 ∈ 𝖽𝗈𝗆 𝑓(𝖯), we have

‖𝑓(𝖯)𝑥‖2 = ∫ℝ
|𝑓 (𝜆)|2 ⟨𝖯(d𝜆)𝑥, 𝑥⟩

.
By the Spectral Theorem 1.50, for every self-adjoint operator 𝗛 in 𝓗 there is exactly one

spectral resolution 𝖯𝗛, called spectral resolution of 𝗛, such that 𝗛 = idℝ(𝖯𝗛). By (1.14), 𝖯𝗛
is concentrated on the spectrum, i.e. 𝑓(𝖯𝗛) = (𝟙𝜎(𝗛)𝑓)(𝖯𝗛) and we get (𝑓𝑔)(𝖯𝗛) = 𝑓(𝖯𝑔(𝖯𝗛)).

If 𝑓 is also continuous, then 𝜎(𝑓(𝖯𝗛)) = 𝑓(𝜎(𝗛)).

A prominent example is the strongly continuous (𝖢0) unitary semigroup (e−𝑖𝑡𝗧)𝑡∈ℝ of

bounded operators defined in the following Theorem.

Theorem 1.52 (Stone’s theorem). Let 𝗧 be a self-adjoint operator in a complex Hilbert space

𝓗. Then

(𝗨𝑡)𝑡∈ℝ ∶= (e−𝑖𝑡𝗧)𝑡∈ℝ

defines a (𝖢0) unitary, i.e. 𝗨𝗨∗ = 𝗨∗𝗨 = 𝐼 , semigroup. Its infinitesimal generator is given by

−𝑖𝗧. For every 𝑥 ∈ 𝖽𝗈𝗆 𝗧, 𝜓(𝑡) = exp(−𝑖𝑡𝗧)𝑥 is the uniquely determined solution to the initial

value problem

d
d𝑡𝜓(𝑡) = −𝑖𝗧𝜓(𝑡), 𝜓(0) = 𝑥 (𝑡 ∈ ℝ).

1.2.4 Sesquilinear forms in Hilbert spaces We introduce some facts about (possibly

unbounded) sesquilinear forms in Hilbert spaces. On a finite-dimensional complex inner

product space, the notion of sesquilinear form and that of a linear operator coincide

and symmetric forms correspond to symmetric operators. The theory can be extended

to infinite-dimensional Hilbert spaces, although we restrict ourselves to bounded forms



20 – Chapter 1 ⋉ Éléments d’Analyse Géométrique and Calcul Stochastique

and bounded operators. A further generalisation is given for non-symmetric forms and

operators (under certain restrictions) by using the closed theory connecting semibounded

symmetric forms and semibounded self-adjoint operators. For a detailed review of what

follows, we refer the reader to Kato’s monograph [Kat95, Chapter Six] and [Gün17a].

Let 𝓗 be a complex separable Hilbert space. A sesquilinear form 𝗾 on 𝓗 is a map

𝗾 ∶ 𝖽𝗈𝗆 𝗾 × 𝖽𝗈𝗆 𝗾 → ℂ,

where 𝖽𝗈𝗆 𝗾 ⊂ 𝓗 is a linear subspace, the domain of definition of 𝗾, such that 𝗾 is

anti-linear in the first and linear in the second slot.

The quadratic form 𝗾 associated to the sesquilinear form is the map

𝗾 ∶ 𝖽𝗈𝗆 𝗾 ∋ 𝑎 ↦ 𝗾(𝑎, 𝑎).

There is a one-to-one mapping between a sesquilinear form and a quadratic form. More-

over from a quadratic form 𝗾(⋅) we recover the underlying sesquilinear form by polarisa-

tion:

𝗾(𝑎, 𝑏) = 1
4 (𝗾(𝑎 + 𝑏) − 𝗾(𝑎 − 𝑏) + 1

𝑖 (𝗾(𝑎 + 𝑖𝑏) − 𝗾(𝑎 − 𝑖𝑏))) .

In what follows, let 𝗾 and 𝗾′ be sesquilinear forms on 𝓗.

The sum 𝗾 + 𝗾′ of 𝗾 and 𝗾′ is the sesquilinear form with its domain of definition given

by 𝖽𝗈𝗆(𝗾 + 𝗾′) = 𝖽𝗈𝗆 𝗾 ∩ 𝖽𝗈𝗆 𝗾′.

A form 𝗾′ is called extension of 𝗾, denoted 𝗾 ⊂ 𝗾′, if 𝖽𝗈𝗆 𝗾 ⊂ 𝖽𝗈𝗆 𝗾′ and both forms

coincide on 𝖽𝗈𝗆 𝗾. A form 𝗾 is called symmetric, if 𝗾(𝑎, 𝑎) = 𝗾(𝑎, 𝑎)∗, and semibounded

(from below), denoted 𝗾 ⩾ −𝐶 , if there is a constant 𝐶 ⩾ 0 such that

𝗾(𝑎, 𝑎) ⩾ −𝐶 ‖𝑎‖2 ∀𝑎 ∈ 𝖽𝗈𝗆 𝗾.

Every semibounded form is symmetric by polarisation.

Given a sequence (𝑎𝑛) ⊂ 𝖽𝗈𝗆 𝗾 and 𝑎 ∈ 𝖽𝗈𝗆 𝗾, then we write 𝑎 𝗾⟶
𝑛 ↑ ∞

0, if 𝑎𝑛 → 𝑎 in 𝓗 and

𝗾(𝑎𝑛 − 𝑎𝑚, 𝑎𝑛 − 𝑎𝑚) ⟶ 0 as  𝑛, 𝑚 → ∞.

A form 𝗾 is closed, if

𝑎𝑛
𝗾⟶ 𝑎 ⟹ 𝑎 ∈ 𝖽𝗈𝗆 𝗾.

A semibounded form 𝗾 is closed, if and only if, for some (hence every) 𝐶 ⩾ 0 with 𝗾 ⩾ −𝐶
the induced scalar product on 𝖽𝗈𝗆 𝗾 given by

⟨𝑎, 𝑏⟩𝗾,𝐶 ∶= (1 + 𝐶) ⟨𝑎, 𝑏⟩ + 𝗾(𝑎, 𝑏)

turns 𝖽𝗈𝗆 𝗾 into a Hilbert space. The form 𝗾 is called closable if it has a closed extension.

If 𝗾 is closed, then a linear subspace 𝐷 ⊂ 𝖽𝗈𝗆 𝗾 is called core of 𝗾 if 𝗾|𝐷 = 𝗾.

Example 1.53. Let 𝓗 be a Hilbert space and 𝗧 ∶ 𝖽𝗈𝗆 𝗧 → 𝓗 a symmetric operator such

that there is a 𝐾 > 0 such that ⟨𝗧𝑎, 𝑎⟩ ⩾ −𝐾 ‖𝑎‖2 for all 𝑢 ∈ 𝓗. Then the form

𝗾 ∶ 𝖽𝗈𝗆 𝗧 × 𝖽𝗈𝗆 𝗧 → ℂ, 𝗾(𝑎, 𝑏) = ⟨𝗧𝑎, 𝑏⟩

is closable. Its closure is denoted by 𝗾𝗧.
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Definition 1.54. Let 𝗾 be symmetric. If 𝖽𝗈𝗆 𝗾 ⊂ 𝖽𝗈𝗆 𝗾′, then 𝗾′ is called 𝗾-bounded with

bound < 1, if there are constants 𝛿 ∈ [0, 1), 𝐿 ∈ [0, ∞) such that

|𝗾′(𝑎, 𝑎)| ⩽ 𝐿 ‖𝑎‖2 + 𝛿𝗾(𝑎, 𝑎) ∀𝑎 ∈ 𝖽𝗈𝗆 𝗾. (1.16)

The form 𝗾′ is called infinitesimally 𝗾-bounded, if for every 𝛾 ∈ [0, ∞) there exists a

constant 𝐿 = 𝐿(𝛾) ∈ [0, ∞) such that (1.16) holds.

Proposition 1.55. Let 𝗾 be a closed form on 𝓗. Then

𝖽𝗈𝗆 𝗧 = {𝑎 ∈ 𝖽𝗈𝗆 𝗾 ∶ ∃𝑐 ∈ 𝓗 ∀𝑏 ∈ 𝖽𝗈𝗆 𝗾 ∶ 𝗾(𝑎, 𝑏) = ⟨𝑎, 𝑐⟩}
𝗧𝑎 = 𝑐

defines a lower semi-bounded, self-adjoint operator on 𝓗 and 𝗾 = 𝗾𝗧. The operator 𝗧 is called

the generator of 𝗾𝗧.

The KLMN Theorem, named after Kato, Lions, Lax, Milgram and Nelson, is a famous

result from perturbation theory. It may be seen as the «quadratic form version» of the

Kato-Rellich theorem.

Theorem 1.56 (KLMN). Let 𝗾 be semibounded and closed, and let 𝗾′ be symmetric and

𝗾-bounded with bound < 1. Then 𝗾 + 𝗾′ is semibounded and closed on its natural domain

𝖽𝗈𝗆 𝗾 ∩ 𝖽𝗈𝗆 𝗾′ = 𝖽𝗈𝗆 𝗾. Moreover, every form core of 𝗾 is also one of 𝗾 + 𝗾′, and for every

constant 𝐾 ⩾ 0 with 𝗾 ⩾ −𝐾 and every 𝐿, 𝛿 as in (1.16) we get the explicit lower bound

𝗾 + 𝗾′ ⩾ −(1 − 𝛿)𝐾 − 𝐿.

The next definition reflects the connection between forms and self-adjoint operators.

Definition 1.57. Given a self-adjoint operator 𝗧 in 𝓗, the densely defined and symmetric

sesquilinear form 𝗾𝗧 in 𝓗 given by

𝖽𝗈𝗆 𝗾𝗧 ∶= 𝖽𝗈𝗆 √𝗧

𝗾𝗧(𝑎, 𝑏) ∶= ⟨√𝗧𝑎, √𝗧𝑏⟩

is called the form associated to 𝗧.

The fundamental relation between densely defined, semibounded, closed forms and

semibounded self-adjoint operators is reflected in the following two Theorems.

Theorem 1.58. For every self-adjoint semibounded operator 𝗧 in 𝓗, the form 𝗾𝗧 is densely de-

fined, semibounded and closed. Conversely, for every densely defined, closed and semibounded

sesquilinear form 𝗾 in 𝓗, there is precisely one self-adjoint semibounded operator 𝗧𝗾 in 𝓗
such that 𝗾 = 𝗾𝗧𝗾 . The operator 𝗧𝗾 is called the operator associated with 𝗾.

Theorem 1.59. Let 𝗾 be densely defined, closed and semibounded. Then
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(i) 𝗧𝗾 is the uniquely determined self-adjoint and semibounded operator in 𝓗 such that

𝖽𝗈𝗆 𝗧𝗾 ⊂ 𝖽𝗈𝗆  𝗾 and

⟨𝗧𝗾𝑎, 𝑎⟩ = 𝗾(𝑎, 𝑏) ∀𝑎 ∈ 𝖽𝗈𝗆 𝗾1 ∀𝑏 ∈ 𝖽𝗈𝗆 𝗾2.

(ii) 𝖽𝗈𝗆 𝗧𝗾 is a core of 𝗾 and some 𝑎 ∈ 𝖽𝗈𝗆 𝗾 is in 𝖽𝗈𝗆 𝗧𝗾, if and only if, there is 𝑏 ∈ 𝓗 and

a core 𝐷 of 𝗾 with

𝗾(𝑎, 𝑐) = ⟨𝑏, 𝑐⟩ ∀𝑐 ∈ 𝐷,

and then 𝗧𝗾𝑎 = 𝑏.

(iii) We have

𝖽𝗈𝗆 𝗾 = {𝑎 ∈ 𝓗 ∶ lim
𝑡→0+ ⟨

𝑎 − e−𝑡𝗧𝗾𝑎
𝑡 , 𝑎⟩ < ∞}

𝗾(𝑎, 𝑎) = lim
𝑡→0+ ⟨

𝑎 − e−𝑡𝗧𝗾𝑎
𝑡 , 𝑎⟩ ,

(iv) and

min 𝜎(𝗧𝗾) = inf {𝗾(𝑎, 𝑎) ∶ 𝑎 ∈ 𝖽𝗈𝗆 𝗾, ‖𝑓‖ = 1}
= inf {⟨𝗧𝗾𝑎, 𝑎⟩ ∶ 𝑎 ∈ 𝖽𝗈𝗆 𝗾, ‖𝑎‖ = 1} .

Example 1.60. The quadratic form 𝗾𝗧 associated to a self-adjoint operator 𝗧. The form

domain is given by

𝖽𝗈𝗆 𝗾𝗧 ∶= 𝖽𝗈𝗆 √|𝗧| = {𝜑 ∈ 𝓗 ∶ ⟨𝜑, |𝗧| 𝜑⟩ = ∫ |𝑥| 𝖤𝜑(d𝑥) < ∞} ,

where 𝖤𝜑 denotes the spectral measure associated to 𝗧 and 𝜑. The quadratic form is

given by

𝗾𝗧 = ⟨𝜑, 𝗧𝜑⟩   = ∫ 𝜆 𝖤𝜑(d𝜆).

Notation 1.61. If 𝗾, 𝗾′ are symmetric, we write 𝗾 ⩾ 𝗾′, if and only if, 𝖽𝗈𝗆  𝗾 ⊂ 𝖽𝗈𝗆 𝗾′ and

(𝑎, 𝑎) ⩾ 𝗾′(𝑎, 𝑎) for all 𝑎 ∈ 𝖽𝗈𝗆  𝗾.

Example 1.62 (Friedrich realisation). Let 𝗧 be a positive symmetric operator and

𝗾(𝑎, 𝑏) = ⟨𝑎, 𝗧𝑏⟩ for 𝑎, 𝑏 ∈ 𝖽𝗈𝗆 𝗧. Then 𝗾 is a closable quadratic form and its closure

𝗾 is the quadratic form of a unique self-adjoint operator 𝗧. 𝗧 is a positive extension of

𝗧 and the lower bound of its spectrum is the lower bound of 𝗾. Further, 𝗧 is the only

self-adjoint extension of 𝗧 whose domain is contained in the form domain of 𝗾.

For a Riemmanian manifold 𝑀 and 𝜋 ∶ 𝐸 → 𝑀 a vector bundle over 𝑀 which is en-

dowed with a Riemannian connection, let 𝝘𝖫2(𝐸) be the Hilbert space of square-integrable

sections of 𝐸 with inner product

⟨𝑎, 𝑏⟩𝝘𝖫2 (𝐸) ∶= ∫𝑀
(𝑎, 𝑏)𝐸𝑥 vol(d𝑥),
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where (⋅, ⋅)𝐸𝑥 is the corresponding fibre norm (𝑥 ∈ 𝑀). The operator □ = tr ∇2 is non-

positive and formally self-adjoint, i.e., for all compactly supported 𝑎, 𝑏 ∈ 𝝘𝖢∞
𝑐 (𝐸),

⟨□𝑎, 𝑏⟩𝝘𝖫2 (𝐸) = − ⟨∇𝑎, ∇𝑏⟩𝝘𝖫2 (𝖳𝑀⊗𝐸) .

By the Weitzenböck formula 1.42, we want to construct the canonical self-adjoint ex-

tension of □ − 𝓡, where 𝓡 ∈ 𝝘(𝖳𝑀) is assumed to be symmetric: We suppose that

(□ − 𝓡)|𝝘𝑐 (𝐸) is bounded from above, i.e.

𝜆0(𝓡) = sup
0≠𝑎∈𝝘𝑐 (𝐸)

⟨(□ − 𝓡)𝑎, 𝑎⟩𝝘𝖫2 (𝐸)

⟨𝑎, 𝑎⟩𝝘𝖫2 (𝐸)
< ∞.

We define 𝓔(𝑎, 𝑏) ∶= − ⟨∇𝑎, ∇𝑏⟩𝝘𝖫2 (𝐸) − ⟨𝓡𝑎, 𝑏⟩𝝘𝖫2 (𝐸) for all 𝑎, 𝑏 ∈ 𝖽𝗈𝗆 𝓔 ∶= 𝝘𝑐(𝐸). Then

for any 𝑐 > 𝜆0(𝓡),

𝗾(𝑎, 𝑏) ∶= −𝓔(𝑎, 𝑏) + 𝑐 ⟨𝑎, 𝑏⟩𝝘𝖫2 (𝐸)

is a positive quadratic form on 𝖽𝗈𝗆 𝓔. Completing 𝖽𝗈𝗆 𝓔 ∶= 𝖽𝗈𝗆 𝓔𝗾
and extending 𝓔 by

continuity to a closed form 𝗾 on 𝖽𝗈𝗆 𝓔, we get

𝓔(𝑎, 𝑏) = ⟨(□ − 𝓡)𝑎, 𝑏⟩𝝘𝖫2 (𝐸)

for some self-adjoint operator (□ − 𝓡) with form domain 𝖽𝗈𝗆 𝓔 ⊂ 𝝘𝖫2(𝐸). This operator

is called Friedrichs extension of (□ − 𝓡)|𝝘𝑐 (𝐸).

1.2.5 Smooth heat kernels on vector bundles In this subsection, let 𝐸 → 𝑀 be a

smooth metric vector bundle over 𝑀 and vol the volume measure of 𝑀 . Moreover,

let 𝗛 be an elliptic, formally self-adjoint and semibounded operator and 𝗛 its Friedrich

realisation. The heat semigroup

(e−𝑠𝗛
) ⊂ 𝓛(𝝘𝖫2(𝐸))

is defined by the Spectral Theorem 1.50. A heat semigroup of this kind is always induced

by a jointly smooth heat kernel on 𝑀 reflected in the following Theorem. For a much

more general setting cf. e.g. [Gün17a, Chapter II].

Theorem 1.63. Let 𝗛 be elliptic and formally self-adjoint and 𝗛 its Friedrich realisation in

𝓛(𝝘𝖫2(𝐸)). Then:
(i) There is a unique smooth map

(0, ∞) × 𝑀 × 𝑀 ∋ (𝑠, 𝑥, 𝑦) ↦ e−𝑠𝗛(𝑥, 𝑦) ∈ 𝖧𝗈𝗆(𝐸𝑦, 𝐸𝑥)

the heat kernel of 𝗛, such that for all 𝑠 > 0, 𝑎 ∈ 𝝘𝖫2(𝐸) and a.e. 𝑥 ∈ 𝑀

e−𝑠𝗛𝑎(𝑥) = ∫𝑀
e−𝑠𝗛(𝑥, 𝑦)𝑎(𝑦) vol(d𝑦).

(ii) For any 𝑎 ∈ 𝝘𝖫2(𝐸), the section

(0, ∞) × 𝑀 ∋ (𝑠, 𝑥) ↦ 𝑎(𝑠, 𝑥) ∶= ∫𝑀
e−𝑠𝗛(𝑥, 𝑦)𝑎(𝑦) vol(d𝑦) ∈ 𝐸𝑥

is smooth and we have

𝜕𝑠𝑎(𝑠, 𝑥) = −𝗛𝑎(𝑠, 𝑥), ∀𝑠 > 0 ∀𝑥 ∈ 𝑀.
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(iii) For all 𝑠 > 0 and 𝑥 ∈ 𝑀 , we get

∫𝑀 |e
−𝑠𝗛(𝑥, 𝑧)| vol(d𝑧) < ∞.

(iv) For all 𝑠 > 0 and 𝑥, 𝑦 ∈ 𝑀 , we get adjoints of finite-dimensional operators

e−𝑠𝗛(𝑦, 𝑥) = e−𝑠𝗛(𝑥, 𝑦)∗

(v) For all 𝑠, 𝑡 > 0, 𝑥, 𝑦 ∈ 𝑀 , we get the Chapman-Kolmogorov equations

e−(𝑡+𝑠)𝗛(𝑥, 𝑦) = ∫𝑀
e−𝑡𝗛(𝑥, 𝑧)e−𝑠𝗛(𝑧, 𝑦) vol(d𝑧).

Example 1.64 (continued from Example 1.62). Using the Spectral Theorem 1.50 we define

the semigroup on 𝝘𝖫2(𝐸) by

𝑃𝑠𝑎 = e
𝑠
2 (□−𝓡)𝑎 ∀𝑎 ∈ 𝝘𝖢∞(𝐸).

By Theorem 1.63, for all 𝑎 ∈ 𝝘𝖫2(𝐸),

(a) If 𝑎 ∈ (□ − 𝓡), then 𝑎 ∈ 𝝘𝖢∞(𝐸).

(b) The map (𝑠, 𝑥) ↦ 𝑃𝑠𝑎(𝑥) is smooth on (0, ∞)×𝑀 , for 𝑎 ∈ 𝝘𝖢∞(𝐸) on [0, ∞). In addition,

there is a kernel (𝑠, 𝑥, 𝑦) ↦ 𝑝𝑠(𝑥, 𝑦) ∈ 𝖧𝗈𝗆(𝐸𝑦, 𝐸𝑥) which is smooth on (0, ∞) × 𝑀 × 𝑀
such that

𝑃𝑠𝑎(𝑥) = ∫𝑀
𝑝𝑠(𝑥, 𝑦)𝑎(𝑦) vol(d𝑦)

for the 𝖢∞-version of 𝑃𝑠𝑎.

Remark 1.65. If the manifold 𝑀 is complete, then (□−𝓡)|𝝘𝑐 (𝐸) is essentially self-adjoint.

1.3 Stochastic Processes and Brownian Motion on Manifolds

Finally, we recall notions from the theory of probability theory, stochastic processes and

stochastic calculus on manifolds. We will see that Brownian motion is an 𝑀 -valued

process that is naturally associated to Laplace-Beltrami operator 1
2Δ𝑀 on 𝑀 , as solution

to the martingale problem and as a stochastic flow of that operator. Thus, Brownian

motion will be a local object by definition. However, its stochastic behaviour determines

global aspects of the topology and geometry of the manifold.

A brief and concise overview to basic notations of stochastic differential geometry are

given in [Tha16]. Moreover we refer the reader to the original work by Émery [Éme89]

and Elworthy: a lecture given at St. Flour [Elw82] and the monograph [Elw88]. [HT94,

Chapter 7] provides a systematic treatment of the modern differential geometry necessary

to understand the notion of stochastic analysis on manifolds. [Hsu02] treats the subject

with less generality and requires a less extensive background in differential geometry.

Let (Ω, 𝓕, ℙ) be a probability space. For a sub-𝜎-algebra 𝓖 ⊂ 𝓕, denote by 𝜎(𝓖) the

smallest 𝜎-algebra containing 𝓖. A filtration (𝓕𝑡)𝑡⩾0 is a family of sub-𝜎-algebras 𝓕 such
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that 𝓕𝑠 ⊂ 𝓕𝑡 for all 𝑠 ⩽ 𝑡. We set

𝓕𝑡+ ∶= ⋂𝑠>𝑡
𝓕𝑠 and 𝓕∞ ∶= 𝜎

(⋃
𝑡⩾0

𝓕𝑡)
.

and say the filtration is right-continuous if 𝓕𝑡+ = 𝓕𝑡 for all 𝑡 ⩾ 0. We call (𝓕𝑡)𝑡⩾0
complete if 𝓕0 contains all subsets of ℙ-null sets i.e.

{𝑀 ⊂ Ω; ∃𝑁 ⊂ 𝓕 ∶ 𝑀 ⊂ 𝑁, ℙ(𝑁) = 0} ⊂ 𝓕0.

We always suppose that 𝓕𝑡 satisfies the usual conditions, i.e. 𝓕𝑡 is right-continuous and

complete. A random variable 𝜏 ∶ Ω → [0, ∞] is called stopping time if {𝜏 ⩽ 𝑡} ∈ 𝓕𝑡 for

all 𝑡 ⩾ 0.

An 𝐸-valued stochastic process (𝑋𝑡)𝑡⩾0 is a family of random variables 𝑋𝑡 ∶ Ω → 𝐸, for

all 𝑡 ⩾ 0. The canonical filtration of a process (𝑋𝑡)𝑡⩾0 is given by 𝓕𝑋
𝑡 ∶= 𝜎(𝑋𝑠, 𝑠 ⩽ 𝑡). A

stochastic process is adapted to the filtration (𝓕𝑡)𝑡⩾0 if 𝑋𝑡 ∈ 𝓕𝑡, i.e. 𝑋𝑡 is 𝓕𝑡-measurable

for all 𝑡 ⩾ 0 – which is equivalent to saying that 𝓕𝑋
𝑡 ⊂ 𝓕𝑡 for all 𝑡 ⩾ 0. If not stated

otherwise, we always consider the canonical filtration, i.e. 𝓕𝑡 = 𝓕𝑋
𝑡 .

Remark 1.66. Note that we use the different but common notations for the sample

space Ω and the differential 𝑘-forms Ω𝑘(𝑀) (cf. Definition 1.9).

A stochastic process (𝑋𝑡)𝑡⩾0 is called a martingale if it is adapted to the filtration (𝓕𝑡)𝑡⩾0
and 𝑋𝑡 ∈ 𝖫1(ℙ) for all 𝑡 ⩾ 0 such that1

𝔼(𝑋𝑡 ∣ 𝓕𝑠) = 𝑋𝑠 ∀𝑠 ⩽ 𝑡.

A continuous local martingale is an adapted continuous process 𝑋 for which there exists

a sequence of stopping times (𝜎𝑛)𝑛⩾0 such that 𝜎𝑛 ↑ ∞ a.s. and for every 𝑛 ⩾ 0, the process

𝑋𝜎𝑛
𝑡 𝟙{𝜎𝑛>0} is a (true) martingale. Equality modulo continuous local martingales will be

denoted by
m=, i.e. 𝑋 m= 𝑌 if and only if 𝑋 − 𝑌 is a continuous local martingale.

A process 𝑋 has finite variation if it is adapted and each path 𝜔 → 𝑋𝑡(𝜔) is of bounded

variation over every finite time interval a.s.

1.3.1 Semimartingales on a manifold 𝑀 Let 𝓢(𝐸) be the family of all continuous semi-

martingales on a set 𝐸, i.e.

𝓢 = 𝓜 ⊕ 𝓥0, (1.17)

where 𝓜 is the family of all continuous local martingales and 𝓥0 the family of all

continuous finite variation processes starting at zero (a.s.). Such a unique (canonical)

decomposition always exists, cf. [Pro05, p. 131] or [RW00, p. 358]. We sometimes suppress

the adjective continuous.

1A short recap of the conditional expectation 𝔼(𝑋𝑡 ∣ 𝓕𝑠) of 𝑋𝑡 given 𝓕𝑠 and martingales can be found

in Appendix A.1.
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Definition 1.67. Let 𝑋 be a continuous adapted process taking values in a manifold 𝑀 .

Then 𝑋 is a semimartingale on 𝑀 , denoted 𝑋 ∈ 𝓢(𝑀), if the composition

𝑓(𝑋) = (𝑓(𝑋𝑡))𝑡⩾0 ∀𝑓 ∈ 𝖢∞(𝑀)

is a real-valued semimartingale.

Definition 1.68. For 𝑋, 𝑌 ∈ 𝓢(𝑀), let

𝑋 ∘ d𝑌 ∶= 𝑋d𝑌 + 1
2[𝑋, 𝑌 ] (1.18)

be the Stratonovich differential. Here 𝑋d𝑌 denotes the classical Itô differential and

d[𝑋, 𝑌 ] = d𝑋d𝑌 differential of quadratic covariation of 𝑋 and 𝑌 . The integral

∫ 𝑋 ∘ d𝑌 ∶= ∫ 𝑋d𝑌 + 1
2[𝑋, 𝑌 ]

is called the Stratonovich integral of 𝑋 with respect to 𝑌 .

Formula (1.18) gives the relation between the Stratonovich integral and the usual Itô

integral. The Stratonovich differential is associative, i.e. 𝑋 ∘ (𝑌 ∘ d𝑍) = (𝑋𝑌 ) ∘ d𝑍 and

respects the product rule, i.e.

d(𝑋𝑌 ) = 𝑋 ∘ d𝑌 + 𝑌 ∘ d𝑋. (1.19)

Proof. By Itô’s formula,

d(𝑋𝑌 ) = 𝑋d𝑌 + 𝑌 d𝑋 + d𝑋d𝑌 = 𝑋 ∘ d𝑌 + 𝑌 ∘ d𝑋. ■

Example 1.69. Let 𝑋 ∈ 𝓢(ℝ𝑚) and 𝑓 ∈ 𝖢3(ℝ𝑚). Then

d𝑓(𝑋) = 𝖣𝑖𝑓(𝑋) ∘ d𝑋𝑖 = (∇𝑓(𝑋), ∘d𝑋) .

Hence, the Stratonovich integral obeys the chain rule of classical analysis, so it is more

common to work with the Stratonovich integral in the manifold setting.

1.3.2 Diffusions as (stochastic) flows to a PDO and Brownian motion as a flow to 1
2Δ𝑀

In the classical theory, there is a dynamical point of view to vector fields on manifolds:

It associates to each vector field a dynamical system given by the flow of the vector field.

Given vector field 𝐴 on 𝑀 , we consider the smooth curve 𝑡 ↦ 𝑥(𝑡) in 𝑀 via

𝑥(0) = 𝑥0 and 𝑥̇(𝑡) = 𝐴(𝑥(𝑡)).

For each 𝐴 ∈ 𝝘(𝖳𝑀), the corresponding flow curve (or integral curve) to 𝐴 at 𝑥,

𝑡 ↦ 𝜑𝑡(𝑥) ∶= 𝑥(𝑡), is given by

d
d𝑡𝜑𝑡 = 𝐴𝜑𝑡

𝜑0 = id𝑀 .
(1.20)
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For any 𝑓 ∈ 𝖢∞
𝑐 (𝑀), it follows that

d
d𝑡𝑓(𝜑𝑡) = 𝐴𝑓(𝜑𝑡)

𝑓 (𝜑0) = 𝑓 ,
(1.21)

by the very definition of the exterior derivative 1.13 (d) and the chain rule

d
d𝑡𝑓(𝜑𝑡) = (𝗱𝑓)𝜑𝑡𝜑̇𝑡

(1.20)= (𝗱𝑓)𝜑𝑡𝐴𝜑(𝑡) 1.13 (d)= 𝐴𝑓(𝜑𝑡). (1.22)

By integrating the last equation, we may rewrite (1.21) as

𝑓(𝜑𝑡(𝑥)) − 𝑓(𝑥) − ∫
𝑡

0
𝐴𝑓(𝜑𝑠(𝑥))d𝑠 = 0 ∀𝑡 ⩾ 0 ∀𝑥 ∈ 𝑀.

A natural question to ask is whether there exists a flow to a second order differential

operator?

Let 𝗔 be a second order partial differential operator (PDO) on 𝑀 , e.g. of the form

𝗔 =
𝑟

∑
𝑖=1

𝐴2
𝑖 ,

where 𝐴1, ..., 𝐴𝑟 ∈ 𝝘(𝖳𝑀) (𝑟 ∈ ℕ) and 𝐴2
𝑖 𝑓 ∶= 𝐴𝑖(𝐴𝑖𝑓).

Example 1.70. The Laplace operator Δℝ𝑚 on 𝑀 = ℝ𝑚, is defined as the sum of all the

unmixed second partial derivatives in the Cartesian coordinates

Δℝ𝑚 =
𝑚

∑
𝑖=1

𝜕2
𝑖 =

𝑚

∑
𝑖=1

𝜕𝑖𝜕𝑖,

i.e. 𝐴0 ∶= 0 and 𝐴𝑖 = 𝜕𝑖 for 𝑖 = 1, … , 𝑚.

Definition 1.71 (Stochastic Flow Process). Let (Ω, 𝓕, (𝓕𝑡)𝑡⩾0, ℙ) be a filtered probability

space. A continuous adapted (stochastic) process

𝑋•(𝑥) ≡ (𝑋𝑡(𝑥))𝑡⩾0

taking values in 𝑀 is called flow process to 𝗔 (𝗔-diffusion) starting in 𝑋0(𝑥) = 𝑥 if

𝑁𝑓
𝑡 (𝑥) ∶= 𝑓(𝑋𝑡(𝑥)) − 𝑓(𝑥) − ∫

𝑡

0
(𝗔𝑓)(𝑋𝑠(𝑥))d𝑠 ∀𝑓 ∈ 𝖢∞

𝑐 (𝑀) ∀𝑡 ⩾ 0 (1.23)

is a martingale, i.e.

𝔼𝓕𝑠
(𝑓(𝑋𝑡(𝑥)) − 𝑓(𝑋𝑠(𝑥)) − ∫

𝑡

𝑠
(𝗔𝑓)(𝑋𝑟(𝑥))d𝑟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= 𝑁𝑓
𝑡 (𝑥)−𝑁𝑓

𝑠 (𝑥)

= 0 ∀𝑠 ⩽ 𝑡.

Note that, by definition, flow processes to a second order PDO depend on an additional

random parameter 𝜔 ∈ Ω. In contrast to the classical case, the defining equation (1.22) for

flow curves only holds under conditional expectations, i.e. equation (1.22) translates to

the martingale property (1.23). The theory of stochastic flows has been studied in detail

by Kunita [Kun90].
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As a flow to a vector field, a flow process on a manifold may only be defined up to

maximal, possibly finite, lifetime 𝜁 , i.e.

{𝜁 < ∞} ⊂ {lim
𝑡↑𝜁

𝑋𝑡 = ∞ in 𝑀̂ ∶= 𝑀 ⊔ {∞}} a.s.

Then 𝑓(𝑋) is well-defined as a process globally in ℝ+, for all 𝑓 ∈ 𝖢𝑐(ℝ𝑚) where 𝑀̂ is the

one-point compactification (with convention 𝑓(∞) ∶= 0). So, in general,

𝑓(𝑋) = (𝑓(𝑋𝑡))𝑡⩾0 ∀𝑓 ∈ 𝖢∞(𝑀)

is only a semimartingale with lifetime 𝜁 .

An important example is the 𝗔-diffusion generated by 1
2Δ𝑀 , namely, a Brownian motion

𝑋 on 𝑀 .

Definition 1.72 (Brownian motion on (𝑀, 𝑔)). Let (𝑀, 𝑔) be a Riemannian manifold and

𝑋 an adapted 𝑀 -valued process with maximal lifetime 𝜁 . The process 𝑋 is a Brownian

motion on (𝑀, 𝑔) if, for every 𝑓 ∈ 𝖢∞(𝑀), the real process

𝑓(𝑋) − 1
2 ∫

𝑡

0
Δ𝑀 𝑓(𝑋)d𝑡, 𝑡 < 𝜁(𝑥),

is a local martingale (with lifetime 𝜁 ). The family of all Brownian motions on (𝑀, 𝑔) will

be denoted by BM(𝑀, 𝑔).

Remark 1.73. Note that Δ𝑀 depends on the Riemannian metric, so a BM(𝑀, 𝑔) is locally

controlled by the Riemannian metric and thus a local object by definition. However,

its stochastic behaviour determines global aspects of the topology and geometry of the

manifold.

1.3.3 Stochastic completeness As we saw in the previous Subsection § 1.3.2, Brownian

motion may explode in finite time. We therefore make the following definition.

Definition 1.74. We say that a Riemannian manifold (𝑀, 𝑔) is stochastically complete if

𝜁(𝑥) = ∞ a.s. for all 𝑥 ∈ 𝑀 .

Equivalently 𝑀 is stochastically complete if and only if the (minimal) heat kernel is

conservative, i.e. characterised by the parabolic condition on the heat kernel that

∫𝑀
𝑝𝑡(𝑥, 𝑦) vol(d𝑦) = 1 ∀𝑡 > 0 ∀𝑥 ∈ 𝑀.

Note that (geodesically) completeness is not sufficient for the stochastically complete-

ness of a Riemannian manifold (𝑀, 𝑔). If a Riemannian manifold (𝑀, 𝑔) is uniformly com-

plete, then (𝑀, 𝑔) is stochastically complete (cf. [Gli97, Theorem 15.2]). A very important

and direct consequence is

Theorem 1.75. Any compact Riemannian manifold is stochastically complete.

Finally, we point out two sufficient conditions to guarantee stochastic completeness.
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Lemma 1.76 (Yau, [Yau78]). A complete Riemannian manifold is stochastically complete if its

Ricci curvature is bounded from below.

Lemma 1.77 (Grigor’yan, [Gri86]). Let (𝑀, 𝑔) be a complete Riemannian manifold. Let

𝖡(𝑥0, 𝑟) be the geodesic ball centred at some point 𝑥0 ∈ 𝑀 of metric radius 𝑟. If

∫
∞

0

𝑟 d𝑟
log vol(𝐵(𝑥0, 𝑟)) = ∞

then (𝑀, 𝑔) is stochastically complete.

1.3.4 Stochastic differential equations (SDEs) on a manifold 𝑀 A flow process may

only have a finite lifetime 𝜁 . Then 𝜁 is a predictable stopping time and 𝑋 defined on

[0, 𝜁) such that on {𝜁 < ∞} holds: 𝑋𝑡
a.s.⟶ ∞ in the one-point compactification of 𝑀 at

𝑡 ↗ 𝜁 . In this case there exists a continuous extension (𝑋𝑡)𝑡⩾0 with values in 𝑀̂ by setting

𝑋𝑡(𝜔) ∶= ∞ for 𝑡 ⩾ 𝜁(𝜔) and 𝑓(∞) ∶= 0 by definition, 𝑓 ∈ 𝖢∞
𝑐 (𝑀).

Definition 1.78. The pair (𝐴, 𝑍) is called a stochastic differential equation on a manifold

𝑀 (SDE on 𝑀) if

(i) 𝑍 is a continuous semimartingale with values in a finite dimensional real vector

space 𝐸,

(ii) 𝐴 ∶ 𝑀 × 𝐸 → 𝖳𝑀 is a vector bundle homomorphism on 𝑀 .

We will denote the SDE (𝐴, 𝑍) as d𝑋 = 𝐴(𝑋) ∘ d𝑍 . Herein, «∘» denotes the Stratonovich

circle.

More precisely, condition (ii) constitutes the following commutative diagramme

(𝑥, 𝑒) � // 𝐴(𝑥)𝑒
𝑀 × 𝐸 𝐴 //

prM

��

𝖳𝑀

𝜋
��

𝑀 id𝑀
// 𝑀

and for every 𝑥 ∈ 𝑀 the map 𝐴(𝑥) ∶ 𝐸 → 𝖳𝑥𝑀 is linear on each fibre; in particular

𝐴(⋅)𝑒 ∈ 𝝘(𝖳𝑀) for 𝑒 ∈ 𝐸. The semimartingale 𝑍 = (𝑍𝑡)𝑡⩾0 is defined on a standard

filtrated probability space (Ω, 𝓕, (𝓕𝑡)𝑡⩾0, ℙ) and we can write 𝑍 = 𝑍 𝑖𝑒𝑖, where (𝑒𝑖)1⩽𝑖⩽𝑟 is

any basis for 𝐸 and 𝑍𝑖 are real semimartingales.

Definition 1.79. Let (𝐴, 𝑍) be an SDE and 𝑥0 ∶ Ω → 𝑀 an 𝓕0-measurable random

variable. A solution to the stochastic differential equation

d𝑋 = 𝐴(𝑋) ∘ d𝑍 (1.24)

with initial condition 𝑋0 = 𝑥0 is a continuous adapted process (𝑋𝑡)𝑡<𝜁 with values in

𝑀 such that for every test function 𝑓 ∈ 𝖢∞
𝑐 (𝑀) the composed process 𝑓(𝑋) is a real
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semimartingale and satisfies the integral equation

𝑓(𝑋𝜏) = 𝑓(𝑥0) + ∫
𝜏

0
(𝗱𝑓)𝑋𝐴(𝑋) ∘ d𝑍, ℙ − a.s., (1.25)

for every stopping time 𝜏 with 0 ⩽ 𝜏 < 𝜁 . A solution to (1.24) with maximal lifetime is

called maximal solution of the SDE (1.24); then we say the SDE is nonexplosive. In this

case (if necessary after passing over to the extension of 𝑓 on 𝑀̂ and 𝑋 on [0, ∞) × Ω) up

to indistinguishability

𝑓(𝑋𝑡) = 𝑓(𝑋0) + ∫
𝑡

0
(𝗱𝑓)𝑋𝐴(𝑋) ∘ d𝑍, 𝑡 ⩾ 0. (1.26)

More precisely, maximal lifetime of the continuous 𝑀 -valued process 𝑋 means that

{𝜁 < ∞} ⊂ {lim
𝑡↗𝜁

𝑋𝑡 = ∞ in 𝑀̂} , ℙ − a.s. (1.27)

A solution to (1.24) is a semimartingale on 𝑀 by definition (in the sense of L. Schwartzm

cf. Definition 1.67): Every adapted 𝑀 -valued process 𝑋 is a semimartingale on 𝑀 if for

every 𝑓 ∈ 𝖢∞
𝑐 (𝑀) the composition 𝑓(𝑋) is a real-valued semimartingale. Mind that for

the maximal lifetime of 𝑋 the semimartingale 𝑓(𝑋) is well-defined on the hole line [0, ∞).
Moreover, the compositions 𝑓(𝑋) with smooth functions 𝑓 are real semimartingales but,

in general, only defined up to the lifetime of 𝑋.

For every 𝑥 ∈ 𝑀 the composition

𝐸 𝐴(𝑥)−−−→ 𝖳𝑥𝑀
(𝗱𝑓)𝑥−−−−→ ℝ

is linear by definition. Therefore, if we write the semimartingale 𝑍 with a fixed basis

(𝑒𝑖)1⩽𝑖⩽𝑟 for 𝐸 as 𝑍 = 𝑍 𝑖𝑒𝑖, we get

(𝗱𝑓)𝑋𝐴(𝑋) ∘ d𝑍 ≡ (𝗱𝑓)𝑋𝐴(𝑋)𝑒𝑖 ∘ d𝑍 𝑖.

The bundle homomorphism 𝐴 is naturally determined through the vector fields

𝐴𝑖 ∶= 𝐴(⋅)𝑒𝑖 for 𝑖 = 1, … , 𝑟. Thus, we can symbolically write (1.24) as

d𝑋 = 𝐴𝑖(𝑋) ∘ d𝑍 𝑖, (1.28)

which should be read, for every test function 𝑓 ∈ 𝖢∞
𝑐 (𝑀), as

d𝑓(𝑋) = (𝗱𝑓)𝑋𝐴𝑖(𝑋) ∘ d𝑍 𝑖.

But (𝗱𝑓)𝑥𝐴𝑖(𝑥) = (𝐴𝑖𝑓)(𝑥) so that the equation above is equal to

d𝑓(𝑋) = (𝐴𝑖𝑓)(𝑋) ∘ d𝑍 𝑖, 𝑓 ∈ 𝖢∞
𝑐 (𝑀).

Conversely, for a fixed basis (𝑒𝑖)1⩽𝑖⩽𝑟 for 𝐸 and arbitrary vector fields 𝐴1, … , 𝐴𝑟 ∈ 𝝘(𝖳𝑀)
on 𝑀 there is a unique bundle homomorphism 𝐴 ∈ Γ(𝖧𝗈𝗆(𝑀 × 𝐸, 𝖳𝑀)) with

𝐴𝑖 ∶= 𝐴(⋅)𝑒𝑖. Thus, the equations (1.24) and (1.28) are equivalent. Consequently, with-

out loss of generality we can assume 𝐸 = ℝ𝑚.
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Example 1.80. Let 𝐸 = ℝ𝑚+1 and 𝑍 = (𝑡, 𝑍1, … , 𝑍𝑚), where 𝑍 𝑖 are real semimartingales.

Let 𝐴0, 𝐴1, … , 𝐴𝑚 ∈  𝝘(𝖳𝑀) be given. Then (1.28) reads as

d𝑋 = 𝐴0(𝑋)d𝑡 + 𝐴𝑖(𝑋) ∘ d𝑍 𝑖. (1.29)

Thus, the composition 𝑓(𝑋) is a real semimartingale, for every 𝑓 ∈ 𝖢∞
𝑐 (𝑀), and

d𝑓(𝑋) = (𝐴0𝑓)(𝑋)d𝑡 + (𝐴𝑖𝑓)(𝑋)d𝑍 𝑖 + 1
2d ((𝐴𝑖𝑓)(𝑋)) d𝑍 𝑖,

by the conversion formula (1.18) from Stratonovich to Itô differentials. Since2

d(𝐴𝑖𝑓(𝑋)) = (𝐴0𝐴𝑖𝑓)(𝑋)d𝑡 +
𝑚

∑
𝑗=1

(𝐴𝑗𝐴𝑖𝑓)(𝑋) ∘ d𝑍𝑗 ,

we get d ((𝐴𝑖𝑓)(𝑋)) d𝑍 𝑖 = ∑𝑚
𝑗=1(𝐴𝑗𝐴𝑖𝑓)(𝑋)d𝑍𝑗d𝑍 𝑖, i.e.

d𝑓(𝑋) = (𝐴0𝑓)(𝑋)d𝑡 + 1
2(𝐴𝑖𝐴𝑗𝑓)(𝑋)d[𝑍 𝑖, 𝑍𝑗] + (𝐴𝑖𝑓)(𝑋)d𝑍 𝑖.

In particular, if we set 𝑍 = (𝑡, 𝐵1, … , 𝐵𝑚) where 𝐵 is an 𝑚-dimensional Brownian motion

we get, for every 𝑓 ∈ 𝖢∞
𝑐 (𝑀),

d𝑓(𝑋) = (𝐴0𝑓)(𝑋)d𝑡 + 1
2

𝑚

∑
𝑖=1

(𝐴2
𝑖 𝑓)(𝑋)d𝑡 + (𝐴𝑖𝑓)(𝑋)d𝐵𝑖,

where we used d𝐵𝑖d𝐵𝑗 = 𝛿𝑖𝑗d𝑡. But this means for 𝗔 = 𝐴0 + 1
2 ∑𝑚

1 𝐴2
𝑖

d𝑓(𝑋) − (𝗔𝑓)(𝑋)d𝑡 = d(martingale).

Corollary 1.81. Every maximal solution to the SDE

d𝑋 = 𝐴0(𝑋)d𝑡 + 𝐴𝑖(𝑋) ∘ d𝐵𝑖, 𝑋0 = 𝑥 ∈ 𝑀

is a flow process 𝑋 staring in 𝑥 with generator 𝗔 = 𝐴0 + 1
2 ∑𝑚

𝑖=1 𝐴2
𝑖 .

Theorem 1.82 (Existence and Uniqueness). Let (𝐴, 𝑍) be an SDE on 𝑀 and 𝑥0 an 𝓕0-mea-

surable random variable. Then there exists a unique maximal solution 𝑋 of (1.24) with lifetime

𝜁 > 0 ℙ-a.s. and initial condition 𝑋0 = 𝑥0. Uniqueness holds in the following sense: For any

other solution (𝑌𝑡)𝑡<𝜏 of (1.24) with the same initial condition, it holds (𝑋𝑡)𝑡<𝜏 = 𝑌 ℙ-a.s. for

every 𝜏 ⩽ 𝜁 .

The proof of Theorem 1.82 is based on the famous Whitney Embedding Theorem (cf. e.g.

[Lee13, Theorem 6.15]) that every smooth 𝑚-manifold (with or without boundary) admits

a proper smooth embedding into ℝ2𝑚+1 considered as a closed submanifold.

The idea is simple. Taking such a (Whitney) embedding 𝜄, we can identify 𝑀 with its

image 𝑀
𝜄

↪−→ 𝜄(𝑀) ⊂ ℝ2𝑚+1, so that it is a submanifold of ℝ2𝑚+1. Using a 𝐶∞ partition of

unity to extend 𝐴 to a map on ℝ2𝑚+1 × ℝ2𝑚+1 and see that if 𝑋 is a solution to (1.24) on

𝑀 with 𝑋0 = 𝑥0, then 𝑋 ∶= 𝜄 ∘ 𝑋 is a solution to the new SDE d𝑋 = 𝐴(𝑋) ∘ d𝑍 on ℝ2𝑚+1

2Note that 𝑖 is fixed in this line.



32 – Chapter 1 ⋉ Éléments d’Analyse Géométrique and Calcul Stochastique

with 𝑋0 = 𝜄 ∘ 𝑥0. Therefore, also uniqueness follows. The main problem is to show that

{𝑡 < 𝜁} ⊂ {𝑋𝑡 ∈ 𝑀} holds for every solution 𝑋. This approach is often called extrinsic,

since it relies on embedding the manifold in the ambient Euclidean space by a proper

extension.

A solution 𝑋 of (1.24) on 𝑀 is, by definition, an 𝑀 -valued semimartingale in the sense

that all compositions 𝑓(𝑋) with 𝑓 ∈ 𝖢∞(𝑀) are continuous real semimartingales on [0, 𝜁)
(with 𝜁 the lifetime of 𝑋). The converse is also true:

Theorem 1.83 (𝑀 -valued semimartingales as solutions of SDEs). Every semimartingale

on a manifold can be written as the solution to (1.24).

1.3.5 Γ-operators and quadratic variation on a manifold 𝑀

Definition 1.84. Let 𝗟 ∶ 𝖢∞(𝑀) → 𝖢∞(𝑀) be linear. The Γ-operator associated to 𝗟 (or

l’operator carré du champ) is a bilinear map

Γ ∶ 𝖢∞(𝑀) ×𝖢 𝖢∞(𝑀) → 𝖢∞(𝑀)

𝝘(𝑓 , 𝑔) ∶= 1
2 (𝗟(𝑓𝑔) − 𝑓𝗟𝑔 − 𝑔𝗟𝑓) .

Example 1.85. Let 𝗟 be a second order PDO on 𝑀 without constant term (i.e. 𝗟1 = 0).

In a local chart (𝑥, 𝑈) for 𝐿 the operator 𝗟 can be written as

𝗟|𝖢∞
𝑈 (𝑀) = 𝑎𝑖𝑗𝜕𝑖𝜕𝑗 + 𝑏𝑖𝜕𝑖,

where 𝖢∞
𝑈 (𝑀) ∶= {𝑓 ∈ 𝖢∞(𝑀) ∶ supp 𝑓 ⊂ 𝑈}. Then

𝝘(𝑓 , 𝑔) = 𝑎𝑖𝑗(𝜕𝑖𝑓)(𝜕𝑗𝑔) ∀𝑓 , 𝑔 ∈ 𝖢∞
𝑈 (𝑀).

In the special case of 𝑀 = ℝ𝑚 and 𝐿 = Δℝ𝑚 , we find 𝝘(𝑓 , 𝑓) = ‖∇𝑓‖2.

Remark 1.86. Let 𝗟 be a second order PDO. Then

𝝘(𝑓 , 𝑔) = 0 ∀𝑓 , 𝑔 ∈ 𝖢∞(𝑀) ⟺ 𝗟 ∈ 𝝘(𝖳𝑀), i.e. is of first order.

For example,

𝗟 = 𝐴0 +
𝑟

∑
𝑖=1

𝐴2
𝑖 ⟹ 𝝘(𝑓, 𝑔) =

𝑟

∑
𝑖=1

(𝐴𝑖𝑓)(𝐴𝑖𝑔).

In particular

Γ ≡ 0 ⟺ 𝐴1 = 𝐴2 = ⋯ = 𝐴𝑟 = 0.

Proposition 1.87. Let 𝗟 ∶ 𝖢∞(𝑀) → 𝖢∞(𝑀) be linear and 𝑋 ∈ 𝓢(𝑀) such that

𝑁𝑓
𝑡 ∶= 𝑓(𝑋𝑡) − 𝑓(𝑋0) − ∫

𝑡

0
𝗟𝑓(𝑋𝑟) d𝑟 ∀𝑓 ∈ 𝖢∞(𝑀)

is a continuous local martingale (of same lifetime as 𝑋). Then, for all 𝑓, 𝑔 ∈ 𝖢∞(𝑀), the
quadratic variation [𝑓 (𝑋), 𝑔(𝑋)] of 𝑓(𝑋) and 𝑔(𝑋) is given by

d [𝑓(𝑋), 𝑔(𝑋)] ≡ d [𝑁𝑓
𝑡 , 𝑁𝑔

𝑡 ] = 2𝝘(𝑓 , 𝑔)(𝑋)d𝑡.

In particular, 𝝘(𝑓 , 𝑓)(𝑋) ⩾ 0 a.s.
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Lemma 1.88. For an ℝ-linear map 𝗟 ∶ 𝖢∞(𝑀) → 𝖢∞(𝑀) the following are equivalent:

(i) 𝗟 is a second order PDO (without constant term)

(ii) 𝗟 satisfies the second order chain rule, i.e.

𝗟𝜑(𝑓) = 𝖣𝑖𝜑(𝑓)(𝗟𝑓 𝑖) + 𝖣𝑖𝖣𝑗𝜑(𝑓)𝝘(𝑓 𝑖, 𝑓 𝑖) ∀𝑓 ∈ 𝖢∞(𝑀, ℝ𝑟) ∀𝜑 ∈ 𝖢∞(ℝ𝑟).

Corollary 1.89. Let 𝗟 ∶ 𝖢∞(𝑀) → 𝖢∞(𝑀) be an ℝ-linear mapping. Suppose that for each

𝑥 ∈ 𝑀 there is an 𝑋 ∈ 𝓢(𝑀) such that 𝑋0 = 𝑥 and such that

𝑓(𝑋𝑡) − 𝑓(𝑥) − ∫
𝑡

0
𝗟𝑓(𝑋𝑟)d𝑟 ∀𝑓 ∈ 𝖢∞(𝑀)

is a local martingale. Then 𝗟 is a PDO of order at most 2. In addition,

[𝑓 (𝑋), 𝑓 (𝑋)] = 0 ∀𝑓 ∈ 𝖢∞(𝑀) ⟺ 𝗟 is first order.

1.3.6 Quadratic variation and integration of 1-forms For a Brownian motion BM(𝑀, 𝑔)
on a manifold 𝑀 , we also find Lévy’s characterisation. To this end, we need a general-

isation of the quadratic variation for a semimartingale on 𝑀 . But on a manifold, the

usual notion of multiplication does not make sense, so the idea is to replace it by a twice

covariant tensor.

Proposition 1.90. Let 𝑋 ∈ 𝓢(𝑀). Then there exists a unique linear map

𝝘(𝖳∗𝑀 ⊗ 𝖳∗𝑀) → 𝓐,

denoted by 𝑏 ↦ ∫ 𝑏(d𝑋, d𝑋), such that, for all 𝑓, 𝑔 ∈ 𝖢∞(𝑀),

𝗱𝑓 ⊗ 𝗱𝑔 ↦ [𝑓(𝑋), 𝑔(𝑋)] (1.30)

𝑓 ⋅ 𝑏 ↦ ∫ 𝑓(𝑋)𝑏(d𝑋, d𝑋). (1.31)

By definition, 𝑏(d𝑋, d𝑋) ∶= d ∫ 𝑏(d𝑋, d𝑋). The quadratic variation ∫ 𝑏(d𝑋, d𝑋) depends only
on the symmetric part of 𝑏. In particular, if 𝑏 is antisymmetric, then ∫ 𝑏(d𝑋, d𝑋) = 0.

The process ∫ 𝑏(d𝑋, d𝑋) is said to be the integral of 𝑏 along 𝑋 or 𝑏-quadratic variation
of 𝑋. Its value at time 𝑡 will be denoted ∫𝑡

0 𝑏(d𝑋𝑠, d𝑋𝑠) instead of (∫ 𝑏(d𝑋, d𝑋))𝑡.

Proposition 1.91. Let 𝑓 ∶ 𝑀 → 𝑁 be a smooth map between manifolds and

𝑏 ∈ 𝝘(𝖳∗𝑁 ⊗ 𝖳∗𝑁). For any 𝑋 ∈ 𝓢(𝑀), we have

∫ 𝑓 ∗𝑏(d𝑋, d𝑋) = ∫ 𝑏 (d𝑓(𝑋), d𝑓(𝑋)) . (1.32)

Proposition 1.92. Let 𝑋 ∈ 𝓢(𝑀). Then there exists a unique linear map

Ω1(𝑀) → 𝓢, 𝜂 ↦ ∫ 𝜂(∘d𝑋) =∶ ∫𝑋
𝜂

such that, for all 𝑓 ∈ 𝖢∞(𝑀),

𝗱𝑓 ↦ 𝑓(𝑋) − 𝑓(𝑋0) (1.33)

𝑓𝜂 ↦ ∫ 𝑓(𝑋) ∘ 𝜂(∘d𝑋). (1.34)



34 – Chapter 1 ⋉ Éléments d’Analyse Géométrique and Calcul Stochastique

By definition, 𝑓(𝑋) ∘ 𝜂(∘d𝑋) ∶= 𝑓(𝑋) ∘ d (∫𝑋 𝜂).

The process ∫𝑋 𝜂 is called  Stratonovich integral of the (differential) form 𝜂 along 𝑋.

Example 1.93. Let 𝑋 be a smooth deterministic 𝑀 -valued curve, i.e. 𝓢(𝑀) ∋ 𝑋𝑡 = 𝑥(𝑡),
then

∫𝑋
𝜂 = ∫ 𝜂(𝑥̇(𝑡))d𝑡, 𝜂 ∈ Ω1(𝑀).

1.3.7 Stochastic parallel transport and stochastically moving frames The problem in

former definition of Brownian motion (Definition 1.72) lies in the manifold itself: There

does not exist a Hörmander-type representation of the Laplace-Beltrami operator (there

is no canonical way of writing Δ𝑀 as sums of squares) if 𝑀 is not parallelisable, i.e.

the tangent bundle 𝖳𝑀 𝜋⟶ 𝑀 is not trivial. But it holds the fundamental relation (cf.

Theorem 1.101 below)

Δ𝓞(𝑀)𝜋∗ = 𝜋∗Δ𝑀 , (1.35)

i.e. there exists a lifted version of the Laplace-Beltrami operator, called horizontal Laplacian,

on the orthonormal frame bundle 𝓞(𝑀) → 𝑀 over 𝑀 . Each element 𝑢 ∈ 𝓞(𝑀) is an

isometry 𝑢 ∶ ℝ𝑚 → 𝖳𝜋(𝑢)𝑀 . The set of tangent vectors of horizontal curves passing

through a fixed point 𝑢 ∈ 𝓞(𝑀) is the horizontal splitting 𝐻𝑢𝓞(𝑀) with

𝖳𝑢𝓞(𝑀) = 𝐻𝑢𝓞(𝑀) ⊕ 𝑉𝑢𝑂(𝑀),

and 𝑚 well-defined unique horizontal vectors 𝐿𝑖(𝑢) ∈ 𝐻𝑢𝓞(𝑀) whose projection is the

𝑖th unit vector 𝑢𝑒𝑖 of the orthonormal frame, i.e. 𝜋∗𝐿𝑖(𝑢) = 𝑢𝑒𝑖, where (𝑒𝑖) is the canonical

basis for ℝ𝑚. Using this relation, it is due to Malliavin, Eells and Elworthy that there

always exists a lifted Brownian motion as solution to the globally defined SDE

d𝑈𝑡 = 𝐿𝑖(𝑈𝑡) ∘ d𝐵𝑖
𝑡 ,

where 𝐵 is an 𝑚-dimensional Brownian motion. A solution is a diffusion generated by

Δ𝓞(𝑀). By Itô’s formula for 𝑓 ∈ 𝖢∞(𝓞(𝑀))

d𝑓(𝑈𝑡) = 𝐿𝑖𝑓(𝑈𝑡)d𝐵𝑖
𝑡 + 1

2Δ𝓞(𝑀)𝑓(𝑈𝑡)d𝑡.

Applying this to the lift 𝑓 ∶= 𝑓 ∘ 𝜋 we get, using (1.35),

d𝑓(𝑋𝑡) = 𝐿𝑖𝑓(𝑋𝑡)d𝐵𝑖
𝑡 + 1

2Δ𝑀 𝑓(𝑋𝑡)d𝑡,

where 𝑋𝑡 = 𝜋(𝑈𝑡) is the projection of the lifted Brownian motion 𝑈𝑡 on the manifold 𝑀 .

It follows that 𝑋𝑡 is a Brownian motion on 𝑀 starting from 𝑋0 = 𝜋(𝑈0). Therefore, the

key idea was to solve conversely the SDE on the orthonormal frame bundle 𝓞(𝑀) and

project the solution back down to 𝑀 by 𝜋 ∶ 𝓞(𝑀) → 𝑀 , cf. [Elw82], [Mal78].

In geometrical terms, the idea is to «roll» our manifold 𝑀 by means of the (stochastic)

parallel transport along the paths of an ℝ𝑚-valued Brownian motion («rolling without
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slipping»), known as stochastic development. Starting in 𝑥 ∈ 𝑀 , the resulting Brownian

motion 𝑋 on 𝑀 can be thought of as footprints left behind by the paths of the Euclidean

Brownian motion 𝐵 in the tangent space 𝖳𝑥𝑀 ≅ ℝ𝑚 if 𝑀 is rolled along the paths of 𝐵.

The procedure is known as Cartan development in the deterministic case. We will see that

it can be adopted to work with a suitable Stratonovich SDE.

For an 𝑚-dimensional manifold we denote by 𝑃 = 𝓕(𝖳𝑀) its frame bundle, the pro-

totypical example of a 𝐺-principal bundle 𝜋 ∶ 𝑃 → 𝑀 whose structure group is the gen-

eral linear group 𝐺 ∶= GL(𝑚, ℝ). For 𝑥 ∈ 𝑀 , the fibre 𝑃𝑥 consists of linear isomor-

phisms 𝑢 ∶ ℝ𝑚 → 𝖳𝑥𝑀 (the frames of 𝖳𝑥𝑀), where 𝑢 ∈ 𝑃𝑥 can be identified with a basis

(𝑒1, … , 𝑒𝑚) for ℝ𝑚 via

(𝑢1, … , 𝑢𝑚) ∶= (𝑢 ◁ 𝑒1, … , 𝑢 ◁ 𝑒𝑚),

i.e. GL(𝑚, ℝ) acts on 𝓕(𝖳𝑀) from the right

𝑢 ◁ 𝑔 ∶ ℝ𝑚 𝑔⟶ ℝ𝑚 𝑢⟶ 𝖳𝑥𝑀,

where 𝑔 = (𝑔𝑖𝑗) ∈ 𝐺. Then 𝑢𝑔 ∈ GL(𝑀) by (𝑢𝑔)𝑗 = ∑𝑖 𝑔𝑖𝑗𝑢𝑖.

Restricting the structure group GL(𝑛, ℝ) to O(𝑛), the frames 𝑢 ∈ 𝑃𝑥 at a point 𝑥 ∈ 𝑀
become isometries. We call 𝑃 = 𝓞(𝑀) → 𝑀 consisting of all frames 𝑢 ∈ 𝑃𝑥 at a point

𝑥 ∈ 𝑀 , i.e. linear isometries 𝑢 ∶ ℝ𝑚 → 𝖳𝑥𝑀 , the orthonormal frame bundle over 𝑀 .

Remark 1.94. For simplicity, we restrict ourselves to the Riemannian case (𝑀, 𝑔) with a

Levi-Civita connection ∇ = ∇LC. More generally, 𝑀 may be a smooth manifold equipped

torsion-free connection, then the frame bundle 𝑃 = 𝓕(𝖳𝑀), considered as a manifold, is

also parallelisable but every 𝑢 ∈ 𝑃 is read as an isomorphism.

A linear connection 𝖳𝑀 induces canonically a 𝐺-connection in 𝑃 given as a 𝐺-invariant

differentiable splitting ℎ in the following exact sequence of vector bundles over 𝑃 :

0 // 𝗄𝖾𝗋 𝗱𝜋 // 𝖳𝑃 𝗱𝜋 // 𝜋∗𝖳𝑀 //

ℎ

bb
si_UK

0

The splitting (1.3.7) induces a decomposition of 𝖳𝑃

𝖳𝑃 = 𝑉 ⊕ 𝐻 ∶= 𝗄𝖾𝗋 𝗱𝜋 ⊕ ℎ(𝜋∗𝖳𝑀).

For each 𝑢 ∈ 𝑃 , the horizontal space 𝐻𝑢 at 𝑢 is constituted via the 𝐺-invariance:

𝐻𝑢◁𝑔𝑃 = (◁𝑔)∗𝐻𝑢𝑃 , for the 𝐺-right action ◁𝑔 on 𝑀 . The vertical space 𝑉𝑢 at 𝑢 is given

by 𝑉𝑢 = {𝑣 ∈ 𝖳𝑢𝑃 ∶ (𝗱𝜋)𝑣 = 0}. The bundle isomorphism

ℎ ∶ 𝜋∗𝖳𝑀 ∼⟶ 𝐻 ↪−→ 𝖳𝑃

is called horizontal lift of the 𝐺-connection, i.e. fibrewise it is given as

ℎ𝑢 ∶ 𝖳𝜋(𝑢)𝑀
∼⟶ 𝐻𝑢.
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Figure 1.1: 𝐺-connection of a principal 𝐺-bundle

By means of the 𝐺-connection in 𝑃 each vector field 𝑋 ∈ 𝝘(𝖳𝑃 ) may be decomposed

in a horizontal and a vertical part:

𝑋 = 𝑋hor + 𝑋vert .

Every 𝑢 ∈ 𝑃 defines an embedding 𝐼𝑢 ∶ 𝐺 ↪ 𝑃 , 𝑔 ↦ 𝑢 ◁ 𝑔. Its differential at the Einsele-

ment 𝑒 ∈ 𝔤,

𝜄𝑢 ∶= (𝖽𝐼𝑢)𝑒 ∶ 𝖳𝑒𝐺 ⟶ 𝖳𝑢𝑃 , 𝐴 ↦ ̃𝐴(𝑢), (1.36)

provides an identification 𝜅𝑢 ∶ 𝔤 ∼⟶ 𝑉𝑢 from the Lie algebra 𝔤 ∶= 𝖳𝑒𝐺 of 𝐺 with vertical

fibre 𝑉𝑢 at 𝑢. The vertical vector field ̃𝐴 ∈ 𝝘(𝖳𝑃 ), defined by (1.36), is the standard vertical

vector field on 𝑃 associated to 𝐴 ∈ 𝔤. By

𝜔̃𝑢(𝑋𝑢) ∶= 𝜅−1
𝑢 (𝑋vert)𝑢, 𝑋 ∈ 𝝘(𝖳𝑃 ), (1.37)

we define a 𝔤-valued 1-form 𝜔̃ ∈ 𝝘(𝖳∗𝑃 ⊗ 𝔤) on 𝑃 , called connection form of the 𝐺-

connection. The connection form is by definition horizontal, i.e. 𝜔̃(𝑋) = 0 if and only if

𝑋 is a horizontal vector field on 𝑃 .

We get the following Theorem (cf. [Tha16, Remark 5.23] or [HT94, Satz 7.131]).

Theorem 1.95. The orthonormal frame bundle 𝑃 = 𝓞(𝑀) as a Riemannian manifold is

parallelisable, i.e. the tangent bundle 𝖳𝓞(𝑀) → 𝓞(𝑀) is a trivial bundle.
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Figure 1.2: Horizontal lift 𝑢(𝑡) through principal 𝐺-bundle

Proof. Let 𝑃 = 𝓞(𝑀). Choose a 𝐺-connection in 𝑃 with 𝐺 = O(𝑛) and split

𝖳𝑃 = 𝑉 ⊕ 𝐻 . A canonical trivialisation for 𝖳𝑃 is given as follows: the vertical subbundle

𝑉 is trivialised by the standard vertical vector fields ̃𝐴 to 𝐴, where 𝐴 passes through a

basis for 𝔤. The horizontal subbundle 𝐻 is trivialised by the standard horizontal vector

fields 𝐿1, … , 𝐿𝑛 in 𝝘(𝖳𝑃 ), defined by 𝐿𝑖(𝑢) ∶= ℎ𝑢(𝑢𝑒𝑖). Then, for every 𝑢 ∈ 𝑃 ,

( ̃𝐴(𝑢), 𝐿𝑖(𝑢) ∶ 𝐴 ∈ basis for 𝔤, 𝑖 = 1, … , 𝑚)

is a basis for 𝖳𝑢𝑃 = 𝑉𝑢 ⊕ 𝐻𝑢, since 𝔤 ∼⟶ 𝑉𝑢, 𝐴 ↦ ̃𝐴(𝑢) and ℎ𝑢 ∶ 𝖳𝜋(𝑢)𝑀
∼⟶ 𝐻𝑢 are isomor-

phisms. ■

Recall that we restrict ourselves to the principal 𝐺-bundle 𝑃 = 𝓞(𝑀) over a Riemannian

manifold 𝑀 with 𝐺 = O(𝑛). The associated Lie algebra is given by the algebra of matrices

𝔤 = {𝐴 ∈ M(𝑛 × 𝑛; ℝ) ∶ 𝐴 skew-symmetric}. Fix a 𝐺-connection in 𝑃 with

𝜗 ∈ 𝝘(𝖳∗𝑃 ⊗ ℝ𝑚), 𝜗𝑢(𝑋𝑢) ∶= 𝑢−1(𝗱𝜋𝑋𝑢), 𝑢 ∈ 𝑃 with 𝑋 ∈ 𝝘(𝖳𝑃 ), (1.38)

the so called canonical 1-form on the principal bundle 𝜋 ∶ 𝑃 → 𝑀 . Note that the defi-

nition of a connection form depends on the 𝐺-connection, but not the canonical 1-form

𝜗.

Theorem 1.96. Let 𝜋 ∶ 𝑃 → 𝑀 be a principal 𝐺-bundle over 𝑀 with a 𝐺-connection. Let

𝑥 ∶ 𝐼 → 𝑀 , 𝑡 ↦ 𝑥(𝑡) be a smooth curve and 𝑡0 ∈ 𝐼 . Then there exists for every 𝑢0 ∈ 𝑃 with

𝜋(𝑢0) = 𝑥(𝑡0) a unique horizontal curve 𝑢 ∶ 𝐼 → 𝑃 with 𝑢(𝑡0) = 𝑢0 above 𝑡 ↦ 𝑥(𝑡), i.e. 𝜋 ∘ 𝑢(𝑡) =
𝑥(𝑡) and ̇𝑢(𝑡) ∈ 𝐻𝑢(𝑡) for every 𝑡 ∈ 𝐼 .
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Corollary 1.97. Let 𝑃 be the principal 𝐺-bundle over a manifold 𝑀 . Every 𝐺-connection in 𝑃
naturally defines a parallel displacement on 𝑃 along smooth curves 𝑡 ↦ 𝑥(𝑡) in 𝑀 , namely for

𝑡0, 𝑡1 ∈ 𝐼 as

//𝑡0,𝑡1 ∶ 𝑃𝑥(𝑡0)
∼⟶ 𝑃𝑥(𝑡1), 𝑢0 ↦ 𝑢(𝑡1), (1.39)

where 𝑡 ↦ 𝑢(𝑡) is the uniquely determined horizontal lift of 𝑡 ↦ 𝑥(𝑡) on 𝑃 with 𝑢(𝑡0) = 𝑢0.

The standard vertical, and horizontal vector fields respectively, are given by

𝜗( ̃𝐴) = 0 and 𝜗(𝐿𝑖) = 𝑒𝑖 resp. 𝜔̃( ̃𝐴) = 0 and 𝜔̃(𝐿𝑖) = 0.

Definition 1.98. The second order differential operator

Δ𝓞(𝑀) ∶=
𝑛

∑
𝑖=1

𝐿2
𝑖

is called horizontal Laplacian on 𝓞(𝑀).

For every 𝑈 ∈ 𝓢(𝑃 ) the Stratonovich integral ∫𝑈 𝜔̃ provides a semimartingale with

values in the Lie algebra 𝔤 (namely component-by-component with respect for a basis 𝔤).

We call 𝑈 horizontal if ∫𝑈 𝜔̃ = 0 a.s. If 𝑋 ∈ 𝓢(𝑀), then we call 𝑈 ∈ 𝓢(𝑃 ) horizontal lift
of 𝑋 if 𝑈 is horizontal and 𝜋 ∘ 𝑈 = 𝑋 a.s.

Obviously, the concept of horizontal lifts of semimartingales generalises the concept of

horizontal lifts of 𝑀 -valued smooth curves (cf. Theorem 1.96) according to which a curve

𝑡 ↦ 𝑢(𝑡) above 𝑡 ↦ 𝑥(𝑡) is horizontal, i.e. 𝜋 ∘ 𝑢 = 𝑥 and 𝜔̃( ̇𝑢) = 0 (cf. Example 1.93).

Definition 1.99 (Anti-development). Let 𝑋 ∈ 𝓢(𝑀) and 𝑈 its horizontal lift with values

in 𝑃 = 𝓞(𝑀). The ℝ𝑚-valued semimartingale

𝑍 = ∫𝑈
𝜗 = ∫ 𝜗(∘d𝑈)

is the ℝ𝑚-anti-development of 𝑋 (with initial basis 𝑈0). In particular, with respect to the

standard basis ℝ𝑚 we get 𝑍 = (𝑍1, … , 𝑍𝑛) with 𝑍 𝑖 = ∫𝑈 𝜗𝑖.

The next, fundamental theorem shows the existence of horizontal lifts to 𝑀 -valued

semimartingales (cf. [Tha16, Theorem 5.30] or [HT94, Satz 7.141]).

Theorem 1.100. Let 𝑃 be a principal 𝐺-bundle over a manifold 𝑀 with 𝐺-connection. Let 𝑥0
be an 𝑀 -valued random variable and 𝑢0 a 𝑃 -valued random variable above 𝑥0, i.e. 𝜋 ∘ 𝑢0 = 𝑥0
a.s. Then, for every 𝑀 -valued semimartingale 𝑋 with 𝑋0 = 𝑥0 there is a unique horizontal lift

𝑈 on 𝑃 with 𝑈0 = 𝑢0 a.s.

Theorem 1.101. Let 𝑀 be a Riemannian manifold equipped with Levi-Civita connection. Then

Δ𝓞(𝑀)𝜋∗ = 𝜋∗Δ𝑀 . (1.40)
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Proof. For 𝑢 ∈ 𝓞(𝑀), we have

𝑛

∑
𝑖=1

𝐿2
𝑖 (𝑓 ∘ 𝜋)(𝑢) =

𝑛

∑
𝑖=1

∇𝗱𝑓(𝑢𝑒𝑖, 𝑢𝑒𝑖) = (tr ∇𝗱𝑓)𝜋(𝑢) = (Δ𝑀 𝑓) ∘ 𝜋(𝑢). ■

Let us briefly summarise the construction: For a semimartingale 𝑋 ∈ 𝓢(𝑀), its hori-

zontal lift 𝑈 to 𝑃 = 𝓞(𝖳𝑀) and anti-development 𝑍 = ∫𝑈 𝜗 into ℝ𝑚 each of the three

processes 𝑋, 𝑈, 𝑍 defines the other two (modulo choice of initial conditions 𝑋0 = 𝑥 and

𝑈0 = 𝑢) in the following way:

(a) 𝑍 determines 𝑈 as solution to the SDE d𝑈 = 𝐿𝑖(𝑈) ∘ d𝑍 𝑖 with 𝑈0 = 𝑢0,

(b) 𝑈 determines 𝑋 by 𝑋 = 𝜋 ∘ 𝑈 ,

(c) 𝑋 determines 𝑍 as 𝑍 = ∫𝑈 𝜗, where 𝑈 is the uniquely determined horizontal lift of

𝑋 with 𝑈0 = 𝑢0.

Mind that this procedure depends only trivially on the choice of 𝑢0 above 𝑥0. Usually, one

starts vice versa, cf. [Tha16, Theorem 5.35]: Choose a continuous ℝ𝑚-valued semimartingale

𝑍 with 𝑍0 = 0 and fix an 𝓕0-measurable random variable 𝑢0 ∶ Ω → 𝑃 as initial value.

Define 𝑈 on 𝑃 as the maximal solution to

d𝑈 = 𝐿𝑖(𝑈) ∘ d𝑍 𝑖, 𝑈0 = 𝑢0,

and set 𝑋 ∶= 𝜋 ∘ 𝑈 as the projection from 𝑈 on 𝑀 with initial value 𝑋0 = 𝜋 ∘ 𝑢0. Thus,

we obtain a horizontal process 𝑈 over 𝑋 with 𝑈0 = 𝑢0. In particular,

d𝑋 = 𝑈𝑒𝑖 ∘ d𝑍 𝑖 = 𝑈 ∘ d𝑍.

Since 𝐿𝑖(𝑈) ∘ d𝑍 𝑖 = ℎ𝑈 (𝑈𝑒𝑖) ∘ d𝑍 𝑖, also

d𝑈 = ℎ𝑈 (∘d𝑋).

Hence, we regain the original process up to the lifetime of 𝑈 by the ℝ𝑚-anti-development

𝑍 = ∫𝑈 𝜗 of 𝑋. We say 𝑋 is the stochastic development of 𝑍 .

Definition 1.102 (Stochastic parallel transport). Let 𝑋 ∈ 𝓢(𝑀) and 𝑈 a horizontal lift of

𝑋 on 𝓞(𝑀). For every 0 ⩽ 𝑠 ⩽ 𝑡, we define //𝑠,𝑡 ∶= 𝑈𝑡 ∘ 𝑈 −1
𝑠 by

𝖳𝑋𝑠𝑀 ∼ // 𝖳𝑋𝑡𝑀

ℝ𝑚
𝑈𝑠

ccFFFFFFFF 𝑈𝑡

;;xxxxxxx

and //𝑡,𝑠 ∶= //−1
𝑠,𝑡 . We call the isometries //𝑡 ∶= //0,𝑡 ∶ 𝖳𝑋0𝑀 → 𝖳𝑋𝑡𝑀 stochastic parallel

transport along 𝑋.

The stochastic parallel transport leads to an intrinsic version of Itô’s formula: For

𝑓 ∈ 𝖢2(𝑀) and for all 𝑡 ⩾ 0, we get almost surely

𝑓(𝑋𝑡) = 𝑓(𝑋0) + ∫
𝑡

0
𝑈𝑠𝑒𝑖𝑓(𝑋𝑠)d𝑍 𝑖

𝑠 + 1
2 ∫

𝑡

0
𝑈𝑠𝑒𝑖𝑈𝑠𝑒𝑗𝑓(𝑋𝑠)d [𝑍𝑖, 𝑍𝑗]𝑠 , (1.41)
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where 𝑋 ∈  𝓢(𝑀) with a horizontal lift 𝑈 and anti-development 𝑍 , and (𝑒1, … , 𝑒𝑚) is an

orthonormal basis for ℝ𝑚. Note that we employ the usual Einstein summation convention

over repeated indices. More succinctly (1.41) can be written as

d𝑓(𝑋𝑡) = ⟨∇𝑓(𝑋𝑡), 𝑈𝑡d𝑍𝑡⟩ + 1
2 tr ∇𝗱𝑋𝑡𝑓(𝑈𝑡, 𝑈𝑡)d[𝑍]𝑡.

Example 1.103. If 𝑀 = ℝ𝑚 then, we can choose 𝑈𝑠 = idℝ𝑚 and 𝑍 = 𝑋 and this formula

reduces to

𝑓(𝑋𝑡) = 𝑓(𝑋0) + ∫
𝑡

0
𝜕𝑖𝑓(𝑋𝑠)d𝑋𝑖

𝑠 + 1
2 ∫

𝑡

0
𝜕𝑖𝑗𝑓(𝑋𝑠)d [𝑋𝑖, 𝑋𝑗]𝑠 .

for any 𝑡 ⩾ 0 almost surely and 𝑋 ∈ 𝓢(ℝ𝑚) is an ℝ𝑚-valued continuous semimartingale.



Chapter 2
Bismut Formulae and Gradient Estimates

In this chapter we will derive localised Bismut formulae and prove gradient estimates

for the heat semigroup defined by spectral calculus on the full exterior bundle of square-

integrable Borel forms 𝝘𝖫2(⋀𝖳∗𝑀).
The so called Bismut(-type) formulae provide derivative formulae of heat (diffusion)

semigroups on manifolds. First introduced by Bismut [Bis84] in 1984, they have been

extended to various frameworks: Notably, by Elworthy & Li [EL94a; EL94b], Thalmaier

[Tha97] and in the general setting using martingale methods for sections of vector bundles

by Driver & Thalmaier [DT01].

In this chapter, let (𝑀, 𝑔) be a complete smooth Riemannian manifold without bound-

ary and (⋅, ⋅) its Riemannian metric. We write vol for the corresponding volume measure.

On a vector bundle 𝐸 → 𝑀 the corresponding fibre norms are denoted by |⋅| ∶= √(⋅, ⋅)
and 𝝘(𝐸) ∶= 𝝘𝖢∞(𝐸) denotes all smooth sections of 𝐸 and 𝝘𝖫2(𝐸) the 𝖫2-section of 𝐸.

We write Ω𝖫2(𝑀) ∶= 𝝘𝖫2(⋀𝖳∗𝑀) for the complex separable Hilbert space of equivalence

classes of square-integrable Borel forms on 𝑀 such that

‖𝛼‖2 ∶= ‖𝛼‖Ω𝖫2 (𝑀) ∶= ∫𝑀
|𝛼(𝑥)|2 vol(d𝑥) < ∞,

with inner product

⟨𝛼, 𝛽⟩𝑔 ∶= ⟨𝛼, 𝛽⟩Ω𝖫2 (𝑀) ∶= ∫𝑀
(𝛼(𝑥), 𝛽(𝑥)) vol(d𝑥).

Analogously, we write Ω𝑘
𝖫2(𝑀) for the Hilbert space of Borel 𝑘-forms. In particular,

Ω𝖫2(𝑀) =
𝑚

⨁
𝑘=0

Ω𝑘
𝖫2(𝑀).

To relax notation, we set

Ω(𝑀) ∶= Ω𝖢∞(𝑀)  and Ω𝑘(𝑀) ∶= Ω𝑘
𝖢∞(𝑀).

for the set of all smooth forms, and smooth 𝑘-forms respectively, on (𝑀, 𝑔).
Let (Ω, 𝓕, (𝓕𝑠)𝑠⩾0, ℙ) be a filtered probability space satisfying the usual hypotheses.

Let 𝑋(𝑥) be a BM(𝑀, 𝑔) starting at 𝑥 ∈ 𝑀 and 𝜁(𝑥) its maximal lifetime. Further, let 𝐵
the stochastic anti-development of 𝑋 to 𝖳𝑥𝑀 , which is a standard Brownian motion on

𝖳𝑥𝑀 ≅ ℝ𝑚.

Let 𝐸, 𝐸 be two Riemannian vector bundles over 𝑀 , endowed with a metric connec-

tion ∇𝐸 and ∇𝐸 respectively. The corresponding parallel transport will be specified by

a superscript, e.g. //𝐸𝑠 ∶ 𝐸𝑥 → 𝐸𝑋𝑠 . The covariant derivatives ∇𝖳𝑀 , ∇𝐸 and ∇𝐸 induce

covariant derivatives on any vector bundle 𝓔 over 𝑀 constructed via the tensor product

41
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of the bundles 𝖳𝑀 , 𝐸 and 𝐸 and their dual bundles. To relax notation, the corresponding

induced covariant derivative on this bundle will be denoted ∇ and the corresponding

stochastic parallel transport by //𝑠 ∶ 𝓔𝑥 → 𝓔𝑋𝑠 .

Given multiplication map 𝑚 ∈ 𝝘(𝖧𝗈𝗆(𝖳∗𝑀 ⊗ 𝐸, 𝐸)) ≅ 𝝘(𝖳𝑀 ⊗ 𝐸∗ ⊗ 𝐸), we consider

the Dirac-type operator

𝗗𝑚 ∶= 𝑚∇ ∶ 𝝘(𝐸) → 𝝘(𝐸)

which is understood as the composition

𝝘(𝐸) ∇𝐸

⟶ 𝝘(𝖳∗𝑀 ⊗ 𝐸) 𝑚⟶  𝝘(𝐸).

A multiplication map 𝑚 is said to be compatible with ∇ provided ∇𝑚 = 0, i.e.

∇𝐸
𝑣 (𝑚𝑈 𝛼) = 𝑚∇𝖳𝑀

𝑣 𝑈 𝛼 + 𝑚𝑈 (∇𝐸
𝑣 𝛼) ∀𝑈 ∈ 𝝘(𝖳𝑀) ∀𝛼 ∈ 𝝘(𝐸) ∀𝑣 ∈ 𝖳𝑀,

where 𝑚𝑣𝜉 ∶= 𝑚((𝑣, ⋅) ⊗ 𝜉) ∈ 𝐸𝑥 for all 𝜉 ∈ 𝐸𝑥.

The horizontal Laplacian □ is the second order differential operator given by the fol-

lowing decomposition

□ ∶= ∇∗∇ ∶ 𝝘(𝐸) ∇𝐸
−−→ 𝝘(𝖳∗𝑀 ⊗ 𝐸) ∇𝖳∗𝑀⊗𝐸

−−−−−−→ 𝝘(𝖳∗𝑀 ⊗ 𝖳∗𝑀 ⊗ 𝐸) tr⟶ 𝝘(𝐸).

Driver and Thalmaier [DT01, p. 48] propose the following formalism: Let 𝗟 and 𝗟 are

given second order differential operators on 𝝘(𝐸) and 𝝘(𝐸) respectively that satisfy the

following two conditions.

(1) The operators 𝗗𝑚, 𝗟 and 𝗟 obey the commutation rule, for some 𝜚 ∈ 𝝘(𝖧𝗈𝗆(𝐸, 𝐸)),

𝗗𝑚𝗟 = 𝗟𝗗𝑚 − 𝜚. (2.1)

(2) The operators 𝓡 ∶= □ − 𝗟 ∶ 𝝘(𝐸) → 𝝘(𝐸) and 𝓡 ∶= □̃ − 𝗟 ∶ 𝝘(𝐸) → 𝝘(𝐸) are zeroth

order operators, i.e. 𝓡 and 𝓡 are section in 𝝘(𝖤𝗇𝖽 𝐸) and 𝝘(𝖤𝗇𝖽 𝐸), provided 𝑚 is

compatible with the Levi-Civita connection.

In geometrically natural situations, we have 𝜚 = 0 or 𝜌 ∈ 𝝘(𝖧𝗈𝗆(𝐸, 𝐸)) is of zeroth order.

Under those assumptions, Driver and Thalmaier [DT01] can prove derivative formulae for

the heat semigroup in the general setting of vector bundles using martingale methods.

For a detailed discussion we refer the reader to [DT01].

Let us note two important examples.

Example 2.1. The exterior bundle of total forms 𝐸 = ⋀ 𝖳∗𝑀 → 𝑀 with its natural

connection

∇⋀ 𝖳∗𝑀 ∶=
𝑚

⨁
𝑘=0

∇⋀𝑘 𝖳∗𝑀

and Clifford action 𝑐 ∶ 𝖳𝑀 → 𝖤𝗇𝖽(⋀ 𝖳∗𝑀), 𝑐(𝛼)𝛽 ∶= 𝛼 ∧ 𝛽 − 𝛼♯ ⨼ 𝛽 . The Hodge Laplacian

Δ is related to the horizontal Laplacian □ by the Weitzenböck formula (cf. Theorem 1.42)

Δ = □ − 𝓡, (2.2)
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where Weitzenböck curvature operator 𝓡 ∈ 𝝘(𝖤𝗇𝖽 Ω𝖢∞(𝑀)) is a symmetric field of en-

domorphisms. Acting on 𝑘-forms, the field of endomorphisms is specified again by an

index

𝓡(𝑘) ∶= 𝓡|Ω𝑘
𝖢∞ (𝑀).

In particular, note that 𝓡(1),tr = Ric and 𝓡(0),tr = 0. Moreover, it can be written explicitly

(cf. e.g. [DT01, Lemma A.7]), for any orthonormal basis (𝑒𝑘)1⩽𝑘⩽𝑚,

𝓡(𝑘) = −
𝑚

∑
𝑖,𝑗=1

𝖱(𝑒𝑗 , 𝑒𝑖)(𝑒♭
𝑗 ∧ •)(𝑒𝑖 ⨼ •),

where 𝖱(𝑒𝑗 , 𝑒𝑖) is the curvature tensor acting on 𝑘-forms (cf. [DT01, Lemma A.9]). Then

𝗗𝑔 ≡ 𝗗𝑐 = 𝗱 + 𝝳𝑔, 𝗟 = 𝗟 = Δ, 𝑚 = 𝑐 and 𝜚 = 0.

In particular, for 𝐸 ∶= ⋀𝑘 𝖳∗𝑀 and 𝐸 ∶= ⋀𝑘+1 𝖳∗𝑀 , then 𝜚 = 0 with

𝗗𝑚 = 𝗱|Ω𝑘 , 𝗟 = −Δ(𝑘), 𝗟 = −Δ(𝑘+1),
𝓡 = 𝓡(𝑘), 𝓡 = 𝓡(𝑘+1), 𝑚(𝛼 ⊗ 𝛽) = 𝛼 ∧ 𝛽.

If instead 𝐸 ∶= ⋀𝑘−1 𝖳∗𝑀 , then again 𝜚 = 0 but with

𝗗𝑚 = −𝝳|Ω𝑘 , 𝗟 = −Δ(𝑘), 𝗟 = −Δ(𝑘−1),
𝓡 = 𝓡(𝑘), 𝓡 = 𝓡(𝑘−1), 𝑚(𝛼 ⊗ 𝛽) = −(𝛼♯ ⨼ 𝛽).

Example 2.2 ([DT01, cf. Proposition 2.15]). Let 𝐸 = 𝖳∗𝑀 ⊗ 𝐸 and 𝑚 = id𝐸 . For 𝗗𝑚 = ∇
and given 𝓡 ∈ 𝖤𝗇𝖽 𝐸, we set

𝓡 = Rictr ⊗𝟭𝐸 − 2𝖱𝐸 ⋅ +𝟭𝖳∗𝑀 ⊗ 𝓡 ∈ 𝝘(𝖤𝗇𝖽 𝐸), (2.3)

𝜚 = ∇ ⋅ 𝖱𝐸 + ∇𝖤𝗇𝖽 𝐸𝓡 ∈ 𝝘(𝖧𝗈𝗆(𝐸, 𝐸)), (2.4)

where 𝖱𝐸 denotes the Riemannian curvature tensor to ∇ on 𝐸 and

Rictr ∈ 𝝘(𝖤𝗇𝖽 𝖳∗𝑀)

denotes the transpose of the Ricci curvature tensor Ric ∈ 𝝘(𝖤𝗇𝖽 𝖳𝑀) on 𝑀 . Further for

any 𝜂 ∈ 𝐸𝑥, 𝑣 ∈ 𝖳𝑥𝑀 , 𝛼 ∈ 𝐸𝑥, (𝑒𝑖) an orthonormal frame for 𝖳𝑥𝑀 , we have

(𝖱𝐸 ⋅ 𝜂) (𝑣) ∶=
𝑚

∑
𝑖=1

𝖱𝐸(𝑣, 𝑒𝑖)𝜂(𝑒𝑖),

(∇ ⋅ 𝖱𝐸𝛼) (𝑣) ∶=
𝑚

∑
𝑖=1

∇𝑒𝑖𝖱
𝐸(𝑒𝑖, 𝑣)𝛼,

(∇𝓡𝛼) (𝑣) ∶= (∇𝑣𝓡)𝛼.

Choosing 𝑚 = id, for 𝗟 ∶= □ − 𝓡, 𝗟 = □ − 𝓡, it follows that 𝜚 ∈ 𝝘(𝖧𝗈𝗆(𝐸, 𝐸)).

Next, we introduce the stochastic representation of the semigroup. To this end, recall

that //𝐸𝑠 ∶ 𝐸𝑥 → 𝐸𝑋𝑠 is the parallel transport along our diffusion 𝑋𝑠 = 𝑋𝑠(𝑥) started at

𝑥 ∈ 𝑀 . We define the linear operators on 𝐸𝑥 and 𝐸𝑥, respectively,

𝓡//𝑠 ∶= (//𝐸𝑠 )−1𝓡 //𝐸𝑠 and 𝓡//𝑠 ∶= (//𝐸𝑠 )−1𝓡 //𝐸𝑠
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along the paths of 𝑋(𝑥) in the following way: Via the stochastic parallel transport we

get to a random point on the tangent space at 𝑋𝑠 and apply the curvature (in case 𝑘 = 1
just Ric and 𝐸 = 𝖳𝑀) considered as a linear transformation. Then we parallel transport

back to where the diffusion started. Thus, we get a linear mapping 𝐸𝑥 → 𝐸𝑥 which now

depends on random, i.e.:

𝐸𝑥

//𝐸𝑠

��

𝓡//𝐸𝑠 //______ 𝐸𝑥

𝐸𝑋𝑠 𝓡𝑋𝑠

// 𝐸𝑋𝑠

//𝐸,−1
𝑠

OO

Let 𝓠𝑠 be the 𝖤𝗇𝖽(𝐸𝑥)-valued, and 𝓠𝑠 the 𝖤𝗇𝖽(𝐸𝑥)-valued respectively, pathwise solutions

to the ordinary differential equations

d
d𝑠𝓠𝑠 = −1

2𝓡//𝑠𝓠𝑠, 𝓠0 = id𝐸𝑥 ,
d
d𝑠𝓠𝑠 = −1

2𝓡//𝑠𝓠𝑠, 𝓠0 = id𝐸𝑥
.

(2.5)

The composition 𝓠 ∘ //𝐸,−1 maps from a random point 𝑋𝑠 back to the starting point 𝑥 and

is called the (inverse) damped parallel transport along the paths of 𝑋(𝑥).

2.0.1 Probabilistic representation of the semigroup Given a potential 𝑤 ∶ 𝑀 → ℂ, the

Feynman-Kac semigroup

𝑃 𝑤
𝑠 𝑓(𝑥) ∶= 𝔼 (e− 1

2 ∫𝑠
0 𝑤(𝑋𝑢(𝑥))d𝑢𝑓(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)})

acts on (bounded) measurable functions 𝑓 on 𝑀 . Further, let 𝓡𝐸 = 𝜎min(𝓡𝐸), i.e.

𝓡𝐸(𝑥) ∶= min {(𝓡𝑥𝑣, 𝑣) , 𝑣 ∈ 𝐸𝑥, |𝑣| = 1} .

By uniform continuity, 𝓡𝐸 is a continuous function on 𝑀 . By Gronwall’s inequality,

|𝓠𝑠|op ⩽ exp (−1
2 ∫

𝑠

0
𝓡𝐸(𝑋𝑢(𝑥))d𝑢) .

We have the following probabilistic representation of the semigroup, for all 𝑠 > 0 and

every 𝑥 ∈ 𝑀 ,

𝑃𝑠𝑎(𝑥) = ∫𝑀
𝑝𝑠(𝑥, 𝑦)𝑎(𝑦) vol𝑔(d𝑦) = 𝔼𝑥

(𝓠tr
𝑠 //𝐸,−1

𝑠 𝑎(𝑋𝑠)𝟙{𝑠<𝜁}) ∀𝑎 ∈ 𝝘𝖫2(𝐸),

provided the scalar semigroup 𝑃 𝓡𝐸

𝑠 |𝛼| (𝑥) < ∞ (cf. [DT01, Theorem B.4.]). In particular, it

holds semigroup domination

|𝑃𝑠𝑎(𝑥)| ⩽ 𝑃 𝓡𝐸

𝑠 |𝑎| (𝑥). (2.6)
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2.0.2 Kato classes and semigroup domination The existence of the Feynman-Kac semi-

group will be essential to prove the Bismut-type formulae below (cf. Theorem 2.19 and

Theorem 2.25). To ensure the existence of the scalar semigroup in formula (2.6), we there-

fore will always assume that 𝓡𝐸 ∈ 𝖪(𝑀) is in the so called Kato class:

Definition 2.3 (Kato class). Let 𝑤 ∶ 𝑀 → ℂ be a measurable function. Then 𝑤 is said to

be in the contractive Dynkin class 𝖣(𝑀) (also extended Kato class), if there is a 𝑠 > 0
with

sup
𝑥∈𝑀 ∫

𝑠

0
𝔼𝑥 (𝟙{𝑢<𝜁} |𝑤(𝑋𝑢)|) d𝑢 < 1,

and 𝑤 is in the Kato class 𝖪(𝑀), if

lim
𝑠↘0

sup
𝑥∈𝑀 ∫

𝑠

0
𝔼𝑥 (𝟙{𝑢<𝜁} |𝑤(𝑋𝑢)|) d𝑢 = 0.

The function 𝑤 is said to be in the local Dynkin class 𝖣loc(𝑀) or local Kato class 𝖪loc(𝑀),
if 𝟙𝐾𝑤 ∈ 𝖣(𝑀) or 𝟙𝐾𝑤 ∈ 𝖪(𝑀), respectively, for all compact 𝐾 ⊂ 𝑀 .

Remark 2.4. (i) The Kato class 𝖪(𝑀) plays an important rôle in the study of

Schrödinger operators and their associated semigroups, cf. [AS82; Sim82]. The con-

tractive Dynkin class 𝖣(𝑀) appears in [Voi86] to study properties of semigroups

associated to Schrödinger operators. In the case of a non-compact manifold, it is

well-known that there are many technical difficulties with the behaviour of the po-

tentials at ∞. The Kato class defines a sufficiently rich class of potentials for which

we can still expect the Feynman-Kac formula to make sense pointwise not only vol-
a.e. 𝑥, but for all 𝑥 ∈ 𝑀 .

(ii) In particular (cf. [Gün17a, Remark VI.2.]), in the Euclidean space ℝ𝑚, we get

𝖫𝑞(ℝ𝑚) ⊂ 𝖪(ℝ𝑚), for 𝑚 ⩾ 2 and 𝑞 > 𝑚
2 . Then it is well-known, that the Coulomb

potential 1
|𝑥| is in 𝖪(ℝ3).

(iii) Clearly, all four classes depend on the Riemannian structure of 𝑀 and we have

𝖪(𝑀) ⊂ 𝖣(𝑀) and 𝖪loc(𝑀) ⊂ 𝖣loc(𝑀).

In view of those implications and since it is more common to work with Kato classes, we

note that in what follows all assumptions may be relaxed from 𝖪(𝑀) to 𝖣(𝑀).

Lemma 2.5 ([Gün17a, Lemma VI.8.]). For any 𝑤 ∈ 𝖪(𝑀) and 𝛾 > 1, there is 𝑐𝛾 = 𝑐𝛾 (𝑤) > 0,
such that

sup
𝑥∈𝑀

𝔼𝑥
(𝟙{𝑠<𝜁}e∫𝑠

0 |𝑤(𝑋𝑢)|d𝑢
) ⩽ 𝛾e𝑠𝑐𝛾 < ∞, ∀𝑠 ⩾ 0. (2.7)

Remark 2.6. The previous Lemma 2.5 can be elaborated in the case of potentials in

the Dynkin class (cf. [Gün17a, Lemma VI.8.]), namely: For any 𝑤 ∈ 𝖣(𝑀) there are

𝑐𝑘 = 𝑐𝑘(𝑤) > 0, for 𝑘 ∈ {1, 2}, such that

sup
𝑥∈𝑀

𝔼𝑥
(𝟙{𝑠<𝜁}e∫𝑠

0 |𝑤(𝑋𝑢)|d𝑢
) ⩽ 𝑐1e𝑠𝑐2 < ∞, ∀𝑠 ⩾ 0.
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2.0.3 Corresponding sesquilinear forms Let 𝗛∇ denote the Friedrichs realisation of
1
2□ = 1

2∇∗∇ and 𝗾∇ the closed densely defined symmetric sesquilinear form corresponding

to 𝗛∇ given by

𝖽𝗈𝗆 𝗾∇ = 𝖽𝗈𝗆 √𝗛∇

𝗾∇(𝑎1, 𝑎2) ∶= ⟨√𝗛∇𝑎1, √𝗛∇𝑎2⟩ = 1
2 ∫𝑀

(∇𝑎1, ∇𝑎2)  d vol .

A Borel section 𝑉 ∶ 𝑀 → 𝖤𝗇𝖽 𝐸 in 𝖤𝗇𝖽 𝐸 → 𝑀 is a potential on 𝐸 → 𝑀 if 𝑉 (𝑥) = 𝑉 (𝑥)∗

for all 𝑥 ∈ 𝑀 , where the adjoint is taken fibrewise with respect to the fixed metric on

𝐸 → 𝑀 . We define

𝖽𝗈𝗆 𝗾𝑉 ∶= {𝑎 ∈ 𝝘𝖫2(𝐸) ∶ ∫𝑀
|(𝑉 𝑎, 𝑎)| d vol < ∞}

𝗾𝑉 (𝑎1, 𝑎2) ∶= ∫𝑀
(𝑉 𝑎1, 𝑎2) d vol .

Assume 𝑉 admits a decomposition 𝑉 = 𝑉+ +𝑉− into potentials 𝑉± on 𝐸 → 𝑀 with 𝑉± ⩾ 0
such that |𝑉+| ∈ 𝖫1

loc(𝑀) and 𝗾𝑉− is 𝗾∇-bounded with bound < 1 (cf. Definition 1.54).

Then we denote by 𝗛∇
𝑉 the semibounded from below, self-adjoint operator in 𝝘𝖫2(𝐸)

corresponding to the closed symmetric semibounded densely defined sesquilinear form

𝗾∇
𝑉 ∶= 𝗾∇ + 𝗾𝑉 = 𝗾∇ + 𝗾𝑉+ + 𝗾𝑉−

It follows that the symmetric form 𝗾∇
𝑉 is densely defined and by definition we have

𝖽𝗈𝗆 𝗾∇
𝑉 ∶= 𝖽𝗈𝗆 𝗾∇ ∩ 𝖽𝗈𝗆 𝗾𝑉 = 𝖽𝗈𝗆 𝗾∇ ∩ 𝖽𝗈𝗆 𝗾𝑉+ ∩ 𝖽𝗈𝗆 𝗾𝑉−

The following theorem will be used in the proof of the main result and can be found

in [Gün17a, Theorem VII.4.].

Theorem 2.7. Let 𝑉 be a potential on 𝐸 → 𝑀 such that the potential 𝑉 = 𝑉+ + 𝑉− can be

decomposed into potentials 𝑉±  ⩾ 0 with |𝑉+| ∈ 𝖫1
loc(𝑀) and |𝑉−| ∈ 𝖪(𝑀) (or |𝑉−| ∈ 𝖣(𝑀)

respectively). Then the form 𝗾𝑉− is infinitesimally 𝗾∇-bounded (or 𝗾∇-bounded with bound < 1).

2.0.4 Kato-Simon inequalities and semigroup domination By [Gün17a, Theorem VII.8.]

we immediately get the following

Lemma 2.8 (Kato-Simon inequality). Assume 𝓡(𝑘) ⩾ −𝐾 for some constant 𝐾 ⩾ 0, and let

𝛼 ∈ Ω𝖫2(𝑀). Then for all 𝑠 > 0, we have

|e
−𝑠Δ(𝑘)𝛼| ⩽  e−𝐾𝑠e−𝑠Δ(0) |𝛼| . (2.8)

2.1 Bismut type Formulae and Derivative Formulae on Vector

Bundles

Next, we will outline the strategy of [DT01] to prove Bismut type formulae. Briefly, the

idea is to define a suitable martingale, say 𝑁𝑢, and stay on the local martingale level as
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long as possible. Using that a true martingale has constant expectation, one then shows

that 𝑁𝑢 is indeed a martingale and takes expectations at times 𝑢 = 0 and 𝑢 = 𝑠 ∧ 𝜏 .

Note that this method solely involves the geometry and applies especially in the case of

non-compact manifolds.

Definition 2.9. A finite energy process (ℓ𝑢)0⩽𝑢⩽𝑠 with values in 𝐸 is a bounded adapted

process with sample paths in the Cameron-Martin space 𝖫1,2([0, 𝑠], 𝐸).

We recall that a time-dependent section (𝑎𝑢)0⩽𝑢⩽𝑠 ∈ 𝝘(𝐸) is said to be smooth if

(𝑠, 𝑥) ↦ 𝑎𝑠(𝑥) is infinitely differentiable for (𝑠, 𝑥) ∈ (0, 𝑠)×𝑀 and with derivative extending

continuously to [0, 𝑠) × 𝑀 . The following Lemma can be found in [DT01, Proposition 3.2].

Lemma 2.10. Let 𝑚 be a multiplication map, 𝜚, 𝗟 and 𝗟 as in (2.1), and 𝓠 and 𝓠 are defined

by (2.5). Suppose further that (𝑎𝑢)0⩽𝑢⩽𝑠 ∈ 𝝘(𝐸) is smooth time-dependent and satisfies the

backwards heat equation

𝜕𝑢𝑎𝑢 + 1
2𝗟𝑎𝑢 = 0. (2.9)

For some 𝑢 in the stochastic interval [0, 𝜁(𝑥) ∧ 𝑠), let

𝑁𝑢 ∶= 𝓠tr
𝑢 //−1

𝑢 𝑎𝑢(𝑋𝑢(𝑥))  and 𝑁̃𝑢 ∶= 𝓠tr
𝑢 //−1

𝑢 𝗗𝑎𝑢(𝑋𝑢(𝑥)).

Then the Itô differentials of 𝑁𝑢 and 𝑁̃𝑢 are given by

d𝑁𝑢 = 𝓠tr
𝑢 //−1

𝑢 ∇//𝖳𝑀
𝑢 d𝐵𝑢

𝑎𝑢(𝑋𝑢(𝑥))

and

d𝑁̃𝑢 = 𝓠tr
𝑢 //−1

𝑢 ∇//𝖳𝑀
𝑢 d𝐵𝑢

𝗗𝑎𝑢(𝑋𝑢(𝑥)) + 1
2𝓠tr

𝑢 //−1
𝑢 (𝜚𝑎𝑢)(𝑋𝑢(𝑥))d𝑢.

Proof. By Itô’s lemma and its product rule for Itô differential (1.19)

d𝑁 = 𝓠tr //−1∇//𝖳𝑀 d𝐵𝑎(𝑋(𝑥))

+ 1
2 (−𝓠tr𝓡////−1𝑎(𝑋(𝑥)) + 𝓠tr //−1□𝑎(𝑋(𝑥)) − 𝓠tr //−1𝗟𝑎(𝑋(𝑥))) d𝑢

= 𝓠tr //−1∇//𝖳𝑀 d𝐵𝑎(𝑋(𝑥)),

where the last equality follows from

−𝓡////−1 + //−1□ = //−1(□ − 𝓡) = //−1𝗟.

Similarly,

d𝑁̃ = 𝓠tr //−1∇//𝖳𝑀 d𝐵𝗗𝑎(𝑋(𝑥))

+ 1
2 (−𝓠tr𝓡////−1𝗗𝑎(𝑋(𝑥)) + 𝓠tr //−1□̃𝗗𝑎(𝑋(𝑥)) − 𝓠tr //−1𝗗𝗟𝑎(𝑋(𝑥))) d𝑢

= 𝓠tr //−1∇//d𝐵𝗗𝑎(𝑋(𝑥)) + 1
2𝓠tr //−1(𝜚𝑎)(𝑋(𝑥))d𝑢

where in contrast

−𝓡////−1𝗗 + //−1□̃𝗗 − //−1𝗗𝗟 = //−1
(𝗟𝗗 − 𝗗𝗟) = //−1𝜚. ■
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The next theorem shows that a suitable dual pair of 𝑁 and 𝑁̃ in Lemma 2.10 constitutes

a local martingale.

Theorem 2.11 ([DT01, Theorem 3.7]). Let 𝑎, 𝑁 and 𝑁̃ be as in Lemma 2.10, ℓ𝑢 ∈ 𝐸∗
𝑥 be a finite

energy process and define the 𝐸∗
𝑥-valued process

𝑈 ℓ
𝑠 ∶= ∫

𝑠

0
(𝓠tr

𝑢 )−1//−1
𝑢 𝑚tr

//𝑢d𝐵𝑢
//𝑢𝓠tr

𝑢 ̇ℓ𝑢 + 1
2 ∫

𝑠

0
(𝓠tr

𝑢 )−1𝜚tr
//𝑢𝓠tr

𝑢 ℓ d𝑢, (2.10)

where 𝜚tr
//𝑢 = //−1

𝑢 𝜚tr(𝑋𝑢(𝑥))//𝑢. Then

𝑍ℓ
𝑢 ∶= (𝑁̃𝑢, ℓ𝑢) − (𝑁𝑢, 𝑈 ℓ

𝑢 ) (2.11)

is a local martingale on [0, 𝑠 ∧ 𝜁(𝑥)) and

d𝑍ℓ
𝑢 = (𝓠tr

𝑢 //−1
𝑢 ∇//𝑢d𝐵𝑢𝗗𝑎(𝑋𝑢(𝑥)), ℓ𝑢) − (𝓠tr

𝑢 //−1
𝑢 ∇//𝑢d𝐵𝑢𝑎(𝑋𝑢(𝑥)), 𝑈 ℓ

𝑢 )
− (𝑁𝑢, (𝓠tr

𝑢 )−1//−1
𝑢 𝑚tr

//𝑢d𝐵𝑢
//𝑢𝓠tr

𝑢 ̇ℓ𝑢) .

Taking expectations in the previous Theorem 2.11 we get the following abstract deriva-

tive formula on vector bundles (cf. [DT01, Theorem 4.1]).

Theorem 2.12 (Derivative formula on vector bundles). Let 𝑎 be a solution to the backwards

heat equation (2.9), and 𝓠 and 𝓠 are defined by (2.5). Let 𝜏 be a stopping time bounded by

𝑠 < ∞ such that 𝜏 < 𝜁(𝑥) and ℓ ∈ 𝐸∗
𝑥 be a Cameron-Martin process on [0, 𝜏]. Assume that 𝜏

and ℓ have been chosen such that

𝔼 |(𝓠tr
𝜏 //−1

𝜏 𝗗𝑎𝜏(𝑋𝜏(𝑥)), ℓ𝜏)| < ∞ and 𝔼 |(𝓠tr
𝜏 //−1

𝜏 𝗗𝑎𝜏(𝑋𝜏(𝑥)), 𝑈 ℓ
𝜏 )| < ∞,

where 𝑈 ℓ is defined by (2.10). Finally, let 𝑍ℓ
𝑠 be the local martingale defined by (2.11). If we

assume that (𝑍ℓ)𝜏
𝑠 ∶= 𝑍ℓ

𝑠∧𝜏 is a (true) martingale, then

𝔼 (𝗗𝑎0(𝑥), ℓ0) = 𝔼 (𝓠tr
𝜏 //−1

𝜏 𝗗𝑎𝜏(𝑋𝜏(𝑥)), ℓ𝜏) − 𝔼 (𝓠tr
𝜏 //−1

𝜏 𝑎𝜏(𝑋𝜏(𝑥)), 𝑈 ℓ
𝜏 ) .

In particular,

(a) If ℓ𝜏 = 0 and ℓ0 = 𝜉 ∈ 𝐸𝑥, then

𝔼 (𝗗𝑎0(𝑥), 𝜉) = −𝔼 (𝓠tr
𝜏 //−1

𝜏 𝑎𝜏(𝑋𝜏(𝑥)), 𝑈 ℓ
𝜏 ) (2.12)

(b) If ℓ0 = 0 and ℓ𝜏 = 𝜉 ∈ 𝐸𝑥 (possibly random!), then

𝔼 (𝓠tr
𝜏 //−1

𝜏 𝗗𝑎𝜏(𝑋𝜏(𝑥)), 𝜉) = 𝔼 (𝓠tr
𝜏 //−1

𝜏 𝑎𝜏(𝑋𝜏(𝑥)), 𝑈 ℓ
𝜏 ) (2.13)

Let 𝑎• = e(𝑠−•)/2𝗟𝛼 for some 𝛼 ∈ 𝝘𝖫2(𝐸), where the semigroup e𝑠/2𝗟 is generated by the

Friedrichs extension of 𝗟. Then the equations (2.12) and (2.13) provide stochastic repre-

sentations of the derivatives 𝗗e(𝑠−•)/2𝗟𝛼 and e(𝑠−•)/2𝗟𝗗𝛼. The formula for 𝗗e(𝑠−•)/2𝗟𝛼 relies

on the fact that the local 𝑍ℓ given by (2.11) is indeed a true martingale. This can always

be assured by a proper choice of the finite energy process ℓ, i.e. ℓ such that ℓ0 = 𝜉 and

ℓ𝑢 = 0 for 𝑢 ⩾ 𝑠 ∧ 𝜏 where 𝜏 is the first exit time of 𝑋(𝑥) from some relatively compact

neighbourhood, irrespective of whether 𝑀 is compact or complete.
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In the next two sections, we derive similar localised Bismut type formulae and prove

localised gradient estimates on the full exterior bundle, i.e. in the setting of Example 2.1

for 𝗱 and 𝝳 acting on the heat semigroup, and a covariant Bismut type formula in the

setting of Example 2.2, following the ideas of [DT01]. Therefore:

From now on, let 𝐸 ∶= ⋀ 𝖳∗𝑀 and, to shorten notation, we set 𝓡 ∶= 𝓡⋀ 𝖳∗𝑀 .

We denote by

(𝑃𝑠)𝑠>0 ∶= (e− 𝑠
2 Δ

)𝑠>0
⊂ 𝓛(𝝘𝖫2(⋀ 𝖳∗𝑀))

the heat semigroup defined by the Spectral Theorem 1.50, where we have chosen

𝑓 ∶ ℝ → ℝ, 𝑓(𝜆) ∶= e−𝑠/2𝜆. But recall that [DT01, Section B.2], by the spectral theorem, on

a complete manifold, for any 𝑎 ∈ 𝝘𝖫2(𝐸),

𝗱𝑃𝑢𝑎 = 𝑃𝑢𝗱𝑎  resp. 𝝳𝑃𝑢𝑎 = 𝑃𝑢𝝳𝑎.

This relation is no longer true dropping completeness, even if 𝑀 is stochastically complete,

cf. e.g. [DT01, Appendix B].

For every 𝑟 > 0, let

𝜏 ∶= 𝜏(𝑥, 𝑟) ∶= inf {𝑡 ⩾ 0 ∶ 𝑋𝑠(𝑥) ∉ 𝖡(𝑥, 𝑟)} ∶ Ω → [0, ∞] (2.14)

be the first exit time of 𝑋 from the open ball 𝖡(𝑥, 𝑟) with small radius, say 𝑟 = 1, and we

define

𝐾(𝑥) ∶= max {(𝓡(𝑣), 𝑣) ∶ 𝑣 ∈ ⋀ 𝖳𝑦𝑀, |𝑣| = 1, 𝑦 ∈ 𝖡(𝑥, 𝑟)} , (2.15)

𝐾(𝑥) ∶= min {(𝓡(𝑣), 𝑣) ∶ 𝑣 ∈ ⋀ 𝖳𝑦𝑀, |𝑣| = 1, 𝑦 ∈ 𝖡(𝑥, 𝑟)} . (2.16)

Definition 2.13. Let 𝑟 > 0, 𝑠 > 0, 𝑥 ∈ 𝑀 , and 𝜉 ∈ 𝖳∗
𝑥𝑀  ⊗ 𝐸. By 𝖢𝖬(𝑡, 𝜉, 𝐸) we denote the

set of all finite energy processes

ℓ ∶ [0, 𝑠] × Ω → 𝖳∗
𝑥𝑀 ⊗ 𝐸

such that

|𝑘| ⩽ 1, 𝔼 ∫
𝑠∧𝜏(𝑥,𝑟)

0
| ̇ℓ𝑢|

2 d𝑢 < ∞, ℓ0 = 1, ℓ𝑢 = 0 ∀𝑢 ⩾ 𝑠 ∧ 𝜏(𝑥, 𝑟).

By a proper choice of the Cameron-Martin space valued process ℓ𝑠, according to the

geometry on 𝐷, in [TW98, Proof of Corollary 5.1] Thalmaier & Wang show how to achieve

explicit gradient estimates from Bismut-type derivative formulae only using the local ge-

ometry of the manifold (cf. also [TW11, Remark 3.2], [CTT18]). We use the construction

of ℓ𝑠 briefly summarised in the Proof of [Wan14a, Corollary 2.2.2.] to prove the following

theorems 2.27 and 2.28.
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Lemma 2.14. For all 𝑠 > 0, 𝑟 > 0, 𝑥 ∈ 𝑀 , 𝜉 ∈ 𝖳𝑥𝑀 ⊗ 𝐸 there is a process ℓ ∈ 𝖢𝖬(𝑠, 𝜉, 𝐸)
such that for all 1 ⩽ 𝑞 < ∞ and 𝐾(𝑥) defined by (2.16), we find a constant 𝐶(𝑚, 𝑞, 𝑟, 𝐾−) < ∞
satisfying

|ℓ| ⩽ |𝜉| ,
[

𝔼 (∫
𝑠∧𝜏(𝑥,𝑟)

0
| ̇ℓ𝑢|

2 d𝑢)

𝑞

]

1/𝑞

⩽ 𝑠−1/2e𝐶(𝑚,𝑞,𝑟,𝐾−)𝑡/2 |𝜉| , (2.17)

where

𝐶(𝑚, 𝑞, 𝑟, 𝐾−) ∶= 𝜋
2𝑟√(𝑚 − 1)𝐾− + 𝜋2

4𝑟2 (𝑚 + 𝑞 + 3). (2.18)

Proof. It is well-known, [Wan14a, Corollary 2.2.2.] (also [CTT18]), how to construct a bounded

adapted process

𝑘 ∶ [0, 𝑠] × Ω ⟶ ℝ

with paths in the Cameron-Martin space 𝖫1,2([0, 𝑠], ℝ), such that

|𝑘| ⩽ 1, 𝔼 ∫
𝑠∧𝜏

0
|𝑘̇𝑢|

2 d𝑢 < ∞, 𝑘0 = 1, 𝑘𝑢 = 0 ∀𝑢 ⩾ 𝑠 ∧ 𝜏,

and

[
𝔼 (∫

𝑠∧𝜏

0
|𝑘̇𝑢|

2 d𝑢)
𝑞/2

]

1/𝑞

⩽ 𝑠−1/2e𝐶(𝑚,𝑞,𝑟,𝐾−).

Thus we may simply set ℓ𝑢 ∶= 𝑘𝑢𝜉. ■

Corollary 2.15. For all 𝑠 > 0, 𝑟 > 0, 𝑥 ∈ 𝑀 , 𝜉 ∈ 𝖳𝑥𝑀 ⊗ 𝐸 there is a process ℓ ∈ 𝖢𝖬(𝑠, 𝜉, 𝐸)
such that for all 1 ⩽ 𝑞 < ∞ and all constants 𝐾 ⩾ 0 with Ric ⩾ −𝐾 in 𝖡(𝑥, 𝑟) we find constants

𝐶(𝑚, 𝑞), 𝐶(𝑚, 𝑞, 𝐾) < ∞ satisfying

|ℓ| ⩽ |𝜉| ,
[

𝔼 (∫
𝑠∧𝜏

0
| ̇ℓ𝑢|

2 d𝑢)
𝑞/2

]

1/𝑞

⩽ 𝑠−1/2e
𝑠𝐶(𝑚,𝑞,𝐾)

𝑟 + 𝑠𝐶(𝑚,𝑞)
𝑟2 |𝜉| .

2.2 Local and Global Bismut formula for ∇
Using the strategy outlined above, we get the stochastic representation of the semigroup

and a covariant Bismut formula, see also Driver & Thalmaier [DT01, Appendix B] and

Thalmaier & Wang [TW04, Theorem 3.1].

Theorem 2.16 (Covariant Feynman-Kac formula). Assume that 𝓡− ∈ 𝖪(𝑀). Then we have

e− 𝑠
2 Δ𝛼(𝑥) = 𝔼 (𝓠𝑠//−1

𝑠 𝛼(𝑥)𝟙{𝑠<𝜁(𝑥)}) ∀𝑠 ⩾ 0 ∀𝑥 ∈ 𝑀 ∀𝛼 ∈ 𝝘𝖫2∩𝖫∞∩𝖢∞(⋀ 𝖳∗𝑀).

Proof. By the Weitzenböck formula 1.42, we have Δ = □−𝓡, where 𝓡 ∈ 𝝘(𝖤𝗇𝖽 ⋀ 𝖳∗𝑀) is

a symmetric field of endomorphisms. Suppose that (□ − 𝓡)|𝝘𝑐 (⋀ 𝖳∗𝑀) is bounded from

above and let

𝑃𝑠𝛼 = e
𝑠
2□−𝓡𝑎 ∀𝛼 ∈ 𝝘𝖫2(⋀ 𝖳∗𝑀),
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be the smooth version of the 𝖫2 semigroup. Then, by [DT01, Theorem B.4],

𝑃𝑠𝛼(𝑥) = 𝔼 (𝓠𝑠//−1
𝑠 𝛼(𝑥)𝟙{𝑠<𝜁(𝑥)}) ∀𝛼 ∈ 𝝘𝖫2(⋀ 𝖳∗𝑀)

holds, if 𝑃 𝓡
𝑠 |𝛼| (𝑥) < ∞. Since 𝓡− ∈ 𝖪(𝑀), the claim follows. ■

Remark 2.17. Theorem 2.16 is true especially under global curvature bounds: Let 𝖱 be the

Riemannian curvature tensor. Then the curvature operator 𝑄 ∈ ⋀2 𝖳∗𝑀 is self-adjoint

and uniquely determined by the equation

(𝑄(𝑋 ∧ 𝑌 ), 𝑈 ∧ 𝑉 ) = (𝖱(𝑋, 𝑌 )𝑈, 𝑉 )

for all smooth vector fields 𝑋, 𝑌 , 𝑈, 𝑉 ∈ 𝝘𝖢∞(𝖳𝑀).
By the Gallot–Meyer estimate [GM75], a global bound 𝑄 ⩾ −𝐾 , for some constant 𝐾 > 0,

already implies that curvature endomorphism in the Weitzenböck formula 1.42 is globally

bounded by

𝓡(𝑘) ⩾ −𝐾𝑘(𝑚 − 𝑘).

In particular, specified to differential 𝑘-forms under global curvature bounds, we get

the following

Corollary 2.18 (Covariant Feynman-Kac formula for 𝑘-forms). Assume 𝓡(𝑘) ⩾ −𝐾 for some

constant 𝐾 ⩾ 0. Then, we have

e− 𝑠
2 Δ(𝑘)

𝛼(𝑥) = 𝔼 (𝓠𝑠//−1
𝑠 𝛼(𝑥)) ∀𝑠 ⩾ 0 ∀𝑥 ∈ 𝑀 ∀𝛼 ∈ 𝝘𝖫2∩𝖫∞∩𝖢∞(⋀𝑘 𝖳∗𝑀).

Let us provide a short proof that does not rely on Theorem 2.16. As we assume

𝓡(𝑘) ⩾ −𝐾 for some 𝐾 ⩾ 0, although 𝑀 is non-compact, by Lemma 1.76 𝑀 is stochasti-

cally complete, so that the statement includes that the right-hand side coincides for all

𝑥 ∈ 𝑀 and not only for vol-a.e. 𝑥 ∈ 𝑀 with the smooth representative of ∇e− 𝑠
2 Δ(𝑘)

𝛼.

Proof. By assumption 𝓡(𝑘) ⩾ −𝐾 for some constant 𝐾 ⩾ 0, so 𝑀 is stochastically com-

plete. Then we have

|e
−𝑠Δ(𝑘)𝛼| ⩽ e−𝐾𝑠e−𝑠Δ(0) |𝛼| ∀𝑠 > 0, (2.19)

by the Kato-Simon inequality (2.8).

As 𝑀 is stochastically complete, we get 𝜁(𝑥) = ∞ ℙ-a.s. To prove the formula, we may

assume 𝑠 > 0. By Lemma 2.10 the process

𝑁𝑢 ∶= 𝓠𝑢//−1
𝑢 e− 𝑠−𝑢

2 Δ(𝑘)
𝛼(𝑋𝑢(𝑥))

is a continuous local martingale. By (2.19) above and using that by Gronwall’s inequality

|𝓠𝑠| ⩽ e−𝐾𝑠 ℙ-a.s., we find that

|𝑁𝑠| ⩽ e2|𝐾|𝑠 ‖𝛼‖∞ ∫ e− 𝑠−𝑢
2 Δ(𝑋𝑢(𝑥), 𝑦) vol(d𝑦) ⩽ e2|𝐾|𝑠 ‖𝛼‖∞ ,

so that 𝑁 is a true martingale by Lemma A.11. Evaluating 𝑁𝑢 at times 𝑢 = 0 and 𝑢 = 𝑠 and

taking expectations proves the claim. ■
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2.2.1 Local covariant Bismut formula Next, we derive a local covariant Bismut deriva-

tive formula that will be used to obtain localised gradient estimates in § 2.4. Those esti-

mates will play a crucial rôle in showing the main result in § 4.

Theorem 2.19 (Covariant Bismut formula). Let 𝜉 ∈ 𝐸∗
𝑥 = 𝖳𝑥𝑀 ⊗ ⋀ 𝖳𝑥𝑀 . Then

(∇e− 𝑠
2 Δ𝛼(𝑥), 𝜉) = −𝔼 (𝓠tr

𝑠∧𝜏 //−1
𝑠∧𝜏e− (𝑠−𝑠∧𝜏)

2 Δ𝛼(𝑋𝑠∧𝜏(𝑥)), 𝑈 ℓ
𝑠∧𝜏) ∀𝛼 ∈ 𝝘𝖫2∩𝖢∞(⋀ 𝖳∗𝑀), (2.20)

where

𝑈 ℓ
𝑠 ∶= ∫

𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢 ̇ℓ𝑢) + 1
2 ∫

𝑠

0
𝓠−1

𝑢 𝜚tr
//𝑢𝓠𝑢ℓ𝑢 d𝑢, (2.21)

𝜚tr
//𝑢 ∶= //−1

𝑢 𝜚tr //𝑢 with 𝜚 given by (2.4), 𝓠 and 𝓠 are defined by (2.5) and 𝓡 by (2.3) and

• 𝜏 ∶= 𝜏(𝑥, 𝑟) < 𝜁(𝑥) is the first exit time of 𝑋 from the open ball 𝖡(𝑥, 𝑟),
• d𝐵 ∶= //−1 ∘ d𝑋(𝑥) is a Brownian motion in 𝖳𝑥𝑀 , i.e. the associated anti-development of

the Brownian motion 𝑋(𝑥),
• (ℓ𝑢)0⩽𝑢⩽𝑠 is a finite energy process with values in 𝖳𝑥𝑀 ⊗ ⋀ 𝖳𝑥𝑀 such that for some

arbitrary small 𝜀 > 0

𝔼 (∫
(𝑠−𝜀)∧𝜏(𝑥)

0
| ̇ℓ𝑢|

2 d𝑢)

1/2
< ∞ and ℓ0 = 𝑣, ℓ𝑢 = 0 ∀𝑢 ⩾ (𝑠 − 𝜀) ∧ 𝜏(𝑥).

If, in addition, 𝛼 ∈ Ω𝖫2(𝑀) is bounded on this neighbourhood, we may take 𝜀 = 0.

Before we prove Theorem 2.19, let us make the following

Definition 2.20. Let 𝑈 ℓ as in Theorem 2.19. We set

𝑈 ℓ
𝑠 = ℓ(1)

𝑠 + 1
2ℓ

(2)
𝑠 ,

where we define processes

ℓ(1)
𝑠 ∶= ∫

𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢 ̇ℓ𝑢) and ℓ(2)
𝑠 ∶= 1

2 ∫
𝑠

0
𝓠−1

𝑢 𝜚tr
//𝑢𝓠𝑢ℓ𝑢 d𝑢.

Then ℓ(1) is a continuous local martingale and ℓ(2) is a continuous process of finite varia-

tion.

Proof of Theorem 2.19. By Gronwall’s inequality, we have

|𝓠𝑠|op ⩽ exp (−1
2 ∫

𝑠

0
𝓡(𝑋𝑢(𝑥))d𝑢) ∀𝑠 ⩾ 0.

and hence

|𝓠𝑠|op ⩽ e𝐾(𝑥)𝑠/2, |𝓠𝑠|op
⩽ e𝐾(𝑥)𝑠/2 ℙ-a.s. on {𝑠 ⩽ 𝜏(𝑥, 𝑟)} . (2.22)

As 𝓠 and 𝓠 are invertible with

d
d𝑠 𝓠−1

𝑠 = 1
2𝓡//𝑠𝓠−1

𝑠 , 𝓠−1
0 = id⋀ 𝖳𝑥𝑀 ,

d
d𝑠 𝓠−1

𝑠 = 1
2𝓡//𝑠𝓠−1

𝑠 , 𝓠−1
0 = id𝖳𝑥𝑀⊗ ⋀ 𝖳𝑥𝑀 ,
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we also have

|𝓠−1
𝑠 |op ⩽ e𝐾(𝑥)𝑠/2, |𝓠

−1
𝑠 |op

⩽ e𝐾(𝑥)𝑠/2 ℙ-a.s. on {𝑠 ⩽ 𝜏(𝑥, 𝑟)} . (2.23)

According to Lemma 2.10 and Theorem 2.11

𝑁 ∶= (𝓠//−1∇e− 𝑠−•
2 Δ𝛼(𝑋(𝑥)), ℓ) − (𝓠//−1e− 𝑠−•

2 Δ𝛼(𝑋(𝑥)), ℓ(1) + ℓ(2)
)

is a continuous local martingale, and in view of (2.22) and (2.23) and the assumptions

imposed on ℓ, a bounded local martingale, hence a true martingale by Lemma A.11. Eval-

uating 𝑁𝑢 at the times 𝑟 = 0 and 𝑟 = 𝑠 ∧ 𝜏 and taking expectations, we get 𝔼𝑁0 = 𝔼𝑁𝑠∧𝜏
so that

(∇e− 𝑠
2 Δ(1)

𝛼(𝑥), 𝜉) = −𝔼 (𝓠𝑠∧𝜏 //−1
𝑠∧𝜏e− (𝑠−𝑠∧𝜏)

2 Δ𝛼(𝑋𝑠∧𝜏(𝑥)), ℓ(1)
𝑠∧𝜏 + ℓ(2)

𝑠∧𝜏) ,

which is the covariant Bismut formula with 𝑈 ℓ = ℓ(1) + ℓ(2). ■

An immediate consequence is the following Theorem.

Theorem 2.21. Suppose 𝛼 ∈ Ω𝖫2(𝑀), 𝓡− ∈ 𝖪(𝑀) and 𝜉 ∈ 𝐸∗
𝑥 = 𝖳𝑥𝑀 ⊗ ⋀ 𝖳𝑥𝑀 . Let

(ℓ𝑢)0⩽𝑢⩽𝑠 a bounded adapted process with absolutely continuous paths in 𝖳𝑥𝑀 ⊗ ⋀ 𝖳𝑥𝑀 such

that 𝔼 (∫(𝑠−𝜀)∧𝜏(𝑥,𝑟)
0 | ̇ℓ𝑢|

2 d𝑢)
1/2

< ∞ and ℓ0 = 𝜉, ℓ𝑢 = 0 for all 𝑢 ⩾ (𝑠 − 𝜀) ∧ 𝜏(𝑥, 𝑟) and some

arbitrary small 𝜀 > 0. Then,

(∇𝑒− 𝑠
2 Δ𝛼(𝑥), 𝜉) = −𝔼 (𝓠tr

𝑠 //−1
𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝑈 ℓ

𝑠∧𝜏(𝑥)) , (2.24)

where 𝑈 ℓ is given by (2.29), 𝜚tr
//𝑠 ∶= //−1

𝑠 𝜚 //𝑠 with 𝜚 given by (2.4), 𝓠tr and 𝓠tr are defined by (2.5)

and 𝓡 by (2.3).

Proof. Note that, by the strong Markov property,

𝓠tr
𝑠∧𝜏 //−1

𝑠∧𝜏 (𝑃𝑠−𝑠∧𝜏𝛼) (𝑋𝑠∧𝜏(𝑥)) = 𝔼𝓕𝑠∧𝜏 (𝓠tr
𝑠 //−1

𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}) ,

which is by definition a bounded 𝓕𝑠∧𝜏 -measurable random variable. The existence of the

scalar semigroup is provided by the assumption 𝓡− ∈ 𝖪(𝑀). Hence, by Theorem 2.19,

(∇𝑒− 𝑠
2 Δ𝛼(𝑥), 𝜉) = −𝔼 (𝓠tr

𝑠 //−1
𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝑈 ℓ

𝑠∧𝜏) . ■

2.2.2 Global covariant Bismut formula To end this section, we derive a global version

of the covariant Bismut derivative formula that will be our key tool to prove Theorem 4.4.

Therefore, global assumptions on the curvature are sufficient to control the process 𝑈 ℓ

in (2.29), to wit, we assume that the curvature and the derivative of the curvature is

bounded.

This subsection was carried out with Batu Güneysu in our joint work with Baptiste Devyver.

Assumption 2.22. We assume that the curvature and its derivative are bounded by some

constant 𝐴 < ∞, i.e.

max (‖𝖱‖∞ , ‖∇ 𝖱‖∞) ⩽ 𝐴. (2.25)
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First, we show an a priori 𝖫∞ bound.

Lemma 2.23. Assume that (2.25) holds. Then there is a constant 𝐶 = 𝐶(𝐴, 𝑚) > 0 such that

for all 1 ⩽ 𝑘 ⩽ 𝑚, 𝑠 > 0, 𝑥 ∈ 𝑀 , we have

|e
− 𝑠

2 Δ(𝑘)
𝛼(𝑥)| ⩽ 𝐶e𝐶𝑠𝑠−1/2 ‖𝛼‖∞ , ∀𝛼 ∈ 𝝘𝖫2∩𝖫∞∩𝖢∞(𝑀).

Proof. In the sequel, 𝐶(𝑎, … ) denotes a constant that only depends on 𝑎, … , and which

may differ from line to line. Let 𝑠 > 0, 𝑟 > 0, 𝑥 ∈ 𝑀 , 𝜉 ∈ 𝖳∗
𝑥𝑀 ⊗ ⋀𝑘 𝖳∗

𝑥𝑀 be arbitrary and

pick a finite energy process ℓ ∈ 𝖢𝖬(𝑠, 𝜉, ⋀𝑘 𝖳∗
𝑥𝑀). Note that by assumption (2.25) 𝑀 is

stochastically complete, i.e. 𝜁(𝑥) = ∞ ℙ-a.s. It follows from the covariant Feynman-Kac

formula, Corollary 2.18, and the Markov property (cf. Proof of Theorem 2.21) that

(∇e− 𝑠
2 Δ(𝑘)

𝛼(𝑥), 𝜉) = −𝔼 (𝓠𝑠//−1
𝑠 𝛼(𝑋𝑠(𝑥)), ℓ(1)

𝑠 + ℓ(2)
𝑠 ) .

By Gronwall’s inequality, we get

|𝓠𝑠|op ⩽ e𝐶(𝑚,𝐴)𝑠, |𝓠𝑠|op
⩽ e𝐶(𝑚,𝐴)𝑠 ℙ-a.s. on {𝑠 ⩽ 𝜏} , (2.26)

and as 𝓠 and 𝓠 are invertible, we also get

|𝓠−1
𝑠 |op ⩽ e𝐶(𝑚,𝐴)𝑠, |𝓠

−1
𝑠 |op

⩽ e𝐶(𝑚,𝐴)𝑠 ℙ-a.s. on {𝑠 ⩽ 𝜏} . (2.27)

By Corollary 2.15, a proper choice of the Cameron-Martin space valued process ℓ𝑠 gives

[
𝔼 (∫

𝑡∧𝜏

0
| ̇ℓ𝑠|

2 d𝑢)
𝑞/2

]

1/𝑞

⩽ 𝑡−1/2e
𝑡𝐶(𝑚,𝑞,𝐾)

𝑟 + 𝑡𝐶(𝑚,𝑞)
𝑟2 |𝜉| .

By the Burkholder-Davis-Gundy inequality A.12, we get

𝔼 |∫
𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢 ̇ℓ𝑢)| ⩽ 𝔼 (∫
𝑠∧𝜏

0
|𝓠−1

𝑢 |2|𝓠𝑢|2| ̇ℓ𝑢|2d𝑢)
1/2

.

Thus, we estimate

𝔼|ℓ(1)
𝑠∧𝜏 | ⩽ 𝐶 e𝐶(𝑚)𝑠𝑠−1/2e

𝐶(𝐴,𝑚)𝑠
𝑟 + 𝐶(𝑚)𝑠

𝑟2 |𝜉| ,

using eqs. (2.26) and (2.27), and

𝔼|ℓ(2)
𝑠∧𝜏 | ⩽ e𝐶(𝑚)𝑠𝐶(𝐴, 𝑚) |𝜉| ,

which follows from eqs. (2.26) and (2.27), and |ℓ| ⩽ |𝜉|, |𝜌| ⩽ 𝐶(𝐴, 𝑚). Using (2.26) once

more, we can now estimate as follows

|(∇e− 𝑠
2 Δ1𝛼(𝑥), 𝜉)|

⩽ 𝔼 ( |𝓠𝑠||𝛼(𝑋𝑠(𝑥))||ℓ(1)
𝑠∧𝜏 |) + 𝔼 (|𝓠𝑠||𝛼(𝑋𝑠(𝑥))||ℓ(2)

𝑠∧𝜏 |)

⩽ |𝜉| 𝐶(𝐴, 𝑚)e𝐶(𝐴,𝑚)𝑠 ‖𝛼‖∞ (𝐶e𝐶(𝑚)𝑠𝑠−1/2e
𝐶(𝐴,𝑚)𝑠

𝑟 + 𝐶(𝑚)𝑠
𝑟2 + e𝐶(𝑚)𝑠𝐶(𝐴, 𝑚)) .

Taking 𝑟 → ∞, we have managed to construct some 𝐶(𝐴, 𝑚) < ∞, such that for all 𝑥 ∈ 𝑀 ,

𝑠 > 0, we have

|∇e− 𝑠
2 Δ(𝑘)

𝛼(𝑥)| ⩽ 𝐶(𝐴, 𝑚)e𝐶(𝐴,𝑚)𝑠𝑠−1/2 ‖𝛼‖∞ . ■
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By a proper choice of the finite energy process, namely ℓ = (𝑠 − •)/𝑠𝜉, we immediately

get the following

Theorem 2.24. Assume that (2.25) holds. For every 𝑠 > 0, 𝑥 ∈ 𝑀 , 𝜉 ∈ 𝖳∗
𝑥𝑀 ⊗ ⋀𝑘 𝖳𝑥𝑀 , we

have

(∇𝑒− 𝑠
2 Δ(𝑘)

𝛼(𝑥), 𝜉) = −𝔼 (𝓠tr
𝑠 //−1

𝑠 𝛼(𝑋𝑠(𝑥)), 𝑈 global
𝑠 ) , ∀𝛼 ∈ 𝝘𝖫2∩𝖫∞∩𝖢∞(𝑀), (2.28)

where

𝑈 global
𝑠 ∶= 1

𝑠 ∫
𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢)𝜉 + 1
2𝑠 ∫

𝑠

0
𝓠−1

𝑢 𝜚tr
//𝑢𝓠𝑢(𝑠 − 𝑢)𝜉 d𝑢. (2.29)

Proof. According to Lemma 2.10 and Theorem 2.11

𝑁 ∶= (𝓠//−1∇e− 𝑠−•
2 Δ(𝑘)

𝛼(𝑋(𝑥)), ℓ) − (𝓠//−1e− 𝑠−•
2 Δ𝛼(𝑋(𝑥)), 𝑈 global

𝑠 )
is a continuous local martingale. By Lemma 2.23,

|𝑁𝑢| ⩽ 𝐶(𝐴, 𝑚)e𝐶(𝐴,𝑚)𝑠 |𝜉| ‖𝛼‖∞ ((𝑠 − 𝑢)1/2 + |𝑈
global
𝑠 |) ,

As in the previous Proof of Lemma 2.23, by the Burkholder-Davis-Gundy inequality A.12,

eqs. (2.26) and (2.27), 𝑁 is a true martingale and the claim follows from taking expectation

at the times 𝑢 = 0 and 𝑢 = 𝑠. ■

2.3 Local Bismut Formulae for 𝗱 and 𝝳
Theorem 2.25. Let 𝛼 ∈ 𝝘𝖫2∩𝖢∞(⋀ 𝖳∗𝑀) and 𝓡 ∈ 𝖪(𝑀). Then for any 𝑣 ∈ ⋀ 𝖳𝑥𝑀 , we have

the following Bismut type formulae:

((𝗱𝑃𝑠𝛼)𝑥, 𝑣) = −𝔼 (//−1
𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝓠𝑠 ∫

𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢 ̇ℓ𝑢)) , (2.30)

((𝝳𝑃𝑠𝛼)𝑥, 𝑣) = −𝔼 (//−1
𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝓠𝑠 ∫

𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ∧ 𝓠𝑢 ̇ℓ𝑢)) , (2.31)

where 𝓠 is defined by (2.5) and

• 𝜏(𝑥, 𝑟) < 𝜁(𝑥) is the first exit time of 𝑋 from the open ball 𝖡(𝑥, 𝑟),
• d𝐵 ∶= //−1 ∘ d𝑋(𝑥) is a Brownian motion in 𝖳𝑥𝑀 , i.e. the associated anti-development of

the Brownian motion 𝑋(𝑥),
• (ℓ𝑢)0⩽𝑢⩽𝑠 is any adapted process in ⋀ 𝖳𝑥𝑀 with absolutely continuous paths such that

for some arbitrary small 𝜀 > 0

𝔼 (∫
(𝑠−𝜀)∧𝜏(𝑥)

0
| ̇ℓ𝑢|

2 d𝑢)

1/2
< ∞ and ℓ0 = 𝑣, ℓ𝑢 = 0 ∀𝑢 ⩾ (𝑠 − 𝜀) ∧ 𝜏(𝑥, 𝑟).

If, in addition, 𝛼 ∈ Ω𝖫2(𝑀) is bounded on this neighbourhood, we may take 𝜀 = 0.

Proof. Using the same strategy as in the previous Section § 2.2, again the assumption

𝓡 ∈ 𝖪(𝑀) assures that the scalar semigroup is finite. More directly, using 𝓡 ∈ 𝖪(𝑀), it

holds semigroup domination

|𝑃𝑠𝑎(𝑥)| ⩽ 𝑃 𝓡
𝑠 |𝑎| (𝑥).

and the result follows immediately by [DT01, Theorem 6.1]. ■
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Remark 2.26. By the same method used in § 2.2.2, we can deduce global Bismut type

formulae for 𝗱𝑃𝑠𝛼 and 𝝳𝑃𝑠𝛼.

2.4 Gradient Estimates

By the Bismut formulae, derived in the last sections 2.3 and 2.2, we now prove localised

gradient estimates that will be the key tool in the proof of our Main Result in § 3. As

curvature only enters locally around a point 𝑥, the stochastic integral can be estimated

by choosing a suitable finite energy process ℓ and the Burkholder-Davis-Gundy inequality,

Lemma A.12.

From now on, set 𝐷 ∶= 𝖡(𝑥, 𝑟) to be a ball with small radius, say 𝑟 = 1, and we define

𝐾(𝑥) ∶= max {(𝓡(𝑣), 𝑣) ∶ 𝑣 ∈ ⋀ 𝖳𝑦𝑀, |𝑣| = 1, 𝑦 ∈ 𝖡(𝑥, 1)} , (2.32)

𝐾(𝑥) ∶= min {(𝓡(𝑣), 𝑣) ∶ 𝑣 ∈ ⋀ 𝖳𝑦𝑀, |𝑣| = 1, 𝑦 ∈ 𝖡(𝑥, 1)} . (2.33)

Then 𝜏(𝑥, 1) is the first exit time of 𝑋 from the open ball 𝖡(𝑥, 1) (cf. (2.14) above).

Theorem 2.27. Let 𝛼 ∈ Ω𝖫2(𝑀) and 𝓡− ∈ 𝖪(𝑀). Then, for all 𝑠 > 0,

|(𝗱𝑃𝑠𝛼)𝑥|
2 ⩽ Ψ(𝑥, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀) , (2.34)

|(𝝳𝑃𝑠𝛼)𝑥|
2 ⩽ Ψ(𝑥, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀) , (2.35)

where

Ψ(𝑥, 𝑠) ∶= 1
√𝑠

exp [𝐷(𝛾, 𝑐𝛾 (𝓡−), 𝑐1/𝑞
𝑞 )𝑠 + (𝜋√(𝑚 − 1)𝐾(𝑥)− + 𝜋2(𝑚 + 5) + (𝐾(𝑥) + 𝐾(𝑥))

−

)
𝑠
2 ] , (2.36)

and the finite constant 𝐷 depends on the constant 𝑐𝛾 (𝓡−) in (2.7) and the constant 𝑐𝑞 from

the Burkholder-Davis-Gundy inequality, and Φ(𝑥, 𝑠) is defined by (3.19).

Proof. Again by Gronwall’s inequality, we get

|𝓠𝑠|op ⩽ e𝐾(𝑥)𝑠/2, |𝓠−1
𝑠 |op ⩽ e𝐾(𝑥)𝑠/2 ℙ-a.s. on {𝑠 ⩽ 𝜏(𝑥, 𝑟)} . (2.37)

By the Burkholder-Davis-Gundy inequality A.12, we get

𝔼 |∫
𝑠

0
𝓠−1

𝑟 (d𝐵𝑟 ⨼ 𝓠𝑟 ̇ℓ𝑟)|
2𝑞

⩽ 𝑐𝑞e𝑞(𝐾(𝑥)+𝐾(𝑥))
−

𝑠/2𝔼 (∫
𝑠

0
| ̇ℓ𝑟|

2 d𝑟)
𝑞

. (2.38)

Let 𝑞 ∈ [2, ∞). By Lemma 2.14, a proper choice of the Cameron-Martin space valued process

ℓ𝑢 gives

|ℓ| ⩽ |𝑣| ,
[

𝔼 (∫
𝑠∧𝜏(𝑥,1)

0
| ̇ℓ𝑟|

2 d𝑟)

𝑞

]

1/(2𝑞)

⩽ 1
√𝑠

e𝐶(𝑚,2𝑞,𝐾−(𝑥))𝑠/2 |𝑣| , (2.39)

where the constant 𝐶(𝑚, 𝑞, 𝑟, 𝐾−) is given by (2.18).

By Lemma 2.5, for any 𝛾 > 1, there is a constant 𝑐𝛾 = 𝑐𝛾 (𝓡) such that

sup
𝑥∈𝑀

𝔼𝑥
(𝟙{𝑠<𝜁}e∫𝑠

0 |𝓡(𝑋𝑢)|d𝑢
) ⩽ 𝛾e𝑠𝑐𝛾 < ∞. (2.40)
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Now, we can estimate as follows: Let |𝑣| ⩽ 1, then using Hölder and Cauchy-Schwarz

inequality,

|(𝗱𝑃𝑠𝛼)𝑥| ⩽ [𝔼𝑥 |𝛼(𝑋𝑠)𝟙{𝑠<𝜁}|
𝑝
]

1/𝑝
[ 𝔼𝑥

|𝓠𝑠𝟙{𝑠<𝜁} ∫
𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢 ̇ℓ𝑢)|
𝑞

]
1/𝑞

⩽ [𝔼𝑥 |𝛼(𝑋𝑠)𝟙{𝑠<𝜁}|
𝑝
]

1/𝑝
[𝔼𝑥

(|𝓠𝑠|
2𝑞 𝟙{𝑠<𝜁})]

1/(2𝑞)

[
𝔼𝑥

(∫
𝑠

0
𝓠−1

𝑢 (d𝐵𝑢 ⨼ 𝓠𝑢 ̇ℓ𝑢))
2𝑞

]

1/(2𝑞)

(2.40)
⩽

(2.38)
[𝔼 (|𝛼|𝑝 (𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)})]

1/𝑝 𝛾e𝑠𝑐𝛾 𝑐1/𝑞
𝑞 e(𝐾(𝑥)+𝐾(𝑥))

−
𝑠/2

[𝔼 (∫
𝑠

0
| ̇ℓ𝑟|

2 d𝑟)
𝑞

]
1/(2𝑞)

(2.39)
⩽ e𝐶1(𝛾,𝑐𝛾 ,𝑐1/𝑞

𝑞 )𝑠 + (𝐾(𝑥)+𝐾(𝑥))
−

𝑠/2e𝐶(𝑚,2𝑞,𝐾−(𝑥))𝑠/2𝑠−1/2
[∫𝑀

𝑝𝑔,(0)
𝑠 (𝑥, 𝑦) |𝛼(𝑦)|𝑝 vol𝑔(d𝑦)]

1/𝑝

⩽ √Ψ(𝑥, 𝑠) 𝑝√Φ(𝑥, 𝑠) ‖𝛼‖Ω𝖫𝑝 (𝑀) ,

where Ψ(𝑥, 𝑠) is given by (2.42). In particular, for 𝑝 = 2 = 𝑞 the result follows.

By an analogous calculation, we obtain the estimate (2.35). ■

Using similar techniques as in the proof of the previous Theorem 2.27, we can show

the following estimate. Note that, in comparison to Theorem 2.27, the process 𝑈 ℓ in

Theorem 2.21 involves the derivative of the curvature which is now reflected in the local

bound Ξ(𝑥, 𝑠).

Theorem 2.28. Let 𝛼 ∈ Ω𝖫2(𝑀) and 𝓡− ∈ 𝖪(𝑀). Then, for all 𝜉 ∈ 𝖳𝑥𝑀 ⊗⋀ 𝖳𝑥𝑀 and 𝑠 > 0,

|⟨∇𝑃𝑠𝛼, 𝜉⟩|
2 ⩽ |𝜉|2 Ξ(𝑥, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀) , (2.41)

where

Ξ(𝑥, 𝑠) ∶= Ψ(𝑥, 𝑠) + 𝑠−3/2Ψ(𝑥, 𝑠) max
𝑦∈𝖡(𝑥,1)

|∇𝖱(𝑦)| (2.42)

with Ψ(𝑥, 𝑠) defined by (2.42) and Φ(𝑥, 𝑠) is defined by (3.19).

Proof. As in the previous Proof of Theorem 2.27, we find

|ℓ| ⩽ |𝜉| ,
[

𝔼 (∫
𝑠∧𝜏(𝑥,𝑟)

0
| ̇ℓ𝑢|

2 d𝑢)

𝑞

]

1/𝑞

⩽ 𝑠−1/2e𝐶(𝑚,𝑞,𝑟,𝐾−)𝑠/2 |𝜉| , (2.43)

where the constant 𝐶(𝑚, 𝑞, 𝑟, 𝐾−) is given by (2.18).

Again using Gronwall’s inequality we get (2.37), and by

|𝜚(𝑋𝑠(𝑥))| ⩽ max
𝑦∈𝖡(𝑥,𝑟)

|𝜚(𝑦)| ⩽ max
𝑦∈𝖡(𝑥,𝑟)

|∇𝖱(𝑦)| ℙ-a.s. on {𝑠 ⩽ 𝜏(𝑥, 𝑟)} ,

we have

𝔼 |∫
𝑠

0
𝓠−1

𝑠 𝜚tr
//𝑠𝓠𝑠ℓ𝑢 d𝑢| ⩽ 𝑒(𝐾1+𝐾2)−𝑠/2 max

𝑦∈𝖡(𝑥,𝑟)
|∇𝖱(𝑦)| 𝑠 |𝜉| . (2.44)

By Lemma 2.5, for any 𝛾 > 1, there is a constant 𝑐𝛾 = 𝑐𝛾 (𝓡) such that

sup
𝑥∈𝑀

𝔼𝑥
(𝟙{𝑠<𝜁}e∫𝑠

0 |𝓡(𝑋𝑢)|d𝑢
) ⩽ 𝛾e𝑠𝑐𝛾 < ∞.
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As in the proof of Theorem 2.27, a similar calculation shows, using Hölder’s inequality and

the elementary inequality (𝑎 + 𝑏)𝑐 ⩽ 2𝑐−1(𝑎𝑐 + 𝑏𝑐),

|(∇𝑃𝑠𝛼(𝑥), 𝜉)| = |𝔼 (//−1
𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝓠tr

𝑠 𝑈 ℓ
𝑠∧𝜏)|

⩽ 2 |𝔼 (//−1
𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝓠tr

𝑠 ℓ(1)
𝑠∧𝜏)| + |𝔼 (//−1

𝑠 𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}, 𝓠tr
𝑠 ℓ(2)

𝑠∧𝜏)|

⩽ [𝔼 |𝛼(𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)}|
𝑝
]

1/𝑝
(2 [𝔼 (𝓠𝑠𝟙{𝑠<𝜁(𝑥)}ℓ(1)

𝑠∧𝜏)
𝑞
]

1/𝑞
+ [𝔼 (𝓠𝑠𝟙{𝑠<𝜁(𝑥)}ℓ(2)

𝑠∧𝜏)
𝑞
]

1/𝑞

)

⩽ |𝜉| [𝔼 (|𝛼|𝑝 (𝑋𝑠(𝑥))𝟙{𝑠<𝜁(𝑥)})]
1/𝑝 𝛾e𝑠𝑐𝛾 𝑐1/𝑞

𝑞 e(𝐾(𝑥)+𝐾(𝑥))
−

𝑠/2

(
2 [𝔼 (∫

𝑠

0
| ̇ℓ𝑟|

2 d𝑟)
𝑞

]
1/(2𝑞)

+

+ ( max
𝑦∈𝖡(𝑥,1)

|∇𝖱(𝑦)|) 𝑠
⎞
⎟
⎟
⎠

⩽ |𝜉| e𝐷(𝛾,𝑐𝛾 ,𝑐1/𝑞
𝑞 )𝑠 + (𝐾(𝑥)+𝐾(𝑥))

−
𝑠/2

[ e𝐶(𝑚,2𝑞,𝐾−(𝑥))𝑠/2𝑠−1/2 + ( max
𝑦∈𝖡(𝑥,1)

|∇𝖱(𝑦)|) 𝑠]×

× [∫𝑀
𝑝𝑔,(0)

𝑠 (𝑥, 𝑦) |𝛼(𝑦)|𝑝 vol𝑔(d𝑦)]
1/𝑝

⩽ |𝜉| √ Ξ(𝑥, 𝑠)  𝑝√Φ(𝑥, 𝑠)  ‖𝛼‖Ω𝖫𝑝 (𝑀) ,

where Ξ(𝑥, 𝑠) is given by (2.42). In particular, for 𝑝 = 2 = 𝑞 the result follows. ■
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Chapter 3
Scattering Theory for the Hodge Laplacian

Let (𝑀, 𝑔) be a non-compact geodesically complete Riemannian manifold without bound-

ary. The Hodge Laplacian Δ(𝑘)
𝑔 acting on differential 𝑘-forms carries important geometric

and topological information about 𝑀 , of particular interest is the spectrum 𝜎(Δ(𝑘)
𝑔 ) of

Δ(𝑘)
𝑔 . If 𝑀 is compact, then the spectrum consists of eigenvalues with finite multiplicity.

If 𝑀 is non-compact, then the spectrum contains some absolutely continuous part (cf.

[RS79; Wei80]). A natural question to ask is to what extent can we control the absolutely

continuous part of 𝜎(Δ(𝑘)
𝑔 ) and under which assumptions on the geometry of (𝑀, 𝑔)?

A systematic approach to control the absolutely continuous part of the spectrum

𝜎ac(Δ(𝑘)
𝑔 ) is inspired by quantum mechanics, namely scattering theory: Assume that there

is another Riemannian metric ℎ on 𝑀 such that ℎ is quasi-isometric to 𝑔, i.e. there exists

a constant 𝐶 ⩾ 1 such that (1/𝐶)𝑔 ⩽ ℎ ⩽ 𝐶𝑔. We show that under suitable assumptions

the wave operators

𝑊±(Δ(𝑘)
ℎ , Δ(𝑘)

𝑔 , 𝐼 (𝑘)
𝑔,ℎ) = s-lim

𝑡→±∞
e𝑖𝑡Δ(𝑘)

ℎ 𝐼 (𝑘)
𝑔,ℎe−𝑖𝑡Δ(𝑘)

𝑔 𝖯ac(−Δ(𝑘)
𝑔 )

exist and are complete, where the limit is taken in the strong sense, and

𝐼 (𝑘)
𝑔,ℎ ∶ Ω𝑘

𝖫2(𝑀, 𝑔) → Ω𝑘
𝖫2(𝑀, ℎ)

denotes a bounded identification operator between the Hilbert spaces of equivalence

classes of square-integrable Borel 𝑘-forms on 𝑀 corresponding to the metric 𝑔 and ℎ
respectively (cf. Theorem 3.5 and § 3.2 for details). Then as well-known, it follows in

particular that

𝜎ac(Δ(𝑘)
ℎ ) = 𝜎ac(Δ(𝑘)

𝑔 ).

Considering Laplacians acting on 0-forms, i.e. functions, on 𝑀 , Müller & Salomonsen

[MS07] studied the existence and completeness of the wave operators corresponding to the

Laplace-Beltrami operator by assuming both metrics to have a 𝖢∞-bounded geometry and

a weighted integral condition involving a second order deviation of the metrics. Hempel,

Post & Weder [HPW14] improved the result of [MS07] by assuming only a zeroth order

deviation of the metric 𝑔 from ℎ and a weighted integral condition involving a local

lower bound of the injectivity radius and the Ricci curvatures. However, detailed control

on the sectional curvature is needed to get control over the injectivity radii. In general,

injectivity radii are hard to calculate.

Recently, Güneysu & Thalmaier [GT20] established a rather simple integral criterion

induced by two quasi-isometric Riemannian metrics only depending on a local upper

bound on the heat kernel and certain explicitly given local lower bound on the Ricci
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curvature using stochastic methods, namely a Bismut-type formula for the derivative of

the heat semigroup [AT10].

Considering Laplacians acting on differential 𝑘-forms, Bei, Güneysu & Müller [BGM17]

generalised the previous results in [MS07] for the case of conformally equivalent metrics

under a mild first order control on the conformal factor.

Using a similar method, very recently Boldt & Güneysu [BG20] extended the result

of [GT20] to a non-compact spin manifold with a fixed topological spin structure and

two complete Riemannian metrics with bounded sectional curvatures. As the metrics

induce Dirac operators 𝗗𝑔 and 𝗗ℎ, they can show existence and completeness of the wave

operators corresponding to the Dirac operators 𝑊±(𝗗ℎ, 𝗗𝑔, 𝐼𝑔,ℎ) and their squares

𝑊±(𝗗2
ℎ, 𝗗2

𝑔 , 𝐼𝑔,ℎ).

In this chapter, we address the natural question: Can we extend the result of [GT20] to the

setting of differential 𝑘-forms for two quasi-isometric Riemannian metrics?

We will show that this can be done if the Weitzenböck curvature endomorphisms is in

the Kato class and assuming an integral criterion only depending on a local upper bound

on the heat kernel and certain explicitly given local curvature bounds. In addition, a

necessary assumption will be a bound on a weight function measuring the first order

deviation of the metrics in terms of the corresponding covariant derivatives ∇ℎ and ∇𝑔

which is a one-form on 𝑀 with values in 𝖤𝗇𝖽 𝖳𝑀 .

Therefore, we consider the Hodge Laplacian Δ𝑔 , also known as Laplace-de Rham oper-

ator, acting on the full exterior bundle Ω(𝑀) = 𝝘(⋀𝖳∗𝑀), i.e. the complex separable

Hilbert space of differential forms on 𝑀 . The Hodge Laplacian Δ𝑔 is related to the hor-

izontal Laplacian □𝑔 = (∇𝑔)∗∇𝑔 by the Weitzenböck formula Δ𝑔 = □𝑔 − 𝓡𝑔 , where the

Weitzenböck curvature operator 𝓡𝑔 ∈ 𝝘(𝖤𝗇𝖽 Ω(𝑀)) is a symmetric field of endomor-

phisms. In particular, when acting on 1-forms, 𝓡tr
𝑔 |Ω1(𝑀,𝑔) = Ric𝑔 and, acting on func-

tions, 𝓡tr
𝑔 |Ω0(𝑀,𝑔) = 0. We assume that 𝓡𝑔 is in the Kato class, i.e. that the fibrewise

taken operator norm |𝓡𝑔|𝑔 (which is a Borel function on 𝑀) of 𝓡𝑔 is in the Kato class

(cf. Definition Definition 2.3). We are now in the position to state our main result, cf.

Theorem 3.32 below.

Main result. Assume that 𝑔 and ℎ are two geodesically complete and quasi-isometric Rieman-

nian metrics on 𝑀 , denoted 𝑔 ∼ ℎ, and assume that there exists 𝐶 < ∞ such that |𝛿
∇
𝑔,ℎ| ⩽ 𝐶 ,

and that for both 𝜈 ∈ {𝑔, ℎ}, 𝓡𝜈 is in the Kato class and it holds

∫ max {𝛿𝑔,ℎ(𝑥), 𝛿∇
𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠), Ψ𝜈(𝑥, 𝑠)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0, (3.1)

where

• vol𝜈 denotes the Riemannian volume measure with respect to the metric 𝜈,
• Ψ𝜈(𝑥, 𝑠) ∶ 𝑀 → (0, ∞) is a function explicitly given terms of local curvature bounds (cf.

(2.42) in Section 3.3) and a finite constant 𝑐𝛾 (𝓡−) (cf. (2.7) in § 2),
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• Ξ𝜈(⋅, 𝑠) ∶ 𝑀 → (0, ∞) is a function explicitly given in terms of Ψ𝜈(𝑥, 𝑠) and an additional

local bound on the derivative of the curvature (cf. (2.42) in § 2),

• Φ𝜈(⋅, 𝑠) ∶ 𝑀 → (0, ∞) is a local upper bound on the heat kernel acting on functions on

(𝑀, 𝜈) (cf. (3.19) in § 3.2),

• 𝛿𝑔,ℎ ∶ 𝑀 → (0, ∞) a zeroth order deviation of the metrics from each other (cf. (3.14) in

§ 3.2),

• 𝛿∇
𝑔,ℎ ∶ 𝑀 → [0, ∞) a first order deviation of the metrics (cf. (3.15) in § 3.2).

Then the wave operators 𝑊±(Δℎ, Δ𝑔, 𝐼𝑔,ℎ) exist and are complete. Moreover, 𝑊±(Δℎ, Δ𝑔 , 𝐼𝑔,ℎ)
are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δℎ). In particular,

𝜎ac(Δ𝑔) = 𝜎ac(Δℎ).

We will see that a zeroth order deviation 𝛿𝑔,ℎ of the metrics from each other is induced

by quasi-isometry. In comparison to the case of 0-forms, i.e. functions, it turns out that

working on higher degree differential forms, also a first order deviation of the metrics

𝛿∇
𝑔,ℎ = |∇ℎ − ∇𝑔|

2
𝑔 is necessary. But note that ∇ℎ − ∇𝑔 is a one-form on 𝑀 with values in

𝖤𝗇𝖽 𝖳𝑀 .

Remark 3.1. In contrast to previous results, it seems that we are the first to assume

global curvature conditions in terms of the Kato class, more precisely, that the Weitzen-

böck curvature endomorphism is in the Kato class.

To this end, our strategy is to verify the assumptions given by a variant of the

Belopol’skii-Birman theorem 3.5 which is adapted to our special case of two Hilbert spaces.

The main technical difficulty is to show that the operator

𝗧𝑔,ℎ
𝑠 = Δ(𝑘)

ℎ e𝑠Δ(𝑘)
ℎ 𝐼𝑔,ℎe𝑠Δ(𝑘)

𝑔 − e𝑠Δ(𝑘)
ℎ 𝐼𝑔,ℎe𝑠Δ(𝑘)

𝑔 Δ(𝑘)
𝑔

is trace class. As the product of Hilbert-Schmidt operators is trace class, our idea is to

decompose the operator 𝗧𝑔,ℎ
𝑠 in such a way that the terms only consist of (transformed)

derivations of Hilbert-Schmidt estimates and bounded multiplication operators. In com-

parison to the corresponding decomposition formula in [GT20, Lemma 4.1], the analysis

becomes considerably more difficult because the quadratic form associated to Δ(𝑘)
ℎ in-

volves not only the exterior derivative 𝗱(𝑘) , but also the codifferential 𝝳(𝑘)
ℎ which depends

on the metric by definition. Moreover, we encounter quantities transformed by a smooth

vector bundle morphism 𝓐𝑔,ℎ induced by the quasi-isometry (cf. (3.9) below). Using the

quasi-isometry of the metrics we can give a formula how to express the codifferential 𝝳ℎ
with respect to the metric ℎ in terms of the codifferential 𝝳𝑔 in terms of 𝑔 (cf. Lemma

3.15). Using the metric description for the exterior derivative and the codifferential (cf.

Lemma 3.21), we can express the corresponding quantities transformed by 𝓐𝑔,ℎ solely in

terms of the covariant derivative ∇𝑔 of 𝑔 applied to the semigroup (cf. Proposition 3.25).

Our tool to obtain the Hilbert-Schmidt estimates for various derivatives of the heat

semigroup will be derived probabilistic Bismut-type derivative formulae for the exterior

derivative, codifferential and covariant derivative (cf. Theorem 2.27 and 2.28) following the
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ideas in [DT01]. The gradient estimates are then a direct consequence, and the probabilistic

formulae used provide us, in particular, with explicit local constants.

We first look at total differential forms, then finally everything filters through the

form degree to differential 𝑘-forms. The particularly important case, in which two quasi-

isometric Riemannian metrics differ by a conformal metric change, is a direct conse-

quence of our main result.

Because our result is independent of the injectivity radii we have the following appli-

cation to the Ricci flow. Let 𝖱𝑔 be the Riemannian curvature tensor with respect to the

metric 𝑔 and set dim 𝑀 =∶ 𝑚.

Corollary 3.37. Let 𝑆 > 0, 𝜆 ∈ ℝ and assume that

(a) the family (𝑔𝑠)0⩽𝑠⩽𝑆 ⊂ 𝖬𝖾𝗍𝗋𝑀 evolves under a Ricci-type flow

𝜕𝑠𝑔𝑠 = 𝜆 Ric𝑔𝑠 , ∀0 ⩽ 𝑠 ⩽ 𝑆,

(b) the initial metric 𝑔0 is geodesically complete,

(c) there is some 𝐶 > 0 such that |𝖱𝑔𝑠|𝑔𝑠
, |∇

𝑔𝑠𝖱𝑔𝑠|𝑔𝑠
⩽ 𝐶 ∀0 ⩽ 𝑠 ⩽ 𝑆 .

We set, for all 𝑥 ∈ 𝑀 ,

𝑀1(𝑥) ∶= sup {|Ric𝑔𝑠(𝑣, 𝑣)| ∶ 0 ⩽ 𝑠 ⩽ 𝑆, 𝑣 ∈ 𝖳𝑥𝑀, |𝑣|𝑔𝑠 ⩽ 1} ,

𝑀2(𝑥) ∶= sup { |∇
𝑔𝑠
𝑣 Ric𝑔𝑠(𝑢, 𝑤) + ∇𝑔𝑠

𝑢 Ric𝑔𝑠(𝑣, 𝑤) + ∇𝑔𝑠
𝑤 Ric𝑔𝑠(𝑢, 𝑣)| ∶ 0 ⩽ 𝑠 ⩽ 𝑆,

𝑢, 𝑣, 𝑤 ∈ 𝖳𝑥𝑀, |𝑢|𝑔𝑠 , |𝑣|𝑔𝑠 , |𝑤|𝑔𝑠 ⩽ 1}.

Let 𝖡𝑔(𝑥, 𝑟) denote the open geodesic ball (with respect to 𝑔). If

∫ vol𝑔0(𝖡𝑔0(𝑥, 1))−1 max {sinh (
𝑚
4 𝑆 |𝜆| 𝑀1(𝑥)) , 𝑀2(𝑥)} vol𝑔0(d𝑥) < ∞,

then 𝜎ac(Δ𝑔𝑠) = 𝜎ac(Δ𝑔0) for all 0 ⩽ 𝑠 ⩽ 𝑆 .

Thereupon, we reify our main results to the case of global curvature bounds: The cur-

vature operator (with respect to the metric 𝑔) 𝑄𝑔 is uniquely determined by the equation

(𝑄𝑔(𝑋 ∧ 𝑌 ), 𝑈 ∧ 𝑉 )𝑔 = (𝖱𝑔(𝑋, 𝑌 )𝑈, 𝑉 )𝑔

for all smooth vector fields 𝑋, 𝑌 , 𝑈, 𝑉 ∈ 𝝘𝖢∞(𝖳𝑀). By the Gallot–Meyer estimate [GM75],

a global bound 𝑄𝑔 ⩾ −𝐾 , for some constant 𝐾 > 0, already implies that the curvature

endomorphism 𝓡(𝑘)
𝑔 in the Weitzenböck formula (1.11) is globally bounded by

𝓡(𝑘)
𝑔 ⩾ −𝐾𝑘(𝑚 − 𝑘).
Then the function Ξ𝑔(𝑥, 𝑠) can be bounded from above by

Θ𝑔(𝑥) ∶=
(

1 + max
𝑦∈𝖡𝑔(𝑥,1) |∇𝑔𝖱𝑔(𝑦)|)

2

up to constants uniform in 𝑥. In this case, our main result reads as follows.
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Theorem 3.44. Let 𝑄𝜈 ⩾ −𝐾 , for some constant 𝐾 > 0 for both 𝜈 ∈ {𝑔, ℎ}. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀
such that 𝑔 ∼ ℎ and assume that there exists 𝐶 < ∞ such that |𝛿

∇
𝑔,ℎ| ⩽ 𝐶 and that for some

(then both by quasi-isometry) 𝜈 ∈ {𝑔, ℎ}

∫ max {𝛿𝑔,ℎ(𝑥), 𝛿∇
𝑔,ℎ(𝑥) + Θ𝑔(𝑥)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0.

Then the wave operators 𝑊±(Δℎ, Δ𝑔 , 𝐼) exist and are complete. Moreover, 𝑊±(Δℎ, Δ𝑔 , 𝐼)
are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δℎ), and we have

𝜎ac(Δ𝑔) = 𝜎ac(Δℎ).

A direct consequence and additional application of our main result is the particularly

important case of conformal perturbations under local and global curvature bounds, gen-

eralising the results in [BGM17].

A final application is provided through a result by Cheeger, Fukaya and Gromov [CFG92]

known as Cheeger-Gromov’s thick/thin decomposition: On any complete Riemannian 𝑚-

manifold (𝑀, 𝑔) with bounded sectional curvature |𝛋𝑔| ⩽ 1, there exists a Riemannian

metric 𝑔𝜀 on 𝑀 such that 𝑔𝜀 is 𝜀-quasi-isometric to 𝑔 and has bounded covariant deriva-

tives. Hence, in this case, the assumptions of our main result may be suitably relaxed, cf.

Theorem 3.46.

Let us end the introduction with a short outline of this chapter. § 3.1 briefly motivates

und introduces the notion and necessary definitions of the wave operators and the abso-

lutely continuous spectrum. § 3.2 introduces the necessary notation and deviation maps.

In § 3.3, we use the gradient estimates proved in § 2.4, to derive similar estimates for exte-

rior derivative, codifferential and covariant derivative of the heat semigroup deformed by

a smooth vector bundle homomorphism relating the two quasi-isometric metrics. Our

main results are explained in § 3.4. After this, we prove the main result in § 3.5 by making

use of a slight variant of the abstract Belopol’skii-Birman Theorem 3.5. We close in § 3.6

with applications to the Ricci flow § 3.6.1, state the main result in the case of differential

𝑘-forms 3.6.2, the particularly important cases of conformal perturbations § 3.6.3, specify

our results for global curvature bounds § 3.6.4 and 𝜀-close Riemannian metrics § 3.6.5.

3.1 Preliminaries and Motivation

3.1.1 Wave operators, existence and completeness We start this section with a brief

motivation on the definition of the wave operators. A comprehensive introduction of the

notions and results given can be found in e.g. [RS79, Chapter XI.3] or [Kat95, Chapter X].

Let 𝓗 be a complex separable Hilbert space. Given a linear operator 𝗛 in 𝓗 we denote

by 𝖽𝗈𝗆 𝗛 ⊂ 𝓗 its domain, 𝗋𝖺𝗇 𝗦 ⊂ 𝓗 its range, and ker 𝗛 ⊂ 𝓗 its kernel. Recall, by § 1.2,

that given a projection-valued Borel (probability) measure 𝖤 ∶ 𝓑(ℝ) → 𝓛(𝓗) and a Borel

function 𝑓 ∶ ℝ → ℝ by means of the spectral integral

𝑓(𝖯) = ∫ 𝑓(𝜆)𝖤(d𝜆)
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defines a densely defined operator 𝑓(𝗛) in 𝓗. Then 𝑓(𝗛) is bounded if and only 𝑓 is

bounded on the spectrum 𝜎(𝗛) of

𝗛 = ∫ 𝜆 𝖤(d𝜆). (3.2)

By the Spectral Theorem 1.50, for every self-adjoint operator 𝗛 in 𝓗 there is a uniquely

determined projection-valued Borel (probability) measure 𝖤𝗛 on ℝ satisfying (3.2). For

some arbitrary Borel function 𝑓 , we set 𝑓(𝗛) ∶= 𝑓(𝖤𝗛). If 𝗛 is self-adjoint in 𝓗, then for

every 𝜓 ∈ 𝖽𝗈𝗆  𝓗, the path

ℝ ∋ 𝑡 ↦ 𝜓(𝑡) ∶= 𝑒−𝑖𝑡𝗛𝜓 ∈ 𝓗

is the unique (norm-)differentiable solution to the abstract Schrödinger equation

d
d𝑡𝜓(𝑡) = 𝑖𝗛𝜓(𝑡), 𝜓(0) = 𝜓, (𝑡 ∈ ℝ).

If 𝗛 is also semibounded, then for every 𝜓 ∈ 𝓗

[0, ∞) ∋ 𝑡 ↦ 𝜓(𝑡) ∶= e−𝑡𝗛 ∈ 𝓗

is the uniquely determined continuous solution, differentiable on (0, ∞), to the abstract

heat equation

d
d𝑡𝜓(𝑡) = −𝗛𝜓(𝑡), 𝜓(0) = 𝜓, (𝑡 ∈ ℝ).

By Stone’s Theorem 1.52, (e−𝑡𝗛)𝑠>0 gives rise to a the semigroup of operators called the

heat semigroup of 𝗛.

Besides the explicit approach of studying the corresponding scattering matrices, an-

other approach to scattering theory does not involve solving the Schrödinger equations.

Physically we investigate the time evolution of a particle coming from a region where it

interacts with a perturbation potential and leaving this region again. The particle looks

asymptotically free for 𝑡 → ±∞ if the potential is negligible outside this region, so there is

less (or almost no) interaction at large scale. For example, quarks interact weakly at high

energies.

Now, let 𝗛1 and 𝗛2 be self-adjoint operators in Hilbert spaces 𝓗1, the free, and 𝓗2, the

interactive system. By Stone’s Theorem 1.52, they generate unitary evolution semigroups

𝗨1
𝑡 = e−𝑖𝑡𝗛1 and 𝗨2

𝑡 = e−𝑖𝑡𝗛2 . Let 𝜑𝑡 ∶= e−𝑖𝑡𝗛2𝑓, 𝜑0 = 𝑓 be the solution to the Schrödinger

equation. Moreover, we define an identification operator 𝐼 ∶ 𝓗1 → 𝓗2 connecting the

free and the perturbated system.

A quantum state 𝜑𝑡 ∈ 𝓗2 looks asymptotically free as 𝑡 → ∞ if we expect to have

∃𝓗1 ∋ 𝜑1,+
𝑡 = e−𝑖𝑡𝗛1𝑓 +

1 ∶ ‖𝜑𝑡 − 𝐼𝜑1,+
𝑡 ‖𝓗2

𝑡 → ∞⟶ 0.

Thus, by the definition of 𝜑1,+
𝑡 and using that e−𝑖𝑡𝗛2 is unitary, we get

‖e−𝑖𝑡𝗛2 (𝑓 − e𝑖𝑡𝗛2𝐼e−𝑖𝑡𝗛1𝑓 +
1 )‖

𝑡 → ∞⟶𝓗2 0. (3.3)
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This gives rise to the so-called wave operators 𝑊± ∶ 𝓗1 → 𝓗2

𝖽𝗈𝗆 𝑊± ∶= {𝜑 ∈ 𝓗1 ∶ lim
𝑡→±∞

e𝑖𝑡𝗛2𝐼e−𝑖𝑡𝗛1𝜑 exists in the strong sense in 𝓗2}
𝑊± ∶= s-lim

𝑡→±∞
e𝑖𝑡𝗛2𝐼e−𝑖𝑡𝗛1𝜑 ∀𝜑 ∈ 𝖽𝗈𝗆 𝑊±.

(3.4)

The wave operator 𝑊+ maps every «free state» 𝑓 +
1 to the corresponding «scattering

state» 𝑓 . If 𝑊+ exists, then every state in its range eventually moves «freely» in the

sense of (3.3). Although it might be physically more natural to define the wave operator

as the inverse of 𝑊+, it is a priori unclear which states are scattering states (and hence

the domain of definition of such an operator). By the very definition (3.4) we can answer

this question by controlling the range of 𝑊+. Analogously the wave operator 𝑊− reflects

the behaviour in the «distant past».

Further, from a physical point of view, only the action of 𝑊± onto certain subspaces

of the Hilbert spaces are relevant: For some ℎ ∈ 𝓗 in a Hilbert space 𝓗, we take 𝜇ℎ
to be the corresponding spectral measure of 𝓗 on the spectrum 𝜎(𝓗). By Lebesgue’s

decomposition theorem (cf. e.g. [Rud87, Section 6.9, The Theorem of Lebesgue-Radon-

Nikod ́ym]) there is a unique decomposition of 𝜇ℎ into three mutually parts

𝜇ℎ = 𝜇ac ⊕ 𝜇sc ⊕ 𝜇pp,

the absolutely continuous 𝜇ac part (with respect to the Lebesgue measure), the singular

part 𝜇sc (with respect to the Lebesgue measure which is atomless), and the pure point

measure 𝜇pp. By the Spectral Theorem 1.50, from this we get a decomposition

𝓗 = 𝓗ac ⊕ 𝓗sc ⊕ 𝓗pp, (3.5)

where 𝓗ac consists of vectors whose spectral measures are absolutely continuous with

respect to the Lebesgue measure. Analogously, we define 𝓗sc and 𝓗pp, respectively. The

singular subspaces 𝓗sc, 𝓗pp describe physically irrelevant states whereas 𝓗ac relates to

the scattering states. We therefore make the following definition.

Definition 3.2. Let 𝗛1 and 𝗛2 be self-adjoint operators on Hilbert spaces 𝓗1 and 𝓗2,

respectively, 𝐼 ∶ 𝓗1 → 𝓗2 be a bounded operator and 𝖯ac(𝗛1) be the projection onto the

absolutely continuous subspace of 𝗛1. The (generalised) wave operators 𝑊±(𝗛2, 𝗛1, 𝐼)
exist if the strong limits

𝑊±(𝗛2, 𝗛1, 𝐼) = s-lim
𝑡→±∞

e𝑖𝑡𝗛2𝐼e−𝑖𝑡𝗛1𝖯ac(𝗛1)

exist.

Note that 𝑊±(𝗛2, 𝗛1, 𝐼) may not be isometries. A further assumption is that each

scattering state looks asymptotically free which is reflected in the next definition.

Definition 3.3. Suppose that 𝑊±(𝗛2, 𝗛1, 𝐼) exist. We say that they are complete if and

only if

(𝗄𝖾𝗋 𝑊±(𝗛2, 𝗛1, 𝐼))
⟂ = 𝗋𝖺𝗇 𝖯ac(𝗛1), 𝗋𝖺𝗇 𝑊±(𝗛2, 𝗛1, 𝐼) = 𝗋𝖺𝗇 𝖯ac(𝗛2).
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Moreover by the decomposition (3.5), the spectrum 𝜎(𝗛) of 𝗛 also splits into three parts

given by

𝜎(𝗛) = 𝜎ac(𝗛) ∪ 𝜎sc(𝗛) ∪ 𝜎pp(𝗛),

where

(i) 𝜎ac(𝗛)∶= 𝜎(𝗛ac) is called the absolutely continuous spectrum of 𝗛,

(ii) 𝜎sc(𝗛) ∶= 𝜎(𝗛sc) is called the singular spectrum of 𝗛,

(iii) 𝜎pp(𝗛) is the set of eigenvalues of 𝗛, called the pure point spectrum of 𝗛.

More precisely, given a self-adjoint operator 𝗛 in a Hilbert space 𝓗 with its operator

valued spectral measure 𝖤𝗛, we define the 𝗛-absolutely continuous subspace 𝓗ac(𝗛) of
𝓗 to be the space of all 𝑓 ∈ 𝓗 such that the Borel measure ‖𝖤𝗛(⋅)𝑓‖

2
on ℝ is absolutely

continuous with respect to the Lebesgue measure. Then 𝓗ac(𝗛) becomes a closed sub-

space of 𝓗 and the restriction 𝗛ac of 𝗛 to 𝓗ac(𝗛) is a well-defined self-adjoint operator.

So the absolutely continuous spectrum 𝜎ac(𝗛) of 𝗛 is defined to be the spectrum of 𝗛ac.

The following, fundamental theorem provides a criteria for the existence and complete-

ness of the wave operators that can be found e.g. in [RS79, Theorem X1.13].

Theorem 3.4 (Classical Belopol’skii-Birman Theorem). For 𝑗 = 1, 2, let𝗛𝑗 ⩾ 0 be self-adjoint

operators in a Hilbert space 𝓗𝑗 , 𝗾𝑗 the corresponding sesquilinear form, and 𝖯ac(𝗛𝑗) the pro-

jection onto the absolutely continuous subspace of 𝓗𝑗 corresponding to 𝗛𝑗 . Assume that

𝐼 ∈ 𝓛(𝓗1, 𝓗2) is a bounded operator such that the following assumptions hold:

(1) 𝐼 has a two-sided bounded inverse

(2) For any bounded interval 𝐽 ⊂ ℝ:

𝖤𝗛2(𝐽 ) (𝗛2𝐼 − 𝐼𝗛1) 𝖤𝗛1(𝐽 ) ∈ 𝓙1(𝓗1, 𝓗2)

(3) For any bounded interval 𝐽 , the operator (𝐼∗𝐼 − 1)𝐸𝐽 (𝗛2) ∈ 𝓙∞(𝓗1), i.e. is compact

(4) and either

𝐼 𝖽𝗈𝗆 𝗛1 = 𝖽𝗈𝗆 𝗛2 or 𝐼 𝖽𝗈𝗆 𝗾1 = 𝖽𝗈𝗆 𝗾2

Then the wave operators 𝑊±(𝗛2, 𝗛1, 𝐼) exist and are complete. Moreover, 𝑊±(𝗛2, 𝗛1, 𝐼) are
partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(𝗛1) and final space 𝗋𝖺𝗇 𝖯ac(𝗛2), and we have

𝜎ac(𝗛1) = 𝜎ac(𝗛2).

In the proof of Theorem 3.32, we will use a variant of the Belopol’skii-Birman Theo-

rem 3.5, which is adapted to our special case of two Hilbert space scattering theory,

originally to be found in [GT20].

Theorem 3.5 (Belopol’skii-Birman). For 𝑗 = 1, 2, let 𝗛𝑗 ⩾ 0 be self-adjoint operators in a

Hilbert space 𝓗𝑗 and 𝖯ac(𝗛𝑗) the projection onto the absolutely continuous subspace of 𝓗𝑗
corresponding to 𝗛𝑗 . Assume that 𝐼 ∈ 𝓛(𝓗1, 𝓗2) is a bounded operator such that the

following assumptions hold:
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(1) 𝐼 has a two-sided bounded inverse

(2) We have either 𝐼 𝖽𝗈𝗆 √𝗛1 = 𝖽𝗈𝗆 √𝗛2 or 𝐼 𝖽𝗈𝗆 𝗛1 = 𝖽𝗈𝗆 𝗛2

(3) The operator (𝐼∗𝐼 − 1)e−𝑠𝗛1 ∶ 𝓗1 → 𝓗1 is compact for some 𝑠 > 0

(4) There is a trace class operator 𝗧 ∶ 𝓗1 → 𝓗2 and a number 𝑠 > 0 such that for all

𝛼1 ∈ 𝖽𝗈𝗆 𝗛1, 𝛼2 ∈ 𝖽𝗈𝗆 𝗛2 we have

⟨𝛼2, 𝗧𝛼1⟩𝓗2
= ⟨𝗛2𝛼2, e−𝑠𝗛2𝐼e−𝑠𝗛1𝛼1⟩𝓗2

− ⟨𝛼2, e−𝑠𝗛2𝐼e−𝑠𝗛1𝗛1𝛼1⟩𝓗2
.

Then the wave operators

𝑊±(𝗛2, 𝗛1, 𝐼) = s-lim
𝑡→±∞

e𝑖𝑡𝗛2𝐼e−𝑖𝑡𝗛1𝖯ac(𝗛1)

exist and are complete, where completeness means that

(𝗄𝖾𝗋 𝑊±(𝗛2, 𝗛1, 𝐼))
⟂ = 𝗋𝖺𝗇 𝖯ac(𝗛1), 𝗋𝖺𝗇 𝑊±(𝗛2, 𝗛1, 𝐼) = 𝗋𝖺𝗇 𝖯ac(𝗛2).

Moreover, 𝑊±(𝗛2, 𝗛1, 𝐼) are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(𝗛1) and final space

𝗋𝖺𝗇 𝖯ac(𝗛2), and we have

𝜎ac(𝗛1) = 𝜎ac(𝗛2).

Proof. In view of Theorem 3.4 and the proof in [RS79, Theorem XI.13], it remains to show

that for every bounded interval 𝐽 the operator (𝐼∗𝐼 − 1)𝖤𝗛1(𝐽 ) is compact, and that there

exists a trace class operator 𝗧 ∈ 𝓙1(𝓗1, 𝓗2) such that for every bounded interval 𝐽 and

all 𝛼1, 𝛼2 as above we have

⟨𝑓 , 𝗧𝛼1⟩𝓗2
= ⟨𝗛2𝛼2, 𝖤𝗛2(𝐽 )𝐼𝖤𝗛1(𝐽 )𝛼1⟩𝓗2

− ⟨𝛼2, 𝖤𝗛2(𝐽 )𝐼𝖤𝗛1(𝐽 )𝗛1𝛼1⟩𝓗2
.

However, using that for all self-adjoint operators 𝗛 and all Borel functions 𝑓, 𝑔 ∶ ℝ → ℂ,

we have

𝑓(𝗛)𝑔(𝗛) ⊂ (𝑓𝑔)(𝗛), 𝖽𝗈𝗆(𝑓(𝗛)𝑔(𝗛)) = 𝖽𝗈𝗆(𝑓(𝗛)𝑔(𝗛)) ∩ 𝖽𝗈𝗆 𝑔(𝗛),

the required compactness becomes obvious, and furthermore

𝗧 ∶= e𝑠𝗛2𝖤𝗛2(𝐽 )𝐼e𝑠𝗛1𝖤𝗛1(𝐽 )

has the required trace class property. ■

By a classical result of Kato (cf. [Kat95, X. Perturbation of continuous spectra and unitary

equivalence] and [Kat95, p. 534, Theorem 3.5.] therein), Theorem 3.5 implies

Theorem 3.6. Assume in the above situation that the wave operators 𝑊±(𝐻2, 𝐻1, 𝐼) exist

and are complete. Then the operators 𝐻1,ac and 𝐻2,ac are unitarily equivalent. In particular,

we have

𝜎ac(𝐻1) = 𝜎ac(𝐻2).



72 – Chapter 3 ⋉ Scattering Theory for the Hodge Laplacian

3.2 Setting and Notation

In the remainder this chapter, we must carefully distinguish between the underlying

quasi-isometric complete Riemannian metrics 𝑔 and ℎ in the notation.

Therefore, let (𝑀, 𝑔) be a complete smooth Riemannian manifold without boundary

of dimension 𝑚 ∶= dim 𝑀 ⩾ 2 and (⋅, ⋅)𝑔 its Riemannian metric. We write vol𝑔 for the

corresponding volume measure (with respect to the metric 𝑔) and denote by 𝖬𝖾𝗍𝗋𝑀 the

set of all smooth Riemannian metrics on 𝑀 . All bundles will be understood complexified,

e.g. the full exterior bundle

⋀𝖳∗𝑀 =
𝑚

⨁
𝑘=0

⋀𝑘 𝖳∗𝑀, with the usual convention ⋀0 𝖳∗𝑀 = ℂ. (3.6)

Given smooth complex vector bundles 𝐸1 → 𝑀 and 𝐸2 → 𝑀 the complex linear space of

smooth linear partial differential operators from 𝐸1 to 𝐸2 of order ⩽ 𝑘 ∈ ℕ0 is denoted

by 𝓓(𝑘)(𝑀; 𝐸1, 𝐸2), with shorthand notation 𝓓(𝑘)(𝑀; 𝐸1) if 𝐸1 ≡ 𝐸2. On a vector bundle

𝐸 → 𝑀 (e.g. 𝐸 = ⋀𝑘 𝖳∗𝑀) the corresponding fibre norms are denoted by

|𝜑|𝑔 ∶= (𝜑, 𝜑)1/2
𝑔 for any section 𝜑 ∈ 𝝘(𝐸),

where 𝝘(𝐸) ∶= 𝝘𝖢∞(𝐸) denotes all smooth sections of 𝐸 and 𝝘𝖫2(𝐸) the 𝖫2-section of 𝐸.

In the case of 𝐸 = ⋀𝑘 𝖳∗𝑀 , we indicate the corresponding form degree by an index:

For example, ∇𝑔,(𝑘) or (⋅, ⋅)(𝑘)
𝑔 etc.

We denote by Ω𝖫2(𝑀, 𝑔) ∶= 𝝘𝖫2(⋀𝖳∗(𝑀, 𝑔)) the complex separable Hilbert space of

equivalence classes 𝛼 of square-integrable Borel forms on 𝑀 such that

‖𝛼‖2
𝑔 ∶= ‖𝛼‖2

Ω𝖫2 (𝑀,𝑔) ∶= ∫𝑀
|𝛼(𝑥)|2

𝑔 vol𝑔(d𝑥) < ∞,

with inner product

⟨𝛼, 𝛽⟩𝑔 ∶= ⟨𝛼, 𝛽⟩Ω𝖫2 (𝑀,𝑔) ∶= ∫𝑀
(𝛼(𝑥), 𝛽(𝑥))𝑔 vol𝑔(d𝑥).

Analogously, we write Ω𝑘
𝖫2(𝑀, 𝑔) for the Hilbert space of Borel 𝑘-forms. In particular,

Ω𝖫2(𝑀, 𝑔) =
𝑚

⨁
𝑘=0

Ω𝑘
𝖫2(𝑀, 𝑔).

To relax notation, we set

Ω(𝑀, 𝑔) ∶= Ω𝖢∞(𝑀, 𝑔)  and Ω𝑘(𝑀, 𝑔) ∶= Ω𝑘
𝖢∞(𝑀, 𝑔).

for the set of all smooth forms, and smooth 𝑘-forms respectively, on (𝑀, 𝑔).
Further, for some 𝛼 ∈ Ω1(𝑀), we denote by

• ∧ 𝛼 ∈ 𝓓(0)(𝑀; ⋀𝑘 𝖳∗𝑀, ⋀𝑘+1 𝖳∗𝑀)

the exterior product and its formal adjoint with respect to 𝑔, the interior multiplication,

by

• ⨼𝑔 𝛼 ∶= (• ∧ 𝛼)∗𝑔 ∈ 𝓓(0)(𝑀; ⋀𝑘 𝖳∗𝑀, ⋀𝑘−1 𝖳∗𝑀).
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The interior multiplication corresponds to the contraction of 𝛼 ∈ Ω𝑘(𝑀) with a vector

field 𝑋 ∈ 𝝘(𝖳𝑀) and is an antiderivation, cf. Definition 1.35.

We denote by

𝗱(𝑘) ∈ 𝓓(1)(𝑀; ⋀𝑘 𝖳∗𝑀, ⋀𝑘+1 𝖳∗𝑀)
𝝳(𝑘)

𝑔 ∈ 𝓓(1)(𝑀; ⋀𝑘 𝖳∗𝑀, ⋀𝑘−1 𝖳∗𝑀)

the exterior derivative on 𝑘-forms and, respectively, the codifferential as the formal ad-

joint of 𝗱(𝑘−1). Then the Hodge Laplacian can be written as the sum

Δ(𝑘)
𝑔 ∶= − (𝝳(𝑘+1)

𝑔 𝗱(𝑘) + 𝗱(𝑘−1)𝝳(𝑘)
𝑔 ) ∈ 𝓓(2)(𝑀; ⋀𝑘 𝖳∗𝑀)

and its Friedrichs realisation in Ω𝑘
𝖫2(𝑀, 𝑔) will be again denoted by Δ(𝑘)

𝑔 ⩽ 0. In particular,

for 𝑘 = 0, we recover the special case of the Laplace-Beltrami operator acting on 0-forms,

i.e. functions,

Δ(0)
𝑔 = −𝝳(1)

𝑔 𝗱(0) ∈ 𝓓(2)(𝑀).

Furthermore, we set

𝗱 ∶=
𝑚

⨁
𝑘=0

𝗱(𝑘) ∈ 𝓓(1)(𝑀; ⋀ 𝖳∗𝑀)

𝝳𝑔 ∶=
𝑚

⨁
𝑘=0

𝝳(𝑘)
𝑔 ∈ 𝓓(1)(𝑀; ⋀ 𝖳∗𝑀)

and define the underlying Dirac-type operator 𝗗𝑔 , and the (total) Hodge Laplacian Δ𝑔

𝗗𝑔 ∶= 𝗱 + 𝝳𝑔 ∈ 𝓓(1)(𝑀; ⋀ 𝖳∗𝑀)
Δ𝑔 ∶= −𝗗2

𝑔 ∈ 𝓓(2)(𝑀; ⋀ 𝖳∗𝑀)

where the Friedrichs realisation of Δ𝑔 in Ω𝑘
𝖫2(𝑀, 𝑔) will be again denoted by Δ𝑔 ⩽ 0. In

particular,

Δ𝑔|Ω𝑘(𝑀,𝑔) = Δ(𝑘)
𝑔 ∈ 𝓓(2)(𝑀; ⋀𝑘 𝖳∗𝑀)

and

Δ𝑔 =
𝑚

⨁
𝑘=0

Δ(𝑘)
𝑔 as self-adjoint operators.

Since 𝑔 is (geodesically) complete, it follows that the operators 𝗗𝑔 , Δ𝑔 , Δ(𝑘)
𝑔 are essentially

self-adjoint on the corresponding space of smooth compactly supported forms [Str83].

Next, recall that for the 𝑘-fold exterior product of the vector space 𝖳∗𝑀 , we obtain a

scalar product (⋅, ⋅)𝑔 on ⋀𝑘 𝖳∗𝑀 by the bilinear extension of

(𝛼1 ∧ ... ∧ 𝛼𝑘, 𝛽1 ∧ ... ∧ 𝛽𝑘)𝑔 = det (𝛼𝑗 , 𝛽𝑙)𝑔 . (3.7)

Any 𝐴 ∈ 𝖤𝗇𝖽(𝖳∗𝑀) induces a linear map

⋀𝑚 𝐴 ∶ ⋀𝑚 𝖳∗𝑀 → ⋀𝑚 𝖳∗𝑀
𝛼1 ∧ ... ∧ 𝛼𝑚 ↦ 𝐴𝛼1 ∧ ... ∧ 𝐴𝛼𝑚.
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As ⋀𝑚 𝖳∗𝑀 is one-dimensional, the map ⋀𝑚 𝐴 is given by multiplication with a unique

number, denoted by det 𝐴,

⋀𝑚 𝐴(𝑒1 ∧ ... ∧ 𝑒𝑚) = (det 𝐴) 𝑒1 ∧ ... ∧ 𝑒𝑚,

where (𝑒1, … , 𝑒𝑚) is a basis for ⋀𝑚 𝖳∗
𝑥𝑀 .

A Riemannian metric (𝑢, 𝑣)𝑔 = 𝑔(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝖳𝑥𝑀 gives by definition an inner product

on each tangent space 𝖳𝑥𝑀 (𝑥 ∈ 𝑀). By Riesz’ representation theorem, 𝑔 provides a

natural isomorphism between tangent and cotangent bundle given by 𝑣 ↦ (𝑣, ⋅)𝑔 ,

𝖳𝑀
♭𝑔

⇄
♯𝑔

𝖳∗𝑀.

More precisely, we define the sharp operator ♯𝑔 (with respect to 𝑔) by

♯𝑔 ∶ 𝖳∗𝑀 → 𝖳𝑀, 𝛼(𝑣) = 𝑔(𝛼♯𝑔 , 𝑣).

The Riemannian metric 𝑔 defines a metric 𝑔 on 𝖳∗𝑀 , the cometric, via

𝑔(𝛼, 𝛽) ∶= 𝑔(𝛼♯𝑔 , 𝛽♯𝑔 ) ∀𝛼, 𝛽 ∈ 𝖳∗
𝑥𝑀 ∀𝑥 ∈ 𝑀,

which extends to a metric on ⋀𝑘𝖳∗𝑀 according to (3.7).

Given 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , we define a vector bundle morphism

𝐴 ∶= 𝐴𝑔,ℎ ∶ 𝖳𝑀 ∼⟶ 𝖳𝑀, ℎ(𝑢, 𝑣) = 𝑔(𝐴𝑢, 𝑣), ∀𝑥 ∈ 𝑀 ∀𝑢, 𝑣 ∈ 𝖳𝑥𝑀. (3.8)

Note that the vector bundle morphism 𝐴 = 𝐴𝑔,ℎ induces a vector bundle morphism on

the cotangent bundle via

𝐴 ∶ 𝖳∗𝑀 ∼⟶ 𝖳∗𝑀, 𝛼 ↦ 𝐴𝛼 ∶= 𝛼 ∘ 𝐴.

Lemma 3.7 (and Definition). In terms of the notations above, we have

ℎ(𝛼, 𝛽) = 𝑔(𝐴−1𝛼, 𝛽) ∀𝛼, 𝛽 ∈ 𝖳∗
𝑥𝑀 ∀𝑥 ∈ 𝑀.

Extending 𝐴−1 = 𝐴−1
𝑔,ℎ to a smooth vector bundle morphism by

𝓐 ∶= 𝓐𝑔,ℎ(𝑥) ∶= (⋀ 𝐴−1
𝑔,ℎ)𝑥 ∶ ⋀ 𝖳∗𝑀 ∼⟶ ⋀ 𝖳∗𝑀, 𝓐𝛼 ∶= 𝛼 ∘ 𝓐, (3.9)

we obtain

𝑔(𝓐𝑔,ℎ(𝑥)𝛼, 𝛽) = ℎ(𝛼, 𝛽) for 𝑥 ∈ 𝑀, 𝛼, 𝛽 ∈ ⋀ 𝖳∗
𝑥𝑀.

In the following the induced metrics will be understood complexified (conjugate-linear

in the first variable and linear in the second).

Remark 3.8. (i) By the positive-definiteness of ℎ (or 𝑔), 𝓐𝑔,ℎ(𝑥) has only positive eigen-

values (𝑥 ∈ 𝑀). By the symmetry of 𝑔 and ℎ the endomorphism 𝓐𝑔,ℎ is fibrewise

self-adjoint with respect to 𝑔 and ℎ. Therefore, the fibrewise operator norm |⋅|𝑔
(or |⋅|ℎ) induced by the metric 𝑔 (or ℎ) of 𝓐 is equivalent to absolute value of the

largest eigenvalue on the given fibre for both 𝑔 and ℎ. Thus to relax notation, we

may suppress the metric and simply write |𝓐|.
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(ii) By the very definition, 𝓐1/2 is a (pointwise) isometry from (⋀ 𝖳∗𝑀, 𝑔) to (⋀ 𝖳∗𝑀, ℎ).

Proof of Lemma 3.7. We prove the Lemma in several steps.

1o We calculate the sharp operator in the new metric. For 𝑥 ∈ 𝑀 , let 𝑣 ∈ 𝖳𝑥𝑀 and

𝛼 ∈ 𝖳∗
𝑥𝑀 . By duality,

𝑔 (𝛼♯𝑔 , 𝑣) = 𝛼(𝑣) = ℎ (𝛼♯ℎ, 𝑣) = 𝑔 (𝐴𝛼♯ℎ, 𝑣) ⟹ 𝛼♯𝑔 = 𝐴𝛼♯ℎ, (3.10)

for all 𝑣 ∈ 𝖳𝑥𝑀 .

2o Let 𝛼, 𝛽 ∈ 𝖳∗
𝑥𝑀 , then

ℎ (𝛼, 𝛽) = ℎ (𝛼♯ℎ , 𝛽♯ℎ
)

= 𝑔 (𝐴𝛼♯ℎ , 𝛽♯ℎ
) = 𝑔(𝛼♯ℎ , 𝐴𝛽♯ℎ) = 𝑔(𝐴−1𝛼♯𝑔 , 𝛽♯𝑔 ) = 𝑔(𝛼 ∘ 𝐴−1, 𝛽),

where we used that 𝐴−1𝛼♯𝑔 = (𝛼 ∘ 𝐴−1)♯𝑔 in the last equality.

3o For any 𝛼, 𝛽 ∈ Ω𝑘(𝑀),

ℎ(𝛼, 𝛽) = ℎ (𝛼♯ℎ
1 ∧ ... ∧ 𝛼♯ℎ

𝑘 , 𝛽♯ℎ
1 ∧ ... ∧ 𝛽♯ℎ

𝑘 )
(3.7)= det (𝛼♯ℎ

𝑘 , 𝛽♯ℎ
𝑙 )ℎ

= det (𝐴𝛼♯ℎ
𝑘 , 𝛽♯ℎ

𝑙 )𝑔
(3.10)= det (𝛼♯𝑔

𝑘 , 𝐴−1𝛽♯𝑔
𝑙 )𝑔

𝐴=
s.a.

det (𝐴−1𝛼♯𝑔
𝑘 , 𝛽♯𝑔

𝑙 )𝑔

= 𝑔 (𝐴−1𝛼♯𝑔
1 ∧ ... ∧ 𝐴−1𝛼♯𝑔

𝑘 , 𝛽♯𝑔
1 ∧ ... ∧ 𝛽♯𝑔

𝑘 )
= 𝑔 (⋀𝑘𝐴−1 (𝛼1 ∧ ... ∧ 𝛼𝑘) , 𝛽1 ∧ ... ∧ 𝛽𝑘) = 𝑔 (𝓐𝛼, 𝛽) . ■

The following estimates are necessary tools for the main proof noting that it is inde-

pendent of the quasi-isometry of 𝑔 and ℎ.

Lemma 3.9. Let 𝓐 ∶= 𝓐𝑔,ℎ be the smooth vector bundle morphism defined by (3.9). For any

vector field 𝑋 ∈ 𝝘(𝖳𝑀), we get

∇𝑔
𝑋𝓐 = 𝓐(∇ℎ

𝑋 − ∇𝑔
𝑋) + (∇ℎ

𝑋 − ∇𝑔
𝑋)∗𝓐,

and the pointwise estimate

|∇𝑔
𝑋𝓐|𝑔 ⩽ 2 |𝓐| |∇ℎ

𝑋 − ∇𝑔
𝑋|𝑔 , (3.11)

where |⋅|𝑔 denotes the operator norm induced by the inner product 𝑔.

Proof. We divide the proof into two steps.

1o Differentiating the identity

(𝛼, 𝛽)ℎ = (𝓐𝛼, 𝛽)𝑔
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in direction of 𝑋, on the one hand,

𝑋 (𝛼, 𝛽)ℎ = (∇ℎ
𝑋𝛼, 𝛽)ℎ + (𝛼, ∇ℎ

𝑋𝛽)ℎ
= (𝓐∇ℎ

𝑋𝛼, 𝛽)𝑔 + (𝓐𝛼, ∇ℎ
𝑋𝛽)𝑔

and on the other hand,

𝑋 (𝓐𝛼, 𝛽)𝑔 = (∇𝑔
𝑋(𝓐𝛼), 𝛽)𝑔 + (𝓐𝛼, ∇𝑔

𝑋𝛽)𝑔

= ((∇𝑔
𝑋𝓐)𝛼, 𝛽)𝑔 + (𝓐∇𝑔

𝑋𝛼, 𝛽)𝑔 + (𝓐𝛼, ∇𝑔
𝑋𝛽)𝑔 .

Hence,

((∇𝑔
𝑋𝓐)𝛼, 𝛽)𝑔 = (𝓐(∇ℎ

𝑋 − ∇𝑔
𝑋)𝛼, 𝛽)𝑔 + (𝛼, 𝓐(∇ℎ

𝑋 − ∇𝑔
𝑋)𝛽)𝑔 ,

using the self-adjointness of 𝓐.

2o We estimate

|∇𝑔
𝑋𝓐|𝑔 ⩽ sup

|𝑣|,|𝑤|⩽1 |((∇𝑔
𝑋𝓐)𝑣, 𝑤)𝑔|

⩽ sup
|𝑣|,|𝑤|⩽1 (|(𝓐(∇ℎ

𝑋 − ∇𝑔
𝑋)𝑣, 𝑤)𝑔| + |(𝑣, 𝓐(∇ℎ

𝑋 − ∇𝑔
𝑋)𝑤)𝑔|)

⩽ 2 |𝓐| |∇ℎ
𝑋 − ∇𝑔

𝑋|𝑔 . ■

Lemma 3.10. Let 𝓐 ∶= 𝓐𝑔,ℎ be the smooth self-adjoint vector bundle morphism defined by

(3.9). Then also 𝓐1/2 and, for any 𝑋 ∈ 𝝘(𝖳𝑀), ∇𝑔
𝑋𝓐1/2 are self-adjoint.

Proof. By definition, the smooth vector bundle morphism 𝓐 is self-adjoint, so clearly is

𝓐1/2.

Let 𝑋 ∈ 𝝘(𝖳𝑀) and 𝛾 ∶ (−𝜀, 𝜀) → 𝑀 be a smooth curve 𝛾(0) = 𝑥 and ̇𝛾(0) = 𝑋 for any

𝜀 > 0. By Lemma 1.23, for any 𝑌 , 𝑍 ∈ 𝝘(𝖳𝑀),

(∇𝑋𝓐1/2(𝑌 ), 𝑍)𝑔 = d
d𝑡 |𝑡=0 (//−1

𝑡 𝓐1/2
𝛾(𝑡)(𝑌 ), 𝑍)𝑔

= d
d𝑡 |𝑡=0 (𝑌 , //−1

𝑡 𝓐1/2
𝛾(𝑡)(𝑍))𝑔

= (𝑌 , ∇𝑋𝓐1/2(𝑍))𝑔 ,

using the self-adjointness of 𝓐1/2. ■

We point out that a similar argument was recently developed in [BG20] to prove the

estimates in the following

Lemma 3.11. Let 𝓐 ∶= 𝓐𝑔,ℎ be the smooth vector bundle morphism defined by (3.9). For any

vector field 𝑋 ∈ 𝝘(𝖳𝑀), we get the pointwise estimates

|∇𝑔
𝑋𝓐1/2|𝑔 ⩽ |𝓐| |𝓐−1/2| |∇ℎ

𝑋 − ∇𝑔
𝑋|𝑔

|∇𝑔
𝑋𝓐−1/2|𝑔 ⩽ |𝓐| |𝓐−1/2|

3
|∇ℎ

𝑋 − ∇𝑔
𝑋|𝑔 ,

where |⋅|𝑔 denotes the operator norm induced by the inner product 𝑔.

Proof. We divide the proof into three steps.
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1o Recall that 𝓐1/2 is an isometry, so that

(𝓐1/2𝛼, 𝓐1/2𝛼)𝑔 = (𝛼, 𝛼)ℎ .

Differentiating the identity in the direction of 𝑋, on the one hand

𝑋 (𝓐1/2𝛼, 𝓐1/2𝛼)𝑔 = 2 (∇𝑔
𝑋𝓐1/2(𝛼), 𝓐1/2𝛼)𝑔 + 2 (𝓐1/2∇𝑔

𝑋𝛼, 𝓐1/2𝛼)𝑔 ,

whereas, on the other hand

𝑋 (𝛼, 𝛼)ℎ = 2 (∇ℎ
𝑋𝛼, 𝛼)ℎ = 2 (𝓐∇ℎ

𝑋𝛼, 𝛼)𝑔 .

Thus,

(∇𝑔
𝑋𝓐1/2𝛼, 𝓐1/2𝛼)𝑔 = (𝓐1/2 ∘ (∇ℎ

𝑋 − ∇𝑔
𝑋) 𝛼, 𝓐1/2𝛼)𝑔 . (3.12)

2o By Lemma 3.10 𝓐1/2 is self-adjoint so is ∇𝑔
𝑋𝓐1/2. So, let 𝜆 be an eigenvalue of ∇𝑔

𝑋𝓐1/2

with |𝜆| = |∇𝑔
𝑋𝓐1/2|𝑔 at a fixed point 𝑥 ∈ 𝑀 . Let 𝑣 ∈ 𝖳𝑥𝑀 be a corresponding

𝑔-normalised eigenvector. We estimate

|(𝓐1/2∇𝑔
𝑋𝓐1/2𝑣, 𝑣)𝑔| = |𝜆| |(𝓐1/2𝑣, 𝑣)𝑔| = |∇𝑔

𝑋𝓐1/2|𝑔 |(𝓐1/2𝑣, 𝑣)𝑔|
⩾ |∇𝑔

𝑋𝓐1/2|𝑔 |𝓐−1/2|
−1 ,

where we used that 𝓐, hence 𝓐1/2, has only (strictly) positive eigenvalues: More

precisely, since 𝓐1/2 is self-adjoint, there are eigenvalues 𝜆min and 𝜆max of 𝓐1/2 such

that

𝜆min(𝓐1/2) ⩽ (𝓐1/2𝑢, 𝑢)𝑔 ⩽ 𝜆max(𝓐1/2).

By definition, the smooth vector bundle morphism 𝓐 has only strictly positive eigen-

values, so does 𝓐1/2 and we have that (𝓐1/2𝑢, 𝑢)𝑔 > 0. Moreover, the eigenvalues of

𝓐−1/2 are just given by 1
𝜆(𝓐1/2) and thus

|𝓐1/2| ⩾ 𝜆min(𝓐1/2) = 1
𝜆max(𝓐−1/2)

= |𝓐−1/2|
−1 .

Hence the first estimate follows:

|∇𝑔
𝑋𝓐1/2|𝑔 ⩽ |𝓐−1|

1/2 sup
|𝑣|⩽1 |(𝓐1/2∇𝑔

𝑋𝓐1/2𝑣, 𝑣)𝑔|
(3.12)= |𝓐−1|

1/2 sup
|𝑣|⩽1 |(𝓐 ∘ (∇ℎ

𝑋 − ∇𝑔
𝑋) 𝑣, 𝑣)𝑔|

⩽ |𝓐−1|
1/2 |𝓐| |∇ℎ

𝑋 − ∇𝑔
𝑋|𝑔 .

3o Covariantly differentiating the identity

id = 𝓐1/2 ∘ 𝓐−1/2 ⟹ 0 = ∇𝑔
𝑋𝓐1/2 ∘ 𝓐−1/2 + 𝓐1/2∇𝑔

𝑋𝓐−1/2.

Thus,

∇𝑔
𝑋𝓐−1/2 = −𝓐−1/2∇𝑔

𝑋𝓐1/2 ∘ 𝓐−1/2,

and the second estimate follows from part 2o. ■
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Definition 3.12. A smooth Riemannian metric ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 is called quasi-isometric to 𝑔,

denoted 𝑔 ∼ ℎ, if there exists a constant 𝐶 ⩾ 1 such that (to be understood pointwise, as

bilinear forms)

1
𝐶 𝑔 ⩽ ℎ ⩽ 𝐶𝑔.

Obviously, denoting by 0 < 𝜌𝑔,ℎ =∶ 𝜌 ∈ 𝖢∞(𝑀) the Radon-Nikod ́ym density, i.e.

d volℎ = 𝜌𝑔,ℎd vol𝑔 ,

the following identities hold

𝜌ℎ,𝑔 = 𝜌−1
𝑔,ℎ, 𝓐ℎ,𝑔 = 𝓐−1

𝑔,ℎ, 𝜌𝑔,ℎ = (det 𝐴)1/2 , 0 < inf 𝜌𝑔,ℎ ⩽ sup 𝜌𝑔,ℎ < ∞. (3.13)

We now define the zeroth order deviation of the two metrics (considered as multiplica-

tive perturbations of each other) as

𝛿𝑔,ℎ(𝑥) ∶= 2 sinh
(

𝑚
4 max

𝜆∈𝜎(𝐴𝑔,ℎ(𝑥))
|log 𝜆|

)
= max

𝜆∈𝜎(𝐴𝑔,ℎ(𝑥)) |𝜆
𝑚
4 − 𝜆− 𝑚

4 | ∶ 𝑀 → (0, ∞), (3.14)

symmetric in 𝑔 and ℎ by quasi-isometry, i.e. 𝛿𝑔,ℎ = 𝛿ℎ,𝑔 . We will make use of the fact

[HPW14, Appendix A] that

sup 𝛿𝑔,ℎ(𝑥) < ∞ ⟺ 𝑔 ∼ ℎ.

The definition is becoming clearer in the proof of the main result in Section 4. Moreover,

let

𝛿∇
𝑔,ℎ(𝑥) ∶= |∇ℎ − ∇𝑔|

2
𝑔 (𝑥) ∶ 𝑀 → [0, ∞) (3.15)

be a weight function defined in terms of the corresponding covariant derivatives ∇ℎ and

∇𝑔 , defined in terms of the operator norm induced by the inner product 𝑔.

Remark 3.13. Recall that by Proposition 1.17, the difference of two connections ∇ℎ − ∇𝑔

is a one-form on 𝑀 with values in 𝖤𝗇𝖽 𝖳𝑀 , i.e.

∇ℎ − ∇𝑔 ∈ 𝝘(𝖳∗𝑀 ⊗ 𝖤𝗇𝖽 𝖳𝑀).

Example 3.14 (Conformal metric change). Let ℎ ∶= 𝑔𝜓 be a conformal perturbation of

𝑔, i.e. we set 𝑔𝜓 ∶= e2𝜓 𝑔 for some smooth function 𝜓 ∶ 𝑀 → ℝ. We take 𝐴 ∶= 𝑒2𝜓 , so

𝐴−1 = e−2𝜓 and

𝛿𝑔,𝑔𝜓 (𝑥) = 2 sinh 𝑚
4 |𝜓(𝑥)| .

Hence,

𝑔 ∼ ℎ ⟺ 𝜓 bounded.

By (3.36d), for any smooth vector field 𝑋, 𝑌 ∈ 𝝘𝖢∞(𝖳𝑀), we have

(∇𝑔𝜓
𝑋 − ∇𝑔

𝑋) 𝑌 = 𝗱𝜓(𝑋)𝑌 + 𝗱𝜓(𝑌 )𝑋 − (𝑋, 𝑌 )𝑔 grad𝑔 𝜓. (3.16)
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By norm equivalence on finite dimensional spaces, we can work with the Hilbert-Schmidt

norm for the calculation. Let (𝑋𝑖)𝑚
𝑖=1 a smooth local 𝑔-orthonormal frame of vector fields.

Then in local coordinates,

|𝗱𝜓|2
𝑔⊗HS =

𝑚

∑
𝑖=1

|𝑋𝑖𝜓|
2 ,

|∇𝑔𝜓 − ∇𝑔|
2
𝑔⊗HS =

𝑚

∑
𝑗,𝑘=1

|(∇𝑔𝜓 − ∇𝑔) (𝑋𝑗 , 𝑋𝑘)|
2

=
𝑚

∑
𝑗,𝑘=1 |

(𝑋𝑗𝜓)𝑋𝑘 + (𝑋𝑘𝜓)𝑋𝑗 − 𝛿𝑗𝑘 ∑
𝑖

(𝑋𝑖𝜓)𝑋𝑖|

2

= ∑
𝑗<𝑘

2 |(𝑋𝑗𝜓)𝑋𝑘 + (𝑋𝑘𝜓)𝑋𝑗|
2 +

𝑚

∑
𝑖=1

|𝑋𝑖𝜓|
2 ,

so that

|𝗱𝜓|2
𝑔 ≲ |∇𝑔𝜓 − ∇𝑔|

2
𝑔 = 𝛿∇

𝑔,𝑔𝜓 .

Next, we give a formula how to express the codifferential 𝝳ℎ with respect the metric ℎ
in terms of the codifferential 𝝳𝑔 in terms of 𝑔.

Lemma 3.15. Let 𝓐 ∶= 𝓐𝑔,ℎ be the smooth vector bundle morphism defined by (3.9). Then

the codifferential with respect to the metric ℎ is given by

𝝳ℎ𝜂 = 𝓐−1 (𝝳𝑔(𝓐𝜂) − 𝗱 log 𝜌 ⨼𝑔 (𝓐𝜂)) ∀𝜂 ∈ Ω𝖢∞(𝑀).

Proof. For any 𝜂1 ∈ Ω𝖢∞(𝑀), 𝜂2 ∈ Ω𝖢∞(𝑀), we calculate

⟨𝜂1, 𝓐−1 (𝝳𝑔(𝓐𝜂2) − 𝗱 log 𝜌 ⨼𝑔 (𝓐𝜂2))⟩ℎ = ⟨𝜌𝓐𝜂1, 𝓐−1
(𝝳𝑔(𝓐𝜂2) − 𝗱𝜌

𝜌 ⨼𝑔 (𝓐𝜂2))⟩𝑔

= ⟨𝜂1, 𝜌𝝳𝑔(𝓐𝜂2) − 𝗱𝜌 ⨼𝑔 (𝓐𝜂2)⟩𝑔

= ⟨𝗱(𝜌𝜂1), 𝓐𝜂2⟩𝑔 − ⟨𝗱𝜌 ∧ 𝜂1, 𝓐𝜂2⟩𝑔

= ⟨𝗱𝜌 ∧ 𝜂1, 𝓐𝜂2⟩𝑔 + ⟨𝜌𝗱𝜂1, 𝓐𝜂2⟩𝑔 − ⟨𝗱𝜌 ∧ 𝜂1, 𝓐𝜂2⟩𝑔

= ⟨𝗱𝜂1, 𝜂2⟩ℎ ,

where we used that 𝓐 is fibrewise self-adjoint. ■

In the proof of the main result, the gradient of the logarithm of the Radon-Nikod ́ym

density 𝜌𝑔,ℎ can be estimated in terms of smooth vector bundle morphism 𝓐𝑔,ℎ and 𝛿∇
𝑔,ℎ

which is reflected in the next Proposition 3.19. Therefore, we note two auxiliary lemmas.

Lemma 3.16. Let 𝐴, 𝐵 be two complex 𝑚 × 𝑚-matrices. Then,

|tr(𝐴𝐵)| ⩽ ‖𝐴‖HS ‖𝐵‖HS ,

where ‖⋅‖HS denotes the Hilbert-Schmidt norm.
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Proof. Let 𝐴, 𝐵 be two complex 𝑚 × 𝑚-matrices with singular values

𝜎1(𝐴) ⩾ 𝜎2(𝐴) ⩾ … ⩾ 𝜎𝑚(𝐴) of 𝐴 and

𝜎1(𝐵) ⩾ 𝜎2(𝐵) ⩾ … ⩾ 𝜎𝑚(𝐵) of 𝐵.

Then, with the Hilbert-Schmidt norm ‖⋅‖HS,

‖𝜎(𝐴)‖ =
√√√
⎷

𝑚

∑
𝑖=1

𝜎2
𝑖 (𝐴) = √tr(𝐴∗𝐴) =∶ ‖𝐴‖HS (3.17)

by norm equivalence on finite-dimensional vector spaces. By the well-known von Neu-

mann trace formula [Mir75], we get

|tr(𝐴𝐵)| ⩽
𝑚

∑
𝑖=1

𝜎𝑖(𝐴)𝜎𝑖(𝐵)

= (𝜎(𝐴), 𝜎(𝐵))ℝ𝑚

⩽ ‖𝜎(𝐴)‖   ‖𝜎(𝐵)‖ = ‖𝐴‖HS ‖𝐵‖HS ,

where we used Cauchy-Schwarz for the first inequality and (3.17) in the last equality. ■

Lemma 3.17 (Classical Jacobi’s formula). Let 𝐴 = 𝐴(𝑡) an 𝑚 × 𝑚-matrix parametrised by 𝑡. If
𝐴 is invertible, then

d
d𝑡 det 𝐴(𝑡) = det 𝐴(𝑡) tr (𝐴(𝑡)−1 d

d𝑡𝐴(𝑡)) . (3.18)

Next, we extend the classical Jacobi formula to our setting.

Lemma 3.18 (Jacobi’s formula). Let 𝐴 ∶= 𝐴𝑔,ℎ be the smooth vector bundle morphism de-

fined by (3.8) (𝑥 ∈ 𝑀). Then, for any 𝑋 ∈ 𝝘(𝖳𝑀),

𝗱(det 𝐴)𝑋 = det 𝐴 tr (𝐴−1∇𝑋𝐴) .

Proof. For 𝜀 > 0, let 𝛾 ∶ (−𝜀, 𝜀) → 𝑀 be a smooth curve on 𝑀 such that 𝛾(0) = 𝑥 and

̇𝛾(0) = 𝑋. Then, computing the differential using a velocity vector,

𝗱(det 𝐴)𝑥𝑋 = d
d𝑡 det 𝐴(𝛾(𝑡))|𝑡=0

= det 𝐴(𝛾(𝑡)) tr (𝐴(𝛾(𝑡))−1 d
d𝑡𝐴(𝛾(𝑡)))|𝑡=0

= det 𝐴(𝛾(𝑡)) tr (𝐴(𝛾(𝑡))−1 ∇ ̇𝛾(𝑡)𝐴(𝛾(𝑡)))|𝑡=0
= det 𝐴(𝑥) tr (𝐴(𝑥)−1∇𝑋𝐴(𝑥)) ,

using Lemma 3.17 in the second step. ■

We are now in the position to prove the aimed estimate of the Radon-Nikod ́ym density.

Proposition 3.19. Let 𝓐 ∶= 𝓐𝑔,ℎ be the smooth vector bundle morphism defined by (3.9) and

𝜌 = (det 𝐴)1/2 the Radon-Nikod ́ym density defined by (3.13). Then we can estimate as follows:

|𝗱 log 𝜌|𝑔 ⩽ 𝐶(𝑚) |𝓐−1| |∇𝑔𝓐|𝑔 .
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Proof. We first remark, that for 𝑥 ∈ 𝑀 ,

dim ⋀𝑘𝖳∗
𝑥𝑀 = (

𝑚
𝑘) ⟹ dim ⋀𝖳∗

𝑥𝑀 = 2𝑚 < ∞

is finite-dimensional. Recall that the Radon-Nikod ́ym density 𝜌 is given by 𝜌 = (det 𝐴)1/2.

By Jacobi’s formula, Lemma 3.18 above,

𝗱(log 𝜌)𝑥𝑋 = 1
2 tr (𝐴(𝑥)−1∇𝑋𝐴(𝑥)) .

Hence, using Lemma 3.16,

| 𝗱(log 𝜌)𝑥𝑋 | ⩽ 1
2 ‖𝐴(𝑥)−1‖HS ‖∇𝑋𝐴(𝑥)‖𝑔⊗HS

⩽ 𝐶(𝑚) |𝐴(𝑥)−1| |∇𝑋𝐴(𝑥)|𝑔

⩽ 𝐶(𝑚) |𝓐(𝑥)−1| |∇𝑋𝓐(𝑥)|𝑔

by norm equivalence on finite-dimensional spaces. ■

3.3 Gradient Estimates by Bismut formulae

For every 𝑔 ∈ 𝖬𝖾𝗍𝗋𝑀 ,

(𝑃 𝑔
𝑠 )𝑠>0 ∶= (e− 𝑠

2 Δ𝑔 )𝑠>0
⊂ 𝓛(Ω𝖫2(𝑀, 𝑔))

is the heat semigroup defined by the spectral Theorem 1.50, choosing 𝑓 ∶ ℝ → ℝ,

𝑓(𝜆) ∶= e−𝑡/2𝜆. Let us denote by

(0, ∞) × 𝑀 × 𝑀 ∋ (𝑠, 𝑥, 𝑦) ↦ 𝑝𝑔
𝑠 (𝑥, 𝑦) ∶= e− 𝑠

2 Δ𝑔 (𝑥, 𝑦) ∈ 𝖧𝗈𝗆 (⋀ 𝖳∗
𝑦𝑀, ⋀ 𝖳∗

𝑥𝑀)

the corresponding jointly smooth integral kernel of 𝑃 𝑔
𝑠 . The smooth representative of

𝑃𝑠𝛼(𝑥) is given by

𝑃 𝑔
𝑠 𝛼(𝑥) = ∫𝑀

e− 𝑠
2 Δ𝑔 (𝑥, 𝑦)𝛼(𝑦) vol𝑔(d𝑦).

By Theorem 1.63 (iii) we have

∫𝑀
|𝑝𝑔

𝑠 (𝑥, 𝑦)|
2
𝑔 vol𝑔(d𝑦) < ∞, ∀𝑠 > 0 ∀𝑥 ∈ 𝑀.

The form degree 𝑘 will be indicated again by round brackets 𝑝𝑔,(𝑘)
𝑠 . Finally, we set

Φ𝑔(𝑥, 𝑠) ∶= sup
𝑀

𝑝𝑔,(0)
𝑠 (𝑥, ⋅), (3.19)

indicating the minimal heat kernel 𝑝𝑔,(0)
𝑠 acting on 0-forms, i.e. functions. Then it is well-

known that, for all (𝑥, 𝑠) ∈ 𝑀 × (0, ∞), it follows that Φ𝑔(𝑥, 𝑠) < ∞. One can even show

[Gün17a] that

sup
𝐾

Φ𝑔(⋅, 𝑠) < ∞ ∀𝑠 > 0 ∀𝐾 ⊂ 𝑀 compact.

Remark 3.20. Note that the gradient estimates proven in §§ 2.2 and 2.3 extend naturally

to the complex setting since complexifications are norm preserving.
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We will now make use of gradient estimates for the covariant derivative of 𝑃 𝑔
𝑠 , Theo-

rem 2.28, and derive similar estimates for the exterior derivative and codifferential trans-

formed by the smooth vector bundle morphism 𝓐𝑔,ℎ defined in (3.9). The key observation

will be Proposition 3.25 showing how to estimate the transformed codifferential 𝝳𝑔 (with

respect the metric 𝑔) applied to the semigroup in terms of covariant derivative ∇𝑔 of

𝑔 applied to the semigroup. In addition, using Lemma 3.15, a direct consequence is an

analogous result (cf. Corollary 3.28) in terms of the new metric, i.e. for the transformed

codifferential 𝝳ℎ (with respect the metric ℎ) applied to the semigroup.

To this end, we will make use of the well-known metric descriptions of the exterior

derivative 𝗱 and the codifferential 𝝳𝑔 (with respect the metric 𝑔) from Proposition 1.36

adapted to our setting, namely:

Lemma 3.21. Let 𝑒1, … , 𝑒𝑚 (where 𝑚 = dim 𝑀) be a local orthonormal frame for 𝖳𝑥𝑀
(𝑥 ∈ 𝑀) and 𝜀1, … , 𝜀𝑚 be its dual coframe, i.e. 𝜀𝑗(𝑒𝑖) = 𝛿𝑗

𝑖 . Then

𝗱 =
𝑚

∑
𝑖=1

𝜀𝑖 ∧ ∇𝑔
𝑒𝑖 and 𝝳𝑔 = −

𝑚

∑
𝑖=1

𝑒𝑖 ⨼ ∇𝑔
𝑒𝑖 . (3.20)

Let 𝓐 ∶= 𝓐𝑔,ℎ be the smooth vector bundle morphism defined by (3.9).

Proposition 3.22. Let 𝛼 ∈ Ω𝖫2(𝑀, 𝑔) and 𝓡𝑔 ∈ 𝖪(𝑀, 𝑔). Then, for any orthonormal frame

(𝑒𝑖)𝑚
𝑖=1 for 𝖳𝑥𝑀 (𝑥 ∈ 𝑀) and dual coframe (𝜀𝑖)𝑚

𝑖=1, we decompose

𝗱(𝓐1/2𝑃𝑠𝛼) =
𝑚

∑
𝑖=1

(𝜀𝑖 ∧ ∇𝑔
𝑒𝑖𝑃𝑠𝛼 ∘ 𝓐1/2 + 𝜀𝑖 ∧ 𝑃𝑠𝛼 ∘ (∇𝑔

𝑒𝑖𝓐
1/2)) .

Proof. From (3.20), we get for any 𝜂 ∈ Ω(𝑀)

𝗱(𝓐1/2𝜂) = 𝗱(𝜂 ∘ 𝓐1/2) =
𝑚

∑
𝑖=1

𝜀𝑖 ∧ ∇𝑔
𝑒𝑖𝜂 ∘ 𝓐1/2 +

𝑚

∑
𝑖=1

𝜀𝑖 ∧ 𝜂 ∘ ∇𝑔
𝑒𝑖𝓐

1/2,

where (𝑒𝑖)𝑚
𝑖=1 denotes an orthonormal frame for 𝖳𝑥𝑀 (𝑥 ∈ 𝑀) and (𝜀𝑖)𝑚

𝑖=1 the dual coframe.

In particular, for 𝜂 = 𝑃𝑠𝛼 the claim follows. ■

Corollary 3.23. Let 𝛼 ∈ Ω𝖫2(𝑀, 𝑔) and 𝓡𝑔 ∈ 𝖪(𝑀, 𝑔). Then,

|𝓐−1/2𝗱(𝓐1/2𝑃𝑠𝛼(𝑥))|
2
𝑔 ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) . (3.21)

Proof. By Theorem 2.28, we have

|

𝑚

∑
𝑖=1

𝜀𝑖 ∧ ∇𝑔
𝑒𝑖𝑃𝑠𝛼 ∘ 𝓐1/2

|

2

𝑔
⩽ 𝐶(𝑚) |𝓐1/2(𝑥)|

2 Ξ𝑔(𝑥, 𝑠)Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔)

and, combined with Lemma 2.5 and Lemma 3.9,

|

𝑚

∑
𝑖=1

𝜀𝑖 ∧ 𝑃𝑠𝛼 ∘ (∇𝑔
𝑒𝑖𝓐

1/2)|

2

𝑔
⩽ 𝐶(𝑚, 𝛾, 𝑐𝛾 , 𝑠) |∇𝑔𝓐1/2(𝑥)|

2
𝑔 Φ𝑔(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀,𝑔)

≲ |𝓐1/2(𝑥)|
2 𝛿∇

𝑔,ℎ(𝑥)Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) .
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Thus the claim follows:

|𝓐−1/2𝗱(𝓐1/2𝑃𝑠𝛼(𝑥))|
2
𝑔 ≲ |𝓐−1/2(𝑥)|

2
|𝓐1/2(𝑥)|

2
(𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) .

■

Remark 3.24. By a similar calculation the estimate also holds if we interchange the rôles

of 𝓐1/2 and 𝓐−1/2 in the previous Corollary 3.23.

Proposition 3.25. Let 𝛼 ∈ Ω𝖫2(𝑀, 𝑔) and 𝓡𝑔 ∈ 𝖪(𝑀, 𝑔). Then, for any orthonormal basis

(𝑒𝑖)𝑖 for 𝖳𝑥𝑀 (𝑥 ∈ 𝑀), we decompose

𝝳𝑔(𝓐1/2𝑃𝑠𝛼) = −
𝑚

∑
𝑖=1

𝑒𝑖 ⨼ (∇𝑔
𝑒𝑖𝑃𝑠𝛼) ∘ 𝓐1/2 −

𝑚

∑
𝑖=1

𝑒𝑖 ⨼ 𝑃𝑠𝛼 ∘ (∇𝑔
𝑒𝑖𝓐

1/2) . (3.22)

Proof. Let 𝜂 ∈ Ω(𝑀) be arbitrary and (𝑒𝑖)𝑚
𝑖=1 an orthonormal basis for 𝖳𝑥𝑀 (𝑥 ∈ 𝑀). By

the metric description of the codifferential, (3.20) in Lemma 3.21 above, we get

𝝳𝑔(𝓐1/2𝜂) = −
𝑚

∑
𝑖=1

𝑒𝑖 ⨼ ∇𝑔
𝑒𝑖(𝓐

1/2𝜂)

= −
𝑚

∑
𝑖=1

(𝑒𝑖 ⨼ (𝓐1/2∇𝑔
𝑒𝑖𝜂) + 𝑒𝑖 ⨼ ((∇𝑔

𝑒𝑖𝓐
1/2)𝜂)) .

In particular, if we set 𝜂 = 𝑃𝑠𝛼(𝑥), then the following equalities hold:

𝑚

∑
𝑖=1

𝑒𝑖 ⨼ (𝓐1/2∇𝑔
𝑒𝑖𝑃𝑠𝛼) =

𝑚

∑
𝑖=1

𝑒𝑖 ⨼ (∇𝑔
𝑒𝑖𝑃𝑠𝛼) ∘ 𝓐1/2

and
𝑚

∑
𝑖=1

𝑒𝑖 ⨼ ((∇𝑔
𝑒𝑖𝓐

1/2)𝑃𝑠𝛼) =
𝑚

∑
𝑖=1

𝑒𝑖 ⨼ 𝑃𝑠𝛼 ∘ (∇𝑔
𝑒𝑖𝓐

1/2) . ■

Corollary 3.26. Let 𝛼 ∈ Ω𝖫2(𝑀, 𝑔) and 𝓡𝑔 ∈ 𝖪(𝑀, 𝑔). Then,

|𝓐−1/2𝝳𝑔(𝓐1/2𝑃𝑠𝛼(𝑥)) |
2
𝑔 ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) . (3.23)

Proof. By Theorem 2.28 we have

|

𝑚

∑
𝑖=1

𝑒𝑖 ⨼ (∇𝑔
𝑒𝑖𝑃𝑠𝛼) ∘ 𝓐1/2

|

2

𝑔
⩽ 𝐶(𝑚) |𝓐1/2(𝑥)|

2 Ξ𝑔(𝑥, 𝑠)Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔)

and, combined with Lemma 2.5 and Lemma 3.9,

|

𝑚

∑
𝑖=1

𝑒𝑖 ⨼ 𝑃𝑠𝛼 ∘ (∇𝑔
𝑒𝑖𝓐

1/2)|

2

𝑔
⩽ 𝐶(𝑚, 𝛾, 𝑐𝛾 , 𝑠) |∇𝑔𝓐1/2(𝑥)|

2
𝑔 Φ𝑔(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀,𝑔)

≲ |𝓐1/2(𝑥)|
2 𝛿∇

𝑔,ℎ(𝑥)Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) .

Thus,

|𝓐−1/2𝝳𝑔(𝓐1/2𝑃𝑠𝛼(𝑥))|
2
𝑔 ≲ |𝓐−1/2(𝑥)|

2
|𝓐1/2(𝑥)|

2
(𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) ,

so the claim follows. ■
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Remark 3.27. By a similar calculation the estimate also holds if we interchange the rôles

of 𝓐1/2 and 𝓐−1/2 in the previous Corollary 3.26.

Finally, we obtain a similar estimate for the transformed codifferential 𝝳ℎ (with respect

the metric ℎ) applied to the semigroup. As we can express 𝝳ℎ solely in terms of 𝝳𝑔 using

Lemma 3.15, we want to emphasise that the fibrewise norm and all the involved quantities

are taken with respect to the metric 𝑔.

Corollary 3.28. Let 𝛼 ∈ Ω𝖫2(𝑀, 𝑔) and 𝓡𝑔 ∈ 𝖪(𝑀, 𝑔). Then,

|𝓐1/2𝝳ℎ(𝓐−1/2𝑃𝑠𝛼(𝑥))|
2
𝑔 ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔) . (3.24)

Proof. By Lemma 3.15, recall that

𝝳ℎ(𝜂) = 𝓐−1 (𝝳𝑔(𝓐𝜂) − 𝗱 log 𝜌 ⨼𝑔 (𝓐𝜂)) ∀𝜂 ∈ Ω𝖢∞(𝑀),

so that

(𝓐1/2𝝳ℎ𝓐−1/2)(𝜂) = 𝓐−1/2 (𝝳𝑔(𝓐1/2𝛼) − 𝗱 log 𝜌 ⨼𝑔 (𝓐1/2𝜂)) .

Using Proposition 3.19 combined with Lemma 3.11, in addition

𝓐−1/2 |𝗱 log 𝜌 ⨼ (𝓐1/2𝜂)|𝑔 ⩽ 𝐶(𝑚) |𝓐−1/2| |𝓐−1| |∇𝑔𝓐|𝑔 |𝓐1/2| |𝜂|𝑔

⩽ 𝐶(𝑚) |𝓐−1/2| |𝓐−1| |𝓐| |∇ℎ
𝑋 − ∇𝑔

𝑋|𝑔 |𝓐1/2| |𝜂|𝑔

⩽ 𝐶(𝑚) |∇ℎ
𝑋 − ∇𝑔

𝑋|𝑔 |𝜂|𝑔 .

Finally, combined with Corollary 3.26,

|𝓐1/2𝝳ℎ(𝓐−1/2𝑃𝑠𝛼(𝑥))|
2
𝑔 ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) ‖𝛼‖2
Ω𝖫2 (𝑀,𝑔)

which proves the claim. ■

3.4 Main Results

First, we define the bounded identification operator

𝐼 = 𝐼𝑔,ℎ ∶ Ω𝖫2(𝑀, 𝑔) → Ω𝖫2(𝑀, ℎ)
𝛼(𝑥) ↦ 𝓐−1/2

𝑔,ℎ (𝑥)𝛼(𝑥),

well-defined by 𝑔 ∼ ℎ.

Lemma 3.29. The adjoint 𝐼∗ of the bounded identification operator 𝐼 is given by

𝐼∗ = 𝐼∗
𝑔,ℎ ∶ Ω𝖫2(𝑀, ℎ) → Ω𝖫2(𝑀, 𝑔)

𝛼(𝑥) ↦ 𝜌𝑔,ℎ(𝑥)𝓐1/2
𝑔,ℎ(𝑥)𝛼(𝑥).

(3.25)
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Proof. For compactly supported 𝛼 ∈ Ω(𝑀, ℎ) and 𝛽 ∈ Ω(𝑀, 𝑔), we get

⟨𝐼∗
𝑔,ℎ𝛼, 𝛽⟩Ω𝖫2 (𝑀,𝑔)

= ⟨𝛼, 𝐼𝑔,ℎ𝛽⟩Ω𝖫2 (𝑀,ℎ)

= ∫𝑀 (𝛼, 𝓐−1/2
𝑔,ℎ 𝛽)ℎ

d volℎ

= ∫𝑀 (𝓐1/2
𝑔,ℎ𝛼, 𝓐1/2

𝑔,ℎ𝓐−1/2
𝑔,ℎ 𝛽)𝑔

𝜌𝑔,ℎd vol𝑔

= ∫𝑀 (𝜌𝑔,ℎ𝓐1/2
𝑔,ℎ𝛼, 𝛽)𝑔

d vol𝑔 = ⟨𝜌𝑔,ℎ𝐼−1
𝑔,ℎ𝛼, 𝛽⟩Ω𝖫2 (𝑀,𝑔)

. ■

Since we assume 𝑀 to be geodesically complete, we can restrict ourselves to smooth

compactly supported differential forms. Using the common abuse of notation, the unique

realisations of the exterior derivative 𝗱 , the codifferential 𝝳𝑔 and Hodge Laplacian Δ𝑔 will

be denoted by the same symbol.

In addition, we define the operators

( ̂𝑃 𝑔
𝑠 )𝑠>0 ∶= (𝗱 𝑃 𝑔

𝑠 )𝑠>0 ⊂ 𝓛(Ω𝖫2(𝑀, 𝑔), Ω𝖫2(𝑀, 𝑔)),
( ̌𝑃 𝑔

𝑠 )𝑠>0 ∶= (𝝳𝑔𝑃 𝑔
𝑠 )𝑠>0 ⊂ 𝓛(Ω𝖫2(𝑀, 𝑔), Ω𝖫2(𝑀, 𝑔)),

( ̂𝑃 𝑔,ℎ
𝑠 )𝑠>0 ∶= (𝐼−1

𝑔,ℎ𝗱 𝐼𝑔,ℎ𝑃 𝑔
𝑠 )𝑠>0 ⊂ 𝓛(Ω𝖫2(𝑀, 𝑔), Ω𝖫2(𝑀, 𝑔)),

( ̌𝑃 𝑔,ℎ
𝑠 )𝑠>0 ∶= (𝐼𝑔,ℎ𝝳𝑔𝐼−1

𝑔,ℎ𝑃 ℎ
𝑠 )𝑠>0 ⊂ 𝓛(Ω𝖫2(𝑀, 𝑔), Ω𝖫2(𝑀, 𝑔)).

Let ̂𝑝𝑔
𝑠 (𝑥, 𝑦), ̌𝑝𝑔

𝑠 (𝑥, 𝑦), ̂𝑝𝑔,ℎ
𝑠 (𝑥, 𝑦) and ̌𝑝𝑔,ℎ

𝑠 (𝑥, 𝑦) be the corresponding jointly smooth integral

kernel of ̂𝑃 𝑔
𝑠 , ̌𝑃 𝑔

𝑠 , ̂𝑃 𝑔,ℎ
𝑠 and ̌𝑃 𝑔,ℎ

𝑠 , respectively. For example, recall that this implies by

Theorem 1.63 (i) and (ii) that

(0, ∞) × 𝑀 × 𝑀 ∋ (𝑠, 𝑥, 𝑦) ↦ ̂𝑝𝑠(𝑥, 𝑦) ∈ 𝖧𝗈𝗆 (⋀ 𝖳∗
𝑦𝑀, ⋀ 𝖳∗

𝑥𝑀)

is the uniquely determined map such that we have

̂𝑃 𝑔
𝑠 𝛼(𝑥) = ∫𝑀

̂𝑝𝑔
𝑠 (𝑥, 𝑦)𝛼(𝑦) vol𝑔(d𝑦) ∀𝑠 > 0 ∀𝛼 ∈ Ω𝖫2(𝑀, 𝑔) ∀𝑥 ∈ 𝑀.

By Riesz’ representation theorem, the next result follows from the gradient estimates,

Theorem 2.27, for the exterior derivative and the codifferential.

Theorem 3.30. For every 𝑔 ∈ 𝖬𝖾𝗍𝗋𝑀 , (𝑠, 𝑥) ∈ (0, ∞) × 𝑀 , we have

∫ | ̂𝑝𝑔
𝑠 (𝑥, 𝑦)|

2
𝑔 vol𝑔(d𝑦) ⩽ Ψ𝑔(𝑥, 𝑠)Φ𝑔(𝑥, 𝑠), (3.26)

∫ | ̌𝑝𝑔
𝑠 (𝑥, 𝑦)|

2
𝑔 vol𝑔(d𝑦) ⩽ Ψ𝑔(𝑥, 𝑠)Φ𝑔(𝑥, 𝑠). (3.27)

By Riesz’ representation theorem, the next result follows from the estimates in corol-

laries 3.23, 3.26 and 3.28 for the transformed exterior derivative and for the transformed

codifferential with respect to 𝑔, and ℎ, respectively.
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Theorem 3.31. For every 𝑔 ∈ 𝖬𝖾𝗍𝗋𝑀 , (𝑠, 𝑥) ∈ (0, ∞) × 𝑀 , we have

∫ | ̂𝑝𝑔,ℎ
𝑠 (𝑥, 𝑦)|

2

𝑔
vol𝑔(d𝑦) ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠), (3.28)

∫ | ̌𝑝𝑔,ℎ
𝑠 (𝑥, 𝑦)|

2

𝑔
vol𝑔(d𝑦) ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠), (3.29)

∫ | ̌𝑝ℎ,𝑔
𝑠 (𝑥, 𝑦)|

2

𝑔
vol𝑔(d𝑦) ≲ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠). (3.30)

We can now state the main result on the existence and completeness of the wave

operators 𝑊±(Δℎ, Δ𝑔, 𝐼) implying the corresponding spectra to coincide.

Theorem 3.32. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , 𝑔 ∼ ℎ, and assume that there exists 𝐶 < ∞ such that

|𝛿
∇
𝑔,ℎ| ⩽ 𝐶 and for both 𝜈 ∈ {𝑔, ℎ}, we have |𝓡𝜈|𝜈 ∈ 𝖪(𝑀) and

∫ max {𝛿𝑔,ℎ(𝑥), 𝛿∇
𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠), Ψ𝜈(𝑥, 𝑠)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0. (3.31)

Then the wave operators

𝑊±(Δℎ, Δ𝑔 , 𝐼𝑔,ℎ) = s-lim
𝑡→±∞

e𝑖𝑡Δℎ𝐼𝑔,ℎe−𝑖𝑡Δ𝑔 𝖯ac(Δ𝑔)

exist and are complete. Moreover, 𝑊±(Δℎ, Δ𝑔 , 𝐼𝑔,ℎ) are partial isometries with initial space

𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δℎ), and we have 𝜎ac(Δ𝑔) = 𝜎ac(Δ𝑔).

The proof of Theorem 3.32 will be given in Section 3.5.

In the special case of for 0-forms, i.e. functions, and the Hodge Laplacian acting on

0-forms is the Laplace-Beltrami operator. Recall that the Weitzenböck curvature endo-

morphism 𝓡(𝑘) on 1-forms is given by the Ricci curvature, 𝓡(1),tr = Ric. Then we get the

following result similar to the main result of [GT20, Theorem A].

Corollary 3.33. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , 𝑔 ∼ ℎ, and assume that the function 𝛿∇
𝑔,ℎ is bounded, and

for some 𝑠 > 0 and both 𝜈 ∈ {𝑔, ℎ} satisfy (3.31). LetΔ𝜈 ⩽ 0 be the unique self-adjoint extensions

of the Laplace-Beltrami operator for 𝜈 ∈ {𝑔, ℎ}. Then the wave operators 𝑊±(Δℎ, Δ𝑔 , 𝐼) exist
and are complete. Moreover, 𝑊±(Δℎ, Δ𝑔, 𝐼) are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(Δ𝑔)
and final space 𝗋𝖺𝗇 𝖯ac(Δℎ), and we have 𝜎ac(Δℎ) = 𝜎ac(Δ𝑔).

3.5 Proof of the Main Result

Our strategy is to show the assumptions given by a variant of the Belopol’skii-Birman

Theorem 3.5 which is adapted to our special case of two Hilbert space scattering.

The next lemma shows assumption (2) in the Belopol’skii-Birman Theorem 3.5. As we

will see in its proof, it is therefore necessary for the potentials 𝓡𝜈 ∈ 𝖪(𝑀) to be in the

Kato class, not only 𝓡𝜈 ∈ 𝖪(𝑀), for 𝜈 ∈ {𝑔, ℎ}.

We denote by 𝐪𝜈 the nonnegative closed sesquilinear form corresponding to Δ𝜈 , i.e.

𝐪𝜈(𝛼) = ⟨Δ𝜈𝛼, 𝛼⟩ = ‖𝗗𝜈𝛼‖
2
𝜈 with 𝖽𝗈𝗆 𝐪𝜈 = 𝖽𝗈𝗆 √Δ𝜈 for any 𝜈 ∈ {𝑔, ℎ}.
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Lemma 3.34. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , 𝑔 ∼ ℎ, and assume that there exists 𝐶 < ∞ such that

|𝛿
∇
𝑔,ℎ| ⩽ 𝐶 and for some 𝜈 ∈ {𝑔, ℎ}, we have 𝓡𝜈 ∈ 𝖪(𝑀). Then

𝐼𝑔,ℎ 𝖽𝗈𝗆 𝐪𝑔 = 𝖽𝗈𝗆 𝐪ℎ.

Proof. Note that, for any 𝜈 ∈ {𝑔, ℎ}, 𝖽𝗈𝗆 𝐪𝜈 is the closure of compactly supported forms

Ω𝖢∞
𝑐 (𝑀, 𝜈) with respect to the Dirac graph norm

𝛼 ↦ (‖𝛼‖2
𝜈 + ‖𝗗𝜈𝛼‖

2
𝜈)

1/2
.

Moreover let 𝐪∇ be the nonnegative closed sesquilinear form corresponding to the

horizontal Laplacian □𝜈 = (∇𝜈)∗∇𝜈 , i.e. 𝐪∇
𝜈 (𝛼) = ⟨□𝜈𝛼, 𝛼⟩𝜈 = ‖∇𝜈𝛼‖2

𝜈 with 𝖽𝗈𝗆(𝐪∇
𝜈 ) its

natural domain of definition. Recall that by the Weitzenböck formula (1.11), we thus have

the relation

Δ𝜈 = □𝜈 − 𝓡𝜈 .

As the Weitzenböck curvature term 𝓡𝜈 is in the Kato class, by Theorem 2.7 the corre-

sponding form domains

𝖽𝗈𝗆 𝐪𝜈 = 𝖽𝗈𝗆 𝐪∇
𝜈

coincide. To this end, it suffices to show that

𝐼 𝖽𝗈𝗆 𝐪∇
𝑔 = 𝖽𝗈𝗆 𝐪∇

ℎ .

For all compactly supported 𝛼 ∈ Ω𝖢∞
𝑐 (𝑀, 𝑔), we write

∇ℎ(𝐼𝛼) = ∇ℎ(𝓐−1/2𝛼) = ∇ℎ𝓐−1/2(𝛼) + 𝓐−1/2∇ℎ𝛼
= (∇ℎ − ∇𝑔) 𝓐−1/2(𝛼) + ∇𝑔𝓐−1/2(𝛼) + 𝓐−1/2 (∇ℎ − ∇𝑔) 𝛼 + 𝓐−1/2∇𝑔𝛼.

Moreover,

|(∇ℎ
𝑋 − ∇𝑔

𝑋) 𝓐−1/2|ℎ = |𝓐1/2 (∇ℎ
𝑋 − ∇𝑔

𝑋) 𝓐−1/2|𝑔  

⩽ |𝓐1/2| |∇ℎ
𝑋 − ∇𝑔

𝑋|𝑔 |𝓐−1/2|

and

|𝓐−1/2 (∇ℎ
𝑋 − ∇𝑔

𝑋)|ℎ = |∇ℎ
𝑋 − ∇𝑔

𝑋|𝑔 .

Thus we can estimate as follows

‖∇ℎ(𝐼𝛼)‖
2
ℎ = ∫𝑀

|∇ℎ(𝓐−1/2𝛼)|
2
ℎ d volℎ

= ∫𝑀 | (∇ℎ − ∇𝑔) 𝓐−1/2(𝛼) + ∇𝑔𝓐−1/2(𝛼) + 𝓐−1/2 (∇ℎ − ∇𝑔) (𝛼)

+ 𝓐−1/2∇𝑔𝛼|
2

ℎ
d volℎ

⩽ 𝐶 ∫𝑀 ( |(∇ℎ − ∇𝑔) 𝓐−1/2(𝛼)|
2
ℎ + |∇𝑔𝓐−1/2(𝛼)|

2
ℎ +
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|𝓐−1/2 (∇ℎ − ∇𝑔) (𝛼)|
2
ℎ + |𝓐−1/2∇𝑔𝛼|

2
ℎ )𝜌𝑔,ℎ d vol𝑔

⩽ 𝐶 ∫𝑀 ( |𝓐1/2 (∇ℎ − ∇𝑔) 𝓐−1/2(𝛼)|
2
𝑔 + |𝓐1/2∇𝑔𝓐−1/2(𝛼)|

2
𝑔 +

|(∇ℎ − ∇𝑔) (𝛼)|
2
𝑔 + |∇𝑔𝛼|2

𝑔 )d vol𝑔

⩽ 𝐶 ∫𝑀 ( |𝓐1/2|
2

|∇ℎ − ∇𝑔|
2
𝑔 |𝓐−1/2|

2 |𝛼|2
𝑔

+ |𝓐1/2|
2 |𝓐|2 |𝓐−1/2|

6
|∇ℎ

𝑋 − ∇𝑔
𝑋|

2
𝑔 |𝛼|2

𝑔

+ |∇ℎ − ∇𝑔|
2
𝑔 |𝛼|2

𝑔 + |∇𝑔𝛼|2
𝑔 )d vol𝑔

⩽ 𝐶 ∫𝑀 (|∇ℎ − ∇𝑔|
2
𝑔 |𝛼|2

𝑔 + |∇𝑔𝛼|2
𝑔) d vol𝑔

⩽ 𝐶 ∫𝑀 (‖𝛿∇
𝑔,ℎ‖∞

|𝛼|2
𝑔 + |∇𝑔𝛼|2

𝑔) d vol𝑔

⩽ 𝐶 (‖𝛼‖2
𝑔 + ‖∇𝑔𝛼‖2

𝑔) ,

using the elementary inequality (𝑎 + 𝑏)𝑐 ⩽ 2𝑐−1(𝑎𝑐 + 𝑏𝑐) multiple times and that 𝛿∇ is

bounded by assumption.

Hence, we arrive at the estimate

‖𝐼𝛼‖2
ℎ + ‖∇ℎ𝐼𝛼‖

2
ℎ ⩽ 𝐶 (‖𝛼‖2

𝑔 + ‖∇𝑔𝛼‖2
𝑔) ,

proving

𝐼 𝖽𝗈𝗆 𝐪𝑔 ⊂ 𝖽𝗈𝗆 𝐪ℎ.

Since 𝐼−1 = 𝐼−1
𝑔,ℎ = 𝐼ℎ,𝑔 and the arguments above are symmetric in 𝑔 and ℎ, this shows the

claim. ■

Next, we denote by |⋅| ∶ ℂ → ℝ the absolute value function and by sgn ∶ ℂ → ℂ
the sign-function with sgn(0) = 1. By Lemma 1.47 if 𝑃 is normal operator (e.g. positive

or diagonalisable), we get the (pointwise) polar decomposition 𝑃 = |𝑃 | (sgn 𝑃 ), where

|𝑃 | (𝑥) = |𝑃 (𝑥)| ⩾ 0 and |sgn 𝑃 (𝑥)| = 1, and where |𝑃 | (𝑥) is a non-negative endomorphism

and sgn 𝑃 (𝑥) is unitary. More precisely, by the Spectral Theorem 1.50 choosing 𝑓(𝜆) ∶= |𝜆|,
we have an endomorphism

𝑓 (𝗦̂𝑔,ℎ(𝑥)) ∶ ⋀𝖳∗𝑀 → ⋀𝖳∗𝑀

giving rise to a decomposition

𝗦̂𝑔,ℎ(𝑥) = |𝗦̂𝑔,ℎ(𝑥)| sgn 𝗦̂𝑔,ℎ(𝑥) ∶ ⋀𝖳∗𝑀 → ⋀𝖳∗𝑀.
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For the proof of Theorem 3.32, we now introduce sections

𝗦𝑔,ℎ ∶ 𝑀 → ℝ

𝗦𝑔,ℎ(𝑥) ∶= 𝜌𝑔,ℎ(𝑥)1/2 − 𝜌𝑔,ℎ(𝑥)−1/2 = 2 sinh 1
2 log(𝜌𝑔,ℎ(𝑥)),

𝗦̂𝑔,ℎ ∶ 𝑀 → 𝖤𝗇𝖽 (⋀𝖳∗𝑀)
𝗦̂𝑔,ℎ(𝑥) ∶= (𝜌𝑔,ℎ(𝑥)𝓐𝑔,ℎ(𝑥))1/2 − (𝜌𝑔,ℎ(𝑥)𝓐𝑔,ℎ(𝑥))

−1/2 = 2 sinh 1
2 log(𝜌𝑔,ℎ(𝑥)𝓐𝑔,ℎ(𝑥)),

𝗦̂𝑔,ℎ;𝜈 ∶ Ω𝖫2(𝑀, 𝜈) → Ω𝖫2(𝑀, 𝜈)

𝗦̂𝑔,ℎ;𝜈𝛼(𝑥) ∶= |𝗦̂𝑔,ℎ(𝑥)|
1/2 𝛼(𝑥),

𝗨𝑔,ℎ ∶ Ω𝖫2(𝑀, 𝑔) → Ω𝖫2(𝑀, ℎ)
𝗨𝑔,ℎ𝛼(𝑥) ∶= 𝓐𝑔,ℎ(𝑥)−1/2𝛼(𝑥),

𝗨̂𝑔,ℎ ∶ Ω𝖫2(𝑀, 𝑔) → Ω𝖫2(𝑀, ℎ)
𝗨̂𝑔,ℎ𝛼(𝑥) ∶= (𝜌𝑔,ℎ(𝑥)𝓐𝑔,ℎ(𝑥))−1/2𝛼(𝑥),

𝗨̃𝑔,ℎ ∶ Ω𝖫2(𝑀, 𝑔) → Ω𝖫2(𝑀, ℎ)
𝗨̃𝑔,ℎ𝛼(𝑥) ∶= (sgn 𝗦̂𝑔,ℎ(𝑥))(𝜌𝑔,ℎ(𝑥)𝓐𝑔,ℎ(𝑥))−1/2𝛼(𝑥).

By quasi-isometry, 𝑔 ∼ ℎ, the operators 𝗦̂𝑔,ℎ;𝜈 , 𝗨𝑔,ℎ, 𝗨̂𝑔,ℎ and 𝗨̃𝑔,ℎ are bounded. Moreover,

we get the pointwise estimate (see also [HPW14, Lemma 3.3], [GT20, (4.1)]).

Lemma 3.35. We have the pointwise estimate

max {|𝗦𝑔,ℎ(𝑥)| , 𝜎max (|𝗦̂𝑔,ℎ(𝑥)|)} ⩽ 𝛿𝑔,ℎ(𝑥) ∀𝑥 ∈ 𝑀. (3.32)

Proof. We write 𝜌 = 𝜌𝑔,ℎ and 𝓐 = 𝓐𝑔,ℎ for short. By definition, we have

|𝗦̂𝑔,ℎ| = |(𝜌𝓐)1/2 − (𝜌𝓐)−1/2| = 2 sinh |
1
2 log(𝜌𝓐)| ,

and the 𝑖th eigenvalue of log(𝜌𝓐) is given by

−
𝑚

∑
𝑖=1

log 𝛼𝑖
2 + log 𝛼𝑗 .

If we choose 𝑘0 such that | log 𝛼𝑘0| = max𝑘 |log 𝛼𝑘|, then

|
−

𝑚

∑
𝑖=1

log 𝛼𝑖
2 + log 𝛼𝑗|

⩽ 𝑚
2 |log 𝛼𝑘0| .

Hence,

𝜎max (|𝗦̂𝑔,ℎ|) ⩽ 2 sinh 𝑚
4 |log 𝛼𝑘0| = 𝛿𝑔,ℎ(𝑥),

justifying the definition of 𝛿𝑔,ℎ. A similar calculation shows the assertion for 𝗦𝑔,ℎ. ■

The following lemma provides the trace class operator required in the decomposition

formula in assumption (4) of the Belopol’skii-Birman Theorem 3.5.



90 – Chapter 3 ⋉ Scattering Theory for the Hodge Laplacian

Lemma 3.36. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , 𝑔 ∼ ℎ. We define the unbounded operator

𝗧𝑔,ℎ
𝑠 ∶ Ω𝖫2(𝑀, 𝑔) → Ω𝖫2(𝑀, ℎ)

𝗧𝑔,ℎ
𝑠 ∶= ( ̂𝑃 ℎ,𝑔

𝑠 )∗𝗨̂𝑔,ℎ ̂𝑃 𝑔
𝑠 − ( ̂𝑃 ℎ

𝑠 )∗𝗨𝑔,ℎ ̂𝑃 𝑔,ℎ
𝑠 + ( ̌𝑃 𝑔,ℎ

𝑠 )∗𝗨̂𝑔,ℎ ̌𝑃 𝑔
𝑠 − ( ̌𝑃 ℎ

𝑠 )∗𝗨𝑔,ℎ ̌𝑃 ℎ,𝑔
𝑠

− 𝑃 ℎ
𝑠 𝗦̂𝑔,ℎ;ℎ𝗨̃𝑔,ℎ𝗦̂𝑔,ℎ;𝑔𝑃 𝑔

𝑠/2Δ𝑔𝑃 𝑔
𝑠/2.

Then we get, for 𝛼1 ∈ 𝖽𝗈𝗆 Δ𝑔 , 𝛼2 ∈ 𝖽𝗈𝗆 Δℎ and 𝑠 > 0,

⟨𝛼2, 𝗧𝑔,ℎ
𝑠 𝛼1⟩ℎ

= ⟨Δℎ𝛼2, 𝑃 ℎ
𝑠 𝐼𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝛼2, 𝑃 ℎ
𝑠 𝐼𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ℎ .

Proof. First note that

𝗱2 = 0 and 𝝳2 = 0. (3.33)

Since Δ𝜈 is essentially self-adjoint, for 𝜈 ∈ {𝑔, ℎ}, we can assume 𝛼1 ∈ Ω𝖢∞
𝑐 (𝑀, 𝑔) and

𝛼2 ∈ Ω𝖢∞
𝑐 (𝑀, ℎ) to be compactly supported. Then

⟨Δℎ𝛼2, 𝑃 ℎ
𝑠 𝐼𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝛼2, 𝑃 ℎ
𝑠 𝐼𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ℎ

= ⟨Δℎ𝑃 ℎ
𝑠 𝛼2, 𝐼𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨Δ𝑔𝐼−1𝑃 ℎ
𝑠 𝛼2, 𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝑃 ℎ
𝑠 𝛼2, (𝐼 − (𝐼−1)∗) 𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ℎ

= − ⟨(𝗱 + 𝝳ℎ)𝑃 ℎ
𝑠 𝛼2, (𝗱 + 𝝳ℎ)𝐼𝑃 𝑔

𝑠 𝛼1⟩ℎ + ⟨(𝗱 + 𝝳𝑔)𝐼−1𝑃 ℎ
𝑠 𝛼2, (𝗱 + 𝝳𝑔)𝑃 𝑔

𝑠 𝛼1⟩ℎ

− ⟨𝑃 ℎ
𝑠 𝛼2, (𝐼 − (𝐼−1)∗) 𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ℎ
(3.33)= − ⟨𝗱 𝑃 ℎ

𝑠 𝛼2, 𝗱 𝐼𝑃 𝑔
𝑠 𝛼1⟩ℎ − ⟨𝝳ℎ𝑃 ℎ

𝑠 𝛼2, 𝝳ℎ𝐼𝑃 𝑔
𝑠 𝛼1⟩ℎ

+ ⟨𝗱 𝐼−1𝑃 ℎ
𝑠 𝛼2, 𝗱 𝑃 𝑔

𝑠 𝛼1⟩ℎ + ⟨𝝳𝑔𝐼−1𝑃 ℎ
𝑠 𝛼2, 𝝳𝑔𝑃 𝑔

𝑠 𝛼1⟩ℎ (3.34)

− ⟨𝑃 ℎ
𝑠 𝛼2, (𝐼 − (𝐼−1)∗) 𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ℎ .

Let us treat the terms separately. For the last term in (3.34),

⟨𝑃 ℎ
𝑠 𝛼2, (𝐼 − (𝐼−1)∗) 𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ℎ

= ∫𝑀
⟨𝑃 ℎ

𝑠 𝛼2, (𝓐−1/2 − (𝜌−1𝓐−1/2) 𝑃 𝑔
𝑠 Δ𝑔𝛼1⟩ d volℎ

= ∫𝑀
⟨𝑃 ℎ

𝑠 𝛼2, (1 − 𝜌−1) 𝓐−1/2𝑃 𝑔
𝑠 Δ𝑔𝛼1⟩ d volℎ

= ∫𝑀
⟨𝑃 ℎ

𝑠 𝛼2, 𝗦̂𝑔,ℎ𝜌−1/2𝓐−1/2𝑃 𝑔
𝑠 Δ𝑔𝛼1⟩ d volℎ

= ∫𝑀 ⟨𝑃 ℎ
𝑠 𝛼2, |𝗦̂𝑔,ℎ|

1/2 (sgn 𝗦̂𝑔,ℎ)(𝜌𝓐)−1/2 |𝗦̂𝑔,ℎ|
1/2 𝑃 𝑔

𝑠 Δ𝑔𝛼1⟩ d volℎ

= ⟨𝛼2, 𝑃 ℎ
𝑠 𝗦̂𝑔,ℎ;ℎ𝗨̃𝑔,ℎ𝗦̂𝑔,ℎ;𝑔𝑃 𝑔

𝑠/2Δ𝑔𝑃 𝑔
𝑠/2𝛼1⟩ℎ

.

For the first and third term involving the exterior derivative 𝗱 , we get

⟨𝗱 𝐼−1𝑃 ℎ
𝑠 𝛼2, 𝗱 𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝗱 𝑃 ℎ
𝑠 𝛼2, 𝗱 𝐼𝑃 𝑔

𝑠 𝛼1⟩ℎ

= ⟨(𝐼𝗱 𝐼−1)𝑃 ℎ
𝑠 𝛼2, (𝐼−1)∗𝗱 𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝗱 𝑃 ℎ
𝑠 𝛼2, 𝐼(𝐼−1𝗱 𝐼)𝑃 𝑔

𝑠 𝛼1⟩ℎ

= ⟨ ̂𝑃 ℎ,𝑔
𝑠 𝛼2, (𝐼−1)∗𝗱 𝑃 𝑔

𝑠 𝛼1⟩ℎ
− ⟨𝗱 𝑃 ℎ

𝑠 𝛼2, 𝐼 ̂𝑃 𝑔,ℎ
𝑠 𝛼1⟩ℎ
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= ⟨𝛼2, ( ̂𝑃 ℎ,𝑔
𝑠 )∗(𝐼−1)∗𝗱 𝑃 𝑔

𝑠 𝛼1 − (𝗱 𝑃 ℎ
𝑠 )∗𝐼 ̂𝑃 𝑔,ℎ

𝑠 𝛼1⟩ℎ

= ∫ (𝛼2, ( ̂𝑃 ℎ,𝑔
𝑠 )∗𝜌−1𝓐−1/2𝗱 𝑃 𝑔

𝑠 𝛼1 − (𝗱 𝑃 ℎ
𝑠 )∗𝓐−1/2 ̂𝑃 𝑔,ℎ

𝑠 𝛼1) d volℎ

= ⟨𝛼2, (( ̂𝑃 ℎ,𝑔
𝑠 )∗𝗨̂𝑔,ℎ𝗱 𝑃 𝑔

𝑠 − (𝗱 𝑃 ℎ
𝑠 )∗𝗨𝑔,ℎ ̂𝑃 𝑔,ℎ

𝑠 ) 𝛼1⟩ℎ

= ⟨𝛼2, (( ̂𝑃 ℎ,𝑔
𝑠 )∗𝗨̂𝑔,ℎ ̂𝑃 𝑔

𝑠 − ( ̂𝑃 ℎ
𝑠 )∗𝗨𝑔,ℎ ̂𝑃 𝑔,ℎ

𝑠 ) 𝛼1⟩ℎ
.

Similarly, for the codifferential 𝝳 ,

⟨𝝳𝑔𝐼−1𝑃 ℎ
𝑠 𝛼2, 𝝳𝑔𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝝳ℎ𝑃 ℎ
𝑠 𝛼2, 𝝳ℎ𝐼𝑃 𝑔

𝑠 𝛼1⟩ℎ

= ⟨(𝐼𝝳𝑔𝐼−1)𝑃 ℎ
𝑠 𝛼2, (𝐼−1)∗𝝳𝑔𝑃 𝑔

𝑠 𝛼1⟩ℎ − ⟨𝝳ℎ𝑃 ℎ
𝑠 𝛼2, 𝐼(𝐼−1𝝳ℎ𝐼)𝑃 𝑔

𝑠 𝛼1⟩ℎ

= ⟨ ̌𝑃 𝑔,ℎ
𝑠 𝛼2, (𝐼−1)∗𝝳ℎ𝑃 𝑔

𝑠 𝛼1⟩ℎ
− ⟨𝝳ℎ𝑃 ℎ

𝑠 𝛼2, 𝐼 ̌𝑃 ℎ,𝑔
𝑠 𝛼1⟩ℎ

= ⟨𝛼2, (( ̌𝑃 𝑔,ℎ
𝑠 )∗𝗨̂𝑔,ℎ𝝳ℎ𝑃 𝑔

𝑠 − (𝝳ℎ𝑃 ℎ
𝑠 )∗𝗨𝑔,ℎ ̌𝑃 ℎ,𝑔

𝑠 ) 𝛼1⟩ℎ

= ⟨𝛼2, (( ̌𝑃 𝑔,ℎ
𝑠 )∗𝗨̂𝑔,ℎ ̌𝑃 𝑔

𝑠 − ( ̌𝑃 ℎ
𝑠 )∗𝗨𝑔,ℎ ̌𝑃 ℎ,𝑔

𝑠 ) 𝛼1⟩ℎ
. ■

We are finally in the position to proof our Main Result.

Proof of Theorem 3.32. We check the assumptions of the Belopol’skii-Birman Theorem 3.5.

Since 𝑔 ∼ ℎ, the operator 𝐼 ≡ 𝐼𝑔,ℎ is well-defined and bounded and has a bounded

inverse 𝐼−1 ≡ 𝐼ℎ,𝑔 , so (1) follows. By Lemma 3.34, also assumption (2) is satisfied.

Recalling that by (3.25), 𝐼∗
𝑔,ℎ = 𝜌𝑔,ℎ𝐼−1

𝑔,ℎ, we see that the operator (𝐼∗𝐼 − 1)𝑒−𝑠Δ𝑔 has the

integral kernel

[(𝐼∗𝐼 − 1)e−𝑠Δ𝑔 ] (𝑥, 𝑦) = (𝜌𝑔,ℎ − 1) 𝑝𝑔
𝑠 (𝑥, 𝑦)

= 𝜌1/2
𝑔,ℎ(sgn 𝗦𝑔,ℎ) |𝗦𝑔,ℎ|

1/2
|𝗦𝑔,ℎ|

1/2 𝑝𝑔
𝑠 (𝑥, 𝑦).

Thus by Lemma 2.5 again, for some 𝑠 > 0,

∫ |[(𝐼∗𝐼 − 1)𝑒−𝑠Δ𝑔 ] (𝑥, 𝑦)|
2 vol𝑔(d𝑦) ⩽ ‖𝜌1/2

𝑔,ℎ𝗦𝑔,ℎ‖∞ |𝗦𝑔,ℎ| ∫ 𝑝𝑔
𝑠 (𝑥, 𝑦)2 vol𝑔(d𝑦)

⩽ 𝐶(𝛾, 𝑐𝛾 , 𝑠) ‖𝜌1/2
𝑔,ℎ𝗦𝑔,ℎ‖∞ |𝗦𝑔,ℎ| Φ𝑔(𝑥, 𝑠) ∫ 𝑝𝑔,(0)

𝑠 (𝑥, 𝑦) vol𝑔(d𝑦),

and, by Lemma 3.35, we arrive at the Hilbert-Schmidt estimate

∫∫ |[(𝐼∗𝐼 − 1)e−𝑠Δ𝑔 ] (𝑥, 𝑦)|
2 vol𝑔(d𝑦) vol𝑔(d𝑥) ≲ ∫ 𝛿𝑔,ℎ(𝑥)Ξ𝑔(𝑥, 𝑠)Φ𝑔(𝑥, 𝑠) vol𝑔(d𝑥) < ∞.

So, the operator (𝐼∗𝐼 − 1)e−𝑠Δ𝑔 is Hilbert-Schmidt, hence compact, which proves assump-

tion (3).

Finally, we prove (4). Using Lemma 3.36 it remains to show that 𝗧𝑔,ℎ
𝑠 is trace class. Since

the product of Hilbert-Schmidt operators is trace class, we prove that the operators ̂𝑃 𝜈
𝑠 ,

̌𝑃 𝜈
𝑠 , for 𝜈 ∈ {𝑔, ℎ}, and ̂𝑃 𝑔,ℎ

𝑠 , ̌𝑃 𝑔,ℎ
𝑠 , ̌𝑃 ℎ,𝑔

𝑠 are Hilbert-Schmidt. Recall that ̂𝑝𝜈
𝑠(𝑥, 𝑦), ̌𝑝𝜈

𝑠(𝑥, 𝑦),
̂𝑝𝑔,ℎ
𝑠 (𝑥, 𝑦), ̌𝑝𝑔,ℎ

𝑠 (𝑥, 𝑦) and ̌𝑝ℎ,𝑔
𝑠 (𝑥, 𝑦) are the corresponding jointly smooth integral kernel of

̂𝑃 𝜈
𝑠 , ̌𝑃 𝜈

𝑠 , ̂𝑃 𝑔,ℎ
𝑠 , ̌𝑃 𝑔,ℎ

𝑠 and ̌𝑃 ℎ,𝑔
𝑠 , respectively.
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Then, by (3.26),

∬ | ̂𝑝𝜈
𝑠(𝑥, 𝑦)|

2
𝜈 vol𝜈(d𝑦) vol𝜈(d𝑥) ⩽ ∫ Ψ𝜈(𝑥, 𝑠)Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥)

and, by (3.27),

∬ | ̌𝑝𝜈
𝑠(𝑥, 𝑦)|

2
𝜈 vol𝜈(d𝑦) vol𝜈(d𝑥) ⩽ ∫ Ψ𝜈(𝑥, 𝑠)Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥).

So similarly, we have, by (3.28),

∬ | ̂𝑝𝑔,ℎ
𝑠 (𝑥, 𝑦)|

2

𝑔
vol𝑔(d𝑦) vol𝑔(d𝑥) ≲ ∫ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) vol𝑔(d𝑥)

and, by (3.29),

∬ | ̌𝑝𝑔,ℎ
𝑠 (𝑥, 𝑦)|

2

𝑔
vol𝑔(d𝑦) vol𝑔(d𝑥) ≲ ∫ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) vol𝑔(d𝑥)

Finally, by (3.30),

∬ | ̌𝑝ℎ,𝑔
𝑠 (𝑥, 𝑦)|

2

𝑔
vol𝑔(d𝑦) vol𝑔(d𝑥) ≲ ∫ (𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠)) Φ𝑔(𝑥, 𝑠) vol𝑔(d𝑥)

This completes the proof. ■

3.6 Applications and Examples

3.6.1 Ricci flow We first generalise a result, given in [GT20], concerning the stability of

the absolutely continuous spectrum of a family of metrics evolving under a Ricci flow.

Let therefore 𝖱𝑔 be the Riemannian curvature tensor with respect to the metric 𝑔.

Corollary 3.37. Let 𝑆 > 0, 𝜆 ∈ ℝ and assume that

(a) the family (𝑔𝑠)0⩽𝑠⩽𝑆 ⊂ 𝖬𝖾𝗍𝗋𝑀 evolves under a Ricci-type flow

𝜕𝑠𝑔𝑠 = 𝜆 Ric𝑔𝑠 , ∀0 ⩽ 𝑠 ⩽ 𝑆,

(b) the initial metric 𝑔0 is geodesically complete,

(c) there is some 𝐶 > 0 such that |𝖱𝑔𝑠|𝑔𝑠
, |∇

𝑔𝑠𝖱𝑔𝑠|𝑔𝑠
⩽ 𝐶 ∀0 ⩽ 𝑠 ⩽ 𝑆 .

We set, for all 𝑥 ∈ 𝑀 ,

𝑀1(𝑥) ∶= sup {|Ric𝑔𝑠(𝑣, 𝑣)| ∶ 0 ⩽ 𝑠 ⩽ 𝑆, 𝑣 ∈ 𝖳𝑥𝑀, |𝑣|𝑔𝑠 ⩽ 1} ,

𝑀2(𝑥) ∶= sup { |∇
𝑔𝑠
𝑣 Ric𝑔𝑠(𝑢, 𝑤) + ∇𝑔𝑠

𝑢 Ric𝑔𝑠(𝑣, 𝑤) + ∇𝑔𝑠
𝑤 Ric𝑔𝑠(𝑢, 𝑣)| ∶ 0 ⩽ 𝑠 ⩽ 𝑆,

𝑢, 𝑣, 𝑤 ∈ 𝖳𝑥𝑀, |𝑢|𝑔𝑠 , |𝑣|𝑔𝑠 , |𝑤|𝑔𝑠 ⩽ 1}.

Let 𝖡𝑔(𝑥, 𝑟) denote the open geodesic ball (with respect to 𝑔). If

∫ vol𝑔0(𝖡𝑔0(𝑥, 1))−1 max {sinh (
𝑚
4 𝑆 |𝜆| 𝑀1(𝑥)) , 𝑀2(𝑥)} vol𝑔0(d𝑥) < ∞,

then 𝜎ac(Δ𝑔𝑠) = 𝜎ac(Δ𝑔0) for all 0 ⩽ 𝑠 ⩽ 𝑆 .
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Proof. The Ricci flow equation together with (i) implies that 𝑔𝑠 ∼ 𝑔0 for all 0 ⩽ 𝑠 ⩽ 𝑆
and all 𝑔𝑠 are complete. Assumption (c) assures that Ξ(𝑥, 𝑠) is bounded. By the same

arguments as in [GT20, Corollary B],

𝛿𝑔𝑠,𝑔0 ⩽ sinh (
𝑚
4 𝑆 |𝜆| 𝑀1(𝑥))

and as in the proof of [BG20, Theorem 6.1]

𝛿∇
𝑔𝑠,𝑔0(𝑥) ⩽ 𝐶𝑀2(𝑥)

and so the claim follows. ■

3.6.2 Differential 𝑘-forms We specify our main result, Theorem 3.32, to differential 𝑘-

forms. Set

𝐾 (𝑘)
𝑔 (𝑥) ∶= max {(𝓡(𝑘)

𝑔 𝑣, 𝑣) ∶ 𝑣 ∈ ⋀𝑘 𝖳𝑦(𝑀, 𝑔), |𝑣|𝑔 = 1, 𝑦 ∈ 𝖡𝑔(𝑥, 1)} ,

𝐾 (𝑘)
𝑔 (𝑥) ∶= min { (𝓡(𝑘)

𝑔 𝑣, 𝑣) ∶ 𝑣 ∈ ⋀𝑘 𝖳𝑦(𝑀, 𝑔), |𝑣|𝑔 = 1, 𝑦 ∈ 𝖡𝑔(𝑥, 1)},

for the corresponding constants defined analogously to (2.15) and (2.16), respectively. Fol-

lowing the same lines as the proof of our main result, Theorem 3.32, we get the following

Corollary 3.38. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , 𝑔 ∼ ℎ, and assume that there exists 𝐶 < ∞ such that

|𝛿
∇
𝑔,ℎ| ⩽ 𝐶 and that for both 𝜈 ∈ {𝑔, ℎ}, we have |𝓡𝜈|𝜈 ∈ 𝖪(𝑀) and

∫ max {𝛿𝑔,ℎ(𝑥), 𝛿∇
𝑔,ℎ(𝑥) + Ξ(𝑘),±

𝑔 (𝑥, 𝑠), Ψ(𝑘),±
𝜈 (𝑥, 𝑠)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0, (3.35)

where

Ψ(𝑘),±
𝜈 (𝑥, 𝑠) ∶= Ψ(𝑘),+

𝜈 (𝑥, 𝑠) ∧ Ψ(𝑘),−
𝜈 (𝑥, 𝑠),

Ξ(𝑘),±
𝜈 (𝑥, 𝑠) ∶= Ξ(𝑘),+

𝜈 (𝑥, 𝑠) ∧ Ξ(𝑘),−
𝜈 (𝑥, 𝑠),

with

Ψ(𝑘),±
𝜈 (𝑥, 𝑠) ∶= 1

√𝑠
exp [𝐷(𝛾, 𝑐𝛾 (𝓡−

𝜈 ), 𝑐1/𝑞
𝑞 )𝑠 + (𝜋√(𝑚 − 1)𝐾 (0),−

𝜈 (𝑥) + 𝜋2(𝑚 + 5) + (𝐾 (𝑘)
𝜈 (𝑥) + 𝐾 (𝑘±1)

𝜈 (𝑥))
−

)
𝑠
2 ] ,

where the finite constant 𝐷 depends on the constant 𝑐𝛾 (𝓡−) in (2.7) and the constant 𝑐𝑞 from

the Burkholder-Davis-Gundy inequality (cf. Theorem 2.27), and

Ξ(𝑘),±
𝜈 (𝑥, 𝑠) ∶= Ψ(𝑘),±

𝜈 (𝑥, 𝑠) + 𝑠3/2Ψ(𝑘),±
𝜈 (𝑥, 𝑠) max

𝑦∈𝖡𝜈 (𝑥,1) |∇𝜈𝖱𝜈(𝑦)| ,

and Φ(𝑥, 𝑠) is defined by (3.19).

For all 0 ⩽ 𝑘 ⩽ 𝑚, let

𝐼 (𝑘) ∶= 𝐼 (𝑘)
𝑔,ℎ ∶ Ω𝑘

𝖫2(𝑀, 𝑔) → Ω𝑘
𝖫2(𝑀, ℎ), 𝛼 ↦ ⋀𝑘 𝐴−1/2

𝑔,ℎ (𝛼)

be the bounded identification operator acting on 𝑘-forms. Then, for all 0 ⩽ 𝑘 ⩽ 𝑚, the wave

operators

𝑊±(Δ(𝑘)
ℎ , Δ(𝑘)

𝑔 , 𝐼 (𝑘)) = s-lim
𝑡→±∞

e𝑖𝑡Δ(𝑘)
ℎ 𝐼e−𝑖𝑡Δ(𝑘)

𝑔 𝖯ac(Δ(𝑘)
𝑔 )

exist and are complete. Moreover, 𝑊±(Δ(𝑘)
ℎ , Δ(𝑘)

𝑔 , 𝐼 (𝑘)) are partial isometries with initial space

𝗋𝖺𝗇 𝖯ac(Δ(𝑘)
𝑔 ) and final space 𝗋𝖺𝗇 𝖯ac(Δ(𝑘)

ℎ ), and we have 𝜎ac(Δ(𝑘)
𝑔 ) = 𝜎ac(Δ(𝑘)

ℎ ).
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Proof. We omit the metric in the notation. By similar calculations as in the proofs of

Theorem 2.27 and Theorem 2.28, we see that for every 𝛼 ∈ Ω𝑘
𝖫2(𝑀),

|(𝗱(𝑘)𝑃𝑠𝛼)𝑥|
2 ⩽ Ψ(𝑘),+(𝑥, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝑘
𝖫2 (𝑀)

,

|(𝝳(𝑘)𝑃𝑠𝛼)𝑥|
2 ⩽ Ψ(𝑘),−(𝑥, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝑘
𝖫2 (𝑀)

,

|(∇𝑃𝑠𝛼, 𝜉)|
2 ⩽ max {Ξ(𝑘),+(𝑥, 𝑠), Ξ(𝑘),−(𝑥, 𝑠)} Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝑘
𝖫2 (𝑀)

.

Noticing that

Δ𝜈 =
𝑚

⨁
𝑘=0

Δ(𝑘)
𝜈 and 𝐼 =

𝑚

⨁
𝑘=0

𝐼 (𝑘)

the proof now follows the lines of the proof of our main result, Theorem 3.32. ■

3.6.3 Conformal perturbations We study the important case of conformally equiva-

lent metrics: Given a smooth function 𝜓 ∶ 𝑀 → ℝ, we define peturbated metric by

𝑔𝜓 ∶= e2𝜓 𝑔. Note that 𝑔 and 𝑔𝜓 are quasi-isometric, if and only if 𝜓 is bounded (cf.

Example 3.14 above).

The bounded identification operator is now given by

𝐼 ∶= 𝐼𝑔,𝑔𝜓 ∶ Ω𝖫2(𝑀, 𝑔) → Ω𝖫2(𝑀, 𝑔𝜓 )

𝐼𝑔,𝑔𝜓 𝜂(𝑥) ↦ e−𝜓(𝑥)𝜂(𝑥).

Given a smooth function 𝜓 on 𝑀 , we define

𝜏 ∶=
𝑚

⨁
𝑘=0

(𝑚 − 2𝑘)𝟏⋀𝑘 𝖳∗𝑀 ∈ 𝓓(0)(𝑀; ⋀ 𝖳∗𝑀),

e𝜓𝜏 ∶=
𝑚

⨁
𝑘=0

e(𝑚−2𝑘)𝜓 𝟏⋀𝑘 𝖳∗𝑀 ∈ 𝓓(0)(𝑀; ⋀ 𝖳∗𝑀).

Next, we collect some useful transformation rules for the conformal metric 𝑔𝜓 in terms

of 𝑔. A standard reference for various invariants of conformal metric change in part (a)

is [Bes87, 1.159 Theorem].

Proposition 3.39. Let 𝜓 ∶ 𝑀 → ℝ be smooth.

(a) We have

(⋅, ⋅)(𝑘)
𝑔𝜓 = e−2𝑘𝜓 (⋅, ⋅)(𝑘)

𝑔 ∀𝑘 ∈ {0, … , 𝑚} (3.36a)

d vol𝑔𝜓 = e𝑚𝜓 d vol𝑔 (3.36b)

• ⨼𝑔𝜓 𝛼 = e−2𝜓 (• ⨼𝑔 𝛼) ∀𝛼 ∈ Ω1(𝑀) (3.36c)

∇𝑔𝜓
𝑋 𝑌 = ∇𝑔

𝑋𝑌 + 𝗱𝜓(𝑋)𝑌 + 𝗱𝜓(𝑌 )𝑋 − (𝑋, 𝑌 )𝑔 grad𝑔 𝜓 ∀𝑋, 𝑌 ∈ 𝝘𝖢∞(𝖳𝑀) (3.36d)

𝝳𝑔𝜓 𝛼 = e−2𝜓 (𝝳𝑔𝛼 − 𝜏 𝗱𝜓 ⨼𝑔 𝛼) ∀𝛼 ∈ Ω𝑘(𝑀) (3.36e)
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(b) If 𝜓 is bounded, then

𝐼∗ = e𝑚𝜓 𝐼−1. (3.37)

Remark 3.40. We note that the canonical musical isomorphisms ♯ and ♭ between 𝖳𝑀
and 𝖳∗𝑀 do not agree for 𝑔 and 𝑔𝜓 .

Proof. (a) We show (3.36e). Using (3.36a) and (3.36b), for any 𝜂1 ∈ Ω𝑘−1(𝑀), 𝜂2 ∈ Ω𝑘(𝑀),

⟨𝜂1, 𝝳𝑔𝜓
𝜂2⟩𝑔𝜓

= ⟨𝜂1, e−2𝜓 (𝝳𝑔𝜂2 + (𝑚 − 2𝑝)𝗱𝜓 ⨼ 𝜂2)⟩𝑔𝜓

= ⟨e(𝑚−2(𝑝−1))𝜓 𝜂1, e−2𝜓 𝝳𝑔𝜂2⟩𝑔 + ⟨e(𝑚−2(𝑝−1))𝜓 𝜂1, e−2𝜓 (𝑚 − 2𝑝)𝗱𝜓 ⨼ 𝜂2⟩𝑔

= ⟨𝗱 (e(𝑚−2𝑝)𝜓 𝜂1) , 𝜂2⟩𝑔 + ⟨(𝑚 − 2𝑝)e(𝑚−2𝑝)𝜓 𝜂1, 𝗱𝜓 ⨼ 𝜂2⟩𝑔

= ⟨e(𝑚−2𝑝)𝜓 𝗱𝜂1, 𝜂2⟩𝑔 + ⟨𝗱 (e(𝑚−2𝑝)𝜓 ) ∧ 𝜂1, 𝜂2⟩𝑔 − ⟨(𝑚 − 2𝑝)e(𝑚−2𝑝)𝜓 𝗱𝜓 ∧ 𝜂1, 𝜂2⟩𝑔

= ⟨𝗱𝜂1, 𝜂2⟩𝑔𝜓
.

(b) Follows from (3.25). ■

Theorem 3.41. Let 𝜓 ∶ 𝑀 → ℝ be smooth with 𝜓 bounded, and assume that 𝑔, 𝑔𝜓 ∈ 𝖬𝖾𝗍𝗋𝑀
with 𝑔𝜓 = e2𝜓 𝑔 such that |𝛿

∇
𝑔,𝑔𝜓 | ⩽ 𝐶 for some 𝐶 < ∞ and that for both 𝜈 ∈ {𝑔, 𝑔𝜓 }, we have

|𝓡𝜈|𝜈 ∈ 𝖪(𝑀) and

∫ max {sinh |
𝑚
4 𝜓(𝑥)| , 𝛿∇

𝑔,ℎ(𝑥) + Ξ𝑔(𝑥, 𝑠), Ψ𝜈(𝑥, 𝑠)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0. (3.38)

Then the wave operators

𝑊±(Δ𝑔𝜓 , Δ𝑔 , 𝐼) = s-lim
𝑡→±∞

e𝑖𝑡Δ𝑔𝜓 𝐼e−𝑖𝑡Δ𝑔 𝖯ac(Δ𝑔)

exist and are complete. Moreover, 𝑊±(Δ𝑔𝜓 , Δ𝑔 , 𝐼) are partial isometries with initial space

𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δ𝑔𝜓 ), and we have 𝜎ac(Δ𝑔) = 𝜎ac(Δ𝑔).

Proof. Using Example 3.14, we have 𝛿𝑔,𝑔𝜓 = 2 sinh 𝑚
4 |𝜓| and

𝑔 ∼ 𝑔𝜓 ⟺ 𝜓  bounded.

Hence the claim follows from our Main Result, Theorem 3.32. ■

By the same argument as in the proof of Theorem 3.32, we get the following conse-

quence for the wave operators acting on 𝑘-forms but with appropriate localised constants

respecting the degree of the differential form (cf. Proof of Corollary 3.38 above).

Corollary 3.42. Let 𝜓 ∶ 𝑀 → ℝ be smooth with 𝜓 bounded, and assume that 𝑔, 𝑔𝜓 ∈ 𝖬𝖾𝗍𝗋𝑀
with 𝑔𝜓 = e2𝜓 𝑔 such that |𝛿

∇
𝑔,𝑔𝜓 | ⩽ 𝐶 for some 𝐶 < ∞ and that for some 𝜈 ∈ {𝑔, 𝑔𝜓 }, we have

𝓡𝜈 ∈ 𝖪(𝑀) and

∫ max {sinh |
𝑚
4 𝜓(𝑥)| Ξ𝑔(𝑥, 𝑠), 𝛿∇

𝑔,ℎ(𝑥) + Ξ(𝑘)
𝑔 (𝑥, 𝑠), Ψ(𝑘)

𝜈 (𝑥, 𝑠)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0,
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where

Ξ(𝑘)
𝜈 (𝑥, 𝑠) ∶= Ξ(𝑘),+

𝜈 (𝑥, 𝑠) ∧ Ξ(𝑘),−
𝜈 (𝑥, 𝑠).

For all 0 ⩽ 𝑘 ⩽ 𝑚, let

𝐼 (𝑘) ∶= 𝐼 (𝑘)
𝑔,𝑔𝜓 ∶ Ω𝑘

𝖫2(𝑀, 𝑔) → Ω𝑘
𝖫2(𝑀, 𝑔𝜓 ), 𝛼 ↦ ⋀𝑘 𝐴−1/2(𝛼)

be the bounded identification operator acting on 𝑘-forms. Then, for all 0 ⩽ 𝑘 ⩽ 𝑚, the wave

operators

𝑊±(Δ(𝑘)
𝑔𝜓 , Δ(𝑘)

𝑔 , 𝐼 (𝑘)) = s-lim
𝑡→±∞

e𝑖𝑡Δ(𝑘)
𝑔𝜓 𝐼e−𝑖𝑡Δ(𝑘)

𝑔 𝖯ac(Δ(𝑘)
𝑔 )

exist and are complete. Moreover, 𝑊±(Δ(𝑘)
𝑔𝜓 , Δ(𝑘)

𝑔 , 𝐼 (𝑘)) are partial isometries with initial space

𝗋𝖺𝗇 𝖯ac(Δ(𝑘)
𝑔 ) and final space 𝗋𝖺𝗇 𝖯ac(Δ(𝑘)

𝑔𝜓 ), and we have 𝜎ac(Δ(𝑘)
𝑔 ) = 𝜎ac(Δ(𝑘)

𝑔𝜓 ).

3.6.4 Global curvature bounds Let 𝖱𝜈 be the Riemannian curvature tensor with respect

to the metric 𝜈 ∈ {𝑔, ℎ}. Then the curvature operator

𝑄𝜈 ∈ 𝓓(0)
(𝑀; ⋀2 𝖳∗𝑀)

is self-adjoint and uniquely determined by the equation

(𝑄𝜈(𝑋 ∧ 𝑌 ), 𝑈 ∧ 𝑉 )𝜈 = (𝖱𝜈(𝑋, 𝑌 )𝑈, 𝑉 )𝜈

for all smooth vector fields 𝑋, 𝑌 , 𝑈, 𝑉 ∈ 𝝘𝖢∞(𝖳𝑀).
By the Gallot–Meyer estimate [GM75], a global bound 𝑄𝜈 ⩾ −𝐾 , for some constant 𝐾 > 0,

already implies that curvature endomorphism in the Weitzenböck formula (1.11) is globally

bounded by

𝓡(𝑘)
𝜈 ⩾ −𝐾𝑘(𝑚 − 𝑘). (3.39)

Remark 3.43. In particular, if 𝑄𝜈 ⩾ −𝐾 , for some constant 𝐾 > 0, then for 𝑘 = 1, we

have

Ric𝜈 ⩾ −𝐾(𝑚 − 1).

We set, for 𝜈 ∈ {𝑔, ℎ},

Θ𝜈(𝑥) ∶= (1 + max
𝑦∈𝖡𝜈 (𝑥,1) |∇𝜈𝖱𝜈(𝑦)|)

2
.

Then, we get the following consequential result.

Theorem 3.44. Let 𝑄𝜈 ⩾ −𝐾 , for some constant 𝐾 > 0 for both 𝜈 ∈ {𝑔, ℎ}. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀
such that 𝑔 ∼ ℎ and assume that there exists 𝐶 < ∞ such that |𝛿

∇
𝑔,ℎ| ⩽ 𝐶 and that for some

(then both by quasi-isometry) 𝜈 ∈ {𝑔, ℎ}

∫ max {𝛿𝑔,ℎ(𝑥), 𝛿∇
𝑔,ℎ(𝑥) + Θ𝑔(𝑥)} Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0.

Then the wave operators 𝑊±(Δℎ, Δ𝑔 , 𝐼) exist and are complete. Moreover, 𝑊±(Δℎ, Δ𝑔 , 𝐼)
are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δℎ), and we have

𝜎ac(Δ𝑔) = 𝜎ac(Δℎ).
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Lemma 3.45. Let 𝑔, ℎ ∈ 𝖬𝖾𝗍𝗋𝑀 , 𝑔 ∼ ℎ with 𝑄𝜈 ⩾ −𝐾 , for some constant 𝐾 > 0 for both

𝑣 ∈ {𝑔, ℎ} and assume that the function 𝛿∇
𝑔,ℎ is bounded. Then

𝐼𝑔,ℎ 𝖽𝗈𝗆 𝐪𝑔 = 𝖽𝗈𝗆 𝐪ℎ.

Proof. Note that, for any 𝜈 ∈ {𝑔, ℎ}, 𝖽𝗈𝗆 𝐪𝜈 is the closure of compactly supported forms

Ω𝖢∞
𝑐 (𝑀, 𝜈) with respect to the Dirac graph norm

𝛼 ↦ (‖𝛼‖2
𝜈 + ‖𝗗𝜈𝛼‖

2
𝜈)

1/2
.

Let 𝐷 be a positive constant whose value might change from line to line. For all com-

pactly supported 𝛼 ∈ Ω𝖢∞
𝑐 (𝑀, 𝑔), we get by the Weitzenböck formula Δ𝜈 = □𝜈 − 𝓡𝜈 ,

‖𝗗𝜈𝐼𝛼‖
2
𝜈 = ⟨𝗗2

𝜈𝐼𝛼, 𝛼⟩𝜈 = ⟨((∇ℎ)∗∇ℎ − 𝓡𝜈) 𝐼𝛼, 𝛼⟩𝜈

= ∫ |∇ℎ(𝐼𝛼)|
2
ℎ d vol𝜈 − ∫ (𝓡𝜈𝐼𝛼, 𝛼)𝜈 d vol𝜈 .

By assumption the metrics are quasi-isometric and their Weitzenböck curvature term

is bounded from below, so the second term is bounded by 𝐷 ‖𝛼‖2
𝜈 .

Following the lines of the proof of Lemma 3.34, we find

‖∇ℎ(𝐼𝛼)‖
2
ℎ ⩽ 𝐷 (‖𝛼‖2

𝑔 + ‖∇𝑔𝛼‖2
𝑔) .

Using the Weitzenböck formula once more, we get

‖∇𝑔𝛼‖2
𝑔 = ⟨∇𝑔𝛼, ∇𝑔𝛼⟩𝑔 = ⟨((∇𝑔)∗∇𝑔 − 𝓡𝑔) 𝛼, 𝛼⟩𝑔 + ⟨𝓡𝑔𝛼, 𝛼⟩𝑔

⩽ ⟨𝗗2
𝑔𝛼, 𝛼⟩𝑔 + 𝐷(𝐾, 𝑘, 𝑚) ⟨𝛼, 𝛼⟩𝑔

⩽ 𝐷(𝐾, 𝑘, 𝑚) (‖𝗗𝑔𝛼‖
2
𝑔 + ‖𝛼‖2

𝑔) .

Hence, we arrive at the estimate

‖𝐼𝛼‖2
ℎ + ‖𝗗ℎ𝐼𝛼‖

2
ℎ ⩽ 𝐷(𝐾, 𝑘, 𝑚) (‖𝛼‖2

𝑔 + ‖𝗗𝑔𝛼‖
2
𝑔) ,

proving that

𝐼 𝖽𝗈𝗆 𝐪𝑔 ⊂ 𝖽𝗈𝗆 𝐪ℎ.

Since 𝐼−1 = 𝐼−1
𝑔,ℎ = 𝐼ℎ,𝑔 and the arguments above are symmetric in 𝑔 and ℎ, this shows the

claim. ■

Proof of Theorem 3.44. We omit the metric in the notation. By assumption 𝓡 is bounded

from below, so the tensor 𝓡, Ric and 𝖱 are also bounded from below. In particular

(𝑀, 𝑔) is stochastically complete, i.e. 𝜁(𝑥) = ∞ ℙ-a.s. By Gronwall’s inequality, we have

|𝓠𝑠|op , |𝓠−1
𝑠 |op , |𝓠𝑠|op

⩽ e𝐾−𝑠/2. Following the lines of the proof of Theorem 2.28, we get

by Cauchy-Schwarz

|(∇𝑃𝑠𝛼(𝑥), 𝜉)| = |𝔼 (𝓠tr tr
𝑠 //−1

𝑠 𝛼(𝑋𝑠(𝑥)), 𝑈 ℓ
𝑠∧𝜏)|

⩽ 𝐶(𝐾−, 𝑠) [𝔼 |𝛼(𝑋𝑠(𝑥))|
2
]

1/2

([𝔼 (ℓ
(1)
𝑠∧𝜏)

2

]
1/2

+ [𝔼 (ℓ
(2)
𝑠∧𝜏)

2

]
1/2

)
.
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By (2.39) and (2.38) the first summand in the bracket is bounded by 𝐶(𝐾−, 𝑠) |𝜉|. By (2.43)

and (2.44) the second summand is bounded by 𝐶(𝐾−, 𝑠) max𝑦∈𝖡(𝑥,1) |∇𝖱(𝑦)| |𝜉|. Hence,

|(∇𝑃𝑠𝛼(𝑥), 𝜉)|
2 ⩽ 𝐶(𝐾−, 𝑠) |𝜉|2 Φ(𝑥, 𝑠) (1 + max

𝑦∈𝖡(𝑥,1)
|∇𝖱(𝑦)|)

2
‖𝛼‖2

𝖫2(𝑀) ,

and analogously

|(𝗱𝑃𝑠𝛼)𝑥|
2 ⩽ 𝐶(𝐾−, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀) ,

|(𝝳𝑃𝑠𝛼)𝑥|
2 ⩽ 𝐶(𝐾−, 𝑠)Φ(𝑥, 𝑠) ‖𝛼‖2

Ω𝖫2 (𝑀) .

Following the lines of the proof of Theorem 3.32 we see that the assumptions of

Belopol’skii-Birman theorem 3.5 are satisfied except making use of Lemma 3.45 (instead

of Lemma 3.34) for assumption (2). ■

3.6.5 𝜀-close Riemannian metrics In this section, we denote by 𝛋𝑔 the sectional curva-

ture with respect to a smooth, complete Riemannian metric 𝑔.

In [CFG92, Theorem 1.3 & 1.7], Cheeger, Fukaya and Gromov show what is also known as

Cheeger-Gromov’s thick/thin decomposition:

Theorem 3.46. For all 𝜀 > 0 and 𝑛 ∈ ℤ+, there exists 𝜉 > 0 and 𝑘 ∈ ℤ+ such that if (𝑀, 𝑔) is
a complete Riemannian manifold with |𝛋𝑔| ⩽ 1, then there is a (𝜉, 𝑘)-round metric, 𝑔𝜀, on 𝑀 ,

such that

(i) the Riemannian metric 𝑔𝜀 is 𝜀-quasi-isometric to 𝑔, i.e. 𝐶−𝜀𝑔𝜀 ⩽ 𝑔 ⩽ 𝐶𝜀𝑔𝜀

(ii) it has bounded covariant derivatives |∇𝑔𝜀 − ∇𝑔| < 𝜀

(iii) | (∇𝑔𝜀)
𝑘 𝖱𝑔𝜀| < 𝐶(𝑚, 𝑘, 𝜀), where the constant 𝐶 depends in addition on the order of

derivative 𝑘 and 𝜀.

Assuming that the sectional curvature 𝛋𝑔 is bounded by 1, implies that the Riemannian

curvature tensor 𝖱𝑔 is bounded, and hence, the curvature operator 𝑄𝑔 . Following our

results in § 3.6.4, we may get

Theorem 3.47. Let |𝛋𝑔| ⩽ 1. Then there exists a Riemannian metric 𝑔𝜀 as in Theorem 3.46

that is 𝜀-quasi-isometric metric to 𝑔. If for some 𝜈 ∈ {𝑔, 𝑔𝜀}

∫ 𝛿𝑔,𝑔𝜀(𝑥)Φ𝜈(𝑥, 𝑠) vol𝜈(d𝑥) < ∞, some 𝑠 > 0,

then the wave operators 𝑊±(Δ𝑔𝜀 , Δ𝑔, 𝐼) exist and are complete. Moreover, 𝑊±(Δ𝑔𝜀 , Δ𝑔 , 𝐼)
are partial isometries with initial space 𝗋𝖺𝗇 𝖯ac(Δ𝑔) and final space 𝗋𝖺𝗇 𝖯ac(Δ𝑔𝜀), and we have

𝜎ac(Δ𝑔) = 𝜎ac(Δ𝑔𝜀).

Proof. By the previous Theorem 3.46 (i), the assumption |𝛋𝑔| ⩽ 1 assures that for any

𝜀 > 0 there exists a Riemannian metric 𝑔𝜀 that is 𝜀-quasi-isometric metric to 𝑔. Hence,

sup 𝛿𝑔,𝑔𝜀(𝑥) < ∞ ⟺ 𝑔 ∼ 𝑔𝜀.
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By Theorem 3.46 (ii), the covariant derivatives are bounded so that

𝛿∇
𝑔,𝑔𝜀 = |∇𝑔𝜀 − ∇𝑔|2

𝑔 < 𝜀. ■
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Chapter 4
Covariant Derivative Estimates and Riesz Transforms

The Riesz transform ∇(Δ(0) + 𝜆)−1/2 on a Riemannian manifold, considered by Strichartz

[Str83], has been intensively studied (e.g. [Bak85a; Bak85b; Bak87]). In particular, the

question arises to what extend the 𝖫𝑝-boundedness of the Riesz transform that holds in

ℝ𝑛 can be generalised to (complete) non-compact Riemannian manifolds. If the Riesz

transform is bounded in 𝖫2 by the interpolation theorem the weak (1, 1)-property implies

𝖫𝑝-boundedness for 1 < 𝑝 ⩽ 2. Notably, using this idea Coulhon & Duong [CD99] showed

under the doubling volume property and an optimal on-diagonal heat kernel estimate

the 𝖫𝑝-boundedness for 1 ⩽ 𝑝 ⩽ 2. Using probabilistic methods, to wit the Bismut deriva-

tive formulae on vector bundles (cf. § 2.1), Thalmaier & Wang [TW04] prove derivative

estimates for various heat semigroups on Riemannian vector bundles. As an application,

the weak (1, 1) property for a class of Riesz transforms on a vector bundle is established.

In [Aus+04], the results are extended to manifolds whose heat kernel satisfies Gaussian

estimates from above and below: It is shown that the Riesz transform is 𝖫𝑝-bounded on

such a manifold, for 𝑝 ranging in an open interval above 2, if and only if the gradient

of the heat kernel satisfies a certain 𝖫𝑝-estimate in the same interval of 𝑝’s. A direct ap-

plication to geometric analysis is given by the 𝖫𝑝-Calderón-Zygmund inequalities, cf. e.g.

[GP15; Pig20].

However, the study of Riesz transform normally involves assuming a volume doubling

property of 𝑀 . For the following results we only assume that the curvature and its

derivative are bounded by some constant 𝐴 < ∞, cf. Assumption 4.3 below.

Note that, in this chapter, in alignment with the literature and for convenience we

change the sign of the Laplacian to obey the analytic sign convention.

This chapter is based on joint work with Batu Güneysu & Baptiste Devyver. My main contri-

bution to this chapter is reflected in Theorem 4.6. The analytic insights are due to my collabo-

rators.

4.1 Setting and Notation

In this chapter, let 𝑀 be a smooth connected (geodesically) complete Riemannian

manifold of dimension dim 𝑀 =∶ 𝑚 without boundary. Recall that by 𝖽(𝑥, 𝑦) we denote

the geodesic distance and the induced open balls with 𝖡(𝑥, 𝑟).
Given a smooth vector bundle 𝐸 → 𝑀 carrying a canonically given metric and a canon-

ically given covariant derivative, we denote its fibrewise metric by (⋅, ⋅), with |⋅| = √(⋅, ⋅)
the fibrewise norm and its covariant derivative with

∇ ∶ 𝝘𝖢∞(𝐸) ⟶ 𝝘𝖢∞(𝖳∗𝑀 ⊗ 𝐸).

105
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We equip 𝑀 with the Riemannian volume measure vol and sometimes use the local

volume doubling property for the measure vol, i.e. there is a 𝐶 > 0 such that

vol(𝖡(𝑧, 𝑅))
vol(𝖡(𝑧, 𝑟)) ⩽ 𝐶e𝐶𝑅

(
𝑅
𝑟 )

𝑚
∀0 < 𝑟 ⩽ 𝑅 ∀𝑧 ∈ 𝑀. (LVD)

By the Bishop-Gromov comparison theorem and the well-known formula for the volume

of balls in the hyperbolic space (cf. [Bis63], [Pet16, Section 7.1.2]), property (LVD) holds if

Ric ⩾ −𝐴 for some 𝐴 ⩾ 0 with some 𝐶 = 𝐶(𝐴, 𝑚). A well-known consequence [Stu92] of

(LVD) is the following volume comparison inequality: There is a constant 𝐶 > 0 such that

we have

vol(𝖡(𝑥2, √𝑡)
vol(𝖡(𝑥1, √𝑡))

⩽ 𝐶e
𝐶𝑡
𝜀 e𝜀 𝖽(𝑥1,𝑥2)2

𝑡 ∀𝑡, 𝜀 > 0 ∀𝑥1, 𝑥2 ∈ 𝑀. (VC𝜀)

Indeed: Setting 𝑟 = 𝖽(𝑥1, 𝑥2), it follows that

vol(𝖡(𝑥2, √𝑡)
vol(𝖡(𝑥1, √𝑡))

⩽
vol(𝖡(𝑥1, 𝑟 + √𝑡))

vol(𝖡(𝑥1, √𝑡))
(LVD)
⩽ 𝐶

(
𝑟

√𝑡
+ 1

)

𝑚

e𝐶(𝑟+√𝑡).

Using the elementary inequalities

e𝐶𝑟 ⩽ e
𝐶𝑡
8𝜀 e

2𝜀𝑟2
𝑡 , e𝐶√𝑡 ⩽ 𝐶′e𝐶𝑡,

we get (VC𝜀) (with a possibly different value for the constant 𝐶).

Given a smooth metric vector bundle 𝐸 → 𝑀 we get the Banach spaces 𝝘𝖫𝑝(𝐸) given

by equivalence classes of Borel sections 𝜓 in 𝐸 → 𝑀 such that

‖𝜓‖𝑝 ∶= ‖𝜓‖𝖫𝑝 ∶= ‖|𝜓|‖𝖫𝑝 < ∞,

where ‖|𝜓|‖𝑝 denotes the norm of the function |𝜓| with respect to 𝖫𝑝(𝑀). Then 𝝘𝖫2(𝐸)
canonically becomes a Hilbert space with scalar product

⟨𝜓1, 𝜓2⟩2 ∶= ⟨𝜓1, 𝜓2⟩𝖫2 = ∫ (𝜓1, 𝜓2) d vol .

Given another smooth metric bundle 𝐹 → 𝑀 , the operator norm of a linear map

𝐴 ∶ 𝝘𝖫𝑝(𝐸) ⟶ 𝝘𝖫𝑞 (𝐹 )

will be denoted by

‖𝐴‖𝑝,𝑞 = sup {‖𝐴𝛼‖𝑞 ∶ ‖𝛼‖𝑞 ⩽ 1} ∈ [0, ∞].

In this chapter, we switch to the analytic sign convention for convenience, so that the

Laplace operators acting on 0-, resp., 𝑘-forms are given by

Δ(0) ∶= 𝝳(1)𝗱(0) ∶ 𝖢∞(𝑀) ⟶ 𝖢∞(𝑀),
Δ(𝑘)

𝑔 ∶= 𝝳(𝑘+1)
𝑔 𝗱(𝑘) + 𝗱(𝑘−1)𝝳(𝑘)

𝑔 ∶ 𝝘𝖢∞(⋀𝑘 𝖳∗𝑀) ⟶ 𝝘𝖢∞(⋀𝑘 𝖳∗𝑀).
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In particular, we have

𝗱(𝑘−1)Δ(𝑘−1) = Δ(𝑘)𝗱(𝑘−1) and 𝝳(𝑘−1)Δ(𝑘−1) = Δ(𝑘)𝝳(𝑘−1), (4.1)

and, by the Weitzenböck formula 1.42,

Δ(𝑘) = ∇∗∇ + 𝓡(𝑘),

where 𝓡 ∈ 𝝘(𝖤𝗇𝖽 ⋀𝑘 𝖳∗𝑀) is fibrewise self-adjoint, of zeroth order and

|𝓡(𝑘)| ⩽ 𝐶(𝑚) |𝖱|

for some 𝐶(𝑚) > 0 only depending on 𝑚 by the explicit representation (1.12). Recall that

for 𝑘 = 1, 𝓡(1),tr = 𝓡|Ω1(𝑀) = Ric is the Ricci curvature, and its transpose defined by

duality respectively, are read as sections

Ric ∈ 𝝘𝖢∞(𝖤𝗇𝖽(𝖳𝑀)) and   Rictr ∈ 𝝘𝖢∞(𝖤𝗇𝖽(𝖳∗𝑀)).

The Riemannian curvature tensor 𝖱 can be read as (0, 4)-tensor, i.e. 𝖱 ∈ 𝝘𝖢∞(𝖳(0,4)𝑀). We

then denote by ‖𝖱‖∞ its ‖⋅‖∞ norm. Similarly, ∇ 𝖱 can be read as a (0, 4 + 1)-tensor and

we can consider ‖∇ 𝖱‖∞ in the same fashion.

As 𝑀 is geodesically complete, Δ(0) is essentially self-adjoint in 𝖫2(𝑀) when initially de-

fined on 𝖢∞
𝑐 (𝑀). Likewise, Δ(𝑘) is essentially self-adjoint in 𝝘𝖫2(⋀𝑘 𝖳∗𝑀). By a usual

abuse of notation, the corresponding self-adjoint realisations will be denoted by the

same symbol, i.e. Δ(0) ⩾ 0, and Δ(𝑘) ⩾ 0 respectively. For all square-integrable 𝑘-forms

𝛼 ∈ 𝝘𝖫2(⋀𝑘 𝖳∗𝑀), the time-dependent 𝑘-form

(0, ∞) × 𝑀 ∋ (𝑡, 𝑥) ⟼ e−𝑡Δ(𝑘)𝛼 ∈ ⋀𝑘 𝖳∗
𝑥𝑀

has a smooth representative, which extends smoothly to [0, ∞) × 𝑀 , if 𝛼 is smooth. Let

us again denote by e−𝑡Δ(𝑘)(𝑥, 𝑦) its corresponding jointly smooth integral kernel, i.e. the

heat kernel of e−𝑡Δ(𝑘)
.

By the classical Li-Yau heat kernel estimate [LY86], assuming Ric ⩾ −𝐴 for some constant

𝐴 ⩾ 0, implies the existence of constants 𝐶𝑗 = 𝐶𝑗(𝐴, 𝑚) > 0 (𝑗 = 1, 2) and 𝐷 = 𝐷(𝐴, 𝑚) > 0
(where 𝐶2 = 0, if 𝐴 = 0), such that we have

e−𝑡Δ(0)(𝑥, 𝑦) ⩽ 𝐶1 vol(𝖡(𝑥, √𝑡))−1e𝐶2𝑡e−𝐷 𝖽(𝑥,𝑦)2
𝑡 ∀𝑡 > 0 ∀𝑥, 𝑦 ∈ 𝑀.

In particular, assuming ‖𝖱‖∞ ⩽ 𝐴 for some 𝐴 > 0 and using semigroup domination, we

get for every 0 ⩽ 𝑘 ⩽ 𝑚,

|e
−𝑡Δ(𝑘)(𝑥, 𝑦)| ⩽ 𝐶 vol(𝖡(𝑥, √𝑡))−1e𝐶𝑡e−𝐷 𝖽(𝑥,𝑦)2

𝑡 , (UE)

where 𝐶, 𝐷 > 0 only depend on 𝐴 and 𝑚. Using commutation rules (4.1), there are well-

known pointwise heat kernel estimates for 𝗱(𝑘)e−𝑡Δ(𝑘)
and 𝝳(𝑘)e−𝑡Δ(𝑘)

(cf. [Bak87], [BDG21,

Appendix A]):

Lemma 4.1. Assume that ‖𝖱‖∞ ⩽ 𝐴 for some a constant 𝐴 > 0. Then there are constants

𝐶 = 𝐶(𝐴, 𝑚) > 0, 𝐷 = 𝐷(𝐴, 𝑚) > 0, such that for all 1 ⩽ 𝑘 ⩽ 𝑚, we have

|𝗱
(𝑘)e−𝑡Δ(𝑘)(𝑥, 𝑦)| ⩽ 𝐶 vol(𝖡(𝑥, √𝑡))−1𝑡−1/2e𝐶𝑡e−𝐷 𝖽(𝑥,𝑦)2

𝑡 ∀𝑡 > 0 ∀𝑥, 𝑦 ∈ 𝑀, (𝗱 UE)
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and

|𝝳
(𝑘−1)e−𝑡Δ(𝑘)(𝑥, 𝑦)| ⩽ 𝐶 vol(𝖡(𝑥, √𝑡))−1𝑡−1/2e𝐶𝑡e−𝐷 𝖽(𝑥,𝑦)2

𝑡 ∀𝑡 > 0 ∀𝑥, 𝑦 ∈ 𝑀. (𝝳 UE)

The differential 𝗱(𝑘) is understood to act on the first variable of the heat kernel

𝗱(𝑘)e−𝑡Δ(𝑘)(𝑥, 𝑦) ∶= 𝗱(𝑘)e−𝑡Δ(𝑘)(•, 𝑦)(𝑥),

likewise for 𝝳(𝑘−1).

Remark 4.2. Alternatively, Lemma 4.1 can be proved similarly to the method we will

describe in § 4.3 but using the Bismut formulae (2.30) and (2.31).

Our main goal in this chapter is to establish analogous estimates for the covariant

derivative of the heat kernel of the Hodge Laplacian, i.e. to show pointwise estimates of

the form

|∇e−𝑡Δ(𝑘)(𝑥, 𝑦)| ⩽ 𝐶 vol(𝖡(𝑥, √𝑡))−1𝑡−1/2e𝐶𝑡e−𝐷 𝖽(𝑥,𝑦)2
𝑡 . (∇UE)

We note that for 𝑘 = 0, we have ∇ = 𝗱(0), so that (𝗱 UE) and (∇UE) are equivalent. If 𝑀 is

oriented, the same holds true for 𝑘 = 𝑚 by Hodge duality.

As we have already seen in § 2, the covariant Bismut derivative formula Theorem 2.21 not

only involves the Riemannian curvature tensor, but also its derivative. Thus, for 1 ⩽ 𝑘 ⩽ 𝑚,

the corresponding covariant derivative estimates need stronger assumptions, to wit: a

uniform bound on the Riemannian curvature tensor and its covariant derivative.

4.2 Main Results

We first state the main results of this chapter.

Assumption 4.3. We assume that the curvature and its derivative are bounded by some

constant 𝐴 < ∞, i.e.

max (‖𝖱‖∞ , ‖∇ 𝖱‖∞) ⩽ 𝐴. (A)

Theorem 4.4. Assume that (A) holds. Then there are constants 𝐶 = 𝐶(𝐴, 𝑚) > 0 and

𝐷 = 𝐷(𝐴, 𝑚) > 0, such that for all 1 ⩽ 𝑘 ⩽ 𝑚, we have

|∇𝑥e−𝑡Δ(𝑘)(𝑥, 𝑦)| ⩽ 𝐶
vol(𝖡(𝑥, √𝑡))

𝑡−1/2e𝐶𝑡e−𝐷 𝖽(𝑥,𝑦)2
𝑡 ∀𝑡 > 0 ∀𝑥, 𝑦 ∈ 𝑀.

Corollary 4.5. Assume that (A) holds. There is a constant 𝛾 = 𝛾(𝐴, 𝑚) > 0, and for all

1 ⩽ 𝑝 < ∞ a constant 𝐶 = 𝐶(𝐴, 𝑚, 𝑝) > 0, such that, for all 1 ⩽ 𝑘 ⩽ 𝑚, we have

∫ |∇𝑥e−𝑡Δ(𝑘)(𝑥, 𝑦)|
𝑝

e
𝛾𝖽(𝑥,𝑦)2

𝑡 vol(d𝑥) ⩽ 𝐶e𝐶𝑡

𝑡𝑝/2 vol(𝖡(𝑦, √𝑡))𝑝−1
∀𝑡 > 0. (4.2)
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Theorem 4.6. Assume that (A) holds. For all 1 < 𝑝 < ∞ there is a 𝐶 = 𝐶(𝐴, 𝑚, 𝑝) > 0, such
that for all 1 ⩽ 𝑘 ⩽ 𝑚, we have

‖∇e−𝑡Δ(𝑘)
|𝝘𝖫2∩𝖫𝑝 (⋀𝑘 𝖳∗𝑀)‖𝑝,𝑝

⩽ 𝐶e𝑡𝐶 𝑡−1/2 ∀𝑡 > 0.

The Proof of Theorem 4.4 and its Corollary 4.5 is given in § 4.3 below. The Proof of

Theorem 4.4 is based on the probabilistic representation of ∇𝑥e−𝑡/2Δ(𝑘)(𝑥, 𝑦) by using the

results developed in § 2, but now applied to a Brownian bridge from 𝑥 to 𝑦 in time 𝑡. The

localisation techniques developed in § 2 are therefore hindering as they involve the first

exit time of Brownian motion from an open ball 𝖡(𝑥, 𝑟) around its starting point 𝑥 — as

the terminal point 𝑦 does not need to be in 𝖡(𝑥, 𝑟). We therefore make use of the global

Bismut formula developed § 2.2.2 and the time reversal property of the Brownian bridge.

In the § 4.4, we prove the 𝖫𝑝-estimate given in Theorem 4.6 by means of the local

covariant Bismut formula, Theorem 2.19, and a proper choice of the Cameron-Martin

space valued process ℓ.
As well-known from the work of Coulhon & Duong [CD99], the weak (1, 1) property im-

plies 𝖫𝑝-boundedness for 1 < 𝑝 ⩽ 2. For the proof the authors assume a volume doubling

assumption and establish the spatial derivative of the heat kernel to obtain results about

the corresponding Riesz transform. Adapting the Proof of [CD99, Theorem 1.2] by applying

the integrated heat kernel estimate (4.2) with 𝑝 = 2, we obtain the following result for

the covariant Riesz transform for 1 < 𝑝 ⩽ 2:

Corollary 4.7. Assume that (A) holds. Then for all 1 ⩽ 𝑘 ⩽ 𝑚, 𝜆 > 0, the operator

∇(Δ(𝑘) + 𝜆)−1/2 is weak (1, 1) type with a bound only depending on 𝐴, 𝑚 and 𝜆. More precisely,

there is a constant 𝐷 = 𝐷(𝐴, 𝑚, 𝜆) > 0 such that for all 1 ⩽ 𝑘 ⩽ 𝑚, 𝛼 ∈ 𝝘𝖫2∩𝖫1(⋀𝑘 𝖳∗𝑀), we

have

vol {|∇(Δ(𝑘) + 𝜆)−1/2𝛼| > 𝜆} ⩽ 𝐷
𝜆 ‖𝛼‖1 ∀𝜆 > 0.

In particular, for all 1 < 𝑝 ⩽ 2, there is a constant 𝐶 = 𝐶(𝐴, 𝑚, 𝑝, 𝜆) > 0, such that for all

1 ⩽ 𝑘 ⩽ 𝑚, we have

‖∇(Δ(𝑘) + 𝜆)−1/2‖𝑝,𝑝 ⩽ 𝐶.

Corollary 4.7 is proved in § 4.5, where we show that the (1, 1) property implies the 𝖫𝑝-

boundedness. This results improves a result by Thalmaier and Wang [TW04, Theorem D],

in that, in [TW04, Theorem D] the same conclusion for the covariant Riesz transform is

obtained, however an additional assumption on the volume growth of 𝑀 is made. This

volume assumption excludes, in particular, hyperbolic geometries (cf. [Pig20]), while such

geometries are covered by Corollary 4.7. In light of the our main result, Theorem 4.4, and

the results in [Aus+04] for the scalar Riesz transform, it is natural to expect that a uniform

bound on 𝖱 and ∇ 𝖱 implies that the covariant Riesz transform is bounded on 𝖫𝑝 for all

1 < 𝑝 < ∞: Specifically, we make the following conjecture:
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Conjecture 4.8. Assume that (A) holds. Then for every 1 ⩽ 𝑘 ⩽ 𝑚 and 1 ⩽ 𝑝 ⩽ ∞, we have

‖∇(Δ(𝑘) + 𝜆)−1/2‖𝑝,𝑝 < ∞ ∀𝜆 > 0,

where the bound only depends on 𝐴, 𝑚, 𝑝 and 𝜆.

We currently do not know whether the assumption on ∇ 𝖱 is necessary in Conjec-

ture 4.8. However, it is known that the curvature hypotheses cannot be weakened to

merely boundedness from below of the sectionnal curvature: In fact a recent result of

Marini and Veronelli [MV20] shows that there are manifolds with positive sectionnal cur-

vature, for which the covariant Riesz transform is not bounded on 𝖫𝑝 for all 1 < 𝑝 < ∞.

It should also be noted that boundedness in 𝖫𝑝 of the Riesz transform 𝗱(𝑘)(Δ(𝑘) + 𝜆)−1/2

instead of ∇(Δ(𝑘)+𝜆)−1/2 is considerably easier, roughly, because we have the commutation

rule 𝗱(𝑘)Δ(𝑘) = Δ(𝑘+1)𝗱(𝑘). In fact, a classical result by Bakry [Bak87, Theorem 5.1] states that

𝗱(𝑘)(Δ(𝑘) +𝜆)−1/2 is bounded in 𝖫𝑝, if 𝓡(𝑘) and 𝓡(𝑘+1) are bounded from below by constants.

More precisely, the following results holds true.

Theorem 4.9. Assume that ‖𝖱‖∞ < ∞. Then for all 0 ⩽ 𝑘 ⩽ 𝑚 the operators 𝗱(𝑘)(Δ(𝑘) +𝜆)−1/2

and 𝝳(𝑘)(Δ(𝑘) + 𝜆)−1/2 are weakly (1, 1) with a (1, 1)-norm bound only depending on 𝐴 and 𝑚. In

particular, for every 1 < 𝑝 ⩽ 2, we have

‖𝗱(𝑘)(Δ(𝑘) + 𝜆)−1/2‖𝑝,𝑝 < ∞ and ‖𝝳(𝑘)(Δ(𝑘) + 𝜆)−1/2‖𝑝,𝑝 < ∞,

with norm bounds only depending on 𝐴, 𝑚, 𝑝 and 𝜆.

The weak (1, 1) property appears to be new in this generality. The latter is established

using the estimates (𝗱 UE) and (𝝳 UE), and Coulhon-Duong theory as in the Proof of Corol-

lary 4.7, yielding an alternative proof of the 𝖫𝑝-boundedness of Theorem 4.9. The details

are given in § 4.5.

For applications in geometric analysis, the 𝖫𝑝-boundedness of ∇(Δ(𝑘) + 𝜆)−1/2 is more

important than that of 𝗱(𝑘)(Δ(𝑘) +𝜆)−1/2. For example, as shown in [GP15, Proof of Theorem

4.13], the former boundedness for 𝑘 = 1 implies the 𝖫𝑝-Calderón-Zygmund inequality

‖Hess 𝑢‖𝑝 ⩽ 𝐷CZ (‖Δ(0)𝑢‖𝑝 + ‖𝑢‖𝑝) ∀𝑢 ∈ 𝖢∞
𝑐 (𝑀),

where 𝐷CZ only depends on ‖∇(Δ(1) + 𝜆)−1/2‖𝑝,𝑝. Roughly, the idea is to use the spectral

calculus, for all 𝜆 > 0,

‖∇𝗱(0)𝑢‖𝑝 = ‖∇𝗱(0)(Δ(0) + 𝜆)−1(Δ(0) + 𝜆) 𝑢‖𝑝

= ‖∇(Δ(1) + 𝜆)−1/2𝗱(0)(Δ(0) + 𝜆)−1/2(Δ(0) + 𝜆)𝑢‖𝑝

⩽ ‖∇(Δ(1) + 𝜆)−1/2|𝝘𝖫𝑝∩𝖫2(𝖳∗𝑀) ‖𝑝 ‖𝗱(0)(Δ(0) + 𝜆)−1/2|𝖫𝑝(𝑀)∩𝖫2(𝑀)‖𝑝 (‖Δ(0)𝑢‖𝑝 + 𝜆 ‖𝑢‖𝑝) ,

where, by the essential self-adjointness of Δ(0), we used that

(Δ(1) + 𝜆)
−1/2 𝗱(0)𝑔 = 𝗱(0) (Δ(0) + 𝜆)

−1/2 𝑔

for all 𝑔 ∈ 𝖫2(𝑀) with 𝗱(0)𝑔 ∈ 𝝘𝖫2(𝖳∗𝑀).



4.2. Main Results – 111

The 𝖫𝑝-Calderón-Zygmund inequality together with ‖𝖱‖∞ < ∞, in turn, implies global

second order 𝖫𝑝-estimates (cf. [GP19, Theorem 4 b)]) for distributional solutions 𝑣 ∈ 𝖫𝑝(𝑀)
of Δ(0)𝑣 = 𝑓 ∈ 𝖫𝑝(𝑀) of the form

‖Hess 𝑣‖𝑝 + ‖𝗱(0)𝑣‖𝑝 ⩽ 𝐶 (‖𝑓‖𝑝 + ‖𝑣‖𝑝) ,

where 𝐶 only depends on 𝐷CZ and an upper bound for ‖𝖱‖∞.

Hence Corollary 4.7 directly implies, the following

Corollary 4.10. Assume that (A) holds. Then for all 1 < 𝑝 ⩽ 2, there is a constant

𝐷′ = 𝐷′
𝐴,𝑚,𝑝 > 0 such that

‖Hess(𝑢)‖𝑝 ⩽ 𝐷′
(‖Δ(0)𝑢‖𝑝 + ‖𝑢‖𝑝) ∀𝑢 ∈ 𝖢∞

𝑐 (𝑀), (4.3)

and such that for every distributional solution 𝑣 ∈ 𝖫𝑝(𝑀) of Δ(0)𝑣 = 𝑓 ∈ 𝖫𝑝(𝑀) we have

‖Hess 𝑣‖𝑝 + ‖𝗱(0)𝑣‖𝑝 ⩽ 𝐷′(‖𝑓‖𝑝 + ‖𝑣‖𝑝). (4.4)

In addition, the 𝖫𝑝-Calderón-Zygmund inequality implies precompactness results for iso-

metric immersions, cf. [Bre15, Theorem 1.1] and [GP19]. The Calderón-Zygmund-inequality

(4.3) also improves [GP15, Theorem D] as it does not involve a volume assumption. A

recent overview article by Pigola [Pig20] contains the state-of-the art for the 𝖫𝑝-Calderon-

Zygmund inequality for large 𝑝: it can be shown that the 𝖫𝑝-Calderon-Zygmund inequality

holds true for all 𝑝 > max(2, 𝑚/2) if only ‖𝖱‖∞ < ∞. In this sense, Corollary 4.10 can be

considered a complementary result for small 𝑝.

However, Conjecture 4.8 for 𝑝 > 2 is motivated on the scalar result for functions in

[Aus+04, Theorem 1.6] – noting that ∇ = 𝗱(0) on functions – which states that if 𝑀 satisfies

the local Poincaré inequality and has an exponential volume doubling (these conditions

are satisfied under Ric ⩾ −𝐴 for some constant 𝐴 ⩾ 0), then

‖∇e−𝑡Δ(0)
|𝖫2∩𝖫𝑝(𝑀)‖𝑝,𝑝

⩽ 𝐶e𝑡𝐶 𝑡−1/2 ∀𝑡 > 0 ∀𝑝 > 2

implies (is actually equivalent to)

‖∇(Δ + 𝜆)−1/2|𝖫2∩𝖫𝑝(𝑀)‖𝑝,𝑝
⩽ 𝐷 ∀𝑝 > 2.

Trying to extend the results of [Aus+04], we realise that the central tools are the scalar

(𝑘 = 0) variants of Corollary 4.5 and Theorem 4.6, as well as the scalar variant of so called

Davies-Gaffney inequality, i.e. an 𝖫2 off-diagonal estimates for e−𝑡Δ(0)
and 𝗱(0)e−𝑡Δ(0)

. We

can generalise the result for the covariant derivative of the heat kernel of the Hodge

Laplacian which is proved in § 4.6:

Theorem 4.11. There are universal constants 𝑐1, 𝑐2 > 0 such that for all 1 ⩽ 𝑘 ⩽ 𝑚 with

𝓡(𝑘) ⩾ −𝐴 for some constant 𝐴 ⩾ 0, all 𝑡 > 0, all Borel subsets 𝐸, 𝐹 ⊂ 𝑀 with compact

closure, and all 𝛼 ∈ 𝝘𝖫2(⋀𝑘 𝖳∗𝑀) with supp 𝛼 ⊂ 𝐸, we have

‖𝟙𝐹 e−𝑡Δ(𝑘)𝛼‖2
+ ‖𝟙𝐹 √𝑡∇e−𝑡Δ(𝑘)𝛼‖2

+ ‖𝟙𝐹 𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2
⩽ 𝑐1 (1 + √𝑡𝐴) e− 𝑐2𝜚(𝐸,𝐹 )2

𝑡 ‖𝟙𝐸𝛼‖2 .
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Note that the bound above implies that for small 0 < 𝑡 < 1

‖𝟙𝐹 e−𝑡Δ(𝑘)𝛼‖2
+ ‖𝟙𝐹 √𝑡∇e−𝑡Δ(𝑘)𝛼‖2

+ ‖𝟙𝐹 𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2
⩽ 𝑐1,𝐴e− 𝑐2𝖽(𝐸,𝐹 )2

𝑡 ‖𝟙𝐸𝛼‖2 ,

which is needed eventually for the strategy of the proof in [Aus+04].

The only place where the techniques used in [Aus+04] cannot be adjusted directly to

differential forms is where the local Poincaré inequality is used explicitly (which does not

make sense on differential forms). We currently do not know whether there is a different

method which avoids the use of the local Poincaré, proving Conjecture 4.8.

4.3 Proof of Theorem 4.4 and Corollary 4.5

4.3.1 Brownian bridges For details on Brownian bridges, we refer the reader to e.g.

[Hsu02, Section 5.4.]. An 𝑀-valued path 𝑥 with explosion time 𝜁 = 𝜁(𝑥) > 0 may be also

interpreted as a continuous map 𝑥 ∶ [0, ∞) → 𝑀 �such that 𝑥𝑡 ∈ 𝑀 for 0 ⩽ 𝑡 < 𝜁 and

𝑥𝑡 = ∞ for all 𝑡 ⩾ 𝜁 if 𝜁 < ∞. The space of 𝑀 -valued paths with explosion time is called

the path space of 𝑀 and is denoted by 𝑊 (𝑀). A Brownian motion is then given as

the coordinate process 𝑋(𝜔)𝑡 = 𝜔𝑡 on (𝑊 (𝑀), 𝓑𝑡(𝑊 (𝑀)), 𝜇), where 𝓑𝑡(𝑊 (𝑀)) is the

𝜎-algebra generated by the coordinate maps up to time 𝑡 and 𝜇 is the Wiener measure.

On the bridge space

𝖫𝑥,𝑦
𝑡 (𝑀) ∶= {𝜔 ∈ 𝑊 (𝑀) ∶ 𝜔0 = 𝑥, 𝜔𝑡 = 𝑦}

the law of the Brownian bridge from 𝑥 to 𝑦 in time 𝑡 is a probability measure ℙ𝑥,𝑦
𝑡 on

𝖫𝑥,𝑦
𝑡 (𝑀) roughly given by

ℙ𝑥,𝑦
𝑡 (𝐵) ∶= ℙ(𝐵 ∣ 𝑋𝑡 = 𝑦) ∀𝐵 ∈ 𝓑𝑡(𝑊 (𝑀)).

The measure ℙ𝑥,𝑦
𝑡 is called Wiener measure on 𝖫𝑥,𝑦

𝑡 (𝑀). For any 𝑠 < 𝑡 and 𝐹 ∈ 𝓑𝑠
nonnegative function on 𝑊 (𝑀) and 𝑓 a nonnegative measurable function on 𝑀 , it can

be shown, that

𝔼𝑥,𝑦
𝑡 𝐹 (𝑋) =

𝔼𝑥 (𝐹 (𝑋)𝑝𝑡−𝑠(𝑋𝑠, 𝑦))
𝑝𝑡(𝑥, 𝑦) , 0 ⩽ 𝑠 < 𝑡, (4.5)

by using the Markov property. In particular, it follows that the ℙ𝑥,𝑦
𝑡 as a measure on the

space 𝑊 (𝑀), is absolutely continuous with respect to ℙ𝑥 on 𝓑𝑠 for any 𝑠 < 𝑡 and the

Radon-Nikod ́ym derivative is given by

dℙ𝑥,𝑦
𝑡

dℙ𝑥 |𝓑𝑠
= 𝑝𝑡−𝑠(𝑋𝑠, 𝑦)

𝑝𝑡(𝑥, 𝑦) =∶ 𝑁𝑠.

Then (𝑁𝑠)0⩽𝑠<𝑡 is a continuous local martingale under the probability ℙ𝑥.

The Brownian bridge admits symmetry under time reversal (time reversal property)

of the pinned Wiener measure: The pushforward of ℙ𝑥,𝑦
𝑡 with respect to the 𝓑𝑠/𝓑𝑠-

measurable map 𝑊 (𝑀) → 𝑊 (𝑀) given by 𝜔 ↦ 𝜔(𝑡 − ⋅) is ℙ𝑦,𝑥
𝑡 . In particular,

𝔼𝑥,𝑦
𝑡 𝐹 (𝜔) = 𝔼𝑦,𝑥

𝑡 𝐹 (𝜔(𝑡 − ⋅)). (4.6)
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4.3.2 Proof of Theorem 4.4 Next, we establish the estimate for the covariant derivative

of the heat kernel in Theorem 4.4. Therefore, we want to make use of the covariant Bismut

formula, Theorem 2.19, and disintegrate using the relation (4.5) and time reversal.

Proof of Theorem 4.4. Let 𝑟 > 0, 𝜂1 ∈ 𝖳𝑥𝑀 , 𝜂2 ∈ ⋀𝑘 𝖳∗
𝑥𝑀 . By the covariant Bismut

formula, Theorem 2.19, and the disintegration formula (4.5) we get, for any |𝜉| ⩽ 1,

|∇𝑥e− 𝑡
2 Δ(𝑘)

(𝑥, 𝑦)| ⩽ 1
𝑡 e− 𝑡

2 Δ(0)
(𝑥, 𝑦)𝔼𝑥,𝑦

𝑡 (|𝓠𝑡| |∫
𝑡

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|)

+ 1
2𝑡e− 𝑡

2 Δ(0)
(𝑥, 𝑦)1

2𝔼𝑥,𝑦
𝑡 (|𝓠𝑡| ∫

𝑡

0
|𝓠−1

𝑠 ||𝜌(𝑋𝑠(𝑥))|| ̇ℓ𝑠|d𝑠)

⩽ 1
𝑡 e− 𝑡

2 Δ(0)
(𝑥, 𝑦)e𝐶(𝐴,𝑚)𝑡𝔼𝑥,𝑦

𝑡 (|∫
𝑡

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|)

+ 𝐶(𝐴, 𝑚)e𝐶(𝐴,𝑚)𝑡e− 𝑡
2 Δ(0)

(𝑥, 𝑦).

By the time reversal property (4.6), we get

e− 𝑡
2 Δ(0)

(𝑥, 𝑦)𝔼𝑥,𝑦
𝑡 |∫

𝑡

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|

= 𝔼 (e− 𝑡
2 Δ(0)

(𝑋𝑡/2(𝑥), 𝑦) |∫
𝑡/2

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|)

+ 𝔼 (e− 𝑡
2 Δ(0)

(𝑋𝑡/2(𝑦), 𝑥) |∫
𝑡/2

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|) .

Next, by the Cauchy-Schwarz inequality,

𝔼 (e− 𝑡
2 Δ(0)

(𝑋𝑡/2(𝑥), 𝑦) |∫
𝑡/2

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|)

⩽ [𝔼 (e− 𝑡
2 Δ(0)

(𝑋𝑡/2(𝑥), 𝑦))
2

]
1/2

[
𝔼 |∫

𝑡/2

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|

2

]

1/2

⩽ 𝐶(𝐴, 𝑚)𝑡−1/2e𝐶(𝐴,𝑚)𝑡
[∫ e− 𝑡

2 Δ(0)
(𝑥, 𝑧)e− 𝑡

2 Δ(0)
(𝑧, 𝑦)e− 𝑡

2 Δ(0)
(𝑧, 𝑦) vol(d𝑧)]

1/2

⩽ 𝐶(𝐴, 𝑚) vol(𝖡(𝑦, √𝑡/2))−1/2𝑡−1/2e𝐶(𝐴,𝑚)𝑡e−𝑡Δ(0)(𝑥, 𝑦)1/2

⩽ 𝐶(𝐴, 𝑚) vol(𝖡(𝑦, √𝑡/2))−1𝑡−1/2e𝐶(𝐴,𝑚)𝑡e−𝐶(𝐴,𝑚) 𝖽(𝑥,𝑦)2
𝑡 ,

where we have used the Li-Yau estimate

e−𝑡Δ(0)(𝑥1, 𝑥2) ⩽ vol(𝖡(𝑥1, √𝑡))−1e−𝐶(𝐴,𝑚) 𝜚(𝑥1,𝑥2)2
𝑡 e𝐶(𝐴,𝑚)𝑡 ∀𝑡 > 0 ∀𝑥1, 𝑥2 ∈ 𝑀,

twice, and

∫ e− 𝑡
2 Δ(0)

(𝑥, 𝑧)e− 𝑡
2 Δ(0)

(𝑧, 𝑦) vol(d𝑧) = e−𝑡Δ(0)(𝑥, 𝑦).

Likewise, we have

𝔼 (e− 𝑡
2 Δ(0)

(𝑋𝑡/2(𝑥), 𝑦) |∫
𝑡/2

0
𝓠−1

𝑠 (d𝐵𝑠 ⨼ 𝓠𝑠)|)

⩽ 𝐶(𝐴, 𝑚) vol(𝖡(𝑥, √𝑡/2))−1𝑡−1/2e𝐶(𝐴,𝑚)𝑡e−𝐶(𝐴,𝑚) 𝖽(𝑥,𝑦)2
𝑡 ,

so that with local doubling (LVD) we arrive at the desired estimate. ■
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4.3.3 Proof of Corollary 4.5

Proof of Corollary 4.5. By Theorem 4.4 and (VC𝜀), given 𝛾 > 0, we get

∫ |∇𝑥e−𝑡Δ(𝑘)(𝑥, 𝑦)|
𝑝

e
𝛾𝖽(𝑥,𝑦)2

𝑡 vol(d𝑥)

⩽ 𝐶(𝐴, 𝑚, 𝑝)e𝐶(𝐴,𝑚)𝑡𝑡−𝑝/2 vol(𝖡(𝑦, √𝑡))−𝑝
∫ e(𝛾−𝐶(𝐴,𝑚,𝑝)) 𝖽(𝑥,𝑦)2

𝑡 vol(d𝑥)

⩽ 𝐶(𝐴, 𝑚, 𝑝)e𝐶(𝐴,𝑚)𝑡𝑡−𝑝/2 vol(𝖡(𝑦, √𝑡))−𝑝
∞

∑
𝑗=2 ∫

𝖡(𝑦,𝑗√𝑡)⧵𝖡(𝑦,(𝑗−1)√𝑡)

e(𝛾−𝐶(𝐴,𝑚,𝑝)) 𝖽(𝑥,𝑦)2
𝑡 vol(d𝑥)

+ 𝐶(𝐴, 𝑚, 𝑝)e𝐶(𝐴,𝑚)𝑡𝑡−𝑝/2 vol(𝖡(𝑦, √𝑡))−𝑝+1,

where we have chosen 𝛾 < 𝐶(𝐴, 𝑚, 𝑝). Finally, using the local doubling (LVD) and letting

𝛾′ ∶= 𝐶(𝐴, 𝑚, 𝑝) − 𝛾 > 0, we have

∞

∑
𝑗=2 ∫

𝖡(𝑦,𝑗√𝑡)⧵𝖡(𝑦,(𝑗−1)√𝑡)

e−𝛾′ 𝖽(𝑥,𝑦)2
𝑡 vol(d𝑥)

⩽ vol(𝖡(𝑦, √𝑡))
∞

∑
𝑗=2

vol(𝖡(𝑦, 𝑗√𝑡))
vol(𝖡(𝑦, √𝑡))

e−𝛾′(𝑗−1)2

⩽ vol(𝖡(𝑦, √𝑡))
∞

∑
𝑗=2

𝑗𝑚e−𝛾′(𝑗−1)2+𝐶(𝐴,𝑚)𝑗 < ∞,

finishing the proof. ■

Remark 4.12. Note that Lemma 4.1 can be proved almost verbatim using the global Bis-

mut formulae analogues (2.30) and (2.31).

4.4 Proof of Theorem 4.6

Now we can give the

Proof of Theorem 4.6. We start by noting that it suffices to prove

‖∇e−𝑡Δ(𝑘)𝛼‖𝑝
⩽ 𝐶(𝐴, 𝑚, 𝑝)𝑡−1/2e𝐶(𝐴,𝑚,𝑝)𝑡 ‖𝛼‖𝑝 ∀𝛼 ∈ 𝝘𝖢∞

𝑐 (⋀𝑘 𝖳∗𝑀). (4.7)

Indeed, to deduce the general case, we can pick a sequence (𝛼𝑛) ⊂ 𝝘𝖢∞
𝑐 (⋀𝑘 𝖳∗𝑀) such

that 𝛼𝑛 → 𝛼 in 𝖫𝑝(𝑀). Then ∇e−𝑡Δ(𝑘)𝛼𝑛 is convergent in 𝝘𝖫𝑝(⋀𝑘 𝖳∗𝑀) by (4.7), and we have

‖e−𝑡Δ(𝑘)
(𝛼 − 𝛼𝑛)‖𝑝

⩽ e𝐴𝑡
‖e−𝑡Δ(0)

|𝛼 − 𝛼𝑛|‖𝑝

by the Kato-Simon inequality (2.8)

|e
−𝑡Δ(𝑘)(𝛼 − 𝛼𝑛)| ⩽ e−𝐴𝑡e−𝑡Δ(0)

|𝛼 − 𝛼𝑛| ,

where 𝐴 ⩾ 0 is some lower bound on Ric ⩾ −𝐴, so that e−𝑡Δ(𝑘)𝛼𝑛 → e−𝑡Δ(𝑘)𝛼 in 𝝘𝖫𝑝(⋀𝑘 𝖳∗𝑀),
as e−𝑡Δ(0)

is a contraction in 𝖫𝑝(𝑀). Thus, as ∇ (acting a priori on distributions) induces
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a closed operator from 𝝘𝖫𝑝(⋀𝑘 𝖳∗𝑀) to 𝝘𝖫𝑝(𝖳∗𝑀 ⊗ ⋀𝑘 𝖳∗𝑀), it follows that

∇e−𝑡Δ(𝑘)𝛼𝑛 → ∇e−𝑡Δ(𝑘)𝛼 in 𝝘𝖫𝑝(𝖳∗𝑀 ⊗ ⋀𝑘 𝖳∗𝑀), yielding the claimed inequality for the gen-

eral case. Thus, we assume that 𝛼 ∈ 𝝘𝖢∞
𝑐 (⋀𝑘 𝖳∗𝑀) for the rest of the proof.

In the sequel, 𝐶(𝐴, … ) denotes a constant that only depends on 𝑎, … , and which may

differ from line to line. Let 𝑡 > 0, 𝑟 > 0, 𝑥 ∈ 𝑀 , 𝜉 ∈ 𝖳𝑥𝑀 be arbitrary and pick some finite

energy process ℓ ∈ 𝖢𝖬(𝑡, 𝜉, ⋀𝑘 𝖳∗𝑀) as in Corollary 2.15. It follows from the covariant

Bismut formula 2.19 that the right hand side of (2.20) can be rewritten using the Markov

property of Brownian motion and using that 𝜁 = ∞ ℙ-a.s., since 𝑀 is stochastically

complete, as

⟨∇e− 𝑡
2 Δ(𝑘)

𝛼(𝑥), 𝜉⟩ = −𝔼 ⟨ 𝓠𝑡//−1
𝑡 𝛼(𝑋𝑡(𝑥)), ℓ(𝑘)

𝑡∧𝜏 + ℓ(2)
𝑡∧𝜏  ⟩ .

As in the proof of Theorem 2.19, by Gronwall’s inequality, we have

|𝓠𝑡|op ⩽ exp (−1
2 ∫

𝑡

0
𝓡(𝑋𝑠(𝑥))d𝑠) ∀𝑡 ⩾ 0,

and hence

|𝓠𝑡|op ⩽ e𝐶(𝑚,𝐴)𝑡, |𝓠𝑡|op
⩽ e𝐶(𝑚,𝐴)𝑡 ℙ-a.s. on {𝑠 ⩽ 𝜏} . (4.8)

As 𝓠 and 𝓠 are invertible, we also have

|𝓠−1
𝑡 |op ⩽ e𝐶(𝑚,𝐴)𝑡, |𝓠

−1
𝑡 |op

⩽ e𝐶(𝑚,𝐴)𝑡 ℙ-a.s. on {𝑠 ⩽ 𝜏} . (4.9)

Then for 𝑞 with 1/𝑞 + 1/𝑝 = 1 we have

[𝔼|ℓ(1)
𝑡∧𝜏 |𝑞

]
1/𝑞

⩽ 𝐶(𝑞)
[

𝔼 (∫
𝑡∧𝜏

0
|𝓠−1

𝑠 |
2

|𝓠𝑠|
2

| ̇ℓ𝑠|
2 d𝑠)

𝑞/2

]

1/𝑞

⩽ 𝐶(𝑞)e𝐶(𝑚)𝑡𝑡−1/2e
𝑡𝐶(𝐴,𝑞,𝑚)

𝑟 + 𝑡𝐶(𝑞,𝑚)
𝑟2 |𝜉| ,

where we used the Burkholder-Davis-Gundy inequality A.12 and eqs. (4.8) and (4.9). More-

over,

[𝔼|ℓ(2)
𝑡∧𝜏 |𝑞

]
1/𝑞

⩽ e𝐶(𝑚)𝑡𝐶(𝑚)𝐴𝑡 |𝜉| ⩽ e𝐶(𝑚)𝑡𝐶(𝑚, 𝐴) |𝜉|

which follows from eqs. (4.8) and (4.9), |ℓ| ⩽ |𝜉|, |𝜌| ⩽ 𝐶(𝑚, 𝐴). We now estimate as follows

⟨∇e− 𝑡
2 Δ(𝑘)

𝛼(𝑥), 𝜉⟩
⩽ 𝔼 (|𝓠𝑡||𝛼(𝑋𝑡(𝑥))||ℓ(𝑘)

𝑡∧𝜏 |) + 𝔼 (|𝓠𝑡||𝛼(𝑋𝑡(𝑥))||ℓ(2)
𝑡∧𝜏 |)

⩽ e𝐶(𝑚)𝐴𝑡𝔼 (|𝛼(𝑋𝑡(𝑥))||ℓ(𝑘)
𝑡∧𝜏 |) + e𝐶(𝑚,𝐴)𝑡𝔼 (|𝛼(𝑋𝑡(𝑥))||ℓ(2)

𝑡∧𝜏 |)

⩽ e𝐶(𝑚,𝐴)𝑡 [𝔼 |𝛼(𝑋𝑡(𝑥))|
𝑝
]

1/𝑝
[𝔼|ℓ(𝑘)

𝑡∧𝜏 |𝑞
]

1/𝑞
+ e𝐶(𝑚,𝐴)𝑡 [𝔼 |𝛼(𝑋𝑡(𝑥))|

𝑝
]

1/𝑝
[𝔼|ℓ(2)

𝑡∧𝜏 |𝑞
]

1/𝑞

⩽ e𝐶(𝑚,𝐴)𝑡 [𝔼 |𝛼(𝑋𝑡(𝑥))|
𝑝
]

1/𝑝 𝐶(𝑞)e𝐶(𝑚)𝑡𝑡−1/2e
𝑡𝐶(𝐴,𝑞,𝑚)

𝑟 + 𝑡𝐶(𝑞,𝑚)
𝑟2 |𝜉|

+ e𝐶(𝑚,𝐴)𝑡 [𝔼 |𝛼(𝑋𝑡(𝑥))|
𝑝
]

1/𝑝 e𝐶(𝑚)𝑡𝐶(𝑚, 𝐴) |𝜉|

= |𝜉| e𝐶(𝑚,𝐴)𝑡 [𝔼 |𝛼(𝑋𝑡(𝑥))|
𝑝
]

1/𝑝
(𝐶(𝑞)e𝐶(𝑚)𝑡𝑡−1/2e

𝑡𝐶(𝐴,𝑞,𝑚)
𝑟 + 𝑡𝐶(𝑞,𝑚)

𝑟2 + e𝐶(𝑚)𝑡𝐶(𝑚, 𝐴)).
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Taking 𝑟 → ∞, we constructed 𝐶(𝐴, 𝑚, 𝑝) < ∞ such that we have

|∇e− 𝑡
2 Δ(𝑘)

𝛼(𝑥)|
𝑝

⩽ 𝐶(𝐴, 𝑚, 𝑝)e𝑡𝐶2(𝐴,𝑚,𝑝)𝑡−𝑝/2𝔼 |𝛼(𝑋𝑡(𝑥))|
𝑝 ∀𝑥 ∈ 𝑀 ∀𝑡 > 0,

and

∫ |∇e− 𝑡
2 Δ(𝑘)

𝛼(𝑥)|
𝑝

vol(d𝑥) ⩽ 𝐶(𝐴, 𝑚, 𝑝)e𝑡𝐶(𝐴,𝑚,𝑝)𝑡−𝑝/2
∫ 𝔼 |𝛼(𝑋𝑡(𝑥))|

𝑝 vol(d𝑥)

= 𝐶(𝐴, 𝑚, 𝑝)e𝑡𝐶(𝐴,𝑚,𝑝)𝑡−𝑝/2
∫ ∫ e− 𝑡

2 Δ(0)
(𝑥, 𝑦) |𝛼|𝑝 (𝑦) vol(d𝑦) vol(d𝑥)

⩽ 𝐶(𝐴, 𝑚, 𝑝)e𝑡𝐶(𝐴,𝑚,𝑝)𝑡−𝑝/2
∫ |𝛼|𝑝 (𝑦) vol(d𝑦),

where used Fubini and

∫ e− 𝑡
2 Δ(0)

(𝑥, 𝑦) vol(d𝑥) = ∫ e− 𝑡
2 Δ(0)

(𝑦, 𝑥) vol(d𝑥) ⩽ 1,

and so

‖∇e− 𝑡
2 Δ(𝑘)

𝛼‖𝑝
⩽ 𝐶(𝐴, 𝑚, 𝑝)e𝑡𝐶(𝐴,𝑚,𝑝)𝑡−1/2 ‖𝛼‖𝑝 ,

completing the proof. ■

4.5 Proof of Corollary 4.7 and Theorem 4.9

This part of the work was carried out by Baptiste Devyver.

In this section, we explain how we can use the heat kernel estimates (UE), (∇UE),

(𝗱 UE) and (𝝳 UE) in order to get the estimates for the Riesz transforms ∇(Δ(𝑘) + 𝜆)−1/2 and

(𝗱 + 𝝳)(Δ(𝑘) + 𝜆)−1/2, i.e. Corollary 4.7 and Theorem 4.9 respectively. The idea is to closely

follow the Proof of [CD99, Theorem 1.2] for the localised scalar Riesz transform 𝗱(Δ+𝜆)−1/2.

This proof is based on the Calderón-Zygmund decomposition and kernel estimates, which

we will see to follow from the assumed heat kernel estimates (UE), (∇UE), (𝗱 UE) and (𝝳 UE).

However we feel that in the Proof of [CD99, Theorem 1.2] the issue of localisation may

been partly overlooked: there, it is wrongly asserted that (LVD) implies that every open

ball of radius 1 in 𝑀 is a doubling space, with a doubling constant that can be chosen

independently of the ball. But this property depends on the geometry of balls, and not

only on the (LVD) to be valid in the whole of 𝑀 , and we do not see why it should hold

in the context of [CD99, Theorem 1.2].

In order to clarify the matter, we decided to give full proofs for the localisation pro-

cedure that we use. Note that we stick to the original notation used in [CD99]. The

first ingredient is a localised Calderón-Zygmund decomposition 𝑓 = 𝑔 + 𝑏 for a smooth

section 𝑓 ∈ 𝝘(⋀(𝑘) 𝖳∗𝑀) which has support inside a ball 𝖡 = 𝖡(𝑥, 1). This decomposition

holds due to the local doubling assumption (LVD). The version of the Calderón-Zygmund

decomposition we need is the following (cf. [Ste93] and [DR20, Appendix B]).

Lemma 4.13 ([BDG21, Lemma 5.1]). Let 𝐸 → 𝑀 be a Riemannian vector bundle where 𝑀
is locally doubling. Then there is a constant 𝐶 > 0, which only depends on the local doubling
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constant and has the following property: For every ball𝖡 = 𝖡(𝑥, 1), every 𝑢 ∈ 𝝘𝖢∞(𝐸) supported
in 𝐵, and every 0 < 𝜆 < 𝐶

vol(𝐵) ∫𝐵 |𝑢|, there is a countable collection of balls (𝐵𝑖)𝑖∈𝐼 , of integrable

sections (𝑏𝑖)𝑖∈𝐼 in 𝝘𝖫1(𝐸) and a section 𝑔 ∈ 𝝘𝖫∞(𝐸) such that:

(1) 𝑢 = 𝑔 + ∑𝑖∈𝐼 𝑏𝑖 a.e.

(2) the balls (𝐵𝑖)𝑖∈𝐼 have the finite intersection property: There is 𝑁 ∈ ℕ such that for every

𝑖 ∈ ℕ:

Card{𝑗 ∈ ℕ ∶ 𝐵𝑖 ∩ 𝐵𝑗 ≠ ∅} ⩽ 𝑁.

(3) ∑𝑖∈𝐼 vol(𝐵𝑖) ⩽ 𝐶
𝜆 ∫𝐵 |𝑢|.

(4) |𝑔| ⩽ 𝜆 a.e.

(5) For all 𝑖 ∈ 𝐼 , 𝑏𝑖 has support inside 𝐵𝑖, and ∫𝐵𝑖
|𝑏𝑖| ⩽ 𝐶𝜆 vol(𝐵𝑖).

Furthermore, as a consequence of (2), (3) and (5), it holds for some constant 𝐶 that

‖𝑔‖1 ⩽ 𝐶 ‖𝑢‖1 .

The proof of this version of the Calderón-Zygmund decomposition closely follows the

classical one, with three differences: First, since we have only local doubling but not

doubling, we have to use a modified maximal function 𝓜, defined as follows:

𝓜𝑢(𝑥) ∶= sup
𝐵∋𝑥∶𝑟(𝐵)⩽8

1
vol(𝐵) ∫𝐵

|𝑢| ,

where 𝑟(𝐵) denotes the radius of the ball 𝐵. The particular value 8 in the definition

of 𝓜 is chosen for technical purposes later on (see the Proof of eq. (4.22)). Note that

local doubling implies that 𝓜 is weak type (1, 1) and bounded on 𝖫𝑝 for all 1 < 𝑝 ⩽ ∞,

as follows from a careful inspection of the Proof of [Ste93, p. 13, Theorem 1] and the

fact that the definition of 𝓜 involves only balls with bounded radii. Secondly, in the

Calderón-Zygmund decomposition localised in the ball 𝐵, the balls 𝐵𝑖 do not have to be

included inside the ball 𝐵, only inside 2𝐵. Lastly, the fact that we deal with sections

of a vector bundle instead of functions: this does not create any real difficulty and the

standard arguments apply mutatis mutandis if we put norms instead of absolute values

everywhere if necessary.

The main steps of the Proof of Corollary 4.7 and Theorem 4.9 closely follow the approach

of [CD99, Theorem 1.2]. Let 𝗧 be either ∇(Δ(𝑘) + 𝜆)−1/2, or (𝗱(𝑘) + 𝝳(𝑘−1))(Δ(𝑘) + 𝜆)−1/2.

From now on, we set again 𝐸 ∶= ⋀(𝑘) 𝖳∗𝑀 . We start with boundedness of 𝗧 in 𝖫2:

Lemma 4.14. For all 𝜆 > 0 the operator (𝗱(𝑘) + 𝝳(𝑘−1)) (Δ(𝑘) + 𝜆)
−1/2

, originally defined on

𝝘𝖢∞
𝑐 (⋀(𝑘) 𝖳∗𝑀), extends to a bounded operator on 𝝘𝖫2(⋀(𝑘) 𝖳∗𝑀) with

‖(𝗱(𝑘) + 𝝳(𝑘−1)) (Δ(𝑘) + 𝜆)
−1/2

‖2,2
⩽ 1.

If ‖𝖱‖∞ ⩽ 𝐴 < +∞, then for all 𝜆 > 0 the operator ∇ (Δ(𝑘) + 𝜆)
−1/2

, originally defined on

𝝘𝖢∞
𝑐 (⋀(𝑘) 𝖳∗𝑀), extends to a bounded operator on 𝝘𝖫2(⋀(𝑘) 𝖳∗𝑀) with

‖∇ (Δ(𝑘) + 𝜆)
−1/2

‖2,2
⩽ 𝐶,
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where the constant 𝐶 only depends on 𝐴, 𝑚 and 𝜆.

Proof. Since 𝝘𝖢∞
𝑐 (⋀(𝑘) 𝖳∗𝑀) is dense in 𝝘𝖫2(⋀(𝑘) 𝖳∗𝑀), it is enough to show that for any

𝑓 ∈ 𝝘𝖢∞
𝑐 (⋀(𝑘) 𝖳∗𝑀),

‖(𝗱(𝑘) + 𝝳(𝑘−1)) (Δ(𝑘) + 𝜆)
−1/2 𝑓‖2

⩽ ‖𝑓‖2 (4.10)

and

‖∇ (Δ(𝑘) + 𝜆)
−1/2 𝑓‖2

⩽ 𝐶 ‖𝑓‖2 . (4.11)

The first estimate is a simple consequence of the functional calculus: since the Dirac

operator 𝗗 ∶= 𝗱 + 𝝳 acting on smooth, compactly supported differential forms, is essen-

tially self-adjoint on 𝑀 , it follows that for all 𝑔 in the domain 𝗗2 = Δ (which is included

in the domain of 𝗗), and

‖(𝗱 + 𝝳)𝑔‖2
2 = ⟨𝗗𝑔, 𝗗𝑔⟩ = ⟨𝗗2𝑔, 𝑔⟩

⩽ ⟨(𝗗2 + 𝜆)𝑔, 𝑔⟩

⩽ ‖(𝗗2 + 𝜆)1/2𝑔‖
2
2 .

Applying the above inequality to 𝑔 = (𝗗2+𝜆)−1/2𝑓 , which is the domain of 𝗗2 by functional

calculus, we obtain (4.10) with 𝐶 = 1.

Next, we prove (4.11). Recall that, since 𝑀 is complete, the operator ∇∗∇ acting on

smooth compactly supported differential forms is essentially self-adjoint, associated with

the quadratic form (𝑢, 𝑣) ↦ ⟨∇𝑢, ∇𝑣⟩. In particular, if 𝑔 ∈ 𝝘𝖫2(⋀𝑘 𝖳∗𝑀) is in the domain

of ∇∗∇, then

⟨∇𝑔, ∇𝑔⟩ = ⟨∇∗∇𝑔, 𝑔⟩.

Hence, for such a 𝑔, using that ‖𝓡(𝑘)‖∞ ⩽ 𝐴′, where 𝐴′ = 𝐴′(𝐴, 𝑚) < ∞, we have

‖∇𝑔‖2
2 = ⟨∇𝑔, ∇𝑔⟩ = ⟨∇∗∇𝑔, 𝑔⟩

⩽ ⟨(∇∗∇ + 𝓡(𝑘) + 𝜆)𝑔, 𝑔⟩ + 𝐴′ ‖𝑔‖2

⩽ ‖(Δ(𝑘) + 𝜆)
1/2 𝑔‖

2

2
+ 𝐴′ ‖𝑔‖2

2 .

We take 𝑔 = (Δ(𝑘) + 𝜆)
−1/2 𝑓 . Then 𝑔 is in the domain of Δ(𝑘): Indeed, if we write

𝑓 = (Δ(𝑘) + 1)
−1

(Δ(𝑘) + 1) 𝑓 ,

we have

𝑔 = (Δ(𝑘) + 1)
−1

(Δ(𝑘) + 1)
−1/2

((Δ(𝑘) + 1) 𝑓) .

But the operator Δ(𝑘) (Δ(𝑘) + 1)
−1/2

is bounded in 𝖫2 by the functional calculus, while

(Δ(𝑘) + 1) 𝑓 is smooth with compact support and hence in 𝖫2. Thus, 𝑔 = (Δ(𝑘) + 1)
−1 ℎ

with ℎ in 𝖫2, hence 𝑔 is in the domain of Δ(𝑘). It follows that

‖∇ (Δ(𝑘) + 𝜆)
−1/2 𝑓‖

2

2
⩽ ‖𝑓‖2

2 + 𝐴′
‖(Δ(𝑘) + 𝜆)

−1/2 𝑓‖
2

2

⩽ (
𝐴′

𝜆 + 1) ‖𝑓‖2
2 ,
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where we have used that ‖(Δ(𝑘) + 𝜆)
−1/2

‖2,2
⩽ 𝜆−1/2 by functional calculus. This proves

(4.11). ■

Finally, we prove Corollary 4.7 and Theorem 4.9. By Lemma 4.14 and using interpolation,

we see that it is sufficient to prove that 𝗧 is bounded from 𝝘𝖫1(⋀𝑘 𝖳∗𝑀) into the space

of weakly integrable sections 𝝘𝖫1
w

(⋀𝑘 𝖳∗𝑀), i.e., we find a constant 𝐶 > 0 such that for

all 𝑓 ∈ 𝝘𝖫1(⋀(𝑘) 𝖳∗𝑀) and all 𝜆 > 0, we have

vol ({𝑥 ∈ 𝑀 ∶ |𝗧𝑓| (𝑥) > 𝜆}) ⩽ 𝐶
𝜆 ‖𝑓‖1 . (4.12)

By a density argument, it is sufficient to prove it for smooth 𝑓 with compact support: So,

take such an 𝑓 , and fix 𝜆 > 0. Take (𝑥𝑗)𝑗∈ℕ a maximal 1-separated subset, hence the balls

𝖡(𝑥𝑗 , 1) cover 𝑀 , while the balls 𝖡(𝑥𝑗 , 1
2 ) are disjoint. Local doubling then implies that

the balls 𝖡(𝑥𝑗 , 1) have the finite intersection property. Let (𝜑𝑗)𝑗∈ℕ be a smooth partition

of unity associated to the covering of 𝑀 by the balls 𝖡(𝑥𝑗 , 1), and write 𝑓𝑗 ∶= 𝜑𝑗𝑓 . The

fact that the covering has the finite intersection property implies that for some constant

𝐶 > 0,

𝐶−1 ‖𝑓‖1 ⩽ ∑
𝑗∈ℕ

‖𝑓𝑗‖1 ⩽ 𝐶 ‖𝑓‖1 .

Hence, it is enough to prove (4.12) for 𝑓𝑗 (with a constant independent of 𝑗 and 𝑓 ). In

what follows, we therefore assume that 𝑗 ∈ ℕ is fixed, and we denote by 𝑢 = 𝑓𝑗 and

𝖡 = 𝖡(𝑥𝑗 , 1). We have two cases, according to whether

𝜆 ⩽ 𝐶
vol(𝐵) ∫𝐵

|𝑢|

or not – with 𝐶 the constant in Lemma 4.13. We first treat the case where 𝜆 ⩽ 𝐶
vol(𝐵) ∫𝐵 |𝑢|,

for which there are two steps: first, show that

vol ({𝑥 ∈ 2𝐵 ∶ |𝗧𝑓| (𝑥) > 𝜆}) ⩽ 𝐶
𝜆 ‖𝑢‖1 , (4.13)

and then show that

vol ({𝑥 ∈ 𝑀 ⧵ 2𝐵 ∶ |𝗧𝑓| (𝑥) > 𝜆}) ⩽ 𝐶
𝜆 ‖𝑢‖1 , (4.14)

For (4.13), notice that {𝑥 ∈ 2𝐵 ∶ |𝗧𝑓|(𝑥) > 𝜆} ⊂ 2𝐵, therefore

vol ({𝑥 ∈ 2𝐵 ∶ |𝗧𝑓| (𝑥) > 𝜆}) ⩽ vol(2𝐵) ⩽ 𝐶 vol(𝐵) ⩽ 𝐶
𝜆 ‖𝑢‖1 ,

where we have used successively (LVD) and the assumption on 𝜆. This proves (4.13).

Next, we show (4.14). By the Markov inequality, we see that (4.14) follows from the

𝖫1-estimate

∫𝑀⧵2𝐵
|𝗧𝑢|(𝑥) vol(d𝑥) ⩽ 𝐶 ‖𝑢‖1 . (4.15)

On the other hand, (4.15) can be proved as in [CD99, p. 1163], using the heat kernel estimates

(∇UE), (𝗱 UE) and (𝝳 UE) respectively.
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Now, we deal with the case 𝜆 > 𝐶
vol(𝐵) ∫𝐵 |𝑢|. In this case, we may use the Calderón-

Zygmund decomposition 𝑢 = 𝑔 + ∑𝑖∈𝐼 𝑏𝑖 from Lemma 4.13. Denote by 𝑟𝑖 the radius of 𝐵𝑖,

and let 𝑡𝑖 = 𝑟2
𝑖 . Then, we write

𝗧𝑢 = 𝗧𝑔 + ∑
𝑖∈𝐼

𝗧𝟙3𝐵e−𝑡𝑖Δ(𝑘)𝑏𝑖 + ∑
𝑖∈𝐼

𝗧(1 − e−𝑡𝑖Δ(𝑘))𝑏𝑖 + ∑
𝑖∈𝐼

𝗧𝟙𝑀⧵3𝐵e−𝑡𝑖Δ(𝑘)𝑏𝑖.

The weak 𝖫1-estimate (4.12) is a consequence of the following four estimates:

vol ({𝑥 ∈ 𝑀 ∶ |𝗧𝑔| > 𝜆
4 }) ⩽ 𝐶

𝜆 ‖𝑓‖1 , (4.16)

vol
({

𝑥 ∈ 𝑀 ∶
|∑𝑖∈𝐼

𝗧𝟙3𝐵e−𝑡𝑖Δ(𝑘)𝑏𝑖|
> 𝜆

4 })
⩽ 𝐶

𝜆 ‖𝑓‖1 , (4.17)

vol
({

𝑥 ∈ 𝑀 ∶
|∑𝑖∈𝐼

𝗧(1 − e−𝑡𝑖Δ(𝑘))𝑏𝑖|
> 𝜆

4 })
⩽ 𝐶

𝜆 ‖𝑓‖1 , (4.18)

vol
({

𝑥 ∈ 𝑀 ∶
|∑𝑖∈𝐼

𝗧𝟙𝑀⧵3𝐵e−𝑡𝑖Δ(𝑘)𝑏𝑖|
> 𝜆

4 })
⩽ 𝐶

𝜆 ‖𝑓‖1 . (4.19)

First, the fact that |𝑔| ⩽ 𝐶𝜆 a.e. and that 𝗧 is bounded on 𝖫2 leads to

vol ({𝑥 ∈ 𝑀 ∶ |𝗧𝑔| > 𝜆
4 }) ⩽ 16

𝜆2 ‖𝑔‖2
2 ⩽ 16

𝜆2 ‖𝑔‖∞ ‖𝑔‖1 ⩽ 𝐶
𝜆 ‖𝑢‖1 ,

which shows (4.16). Concerning (4.17), the same argument using the 𝖫2-boundedness of 𝗧
shows that (4.17) follows from the 𝖫2-estimate

‖∑𝑖∈𝐼
𝟙3𝐵e−𝑡𝑖Δ(𝑘)𝑏𝑖‖

2

2
⩽ 𝐶𝜆 ‖𝑢‖1 . (4.20)

Denote by 𝐵𝑖 = 𝖡(𝑦𝑖, 𝑟𝑖). By Lemma 4.13 (5) in the Calderón-Zygmund decomposition

together with the heat kernel estimate (UE) and the fact that 𝑡𝑖 ⩽ 2 (since 𝐵𝑖 ⊂ 2𝐵) imply

that

|e−𝑡𝑖Δ(𝑘)𝑏𝑖|(𝑥) ⩽ 𝐶𝜆 vol(𝐵𝑖)
e− 𝖽2(𝑥,𝑦𝑖)

𝐶𝑡𝑖

vol(𝖡(𝑥, √𝑡𝑖))

⩽ 𝐶𝜆 ∫𝑀

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖

vol(𝖡(𝑥, √𝑡𝑖))
𝟙𝐵𝑖(𝑦) vol(d𝑦)

⩽ 𝐶𝜆 ∫𝑀 (
1 + 𝖽(𝑥, 𝑦)

√𝑡𝑖 )

𝑚
e− 𝖽2(𝑥,𝑦)

𝐶𝑡𝑖

vol(𝖡(𝑦, √𝑡𝑖))
𝟙𝐵𝑖(𝑦) vol(d𝑦)

⩽ 𝐶𝜆 ∫𝑀

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖

vol(𝖡(𝑦, √𝑡𝑖))
𝟙𝐵𝑖(𝑦) vol(d𝑦),
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where we have used local doubling (LVD) with 𝑡𝑖 ⩽ 2 in the second last line. In order to

prove (4.20), it is then sufficient to prove that

‖
‖
‖
‖‖

𝟙3𝐵 ∑
𝑖∈𝐼 ∫𝑀

e− 𝖽2(⋅,𝑦)
𝐶𝑡𝑖

vol(𝖡(𝑦, √𝑡𝑖))
𝟙𝐵𝑖(𝑦) vol(d𝑦)

‖
‖
‖
‖‖

2

2

⩽ 𝐶
𝜆 ‖𝑢‖1 . (4.21)

To estimate the 𝖫2-norm above, we dualise against some 𝑣 ∈ 𝝘𝖫2(𝐸) supported in 3𝐵: By

Fubini, we have

∫𝑀×𝑀
∑
𝑖∈𝐼

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖

vol(𝖡(𝑦, √𝑡𝑖))
𝟙𝐵𝑖(𝑦)𝑣(𝑥) vol(d𝑥) vol(d𝑦)

= ∑
𝑖∈𝐼 ∫𝐵𝑖

1
vol(𝖡(𝑦, √𝑡𝑖)) (∫3𝐵

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖 𝑣(𝑥) vol(d𝑥)

)
vol(d𝑦).

Next, we prove that, for every 𝑖 ∈ 𝐼 and 𝑦 ∈ 𝐵𝑖, we have

1
vol(𝖡(𝑦, √𝑡𝑖)) (∫3𝐵

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖 𝑣(𝑥) vol(d𝑥)

)
⩽ 𝐶𝓜𝑢(𝑦). (4.22)

Indeed: For 𝑗 ∈ ℕ, denote by 𝐴0 = 𝐵𝑖 and

𝐴𝑗 ∶= {𝑥 ∈ 3𝐵 ∶ 2𝑗√𝑡𝑖 ⩽ 𝖽(𝑥, 𝑦) ⩽ 2𝑗+1√𝑡𝑖} , 𝑗 ⩾ 1.

Let 𝑁 ∈ ℕ be the smallest integer so that 2𝑁+1√𝑡𝑖 ⩾ 4. Then,

1
vol(𝖡(𝑦, √𝑡𝑖)) ∫3𝐵

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖 𝑣(𝑥) vol(d𝑥)

=
∞

∑
𝑗=0

1
vol(𝖡(𝑦, √𝑡𝑖)) ∫𝐴𝑗

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖 𝑣(𝑥) vol(d𝑥)

⩽
𝑁

∑
𝑗=0

vol(𝖡(𝑦, 2𝑗+1√𝑡𝑖))
vol(𝖡(𝑦, √𝑡𝑖))

e−𝑐2𝑗 1
vol(𝖡(𝑦, 2𝑗+1√𝑡𝑖)) ∫𝖡(𝑦,2𝑗+1√𝑡𝑖))

|𝑣| .

By definition of 𝑁 , we have for every 𝑗 ⩽ 𝑁 , 2𝑗+1√𝑡𝑖 ⩽ 8, and therefore by local doubling,

vol(𝖡(𝑦, 2𝑗+1√𝑡𝑖))
vol(𝖡(𝑦, √𝑡𝑖))

⩽ 𝐶2𝑗𝑚,

and it follows by definition of 𝓜 that

1
vol(𝖡(𝑦, √𝑡𝑖)) (∫3𝐵

e− 𝖽2(𝑥,𝑦)
𝐶𝑡𝑖 𝑣(𝑥) vol(d𝑥)

)
⩽

𝑁

∑
𝑗=0

2𝑗𝑚e−𝑐2𝑗 𝓜𝑣(𝑦)

⩽
∞

∑
𝑗=0

2𝑗𝑚e−𝑐2𝑗 𝓜𝑣(𝑦)

⩽ 𝐶𝓜𝑣(𝑦),

which proves (4.22).
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According to the remark made immediately after the definition of 𝓜, (LVD) implies

that the operator 𝓜 is bounded in 𝖫2, so using Hölder, (3) in the Calderón-Zygmund

decomposition and (4.22), we get that

‖
‖
‖
‖‖

𝟙3𝐵 ∑
𝑖∈𝐼 ∫𝑀

e− 𝖽2(⋅,𝑦)
𝐶𝑡𝑖

vol(𝖡(𝑦, √𝑡𝑖))
𝟙𝐵𝑖(𝑦) vol(d𝑦)

‖
‖
‖
‖‖

2

2

⩽ 𝐶 ‖𝓜𝑣‖2
2 ∑

𝑖∈𝐼
vol(𝐵𝑖)

⩽ 𝐶
𝜆2 ‖𝑣‖2

2 ‖𝑢‖1 .

Dividing by ‖𝑣‖2
2 and taking the sup over all non-zero 𝑣, we obtain

‖
‖
‖
‖‖

𝟙3𝐵 ∑
𝑖∈𝐼 ∫𝑀

e− 𝖽2(⋅,𝑦)
𝐶𝑡𝑖

vol(𝖡(𝑦, √𝑡𝑖))
𝟙𝐵𝑖(𝑦) vol(d𝑦)

‖
‖
‖
‖‖

2

2

⩽ 𝐶
𝜆 ‖𝑢‖1 ,

which proves (4.21) and hence (4.17).

It thus remains to show (4.18) and (4.19). Both equations rely on the following

Lemma 4.15. Assume that ‖𝖱‖∞ ⩽ 𝐴 for some constant 𝐴 < ∞. Then there is a constant

𝐶 = 𝐶(𝐴, 𝑚) > 0, such that we have

∫{𝖽(⋅,𝑦)⩾√𝑡}
|(𝗱(𝑘) + 𝝳(𝑘−1)| e−𝑠Δ(𝑘)(𝑥, 𝑦)| vol(d𝑥) ⩽ 𝐶𝑠−1/2e− 𝑡

𝐶𝑠 e𝐶𝑠 ∀𝑡, 𝑠 > 0 ∀𝑦 ∈ 𝑀.

Assume that (A) holds. Then there is a constant 𝐶 = 𝐶(𝐴, 𝑚) > 0, such that we have

∫
{𝖽(⋅,𝑦)⩾√𝑡}

|∇e−𝑠Δ(𝑘)(𝑥, 𝑦)| vol(d𝑥) ⩽ 𝐶𝑠−1/2e− 𝑡
𝐶𝑠 e𝐶𝑠 ∀𝑡, 𝑠 > 0 ∀𝑦 ∈ 𝑀.

Proof. For the second integral involving ∇e−𝑠Δ(𝑘)(𝑥, 𝑦), the estimate is an immediate con-

sequence of Corollary 4.5 choosing 𝑝 = 1. The proof for the first integral follows along

the lines, using (𝗱 UE) and (𝝳 UE) instead of (∇UE) for the proof of the weighted estimate

analogous to Corollary 4.5. ■

The estimates (4.18) and (4.19) follow from Lemma 4.15, in the fashion as the Proof of

[CD99, Theorem 1.2]. Finally, this proves all four estimates (4.16), (4.17), (4.18) and (4.19), and

concludes the Proof of Theorem 4.9 and Corollary 4.7.

4.6 Proof of Theorem 4.11

This part of the work was carried out by Batu Güneysu.

We prepare the proof with the following estimate from complex analysis that can be

found in e.g. [CS08]:

Lemma 4.16 (Phragmen-Lindelöf’s inequality). Let

𝑓 ∶ {Re > 0} ⟶ ℂ
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be holomorphic, and assume that there are constants 𝐴, 𝐵, 𝛾 > 0, 𝑏 ⩾ 0, such that

|𝑓 (𝑧)| ⩽ 𝐵 ∀𝑧 ∈ {Re > 0},

|𝑓 (𝑡)| ⩽ 𝐴e𝑏𝑡− 𝛾
𝑡 ∀𝑡 > 0.

Then we have

|𝑓 (𝑧)| ⩽ 𝐵e−Re 𝛾
𝑧 ∀𝑧 ∈ {Re > 0}.

Proof of Theorem 4.11. We split the Proof into three steps.

1o We have

‖𝟙𝐹 e−𝑡Δ(𝑘)𝛼‖2
⩽ e− 𝖽(𝐸,𝐹 )2

4𝑡 ‖𝟙𝐸𝛼‖2 . (4.23)

Indeed: The inequality

|⟨e−𝑡Δ(𝑘)𝛼1, 𝛼2⟩|2
⩽ e𝐶(𝐴)𝑡e− 𝖽(𝐸,𝐹 )2

4𝑡 ‖𝛼1‖2 ‖𝛼2‖2

valid for all 𝛼1 with support in 𝐸 and 𝛼2 with support in 𝐹 has been proved in [Gün17a,

Lemma XII.3.]. If we apply Phragmen-Lindelöf’s inequality 4.16 with

𝑓(𝑧) = ⟨e−𝑧Δ(𝑘)𝛼1, 𝛼2⟩ , 𝑏 = |𝑎| , 𝐴 = 𝐵 = ‖𝛼1‖2 ‖𝛼2‖2 , 𝛾 = 𝖽(𝐸, 𝐹 )2/4,

noting that we may pick 𝐴 = ‖𝛼1‖2 ‖𝛼2‖2 because of Δ(𝑘) ⩾ 0 so that e−𝑧Δ(𝑘)
is a con-

traction, we get the bound

‖⟨e−𝑡Δ(𝑘)𝛼1, 𝛼2⟩‖2
⩽ e

−𝖽(𝐸,𝐹 )2
4𝑡 ‖𝛼1‖2 ‖𝛼2‖2 . (4.24)

The latter inequality is equivalent to the statement of (4.23). □

2o We have

‖𝟙𝐹 𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2
⩽ 𝐶e− 𝖽(𝐸,𝐹 )2

6𝑡 ‖𝟙𝐸𝛼‖2 , (4.25)

where 𝐶 < ∞ is a universal constant.

Indeed: The asserted estimate is equivalent to

|⟨𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼1, 𝛼2⟩|2
⩽ 𝐶e− 𝖽(𝑈1,𝑈2)2

6𝑡 ‖𝛼1‖2 ‖𝛼2‖2 , (4.26)

where 𝛼1 ∈ 𝝘𝖫2(𝖳∗𝑀) is supported in 𝐸 and 𝛼2 ∈ 𝝘𝖫2(𝖳∗𝑀) is supported in 𝐹 . To

see (4.25), we first note that by applying the Phragmen-Lindelöf estimate 4.16 to the

estimate (4.24) we get the bound

‖⟨e−𝑧Δ(𝑘)𝛼1, 𝛼2⟩‖2
⩽ e−𝖽(𝑈1,𝑈2)2Re 1

4𝑧 ‖𝛼1‖2 ‖𝛼2‖2 , (4.27)

valid for all 𝑧 with Re𝑧 > 0. By Cauchy’s integral formula we have

⟨Δ(𝑘)e−𝑡Δ(𝑘)𝛼1, 𝛼2⟩ = − d
d𝑡 ⟨e−𝑡Δ(𝑘)𝛼1, 𝛼2⟩ = − 1

2𝜋𝑖 ∫
𝑧∶|𝑧−𝑡|=𝑡/2

⟨e−𝑧Δ(𝑘)𝛼1, 𝛼2⟩ d𝑧

(𝑧 − 𝑡)2 .
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Since by (4.27) we have

|
|
|
||

∫
𝑧∶|𝑧−𝑡|=𝑡/2

⟨e−𝑧Δ(𝑘)𝛼1, 𝛼2⟩ d𝑧

(𝑧 − 𝑡)2

|
|
|
||

⩽ (2𝜋)−1𝜋𝑡 sup
𝑧∶|𝑧−𝑡|=𝑡/2

|
|
|
||

⟨e−𝑧Δ(𝑘)𝛼1, 𝛼2⟩
(𝑧 − 𝑡)2

|
|
|
||

⩽ 1
2𝑡 ‖𝛼1‖2 ‖𝛼2‖2 e− 𝖽(𝑈1,𝑈2)2

4(𝑡+𝑡/2) (
𝑡
2)

−2
,

this proves (4.25). □
3o We have

‖𝟙𝐹 √𝑡∇e−𝑡Δ(𝑘)𝛼‖2
⩽ 𝐶1(𝐴)e− 𝐶2(𝐴)𝖽(𝐸,𝐹 )2

𝑡 ‖𝟙𝐸𝛼‖2 .

Indeed: We pick some 𝜑 ∈ 𝖢∞
𝑐 (𝑀). Then we have

‖√𝑡𝜑∇e−𝑡Δ(𝑘)𝛼‖
2

2
= ⟨𝑡∇∗(𝜑2∇e−𝑡Δ(𝑘)𝛼), e−𝑡Δ(𝑘)𝛼⟩
= 2 ⟨𝑡𝜑∇𝗱𝜑e−𝑡Δ(𝑘)𝛼, e−𝑡Δ(𝑘)𝛼⟩ + ⟨𝑡𝜑2∇∗∇e−𝑡Δ(𝑘)𝛼, e−𝑡Δ(𝑘)𝛼⟩
= 2 ⟨𝑡𝜑∇e−𝑡Δ(𝑘)𝛼, 𝗱𝜑 ⊗ e−𝑡Δ(𝑘)𝛼⟩ + ⟨𝑡𝜑2Δ(𝑘)e−𝑡Δ(𝑘)𝛼, e−𝑡Δ(𝑘)𝛼⟩

− ⟨𝑡𝜑2 Rictr e−𝑡Δ(𝑘)𝛼, e−𝑡Δ(𝑘)𝛼⟩
⩽ 2 ‖√𝑡𝜑∇e−𝑡Δ(𝑘)𝛼‖2

√𝑡 ‖𝗱𝜑 ⊗ e−𝑡Δ(𝑘)𝛼‖2

+ ‖𝑡𝜑Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2 ‖𝜑e−𝑡Δ(𝑘)𝛼‖2
+ 𝐴2𝑡 ‖𝜑e−𝑡Δ(𝑘)𝛼‖

2

2

⩽ 1
2 ‖√𝑡𝜑∇e−𝑡Δ(𝑘)𝛼‖

2

2
+ 4𝑡 ‖𝗱𝜑 ⊗ e−𝑡Δ(𝑘)𝛼‖

2

2
+

‖𝜑𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2 ‖𝜑e−𝑡Δ(𝑘)𝛼‖2
+ 𝐴2𝑡 ‖𝜑e−𝑡Δ(𝑘)𝛼‖

2

2
,

and so

‖√𝑡𝜑∇e−𝑡Δ(𝑘)𝛼‖
2

2
⩽ 𝑐𝑡 ‖𝗱𝜑 ⊗ e−𝑡Δ(𝑘)𝛼‖

2

2
+ 𝑐 ‖𝑡𝜑Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2 ‖𝜑e−𝑡Δ(𝑘)𝛼‖2

+ 𝑐𝐴2𝑡 ‖𝑡𝜑e−𝑡Δ(𝑘)𝛼‖
2

2
.

Assume now that

0 ⩽ 𝜑 ⩽ 1, 𝜑|𝐹 = 1, ‖𝗱𝜑‖∞ ⩽ 1, supp 𝜑 ⊂ 𝐹 ′ ∶= {𝑥 ∶ 𝖽(𝑥, 𝐹 ) ⩽ 𝖽(𝐸, 𝐹 )
3 } .

Then we have

‖𝟙𝐹 √𝑡∇e−𝑡Δ(𝑘)𝛼‖
2

2

⩽ ‖√𝑡𝜑∇e−𝑡Δ(𝑘)𝛼‖
2

2

⩽ 𝑐𝑡 ‖𝟙𝐹 ′e−𝑡Δ(𝑘)𝛼‖
2

2
+ 𝑐 ‖𝟙𝐹 ′𝑡Δ(𝑘)e−𝑡Δ(𝑘)𝛼‖2 ‖𝟙𝐹 ′e−𝑡Δ(𝑘)𝛼‖2

+ 𝑐𝑡𝐴2
‖𝟙𝐹 ′e−𝑡Δ(𝑘)𝛼‖

2

2
.

Using (4.23), (4.25) and

𝖽(𝐸, 𝐹 ′) ⩾ 2
3𝖽(𝐸, 𝐹 )

we get

‖𝟙𝐹 √𝑡∇e−𝑡Δ(𝑘)𝛼‖2
⩽ 𝑐1(1 + √𝑡𝐴)e− 𝑐2𝖽(𝐸,𝐹 )2

𝑡 ‖𝟙𝐸𝛼‖2 . □
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Altogether, the claim follows. ■





Appendix A
Appendix

A.1 Conditional expectation

For a comprehensive introduction for this subsection, we refer the reader to [Sch17] § 20-

22 and § 17 treating the more general case of a 𝜎-finite measure space and [Wil91]. First,

let us recall a central theorem in the study of the geometry of Hilbert spaces. A Hilbert

space (𝓗, ⟨⋅, ⋅⟩𝓗) is a complete inner product space, i.e. an inner product space where

every Cauchy sequence converges. Let ‖⋅‖ = ⟨⋅, ⋅⟩1/2
𝓗 the norm corresponding to the inner

product ⟨⋅, ⋅⟩𝓗 and 𝕂 ∶= {ℝ, ℂ}.

Theorem A.1 (Projection theorem). Let 𝐶 ≠ ∅ be a closed convex subset of the Hilbert space

𝓗. For every ℎ ∈ 𝓗 there is a unique minimiser 𝑢 ∈ 𝐶 such that

‖ℎ − 𝑢‖ = inf
𝑤∈𝐶

‖ℎ − 𝑤‖ .

This element 𝑢 = 𝑃𝐶ℎ is called (orthogonal) projection of ℎ onto 𝐶 .

A continuous linear functional on 𝓗 is a map Λ ∶ 𝓗 → 𝕂, ℎ ↦ Λ(ℎ) which is linear,

Λ(𝛼𝑔 + 𝛽ℎ) = 𝛼Λ(𝑔) + 𝛽Λ(ℎ) ∀𝛼, 𝛽 ∈ 𝓚 ∀𝑔, ℎ ∈ 𝓗

and satisfies

|Λ(𝑔 − ℎ)| ⩽ 𝑐(Λ) ‖𝑔 − ℎ‖ ∀𝑔, ℎ ∈ 𝓗

with a constant 𝑐(Λ) ⩾ 0 independent of 𝑔, ℎ ∈ 𝓗. In fact, all linear functional on 𝓗
arise in this way:

Theorem A.2 (Riesz representation theorem). For each continuous linear functional 𝜑 on

the Hilbert space 𝓗 there exists a unique 𝑔 ∈ 𝓗 such that

Λ𝑔(ℎ) ∶= ⟨ℎ, 𝑔⟩ ∀ℎ ∈ 𝓗.

and ‖Λ𝑔‖𝓗 = ‖𝑔‖𝓗. Conversely, given ℎ ∈ 𝓗, then ℎ ↦ ⟨ℎ, 𝑔⟩ is a continuous linear

functional with operator norm ‖𝑔‖𝓗.

From now on let (Ω, 𝓕, ℙ) be a probability space. A prototypical example of a Hilbert

space is 𝓗 = 𝖫2(𝓕), i.e. the space of all functions whose (absolute) 2nd moment is

integrable with inner product, resp. norm

⟨𝑢, 𝑣⟩2 ∶= ∫ 𝑢𝑣 dℙ resp. ‖𝑢‖2 ∶= (∫ |𝑢|2 dℙ)
1/2

.

127
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Given a sub-𝜎-algebra 𝓖 ⊂ 𝓕, the idea of a conditional expectation is to make a random

variable 𝑢 ∈ 𝖫2(𝓕) also measurable with respect to the coarser 𝜎-algebra, i.e. 𝑢 ∈ 𝓖.

Formally, construct an object 𝔼𝓖 ∈ 𝓖 that is 𝓖-measurable by definition.

Definition A.3. Let (Ω, 𝓕, ℙ) be a probability space and 𝓖 ⊂ 𝓕 be a sub-𝜎-algebra. The

conditional expectation of 𝑢 ∈ 𝖫2(𝓕) relative to 𝓖 is the orthogonal projection onto the

closed subspace 𝖫2(𝓖)

𝔼𝓖 ∶ 𝖫2(𝓕) → 𝖫2(𝓖), 𝑢 ↦ 𝔼𝓖𝑢.

It is common to write 𝔼(𝑢 ∣ 𝓖) instead of 𝔼𝓖𝑢.

Remark A.4 (Properties of 𝔼𝓖). Let (Ω, 𝓕, ℙ) be a probability space and 𝓖 ⊂ 𝓕 be

a sub-𝜎-algebra. The conditional expectation 𝔼𝓖 has the following properties, for all

𝑢, 𝑣 ∈ 𝖫2(𝓕), almost surely:

(i) 𝔼𝓖 ∈ 𝖫2(𝓖)

(ii) ‖𝔼𝓖𝑢‖𝖫2(𝓖) ⩽ ‖𝑢‖𝖫2(𝓕) (Contraction)

(iii) ⟨𝔼𝓖𝑢, 𝑤⟩ = ⟨𝑢, 𝔼𝓖𝑤⟩ = ⟨𝔼𝓖𝑢, 𝔼𝓖𝑤⟩ (Symmetry)

(iv) 𝔼𝓖𝑢 is the unique minimiser in 𝖫2(𝓖) such that

‖𝑢 − 𝔼𝓖𝑢‖𝖫2(𝓕) = min
𝑔∈𝖫2(𝓖)

‖𝑢 − 𝑔‖𝖫2(𝓕)

(v) 𝑢 = 𝑤 ⟹ 𝔼𝓖𝑢 = 𝔼𝓖𝑤

(vi) 𝔼𝓖(𝛼𝑢 + 𝛽𝑤) = 𝛼𝔼𝓖𝑢 + 𝛽𝔼𝓖𝑤 ∀𝛼, 𝛽 ∈ ℝ (Linearity)

(vii) If 𝓖0 ⊂ 𝓖 is a another sub-𝜎-algebra, then 𝔼𝓐𝔼𝓖𝑢 = 𝔼𝓖0𝑢 (Tower property)

(viii) 𝔼𝓖(𝑔𝑢) = 𝑔𝔼𝓖𝑢 ∀𝑔 ∈ 𝖫∞(𝓖) (Pull out)

(ix) 𝔼𝓖𝑔 = 𝑔 ∀𝑔 ∈ 𝖫2(𝓖)

(x) 0 ⩽ 𝑢 ⩽ 1 ⟹ 0 ⩽ 𝔼𝓖𝑢 ⩽ 1 (Markov property)

(xi) 𝑢 ⩽ 𝑤 ⟹ 𝔼𝓖𝑢 ⩽ 𝔼𝓖𝑤 (Monotony)

(xii) |𝔼𝓖𝑢| ⩽ 𝔼𝓖 |𝑢| (Δ-inequality)

(xiii) 𝔼{∅,Ω}𝑢 = 𝔼𝑢

(xiv) 𝔼𝔼𝓕𝑢 = 𝔼𝑢 (Tower property)

(xv) 0 ⩽ 𝑢𝑛 ↑ 𝑢 ⟹ 𝔼𝓖𝑢𝑛 ↑ 𝔼𝓖𝑢 (conditional Beppo Levi)

(xvi) 𝑢𝑛 ⩾ 0 ⟹ 𝔼𝓖 (lim inf 𝑢𝑛) ⩽ lim inf 𝔼𝓖𝑢𝑛 (conditional Fatou)

(xvii) For all 𝑛 ∈ ℕ, |𝑢𝑛| ⩽ 𝑤, 𝔼𝑤 < ∞ and

𝑢𝑛
a.s.⟶ 𝑢 ⟹ 𝔼𝓖𝑢𝑛 → 𝔼𝓖𝑢 (conditional dominated convergence)

(xviii) 𝑐 ∶ ℝ → ℝ convex and 𝔼 |𝑐(𝑢)| < ∞ ⟹ 𝔼𝓖𝑐(𝑢) ⩾ 𝑐 (𝔼𝓖) (conditional Jensen)
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Moreover,

‖𝔼𝓖𝑢‖𝖫1 ⩽ ‖𝑢‖𝖫1 ∀𝑢 ∈ 𝖫1(𝓖),

and 𝔼𝓖 can be extended to 𝖫1(𝓖) by continuity and Properties (v)-(xiv) carry over to

𝑢 ∈ 𝖫1(𝓖). In abuse of notation this extension will be denoted by the same symbol.

Theorem A.5 (Classical definition of 𝔼𝓖). Let 𝓖 ⊂ 𝓕 be a sub-𝜎-algebra. For 𝑋 ∈ 𝖫1(𝓕)
and 𝑌 ∈ 𝖫1(𝓕) it is then equivalent:

(i) 𝑌 = 𝔼(𝑋 ∣ 𝓖) a.s. – 𝑌 is a version of the conditional expectation

(ii) ∫𝐺
𝑌 dℙ = ∫𝐺

𝑋dℙ ∀𝐺 ∈ 𝓖,

where (ii) holds on any ∩-stable generator for 𝓕.

The proof of the following lemma follows from usual approximations arguments for

Lebesgue integrals, cf. e.g. [SP14, Appendix A.2]

Lemma A.6. Assume that 𝓧, 𝓨 ⊂ 𝓕 are 𝜎-algebras and let 𝑋 ∶ (Ω, 𝓕) → (𝐶, 𝓒) ∈ 𝓧/𝓒
and 𝑌 ∶ (Ω, 𝓕) → (𝐷, 𝓓) ∈ 𝓨/𝓓 be two random variables such that 𝓧 ⫫ 𝓨. Then

𝔼(Φ(𝑋, 𝑌 ) | 𝓧) = 𝔼Φ(𝑋, 𝑌 )|𝑥=𝑋 = 𝔼(Φ(𝑋, 𝑌 ) | 𝑋)

holds for all bounded 𝓒 × 𝓓/𝓑(ℝ)-measurable function Φ ∶ 𝐶 × 𝐷 → ℝ. If Ψ ∶ 𝐸 × Ω → ℝ
is bounded and 𝓒 × 𝓨/𝓑(ℝ)-measurable, then

𝔼(Ψ(𝑋(⋅), ⋅) | 𝓧) = 𝔼Ψ(𝑥, ⋅)|𝑥=𝑋 = 𝔼(Ψ(𝑋(⋅), ⋅) | 𝑋) .

Corollary A.7. Assume that 𝓧, 𝓨 ⊂ 𝓕 are 𝜎-algebras and let 𝑋 ∶ (Ω, 𝓕) → (𝐶, 𝓒) ∈ 𝓧/𝓒
and 𝑌 ∶ (Ω, 𝓕) → (𝐷, 𝓓) ∈ 𝓨/𝓓 be two random variables such that 𝓧 ⫫ 𝓨. Then

𝔼Φ(𝑋, 𝑌 ) = ∫ 𝔼Φ(𝑥, 𝑌 )ℙ(𝑋 ∈ d𝑥) = 𝔼 ∫ Φ(𝑥, 𝑌 )ℙ(𝑋 ∈ d𝑥)

holds for all bounded 𝓒 × 𝓓/𝓑(ℝ)-measurable function Φ ∶ 𝐶 × 𝐷 → ℝ. If Ψ ∶ 𝐸 × Ω → ℝ
is bounded and 𝓒 × 𝓨/𝓑(ℝ)-measurable, then

𝔼Ψ(𝑋(⋅), ⋅) = ∫ 𝔼Ψ(𝑥, ⋅)ℙ(𝑋 ∈ d𝑥) = 𝔼 ∫ Ψ(𝑥, ⋅)ℙ(𝑋 ∈ d𝑥) .

A.2 Martingales

A filtration (𝓕𝑡)𝑡⩾0 is a family of sub-𝜎-algebras 𝓕 such that 𝓕𝑠 ⊂ 𝓕𝑡 for all 𝑠 ⩽ 𝑡. Now,

let (Ω, 𝓕, (𝓕𝑡)𝑡⩾0, ℙ) be a filtered probability space satisfying the usual hypotheses, i.e. a

probability space (Ω, 𝓕, ℙ) equipped with a filtration that is right-continuous

𝓕𝑡 = 𝓕𝑡+ ∶= ⋂𝑠>𝑡
𝓕𝑠 for all 𝑡 ⩾ 0,

and complete, i.e. 𝓕0 contains all subsets of ℙ-null sets.
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Definition A.8. A stochastic process (𝑋𝑡)𝑡⩾0 is called a martingale if it is adapted to the

filtration (𝓕𝑡)𝑡⩾0 and 𝑋𝑡 ∈ 𝖫1(ℙ) for all 𝑡 ⩾ 0 such that

𝔼(𝑋𝑡 ∣ 𝓕𝑠) = 𝑋𝑠 ∀𝑠 ⩽ 𝑡. (A.1)

Definition A.9. A continuous local martingale is an adapted continuous process 𝑋 for

which there exists a sequence of stopping times (𝜎𝑛)𝑛⩾0 such that 𝜎𝑛 ↑ ∞ a.s. and for

every 𝑛 ⩾ 0, 𝑋𝜎𝑛
𝑡 𝟙{𝜎𝑛>0} is a (true) martingale.

Remark A.10. By the martingale property (A.1), we immediately see that a martingale

has constant expectation, i.e. 𝔼𝑁𝑠 = 𝔼𝑁0 for all 𝑠.

Lemma A.11. Let 𝜏 be an a.s. finite stopping and 𝑋 be a continuous local martingale taking

values in a finite-dimensional Hilbert space 𝓗. Then

𝔼 sup
0⩽𝑠⩽𝜏

|𝑌𝑠| < ∞ ⟹ 𝑌 is a (true) martingale.

In order to proof that a local martingale is a true martingale the common tool is given

by the following inequality, originally to be found in the joint work of Burkholder, Davis

& Gundy 1972 [BDG72].

Lemma A.12 (Burkholder, Davis, Gundy). For any 𝑝 ∈ (0, ∞) there are positive constants

𝑐𝑝, 𝐶𝑝 such that, for all local martingales 𝑋 with 𝑋0 = 0 and stopping times 𝜏 , the following

inequality holds:

𝑐𝑝𝔼[𝑋]𝑝/2
𝜏 ⩽ 𝔼 ( sup

𝑠⩽∧𝜏
|𝑋𝑠|)

𝑝
⩽ 𝐶𝑝𝔼[𝑋]𝑝/2

𝜏 .
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