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Un enfant qui meurt de faim est un enfant assassiné.

Jean Ziegler

Damit hat die noematische Geltungsreflexion unter
allen Weisen des Denkens tiberhaupt, aber auch unter
allen Weisen der Reflexion eine absolute Vorrangstellung
erworben. Sie ist das Denken, das nicht einfach blof3
Theorien aufbaut, sondern als einziges Denken
gleichzeitig auch der Giiltigkeit dessen, was es aufbaut,

absolut sicher zu sein vermag.

Hans Wagner, Philosophie und Reflexion

Many worlds might have been botched and bungled,
throughout an eternity, ere this system was struck
out; much labour lost, many fruitless trials made; and
a slow, but continued improvement carried on during
infinite ages in the art of world-making.

David Hume, Dialogues Concerning Natural Religion






Scattering Theory for the Hodge Laplacian and Covariant Riesz
Transforms

Abstract

Based on gradient estimates obtained by probabilistic Bismut type formulae for the
heat semigroup on the full exterior bundle of square-integrable Borel forms defined by
spectral calculus, we show results for two distinct problems:

We prove using an integral criterion the existence and completeness of the wave opera-

(k) Ak (k)
tors W,(A,"”, Ay ,Ig,h

k-forms, for v € {g, h}, induced by two quasi-isometric Riemannian metrics g and 4 on a

) corresponding to the Hodge Laplacians NG acting on differential

complete open smooth manifold M. In particular, this result provides a criterion for the
absolutely continuous spectra aaC(Ag‘)) = aaC(A;k)) of A% to coincide. By these localised
formulae, the integral criterion only requires local curvature bounds and some upper lo-
cal control on the heat kernel acting on functions provided the Weitzenbdck curvature
endomorphism is in the Kato class, but no control on the injectivity radii. A consequence
is a stability result of the absolutely continuous spectrum under a Ricci flow. For applica-
tions we concentrate on the important case of conformal perturbations, and specify our
results under global curvature bounds and e-close Riemannian metrics.

: _iA® . ,

We prove a Li-Yau type heat kernel bound of Ve™®" and an exponentially weighted L’-
_ia® : . N

bound for the heat kernel of Ve ™", if the curvature tensor and its covariant derivative

are bounded. We show that the covariant derivative of the heat semigroup acting on

Ak
k-forms Ve 2

" is bounded in L? for all 1 < p < oo if the curvature tensor and its covari-
ant derivative are bounded. We derive a second order Davies-Gaffney estimate for small
times, if the Weitzenbdck curvature endomorphism is bounded from below. Based on
12 is weak

(1,1) and bounded in L? for all 1 < p <2 without a volume doubling assumption. In par-

these results, a Corollary is that the covariant local Riesz transform V(AW +g)~

ticular, our Corollary implies the LP-Calderén-Zygmund inequality for such p. From our
results we can formulate a conjecture for all 1 < p < o0, and explain its implications to
geometric analysis.

Key words  Scattering theory, Wave operators, Bismut type derivative formulae, Hodge
Laplacian, Riesz transform, Heat kernel
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Introduction

The deep connection between Brownian motion and the Laplacian being its generator
seamlessly opens ways to study the local and global geometry of manifolds, or more gen-
erally vector bundles, by virtue of the paths of this stochastic process. Notably, so called
Bismut type formulae, first introduced by Bismut [ ] in 1984, provide probabilistic
derivative formulae for diffusion semigroups on possibly non-compact manifolds:

Let M be a (possibly non-compact) complete Riemannian manifold (M, g) without
boundary and A,, be the Laplace-Beltrami operator on M. A Brownian motion on a
manifold M starting from x at time 0 with lifetime {(x) is given as the M-valued pro-
cess X(x) generated by %AM. Let f be bounded measurable and u(x,t) = P,f(x) be the
(minimal) solution to the heat equation

ou = %AMu, u(-,0)=f.

Using 1td’s lemma we find the stochastic representation of the heat semigroup P, as

P f(x) =E (f(X,0NT(1<eayy) - ()

For any solution to this heat equation, we find the Bismut derivative formula [ ; ]

(VP f,v)=-E <f(X,(x))ﬂ (1<C(x)) I (@Sizs,st)> Yoe T,M Vxe M, )
0

where:
o 7 =1p(x)At, With
tp(x) 1=inf { >0 : X,(x) & D}
is the first exit time of X,(x) from some (arbitrary small) relatively compact open
neighbourhood D of x

« B is the associated anti-development of the Brownian motion X(x), i.e. a Brownian
motion in T, M related to X qua dB :=/"'edX(x),and /, : T.M — Tx,M is the
stochastic parallel transport along X

« the process @ is a linear transform taking values in the group of linear automor-
phisms of T, M, defined by the pathwise covariant ordinary differential equation

1

d . .
a@t = —E RIC//,(@I)’ @0 = ldTXM,

with Ric, := I/ oRicg(t o//, is a linear transform in T,M and we identify
<Ricg v, w> = Ric,(v,w) forany v,w € T,M (z € M)

ix



X - Introduction

« {is any bounded adapted process taking values in T, M with absolutely continuous

. 12
paths such that ([OT |€S|2 ds) € L!*¢ for some € > 0 and

Note the remarkable fact that in the stochastic derivative formulae (2) Ricci curvature
only enters locally around the point x and no derivative of the heat equation appears on
the righthand side of the equation. This potentially opens ways of studying gradient es-
timates. In addition, the process ¢ may be chosen nicely as long as it starts inv € T, M
(x € M) and is 0 as Brownian motion hits the boundary of D. In comparison, the stochas-
tic representation of the semigroup (1) requires lower Ricci bounds as Brownian motion
explores the whole manifold for arbitrary small 7 > 0. The idea in proving such formulae
is to use integration by parts to get a suitable local martingale, say N, and stay on the
local martingale level as long as possible. Using that a true martingale has constant ex-
pectation, one then shows that N is indeed a martingale and takes expectations at times
s=0ands=tA~.

Formulae of the form (2) have been heavily investigated in and extended to various
contexts [ ; ; ; ; ; ; ; ; 1

In this thesis, we make use of those methods to first derive local and global Bismut
type formulae, and prove localised gradient estimates for the heat semigroup defined by
spectral calculus on the full exterior bundle of square-integrable Borel forms in § 2. By
these formulae, we obtain results for two distinct problems:

In § 3, we prove using an integral criterion the existence and completeness of the

(k) A (k)
wave operators W,(A,", Ag ,Ig’h

differential k-forms, for v € {g, h}, induced by two quasi-isometric Riemannian metrics

) corresponding to the Hodge Laplacians A% acting on

g and h on a complete open smooth manifold M. In particular, this result provides a
criterion for the absolutely continuous spectra aac(A(gk)) = aac(A;k)) of A% to coincide. The
integral criterion only requires local curvature bounds and some upper local control on
the heat kernel acting on functions provided the Weitzenbock curvature endomorphism
is in the Kato class, but no control on the injectivity radii. A consequence is a stability
result of the absolutely continuous spectrum under a Ricci flow § 3.6.1 and state the main
result in the case of differential k-forms § 3.6.2. As an application we concentrate on the
important case of conformal perturbations § 3.6.3, specify our results for global curvature
bounds § 3.6.4 and e-close Riemannian metrics § 3.6.5.

In § 4, we make use of the global and local covariant derivative formulae of the heat

—tAK)

semigroup developed in § 2: We show a Li-Yau type heat kernel bound of Ve and

CE
1A% if the curvature ten-

an exponentially weighted L?-bound for the heat kernel of Ve
sor and its covariant derivative are bounded. We show that Ve™2" is bounded in L?
for all 1 < p < oo if the curvature tensor and its covariant derivative are bounded. In
addition, we derive a second order Davies-Gaffney estimate in this case for small times,

if the Weitzenbock curvature endomorphism is bounded from below. From these results,
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a Corollary is that the covariant local Riesz transform V(A% + )~ is weak (1,1) and
bounded in L? for all 1 < p < 2 without a volume doubling assumption. In particular, our
Corollary implies the LP-Calderén-Zygmund inequality. From our results we can formu-
late a conjecture for all 1 < p < o0, and explain its implications to geometric analysis.

Main results and outline of the thesis

In the § 1 we agree upon the notation used throughout this thesis and recall well-known
notions and results from differential theory, spectral theory, geometric analysis and
stochastic calculus.

The thesis presents a concise overview of the results that are contained in the following
papers:

Pl Scattering Theory for the Hodge Laplacian, 45 p., submitted, arXiv:2007.06447.

PIl Estimates for the covariant derivative of the heat semigroup on differential forms
and covariant Riesz transforms, joint work with Batu Giineysu & Baptiste Devyver,
39 p., arxiv.org:2107.00311.

Although the application may seem distant, both results are based on the same key
technical tool, to wit: global and local Bismut type formulae on the (full) exterior bundle
of square-integrable Borel forms developed in § 2. The thesis then splits into two parts.
Part | is concerned with the scattering theory of the Hodge Laplacian. Part Il gives es-
timates for the covariant derivative of the heat semigroup and its kernel, the covariant
Riesz transform and implications to geometric analysis.

Bismut type formulae and gradient estimates

In § 2, we first elaborate on the techniques to prove Bismut type formulae in the ab-
stract setting of vector bundles and introduce the so called Kato class of potentials, i.e. a
sufficiently rich class of potentials for which we can still expect the Feynman-Kac formula
to make sense pointwise (cf. § 2.1). Using those methods, we then derive Bismut type for-
mulae on the full exterior bundle of square-integrable Borel forms: a global and a local
covariant Bismut formula in § 2.2 and Bismut formulae for the exterior derivative and
codifferential in § 2.3. From the localised Bismut formulae, we obtain localised gradient
estimates in § 3.3 that will be the key technical tool in the proof of our main result in § 3.

Scattering Theory for the Hodge Laplacian

The Hodge Laplacian Afgk) acting on differential k-forms carries important geometric and
topological information about M, of particular interest is the spectrum a(A(gk)) of Afgk).
If M is non-compact, then the spectrum contains some absolutely continuous part. A
natural question to ask is, to what extent can we control the absolutely continuous part
of a(Ag,k)) and under which assumptions on the geometry of (M, g)?


https://arxiv.org/abs/2007.06447
https://arxiv.org/abs/2107.00311

xii - Introduction

A systematic approach to control the absolutely continuous part of the spectrum
aac(A(gk)) is inspired by quantum mechanics, namely scattering theory: Assume that there
is another Riemannian metric 2~ on M such that 4 is quasi-isometric to g, i.e. there exists
a constant C > 1 such that (1/C)g < h < Cg. We show that under suitable assumptions
the wave operators

k)

. A (k) . A (k)
WAy, ALY 18 = slime™n 1 e e P, (AL)

t—>+00

exist and are complete, where the limit is taken in the strong sense, and I;];)l denotes
a bounded identification operator between the Hilbert spaces of equivalence classes of
square-integrable Borel k-forms on M corresponding to the metric g and & respectively
(cf. Theorem 3.5 and § 3.2 for details). Then as well-known, it follows in particular that
62 (A%) = (AP,

Similar problems have been investigated: In| ; ] considered Laplacians acting
on functions on M. However, using analytics methods, strong assumptions are needed to
control the injectivity radii. Bei, Glineysu & Miiller [ ] generalised previous results
in the case of conformally equivalent metrics on differential forms under a mild first or-
der control on the conformal factor. Recently, [ ] established a rather simple integral
criterion induced by two quasi-isometric Riemannian metrics using stochastic methods.
In particular, no injectivity radii assumptions are made. Using a similar method, very re-
cently Boldt & Giineysu [ ] extended the result to a non-compact spin manifold with
a fixed topological spin structure and two complete Riemannian metrics with bounded
sectional curvatures.

In this chapter, we address the natural question: Can we extend the results to the setting of
differential k-forms?

We will show that previous results can be extended to the setting of differential
k-forms, for a large class of potentials (i.e. in the Kato class) assuming an integral cri-
terion only depending on a local upper bound on the heat kernel and certain explicitly
given local curvature bounds. Our main result of this chapter, Theorem 3.32, reads as
follows:

Main result. Assume that g and h are two geodesically complete and quasi-isometric Rieman-
nian metrics on M, denoted g ~ h, and assume that there exists C < oo such that ‘5&‘ <C,

and that for both v € {g, h},

.%v|v is in the Kato class and it holds
Jmax {6g’h(x), 57 ,(x) + (. ), ¥, (x. s)} @, (x, 5)vol (dx) < oo,  some s > 0,

where

« vol, denotes the Riemannian volume measure with respect to the metric v,
« R, €M(EndQ(M,v)) denotes the Weitzenbdck curvature endomorphism,

« ¥ (x,5) : M — (0,00) is a function explicitly given terms of local curvature bounds and
a finite constant c¢,(Z"),
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E (s) 1 M — (0,) is a function explicitly given in terms of ¥ (x, s) and an additional
local bound on the derivative of curvature,

e @ (,s): M — (0,00) is a local upper bound on the heat kernel acting on functions,

« 8,5 ¢+ M — (0, 00) a zeroth order deviation of the metrics from each other,

. 6th : M — [0, o) a first order deviation of the metrics.

Then the wave operators W.(A,, A, 1, ) exist and are complete. Moreover, W_ (A, A,, I, ;)
are partial isometries with initial space ranP,.(A,) and final space ranP,.(A,). In particular,

o-ac(Ag) = 0c(Ap).

In § 3.1 we briefly motivate the notion of wave operators (cf. Definition 3.2) and cite the
abstract Belopol’skii-Birman Theorem 3.5 which is a well-known tool to prove existence
and completeness of the wave operators. A direct consequence is that the absolutely
continuous spectra coincide. In the following Section § 3.2, we introduce notions needed,
of particular interest the quasi-isometry of two Riemannian metrics, cf. Definition 3.12.
It turns out that quasi-isometry can be characterised by boundedness of a zeroth order
deviation of the metrics from each other (3.14) defined in terms of a smooth vector bundle
morphism &, , relating the two quasi-isometric metrics which is given by (3.9). In partic-
ular, we obtain estimates for the covariant derivative of A, and a representation of the
codifferential in the quasi-isometric metric (cf. Lemma 3.15). In § 3.3 we use the localised
gradient estimates obtained in § 2 to prove gradient estimates for the covariant deriva-
tive, exterior derivative and codifferential of the heat semigroup transformed by &, ;.
We then explain the main result of this chapter in § 3.4 and its proof in { 3.5. We close § 3
with applications to the Ricci flow { 3.6.1, state the main result in the case of differential
k-forms 3.6.2, the particularly important cases of conformal perturbations § 3.6.3, specify
our results for global curvature bounds § 3.6.4 and e-close Riemannian metrics § 3.6.5.

Covariant derivative estimates and Riesz transforms

The Riesz transform V(A? + 1)~2 on a Riemannian manifold, considered by Strichartz
[ ], has been intensively studied and extended in various frameworks [ ; ;

; ; 1. A direct application to geometric analysis is given by the
LP-Calderén-Zygmund inequalities, cf. e.g. [ ; . However, the study of Riesz
transform normally involves assuming a volume doubling property of M.

For the following results we only assume that the Riemann curvature tensor and its
covariant derivative are bounded by some constant A < oo, i.e.

max (|IR|le , IVRIls) < 4, 3)

where V denotes the Levi-Civita connection on M, and |R|, the []|,-norm of
Re I'CW(T(OA)M) read as a (0,4)-tensor, analogously for VR read as (0,4 + 1)-tensor.

We first state our main results of this chapter. In Theorem 4.4 we show a Li-Yau type
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heat kernel bound for Ve‘m(k) forall 1 <k <m:

NG C _ -
v e (x’y)‘ «_C o

~ Vol(B(x, V)

where d(x, y) denotes the geodesic distance and B(x, r) the induced open balls. The positive

p 4G’
i Vi>0Vx,ye M,

constants C and D only depend on A and the dimension m of M.

From this theorem we can deduce an exponentially weighted L?-bound for the heat
kernel of Ve~ for all 1 < k < m:

Py’ Ct
J‘Vxe_m(k)(x, W e vol(dx) < Ce Vi > 0,

72 vol(B(y, v/0)r~!

where the positive constant C only depends on A4, the dimension m of M and p.
_[A(k

Next, Theorem 4.6 states that Ve " is bounded in L?, for all 1 < p < o0, i.e. we have,

forall 1 <k <m,

”Ve_m(k) <CeCr12 s, (4)

| rLGLP(/\k M) Hp,p
where the constant C only depends on A, the dimension m of M and p.

A direct consequence is Corollary 4.7: the operator v(A® + 1712 is weak (1,1) and,
by interpolation, the boundedness of the covariant local Riesz transform in L? for all
l<p<,

HV(A(") + )72

<C, (5)

A
rLGLP(/\ T*M) p,p\

where the positive constant C only depends on A4, the dimension m of M, p and A.

In particular, Corollary 4.7 does not involve any volume assumptions and directly implies
the LP-Calderdn-Zygmund inequality, i.e. that there is a positive constant D depending on
A, the dimension m of M and p such that

|Hessull, < D (||Au||p + ||u||p) Yu e CX(M).

Based on our results, we can formulate Conjecture 4.8 that Corollary 4.7 holds for all
1 < p < . Our conjecture is based on a result by [ lin the case k = 0, i.e. on
functions, that for p > 2, estimate (4) implies (and is actually equivalent to) (5). We can
also generalise a central tool in the proof of the scalar case, i.e. a second order Davies-
Gaffney estimate for small times:

Theorem 4.11. There are universal constants c¢;,c, > 0 such that for all 1 < k < m with
R® > —A for some constant A > 0, all t > 0, all Borel subsets E,F ¢ M with compact
closure, and all a € FLz(/\k T*M) with supp a C E, we have

_ g(E,F)2

”ﬂFe_’A(k)aHZ + Hﬂ F\/;Ve_m(k)auz + HHFIA(k)e_tA(k)aHZ < ¢ (l + \/;A) e ] ||1]Eoz||2 .

It turns out, for this result, boundedness on the Weitzenbdck curvature endomorphism
Z" from below is sufficient. The Proof is given in § 4.6 and is based on analytics tools,
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to wit the Phragmen-Lindel6f’s inequality 4.16. Following the strategy of the proof given
in[ ] the only part we could not adjust so far is where the local Poincaré inequality
is used explicitly.

In § 4.3, we prove the heat kernel bound for Ve A" if the curvature tensor and its covari-
ant derivative are bounded by making use of the global Bismut formula, Theorem 2.24,
applied to Brownian bridge measure, and its Corollary 4.5 using Li-Yau estimates. In
§ 4.4, we prove that the covariant derivative formula of the heat semigroup on k-forms
is bounded in L? for all 1 < p < oo if the curvature tensor and its covariant derivative are
bounded. We therefore use the covariant Bismut formula and similar techniques to prove
the gradient estimates developed on § 2 under global curvature bounds. In § 4.5 we prove
Corollary 47, i.e. that the operator V(A% + 1)~"2 is weak (1, 1) and the boundedness of
the covariant local Riesz transform in L? forall 1 < p < 2.
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Index of notation

Unless otherwise stated, functions are maps whose codomain is R™ whereas the term
map(ping) normally refers to a map between arbitrary manifolds. Binary operations between

. . L. Jj—oo
functions such as f + g, /- g f Ag f Vg comparisons f < g, f < g orlimits f; — f,
lim; f;, liminf; f;, sup; f; are understood pointwise. «Positive» and «negative» means «> 0»
and «< O», respectively.

Throughout, we will use the notation

xSy = IC>0: x<Cy,
and

X~y = xSy A ySx

Einstein Summation Convention If the same index variable appears twice in a term, both
as an upper and a lower index, it is assumed to be summed over all possible values of that
index (usually ranging from 1 to the dimension m =: dim M). For example, we write

a;b’ instead of Za,-bi or aijk’bi,cj instead of Zaijk’bi,cj.
i

ik
Analysis and measure theory supp f support of f, {f # 0}
N [Nyl natural numbers [incl. 0] supp 1 support of 5, {n # 0}
R real numbers
inf @ inf @ = +oc0 Differential geometry
aANb,avb minimum and maximum )
M smooth manifold
1, 1,(x) := {1 x€4A TM [T*M]  I[coltangent bundle
0 x¢A
g T,M [T;M] [coltangent space at x € M
PrE projection on E x . E— M fibre or vector bundle
MNE) smooth sections of fibre
Sets bundle E, I'(E) =N (E), 3
M M =M U {x} M 2(E) L2-sections of fibre bundle E
E* dual space of a set E

XXi
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k(M)
QM)

QM)
Q2(M)
f,b

\%

grad

tr

Ric

0]

vol
g§=(,"),
MetrM

I|g
()
-1l

smooth differential k-forms
on M, QK(M) = Qf..(M), 4

smooth differential forms on
M, QM) = Qce(M)

L? k-forms on M

L? total forms on M
musical isomorphisms, 9
covariant derivative, 5
gradient

trace, contraction

exterior derivative, 4

——— acting on k-forms

codifferential (w.r.t. g),

——— acting on k-forms
Dirac operator d + 8,
Laplace operator, ) _;, ()iz

Laplace-Beltrami operator, 10

Hodge-de Rham operator on
total forms, 12

——— acting on k-forms

connection Laplacian on
manifold M, 42

torsion tensor, 9
curvature tensor, 12
Ricci tensor, 12

Weitzenbock curvature
endomorphism, 13

——— acting on k-forms
curvature operator, 51
volume measure (w.r.t. g)
Riemannian metric, 8

smooth Riemannian metrics
on M

induced fibre norm

inner product on I 2(E)

norm on I 2(E)

Spaces (of sets)

9B(E)

B, (E)

C®(E)

C.(E)

CZ(E)

S(E)

J(E)

space of Borel-measurable
functions f : E - R

space of bounded,
Borel-measurable functions
fTE-R

space of continuous functions
f T E->R1

space of continuous functions
f : E - R with compact
support, 1

space of smooth functions
f : E - R with compact
support, 1

space of all continuous
semimartingales on E

space of all local martingales
on E

A (E) [ (E)lspace of all continuous finite

Hom(E, F)

End(E, F)

variation processes [starting
at zerolon E

space of all homomorphisms
from E to F

space of all endomorphisms
from E to F

Operator theory & spectral calculus

Z (|, ,) bounded linear operators

f‘l

F
domH
ran H
H*
o(H)

%1—)%2,16

Schatten class operator of
order ¢, 16

trace class operators, 16

Hilbert-Schmidt class
operators, 16

compact operators, 16
domain of an operator H
range of an operator H
adjoint of an operator H

spectrum of an operator H, 17
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o,.(H) absolutely continuous
spectrum of H, 70

eH semigroup generated by H

e H(x,y) kernel corresponding to esH

pgk)(x, y) heat kernel acting on k-forms

pﬁ(’)(x, ¥) heat kernel on functions

q sesquilinear form

corresponding to s.a. operator
W,.(H,,H,, I) wave operators

Ilop operator norm

s-lim strong limit
S
— strong convergence

Scattering theory

g~h g quasi-isometric to A, 78

A, p(x) vector bundle
homomorphism, 74

8 n(X) 0" order deviation of
gand h, 78

5Zh(x) 1% order deviation of
g and h, 78

I,y bounded identification
operator, 84

Igfl;)l ——— acting on k-forms

K(M) Kato class, 45

D(M) Dynkin class, 45

Probability theory

~ distributed as

[

modulo local martingales

as. almost sure(ly)
ae. almost every(where)
(Q,F,P) (underlying) probability space

E(-| &) conditional expectation w.r.t.

a o-algebra #

Stochastic processes and SDEs

Fi=F

X, e&F,

T =1(x,r)

XtT = Xt/\T
[X]
(Pr0

B = (B))»0
BM(E)
BM(M, g)
SDE

o

CM@, ¢, E)

Fip = ﬂr>,«°f‘"wt>0r
right-continuous filtration

X, measurable w.r.t &,

first exit time from the open
ball B(x, r), 49

stopped process X, ,,
lifetime, 29
square bracket [ X, X]

heat semigroup,
Pf(x) :=Ef(X;(x))
Brownian motion (BM)
BM on E c R"

BM on (M, g), 28

Stochastic differential
equation

Stratonovich circle, 29

finite energy process in E






Chapitre 1

ELEMENTS D’ANALYSE GEOMETRIQUE AND CALCUL STOCHASTIQUE

Dans ce chapitre, nous introduisons les notions préliminaires nécessaires et convenons
de la notation utilisée. En particulier, nous revisiterons les définitions bien connues de la
théorie de géométrie différentielle et de la théorie des probabilités.

Remarque 1.1 (Convention de sommation d’Einstein). Désormais, nous utiliserons la con-
vention commode de sommation d’Einstein. Il s’agit d’'une convention de notation impor-
tante qui est couramment utilisée dans la théorie des variétés, car nous devons souvent
traiter des vecteurs et des covecteurs et de I'inévitable superflu des signes de sommation:
si un index apparait deux fois, une fois en indice et une fois en exposant, nous omettons
le symbole de sommation. Par exemple nous écrivons

oxioxi 7

a la place de

n n n

n S
Zu"a,., leidxi, Zza—xla—xiﬂj
=

i=1 i=1 j=1 0x' 0x/
Par conséquent, donnée un espace vectoriel V, nous faisons la distinction et écrivons les

vecteurs (contravariants) e, ...,e, € V toujours avec un indice et les covecteurs du repére
dual correspondant el, ... " € V* avec un exposant.

Pour x € R™ et quelconque r > 0, on dénote par
B(x,r):={y€|Rm : ||x—y||<r} et B[x, r] :={y€R’" : ||x—y||<r}.

la boule ouverte et la boule fermée, respectivement (dans le norme habituelle sur R™).

Notons par C*(E), C°(E), et C.(E), pour toutes les fonctions f : E — R" lisses, lisses
et disparaissant a I'infini et lisses a supports compacts.

On définit encore les espaces de courbes suivant: Soit I c R, on denote par C([a, b], R™)
I'ensemble des courbes continues y : [a,b] — R” et L!([a, b], R") 'ensemble des courbes
intégrables. En outre, une courbe y : [a,b] - R™ est absolument continue si pour tout
e > 0 il existe un 6 > 0 tel que pour toute partition a < s; <t; <...<s,<t,<b

dt—sp<s = D> |yt —r(s)| <e
i=1 i=1

De maniére équivalente une courbe y : [a,b] — R™ est absolument continue si y est
différentiable presque partout avec y € L!([a, b], R™) et telle que
t

y® =y + J 7 (x)ds.

a

1
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Finalement, on définit I'espace

b
LY2([a,b], E) := {y : [a,b] — E : y différentiable p.p. et [ l7(0)|? dr < oo}.

a

1.1 Théorie de Géométrie Différentielle

Une introduction approfondie aux variétés différentielles est donnée dans [ l ala
géométrie riemannienne dans [ letl 1. Etant un lecteur allemand nous renvoyons
le lecteur a [ , Chapitre 7]. Une référence classique pour la géométrie différentielle
nécessaire est [ ; 1

Soit M une variété topologique de dimension dim M =: m, i.e. un espace topologique de
Hausdorff et a base dénombrable assimilable localement a un espace euclidien. Combinée
avec une structure différentielle on appelle M une variété différentielle.

1.1.1  Fibrés différentiels Un fibré (différentiel) est un espace qui est localement le pro-
duit de deux espaces, mais peut avoir une structure topologique différente globalement.
Nous nous limitons a des fibrés entre variétés de facon a ce que I'espace total E est une
variété au lieu d’'un espace topologique. Ainsi, les trivialisations deviennent des difféo-
morphismes (pas homeomorphismes).

Definition 1.2. Soient E, M et F des variétés. Une application lisse # : E — M ou, plus
précisément, le quadruplet (E, M, =, F) est appelé fibré (différentiel) sur M de fibre F, si
7 est une submersion surjective et pour tous p € M il existe un voisinage U de p dans M

et un difféomorphisme ¢ : 7' (U) — U x F sur U tel que le diagramme

W U) -2~ U xF
T
i Pruy
U

soit commutatif. On appelle E I'espace total, = la projection, M la base et (U, ) une
trivialisation locale du fibré. De plus, F est la fibre et E, := 7' {p} la fibre sur p e M.

Définition 1.3. Un fibré vectoriel de rang k sur M est un fibré = : E - M de fibre
espace vectoriel V' de dimension k, avec trivialisations locales ¢y : #(U) — U x V telles
que toute restriction (pU|x : E, = {x} x V est un isomorphisme d’espaces vectoriels.

Définition 1.4. Le fibré dual d’'un fibré = : E - M est le fibré

E*:=|JE;-M, xeM,
xeM

ou E} = Homg(E,,R) est I'espace vectoriel dual de E,.

Définition 1.5. Si z : E - M est un fibré de fibre F, une section est une application
différentiable 6 : M — E telle que 7z - 6 = id,,. L'espace des sections différentiable d'un
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fibré E est donné par

F(E) :={c : M — E différentiable | 7 o o = id), }
= {oc : M — E différentiable | o(x) e T, M Vx € M } .

Exemple 1.6. (a) Le fibré trivial E = M x F de fibre F est la projection
wi=pry - MXF—->M,
ie. (x,y)— x. Si E =M xR, les sections de E sont les fonctions lisses a valeurs réels
sur M, ie. F°(M) =C®(M).

(b) Si E =M xR (k € N), les sections de E sont les fonctions vectorielles sur M.

Exemple 1.7. (a) Le fibré tangent sur TM =, M est l'union disjointe des espaces tan-
gents TM = [J,.) T.M. Les sections X € I(TM) sont données par champ de
vecteurs sur M. Comme d’habitude, on identifie les champs de vecteurs sur M avec
les dérivations de C*®(M) a valeurs dans C®(M), i.e.

F(TM) := Der(C®(M),C®(M))
= {A: C®(M) - C®(M) R-linear | A(fg) = fA(g) + gA(f) V. g € C* (M)},
ou le champ de vecteurs A € [(TM) est considéré comme une R-dérivation qua
A(f)(x) :=df), Ax) e R, Vxe M,

utilisé le différential (ou push-forward) (f,), =df, : T.M — R de f dans x.

(b) Le fibré cotangent sur T*M —, M est l'union disjointe des espaces cotangents
TM = U,cp TiM, ot Ty M est I'espace vectoriel dual linéaire de I'espace tangent
T, M pour tout x € M. Les sections n € I'(T*M) sont données par les formes différen-
tielles d’ordre un.

Exemple 1.8. (a) Le fibré tensoriel de type (k,/) sur un fibré = : E - M est le produit
tensoriel

TE = | J(EN®* @ EY —» M.
xeM
(b) Le k-eme produit extérieur d’un fibré = : E — M est le fibré

NE := | J N'E, > M,

xeM

oit \*E_ est le sous-espace de 'espace TEDE défini par toutes a € THPE alternée.
Si le fibré E est de rang m, le fibré /\k E est de rang ('Z)

(c) Le fibré des endomorphismes d’un fibré = : E - M est le fibré
EndE := | J EndE, — M,
xeM

ou End E, est I'ensemble des applications linéaires sur chaque fibre E,. En particulier,
il y a un isomorphisme de fibrés End E ~ E ® E™.
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Exemple 1.9. Pour tout k£ > 0, une forme différentielle d’ordre k sur M, ou k-forme,
est une section 7 : M — A*T*M du k-eme produit extérieur du fibré cotangent, ol
A'T*M = M x R. Lensemble des k-formes différentielles sur M est noté par
Qk (M) = TN T*M).

En particulier, Q'(M) = C®(M), Q™(M) est de rang 1 et QX(M) =0 si k > m.
Définition 1.10. Soient E et E’' des fibrés vectoriels sur M. Une application lisse

@ : E > E' est appelée un homomorphisme de fibrés vectoriels si linéaire sur chaque
fibre, i.e. 7’ o @ = &, et préservant les fibres

4

N

M

E E’

Définition 1.1 (Section, champ de vecteurs le long d’'une application). Soit f : M - N
une fonction lisse entre deux variétés, E un fibré vectoriel sur N. Les éléments de

F(f*E):={A: M - E|Alisseavecro A= f}

s’appellent sections le long de f, particulierement dans le cas (f*TN) il s’appelle champ
de vecteurs le long de f. Soit I c R une intervalle et y : I — N une courbe continue,
on a que

ry*I)={c:1- E|oclisseaveco(t)e E,;) Viel}.

Le champ de vecteurs y € F(y*TN), 7, := y(¢), induit par y est s'appelle champ de vecteurs
tangentiels le long de y.

Lemme 1.12 (et Définition). Soit f : M — N une fonction lisse entre deux variétés. La
différentielle de f est I'application df : TM — TN, définit par

_d .
df)o= - lzof (@),

oty : (—e,e) > M telle que y(0) = x € M et y(0) = v € T, M pour tout € > 0. En particulier,
pour tout x € Monadf), : T.M — Ty, M et d(idy,), =idy .

Définition 1.13.  On appelle différentielle extérieure I'opérateur unique
d: QM) - Q'(M),  nedn, VK20,

avec les propriétés suivantes:
(i) d est R-linéaire.

(ii) d est une dérivation graduée: Si 7, € QX(M), 1, € QI(M), alors
d(my Amp) = dny Ay + (=1)*n; Adn,.

(iii) d dérivation de carré nul: d> =dod = 0.
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(iv) Pour tout f € Q(M) = C®(M), on a
df(X)=Xf VX el(TM),
i.e. pour toute fonction lisse f, la 1-forme df est la différentielle de f.

Remarque 1.14. Si nécessaire, on indique par d® le degré k de la forme différentielle sur
qui la différentielle extérieure agit.

Dans le cas k =0, on a
dO : coMm) - Ql(Mm), d9frx)=Xx7, VX e [(TM),
donc d@ f coincide avec la différentielle de f,df : M — T*M, x — (df), avec
Af)y t T M = TroRER, (@) (X) = X, f 1= X'(x)0,f]..
De plus, dans le cas p =1, pour tout X,Y € [(TM),
dV Q') - @2M),  dVn(X,Y) = Xn(¥) = Yn(X) = n([X, YD),
ou [X,Y] := XY — YX denote le crochet de Lie.

Définition 1.15. Le support d’une fonction f sur M est I'ensemble

supp f 1={x €M : f(x)#0},

ou e indique la fermeture topologique. De méme, le support d’une forme différentielle
n sur M est 'ensemble

suppn :={xe M : n(x) #0}.

1.1.2  Connexions et transport parallele Etant donné un fibré vectoriel E = M sur
M, p. ex. E = TM, chaque fibre est un espace tangent dans un point x € M. Soit
y : [0,1] > M une courbe lisse avec y(0) = p et y(1) = y. Un transport parallele (ou de
maniére équivalente une connexion) est un moyen naturel de transporter des éléments
d’'une fibre a une autre avec leur géométrie locale de v € E, le long de y & E,. Lidée
clé des connexions est de généraliser la dérivée directionnelle d'un champ vectoriel d’'une
maniere invariante par changement de coordonnées.

Définition 1.16 (Connexion sur un fibré vectoriel). Une connexion sur E est une applica-
tion R-linéaire

V:T(E)—> (T*M ® E),
V(fX)=df @ X + fVX, VX el(E)VfeC®M).

Une section X e I'(E) est dite parallele si VX = 0. Parce que, I'on a

MT*M ® E) = Homce () (F(TM),T(E))
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on peut également voir V. comme une application R-bilinéaire sur E
MTM)XT(E) - (E)
(X,Y) > VyY := (VY)X.
Donc
(i) X — VxY est C®(M)-linéaire, c’est-a-dire,
Vixex,Y =fVx Y +gVy Y,  Vf.geC®(M)
(i) et VyY satisfait une régle du produit de type dérivation,
Vx(fY)=fVxY +(X )Y, Vf e Co¥M).

V est dit del et VY la dérivée covariante de Y dans la direction X.

Proposition 1.17. La différence entre deux connexions est une application
A : Tew(TM) > EndT(E)
a valeurs dans Endce(ppy M(E) & F(End E), i.e. une 1-forme différentielle a valeurs de End TM
A € Homeoo(apy (Feoo(ary(TM), T(End E)) = Q' (M) ®cwo(pr) F(End E) = Q'(M; End E).
Par conséquent, I'ensemble des connexions sur E est un espace affine qui est isomorphe a

Q!(M;End E).

Proof. Soient V et V deux connexions sur E et A =V — V. Alors pour tout X € N(TM)
et pour toute f € C*(M), Y € (E), on a

Ax(UN) = (V=F) U = X7+ SV = Xf = fVy¥
—f (VX - %X) ).
Donc, pour tout X € I(TM), I'application Ay : [(E) — I'(E) est le push-forward d’'un
morphisme E — E, autrement dit A : [(TM) — ['(End E) provient d'un morphisme de
fibrés
TMQE < E-T'MQ®E
< TM - EndE —~ T*MQEndE. |

Définition 1.18. Soitz : E — M est un fibré vectoriel sur une variété M. Une connexion
sur E est une dérivée covariante d’E (ou équivalent un transport parallele dans E, cf.
Définition 1.22 ci-dessous).

Une connexion sur TM est dite souvent connexion sur M, c’est-a-dire, une application

VIMM)QI(TM) - T(TM), (X, YY) VyY,

qui est C*®°(M)-linéaire dans la variable X et une C*(M)-dérivation dans la variable Y.
Une connexion peut étre également vue comme une dérivée covariante

Vi T(TM) > QM) = Q' (M) ®cwpr) F(TM).
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Les symboles de Christoffel d'une telle connexion sont des fonctions locales Fl.’; telles que
k ..
vaiaj = rl.jak, pour touti,j =1,....m.
Soit y : I —» M une courbe lisse, ou I c R est une intervalle. Un champ de vecteurs
le long de y est une application lisse y : I — TM avec v(t) € T, ,,M pour tout t € I. En

VTM

utilisant la connexion sur TM on peut donner un sens a la dérivée directionnelle

d’'un champ vectoriel le long d’'une courbe.

Pour tous X € MN(E) et v € T,M (x € M) la dérivée covariante V, X de X dans la
direction v

VX i= V(X o 7)0) € E,, (1.1)

est bien définie, ot y : (—&,6) — M est une courbe lisse avec y(0) = 0 et y(p) = v.
Soit X € I(E). Pour tout v € T,M (x € M) il existe A € (TM) avec A, = v. Alors
V,X :=(V4X), € E,, la dérivée covariante de X dans la direction de v, est bien définie.
Pour une section X € M(y*E) le long de y on appelée VX € [(y*E) paralléle le long de
ysiD= % est le champ du vecteur canonique on 1.

Pour X € I'(y*E) le long de y on appele V, X € I'(y*E) la dérivée covariante de X le
longdey. Donc D, = % est le champ des vecteur canonique sur I. Une section X € [(y*E)
le long de y est parallele le long de y (par rapporta V), si V, X = 0. On note par I",.(y*E)
le sous-espace de I'(y*E), la famille de toutes sections paralleles le long de y.

Définition 1.19 (Géodésique). Soit M une variété et V la dérivée covariante sur M. Une
courbe lisse y : I — M sur M s’appelle géodésique si son vecteur tangent y € I'(y*TM)
est parallele le long de y (par rapport a V), i.e. si V,7 = 0.

Définition 1.20 (Variété compleéte). Une variété M est dite (géodésiquement) compléte
si toutes les géodésiques sont définies sur R.

Theorem 1.21. Soit V la dérivée covariante sur un fibré vectoriel E sur M ety : I — M une
courbe lisse, 1 € I et e € E,, . Alors il existe une unique section paralléle X € ', (y*E) le
long de y avec X, = e.

Définition 1.22. Soit V une dérivée covariante sur fibré vectoriel Esur M ety : I - M
une courbe lisse. On définit un isomorphisme, pour tout s,7 € I,

Hss + Eysy = Eye
I (e) 1= X,

ou X € [, (Y E) avec X = e, le transport parallele //, de E, ) a E,, le long de y.

Evidemment, on a //s"t1 =/l,setl, = idEm). Donc, nous noterons //, := /Iy, pour faire
court.

Lemme 1.23. Le transport paralléle //;, constitue la dérivée covariante sous-jacent: Soit
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Xel(E),veT Mety:I— M telle que y(0) = v. Alors on a

d —1
VoX = | UL X,) € E, (12)

Dong, le transport paralléle dans E et la dérivée covariante sur E définissent la méme
structure.

1.1.3 Géométrie riemannienne Une métrique riemannienne est une structure supplé-
mentaire sur la variété M en équipant M avec un produit intérieur défini positif g sur
chaque espace tangent T, M en chaque point x € M. Cette métrique permet de définir
la longueur d’un chemin entre deux points, le volume vol, sur M, le plus important la
connexion de Levi-Civita qui donne naissance a une notion de courbure sur M.

Définition 1.24. Une metrique riemannienne g = (-,-), sur M est une section globale
lisse en tout point définie positive du fibré vectoriel des formes bilinéaires symétriques
de M. Une variété riemannienne est la paire (M, g), ou M est variété différentielle de la
dimension m :=dim M et g(-,-) = (-, "), est une métrique riemannienne sur M.

Définition 1.25. Par MetrM on note I'ensemble de toutes les métriques riemanniennes
différentielles sur M.

Localement, la métrique s’écrit, pour tout X = X'g, et Y =Y/0,

(XY, =X @0Y/(x)(0,0))

— i J
g, ax 8ij X ()Y’ (x),

ol g;; est la matrice g;;(x) := g(9;,9,)(x), i.e.
g= gl-jdxi ®dx’.

Exemple 1.26. L'exemple le plus simple d'une variété riemannienne est M = R"™ avec
sa métrique euclidienne g définie comme le produit scalaire sur chaque espace tangent
T,R™ = R™ pour tout x € M. En coordonnées cartésiennes, on a

g=5,dx'dx’ = Y dxldx' = Y (dx)’. (1.3)

1

Alors, la matrice dans ces coordonnées est juste g = ¢;;. Appliquer aux vecteurs

v,w e T, M, cela donne

Par consequent, g est le 2-champ tensoriel dont la valeur en chaque point est le produit
scalaire euclidien.

Définition 1.27 (Les isomorphismes musicaux). Une métrique riemannienne détermine
le produit scalaire sur chaque espace tangent T, M, qui est généralement dénoté par
(X,Y), :=g(X,Y) pour tout X,Y € T, M.
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Par le théoréme de représentation de Riesz A.2, g fournit un isomorphisme naturel entre
I'espace tangent et cotangent donné par X — (X, -),,

b
T™ 2T'M.
#

Plus précisément, on définit 'operateur bémol (flat operator)
be : TM - T*M,  X"'(¥) :=g(X,Y).
En coordonnées, on a
X" = (X'0,-), = 8(X'9;,) = g;;X'dx/ = X;dx/, ou X; :=g; X"

Puisque g est inversible, on définit 'operateur diése (sharp operator) analoguement par
#:TM > TM, o) = g, ),

en coordonnées locales I'on obtient

o = 8 (w;dx’) = (a)idxi, -)g = g(w,dx', ") = gija)jdj =00, olaw := gija)j,

et g”/ sont les composants de I'inverse du tenseur métrique, pour lesquels gl-jgjk = 5{‘.

La métrique euclidienne induit la mesure de volume vol, sur M (par rapport a la
métrique g), i.e. la mesure borélienne lisse vol, uniquement déterminée, telle que pour
chaque carte locale lisse ((x',...,x™),U) et tout ensemble borélien N c U, on a

vol,(N) = J y/det g(x)dx! A ... Adx™,
ol det g(x) est le déterminant de la matrice g;;(x) 1= g(9;,0,)(x).

Exemple 1.28. Par Exemple 1.26, on a g = 1. Donc sur M = R"™, on appelle forme volume
standard sur R” la forme définie en coordonnées cartesiennes (x!, ..., x™) par

vol =dx! A ... Adx™ =: dx! ... dx™,

olt dx = dx! ... dx™ est la mesure de Lebesgue sur R™.

Définition 1.29. (a) On appelle tenseur de torsion 7" de la connexion V I'application
T:T(MTM)xI'(TM) - I'(TM)
T(X,Y)=VyY - VyX —[X,Y],

qui est C®(M)-linéaire dans les deux variables et antisymmétrique en X et Y. La
torsion T peut donc étre vue comme un (1,2)-tenseur C*(M)-linéaire

T :0(TM) - Q'(M)

a valeurs dans les 1-forme, ou bien aussi comme une 2-forme T € Q*(M). La connex-
ion est dit symétrique ou a torsion nulle si sa torsion disparait, i.e. si

VyY -V, X =[X,Y]. (1.4)
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(b) Soit (M, g) est une variété riemannienne. La métrique g est parallele Vg =0, i.e. tous
champs du vecteurs X,Y, Z € [(TM) satisfont la régle du produit suivant

X(Y,2),=(VxY.Z) + (Y.VxZ),. (15)

Un exemple facile d'une connexion sur R” est la connexion euclidienne, donnée par
Vx(Y/0)) := (XY/)a,, (1.6)

i.e. VyY est juste un champ du vecteur dont les composantes sont les dérivées direction-
nelles ordinaires des composantes de Y dans la direction X. De plus, V a la propriété
agréable (1.5), qui peut étre facilement vérifiée en calculant en termes de base standard.
Le théoréme suivant montre que sur toute variété riemannienne, il existe naturellement
une connexion unique satisfaisant (1.5) et (1.4). Cela motive la définition de parallélisme
de g.

Théoréme 1.30 (Levi-Civita). Soit (M, g) une variété riemannienne. Alors il existe une unique
connexion V sur M, appelée connexion de Levi-Civita, telle que g est paralléle et symétrique.

Définition 1.31. Soit M une variété equipée avec une connexion linedire V. Pour tout
neQ(M)et Ael(TM) on définit Vn e Q!(M) d’'une 1-forme par

Vi(A, B)= V n(B) := A(B) — n(V,B) VB e (TM). (17)
En particulier, si n = d© f avec f € C®(M), on appelle

vdOf e M(T*M @ T*M)
V,dQr(B)=VdVf(A, B)= ABf - (V4B)f

le tenseur hessien de f.

Définition 1.32. Soit (M, g) une variété riemannienne et V la connexion de Levi-Civita
sur M. Pour f € C*(M) l'opérateur de Laplace-Beltrami A ,, est défini par

Ay f =t VdOf e C®(M).
Plus précisément, ca veut dire pour tous repéres orthonormals e, ... ,e,, de T,M, on a
m
Ay fx)=) vdVf(ee)).
i=1
Example 1.33. Soit M = R"™ avec sa métrique euclidienne g (cf. Exemple 1.26 et V la
connexion de Levi-Civita. En utilisant coordonnées locales il est bien connu que
V,0; =0, (1.8)
d’'ou

V,w o vw'o, =vuwe, = (U(wl), s v(w”)) . (1.9)
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De plus,
def (1.8)
VA0 £(0,.0) = 0,0,f —=Vy0,f = 0,0,f.
Donc, on retrouve I'opérateur laplacien euclidien
def

n n n
Ay /) =t VdOf =3 vdOr@.0)=> 0,0,f=) 9f.
i=1 i=1 i=1

1.1.4 Espace L? de formes différentielles, la codifférentielle & et le laplacien de Hodge-
de Rham, représentations métriques ded et 8§ On pose Qll_z(M) = I'Lz(/\lT*M) pour
I'espace de Hilbert séparable de classes d’équivalence a de 1-formes différentielles boréli-
ennes de carré sommable sur M, i.e. la complétion de CX(T*M) par rapport au produit
scalaire

1 .
(wl,w2>é) ‘= <C’)1’C’)2>Qt2(M,g) 1= JM (a)l(x),a)z(x))gvolg(dx) Vo, @, € Feo(T*M).

De fagon similaire, le produit scalaire g induit un produit scalaire g sur chaque produit
tenseur TM ® ... ® TM et donc sur chaque k-eme produit extérieur /\k T*M, et donc un
produit scalaire global

k
(ﬂ1,ﬂz>;) = ('11,112>Q’[2(M,g) = JM (m(x),nz(x))gvolg(dx) Vi1, € rcgo(/\k T* M),
La complétion est notée par Q’EZ(M) = FLNT* M.

Définition 1.34. On appelle codifférentielle I'opérateur unique
8 1 QM. > Q" \(M.g), n—87n VK20,
défini comme l'opérateur adjoint de le différentielle extérieure, i.e.
k+1
(m-8"m) = (d®nim),. v e Q@ M.g) Vi € & (M. ).
Définition 1.35. Le produit intérieur correspond a la contraction de « € Q¥(M) avec un
champ de vecteurs X € [(TM), i.e.
X—'g a(Xl, cee ’Xk—l) = a(X,Xl, e ’Xk—l)’ VX], cee ’Xk—l S r(TM),
et est une anti-dérivation:
X @Ap)=Xaa)Ap+(-Dan(X =p)  VYaeQ(M)VSeQM).
Pour la preuve de notre résultat principal dans le chapitre 3, on profitera de la repre-

sentation métrique suivante de différentielle exterieure et codifférentielle. Deux preuves
distinctes peuvent étre trouvées dans | , Lemma 2.39] ou [ , Lemma 4.3.41.

Proposition 1.36.  Soit (e;) est un repére local orthonormal et (€') son repére dual, i.e. €/ (e;) =
5{ . Soit V la connexion de Levi-Civita. Alors

d® = ¢ A v, et Sg() =—¢V,. (110)
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Finalement, on définit 'opérateur laplacien sur les sections de fibré de formes différen-
tielles sur une variété riemannienne.

Définition 1.37. On défini 'opérateur laplacien de Hodge-de Rham par
AP 1= 88TVd® 4 d* D" 1 k(M) — QK (M),
On note que Ai,k) est symmétrique et non-négatif sur Qceo(M).

Example 1.38. Utilisant Proposition 1.36, on trouve que

AV f=8d0f = —, 2V, dOf = —tr VEf  VfeC®(M).

1.1.5 Courbure sur une variété Le grand motif de géométrie différentielle est de pou-
voir étudier des espaces non-plats. Ainsi on introduit la courbure d’'une connexion R en
examinant les pieces antisymétriques de «hessien» d’'un champ de vecteur. La courbure
donne une mesure de détecter sur la facon dont notre espace est non-plat. Une variété
riemannienne est appelée plate si elle est localement isométrique a I'espace euclidien avec
le produit intérieur euclidien habituel. Il s’avere qu'un espace est plat si et seulement si
la courbure est zéro.

Définition 1.39. La courbure d’'une connexion V sur M est une application C*(M)-
linéaire
R:T(MTM)Q:T(TM)®:IN(TM) - I'(TM),

Etant anti-symmeétrique en (X,Y), la courbure est une 2-forme R € Q*(M,End TM).

Définition 1.40. On appelle courbure de Ricci de M I'application de trace

Ric : FI(TM) ®:T(TM) —» C®(M),
(X,Y) = Ric(X,Y) :=tr(Z » R(Z,Y)X).

c'est-a-dire, localement, Ric s’exprime comme

. ko _.
Ric(9;,0)) = tr (9 = R(94,9))9;) = ) Ry, = Ry;.
k
Dong, la courbure de Ricci est une mesure sur la fagon dont le volume d'un petit
morceau d'une boule géodésique difféere de son homologue euclidien.

Comme on le verra au §1.3.3 s’il est indispensable que la courbure de Ricci est bornée par
le bas pour assurer la complétude stochastique de variété. Il est également bien connu
que les bornes inférieures (locales) sur la courbure de Ricci sont un outil essentiel pour
les estimations de gradient, cf. [ ] pour une étude détaillée.

1.1.6 La technique de Bochner ou comment associer les opérateurs laplaciens? Soit 5
une k-forme différentielle, i.e. un tenseur d’ordre (0, k). Alors, Vx est un tenseur d’ordre
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0,k + 1) et V25 un tenseur d’ordre (0,k + 2). La trace est définie par la contraction
tensorielle

trVZn(e) := ) V’n(e,e;e)),
qui est indépendant du choix de repére orthonormal (e;).

Lemme 1.41. Pour tous repéres orthonormals (e;);cn, On peut decomposer

wVig=) (Ve,.Ve,n - Vve,.e,-”) Vi € QK(M).
i

La formule de Weitzenbock associe 'opérateur laplacien de Hodge-de Rham a la dérivée
covariante sur (M, g). Le laplacien de Bochner est défini via la connexion

E VT MQE

V T
O:=V*'V:[E)— [(T*M®E) —— (MM @ T"M ® E) — I'(E),

i.e. un opérateur de second ordre agissant sur les sections du fibré E. Le laplacien de
Bochner ne différe de I'opérateur Laplace-Beltrami que par un signe:

V*V = —tr V2.

Le Théoreme 1.42 suivant montre que les deux difféerent par un opérateur linéaire d’ordre
zéro n‘impliquant que la courbure.

Théoréme 1.42 (Formule de Weitzenbdck). Pour toutes k-formes différentielles n € Q(M),
ona

Ag=—-trVin- @, (1.11)

oi1 'endomorphisme de courbure de Weitzenbéck est donné par
m
R =- el; A (ex = R(epep)) (112)

k=1

pour tout repére orthonormal (e;); .

La proposition suivant une conséquence directe.

Proposition 1.43 (Formule de Bochner). Pour toute k-forme différentielle n, on a

1 ,
=58 Inl* = = (Agn,n)  + 1Vl + (' A (e; = Reei e, )

pour tout repére orthonormal (e;),,, et repére dual (€")

i<m*

Corollaire 1.44. Pour toutes 1-formes différentielles n € Q'(M), on a

1 2 _ 2 o
—5 4 Il == (Agn.n) , + 1Vnl” + Ric@r*, n).
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1.1.7 Longueur, application exponentielle, boule géodésique et Théoréme de Hopf-Rinow
Etant donné une courbe y : [a,b] — M, la longueur d’une courbe c! par morceaux, est
définie par

b
L(y, [a, b]) 3=J 17 gy (1 d2-

a
La longueur est invariante par reparamétrisation régulier et induit aussi une distance sur
M par

d(x,y) :=inf {L(y,[a,b]) : v : [a,b] » M, C' par morceaux y(a) = x, y(b) = y}

Dongc, avec cette distance, I'espace (M, d) devient un espace métrique.

Pour v € T, M, il existe une unique géodésique y, telle que y,(0) = x et de vecteur tan-
gent initial y/,(0) = v. On définit un sous-ensemble & c TM, le domaine de I'application
exponentielle, par

& :={veTM : y, définit sur une intervalle contenant [0, 1]} .

et encore une application différentiable, I’application exponentielle exp : & — M, par

exp(v) = 7,(D).
Pour tout x € M, la restriction de I'application exponentielle exp, est la restriction d’'exp
al'ensemble &, := &N T, M. Alors exp,(t) = y,(t) pour tout ¢ € R. Soit £ > 0. Si
exp, : B(0,e) — exp(B(0, ¢))
est un difféfomorphisme, alors
B(x,e) :=exp,(B(0,¢e)) ={ye M : d(x,y) <e}

est appelé la boule géodésique dans M avec centre x € M et de rayon r > 0.

Si M est (géodésiquement) compleéte, alors pour tout point x € M I'application exponen-
tielle exp, d’origine x est définie sur T, M. Par le théoréme de Hopf-Rinow [ , Theorem
1.7..] pour toutes M variétés riemanniennes connexes (sans bord) les propriétés suivantes
sont
équivalentes :

(i) M est un espace métrique complet (i.e. toutes suites de Cauchy convergent)
(i) M est (géodésiquement) complete

(iii) les parties fermées et bornées sont compactes

1.2 Operator Theory and Spectral Calculus

Next, we recall well-known notions and results for self-adjoint operators and their rela-
tion to sesquilinear forms in Hilbert spaces. The main tool to define the heat semigroup
on the Hilbert space of square-integrable Borel forms on M will be the Spectral Theo-
rem 1.50. A particularly important example is given by the Friedrichs realisation 1.62 giving
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a canonical self-adjoint extension of a non-negative densely defined symmetric operator.
We close this section by introducing and collecting necessary facts about smooth heat
kernels on metric vector bundles. For proofs, we refer the reader to Simon & Reed [ ;
; ] and Weidmann [ ; ; . We greatly benefited from Giineysu
[ ] and Kato’s lovely monograph [ ], in particular, [ , Chapter Six] gives a
detailed discussion about sesquilinear forms in Hilbert spaces and associated operators.

Let Z be a complex separable Hilbert space. The underlying scalar product (antilinear
in its first slot) will be denoted by (:,-) and the induced norm (as well as the induced
operator norm) is denoted by ||-||. The convergence in # is understood to be norm
convergence if not stated otherwise.

Given a linear operator T in Z, we denote by dom T c & its domain, by ranT c Z its
range, and by ker T c & its kernel.

An operator (T,domT) is called an extension of (S,domS), denoted S c T, if

domS cdomT and =S.

T|domS
An operator (T,dom T) is closed if the set
I7 :={(Tu) : uedomT c B x BB is closed in (B xR, |-} .

An operator (T,domT) is called closable if there exists a closed extension ('T', dom 'T') and

T c T. The closure (T,dom T) of T is the minimal closed extension of T.

1.21  Normal, adjoint, symmetric operators and operators semibounded from below
For any densely defined operator T, the adjoint (T*,dom T*) of T is defined as

dom(T*) :={Vue # * e H : (u',v) =(uTv) VvedomT}
and then T"u :=u".

A densely defined T is called symmetricif T c T* (i.e. T* is an extension of T), self-
adjoint if T = T* and normal if

domT=domT* and |Tull =|T*|| Yu € domT.

Hence, typical examples of normal operators include symmetric and self-adjoint opera-
tors.

An operator T is called semibounded (from below) if there is a constant C > 0 such
that T> -C, ie.
(Tu,u) > —C |lull>  VuedomT.
Using the polarisation equality, on complex Hilbert spaces, semibounded operators are
automatically symmetric.

If T is symmetric, then T is called essentially self-adjoint if T is self-adjoint.

Proposition 1.45. Let T be a bounded self-adjoint (normal) operator in a real (complex)
Hilbert space. Then

Tl = max |z].
zeo(T)
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Let (#1.(,")g,) and (F,(-,-) %,) be two Hilbert space (inner product space is suffi-
cient). An isometry A : &, — J#, is an isomorphism such that

(Av, Aw) gp, = (v, W) g, Yo,we #,.

A linear operator U : & — Z is called a partial isometry if the restriction U into the
orthogonal complement of ker U is an isometry, i.e.

IUx|l = Ix| Vx € (ker U)*.

The space (ker U)! is called initial space and the image ran U is called final space. In other
words, a partial isometry is an isometry between its initial space and final space.

Example 1.46. (a) Every isometry is partial isometries such that kerU = {0}. In particu-
lar, every unitary operator is a partial isometry.

(b) Any orthogonal projection P : # — Z is one with common initial and final sub-
space.

Partial isometries play in important rdle in the polar decomposition of linear operators
which is reflected in the following Theorem. We will make use of this idea to define suit-
able bounded operators in the proof of the decomposition theorem, Lemma 3.36, needed
to prove our Main Result in § 3.

Lemma 1.47. (a) Every positive self-adjoint operator T has exactly one positive self-adjoint
square root.

(b) Every densely defined closed operator T : | — # , can be written in its polar decom-
position T = U ||T|| with ||T|| = (T*T)"?> and some partial isometry U with initial space
ran ||T|| and final space ranT. Moreover, dom ||T|| = domT and |||T|x|| = ||T|| for all
x € domT, i.e. T and ||T| are metrically equivalent.

1.2.2 Schatten class of operators, trace class operators and Hilbert-Schmidt operators
Let 7, &, be complex separable Hilbert spaces.

The linear space of bounded linear operators &, — #, is denoted by & (# |, # ). If
H =K =H, wesimply write L(H) := L(H, 7).

For any orthonormal basis (e¢;) of #, we say that K € Z(&’) is a Hilbert-Schmidt
operator if the Hilbert-Schmidt norm ||K||ys is finite, i.e. K|} 1= Y, ||Ke,-||2 < .

For any ¢ € [1, ), an operator K € & (|, #,) is a Schatten operator of class g,
denoted fFU(F |, I »), if tr |K*K|q < o, i.e. if for arbitrary orthonormal sequences (¢;)
in &, and (y;) in &, we have Y, (Ko, y;)|" < co. An operator K € Z(F# . ,) is
compact, denoted K € (& |, #,), if for every orthonormal sequence (¢;) in &, and
(y;) in #, we have (Kg;, ;) "~ 0. We write FN(FH,) = F(FH,, H) for short.

Example 1.48. (i) The operator class #' is called the trace class.

(i) The operator class # is called the Hilbert-Schmidt class and every Hilbert-Schmidt
operator is compact.
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Given two metric vector bundles E, E over a manifold M and a bounded operator
K e Z(I2(E),[2(E))
such that there exists a corresponding jointly smooth integral kernel k(x, y) of K
M XM 3 (x,9) = k(x,y) € Hom ( E,. E, ).

the uniquely determined map such that we have

Ka(x) = J k(x, y)a(y) vol,(dy).
M

Then K is Hilbert-Schmidyt, if
” |k(x, y)|2 vol, (dx) vol,(dy) < 0.
MxM

It is well-known [ ] that the product of two Hilbert-Schmidt operators is trace class,
and the product of a bounded operator and a trace class operator (resp. Hilbert-Schmidt
operator) is again trace class (resp. Hilbert-Schmidt).

1.2.3 Spectrum, spectral theorem and spectral calculus The spectral calculus or Borel
functional calculus is a rigorous way to apply an arbitrary Borel function to a normal (self-
adjoint) operator. By the Spectral Theorem 1.50, for any normal (self-adjoint) operator on
a Hilbert space # we find a representation of a linear operator in form of an integral
with respect to a certain measure, the spectral measure (the spectral resolution).

The resolvent set o(T) of T is the set of all regular values of T, i.e. of all z € C such that
T — z is invertible as a linear map domT — # and bounded as a linear operator from
FH — F.fTis closed and (T—2z)"! is invertible, then (T —z)~! is bounded by the closed
graph theorem. The complement of the resolvent set

o(T) :=C\ o(T)

is the spectrum of T. As the resolvent set of closed operators are open, the spectrum of
a closed operator is always closed.

Given a set Q, c-algebra & and Hilbert space 7, we define the spectral measure (or
projection-valued measure (PVM)) as the s-additive mapping E : & — Z such that for
all F € &, E(F) is idempotent and self-adjoint and such that E(@) = 0 and E(Q) = I. In
particular, E is monotone, i.e. for F;, F, € & with F| C F, it follows E(F))# c E(F,)#,
and for two disjoint sets the corresponding spectral measures are orthogonal.

Example 1.49. Let E be a spectral measure on (Q, &, #). Let x,y € # be fixed. Then
E,., with

E., = (xE(F)), VFeZ, (113)

is a s-additive, complex measure on (Q, %) and ||E, || < lIx]l llyll. In particular, for x = y
we get that E, | is a classical measure.
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Theorem 1.50 (Spectral theorem). Let T € L(H’) be a normal operator. Then there exists
a uniquely determined spectral measure on the Borel-c-algebra & of (T), such that

(i) T can be writtenas T = L:(T) AE(dA), and moreover

f(M= J F(DEWED VS e B((T)). (1.14)

o(T)

(i) If S € o(T) is open and non-empty, then E(S) # 0, i.e. supp E = o(T).

The mapping
BQ) —» LK)
7o =] s

o(T)

(O N

is called Borel functional calculus.

Analogously to the theory of probability measures and their distribution functions, we
may define the spectral family viaE;, : R - &(#), E; := E(-, 4] (4 € R). Then E, is
an orthogonal projection, monotone, right-continuous, with E, —5 0and E, —5 1, and

supp{E; : AeR} ={1€R:E; #0,E, #1}.

Moreover, if the support of (E;),cr is compact, we may also define an integral uniquely
determined by the relation

<<J f(ﬁ)dE,1> X, y> = J fA)d(E;x.y). Vx,yeH,

where the integral on the righthand side is defined in the Riemann-Stieltjes sense by
common approximation arguments. Thus

J JF(DdE; = LR J(DEA).

Example 1.51. A spectral resolution P on 7 isa map P : R —» &£ (&) such that
(i) P(4) is an orthogonal projection, i.e. P(1) = P(4)* and P(1)% = P(A) (1eR)
(i) P is monotone, i.e. for 4, <4, = ranP(4,) C ranP(4,)
(iii) P is right-continuous (in the strong topology of & (#))
By definition, for every x € Z, the function
A (P(A)x, x) = IP()x[1* =2 p,(A). (1.15)

is right-continuous and increasing. Constructing a Riemann-Stieljes integral this induces
a Borel measure on R, denoted (P(dA)f, f) with total mass

(P(R)x, x) = ||x]|*.

Given P and further a Borel function f : R — C, the set

Dp, := {x eI J Lf (D)2 (PdA)x, x) < oo}
R
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is a dense linear subspace of #, and defines a linear operator f(P) by dom f(P) := Dp,
in &, where (f(P)x, y) = jf(/l)px,y(dll) and p, ,, is defined by complex polarisation of the
identity (1.15).

In particular, such an operator has the following properties: Let f,g : R — C be Borel
functions, then

(i) the operator f(P) is normal with f(P)* = 7). In particular,

f(P)is self-adjoint = f is real-valued

(i) we get || f(P)[| < supg | f(P)] € [0, 0]

(iii) if £ > —K for some constant K > 0, then f(P) is semibounded below with bound
—-K,ie. f(P)>-K
(iv) f(P)+g(P)c (f +g)(P) with dom(f(P)+ g(P)) = dom((| f| + |g)(P)
(v) f(P)g(P) c (f + g)(P) with dom(f(P)g(P)) = dom((fg)(P)) N dom g(P)
(vi) if g is bounded, we get f(P) + g(P) = (f + g)(P) and f(P)g(P) = (fg)(P)
(vii) for every x € dom f(P), we have

1 P2 = JR D (PR, x)

By the Spectral Theorem 1.50, for every self-adjoint operator H in 7 there is exactly one
spectral resolution Py, called spectral resolution of H, such that H = idR (Py). By (1.14), Py
is concentrated on the spectrum, i.e. f(Py) = (1,)/)(Py) and we get (fg)(Py) = VAGHTS
If f is also continuous, then o(f(Py)) = f(c(H)).

A prominent example is the strongly continuous (C,) unitary semigroup (e""T)teR of
bounded operators defined in the following Theorem.

Theorem 1.52 (Stone’s theorem). Let T be a self-adjoint operator in a complex Hilbert space
. Then

(Ul)teR = (e_itT)teR

defines a (C,) unitary, i.e. UU* = U*U = [, semigroup. Its infinitesimal generator is given by
—iT. For every x € dom T, w(t) = exp(—itT)x is the uniquely determined solution to the initial
value problem

%w(z) = —iTy(®). yO)=x (eR)

1.2.4 Sesquilinear forms in Hilbert spaces We introduce some facts about (possibly
unbounded) sesquilinear forms in Hilbert spaces. On a finite-dimensional complex inner
product space, the notion of sesquilinear form and that of a linear operator coincide
and symmetric forms correspond to symmetric operators. The theory can be extended
to infinite-dimensional Hilbert spaces, although we restrict ourselves to bounded forms
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and bounded operators. A further generalisation is given for non-symmetric forms and
operators (under certain restrictions) by using the closed theory connecting semibounded
symmetric forms and semibounded self-adjoint operators. For a detailed review of what
follows, we refer the reader to Kato’s monograph [ , Chapter Six] and [ 1.

Let & be a complex separable Hilbert space. A sesquilinear form q on # is a map
q : domqxdomq — C,

where domq c # is a linear subspace, the domain of definition of g, such that q is
anti-linear in the first and linear in the second slot.

The quadratic form q associated to the sesquilinear form is the map
q : domq > a~ q(a,a).

There is a one-to-one mapping between a sesquilinear form and a quadratic form. More-
over from a quadratic form q(-) we recover the underlying sesquilinear form by polarisa-
tion:

q(a,b) = % <Q(a +b)—q(a—b)+ % (q(a +ib) —q(a — ib))) :

In what follows, let g and q" be sesquilinear forms on #.

The sum q+q’ of g and q’ is the sesquilinear form with its domain of definition given
by dom(q + q') = domgndomq’.

A form q’ is called extension of q, denoted q c ¢/, if domq c domq’ and both forms
coincide on domgq. A form q is called symmetric, if q(a,a) = q(a, a)*, and semibounded
(from below), denoted q > —C, if there is a constant C > 0 such that

q(a,a) = -C llall? VYa € domgq.
Every semibounded form is symmetric by polarisation.

. . q . .
Given a sequence (a,) c domg and a € dom g, then we write a — 0, if g, — a in # and

ntoo
q(a, - a,.a, —a,) — 0 as n,m — oo.
A form q is closed, if
a, L a = a € domgq.

A semibounded form q is closed, if and only if, for some (hence every) C > 0 with q > —-C
the induced scalar product on domq given by

(a, b)q,C :=(1+C){a,b)+q(a,b)
turns dom q into a Hilbert space. The form q is called closable if it has a closed extension.
If q is closed, then a linear subspace D c domq is called core of q if q|D =q.
Example 1.53. Let & be a Hilbert space and T : domT — # a symmetric operator such
that there is a K > 0 such that (Ta,a) > —K ||a||* for all u € #. Then the form
q:domTxdomT - C, q(a,b)=(Ta,b)

is closable. Its closure is denoted by qr.
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Definition 1.54. Let g be symmetric. If domq c domq’, then q’ is called g-bounded with
bound < 1, if there are constants § € [0,1), L € [0, o) such that

|q’(a, a)| < L ||al)? + 8q(a, a) Va € domgq. (1.16)

The form q’ is called infinitesimally g-bounded, if for every y € [0, ) there exists a
constant L = L(y) € [0, o0) such that (1.16) holds.

Proposition 1.55. Let q be a closed form on Z. Then

domT = {a €edomgq : 3c € # Vb € domq : q(a,b) = (a,c)}

Ta=c

defines a lower semi-bounded, self-adjoint operator on # and q = qt. The operator T is called
the generator of q.

The KLMN Theorem, named after Kato, Lions, Lax, Milgram and Nelson, is a famous
result from perturbation theory. It may be seen as the «quadratic form version» of the
Kato-Rellich theorem.

Theorem 1.56 (KLMN). Let q be semibounded and closed, and let q' be symmetric and
g-bounded with bound < 1. Then q + q’ is semibounded and closed on its natural domain
domqndomgq’ = domgq. Moreover, every form core of q is also one of q + q’, and for every
constant K > 0 with q > —K and every L, as in (1.16) we get the explicit lower bound

q+q >—-(1-8K - L.
The next definition reflects the connection between forms and self-adjoint operators.

Definition 1.57. Given a self-adjoint operator T in &, the densely defined and symmetric
sesquilinear form gt in & given by

domgy :=dom \/?

ar(a.b) := (VTa, VTb)

is called the form associated to T.

The fundamental relation between densely defined, semibounded, closed forms and
semibounded self-adjoint operators is reflected in the following two Theorems.

Theorem 1.58. For every self-adjoint semibounded operator T in €, the form qy is densely de-
fined, semibounded and closed. Conversely, for every densely defined, closed and semibounded
sesquilinear form q in 7, there is precisely one self-adjoint semibounded operator T, in #
such that q = qr,- The operator T is called the operator associated with g.

Theorem 1.59. Let q be densely defined, closed and semibounded. Then
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(i) Tq is the uniquely determined self-adjoint and semibounded operator in # such that
dom T, c dom q and

(Tqa.a) =q(a,b)  Va e domgq, Vb € domg,.

(ii) dom T, is a core of q and some a € domq is in dom Ty if and only if, there is b € & and
a core D of q with

q(a,c) = (b,c) Ve € D,

and then Tqa=».

(iii) We have

(iv) and

mino(Ty) = inf {q(a,a) : a €domaq, || /]| =1}
= inf {(Tqa,a> :a€domgq, ||la] = 1}.

Example 1.60. The quadratic form g associated to a self-adjoint operator T. The form
domain is given by

domgqy :=dom+/|T| = {(pe%’ o, |T| (p)=J|x|E(p(dx)<oo},

where E, denotes the spectral measure associated to T and ¢. The quadratic form is
given by

ar =(p.Te) = J AE,(dA).

Notation 1.61. If q,q’ are symmetric, we write q > q’, if and only if, dom q c domq’ and
(a,a) > q'(a,a) for all a € dom q.

Example 1.62 (Friedrich realisation). Let T be a positive symmetric operator and
q(a,b) = (a,Th) for a,b € domT. Then q is a closable quadratic form and its closure
g is the quadratic form of a unique self-adjoint operator T. T is a positive extension of
T and the lower bound of its spectrum is the lower bound of q. Further, T is the only
self-adjoint extension of T whose domain is contained in the form domain of q.

For a Riemmanian manifold M and = : E — M a vector bundle over M which is en-
dowed with a Riemannian connection, let [ 2(E) be the Hilbert space of square-integrable
sections of E with inner product

<a, b>rL2 (E) = J (a, b)Ex VOl(dX),
M
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where (-,-)g_is the corresponding fibre norm (x € M). The operator [J = tr V2 is non-
positive and formally self-adjoint, i.e., for all compactly supported a, b € e (E),

(Oa, b)r , gy = —(Va. Vb)r , tmeE) -
By the Weitzenbdck formula 142, we want to construct the canonical self-adjoint ex-

tension of O — &, where & € I(TM) is assumed to be symmetric: We suppose that
a- 92)|r (E) is bounded from above, i.e.

<(D - .%)a, a)FLz(E)

Ag(R) = sup < 0.
0#acl,(E) (@, @)r (k)
We define &(a,b) := —(Va, Vb)rl_z(E) —(ZRa, b>FL2(E) for all a,b € dom& :=T.(E). Then

for any ¢ > Ay(X),
q(a,b) 1= —&(a,b) + ¢ (a.b)r (k)

is a positive quadratic form on dom &. Completing dom & := dom &" and extending & by
continuity to a closed form g on dom &, we get

E(a,b) = (ma, b>|_ -

for some self-adjoint operator (I — &) with form domain dom & c I 2(E). This operator
is called Friedrichs extension of (O — 3"2)|r (E)

1.2.5 Smooth heat kernels on vector bundles In this subsection, let E — M be a
smooth metric vector bundle over M and vol the volume measure of M. Moreover,
let H be an elliptic, formally self-adjoint and semibounded operator and H its Friedrich
realisation. The heat semigroup

(e_5ﬁ> c F(L(E))

is defined by the Spectral Theorem 1.50. A heat semigroup of this kind is always induced
by a jointly smooth heat kernel on M reflected in the following Theorem. For a much
more general setting cf. e.g. [ , Chapter I1].

Theorem 1.63. Let H be elliptic and formally self-adjoint and H its Friedrich realisation in
Z ([ 2(E)). Then:

(i) There is a unique smooth map
—sH
(0,00)x M X M 3 (s,x,y) = e (x,y) € Hom(E,, E,)

the heat kernel of H, such that for all s > 0, a € M2(E)andae. x e M

e*Ha(x) = JM e~*H(x, y)a(y) vol(dy).
(ii) For any a € [ 2(E), the section
0,00) x M > (s,x) > a(s,x) := J e_Sﬁ(x, ya(y)vol(dy) € E,
is smooth and we have :

d,a(s, x) = —ﬁa(s,x), Vs>0Vxe M.



24 - Chapter1 x Eléments d’Analyse Géométrique and Calcul Stochastique

(iii) Forall s > 0 and x € M, we get
J ‘e'Sﬁ(x, z)‘ vol(dz) < oo.
M

(iv) Forall s> 0and x,y € M, we get adjoints of finite-dimensional operators
M0 = e Mx, y)
(v) Forall s,t >0, x,y € M, we get the Chapman-Kolmogorov equations

e_(’”)ﬁ(x, y) = J e"ﬁ(x, z)e_Sﬁ(z, y) vol(dz).
M

Example 1.64 (continued from Example 1.62). Using the Spectral Theorem 1.50 we define
the semigroup on M 2(E) by

;- ,

Pa=e2 Va e lMNewo (E).

By Theorem 1.63, for all a € [ 2(E),
(@) Ifae (@O-R), then a € M (E).

(b) The map (s, x) = P,a(x) is smooth on (0, 0)x M, for a € I« (E) on [0, o). In addition,
there is a kernel (s, x, y) = p,(x,y) € Hom(E,, E,) which is smooth on (0, 0) x M x M
such that

Pia(x) = J ps(x, y)a(y) vol(dy)
M
for the C®-version of Pa.

Remark 1.65. If the manifold M is complete, then (- .%)|r () 1 essentially self-adjoint.

1.3 Stochastic Processes and Brownian Motion on Manifolds

Finally, we recall notions from the theory of probability theory, stochastic processes and
stochastic calculus on manifolds. We will see that Brownian motion is an M-valued
process that is naturally associated to Laplace-Beltrami operator %AM on M, as solution
to the martingale problem and as a stochastic flow of that operator. Thus, Brownian
motion will be a local object by definition. However, its stochastic behaviour determines
global aspects of the topology and geometry of the manifold.

A brief and concise overview to basic notations of stochastic differential geometry are
given in [ . Moreover we refer the reader to the original work by Emery [ |
and Elworthy: a lecture given at St. Flour [ ] and the monograph [ LI )
Chapter 7] provides a systematic treatment of the modern differential geometry necessary
to understand the notion of stochastic analysis on manifolds. [ ] treats the subject
with less generality and requires a less extensive background in differential geometry.

Let (R, &,P) be a probability space. For a sub-c-algebra & c &, denote by ¢(&) the
smallest c-algebra containing . A filtration (&), is a family of sub-c-algebras & such
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that &, c &, for all s <t. We set

Foo=[)%,  and 9w:=a(Uy,>.

s>t >0

N

and say the filtration is right-continuous if &,, = &, for all t > 0. We call (%)),
complete if & contains all subsets of P-null sets i.e.

{(McQ, ANC& : M c N, P(N)=0} c &,.

We always suppose that &, satisfies the usual conditions, i.e. &, is right-continuous and
complete. A random variable 7 : Q — [0, oo] is called stopping time if {r <t} € &, for
allz>0.

An E-valued stochastic process (X,), is a family of random variables X, : Q — E, for
all t > 0. The canonical filtration of a process (X,),5 is given by F = 6(X;,s <1). A
stochastic process is adapted to the filtration (¥, if X, € &, i.e. X, is F ,-measurable

for all 7 > 0 - which is equivalent to saying that FX c &, for all ¢ > 0. If not stated

otherwise, we always consider the canonical filtration, ie. &F, = F.X.

Remark 1.66. Note that we use the different but common notations for the sample
space Q and the differential k-forms Q¥(M) (cf. Definition 1.9).

A stochastic process (X,),5 is called a martingale if it is adapted to the filtration (&),
and X, € L!(P) for all 7 > 0 such that'

EX, | F)=X, Vs<t

A continuous local martingale is an adapted continuous process X for which there exists
a sequence of stopping times (c,),5( such that ¢, 1 o a.s. and for every n > 0, the process
Xf”ﬂ{6n>0} is a (true) martingale. Equality modulo continuous local martingales will be

denoted by = ie X =Y ifand only if X —Y is a continuous local martingale.

A process X has finite variation if it is adapted and each path @ - X,() is of bounded
variation over every finite time interval as.

1.3.1 Semimartingales on a manifold M Let §(E) be the family of all continuous semi-
martingales on a set E, i.e.

S=MDY,, (117)

where 4 is the family of all continuous local martingales and 77, the family of all
continuous finite variation processes starting at zero (a.s.). Such a unique (canonical)
decomposition always exists, cf. [ , p- 131 or [ , P- 358]. We sometimes suppress
the adjective continuous.

'A short recap of the conditional expectation E(X, | &,) of X, given &, and martingales can be found
in Appendix A.1.
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Definition 1.67. Let X be a continuous adapted process taking values in a manifold M.
Then X is a semimartingale on M, denoted X € &(M), if the composition

f(X) = (f(X,)),>0 VfeC®(M)
is a real-valued semimartingale.
Definition 1.68. For X,Y € S(M), let
X odY := XdY + %[X,Y] (118)

be the Stratonovich differential. Here XdY denotes the classical 1td differential and
d[X,Y] =dXdY differential of quadratic covariation of X and Y. The integral

JXodY = JXdY+%[X,Y]
is called the Stratonovich integral of X with respect to Y.

Formula (1.18) gives the relation between the Stratonovich integral and the usual 1td
integral. The Stratonovich differential is associative, i.e. X o (Y cdZ) = (XY)~dZ and
respects the product rule, i.e.

d(XY)= X -dY +Y «dX. (119)

Proof. By It&’s formula,
d(XY) = XdY + YdX +dXdY = X «dY + Y = dX. ]
Example 1.69. Let X € S(R™) and f € C}(R™). Then
df(X) =D, f(X)edX' = (Vf(X),dX).
Hence, the Stratonovich integral obeys the chain rule of classical analysis, so it is more

common to work with the Stratonovich integral in the manifold setting.

1.3.2 Diffusions as (stochastic) flows to a PDO and Brownian motion as a flow to %AM
In the classical theory, there is a dynamical point of view to vector fields on manifolds:
It associates to each vector field a dynamical system given by the flow of the vector field.

Given vector field A on M, we consider the smooth curve ¢t = x(¢) in M via
x0)=x, and %)= AX(®).

For each A € I(TM), the corresponding flow curve (or integral curve) to A at x,
t— @,(x) 1= x(2), is given by

d
—@; = Ap
dr " ’ (120)

P =1idy .
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For any f € C2°(M), it follows that

d
Ef (p;) = Af(o,)

(1.21)
floo) =1,
by the very definition of the exterior derivative 1.13 (d) and the chain rule
d . (120) 113 (d)
Ef((p’) =(df)y, @ = df),Ap(t) = Af(e). (1.22)

By integrating the last equation, we may rewrite (1.21) as
t
flo(x) — f(x) - L Af(py(x))ds=0 Vi>0Vxe M.

A natural question to ask is whether there exists a flow to a second order differential
operator?

Let A be a second order partial differential operator (PDO) on M, e.g. of the form

A=) A7
i=1
where A,,...., A, e [(TM) (r e N) and Al.zf 1= A;(A ).

Example 1.70. The Laplace operator Ag» on M = R", is defined as the sum of all the
unmixed second partial derivatives in the Cartesian coordinates

m m
Agn=)Y 07 =) 0,0,
i=1 i=1
ie. Ag:=0and A, =0, fori=1,...,m.

Definition 1.71 (Stochastic Flow Process). Let (Q, %, (F,)0.P) be a filtered probability
space. A continuous adapted (stochastic) process

X, (x) = (X,(0) 50
taking values in M is called flow process to A (A-diffusion) starting in X(x) = x if
t
Ntf(X) =X 0) - f(x) - JO(Af)(Xs(X))dS VfeCl(M)Vi=0 (1.23)

is a martingale, i.e.

t
E% (f(X,(x)) — f(X, () — J (Af)(Xr(x))dr> =0 Vs<r

\ J/
v

= N/ (0-N{ ()

Note that, by definition, flow processes to a second order PDO depend on an additional
random parameter w € Q. In contrast to the classical case, the defining equation (1.22) for
flow curves only holds under conditional expectations, i.e. equation (1.22) translates to
the martingale property (1.23). The theory of stochastic flows has been studied in detail
by Kunita [ 1
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As a flow to a vector field, a flow process on a manifold may only be defined up to
maximal, possibly finite, lifetime ¢, i.e.

(¢ <} C {13{?)(, =coin M :=MuU {oo}} as.

Then f(X) is well-defined as a process globally in R, for all f € C.(R™) where M is the
one-point compactification (with convention f(e0) :=0). So, in general,

fX) = (X)), VS ECM)
is only a semimartingale with lifetime ¢.

An important example is the A-diffusion generated by %AM, namely, a Brownian motion
X onM.

Definition 1.72 (Brownian motion on (M, g)). Let (M, g) be a Riemannian manifold and
X an adapted M-valued process with maximal lifetime {. The process X is a Brownian
motion on (M, g) if, for every f € C*(M), the real process

t

£OX) - %J Ay fXd, 1< C(),

0
is a local martingale (with lifetime ¢). The family of all Brownian motions on (M, g) will
be denoted by BM(M, g).

Remark 1.73. Note that A, depends on the Riemannian metric, so a BM(M, g) is locally
controlled by the Riemannian metric and thus a local object by definition. However,
its stochastic behaviour determines global aspects of the topology and geometry of the
manifold.

1.3.3 Stochastic completeness As we saw in the previous Subsection { 1.3.2, Brownian
motion may explode in finite time. We therefore make the following definition.

Definition 1.74. We say that a Riemannian manifold (M, g) is stochastically complete if
¢{(x) =0 as. forall x e M.

Equivalently M is stochastically complete if and only if the (minimal) heat kernel is
conservative, i.e. characterised by the parabolic condition on the heat kernel that

[ p,(x,y)vol(dy) =1 Vi>0Vxe M.
M

Note that (geodesically) completeness is not sufficient for the stochastically complete-
ness of a Riemannian manifold (M, g). If a Riemannian manifold (M, g) is uniformly com-
plete, then (M, g) is stochastically complete (cf. [ , Theorem 15.2]). A very important
and direct consequence is

Theorem 1.75. Any compact Riemannian manifold is stochastically complete.

Finally, we point out two sufficient conditions to guarantee stochastic completeness.
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Lemma 1.76 (Yau, [ ). A complete Riemannian manifold is stochastically complete if its
Ricci curvature is bounded from below.

Lemma 1.77 (Grigor'yan, [ ). Let (M,g) be a complete Riemannian manifold. Let
B(xg, r) be the geodesic ball centred at some point x, € M of metric radius r. If

J°° rdr — oo
o logvol(B(xy,r))

then (M, g) is stochastically complete.

1.3.4 Stochastic differential equations (SDEs) on a manifold M A flow process may
only have a finite lifetime . Then ¢ is a predictable stopping time and X defined on
[0,¢) such that on {{ < oo} holds: X, 2%, o in the one-point compactification of M at
t / . In this case there exists a continuous extension (X,),s, with values in M by setting
X, (@) := oo fort > {(w) and f(o0) := 0 by definition, f € C(M).

Definition 1.78. The pair (A, Z) is called a stochastic differential equation on a manifold
M (SDE on M) if
(i) Z is a continuous semimartingale with values in a finite dimensional real vector
space E,
(i) A: M x E - TM is a vector bundle homomorphism on M.
We will denote the SDE (A, Z) as dX = A(X) odZ. Herein, «e» denotes the Stratonovich
circle.

More precisely, condition (ii) constitutes the following commutative diagramme

(x,) ———— A(x)e

MxE —*4 ™

M——M
ldM

and for every x € M the map A(x) : E — T,M is linear on each fibre; in particular
A(-)e € I(TM) for e € E. The semimartingale Z = (Z,), is defined on a standard
filtrated probability space (Q, &, (F,);50. P) and we can write Z = Z'e;, where (¢;), ¢, i
any basis for E and Z' are real semimartingales.

Definition 1.79. Let (A,Z) be an SDE and x5 : @ — M an %,-measurable random
variable. A solution to the stochastic differential equation

dX = A(X)dZ (1.24)

with initial condition X, = x, is a continuous adapted process (X,),, with values in
M such that for every test function f € CX(M) the composed process f(X) is a real
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semimartingale and satisfies the integral equation

T

S(X,) = f(xg)+ L df)xyA(X)-dZ, P-as, (1.25)

for every stopping time = with 0 < 7 < {. A solution to (1.24) with maximal lifetime is
called maximal solution of the SDE (1.24); then we say the SDE is nonexplosive. In this
case (if necessary after passing over to the extension of f on M and X on [0, c0) x Q) up
to indistinguishability

t

f(X) = fXp)+ L(df)XA(X) °dZ, t20. (1.26)

More precisely, maximal lifetime of the continuous M-valued process X means that
{§<oo}c{li/rréXt=ooin M} P—as. (1.27)
t

A solution to (1.24) is a semimartingale on M by definition (in the sense of L. Schwartzm
cf. Definition 1.67): Every adapted M-valued process X is a semimartingale on M if for
every f € CX(M) the composition f(X) is a real-valued semimartingale. Mind that for
the maximal lifetime of X the semimartingale f(X) is well-defined on the hole line [0, ).
Moreover, the compositions f(X) with smooth functions f are real semimartingales but,
in general, only defined up to the lifetime of X.

For every x € M the composition

A) @/,
T M

X

E R

is linear by definition. Therefore, if we write the semimartingale Z with a fixed basis
(e)1<i<r fOr E as Z = Z'e;, we get

df)xyAX)odZ = (df)y A(X)e; o dZ".

The bundle homomorphism A is naturally determined through the vector fields
A; 1= A()e; for i =1,...,r. Thus, we can symbolically write (1.24) as

dX = A,(X)-dZ', (1.28)
which should be read, for every test function f € C2°(M), as
df (X) = @df)xA,(X)dZ".
But (df),A;(x) = (A4, f)(x) so that the equation above is equal to
df(X) = (A, f)(X)°dZ', [ eCX(M).

Conversely, for a fixed basis (e;)| . for E and arbitrary vector fields A,,..., A, € [(TM)
on M there is a unique bundle homomorphism A eI'(Hom(M x E,TM)) with
A; := A(-)e;. Thus, the equations (1.24) and (1.28) are equivalent. Consequently, with-
out loss of generality we can assume E = R"™.
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Example 1.80. let E =R™!and Z = (1, Z', ..., Z™), where Z' are real semimartingales.
Let Ay, Ay, ..., A,, € T(TM) be given. Then (1.28) reads as

dX = Ay(X)dt + A;(X) - dZ'. (1.29)
Thus, the composition f(X) is a real semimartingale, for every f € CX®(M), and
1 .
df(X) = (Ap/)(X)dt + (A, fHX)AZ" + 5d ((4,.N(x))dZ’,
by the conversion formula (1.18) from Stratonovich to 1td differentials. Since’
d(A; £ (X)) = (AgA S )(X)dE + ) (A A, f)(X)edZ/,

J=T1

we get d (A, £)(X))dZ" = Y I |(A;A, /) X)dZ/dZ', ie.
df (X) = (Apf)(X)dt + %(AiA,f)(X)d[Z", Z)+ (A N)(X)dZ'.

In particular, if we set Z = (z, B!, ..., B™) where B is an m-dimensional Brownian motion
we get, for every f € CZ°(M),
1 w ;
df(X) = (Ap/H(X)dr + 5 Z(A%f)(X)dt + (A; /)(X)dB',

i=1
where we used dB'dB’/ = §;;d. But this means for A = A + % S A?
df(X) — (Af)(X)dr = d(martingale).
Corollary 1.81.  Every maximal solution to the SDE
dX = Ay(X)dt + A,(X) o dB’, Xo=xeM
is a flow process X staring in x with generator A = A, + % S A2

Theorem 1.82 (Existence and Uniqueness). Let (A, Z) be an SDE on M and x, an & -mea-
surable random variable. Then there exists a unique maximal solution X of (1.24) with lifetime
¢ > 0 P-as. and initial condition X, = x,. Uniqueness holds in the following sense: For any
other solution (Y}),., of (1.24) with the same initial condition, it holds (X,),., = Y P-as. for
every t < ¢.

The proof of Theorem 1.82 is based on the famous Whitney Embedding Theorem (cf. e.g.
[ , Theorem 6.15]) that every smooth m-manifold (with or without boundary) admits
a proper smooth embedding into R>"*! considered as a closed submanifold.

The idea is simple. Taking such a (Whitney) embedding i, we can identify M with its
image M — (M) c R¥™*!so that it is a submanifold of R2™*!, Using a C*™ partition of
unity to extend A to a map on R x R?™*! and see that if X is a solution to (1.24) on
M with X, = x,, then X :=10 X is a solution to the new SDE dX = A(X)+dZ on R>"*!

2Note that i is fixed in this line.
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with X, = 10 x,. Therefore, also uniqueness follows. The main problem is to show that
{r<¢} c {X, € M} holds for every solution X. This approach is often called extrinsic,
since it relies on embedding the manifold in the ambient Euclidean space by a proper
extension.

A solution X of (1.24) on M is, by definition, an M-valued semimartingale in the sense

that all compositions f(X) with f € C®(M) are continuous real semimartingales on [0, {)
(with ¢ the lifetime of X). The converse is also true:

Theorem 1.83 (M-valued semimartingales as solutions of SDEs). Every semimartingale
on a manifold can be written as the solution to (1.24).

1.3.5 T-operators and quadratic variation on a manifold M

Definition 1.84. LetL : C®(M) — C®(M) be linear. The I"-operator associated to L (or
'operator carré du champ) is a bilinear map

I': C®°(M) Xc C®(M) - C®(M)
M(f.8) i= 5 (L(f9) - flg - gL).

Example 1.85. Let L be a second order PDO on M without constant term (i.e. L1 = 0).
In a local chart (x,U) for L the operator L can be written as

where CJ(M) := {f € C*(M) : supp f c U}. Then

r(f.g)=d"0,/)0,8) Vf.ge€CHM).
In the special case of M = R" and L = Agn, we find ['(f, f) = IVFI>%

Remark 1.86. Let L be a second order PDO. Then
MNf,e)=0 Vf,geC®WM) = L e [(TM), i.e. is of first order.

For example,

r r

L=4y+) A2 = T(f.9)=) (AN)Ag.

i=1 i=1

In particular

r=0 << A =Ay=-=A4,=0.

r

Proposition 1.87. LetL : C®(M) — C®(M) be linear and X € &(M) such that
t
N/ = £ = £(Xg) - J LX) dr  Yf eCo(M)
0

is a continuous local martingale (of same lifetime as X). Then, for all f,g € C®(M), the
quadratic variation [ f(X), g(X)] of f(X) and g(X) is given by

A1 (X001 = d [N/ NE| =27 (f, p(X0dr
In particular, F(f, f)(X) > 0 a.s.
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Lemma 1.88. For an R-linear map L : C®°(M) — C*(M) the following are equivalent:
(i) L is a second order PDO (without constant term)

(i) L satisfies the second order chain rule, i.e.
Lo(f) = Djp(S)LS) +DD,p(NF(f', f))  ¥f eC®(M,R") Vp e C®R).

Corollary 1.89. LetL : C®(M) — C®(M) be an R-linear mapping. Suppose that for each

X € M thereis an X € (M) such that X, = x and such that
t

f(Xz)—f(X)—J Lf(X,)dr VfeC®M)
0
is a local martingale. Then L is a PDO of order at most 2. In addition,

[f(X), f(X)]=0 VfeC®M) = L is first order.

1.3.6 Quadratic variation and integration of 1-forms For a Brownian motion BM(M, g)
on a manifold M, we also find Lévy’s characterisation. To this end, we need a general-
isation of the quadratic variation for a semimartingale on M. But on a manifold, the
usual notion of multiplication does not make sense, so the idea is to replace it by a twice
covariant tensor.

Proposition 1.90. Let X € §(M). Then there exists a unique linear map
MMRT'M) > A,
denoted by b — [ b(dX,dX), such that, for all f,g € C*(M),
df ®dg — [f(X),8(X)] (1.30)
f-b J FX)b(X,dX). (1.31)
By definition, b(dX,dX) :=d [ b(dX,dX). The quadratic variation | b(dX,dX) depends only

on the symmetric part of b. In particular, if b is antisymmetric, then j b(dX,dX)=0.

The process [ b(dX,dX) is said to be the integral of b along X or b-quadratic variation
of X. Its value at time ¢ will be denoted fé b(dX,,dX,) instead of ([ b(dX,dX))..

Proposition 1.91. let f: M — N be a smooth map between manifolds and
bel(T"N ® T*N). For any X € (M), we have

J F*b(dX,dX) = Jb(d F(X),df(X)). (1.32)

Proposition 1.92. Let X € &(M). Then there exists a unique linear map

QM) - 8, n - Jn(odX) =: Ln
such that, for all f € C®(M),
df = f(X) - f(Xy) (1.33)

fne= J J(X) e n(edX). (1.34)
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By definition, f(X)en(dX) := f(X)od ([, n).
The process [, 7 is called Stratonovich integral of the (differential) form 5 along X.

Example 1.93. Let X be a smooth deterministic M-valued curve, ie. S(M) 2 X, = x(v),
then

L n= Jn(fc(t))dt, neQ(M).

1.3.7 Stochastic parallel transport and stochastically moving frames The problem in
former definition of Brownian motion (Definition 1.72) lies in the manifold itself: There
does not exist a Hormander-type representation of the Laplace-Beltrami operator (there
is no canonical way of writing A,, as sums of squares) if M is not parallelisable, i.e.
the tangent bundle TM —, M is not trivial. But it holds the fundamental relation (cf.
Theorem 1.101 below)

i.e. there exists a lifted version of the Laplace-Beltrami operator, called horizontal Laplacian,
on the orthonormal frame bundle 6G(M) — M over M. Each element u € G(M) is an
isometry u : R™ — T,, M. The set of tangent vectors of horizontal curves passing
through a fixed point u € G(M) is the horizontal splitting H,0(M) with

T,0(M) = H,6(M)® V,0(M),

and m well-defined unique horizontal vectors L;(u) € H,O0(M) whose projection is the
ith unit vector ue; of the orthonormal frame, i.e. z, L;(u) = ue;, where (e;) is the canonical
basis for R™. Using this relation, it is due to Malliavin, Eells and Elworthy that there
always exists a lifted Brownian motion as solution to the globally defined SDE

dU, = L,(U,) - dB.,

where B is an m-dimensional Brownian motion. A solution is a diffusion generated by
Ag - By 1td’s formula for fe C®(O(M))

~ ~ P ~
df(U) = LifU)AB] + 3 A gur (Ui
Applying this to the lift f := f o z we get, using (1.35),
i1
df (X, = L;f(X,)dB, + EAMf(X,)dt,

where X, = z(U,) is the projection of the lifted Brownian motion U, on the manifold M.
It follows that X, is a Brownian motion on M starting from X, = z(U,). Therefore, the
key idea was to solve conversely the SDE on the orthonormal frame bundle 6(M) and
project the solution back down to M by = : 6(M) - M, cf. [ 11 1

In geometrical terms, the idea is to «roll» our manifold M by means of the (stochastic)
parallel transport along the paths of an R™-valued Brownian motion («rolling without
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slipping»), known as stochastic development. Starting in x € M, the resulting Brownian
motion X on M can be thought of as footprints left behind by the paths of the Euclidean
Brownian motion B in the tangent space T, M =~ R™ if M is rolled along the paths of B.
The procedure is known as Cartan development in the deterministic case. We will see that
it can be adopted to work with a suitable Stratonovich SDE.

For an m-dimensional manifold we denote by P = % (TM) its frame bundle, the pro-
totypical example of a G-principal bundle = : P - M whose structure group is the gen-
eral linear group G := GL(m,R). For x € M, the fibre P, consists of linear isomor-
phisms u : R™ - T, M (the frames of T M), where u € P, can be identified with a basis
(e, -..,e,) for R™ via

Wy, ...,u,) i=@<eq,...,u<e,),
i.e. GL(m,R) acts on &(TM) from the right
u<g:R" SR 5T M,

where g = (g;;) € G. Then ug € GL(M) by (ug); = >_; g;u;-

Restricting the structure group GL(n, R) to O(n), the frames u € P, at a point x € M
become isometries. We call P = O(M) — M consisting of all frames u € P, at a point
x € M, i.e. linear isometries u : R™ — T, M, the orthonormal frame bundle over M.

Remark 1.94. For simplicity, we restrict ourselves to the Riemannian case (M, g) with a
Levi-Civita connection V = VL. More generally, M may be a smooth manifold equipped
torsion-free connection, then the frame bundle P = &(TM), considered as a manifold, is
also parallelisable but every u € P is read as an isomorphism.

A linear connection TM induces canonically a G-connection in P given as a G-invariant
differentiable splitting 4 in the following exact sequence of vector bundles over P:

0 — > kerdt ——> TP — % 2TM —~ 0
V\ P
h

The splitting (1.3.7) induces a decomposition of TP
TP=V @ H :=kerdr & h(z*TM).

For each u € P, the horizontal space H, at u is constituted via the G-invariance:
H, ., P =(<g).H,P, for the G-right action <ig on M. The vertical space V, at u is given
by V, ={veT,P: (dr)v =0}. The bundle isomorphism

h: o TM — H — TP
is called horizontal lift of the G-connection, i.e. fibrewise it is given as

hu . TE(M)M — Hu.
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T,P=V,P®H,P

x = ﬁ{q)/ﬁ z(u<g)

T,M = H,P

Figure 1.1: G-connection of a principal G-bundle

By means of the G-connection in P each vector field X € [(TP) may be decomposed
in a horizontal and a vertical part:

X = Xhor + Xvert‘

Every u € P defines an embedding I, : G & P, g — u < g. Its differential at the Einsele-
ment e € g,

y, i=@dl), : T,G — T,P, A AQ), (136)

provides an identification «, : ¢ — ¥, from the Lie algebra ¢ := T,G of G with vertical
fibre V, at u. The vertical vector field A € [(TP), defined by (1.36), is the standard vertical
vector field on P associated to A € g. By

@,(X,) = [(XVY,, X e(TP), (1.37)

we define a g-valued 1-form @ € F(T*P ® g) on P, called connection form of the G-
connection. The connection form is by definition horizontal, i.e. ®(X) = 0 if and only if
X is a horizontal vector field on P.

We get the following Theorem (cf. [ , Remark 5.23] or [ , Satz 7.131]).

Theorem 1.95. The orthonormal frame bundle P = O(M) as a Riemannian manifold is
parallelisable, i.e. the tangent bundle TO(M) — O(M) is a trivial bundle.
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N . - | Y path u(t)

path z(u(t))

Figure 1.2: Horizontal lift u(r) through principal G-bundle

Proof. Let P = O(M). Choose a G-connection in P with G=0() and split
TP =V @ H. A canonical trivialisation for TP is given as follows: the vertical subbundle
V is trivialised by the standard vertical vector fields A to A, where A passes through a
basis for g. The horizontal subbundle H is trivialised by the standard horizontal vector
fields L,,..., L, in [(TP), defined by L;(u) := h,(ue;). Then, for everyu € P,

(A(w), L;(w) : A€ basisforg, i=1,...,m)

is a basis for T,P = V,® H,, since g — V,, A — A(u)and h,, : TrwM — H, are isomor-
phisms. [ |

Recall that we restrict ourselves to the principal G-bundle P = 6(M) over a Riemannian
manifold M with G = O(n). The associated Lie algebra is given by the algebra of matrices
g={AeMmxnR) : Askew-symmetric}. Fix a G-connection in P with

9e (T P®R™, 9,X,) :=u'drX,), ue P withX el (TP), (138)

the so called canonical 1-form on the principal bundle 7 : P — M. Note that the defi-
nition of a connection form depends on the G-connection, but not the canonical 1-form
9.

Theorem 1.96. Let = : P - M be a principal G-bundle over M with a G-connection. Let
x: I — M,tw~ x(t) be a smooth curve and t, € I. Then there exists for every u, € P with
7(ugy) = x(ty) a unique horizontal curve u : I — P with u(ty) = uy above t — x(t), i.e. wou(t) =
x(t) and i(t) € H,, foreveryt € I.
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Corollary 1.97. Let P be the principal G-bundle over a manifold M. Every G-connection in P
naturally defines a parallel displacement on P along smooth curves t — x(t) in M, namely for
ty,t; €1 as

//IO’II : Px(lo) - X(ll)’ u() = u(tl)’ (139)

where t — u(t) is the uniquely determined horizontal lift of t — x(t) on P with u(t,) = uy,.
The standard vertical, and horizontal vector fields respectively, are given by
I(A)=0and (L)) =e;, resp. @(A)=0and &L, =0.

Definition 1.98. The second order differential operator

n
. 2
Ao =)L
i=1
is called horizontal Laplacian on O(M).

For every U € &(P) the Stratonovich integral [, @ provides a semimartingale with
values in the Lie algebra g (namely component-by-component with respect for a basis g).
We call U horizontal if IU @=0as. If X € M), then we call U € &(P) horizontal lift
of X if U is horizontal and 7 - U = X as.

Obviously, the concept of horizontal lifts of semimartingales generalises the concept of
horizontal lifts of M-valued smooth curves (cf. Theorem 1.96) according to which a curve
t = u(r) above 1 — x(1) is horizontal, i.e. 7 ou = x and @®) = 0 (cf. Example 1.93).

Definition 1.99 (Anti-development). Let X € &(M) and U its horizontal lift with values
in P = 0O(M). The R"-valued semimartingale

Z=J8=mem
U

is the R™-anti-development of X (with initial basis U,)). In particular, with respect to the
standard basis R™ we get Z = (Z',..., Z") with Z' = [, §'.

The next, fundamental theorem shows the existence of horizontal lifts to M-valued
semimartingales (cf. [ , Theorem 5.30] or [ , Satz 7.141)).

Theorem 1.100. Let P be a principal G-bundle over a manifold M with G-connection. Let x,
be an M-valued random variable and uy a P-valued random variable above x, i.e. 7 o uy = x
a.s. Then, for every M-valued semimartingale X with X, = x, there is a unique horizontal lift
U on P withU, = u, a.s.

Theorem 1.101. Let M be a Riemannian manifold equipped with Levi-Civita connection. Then
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Proof. For u € G(M), we have
> Li(fomw) =) Vdf(ue,ue;)) = (tr Vdf)a(u) = (Ap f) o (). [ |
i=1 i=1

Let us briefly summarise the construction: For a semimartingale X € &(M), its hori-
zontal lift U to P = 6(TM) and anti-development Z = [, 9 into R™ each of the three
processes X,U, Z defines the other two (modulo choice of initial conditions X, = x and
U, = u) in the following way:

(@) Z determines U as solution to the SDE dU = L,(U) »dZ' with U, = uj,
(b) U determines X by X =z U,

(c) X determines Z as Z = [, 9, where U is the uniquely determined horizontal lift of

Mind that this procedure depends only trivially on the choice of 1, above x,. Usually, one
starts vice versa, cf. [ , Theorem 5.35]: Choose a continuous R™-valued semimartingale
Z with Z; = 0 and fix an & -measurable random variable u, : Q — P as initial value.
Define U on P as the maximal solution to

dU = L,(U)-dZ', U, = u,,

and set X := z o U as the projection from U on M with initial value X, = 7 o u,. Thus,
we obtain a horizontal process U over X with U, = u,. In particular,

dX =Ue,;odZ' =U -dZ.
Since L,(U)dZ' = hy(Ue,)»dZ', also
dU = hy(«dX).

Hence, we regain the original process up to the lifetime of U by the R™-anti-development
Z = [, 9 of X. We say X is the stochastic development of Z.

Definition 1.102 (Stochastic parallel transport). Let X € (M) and U a horizontal lift of
X on O(M). For every 0 < s <t, we define /;, :=U, » U:! by

TXSM TX,M

o

Rm

and /7, := //s‘}. We call the isometries /, 1= /ly, : Ty M — Ty M stochastic parallel
transport along X.

The stochastic parallel transport leads to an intrinsic version of Itd’s formula: For
f e C*(M) and for all t > 0, we get almost surely

t t
f(X)=f(Xy)+ [ Useif(Xs)dZé + %J UseUge; f(X)d [Zi’ ZJ']S , (1.47)
0 0
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where X € &(M) with a horizontal lift U and anti-development Z, and (ey, ... ,e,,) is an
orthonormal basis for R™. Note that we employ the usual Einstein summation convention
over repeated indices. More succinctly (1.41) can be written as

df(X,) = (Vf(X),UdZ,) + % tr Vdy f(U,, U)d[Z],.

Example 1.103. If M = R™ then, we can choose U, = idg» and Z = X and this formula
reduces to
t

t
FX) = f(Xo)+ J 0SX)AX] + 3 L 0, f(X,d [X7, X7 .

0

for any ¢ > 0 almost surely and X € S(R™) is an R™-valued continuous semimartingale.



Chapter 2

BISMUT FORMULAE AND GRADIENT ESTIMATES

In this chapter we will derive localised Bismut formulae and prove gradient estimates
for the heat semigroup defined by spectral calculus on the full exterior bundle of square-
integrable Borel forms F2(AT*M).

The so called Bismut(-type) formulae provide derivative formulae of heat (diffusion)
semigroups on manifolds. First introduced by Bismut [ 1 in 1984, they have been
extended to various frameworks: Notably, by Elworthy & Li [ ; ], Thalmaier
[ land in the general setting using martingale methods for sections of vector bundles
by Driver & Thalmaier [ 1

In this chapter, let (M, g) be a complete smooth Riemannian manifold without bound-
ary and (-, -) its Riemannian metric. We write vol for the corresponding volume measure.
On a vector bundle E — M the corresponding fibre norms are denoted by || := 4/(,")
and I(E) := -~ (E) denotes all smooth sections of E and N 2(E) the L2-section of E.

We write Q2(M) :=F2(/\T*M) for the complex separable Hilbert space of equivalence
classes of square-integrable Borel forms on M such that

llal® := el o = JM |ar(x)] vol(dx) < o,
with inner product
(@), = (e Phaysoy 1= | @), px) vol(a)

Analogously, we write Q’Ifz(M) for the Hilbert space of Borel k-forms. In particular,

Q (M) = @ e, (m).
k=0

To relax notation, we set
QM) := Qcw(M) and QM) 1= QL (M)

for the set of all smooth forms, and smooth k-forms respectively, on (M, g).

Let (Q, F,(F ). P) be a filtered probability space satisfying the usual hypotheses.
Let X(x) be a BM(M, g) starting at x € M and {(x) its maximal lifetime. Further, let B
the stochastic anti-development of X to T, M, which is a standard Brownian motion on
T .M =R™

Let E, E be two Riemannian vector bundles over M, endowed with a metric connec-
tion VE and VE respectively. The corresponding parallel transport will be specified by
a superscript, eg. /¥ : E, — Ex_. The covariant derivatives V'™, V¥ and vE induce
covariant derivatives on any vector bundle & over M constructed via the tensor product

41
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of the bundles TM, E and E and their dual bundles. To relax notation, the corresponding
induced covariant derivative on this bundle will be denoted V and the corresponding
stochastic parallel transport by /; : &, — &y .

Given multiplication map m € F(Hom(T*M ® E,E)) ~I(TM ® E* ® E), we consider
the Dirac-type operator

D, :=mV : [(E) > I'(E)

m

which is understood as the composition

F(E) — F(T*M ® E) — [(E).
A multiplication map m is said to be compatible with V provided Vm =0, i.e.
Vf(mUa) =mytMya + mU(Vfa) VUel(TM)Vael(E)VveTM,

where m & :=m((v, ) ®¢&) € Ex forall ¢ € E,.
The horizontal Laplacian O is the second order differential operator given by the fol-
lowing decomposition

£
E VT MQE

\% r
O:= V'V :(E)— [(T*M®E) —— (MM @ T"M ® E) — I'(E).

Driver and Thalmaier [ , p- 48] propose the following formalism: Let L and L are
given second order differential operators on F(E) and r(E) respectively that satisfy the
following two conditions.

(1) The operators D,,, L and L obey the commutation rule, for some ¢ € F(Hom(E, E)),
D,L=LD, —o. 21

(2) The operators & :=0—L : I'(E) - '(E) and F:=0-L: M(E) - I'(E) are zeroth
order operators, i.e. & and R are section in M(End E) and F(End E), provided m is
compatible with the Levi-Civita connection.

In geometrically natural situations, we have ¢ = 0 or p € N(Hom(E, E)) is of zeroth order.
Under those assumptions, Driver and Thalmaier [ ] can prove derivative formulae for
the heat semigroup in the general setting of vector bundles using martingale methods.
For a detailed discussion we refer the reader to [ 1

Let us note two important examples.

Example 2.1. The exterior bundle of total forms E = AT*M — M with its natural
connection

m
yAT'M . _ @ V/\kT*M
k=0

and Clifford action ¢ : TM — End(AT*M), c(@)f :=a A p - o = B. The Hodge Laplacian
A is related to the horizontal Laplacian OJ by the Weitzenbdck formula (cf. Theorem 1.42)

A=0- R, (2.2)
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where Weitzenbdck curvature operator # € IN(End Q-~(M)) is a symmetric field of en-
domorphisms. Acting on k-forms, the field of endomorphisms is specified again by an
index

In particular, note that RO = Ric and 2O = 0. Moreover, it can be written explicitly
(cf. eg. [ , Lemma A7]), for any orthonormal basis (e;)| i<
m
AP =3 Riej.e)( Ao)e =),
ij=1

where R(e;, ¢;) is the curvature tensor acting on k-forms (cf. [ , Lemma A.9]). Then

D,=D,=d+8,, L=L=A  m=c and o=0.
In particular, for E := A*T*M and E := A\**' T"M, then 0=0 with

D, =d|,. L=-A% L[=-AkD
R=RY, F=R*D,  m@®p)=anp.

If instead E := /\k_1 T*M, then again ¢ =0 but with

D, =8|y L=-A% L=-AkD,
=2, F=R%D  maep)=-@"-p.
Example 2.2 ([ , cf. Proposition 215]). Let E = T"M ® E and m = idg. ForD,, =V
and given & € End E, we set
R =Ric" ®1; - 2RF - +11.,, ® & € [(End E), (2.3)
0=V -RE + VEER e M(Hom(E, E)), (2.4)

where RE denotes the Riemannian curvature tensor to V on E and
Ric" € M(End T* M)

denotes the transpose of the Ricci curvature tensor Ric € [(End TM) on M. Further for
anyne E,veT M, acE, (¢) an orthonormal frame for T _M, we have

(R -n) () : ZRE(U e)n(e;),

(V-REa) (v) : ZV RE(e;, v)a,

(VRa)(v) :=(V,R)a.
Choosing m =id, forL :=0 - &, L=0- @ it follows that ¢ € F(Hom(E, E)).

Next, we introduce the stochastic representation of the semigroup. To this end, recall
that /£ : E_ - Ey_is the parallel transport along our diffusion X, = X (x) started at
x € M. We define the linear operators on E, and E,, respectively,

Ry =05 RIE and Ry =05 R NE
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along the paths of X(x) in the following way: Via the stochastic parallel transport we
get to a random point on the tangent space at X, and apply the curvature (in case k = 1
just Ric and E = TM) considered as a linear transformation. Then we parallel transport
back to where the diffusion started. Thus, we get a linear mapping E, — E, which now
depends on random, i.e.:

Let @, be the End(E,)-valued, and @NS the End(E)-valued respectively, pathwise solutions
to the ordinary differential equations

Lo, =-1®,0, @ =idg,
i _ (2.5)

G --1#,8 &=-ii.

ds
The composition @ o /£~! maps from a random point X, back to the starting point x and
is called the (inverse) damped parallel transport along the paths of X (x).

2.0.1 Probabilistic representation of the semigroup Given a potential w : M — C, the
Feynman-Kac semigroup

1 (s
Pswf(x) i= E <e—§ IO M)(Xu(x))duf(Xs(x))-]] {S<C(x)}>
acts on (bounded) measurable functions f on M. Further, let Zf = ¢,,,,(%%), i.e.
@E(x) = min{(.%xv, U) e E v = 1} .
By uniform continuity, &% is a continuous function on M. By Gronwall’s inequality,
1[° ok
op S exp <_§ JO @ (Xu(x))du> .

We have the following probabilistic representation of the semigroup, for all s > 0 and

every x e M,
Pia(x) = J ps(x, y)a(y) voly(dy) = E* (C‘ftsr//f’_la(Xs)ﬂ {s<§}> Va e I'2(E),
M
E
provided the scalar semigroup PS2 la| (x) < oo (cf. [ , Theorem B.4.]). In particular, it

holds semigroup domination

|Pax)| < P2 101 (0. (2.6)
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2.0.2 Kato classes and semigroup domination The existence of the Feynman-Kac semi-
group will be essential to prove the Bismut-type formulae below (cf. Theorem 2.19 and
Theorem 2.25). To ensure the existence of the scalar semigroup in formula (2.6), we there-
fore will always assume that % e K(M) is in the so called Kato class:

Definition 2.3 (Kato class). Let w : M — C be a measurable function. Then w is said to
be in the contractive Dynkin class D(M) (also extended Kato class), if there isa s > 0
with

N
sup J E* (1(<e) |w(X,)]) du < 1,
xeM JO
and w is in the Kato class K(M), if
N
lim su EX (1 w(X )|)du=0.
lim sup L (Vuegy [0 X))

The function w is said to be in the local Dynkin class D,,.(M) or local Kato class K .(M),
if Txw e D(M) or 1w € K(M), respectively, for all compact K c M.

Remark 2.4. (i) The Kato class K(M) plays an important rdle in the study of
Schrodinger operators and their associated semigroups, cf. [ ; l. The con-
tractive Dynkin class D(M) appears in [ ] to study properties of semigroups
associated to Schrodinger operators. In the case of a non-compact manifold, it is
well-known that there are many technical difficulties with the behaviour of the po-
tentials at co. The Kato class defines a sufficiently rich class of potentials for which
we can still expect the Feynman-Kac formula to make sense pointwise not only vol-
a.e. x, but forall x e M.

(i) In particular (cf. [ , Remark VI.21]), in the Euclidean space R™, we get
LY(R™) c K(R™), for m > 2 and ¢q > % Then it is well-known, that the Coulomb
potential ﬁ is in K(RY).

(iii) Clearly, all four classes depend on the Riemannian structure of M and we have

K(M)cD(M) and K,.(M) C D,,.(M).

In view of those implications and since it is more common to work with Kato classes, we
note that in what follows all assumptions may be relaxed from K(M) to D(M).

Lemma 2.5 ([ , Lemma VI.8]). Forany w € K(M) and y > 1, there is ¢, = c,(w) > 0,
such that
sup E* (ﬂ{s«}emw()‘uﬂd”‘) <y’ < o0, Vs > 0. (2.7)
xeM

Remark 2.6. The previous Lemma 2.5 can be elaborated in the case of potentials in
the Dynkin class (cf. [ , Lemma VI.8.]), namely: For any w € D(M) there are
¢, = ¢ (w) > 0, for k € {1,2}, such that

sup E* (ﬂ{s<¢}eﬁ|w(x")|d”> < ¢e’? < oo, Vs > 0.
xXeM
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2.0.3 Corresponding sesquilinear forms Let HY denote the Friedrichs realisation of
%D = %V*V and q" the closed densely defined symmetric sesquilinear form corresponding
to HY given by

domq" = dom VHY

qV(a;,a,) :=< HVa,, HVa2> = %j (Val,Vaz) dvol.
M

A Borel section V' : M — End E in End E — M is a potential on E - M if V(x) = V(x)*
for all x € M, where the adjoint is taken fibrewise with respect to the fixed metric on
E - M. We define

domgqy = {a el (E): J |(Va,a)|dvol < oo}
M

qy(a;,a,y) = J (Val,az) dvol.
M

Assume V' admits a decomposition V' =V, +V_ into potentials V, on E - M with V, >0
such that [V, | € L, (M) and q;, is q"-bounded with bound < 1 (cf. Definition 1.54).
Then we denote by HIV, the semibounded from below, self-adjoint operator in I\2(E)
corresponding to the closed symmetric semibounded densely defined sesquilinear form

4 =9q" +ay =q" +qy, +qy
It follows that the symmetric form qj) is densely defined and by definition we have
dom qIV, :=domq" N dom gy, = dom q" N dom qy, N domgqy

The following theorem will be used in the proof of the main result and can be found
in[ , Theorem VIl.4.].

Theorem 2.7. Let V be a potential on E — M such that the potential V =V, + V_ can be
decomposed into potentials V,, > 0 with |V, | € L, (M) and |V_| € K(M) (or |V_| € D(M)
respectively). Then the form q, is infinitesimally q¥ -bounded (or q¥ -bounded with bound < 1).

2.0.4 Kato-Simon inequalities and semigroup domination By [ , Theorem VI1.8.]
we immediately get the following

Lemma 2.8 (Kato-Simon inequality). Assume #* > —K for some constant K > 0, and let
a € Q2(M). Then for all s > 0, we have

‘e_SA(k)a‘ < e Ksg—sa® la| . (2.8)
2.1 Bismut type Formulae and Derivative Formulae on Vector

Bundles

Next, we will outline the strategy of [ ] to prove Bismut type formulae. Briefly, the
idea is to define a suitable martingale, say N,, and stay on the local martingale level as
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long as possible. Using that a true martingale has constant expectation, one then shows
that N, is indeed a martingale and takes expectations at times u = 0 and u = s A 7.
Note that this method solely involves the geometry and applies especially in the case of
non-compact manifolds.

Definition 2.9. A finite energy process ({,)y,, With values in E is a bounded adapted
process with sample paths in the Cameron-Martin space L'*([0, 5], E).

We recall that a time-dependent section (a,)oc,<s € F(E) is said to be smooth if
(s, x) — a,(x) is infinitely differentiable for (s, x) € (0, s)x M and with derivative extending
continuously to [0, s) x M. The following Lemma can be found in [ , Proposition 3.21.

Lemma 2.10. Let m be a multiplication map, o, L and L as in (2.1), and @ and @ are defined
by (2.5). Suppose further that (a,)o,<s € F(E) is smooth time-dependent and satisfies the
backwards heat equation

J,a, + %Lau =0. (2.9)
For some u in the stochastic interval [0, (x) A s), let
N, :=@"/'a (X, (x)) and N, :=@"/;'Da,(X,(x)).
Then the It6 differentials of N, and N, are given by
AN, = @1,V rmyp @, (X,(x))
and
dN, = @1,V w5 Da,(X,(x)) + %5Lr//;1(oau)(Xu(x))du.
Proof. By Itd’s lemma and its product rule for 1t6 differential (1.19)
dN = @"/I7'V jrmgga(X (x))
+ % (-@" R, a(X(x)) + @" /™' Da(X (x)) — @/ 'La(X (x))) du
= Q"' jrmgpa(X (x)),
where the last equality follows from
~R )+ O=r'O-%) =1L
Similarly,
AN = @'V jrmgpDa(X (x))
+ % (—5“9?,,//—‘ Da(X (x)) + @/~ 'IDa(X (x)) — @/ DLa(X(x))) du
= @'V 3zDa(X (x)) + %éTr//-l(oa)(X(x))du
where in contrast

~ 7'+~ 'ED - /7'DL = /7! (ED - DL) =/, n
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The next theorem shows that a suitable dual pair of N and N in Lemma 2.10 constitutes
a local martingale.

Theorem 2.11 ([ , Theorem 3.7]). Leta, N and N be as in Lemma 2.10, {, € E* be a finite
energy process and define the E*-valued process

N N
Ut = J @H='ntmlf o 1,850, + %J @) 'of @t du, (2.10)
O u u 0 u

where o = Il 0" (X, (x))/l,.. Then

z! = (ﬁu,€u> - (N, UY) (2.11)
is a local martingale on [0, s A {(x)) and
dz! = ((53//;1%,“@“ Da(Xu(x)),€u> - (@{{//;lv,/udBua(Xu(x)), Uf)
= (Vo @D i g 1, )
Taking expectations in the previous Theorem 2.11 we get the following abstract deriva-
tive formula on vector bundles (cf. [ , Theorem 4.1]).

Theorem 2.12 (Derivative formula on vector bundles). Let a be a solution to the backwards
heat equation (2.9), and @ and @ are defined by (2.5). Let t be a stopping time bounded by
s < oo suchthatt < ¢{(x)and { € Ej be a Cameron-Martin process on [0, z]. Assume that t
and ¢ have been chosen such that

E|(@/;'Da, (X, 0, )| <o and E|(@1;Da, (X, (), UY)| < oo,

where U* is defined by (2.10). Finally, let Z! be the local martingale defined by (2.11). If we

assume that (Z*)" := Z!

sac IS a (true) martingale, then

E (Day(x), 4) = E ((EE//;IDaT(XT(x)), e,) —E(@Y/;'a (X .(x)),U}).
In particular,
(@ Ift,=0andl, =& € E,, then
E (Day(x), &) = —E (@Y /7 a (X .(x)), U}) (2.12)
(b) Ifty=0and (. = & € E, (possibly random!), then

E(@U1;'Da (X, (0).¢ ) = E (@Y1 a (X, (1), Uf) (2.13)

(s—e)2L s/2L

Let a, = ¢ a for some a € [ 2(E), where the semigroup e¥~- is generated by the
Friedrichs extension of L. Then the equations (2.12) and (2.13) provide stochastic repre-
sentations of the derivatives De®~*"2L¢ and e®~*"2LDq. The formula for De®=*"2Lq relies
on the fact that the local Z* given by (2.11) is indeed a true martingale. This can always
be assured by a proper choice of the finite energy process ¢, i.e. { such that {;, = & and
¢, = 0 for u > s A = where 7 is the first exit time of X(x) from some relatively compact

neighbourhood, irrespective of whether M is compact or complete.
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In the next two sections, we derive similar localised Bismut type formulae and prove
localised gradient estimates on the full exterior bundle, i.e. in the setting of Example 2.1
for d and & acting on the heat semigroup, and a covariant Bismut type formula in the
setting of Example 2.2, following the ideas of [ l. Therefore:

From now on, let E := )\ T*M and, to shorten notation, we set & := @/\ M

We denote by

(P)op 1= <e‘%A)S>0 C (AT M))

the heat semigroup defined by the Spectral Theorem 1.50, where we have chosen
f iR =R, f(4) :=e 2% But recall that [DT01, Section B.2], by the spectral theorem, on
a complete manifold, for any a € I 2(E),

dP,a= P,da resp. 6P,a = P,ba.

This relation is no longer true dropping completeness, even if M is stochastically complete,
cf. eg. [ , Appendix Bl.

For every r > 0, let

ti=70xr) t=inf {1 >0 : X,(x) € B(x,r)} : Q- [0, 0] (2.14)
be the first exit time of X from the open ball B(x, r) with small radius, say r = 1, and we
define

K(x) := max{(.%(v), V)l VE /\TyM, lv| =1,y € B(x,r)} , (2.15)
K(x) :=min {(R(@).,v) : ve AT, M,|v| =1,y €B(x,r)}. (2.16)

Definition 2.13. Letr>0,5s>0,x€ M,and £ € TM ® E. By CM(z,¢&, E) we denote the
set of all finite energy processes

0:[0,5]xQ>T M QE

such that

SAT(x,r)
k| < 1, [EJ' 0 du<oo, =1, ¢,=0 Vu > s Az(x,r).

0

By a proper choice of the Cameron-Martin space valued process {,, according to the

geometry on D, in [ , Proof of Corollary 5.1] Thalmaier & Wang show how to achieve
explicit gradient estimates from Bismut-type derivative formulae only using the local ge-
ometry of the manifold (cf. also [ , Remark 3.2], [ ). We use the construction
of ¢, briefly summarised in the Proof of [ , Corollary 2.2.2.] to prove the following
theorems 2.27 and 2.28.
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Lemma 2.14. Foralls >0,r>0,x € M, ¢ € T .M Q E there is a process { € CM(s,¢, E)
such that for all 1 < g < o and K(x) defined by (2.16), we find a constant C(m,q,r, K™) < o
satisfying

SAT(x,r) - q l/q _
e < €], E (J |4, du> < 57 V2eComar K2 g 217)
0
where
C K™) = Z=\/(m- 1)K~ il 3 2.18
(m,q,r,_).—a (m—- DK +m(m+q+ )- (218)
Proof. Itiswell-known, [ , Corollary 2.2.2.] (also [ 1), how to construct a bounded

adapted process
k:[0,s]xQ— R

with paths in the Cameron-Martin space L12([0, 5], R), such that

SAT
Ikl < 1, [EJ ey du < 00, ko=1, k,=0 YuzsAT,
0
and
SAT q/2 la
([ o) | <
0
Thus we may simply set {, := k,¢. [ |

Corollary 2.15. Forall s >0,r>0,x € M, £ € T_,M ® E there is a process { € CM(s, &, E)
such that for all 1 < q < oo and all constants K > 0 with Ric > —K in B(x, r) we find constants
C(m, q),C(m, q, K) < oo satisfying

SAT - ql2
0] < 1€, E(J || du)
0

2.2 Local and Global Bismut formula for V

1/q

sC(m,g,K) | sC(m,q)
— ——t—>
<s 172 e - 2

€l

Using the strategy outlined above, we get the stochastic representation of the semigroup
and a covariant Bismut formula, see also Driver & Thalmaier [ , Appendix B] and
Thalmaier & Wang [ , Theorem 3.1].

Theorem 2.16 (Covariant Feynman-Kac formula). Assume that &~ € K(M). Then we have
e 2a(x) = E (@ a(x)1 (spiy) Vs> 0Vx € M Va € Manwncs(A T M).

Proof. By the Weitzenbock formula 1.42, we have A = - %, where & € F(End A T*M) is
a symmetric field of endomorphisms. Suppose that (J — 92)||_ AT*M) is bounded from
above and let

Pa=e""%1  Vae F2(AT'M),
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be the smooth version of the L> semigroup. Then, by [ , Theorem B.4],
Pa(x) =E (@' a() 1 jcriny) Vo€ F(ATM)

holds, if PSZ|a| (x) < . Since &~ € K(M), the claim follows. |

Remark 2.17. Theorem 2.16 is true especially under global curvature bounds: Let R be the
Riemannian curvature tensor. Then the curvature operator Q € /\2 T*M is self-adjoint
and uniquely determined by the equation

OXAY),UAV)=RX,Y)U,V)

for all smooth vector fields X,Y,U,V € INcx(TM).

By the Gallot-Meyer estimate [ ], a global bound Q > —K, for some constant K > 0,
already implies that curvature endomorphism in the Weitzenbock formula 1.42 is globally
bounded by

R > —Kk(m - k).

In particular, specified to differential k-forms under global curvature bounds, we get
the following

Corollary 2.18 (Covariant Feynman-Kac formula for k-forms). Assume % > —K for some
constant K > 0. Then, we have

S

e o) = E (@ a(x)) Vs> 0Vx € M Va € Mz wnce (A T M),

Let us provide a short proof that does not rely on Theorem 2.16. As we assume
%" > —K for some K > 0, although M is non-compact, by Lemma 1.76 M is stochasti-
cally complete, so that the statement includes that the right-hand side coincides for all
x € M and not only for vol-a.e. x € M with the smooth representative of ve 22"
Proof. By assumption % > —K for some constant K > 0, so M is stochastically com-
plete. Then we have

_ AR _ _A®
|e sa a‘ < e Kse™A g Vs >0, (2.19)

by the Kato-Simon inequality (2.8).

As M is stochastically complete, we get {(x) = oo P-a.s. To prove the formula, we may
assume s > 0. By Lemma 2.10 the process

S—u

N, =@ e T a(x,(x)

is a continuous local martingale. By (2.19) above and using that by Gronwall’s inequality
|@,| < &7 P-as, we find that

IN,| < eI |, J e 2 A(X,(x), y) vol(dy) < K15 e, .

so that N is a true martingale by Lemma A.11. Evaluating N, at times u = 0 and u = s and
taking expectations proves the claim. |
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2.2.1 Local covariant Bismut formula Next, we derive a local covariant Bismut deriva-
tive formula that will be used to obtain localised gradient estimates in § 2.4. Those esti-
mates will play a crucial role in showing the main result in § 4.

Theorem 2.19 (Covariant Bismut formula). Letée E¥ =T, M ® \ T, M. Then

(s—=5AT)

<Ve_%Aa(x),§) =-E (@E;\r//s_/ife_ 2 Aa(Xs/\r(x))’ U.f/\f) Va € rLZDC‘”(/\ T"M), (220)

where
s - 1 s —
ul .= J Q;'(dB, - @, 1) + 3 J @; o) @t du, (2.21)
0 0 “
o =110 Il, with o given by (2.4), @ and @ are defined by (2.5) and & by (2.3) and
o 7 :=1(x,r) < {(x) is the first exit time of X from the open ball B(x, r),
« dB :=/"'edX(x) is a Brownian motion in T M, i.e. the associated anti-development of
the Brownian motion X (x),
+ (8)o<uss is a finite energy process with values in T.M ® A\ T,M such that for some

arbitrary small e > 0

172

(s—e)AT(x) .
[E<J || du> <o and  ly=v, 4,=0  VYu>(s—e)A7(x).
0

If, in addition, « € Q 2(M) is bounded on this neighbourhood, we may take € = 0.

Before we prove Theorem 2.19, let us make the following

Definition 2.20. Let U as in Theorem 2.19. We set

Ul =tV + %e@,

where we define processes
N S
¢ = L @,'(dB, - @1, and (% := %L @;lpf/i Q,¢L, du.

Then (V) is a continuous local martingale and () is a continuous process of finite varia-

tion.

Proof of Theorem 2.19. By Gronwall’s inequality, we have
1 N
|Qs|0p < €exXp <_§ JO @(Xu(x))du> Vs > 0.

and hence

<eKWs2  pas on {s<(x,r)}. (2.22)

al, <o, |g,
op

op >

As @ and @ are invertible with

d -1 _ 1 -1 -1 _ .
a@s _5.%//5'@5 ) QO —ld/\TxM,

d ~—1 1 ~—1 ~—1 .
aas = 5‘%/&@5 ’ Q, =1deM® AT M-
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we also have

< eE(")S/2 P-as. on {s < z(x,r)}. (2.23)

-1 K(x)s/2 A—1
|@S |0p<e ’ ‘@s op

According to Lemma 2.10 and Theorem 2.11

N = (5//—1%‘?%()(@)),@) - (@//—le‘?Aa(X(x)),z“) + e@)
is a continuous local martingale, and in view of (2.22) and (2.23) and the assumptions
imposed on ¢, a bounded local martingale, hence a true martingale by Lemma A.11. Eval-
uating N, at the times r = 0 and r = s A 7 and taking expectations, we get EN, = EN,,,
so that

(s—SAT)

_S A 1 -
(Ve 24 a(x), ‘f) =-E <@S/\T//S/\1Te 2 Aa()(s/\r(x))’eg\)r + E(s%\)z'> >

which is the covariant Bismut formula with U% = ¢ + (@, [ |
An immediate consequence is the following Theorem.

Theorem 2.21. Suppose a € Q (M), #~ € K(M) and ¢ € Ef =T M® AT M. Let

(€,)o<uss a bounded adapted process with absolutely continuous paths in T, M ® /\ T, M such
, 12

that E (jés_gw(x") |€u|2 du) <ocoandly=¢& ¢, =0 forallu> (s —€) A t(x,r) and some

arbitrary small € > 0. Then,

(Ve 3 a0,€) = ~E (@17 a(X, 0NV e Uy ) (224)

where U" is given by (2.29), o' :=//;'0 /i, with o given by (2.4), @" and @™ are defined by (2.5)
and ﬁby (2.3).

Proof. Note that, by the strong Markov property,
@?;\T//S_/}T (Ps—s/\‘ra) (Xs/\‘r(x)) = [EF;MT (var//s_la(Xs(x))ﬂ {s<§(x)}) ’

which is by definition a bounded &, ,-measurable random variable. The existence of the
scalar semigroup is provided by the assumption &~ € K(M). Hence, by Theorem 2.19,

(Ve_%Aa(X),i) = —E (@17 a(X (DT <ty Usar) - .

2.2.2 Global covariant Bismut formula To end this section, we derive a global version
of the covariant Bismut derivative formula that will be our key tool to prove Theorem 4.4.
Therefore, global assumptions on the curvature are sufficient to control the process U*
in (2.29), to wit, we assume that the curvature and the derivative of the curvature is
bounded.

This subsection was carried out with Batu Giineysu in our joint work with Baptiste Devyver.

Assumption 2.22. We assume that the curvature and its derivative are bounded by some
constant A < oo, i.e.

max (IRll IV RIls) < A. (2.25)
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First, we show an a priori L* bound.

Lemma 2.23. Assume that (2.25) holds. Then there is a constant C = C(A, m) > 0 such that
forall1 <k<m,s >0, x€ M, we have

NG _
‘e ; a(x)‘ <CeCs gl Va € Mg ence(M).

Proof. In the sequel, C(a, ... ) denotes a constant that only depends on q, ..., and which
may differ from line to line. Let s > 0, r >0, x € M, £ € T"M ® A" T:M be arbitrary and
pick a finite energy process { € CM(s, &, /\k TiM). Note that by assumption (2.25) M is
stochastically complete, i.e. {(x) = o0 P-as. It follows from the covariant Feynman-Kac
formula, Corollary 2.18, and the Markov property (cf. Proof of Theorem 2.21) that

(Ve a0,£) = —E (@5 (X, (). ) + €2)..
By Gronwall’s inequality, we get

@, < eCimAs, ’(‘53 <eCmds  pas on{s<7}, (2.26)

op

and as @ and @ are invertible, we also get

@], <&, |@1] <efmd pas on(s <. 227

op
By Corollary 2.15, a proper choice of the Cameron-Martin space valued process {; gives
1/q

INT ql2 1C(m,q,K
.2 1y [CnaK) | iClng)
([ ) ] e

0

By the Burkholder-Davis-Gundy inequality A.12, we get
12

N SAT
E J @,;'(dB, - @,L)| <E <J |@;1|2|@u|2|eu|2du>
0 0
Thus, we estimate
C(A,m)s , C(m)s
EIED, | < € eCmss™12e 0 gy,

using eqs. (2.26) and (2.27), and
EIER:| < eCmC(a,m) el

SAT

which follows from eqs. (2.26) and (2.27), and [¢| < |&], |p| < C(A, m). Using (2.26) once
more, we can now estimate as follows

()
< [E( 1@, [|a(X,(0)]1eD, )+ E <|@s||a(xs(x)>||e§i), )

< 1€ C(A, m)eCA™s | al| <Cec(m)ss_l/2e R +eC(’")SC(A,m)>.

Taking r — oo, we have managed to construct some C(A, m) < oo, such that for all x € M,
s > 0, we have

_spA®
‘Ve 28 a(x)| < C(A, m)eCAms =172 lall o - |
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By a proper choice of the finite energy process, namely { = (s — ®)/s&, we immediately
get the following

Theorem 2.24. Assume that (2.25) holds. For every s >0, x € M, £ € T:M @ \* T M, we
have

(Ve_%A(k)a(x),5> =-E (QEr//s_la(Xs(x)), UsglObal) » Ve ey ence(M), (2.28)

where
s N
Usgloba] = lJ @I;l(dBu r @u)é + L '[ @;10;/1’ @u(s - u)f du. (229)
S Jo 2s 0 !

Proof. According to Lemma 2.10 and Theorem 2.11

S—e S—eo

N := <5//—1Ve_ 2 A<k>a(X(x)),€) - (C‘i//—le‘ A4 (X (), Usglobzﬂ)

).

As in the previous Proof of Lemma 2.23, by the Burkholder-Davis-Gundy inequality A.12,

is a continuous local martingale. By Lemma 2.23,

|Nu| < C(A, m)eC(A,m)s |'§| ||05||oo ((S _ u)1/2 + ‘U;c’lobal

eqs. (2.26) and (2.27), N is a true martingale and the claim follows from taking expectation
at the timesu=0and u = s. |

2.3 Local Bismut Formulae for d and &

Theorem 2.25. Llet @ € M 2nceo(A\T"M) and R € K(M). Then for any v € \ T, M, we have
the following Bismut type formulae:

((dPsa)x’ U) =-E <//s_1a(Xs(x))ﬂ {s<€(x)} Q, J Q;l(dBu - Qu£u>> ) (2.30)
0

((8Psa),,v) = —E <//S_1a(Xs(x))1] (s<¢0) Qs J: @;'(dB, A @ueu)> , (2.31)
where @ is defined by (2.5) and
o 7(x,r) < {(x) is the first exit time of X from the open ball B(x, r),
« dB := /"' edX(x) is a Brownian motion in T M, i.e. the associated anti-development of
the Brownian motion X (x),

» ({,)o<uss i any adapted process in /\ T, M with absolutely continuous paths such that

for some arbitrary small € > 0
12

(s—e)AT(x) .
[E(J |2, du> <o and  fy=v, 1
0

If, in addition, a € Q_2(M) is bounded on this neighbourhood, we may take £ = 0.

=0 Yuz(s—e) At(x,r).

u

Proof. Using the same strategy as in the previous Section { 2.2, again the assumption
R € K(M) assures that the scalar semigroup is finite. More directly, using # € K(M), it
holds semigroup domination

|Pa)] < PF ] ().

and the result follows immediately by [ , Theorem 6.11. |
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Remark 2.26. By the same method used in § 2.2.2, we can deduce global Bismut type
formulae for dP,a and 8 P,a.

2.4 Gradient Estimates

By the Bismut formulae, derived in the last sections 2.3 and 2.2, we now prove localised
gradient estimates that will be the key tool in the proof of our Main Result in § 3. As
curvature only enters locally around a point x, the stochastic integral can be estimated
by choosing a suitable finite energy process ¢ and the Burkholder-Davis-Gundy inequality,
Lemma A.12.

From now on, set D := B(x,r) to be a ball with small radius, say r = 1, and we define

K(x) :=max {(Z),v) : ve AT,M,|v| =1,y e B(x,1)}, (2.32)
K(x) :=min {(R(),v) : ve AT, M,|v| =1,y €B(x,1)}. (2.33)

Then z(x, 1) is the first exit time of X from the open ball B(x, 1) (cf. (2.14) above).
Theorem 2.27. Let a € Q2(M) and R~ € K(M). Then, for all s > 0,
2
|@Pa) | < P )PCx 5) llallg ) - (2.34)
|GPa),|* < P 9D 5) lald (235)

where

Y(x,s) := L\/_ exp [D(y, ¢, (&), c;/q)s + (71'\ [(m—1DK(x)~ + m2(m+5) + (E(x) + E(x)>_> %] , (2.36)

N

and the finite constant D depends on the constant c,(®~) in (2.7) and the constant c, from
the Burkholder-Davis-Gundy inequality, and ®(x, s) is defined by (3.19).

Proof. Again by Gronwall’s inequality, we get
@], <K, @], < K02 pas on (s<r(nr)]. 237

By the Burkholder-Davis-Gundy inequality A.12, we get
2q — - s q
< cqeq(K(x)+£(x)) g < J 10 dr> . (238)
0

Let g € [2, 00). By Lemma 2.14, a proper choice of the Cameron-Martin space valued process

E

J G@;'(dB, - @,1,)
0

(, gives

sarl) ) g1 /20 | )
e < lol. [E(J 18 dr) < —meCmaE LR p], - (239)
0

Vs
where the constant C(m,q,r, K7) is given by (2.18).

By Lemma 2.5, for any y > 1, there is a constant ¢, = ¢,(&) such that

sup EX (1] {KC}ng@(XMd“) < ye’r < oo. (2.40)
xeM
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Now, we can estimate as follows: Let |v| < 1, then using Holder and Cauchy-Schwarz

4] 1/q
1/p 1/(29) s ) . 247 Vo)
< [|EX |a(XS)1]{S<C [|EX <|@ | {s<C) )] EX <J @; (dBu » @ufu)>
0

‘ _ - ‘ 47 11C0)
Z%: [E (Jal” (X, DT o)) ye“rc;/qe(K("”E(")) ” [[E <J |/Zr|2dr) ]
- 0

inequality,

|dP,a), | < [E¥ |a(X )T sty |'] ”” [[E

Q1. @ '(dB, - @1,

2. 7 -
( 29) ecl(r,c,,c;ﬂ)s + (K(x)+5(x)) 52 eCm2q.K™(x)s/2 g=112 ”
M

< VY, s)VO(x, 5) llalla,, )

where ¥(x, s) is given by (2.42). In particular, for p =2 = q the result follows.

1/p
“Ox, y) la(y)|” vol (dy)]

By an analogous calculation, we obtain the estimate (2.35). [ |

Using similar techniques as in the proof of the previous Theorem 2.27, we can show
the following estimate. Note that, in comparison to Theorem 227, the process U' in
Theorem 2.21 involves the derivative of the curvature which is now reflected in the local
bound Z(x, s).

Theorem 2.28. Leta € Q2(M)and R~ € K(M). Then, foralléE e T MQ \ T, M and s > 0,
(VP &) < 1€ B, O 5) lally ,ur) (2.41)
where
= o -312
E(x,s) 1= ¥(x,s) +s7Y(x,5) Jaax, IVR(»)I (2.42)
with ¥(x, s) defined by (2.42) and ®(x, s) is defined by (3.19).

Proof. As in the previous Proof of Theorem 2.27, we find

1/q

SAT(x,r) 5 q B
10| < [&], [E(J A du) < s712eCmarKOsi2 g (2.43)
0

where the constant C(m, q,r, K™) is given by (2.18).
Again using Gronwall’s inequality we get (2.37), and by

lo(X,(x))| € max |o(»)| < max |VR() P-as. on {s < 7(x,r)},
yeB(x,r) yeB(x,r)

we have

N
E J @;'o) @0, du
0

< e(K1+K2) s/2 max |VR(y)|s|«§| (2.44)
ye

By Lemma 2.5, for any y > 1, there is a constant ¢, = cy(@) such that

(1 A €0 <o
xeM
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As in the proof of Theorem 2.27, a similar calculation shows, using Holder’s inequality and
the elementary inequality (a + b)° < 271 @af + b°),

|(VPa).¢)] = [E (77 a(X ;001 s<c0)» @ Uspe )|

<2 ‘[E (//S_la(Xs(x))ﬂ <ol @t;eSAL) + ‘[E (//S‘la(Xs(x))ﬂ <o) (Q“;eﬁ)f)

p11ip M \? l/g @ \? 1/q
< [E|aX GV s ] <2 [[E (@s“{s<c<x>}€sm> ] + [[E (@sﬂ{s<¢(x)}€w> ]

Up  se. g (E(x)+5(x))‘s,2 s\ ven
<181 [E (lal? (XN (yerie )] P ve*rey e o[e([ o .

VR
+ <yégg§1)| (y)|> s

1/q - - _
< || Drerea™s + (Keork) s/z[ec(m,zq,g (CNsI2g-12 ( nBl?xl)lVR(y)I> S]X
yeb(x,

1/p
x UM POy |a(y>|1’volg(dy>]

< &1V Elx, 5) Y/ @(x, ) llellgy oo -

where E(x, s) is given by (2.42). In particular, for p = 2 = ¢ the result follows. [
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Chapter 3

SCATTERING THEORY FOR THE HODGE LAPLACIAN

Let (M, g) be a non-compact geodesically complete Riemannian manifold without bound-
ary. The Hodge Laplacian Aé,k) acting on differential k-forms carries important geometric
and topological information about M, of particular interest is the spectrum G(Ai,k)) of
A(gk). If M is compact, then the spectrum consists of eigenvalues with finite multiplicity.
If M is non-compact, then the spectrum contains some absolutely continuous part (cf.
[ ; l). A natural question to ask is to what extent can we control the absolutely
continuous part of o-(A(gk)) and under which assumptions on the geometry of (M, g)?

A systematic approach to control the absolutely continuous part of the spectrum
aaC(A(gk)) is inspired by quantum mechanics, namely scattering theory: Assume that there
is another Riemannian metric 2 on M such that £ is quasi-isometric to g, i.e. there exists
a constant C > 1 such that (1/C)g < h < Cg. We show that under suitable assumptions
the wave operators

k)

k k . it AR (k) AP k
WA, AL 1) = slim e 18)em8e P, (ALY

t—+o00

exist and are complete, where the limit is taken in the strong sense, and
1% 0k (M, g) = QK (M, h)
g’h . Lz > g L2 ’

denotes a bounded identification operator between the Hilbert spaces of equivalence
classes of square-integrable Borel k-forms on M corresponding to the metric g and &
respectively (cf. Theorem 3.5 and § 3.2 for details). Then as well-known, it follows in
particular that

k k
02 (A%) = 6, (A

Considering Laplacians acting on 0-forms, i.e. functions, on M, Miiller & Salomonsen
[ Istudied the existence and completeness of the wave operators corresponding to the
Laplace-Beltrami operator by assuming both metrics to have a C*-bounded geometry and
a weighted integral condition involving a second order deviation of the metrics. Hempel,
Post & Weder [ ] improved the result of [ 1 by assuming only a zeroth order
deviation of the metric g from A and a weighted integral condition involving a local
lower bound of the injectivity radius and the Ricci curvatures. However, detailed control
on the sectional curvature is needed to get control over the injectivity radii. In general,
injectivity radii are hard to calculate.

Recently, Giineysu & Thalmaier [ ] established a rather simple integral criterion
induced by two quasi-isometric Riemannian metrics only depending on a local upper
bound on the heat kernel and certain explicitly given local lower bound on the Ricci

63
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curvature using stochastic methods, namely a Bismut-type formula for the derivative of

the heat semigroup | 1
Considering Laplacians acting on differential k-forms, Bei, Glineysu & Miiller [ 1
generalised the previous results in [ ] for the case of conformally equivalent metrics

under a mild first order control on the conformal factor.

Using a similar method, very recently Boldt & Giineysu [ ] extended the result
of [ ] to a non-compact spin manifold with a fixed topological spin structure and
two complete Riemannian metrics with bounded sectional curvatures. As the metrics
induce Dirac operators D, and D, they can show existence and completeness of the wave
operators corresponding to the Dirac operators W,(D,,D,,I,,) and their squares
W.(D;, D2, I, ;).

In this chapter, we address the natural question: Can we extend the result of [ ] to the
setting of differential k-forms for two quasi-isometric Riemannian metrics?

We will show that this can be done if the Weitzenbdck curvature endomorphisms is in
the Kato class and assuming an integral criterion only depending on a local upper bound
on the heat kernel and certain explicitly given local curvature bounds. In addition, a
necessary assumption will be a bound on a weight function measuring the first order
deviation of the metrics in terms of the corresponding covariant derivatives V* and V¢
which is a one-form on M with values in End TM.

Therefore, we consider the Hodge Laplacian A,, also known as Laplace-de Rham oper-
ator, acting on the full exterior bundle Q(M) = I(AT*M), i.e. the complex separable
Hilbert space of differential forms on M. The Hodge Laplacian A, is related to the hor-
g = (V8)*V# by the Weitzenbock formula A, =0, - #,, where the
Weitzenbdck curvature operator #, € M(EndQ(M)) is a symmetric field of endomor-

izontal Laplacian O

phisms. In particular, when acting on 1-forms, .%tgr

B tr
tions, &y |QO(M’g)

taken operator norm | %

|laiare) = Ricg and, acting on func-

= (0. We assume that R, is in the Kato class, i.e. that the fibrewise

g|g (which is a Borel function on M) of &, is in the Kato class

cf. Definition Definition 2.3). We are now in the position to state our main result, cf.
p

Theorem 3.32 below.

Main result. Assume that g and h are two geodesically complete and quasi-isometric Rieman-
nian metrics on M, denoted g ~ h, and assume that there exists C < oo such that ‘5gvh‘ <C,
and that for both v € {g, h}, R, is in the Kato class and it holds

Jmax {6g’h(x), 5Y 1) + E(x, ), ¥, (x. s)} @, (x,5)vol (dx) < co,  somes>0, (3.)

where

« vol, denotes the Riemannian volume measure with respect to the metric v,

« ¥ (x,5) : M — (0,00) is a function explicitly given terms of local curvature bounds (cf.
(2.42) in Section 3.3) and a finite constant c¢,(R") (cf. (2.7) in { 2),
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E (s) 1 M — (0,) is a function explicitly given in terms of ¥ (x, s) and an additional

local bound on the derivative of the curvature (cf. (2.42) in { 2),

¢« @ (,5): M — (0,00) is a local upper bound on the heat kernel acting on functions on
(M, v) (cf. (319) in § 3.2),

« 845 - M — (0,00) a zeroth order deviation of the metrics from each other (cf. (3.14) in

§32),

. 6:}1 : M — [0, ) a first order deviation of the metrics (cf. (3.15) in § 3.2).

Then the wave operators W.(A,, A, 1, ) exist and are complete. Moreover, W_. (A, A,, I, ;)
are partial isometries with initial space ranP,.(A,) and final space ranP,.(A,). In particular,

aac(Ag) = Gac(Ah)-

We will see that a zeroth order deviation 4, , of the metrics from each other is induced
by quasi-isometry. In comparison to the case of 0-forms, i.e. functions, it turns out that
working on higher degree differential forms, also a first order deviation of the metrics
Sy =1|V"- Vg|§ is necessary. But note that V" — V¢ is a one-form on M with values in
EndTM.

Remark 3.1. In contrast to previous results, it seems that we are the first to assume
global curvature conditions in terms of the Kato class, more precisely, that the Weitzen-
bock curvature endomorphism is in the Kato class.

To this end, our strategy is to verify the assumptions given by a variant of the
Belopol’skii-Birman theorem 3.5 which is adapted to our special case of two Hilbert spaces.
The main technical difficulty is to show that the operator

gh _ 4 (k) sA® sad A INSING)
Ty =A,¢"n I, % —en I, 077 A,

is trace class. As the product of Hilbert-Schmidt operators is trace class, our idea is to
decompose the operator T¢" in such a way that the terms only consist of (transformed)
derivations of Hilbert-Schmidt estimates and bounded multiplication operators. In com-
parison to the corresponding decomposition formula in [ , Lemma 4.1], the analysis
becomes considerably more difficult because the quadratic form associated to Aglk) in-
volves not only the exterior derivative d®  but also the codifferential Gglk) which depends
on the metric by definition. Moreover, we encounter quantities transformed by a smooth
vector bundle morphism &, , induced by the quasi-isometry (cf. (3.9) below). Using the
quasi-isometry of the metrics we can give a formula how to express the codifferential §,
with respect to the metric & in terms of the codifferential 8, in terms of g (cf. Lemma
3.15). Using the metric description for the exterior derivative and the codifferential (cf.
Lemma 3.21), we can express the corresponding quantities transformed by &, , solely in
terms of the covariant derivative V¢ of g applied to the semigroup (cf. Proposition 3.25).

Our tool to obtain the Hilbert-Schmidt estimates for various derivatives of the heat
semigroup will be derived probabilistic Bismut-type derivative formulae for the exterior
derivative, codifferential and covariant derivative (cf. Theorem 2.27 and 2.28) following the
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ideasin| l. The gradient estimates are then a direct consequence, and the probabilistic
formulae used provide us, in particular, with explicit local constants.

We first look at total differential forms, then finally everything filters through the
form degree to differential k-forms. The particularly important case, in which two quasi-
isometric Riemannian metrics differ by a conformal metric change, is a direct conse-
quence of our main result.

Because our result is independent of the injectivity radii we have the following appli-
cation to the Ricci flow. Let R, be the Riemannian curvature tensor with respect to the
metric g and set dim M =: m.

Corollary 3.37. Let .S >0, A € R and assume that

(a) the family (g)o<s<s C MetrM evolves under a Ricci-type flow

0,8, = ARich, VO<s <SS,

(b) the initial metric g is geodesically complete,

V&R

s

(c) there is some C > 0 such that |RgS

<C  YO<s<S.
&s

’

8s
We set, for all x € M,

M, (x) := sup { ‘Ricgs(v, u)‘ 0<s<S, veT,M, Jul, < 1},
My(x) := sup{ ‘Vis Ric, (u, 10) + VS Ric, (v, w) + V& Ric, (u, u)‘ L 0<s<S,
u,o,weT M, |u|g5 , |U|gs , |w|gs < 1}.

Let B,(x, r) denote the open geodesic ball (with respect to g). If

{VolgO(Bgo(x, 1))~! max {sinh (%S 14| Ml(x)> , Mz(x)} vol (dx) < oo,
then o,.(A, ) = 0,.(Ag) forall 0 < s < S.
Thereupon, we reify our main results to the case of global curvature bounds: The cur-
vature operator (with respect to the metric g) Q, is uniquely determined by the equation
(Q(X AY)UAV), = (R(X.VU.V),

for all smooth vector fields X,Y,U,V € M-«(TM). By the Gallot-Meyer estimate | ],
a global bound 0, > -K, for some constant K > 0, already implies that the curvature
endomorphism .%(gk) in the Weitzenbock formula (1.11) is globally bounded by
R > —Kk(m - k),

Then the function E,(x,s) can be bounded from above by

2
=1 VER
0,(x) ( + 2 | g(y)|>

up to constants uniform in x. In this case, our main result reads as follows.
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Theorem 3.44. Let Q, > —K, for some constant K > 0 for both v € {g, h}. Let g, h € MetrM

such that g ~ h and assume that there exists C < oo such that 5;;1‘ < C and that for some

(then both by quasi-isometry) v € {g, h}

J max { 8, 4(3),5,,(0) + O () } ®,(x, ) vol, (@) < 0, some s > 0.

Then the wave operators W, (A, Ay, I) exist and are complete. Moreover, W, (Ay, A, T)
are partial isometries with initial space ranP,.(A,) and final space ranP,.(A,), and we have
O-ac(Ag) = Gac(Ah)'

A direct consequence and additional application of our main result is the particularly
important case of conformal perturbations under local and global curvature bounds, gen-
eralising the results in [ 1

A final application is provided through a result by Cheeger, Fukaya and Gromov [ ]
known as Cheeger-Gromov’s thick/thin decomposition: On any complete Riemannian m-
manifold (M, g) with bounded sectional curvature |Kg| < 1, there exists a Riemannian
metric g, on M such that g, is e-quasi-isometric to g and has bounded covariant deriva-
tives. Hence, in this case, the assumptions of our main result may be suitably relaxed, cf.
Theorem 3.46.

Let us end the introduction with a short outline of this chapter. § 3.1 briefly motivates
und introduces the notion and necessary definitions of the wave operators and the abso-
lutely continuous spectrum. § 3.2 introduces the necessary notation and deviation maps.
In § 3.3, we use the gradient estimates proved in § 2.4, to derive similar estimates for exte-
rior derivative, codifferential and covariant derivative of the heat semigroup deformed by
a smooth vector bundle homomorphism relating the two quasi-isometric metrics. Our
main results are explained in § 3.4. After this, we prove the main result in § 3.5 by making
use of a slight variant of the abstract Belopol’skii-Birman Theorem 3.5. We close in § 3.6
with applications to the Ricci flow § 3.6.1, state the main result in the case of differential
k-forms 3.6.2, the particularly important cases of conformal perturbations § 3.6.3, specify
our results for global curvature bounds § 3.6.4 and e-close Riemannian metrics § 3.6.5.

3.1 Preliminaries and Motivation

3.1.1  Wave operators, existence and completeness We start this section with a brief
motivation on the definition of the wave operators. A comprehensive introduction of the
notions and results given can be found in e.g. [ , Chapter X1.3] or [ , Chapter XI.

Let Z be a complex separable Hilbert space. Given a linear operator H in & we denote
by domH c # its domain, ranS c Z its range, and ker H c # its kernel. Recall, by § 1.2,
that given a projection-valued Borel (probability) measure E : B(R) - £ (#°) and a Borel
function f : R - R by means of the spectral integral

f(P)= J JF(ADEWEA)
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defines a densely defined operator f(H) in #. Then f(H) is bounded if and only f is
bounded on the spectrum o(H) of

H= J AE(dA). (3.2)

By the Spectral Theorem 150, for every self-adjoint operator H in 7 there is a uniquely
determined projection-valued Borel (probability) measure E on R satisfying (3.2). For
some arbitrary Borel function f, we set f(H) := f(Ey). If H is self-adjoint in #, then for
every y € dom #, the path

Rt y() = ™My ek

is the unique (norm-)differentiable solution to the abstract Schrddinger equation
d
dt
If H is also semibounded, then for every y € #

y() =iHy@®), wO)=w, (eR).

[0,0) D1 w() i=eMeH

is the uniquely determined continuous solution, differentiable on (0, ), to the abstract
heat equation

%w(t) = Hy(). wO) =y, (eR).

By Stone’s Theorem 1.52, (e""')s>0 gives rise to a the semigroup of operators called the
heat semigroup of H.

Besides the explicit approach of studying the corresponding scattering matrices, an-
other approach to scattering theory does not involve solving the Schrédinger equations.
Physically we investigate the time evolution of a particle coming from a region where it
interacts with a perturbation potential and leaving this region again. The particle looks
asymptotically free for t - +oo if the potential is negligible outside this region, so there is
less (or almost no) interaction at large scale. For example, quarks interact weakly at high
energies.

Now, let H; and H, be self-adjoint operators in Hilbert spaces #,, the free, and #,, the
interactive system. By Stone’s Theorem 1.52, they generate unitary evolution semigroups
Ul =e ™ and U? = e ™2, Let ¢, :=e7™2f, @, = f be the solution to the Schrédinger
equation. Moreover, we define an identification operator I : #, — €, connecting the
free and the perturbated system.

A quantum state @, € &, looks asymptotically free as t — oo if we expect to have

1’+ = o
o= 1o Hyf — 0

3%19(0t’ =¢ " lfl . ‘
2

—itH,

Thus, by the definition of (p,l’+ and using that e is unitary, we get

&= (1 = ™ e )| 2, 63)
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This gives rise to the so-called wave operators W, : # | — #,

t—>+00

dom W, := {(p € &, : lim e™M21e"™M1y exists in the strong sense in %‘2}
(34)

W, :=slime™re™igp Vo edomw,.

t—>+o0

The wave operator W, maps every «free state» f1+ to the corresponding «scattering
state» f. If W, exists, then every state in its range eventually moves «freely» in the
sense of (3.3). Although it might be physically more natural to define the wave operator
as the inverse of W, it is a priori unclear which states are scattering states (and hence
the domain of definition of such an operator). By the very definition (3.4) we can answer
this question by controlling the range of W,. Analogously the wave operator W_ reflects
the behaviour in the «distant past».

Further, from a physical point of view, only the action of W, onto certain subspaces
of the Hilbert spaces are relevant: For some h € # in a Hilbert space #, we take u,
to be the corresponding spectral measure of # on the spectrum o(#’). By Lebesgue’s
decomposition theorem (cf. e.g. [ , Section 6.9, The Theorem of Lebesgue-Radon-
Nikodyml]) there is a unique decomposition of y;, into three mutually parts

Hp = Hyc S Hgse @ Hpp»

the absolutely continuous p,, part (with respect to the Lebesgue measure), the singular
part u,. (with respect to the Lebesgue measure which is atomless), and the pure point
measure .. By the Spectral Theorem 1.50, from this we get a decomposition

%z%ac®%5c®%pp> (3'5)

where 7, consists of vectors whose spectral measures are absolutely continuous with

respect to the Lebesgue measure. Analogously, we define # . and #,,, respectively. The

pp’
singular subspaces #'s., #,, describe physically irrelevant states whereas # . relates to

the scattering states. We therefore make the following definition.

Definition 3.2. Let H; and H, be self-adjoint operators on Hilbert spaces #, and &,
respectively, I : &, — €, be a bounded operator and P,.(H,) be the projection onto the
absolutely continuous subspace of H;. The (generalised) wave operators W, (H,,H,, I)
exist if the strong limits

W.(Hy. H,. I) = s-lim eMare=i™Mip (H))

exist.

Note that W, (H,,H;,T) may not be isometries. A further assumption is that each
scattering state looks asymptotically free which is reflected in the next definition.

Definition 3.3. Suppose that W _(H,,H;, I) exist. We say that they are complete if and
only if

(ker W (H,, Hl,I))l =ranP,.(H)), ran W_(H,,H,, I) = ranP, (H,).
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Moreover by the decomposition (3.5), the spectrum o(H) of H also splits into three parts
given by
o(H) = o, (H) Vo, (H)Uo,,(H),
where
(i) o,.(H):=0(H,.) is called the absolutely continuous spectrum of H,
(i) o (H) :=0o(H,.) is called the singular spectrum of H,
(iii) opp(H) is the set of eigenvalues of H, called the pure point spectrum of H.

More precisely, given a self-adjoint operator H in a Hilbert space # with its operator
valued spectral measure E,, we define the H-absolutely continuous subspace 7#,.(H) of
J to be the space of all f € # such that the Borel measure ||EH(-)f||2 on R is absolutely
continuous with respect to the Lebesgue measure. Then #,.(H) becomes a closed sub-
space of # and the restriction H,. of H to #,.(H) is a well-defined self-adjoint operator.
So the absolutely continuous spectrum o,.(H) of H is defined to be the spectrum of H,_.

The following, fundamental theorem provides a criteria for the existence and complete-
ness of the wave operators that can be found e.g. in [ , Theorem X1.13].

Theorem 3.4 (Classical Belopol’skii-Birman Theorem). Forj = 1,2, let H; > 0 be self-adjoint
operators in a Hilbert space # ;, q; the corresponding sesquilinear form, and P,.(H;) the pro-
jection onto the absolutely continuous subspace of # ; corresponding to H;. Assume that
I € &(F,, #,)is a bounded operator such that the following assumptions hold:

(1) I has a two-sided bounded inverse
(2) For any bounded interval J c R:
En,(J) (Hyl — TH, ) Ey (J) € F1(H ), H5)

(3) For any bounded interval J, the operator (I*I — 1)E;(H,) € F®(#,), i.e. is compact
(4) and either

I domH; = domH, or I domq; = domgq,

Then the wave operators W_(H,,H,, I) exist and are complete. Moreover, W_(H,,H,, I) are
partial isometries with initial space ranP,.(H,) and final space ranP,.(H,), and we have

Tac(Hp) = 05 (Hy).

In the proof of Theorem 3.32, we will use a variant of the Belopol’skii-Birman Theo-
rem 3.5, which is adapted to our special case of two Hilbert space scattering theory,
originally to be found in [ 1

Theorem 3.5 (Belopol'skii-Birman). For j = 1,2, let H; > 0 be self-adjoint operators in a
Hilbert space Z ; and P,.(H,) the projection onto the absolutely continuous subspace of 7 ;
corresponding to H;. Assume that I € &(#,# ,) is a bounded operator such that the
following assumptions hold:
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(1) I has a two-sided bounded inverse
(2) We have either I dom 4/H, = dom y/H, or I domH; = domH,
(3) The operator (I*I — 1)e™*H1 . | — %, is compact for some s > 0

(4) There is a trace class operator T : J, — #, and a number s > 0 such that for all
a; € domH,;, a, € domH, we have

(@, Tay) g, = <H2azve_5Hzle_SH1a1>%2 - (062,<=fs"'2I<-“:‘S"'1Hlozl)%,2 _
Then the wave operators
Wo(Hy. H,. 1) = s-lim eMare=i™Mip (H))

exist and are complete, where completeness means that

(ker W,_(H,, HI,I))l =ranP,.(H)), ran W, (H,, H;, I) = ran P, (H,).

Moreover, W, (H,,Hy, I) are partial isometries with initial space ranP,.(H,) and final space
ran P,.(H,), and we have

oac(Hp) = 0,c(Hy).

Proof. In view of Theorem 3.4 and the proof in [ , Theorem X1.13], it remains to show
that for every bounded interval J the operator (11 — DEy, (J) is compact, and that there
exists a trace class operator T € £1(#,, #,) such that for every bounded interval J and
all a;, @, as above we have

(f.Tay)gp, = <H2a2, EHz(J)IEHl(J)a1>W - <a2, EHZ(J)IEHl(J)H1a1>%

2 2

However, using that for all self-adjoint operators H and all Borel functions f,g : R - C,
we have

F(H)g(H) c (fg)(H), dom(f(H)g(H)) = dom(f(H)g(H)) N domg(H),
the required compactness becomes obvious, and furthermore

T :=¢MEy (N)IME, ()

has the required trace class property. [
By a classical result of Kato (cf. [ , X. Perturbation of continuous spectra and unitary
equivalence] and [ , p- 534, Theorem 3.5.] therein), Theorem 3.5 implies

Theorem 3.6. Assume in the above situation that the wave operators W, (H,, Hy, I) exist
and are complete. Then the operators H, ,. and H, ,. are unitarily equivalent. In particular,
we have

O-ac(Hl) = O—ac(HZ)'
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3.2 Setting and Notation

In the remainder this chapter, we must carefully distinguish between the underlying
quasi-isometric complete Riemannian metrics g and & in the notation.

Therefore, let (M, g) be a complete smooth Riemannian manifold without boundary
of dimension m := dim M > 2 and (.,-), its Riemannian metric. We write vol, for the
corresponding volume measure (with respect to the metric g) and denote by MetrM the
set of all smooth Riemannian metrics on M. All bundles will be understood complexified,
e.g. the full exterior bundle

m
AT*M = @ A¥ T*M,  with the usual convention A\” T*M = C. (3.6)
k=0

Given smooth complex vector bundles E; - M and E, - M the complex linear space of
smooth linear partial differential operators from E; to E, of order < k € N, is denoted
by @ (M; E,, E,), with shorthand notation @ (M E,) if E; = E,. On a vector bundle
E —» M (e.g. E = A\"T*M) the corresponding fibre norms are denoted by

lol, = (o, (p)é/z for any section ¢ € I'(E),

where I(E) := N~ (E) denotes all smooth sections of E and M 2(E) the L2-section of E.

In the case of E = A" T*M, we indicate the corresponding form degree by an index:
For example, V&® or (., -)g‘) etc.

We denote by Q2(M,g) := F2(AT (M, g)) the complex separable Hilbert space of
equivalence classes a of square-integrable Borel forms on M such that

lall? = el yoar g = jM a2 vol,(dx) < oo,

with inner product
(@) 1= (@ Papane = | @A) vol, ().

Analogously, we write Q’EZ(M,g) for the Hilbert space of Borel k-forms. In particular,

m
Q:2(M.5) = PO, (M. 0).
k=0

To relax notation, we set

Q(M,g) :=Qce(M,g) and QM. g) := QL. (M, 9).
for the set of all smooth forms, and smooth k-forms respectively, on (M, g).

Further, for some a € Q'(M), we denote by
enae DOM; N T*M, N T M)
the exterior product and its formal adjoint with respect to g, the interior multiplication,
by
o a:=(0rn) e DOM N T M N T M),
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The interior multiplication corresponds to the contraction of a € Q¥(M) with a vector
field X € I(TM) and is an antiderivation, cf. Definition 1.35.

We denote by
d® e OM; AT M, N T M)
8 € dO(M; AF T M, AN T M)

the exterior derivative on k-forms and, respectively, the codifferential as the formal ad-
joint of d*~1_ Then the Hodge Laplacian can be written as the sum

(k) . (k+1) -1 k) N
AP = (sg d® 4 gD ) e POM; N T M)
and its Friedrichs realisation in Q’Ez(M,g) will be again denoted by A(gk) < 0. In particular,

for k = 0, we recover the special case of the Laplace-Beltrami operator acting on 0-forms,
i.e. functions,

AY = -8'd0 e 2O (m).

Furthermore, we set

d :=@Pd» e 2V M; AT M)
k=0
m
k *
5, := P8, € 2VMN\T M)
k=0

and define the underlying Dirac-type operator D,, and the (total) Hodge Laplacian A,

D, :=d+8, € VM AT M)

A, :=-D; € DOM; \T*M)
where the Friedrichs realisation of A, in Q’Ez(M,g) will be again denoted by A, < 0. In
particular,
Bolakiny = A € PP AT )
and

m
A, = @ AP as self-adjoint operators.
k=0

Since g is (geodesically) complete, it follows that the operators D,, A,, Afgk) are essentially
self-adjoint on the corresponding space of smooth compactly supported forms [ 1

Next, recall that for the k-fold exterior product of the vector space T*M, we obtain a
scalar product (,-), on A¥ T*M by the bilinear extension of

(@) A Ao, By /\.../\ﬂk)g = det (aj,ﬂ,)g. (3.7)
Any A € End(T*M) induces a linear map

A A, = Aoy A LA Aay,.
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As A" T*M is one-dimensional, the map A™ A is given by multiplication with a unique
number, denoted by det A,

"Ale; A...Ne,) = (det A)e; A...Ae,,
1 m 1 m

where (e, ... ,e,,) is a basis for A" TiM.

A Riemannian metric (4, v), = g(u, v) for u,v € T, M gives by definition an inner product
on each tangent space T,M (x € M). By Riesz’ representation theorem, g provides a
natural isomorphism between tangent and cotangent bundle given by v = (v,),,

™ % TM.
More precisely, we define the sharp operator £ (with respect to g) by
g8 :T"M - TM, a(v) = g, v).
The Riemannian metric g defines a metric g on T*M, the cometric, via
gla.p) 1= ga® %) Va,feTiM Vxe M,

which extends to a metric on A*T*M according to (3.7).

Given g, h € MetrM, we define a vector bundle morphism

A=Ay, :TM —TM,  h(uv)=g(Auv), VxeM VYuveT M. (3.8)
Note that the vector bundle morphism A = A, , induces a vector bundle morphism on

the cotangent bundle via

A:T"M — T*M, a Aa i=ao A.

Lemma 3.7 (and Definition). In terms of the notations above, we have
h(a,p) =g(A \a,f) Va,peT:MVxe M.
Extending A™' = A7} to a smooth vector bundle morphism by
A=, 00 :=(NA) : A\T'"M — AT'M,  da:=a-d, (3.9)
we obtain

g(d, (), p) = h(a, f) for xe M, a,pe NT:M.

In the following the induced metrics will be understood complexified (conjugate-linear
in the first variable and linear in the second).

Remark 3.8. (i) By the positive-definiteness of & (or g), &, ,(x) has only positive eigen-
values (x € M). By the symmetry of g and A the endomorphism &, , is fibrewise
self-adjoint with respect to g and h. Therefore, the fibrewise operator norm |[-|,
(or |-|,) induced by the metric g (or h) of & is equivalent to absolute value of the
largest eigenvalue on the given fibre for both g and A. Thus to relax notation, we
may suppress the metric and simply write |&|.
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(ii) By the very definition, &'/ is a (pointwise) isometry from (A T*M, g) to (A T*M, h).

Proof of Lemma 3.7. We prove the Lemma in several steps.

1° We calculate the sharp operator in the new metric. For x € M, let v € T, M and
a € Ty M. By duality,

g (Olﬂg, U) =a()=h <aﬁh, v) =g (Aaﬂh, U) = a’® = Aaﬂh, (3.10)
forallv e T, M.
2° Let a,f € TiM, then
hiap)=h(a® p")
= g (A" ") = g@®', AP*) = g(A7 ¥ pF) = gla e A7, p),
where we used that A~ o = (ao A‘l)ﬁg in the last equality.
3° For any a, f € QX(M),
h(a,p)=nh (afh A A aih, ﬂfh A A ﬂ£h>
(37) th fh
2 det (ak B )h
= det (4af" 5"
g
"2 det (aﬂg,A_lﬁlﬁg)
g
2 det (A7 ajf, ¥
s.a. g
=g (A‘lafg A A A‘laig,ﬂfg A A ﬁ£g>
=g(/\"A—1 (al/\.../\ak),ﬂl/\.../\ﬂk> — o (da,p). m

The following estimates are necessary tools for the main proof noting that it is inde-
pendent of the quasi-isometry of g and A.

Lemma3.9. Letd := A, , be the smooth vector bundle morphism defined by (3.9). For any
vector field X € T(TM), we get

4 _ h g h & \*
Vi =V - Vi) +(Vh - V) A,
and the pointwise estimate

V5|, <21V} =V (3.1)

|g’

where ||, denotes the operator norm induced by the inner product g.

Proof. We divide the proof into two steps.

1° Differentiating the identity

(ae ﬁ)h = (d(l, ﬂ)g
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in direction of X, on the one hand,
X (@.p) = (V. ), + (@ ViB),
= (.sle’)’(a,ﬁ)g + (La, V2 )g

and on the other hand,

X (da,p), = (Vi(da).p), + (La,VP),

= (Vi p), + (V5. p), + (Lo, V5 B), .

Hence,

((Vi&!)a,ﬂ)g = (V2 - vi)a,ﬂ)g + (a, AV - vi)ﬂ)g,
using the self-adjointness of &.

2° We estimate

|V§(&1|g < sup

[v],|w]<1

< sup (‘(.SZY(V§(—Vi)vaw)g‘+‘(U’&1(V?(_V§()w)g|>

lol,|wl<]

<20 |Vh - V5

((Vi&[)v, w)g’

- n

Lemma 3.10. Llet & := &, be the smooth self-adjoint vector bundle morphism defined by
(3.9). Then also A" and, for any X € T(TM), V5 o' are self-adjoint.

Proof. By definition, the smooth vector bundle morphism & is self-adjoint, so clearly is
el

Let X e [(TM) and y : (-¢,6) > M be a smooth curve y(0) = x and y7(0) = X for any
€ > 0. By Lemma 1.23, for any Y, Z € (TM),

d -
(Twar'®0.2), = |, (1 a6500.2),

_d 1 g2 _ 12
=<| (v .szty(,)(Z))g = (v.Vyt'(2)),.
using the self-adjointness of of!/2. |
We point out that a similar argument was recently developed in [ ] to prove the

estimates in the following

Lemma3n. Letd := o, , be the smooth vector bundle morphism defined by (3.9). For any
vector field X € F(TM), we get the pointwise estimates

Vi 2|, <1l |71 [V = Vi,

Vit ™2, <1t~ [V}, - V5

g’

where ||, denotes the operator norm induced by the inner product g.

Proof. We divide the proof into three steps.
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10

20

30

Recall that &'? is an isometry, so that
(.5211/2(1, dl/za)g = (a, a)h .
Differentiating the identity in the direction of X, on the one hand

B

X ("0, d"a), =2 (Vi (@), o'Pa) +2 (" V50, o1a),

whereas, on the other hand

X(a,a), =2 (Vf)'(a,a)h =2 (.dV?(a,a)g .

Thus,

(Vi Pa ' Pa) = ("o (Vi - V5) a.o'Pa) . (3.12)
By Lemma 3.10 &' is self-adjoint so is Vﬁ(&lm. So, let A be an eigenvalue of Vi.szl”z
with |4 = [Vi&'?| at a fixed point x € M. Let v € T,M be a corresponding

g-normalised eigenvector. We estimate
‘(diidmv, U)g‘ _ ‘(dl/ZU’ U)g‘ _ |V§(&{1/2|g ’(.szi”zv, U)g‘
> |V§d1/2|g |d‘1/2|_1 ,

where we used that &, hence &'2, has only (strictly) positive eigenvalues: More
precisely, since &'/ is self-adjoint, there are eigenvalues A, and 4,,,, of &'? such
that

/lmin(dllz) < (dl/Zu’u)g < /lmax(dl/Z).

By definition, the smooth vector bundle morphism & has only strictly positive eigen-
values, so does &' and we have that (&'”u,u), > 0. Moreover, the eigenvalues of

-172 : - 1
&~ "7 are just given by i) and thus

1 _ —
|d1/2| 2 )”min('dllz) = /lmax(d_llz) = |'Qi 1/2| 1'

Hence the first estimate follows:
1 12
| sup

lol<1

Vi ], < |

(d1/2V§(.szf”zu, U)g‘

a1 sup [(ot o (V- V) 0.0), |
lvl<l
-1 172 h_ ug
< [T 11|V - V],

Covariantly differentiating the identity
A= g2, g2 — s g2, g2 128 g-112
id=o "o A = 0=V, oA+ AV ST
Thus,
g g-12 _ _ og—12g8 g2 g—112
VI = ATV A e AT,

and the second estimate follows from part 2°. |
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Definition 3.12. A smooth Riemannian metric 2 € MetrM is called quasi-isometric to g,
denoted g ~ h, if there exists a constant C > 1 such that (to be understood pointwise, as
bilinear forms)

—g<h<Cg.
Cg g

Obviously, denoting by 0 < p, , =: p € C*(M) the Radon-Nikodym density, i.e.
dvol, = pg,hd VOlg,
the following identities hold
Phg = Pgpp HIng =y pep=(et A2, 0<infp,, <suppy, <co.  (313)
We now define the zeroth order deviation of the two metrics (considered as multiplica-

tive perturbations of each other) as

AT 275 M- (0,00), (314)

m
6, ,(x) :=2sinh| — max logA] | = max
gn®) <4 Aea(Ag,h(x))l . l) A€(Ayp(x))

symmetric in g and h by quasi-isometry, i.e. ,, = J,,. We will make use of the fact
[ , Appendix A] that
sup 5g’h(x) <o << g~h.

The definition is becoming clearer in the proof of the main result in Section 4. Moreover,
let

67,(x) 1= |V = vg|§(x) : M — [0, ) (3.15)

be a weight function defined in terms of the corresponding covariant derivatives V" and
V¢, defined in terms of the operator norm induced by the inner product g.

Remark 3.13. Recall that by Proposition 1.17, the difference of two connections V" — V¢
is a one-form on M with values in End TM, i.e.

V- V8 e (T*M ® End TM).

Example 3.14 (Conformal metric change). Let h :=g, be a conformal perturbation of
g ie. we set g, :=e*g for some smooth function y : M — R. We take A :=e?”, s0
A7l =e ¥ and

8, () =2 sinh% lw(x)] .
Hence,
g~h < yw Dbounded
By (3.36d), for any smooth vector field X,Y € I (TM), we have

(V? - Vi) Y =dy(X)Y +dy(Y)X — (X.Y), grad, y. (3.16)
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By norm equivalence on finite dimensional spaces, we can work with the Hilbert-Schmidt
norm for the calculation. Let (X;)?", a smooth local g-orthonormal frame of vector fields.
Then in local coordinates,

m

|d‘V|§®Hs = Zl | Xiw
i=

2

B

m
| Vv — Vg|§®Hs = 'kZI (V& — VE) (Xj’Xk)|2
J’ =

2
m
= ) XWX+ X)X, =8, Y (X)X,
Jj.k=1 i

m
Y 2|xwX, + XX+ Y [ Xl
Jj<k i=1
so that
ldy |2 S |Vév — vg|z =5y,

Next, we give a formula how to express the codifferential §, with respect the metric 2
in terms of the codifferential 8, in terms of g.

Lemma 3.15. Llet of := o, be the smooth vector bundle morphism defined by (3.9). Then
the codifferential with respect to the metric h is given by

8yn =" (8,(n) —dlogp -, (An) Vi€ Qce(M).

Proof. For any 7, € Qcw(M), 1, € Qe (M), We calculate

d
<771, oA (ag(d’h) —dlogp ¢ (-91712)) >h = <P'Q{’71, oA <6g('d’12) - 7'0 —¢ (dﬂ2)>>

g

= (1. p8,(n,) —dp =, (Any)),

= (d(pn,). Lny), — (dp A1y, Ay),

=(dp Any, Im), + (pdn,, dn,), — (dp Any, dn,),

= (dn;,m),

where we used that & is fibrewise self-adjoint. [

In the proof of the main result, the gradient of the logarithm of the Radon-Nikodym
density p, , can be estimated in terms of smooth vector bundle morphism &, , and 5th
which is reflected in the next Proposition 3.19. Therefore, we note two auxiliary lemmas.

Lemma 3.16. Let A, B be two complex m x m-matrices. Then,
[tr(AB)| < ||Allgs I Bllgs

where ||-||g denotes the Hilbert-Schmidt norm.
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Proof. Let A, B be two complex m x m-matrices with singular values

61(A) 2 0,(A) > ... 2 6,(A) of A and
6,(B) =2 06,(B) > ... > 0,,(B) of B.

Then, with the Hilbert-Schmidt norm ||-||ygs,

oAl = 4| D_67(A) = Vir(A*A) =: || Allys (317)
i=1

by norm equivalence on finite-dimensional vector spaces. By the well-known von Neu-
mann trace formula [ ], we get

[tr(AB)| < ) 0;(A)o;(B)

i=1
= (6(A), 6(B))gnm
< eIl lleB)l = | Allgs [ Bllgs »

where we used Cauchy-Schwarz for the first inequality and (3.17) in the last equality. W

Lemma 3.17 (Classical Jacobi’s formula). Let A = A(t) an m x m-matrix parametrised by t. If
A is invertible, then

d _ 14 )
1 det A() = det A(1) tr (A(t) LA0). (318)
Next, we extend the classical Jacobi formula to our setting.

Lemma 3.18 (Jacobi’s formula). Let A := A, , be the smooth vector bundle morphism de-
fined by (3.8) (x € M). Then, for any X € [(TM),

d(det A)X =det A tr (AT'V4A).

Proof. For e > 0, let y : (—&,6) > M be a smooth curve on M such that y(0) = x and
7(0) = X. Then, computing the differential using a velocity vector,

_d _ -1 d
d(det A), X = T det A1) _ = det AGr(0) tr (A TAG0)|

= det A(y(®) tr (AGy()™" V0 AG@)] _,
= det A(x) tr (A(X)"'VyA()),

using Lemma 3.17 in the second step. |
We are now in the position to prove the aimed estimate of the Radon-Nikodym density.

Proposition 3.19. Llet & := o, be the smooth vector bundle morphism defined by (3.9) and
p = (det A)'? the Radon-Nikodym density defined by (3.13). Then we can estimate as follows:

|dlog pl, < C(m) || |VEL|, .
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Proof. We first remark, that for x e M,
dim A TEM = (’Z) —  dmATIM =2" <

is finite-dimensional. Recall that the Radon-Nikodym density p is given by p = (det A)!/2.

By Jacobi’s formula, Lemma 3.18 above,
d(log p), X = %tr (A 'V AX)).
Hence, using Lemma 3.16,
| dog ), X | < 3 4G s VA | g
<Cm) [AC)™| [V AW,
<Cm) |7 |[Vx A,

by norm equivalence on finite-dimensional spaces. [

3.3 Gradient Estimates by Bismut formulae

For every g € MetrM,
(P),o0 i= (e‘zAg) _, C L @M. g)
S

is the heat semigroup defined by the spectral Theorem 150, choosing f : R — R,
f(A) :=e""* Let us denote by

(0,00) X M x M 3 (5,%,y) = pS(x,3) 1= ¢ 22%(x, y) € Hom (A T:M, A TiM)

the corresponding jointly smooth integral kernel of P{. The smooth representative of
P.a(x) is given by

Pa(x) = J e™2%(x, y)a(y) vol,(dy).
M

By Theorem 1.63 (iii) we have

J |pf(x,y)|§ vol,(dy) < oo, Vs>0Vxe M.
M

The form degree k will be indicated again by round brackets o0 Finally, we set
0
®y(x, ) 1= sup p{ Ox, ), (3.19)

indicating the minimal heat kernel pf’(o) acting on O-forms, i.e. functions. Then it is well-
known that, for all (x,s) € M x (0, ), it follows that ®,(x, s) < co. One can even show

[ ] that

sup d>g(-, s) < oo Vs >0VK c M compact.
K

Remark 3.20. Note that the gradient estimates proven in {f 2.2 and 2.3 extend naturally
to the complex setting since complexifications are norm preserving.
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We will now make use of gradient estimates for the covariant derivative of P¥, Theo-
rem 2.28, and derive similar estimates for the exterior derivative and codifferential trans-
formed by the smooth vector bundle morphism &, , defined in (3.9). The key observation
will be Proposition 3.25 showing how to estimate the transformed codifferential 8, (with
respect the metric g) applied to the semigroup in terms of covariant derivative V¢ of
g applied to the semigroup. In addition, using Lemma 3.15, a direct consequence is an
analogous result (cf. Corollary 3.28) in terms of the new metric, i.e. for the transformed
codifferential §, (with respect the metric /) applied to the semigroup.

To this end, we will make use of the well-known metric descriptions of the exterior
derivative d and the codifferential 8, (with respect the metric g) from Proposition 1.36
adapted to our setting, namely:

Lemma 3.21. Llet ey,... e, (Where m = dim M) be a local orthonormal frame for T,.M
(x € M)and €', ..., ™ be its dual coframe, i.e. € (e;) = 5. Then

m

m
d=) AV and §,=-) ¢ V. (3.20)
i=1 i=1

Let o := 4, , be the smooth vector bundle morphism defined by (3.9).

Proposition 3.22. Llet a € Q2(M, g) and @g € K(M, g). Then, for any orthonormal frame
(e)iL, for T,M (x € M) and dual coframe (si)lf"zl, we decompose
m
d( A"’ Pa) = Z (€' A VfiPsa o' + € APao (Vf’,dm)) .
i=1

Proof. From (3.20), we get for any n € Q(M)

m m
d(d]/zn) — d(ﬂ ° dl/Z) — Z gi A Vgl”l ° dl/z + Z 8[ A 7o V‘gidl/z’

i=1 i=1
where (¢)) | denotes an orthonormal frame for T, M (x € M) and (¢')_, the dual coframe.
In particular, for # = P,a the claim follows. [ |

Corollary 3.23. Lleta € Q2(M,g) and @g e K(M, g). Then,
_ 2 —_
|.szi 1’zd(.sz"llzPsar(X))|g S <5Zh(x) + E,(x, S)) D, (x,s) ||0!||§2L2(M,g)- (3.21)

Proof. By Theorem 2.28, we have
> & AVEPao A" < Clm) | (x)| E,(x, )@, (x, 5) ||05||§2L2 Mo
i=1

g
and, combined with Lemma 2.5 and Lemma 3.9,
Z e APao (Vfi.szll/z) < C(m,y,c,,s) |ngl/2(x)|g D, (x,s) “a”éLZ(M’g)

i=1

g

112, |2 sV 2
S|d (x)| 5g’h(x)q)g(X,S)”a”QLZ(M,g)‘
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Thus the claim follows:

|~ 2d( 2P o)) < | 20)| | ) <5Zh(x) +E,(x, s)> x5 llall3 v
n

Remark 3.24. By a similar calculation the estimate also holds if we interchange the roles
of &2 and &~ in the previous Corollary 3.23.

Proposition 3.25. Let a« € Q2(M,g) and @g € K(M, g). Then, for any orthonormal basis
(e;); for T_M (x € M), we decompose

m m
8,(A"?Pa)y==) e (ViPa)o A~ e Pao(Vid'"?). (3.22)
i=1 i=1

Proof. Let n € (M) be arbitrary and (e;)!”, an orthonormal basis for T, M (x € M). By
the metric description of the codifferential, (3.20) in Lemma 3.21 above, we get

m
8 (P ==} ;= Ve ()
i=1
m
== (e=(A"2VEn) +e; = (VA ).
i=1
In particular, if we set # = P,a(x), then the following equalities hold:
m m
e; — (.QlI/ZVfiPSa) = Z e; — (VfiPSa) o f'?
=1 i=1

1
and
mn m
e; - ((Vfidl/Z)Psa) = Z e; - Psa ° (Vidl/z) ‘ -
=1 i=1

2

Corollary 3.26. Let a € Q2(M, g) and Qg e K(M, g). Then,
_ 2 —_
| 7128, (st 2 Pa(x)) [ S (67,00 + Ey.9) ) @, 9) lalld yar - (3.23)

Proof. By Theorem 2.28 we have
2
2 -
< C(m) [ "2(0)]" By (x, )Py (x, ) gy (rr )

m
Z e; — (VfiPsa) o2
i=1

4
and, combined with Lemma 2.5 and Lemma 3.9,
2
2
< C(m,y,c,,s) |Vg.911/2(X)|g D, (x,s) ||a||éL2(M,g)
4
2
S 200|870, ) lallfy vy -

m
Z e, Paeo (Vfidl/z)

i=1

Thus,
_ 2 _ 2 2 _
|t 1/25g(-¢’1/21’s01(x))|g S|P || <6Zh(x)+:g(x, s)) D, (x,s) IIOtIIéL2(M,g),

so the claim follows. [ |
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Remark 3.27. By a similar calculation the estimate also holds if we interchange the roles
of &> and &~ in the previous Corollary 3.26.

Finally, we obtain a similar estimate for the transformed codifferential §, (with respect
the metric h) applied to the semigroup. As we can express §, solely in terms of &, using
Lemma 3.15, we want to emphasise that the fibrewise norm and all the involved quantities
are taken with respect to the metric g.

Corollary 3.28. Llet @ € Q2(M, g) and Qg e K(M, g). Then,

8128, (2P o)) < <5Zh(x) +E,(x, s)> (x5l v (3.24)
Proof. By Lemma 3.15, recall that
8,(n) = A" (8,(An) —dlogp —+, (An))  Vn € Qew(M),
so that
(A28, )(p) = A~ (Sg(d”za) —dlogp o, (")) .
Using Proposition 3.19 combined with Lemma 3.11, in addition

M—I/Z |d10gp » (dl/Zn)|g < C(m) |d—1/2| |d—1| |ng|g |d1/2| |71|g
< Clm) |2 |7 1] |V = Vi, |12 1n]

<Cm) |V = V]| Il
Finally, combined with Corollary 3.26,
_ 2 —_
8128, (a2 P a0y % <5zh(x) +E,(x, s)) By x, 9) lall3 v

which proves the claim. [

3.4 Main Results
First, we define the bounded identification operator

1= Ig,/’l . QLZ(M,g) g QLZ(M, l’l)

a(x) = o) (a(x),
well-defined by g ~ A.
Lemma 3.29. The adjoint I* of the bounded identification operator I is given by

=17, Qa(M,h) - Q(M, g) 05
a(x) = py p () 3 (O)a(x), '
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Proof. For compactly supported « € Q(M, h) and g € Q(M, g), we get

* —
<’g,h“’ ¢ >Q|_2(M,g) = (@ derP)anm
_ [ —1/2
-] (a, o ﬂ)hdvolh

_ 172 172 g—1/2
-] (#2202t ﬂ)gpg,hdvolg

[ 12 -1
= Pond a,ﬂ) dvol =<p 1 a,ﬂ> . |
15 ( &h=gh g & &high Q2(M.g)

Since we assume M to be geodesically complete, we can restrict ourselves to smooth
compactly supported differential forms. Using the common abuse of notation, the unique
realisations of the exterior derivative d, the codifferential 8, and Hodge Laplacian A, will
be denoted by the same symbol.

In addition, we define the operators

(P)ys0 1= (d PY)gsg C L(Q2(M, 8),Q2(M, ),
(P¥)550 1= (8, P) 550 C L(Q2(M, 8),Q2(M, g)),
(PEM) im0 1= UM I 1 P) g © L(Q2(M, 8), Q2(M., ),
(PEM) a0 1= Uy, I7H P o € L(Q2(M, ). Q2(M, 9)).

g gh” s

Let p5(x,y), 55(x. ), 55" (x.») and 55" (x, ) be the corresponding jointly smooth integral
kernel of P%, P, P&" and P&, respectively. For example, recall that this implies by
Theorem 1.63 (i) and (ii) that

(0,00) x M x M > (s,x,y) — py(x,y) € Hom (/\T;M,/\T;‘;M)

is the uniquely determined map such that we have

ﬁ’sga(x) = J ﬁf(x, ya(y) volg(dy) Vs >0VaeQ2M,g) Vxe M.
M

By Riesz’ representation theorem, the next result follows from the gradient estimates,
Theorem 2.27, for the exterior derivative and the codifferential.

Theorem 3.30. For every g € MetrM, (s, x) € (0, 00) x M, we have

J

[ |55Cx, )]} vol,(dy) < P, (x, )P, (x. ). (3.27)

~ 2
B Cx, y)|, volg(dy) < W, (x, )@y (. 5), (3.26)

By Riesz’ representation theorem, the next result follows from the estimates in corol-
laries 3.23, 3.26 and 3.28 for the transformed exterior derivative and for the transformed
codifferential with respect to g, and A, respectively.
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Theorem 3.31. For every g € MetrM, (s, x) € (0, 00) x M, we have

2

70 )| voly(@) 3 (67,00 + E4(x.5) ) By (x. ) (3.28)
2

F ) Vol (@) £ <5Zh(x) +Ey(x, s)> D, (x, 5), (3.29)
2

75| vol(@n) 5 (67,00 +Eg(x,9)) yx,9). (3.30)

We can now state the main result on the existence and completeness of the wave
operators W,(A,, A,, I') implying the corresponding spectra to coincide.

Theorem 3.32. Let g,h € MetrM, g ~ h, and assume that there exists C < oo such that
‘55}1‘ < C and for both v € {g, h}, we have |.%V|V e K(M) and

Jmax {5g’h(x), 5Y 1) + B, ), ¥, (x. s)} @, (x,5)vol (dx) < co,  somes>0. (331)

Then the wave operators

Wo(Ap, Ay I, ) = s-lime™ 1, e3P, (A,)

t—>+00

exist and are complete. Moreover, W._(A,, A, 1, ) are partial isometries with initial space
ranP,.(A,) and final space ranP,.(A,), and we have 6,.(A,) = 6,.(A,).

The proof of Theorem 3.32 will be given in Section 3.5.

In the special case of for O-forms, i.e. functions, and the Hodge Laplacian acting on
0-forms is the Laplace-Beltrami operator. Recall that the Weitzenbdck curvature endo-
morphism #Z% on 1-forms is given by the Ricci curvature, Z'* = Ric. Then we get the
following result similar to the main result of [ , Theorem Al

Corollary 3.33. Let g,h € MetrM, g ~ h, and assume that the function 5Zh is bounded, and
forsome s > 0and bothv € {g, h} satisfy (3.31). Let A, < 0 be the unique self-adjoint extensions
of the Laplace-Beltrami operator for v € {g, h}. Then the wave operators W,_(A,, A,, I) exist
and are complete. Moreover, W_(A,, A,, I) are partial isometries with initial space ran P, (A,)
and final space ranP,.(A,), and we have 6,.(A)) = 0,.(A,).

3.5 Proof of the Main Result

Our strategy is to show the assumptions given by a variant of the Belopol’skii-Birman
Theorem 3.5 which is adapted to our special case of two Hilbert space scattering.

The next lemma shows assumption (2) in the Belopol’skii-Birman Theorem 3.5. As we
will see in its proof, it is therefore necessary for the potentials &, € K(M) to be in the
Kato class, not only 2 € K(M), for v € {g, h}.

We denote by q, the nonnegative closed sesquilinear form corresponding to A, i.e.
a,(@) = (A,a,a) = |D,a|’ with domgq, = dom /A, for any v € (g, h}.
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Lemma 3.34. Llet g,h € MetrM, g ~ h, and assume that there exists C < co such that
‘55}1’ < C and for some v € {g, h}, we have &, € K(M). Then

I, ,domq, = domg,,.

Proof. Note that, for any v € {g, h}, domq, is the closure of compactly supported forms
Qc= (M, v) with respect to the Dirac graph norm

1/2
a - <||a||% + ||Dva||3> .

Moreover let q¥ be the nonnegative closed sesquilinear form corresponding to the
horizontal Laplacian [0, = (V¥)*V", ie. q'(2) = (O,a,a), = [[V'al|> with dom(q}) its
natural domain of definition. Recall that by the Weitzenbock formula (1.11), we thus have
the relation

A =0,-%,

As the Weitzenbock curvature term £, is in the Kato class, by Theorem 2.7 the corre-
sponding form domains

domq, = domq"
coincide. To this end, it suffices to show that
Vo _ v
I domq, =domgq,.
For all compactly supported a € Qc=(M, g), we write
Vi(la) = V(") = Vg™ (a) + 71V a
= (V"= V&) A () + VEL (@) + A7V (V' = VE) a + A7 VEa.
Moreover,
h -12 112 (gh -12
|(VX_V§()'9[ |h=|’d (Vi = V%) & |g
12| |gh -12
< |||V - Vil |7
and
-12 (gh g h g
|d (VX_VX)|h=|VX_VX|g'
Thus we can estimate as follows
2 _ 2
V"), =J |V (~"a)|, dvol,
M
= J ‘ (V" = V&) A (a) + VEL (@) + A7 (V"' = VE) ()
M
2
+ .Qi_mvga’ dvol,,
h

< CJ ( |(V" - V) d-"z(a)ﬁl + |vw-"2(a)|fl +
M
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|‘ﬂ_1/2 (Vh - V¢) (“)|2 + |‘d_l/zvga|i >pg,h dvol,
< CJ ( |d1/2 (Vh _ Vg) d—]/Z(a)|§ + |d1/2ng—l/2(a)|§ +
M
|(Vh - ve) (a)|§ +|VEal; )dvolg
<C |.5211/2|2|Vh—vg|2|d_1/2|2|a|2
X o g g
2 _ 6 2
+ |27 P |7 |V = V[ Ll
+|Vh —vg|§ |al? + |vga|§>dvolg
< CJM (|v” — Ve[ Jaf? + |vga|§) dvol,

<CJ (HathH |a|§+|vga|§)dvolg
M o0
<€ (Nl + 1v5all?)

using the elementary inequality (a + b)° < 2¢71(a® + b°) multiple times and that §V is
bounded by assumption.

Hence, we arrive at the estimate
2 hyol1? 2 2
Mal? + V" Tall, < € (llall? + IV¥al?).,
proving
I'domq, c domgy,.

Since I™! = Ig‘}l = I, , and the arguments above are symmetric in g and 4, this shows the
claim. |

Next, we denote by |-| : C — R the absolute value function and by sgn : C - C
the sign-function with sgn(0) = 1. By Lemma 1.47 if P is normal operator (e.g. positive
or diagonalisable), we get the (pointwise) polar decomposition P = |P|(sgn P), where
|P|(x) = |P(x)| > 0and |sgn P(x)| = 1, and where | P| (x) is a non-negative endomorphism
and sgn P(x) is unitary. More precisely, by the Spectral Theorem 1.50 choosing f(4) := |4],
we have an endomorphism

f(Sen®) : AT*M > NT*M
giving rise to a decomposition

Sen(¥) =[S, sgn8, ,(x) : AT*M - AT*M.
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For the proof of Theorem 3.32, we now introduce sections

- o1
Sea() = pga(0)"™ = py p(0)71 = 2sinh 2 log(py (x)),

S;n: M —End(AT*M)
8. (0) 1= (PO 40N = (g )l ()" = 25000 2 1089 () (),

A

Sg,h;v . QL2(M, V) - QLZ(M, V)

N A 12
Sepya(x) 1= |Sg,h(x)| a(x),

Ug,h . QLZ(M,g) e QLZ(M, h)

U, pa(x) 1=, () " a(x),

[

ah - S2(M,g) > Q2(M, h)

2 n (%) 1= (pg (O, ()™ a(x),

[

(o]

on - Q2(M,g) = Q2(M, h)
ﬁg,ha(x) :=(sgn égvh(x))(‘og,h(x)dg’h(x))_I/Z(Z(X),

By quasi-isometry, g ~ h, the operators ég’h;v, U, s, l:lg’h and Gg,h are bounded. Moreover,
we get the pointwise estimate (see also [ , Lemma 3.3], [ , (4.0))).

Lemma 3.35. We have the pointwise estimate

max {[S; 4 ()], Omax (|Sgn(])} < 8p(x)  Vxe M. (332)
Proof. We write p = p, , and & = o, , for short. By definition, we have

’

8,4 = |(0o)2 = (pst)~1| = 2 sinh | 1og(pat)
& 2

and the i™" eigenvalue of log(p&f) is given by

" loga;
- L +logaj;.
; 5 oga,

, then

If we choose k, such that |log ay | = max; |log a;

m

log a; m
_; > +loga; s;‘logako

Hence,

Omax (|§g,h|) <2 sinh% logay | = g (%),

justifying the definition of §, ,. A similar calculation shows the assertion for S, . |

The following lemma provides the trace class operator required in the decomposition
formula in assumption (4) of the Belopol’skii-Birman Theorem 3.5.
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Lemma 3.36. Let g,h € MetrM, g ~ h. We define the unbounded operator
TS QM. g) - Q2(M, h)
Ao shegvly B 5 seh | BGhuay B N s,
TS0 1= (B 0y P = (B U PP + (BF)* 0, B = (B U, B
he 1 Q 4 g
= P'Se ninUg nSenig PynBe Py
Then we get, for a; € dom A,, a; € dom A, and s > 0,
h
<a2,Tf a1>h = (Apay, PITPSa;), — (ay, PITPEA ), .
Proof. First note that

d>=0 and 82 =0. (3.33)

Since A, is essentially self-adjoint, for v € {g,h}, we can assume a; € Qc~(M,g) and
a, € Qcx(M, h) to be compactly supported. Then

(Dpay, PHTP{ay), — (ay, PMTPEAay),
= (8, Play, IP{ay), — (A 7" Play, Piay), — (Play, (I —(I7')*) P{Agay ),
=—((d +8,)Play.(d +8,)I P{a;), + ((d +8)I ' Play,(d +8,)Piay ),
— (Play, (I (7)) PiAay),
(323) - <d Pshaz,d IPfal >h - <8hPSh(x2,8hIP§(xl >h
+(dI""Play,d Piay ), + (8,17 Py, 8, Piay ), (3.34)
—(Play, (I —(I7Y)*) PiAay), .
Let us treat the terms separately. For the last term in (3.34),
(Play, (I =) P{Agay),
= y <Psha2, (d_l/z - (p—ld—l/Z) PSgAgal > dVOlh

= <Psha2, (l - p_l) .Qi_l/zPSgAga1> dvol,
Im

= <Psha2, ég’hp_llzd_l/zPsgAgal> dVOlh
JIM

172

[ A (12 A s
= <PSha2, |Sg’h| (Sgn Sg,h)(pd) 12 |Sg,/’l| PSgAgal > dVOlh
JIM

h/\ ~ A
= <a2, Py sg,h;hug,hsg,h;gPsg/zAng/ZaI >h :
For the first and third term involving the exterior derivative d, we get
(dI7'Play,d Pia;), — (d Play,d T P{a;),
=(Ud I YPlay, (I d Pia,), — (d Play, IT"'d )P{ay ),

- ( Bl ay, (171 d Psga1>h - <d Pha,, Iﬁsg’ha1>h
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= {ay, (B*)*(17")"d Pa, — d Psh)*lﬁf’hal>h

J ay, (PI8Y p~ ot ~12d PEa, — (d Psh)*d_l’zﬁsg’hal) dvol,,
<a2, <(Ph )0, ,d PE - (d PPy*U, , P ”) a1>
shevey B 5 58.h
= (e, (B0, PE = (B U, P ) ay)
Similarly, for the codifferential 8,
(8,17 Play,8,Pia;), — (8,Play.8,1P{a;),
= (U8, I Play, (1718, Piay ), — (8, Play, I8, ) P{ay ),
= <15Sg’ha2, (I_l)*ShPsgal >h - <8hPSh(X2, Ipshgal)h
N3 ’h A Vl’l,
_ <a2, ((Psg 10, 8, P = (8, PM*U, , P g) a1>h
Y NP N 5h.
= (e ((BEMY OB = (BIYU P )y ) .
We are finally in the position to proof our Main Result.

Proof of Theorem 3.32. We check the assumptions of the Belopol’skii-Birman Theorem 3.5.
Since g ~ h, the operator I = [, is well-defined and bounded and has a bounded
inverse 1! = I, 4, s0 (1) follows. By Lemma 3.34, also assumption (2) is satisfied.
Recalling that by (3.25), I;’h = pg’hlg‘}l, we see that the operator (I*1 — 1)e™*?s has the
integral kernel

[(T*1 = De™ %] (x,) = (pgh - 1) pi(x, )

1/2 12

(Sgnsgh)|sgh| |Sg,h|1/2 ps(x, ).

Thus by Lemma 2.5 again, for some s > 0,
J [ 1 = D] (e )] vol, (@) < |38, 184 pr(x, 12 vol, (dy)

< C(,

12
pg,hsg,h

7

‘ |Sgn] @y (x. ) J P20%x, y) vol,(dy),

and, by Lemma 3.35, we arrive at the Hilbert-Schmidt estimate
_ 2 —_
” [T = De™5%¢] (x, y)| vol, (dy) vol,(dx) < J 84 n(X)E,(x, )P, (x, 5) Vol (dx) < 0.

So, the operator (I*I — 1)e™*¢ is Hilbert-Schmidt, hence compact, which proves assump-
tion (3).
Finally, we prove (4). Using Lemma 3.36 it remains to show that Tf’h is trace class. Since
the product of Hilbert-Schmidt operators is trace class, we prove that the operators P,
PY, forv e {g,h}, and PE", p&" BI*% are Hilbert-Schmidt. Recall that p(x, y), (),
Ag h(x y), P (x, y) and ﬁ?’g(x, y) are the corresponding jointly smooth integral kernel of
PSV, Py, P¥ h, P& and P, respectively.
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Then, by (3.26),

H |y (x, y)|f vol,(dy) vol, (dx) < J ¥ (x,s)®,(x, s) vol, (dx)

and, by (3.27),

J

So similarly, we have, by (3.28),

vy 2
Do(x, y)|v vol, (dy) vol, (dx) < [ Y, (x, s)®,(x,s)vol, (dx).

gh 2 -
2(x, ) _vol,(dy) vol, (@) S <5Zh(x)+:.g(x, s)) @, (x, 5) vol ,(dx)

and, by (3.29),

, ) )
F ) _vol,(dy) voldx) £ (55 L0+ E,(x, s)) @, (x, 5) vol ,(dx)

JJ

Finally, by (3.30),

[ 2
[,?’g(x, y)‘g vol,(dy) vol,(dx) S ((ih(x) + E,(x, s)) D, (x, s) vol,(dx)

This completes the proof. |

3.6 Applications and Examples

3.6.1 Ricci flow We first generalise a result, given in [ ], concerning the stability of
the absolutely continuous spectrum of a family of metrics evolving under a Ricci flow.
Let therefore R, be the Riemannian curvature tensor with respect to the metric g.

Corollary 3.37. Let .S >0, A € R and assume that

(a) the family (g,)o<s<s C MetrM evolves under a Ricci-type flow
0,8, = ARich, VO<s <SS,

(b) the initial metric g is geodesically complete,

V&R

s

(c) there is some C > 0 such that |RgS

<C  YO<s<S.

’

&s 8s

We set, for all x e M,
M, (x) := sup{‘Ricgs(U, u)‘ L0<s<S, veT,M, [u], < 1},
My(x) = sup { |VE Ricy (u ) + Vi Ric (0,0) + V Ricg (6,0)| 1 0< 5 <5,
u,v,w € TM, July ol . lwl,, < 1}.
Let B,(x, r) denote the open geodesic ball (with respect to g). If
J vol,, By, (x, 1) max { sinh (5.5 141 M1 () ) , My(x) | vol (dv) < oo,

then o,.(A, ) = 0, (Ag) forall 0 < s < S.
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Proof. The Ricci flow equation together with (i) implies that g, ~ g, forall 0 < s < §
and all g, are complete. Assumption (c) assures that E(x, s) is bounded. By the same
arguments as in [ , Corollary BJ,
. m
8, g < sinh <ZS 14| Ml(x)>
and as in the proof of [ , Theorem 6.1]
g go(x) CMZ(X)

and so the claim follows. |

3.6.2 Differential k-forms We specify our main result, Theorem 3.32, to differential k-
forms. Set
—(k
K, (x) := max { (gzg‘)u,u) ve AT, (M, g),[vl, = 1,y € B,(x, 1)} ,
. k
KO0 = min{ (B v.0) 1 ve AT (M. g)1ul, = 1,y € By(x. D},

for the corresponding constants defined analogously to (2.15) and (2.16), respectively. Fol-
lowing the same lines as the proof of our main result, Theorem 3.32, we get the following

Corollary 3.38. Let g,h € MetrM, g ~ h, and assume that there exists C < oo such that
‘55;,‘ < C and that for both v € {g. h}, we have | %, | € K(M) and

Jmax{ 04 n(X), sy h(x) + E "(k)‘(x s), ‘P(k)‘(x s)} D (x, s) vol (dx) < oo, some s >0, (3.35)

where

POE(x,5) 1= PO () AP (x, ),
”(k)_(x s) .= ”(k)+(x S)ANE ”( )= (x,s),

with
WOE(x, 5) 1= — exp | DOy, ¢ (FD), c/)s + <7r\ [(m = DKO=(x) + z2(m + 5) + (E(f) (x) + E(Vkil)(x)y) 5] ,
NG = 2

where the finite constant D depends on the constant c¢,(®") in (2.7) and the constant c, from
the Burkholder-Davis-Gundy inequality (cf. Theorem 2.27), and

205 9) 1= W) + 5P ) max [VUR,00]

and ®(x, s) is defined by (3.19).
Forall0 < k <m, let
I(k) I(k) : Q]liz(M’g) N Qlliz(M’ h), a /\ A—I/Z( )

be the bounded identification operator acting on k-forms. Then, for all 0 < k < m, the wave
operators

(k) NG
w. (A(k), A(k) I(k)) = s-lim ellA e—ltAg PaC(A(gk))

t—>+00

exist and are complete. Moreover, Wi(A(k), Ai,k), 10y are partial isometries with initial space
ran PaC(A(gk)) and final space ran PaC(AEIk)), and we have o—ac(Ag‘)) = aaC(A;lk)).
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Proof. We omit the metric in the notation. By similar calculations as in the proofs of
Theorem 2.27 and Theorem 2.28, we see that for every a € Q’CZ(M),

(k) 2 < plo+ 2
@R[ < YO )00 ) Nl

(k) 2 k).~ 2
(BP0, < YO~ 00 ) Nl

|(VPS(X, 5) |2 < max {E(k),+(x, S), E(k)’_(X, S)} (I)(X, S) ”a”élliz(M) :

Noticing that

m m
A= AP and 1= I1®
k=0 k=0

the proof now follows the lines of the proof of our main result, Theorem 3.32. [

3.6.3 Conformal perturbations We study the important case of conformally equiva-
lent metrics: Given a smooth function v : M — R, we define peturbated metric by
gy = e?¥g. Note that g and g, are quasi-isometric, if and only if y is bounded (cf.
Example 3.14 above).

The bounded identification operator is now given by
I := Ig’gw PQ(M,g) > Q2(M,g,)

Ig,gwn(x) - e YWy(x).

Given a smooth function w on M, we define

v = @m—-201 k1., € DOM; AT M),
k=0
m
V" 1= @@ yiqay € DOME AT M),
k=0

Next, we collect some useful transformation rules for the conformal metric g,, in terms
of g. A standard reference for various invariants of conformal metric change in part (a)
is [ , 1159 Theoreml].

Proposition 3.39. Llety : M — R be smooth.

(a) We have
() = e ()P Vke{0,...,m}  (336a)
dvol, = e"dvol, (3.36b)
oy, @ = e (o5, ) Ya € Q'(M) (3.36¢)

V?’Y = ViY +dy(X)Y +dy(Y)X — (X,Y), grad,w  VX.,Y € lce(TM) (3.36d)

) k
Sgwa =e V(6,0 —7dy -, @) Va € QX(M) (3.36e)
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(b) If y is bounded, then
I*=e™r!, (3:37)

Remark 3.40. We note that the canonical musical isomorphisms #f and b between TM
and T*M do not agree for g and g,,.

Proof. (a) We show (3.36e). Using (3.36a) and (3.36b), for any 5, € Q~1(M), n, € QX(M),

(mﬁng) = (m, e (8,1, + (m = 2p)dy =) )

&
= (2w R ) (D (= 2p)dy ),
= (d (") my), + ((m = 2p)e" Vi, dy = y)
= ("2, my)  + (d (") Anmy) = (m = 2p)e" PV dy Ay ),
= (i, M), -
(b) Follows from (3.25). [ |

Theorem 3.41. Lety : M — R be smooth with y bounded, and assume that g, g, € MetrM
with g, = e*¥ g such that ‘5;’511/‘ < C for some C < oo and that for both v € {g, g, }, we have
|, |, € K(M) and

J max {sinh |%u/(x)

50,00 + B, ). W,(x,9) } B, (x, ) vol,(dx) < 0, some s > 0. (338)
Then the wave operators

WAy, A, D) = s-lim e e8P, (A)

t—>+00

exist and are complete. Moreover, Wi(Agw, A, 1) are partial isometries with initial space
ranP,.(A,) and final space ran Pac(Bg, ) and we have c,.(A,) = 0,.(A,).

Proof. Using Example 3.14, we have 6, , = 2sinh 7 |y and

g~ 8y = yw bounded.

Hence the claim follows from our Main Result, Theorem 3.32. [ ]

By the same argument as in the proof of Theorem 3.32, we get the following conse-
quence for the wave operators acting on k-forms but with appropriate localised constants
respecting the degree of the differential form (cf. Proof of Corollary 3.38 above).

Corollary 3.42. Lety : M — R be smooth with y bounded, and assume that g, g,, € MetrM
with g, = eV g such that ‘5zgw‘ < C for some C < oo and that for some v € {g, g, }, we have
X, € K(M) and

=(k)

Jmax {Sinh |%t//(x)| Eg(x, s), Szh(x) +&; (%, 5), lp(vk)(x, s)} D (x,s)vol (dx) < o0, somes >0,
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where
—(k —(k),+ —(k),—
:.(V )(x, s) 1= :.(v ) (x,8) A .:E, ) (x,s).
Forall0 < k < m, let
. k) . k 4—
10 =1 QM. 9) > QM. g,). a- N A7)
be the bounded identification operator acting on k-forms. Then, for all 0 < k < m, the wave

operators

k) K (K A AW (k)
W (A, A W) = s-lime" v [e7 s P (Ay)

§ t—>+o0

exist and are complete. Moreover, Wi(AU;), Aék), 1%y are partial isometries with initial space

ran Pac(Afgk)) and final space ran PaC(A(gl;)), and we have o—ac(Ag‘)) = Uac(Ag:,))-

3.6.4 Global curvature bounds Let R, be the Riemannian curvature tensor with respect
to the metric v € {g, h}. Then the curvature operator

0, € 2© (M; N2 T*M)
is self-adjoint and uniquely determined by the equation
(O X AY),UAV) =((RX.,U,V),

for all smooth vector fields X,Y,U,V € Icx(TM).

By the Gallot-Meyer estimate [ ], a global bound Q, > —K, for some constant K > 0,
already implies that curvature endomorphism in the Weitzenbock formula (1.11) is globally
bounded by

R > —Kk(m - k). (3.39)

Remark 3.43. In particular, if O, > —K, for some constant K > 0, then for k = 1, we
have

Ric, > —K(m — 1).
We set, for v € {g, h},

2
0,(x) = (1 + yerélva(ly)ci,l) |VVRV(y)|) :
Then, we get the following consequential result.

Theorem 3.44. Let O, > —K, for some constant K > 0 for both v € {g, h}. Let g, h € MetrM
such that g ~ h and assume that there exists C < oo such that ‘égvh‘ < C and that for some
(then both by quasi-isometry) v € {g, h}

Jmax {5g’h(x), 57 ,(x) + ®g(x)} @, (x,5)vol (dx) < co,  some s > 0.

Then the wave operators W, (A, Ay, I) exist and are complete. Moreover, W (Ap, Ay, 1)
are partial isometries with initial space ranP,.(A,) and final space ranP,.(A,), and we have

O-ac(Ag) = O-ac(Ah)'
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Lemma 3.45. Llet g,h € MetrM, g ~ h with Q, > —K, for some constant K > 0 for both
v € {g, h} and assume that the function 5gvh is bounded. Then

I, ,domq, = domg,,.

Proof. Note that, for any v € {g, h}, domq, is the closure of compactly supported forms
Qe (M, v) with respect to the Dirac graph norm

w s (llal + D) .
Let D be a positive constant whose value might change from line to line. For all com-
pactly supported « € Qc=(M, g), we get by the Weitzenbdck formula A, =0, - &%,
D, Ia| = (D2Ia,a), = ((V")*V" - R,) Ta,a),
= J |Vh(Ia)|i dvol, — J (R, 1a,a) dvol,.

By assumption the metrics are quasi-isometric and their Weitzenbdck curvature term
is bounded from below, so the second term is bounded by D ||a]|2.

Following the lines of the proof of Lemma 3.34, we find
2
Vi, < D (el + 1VEal?).
Using the Weitzenbock formula once more, we get
2
IVeally = (VEa, VEa), = <<(Vg)*Vg - .%g) a,a)g + (%ga,a>g
< <D§a, a)g + D(K, k,m){a, a)g
2
< D(K.k,m) (||Dgat2 + llal2).
Hence, we arrive at the estimate
2 2
el + [Py lal; < DK,k m) (llal2 + [[Dyal?).
proving that
Idomq, c domgy,.

Since ™! = Ig‘}l = I, , and the arguments above are symmetric in g and A, this shows the

claim. [ ]

Proof of Theorem 3.44. We omit the metric in the notation. By assumption & is bounded
from below, so the tensor @ Ric and R are also bounded from below. In particular
(M, g) is stochastically complete, i.e. {(x) = oo P-a.s. By Gronwall’s inequality, we have
@], e, |@
by Cauchy-Schwarz

< eX 752 Following the lines of the proof of Theorem 2.28, we get
op

|(VPa(x), )| = ‘[E (@“tj//gla(xs(x)), Ufm)

<C(K™,s) [[E |a(Xs(x))|2] " ([[E (ﬂﬁl&)z

172
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By (2.39) and (2.38) the first summand in the bracket is bounded by C(K™,s) |£|. By (2.43)
and (2.44) the second summand is bounded by C(K™, s) max g1y | VR(»)| [§]. Hence,

2
2 — 2 2
|(VPa(x). &) < C(K™,5) ] <I><x,s)<1+yégg;gl)|vr<(y>|> el -
and analogously
2 _
|@Pa),|" < CK™. )P(x. 5) llallg , u)
2 _
6P, |” < C(K™. 5)®Cx. 5) llallgy , ar) -
Following the lines of the proof of Theorem 3.32 we see that the assumptions of

Belopol’skii-Birman theorem 3.5 are satisfied except making use of Lemma 3.45 (instead
of Lemma 3.34) for assumption (2). [

3.6.5 e&-close Riemannian metrics In this section, we denote by K, the sectional curva-
ture with respect to a smooth, complete Riemannian metric g.

In , Theorem 1.3 & 1.7], Cheeger, Fukaya and Gromov show what is also known as
Cheeger-GromovV’s thick/thin decomposition:

Theorem 3.46. Foralle > 0andn € Z_, there exists ¢ > 0 and k € Z . such that if (M, g) is
a complete Riemannian manifold with |Kg| < 1, then there is a (¢, k)-round metric, g_, on M,
such that

(i) the Riemannian metric g, is e-quasi-isometric to g, i.e. C"¢g, < g < Cg,
(ii) it has bounded covariant derivatives |V% — V&| < €

(iii) | (ng)k R | < C(m, k), where the constant C depends in addition on the order of
derivative k and ¢.

Assuming that the sectional curvature k, is bounded by 1, implies that the Riemannian
curvature tensor R, is bounded, and hence, the curvature operator Q,. Following our
results in § 3.6.4, we may get

Theorem 3.47. Let |x,| < 1. Then there exists a Riemannian metric g, as in Theorem 3.46
that is e-quasi-isometric metric to g. If for some v € {g. g, }

Jég’gé )P, (x,s) vol, (dx) < oo, some s > 0,

then the wave operators W.o(A, ,Ag, I) exist and are complete. Moreover, W, (A, A, )
are partial isometries with initial space ranP,.(A,) and final space ranP,.(A, ), and we have
Oac(Bg) = 0yc(Bg).

Proof. By the previous Theorem 3.46 (i), the assumption |Kg| < 1 assures that for any
€ > 0 there exists a Riemannian metric g, that is e-quasi-isometric metric to g. Hence,

sup 5g’g6(x) <o = g~g,.
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By Theorem 3.46 (ii), the covariant derivatives are bounded so that

\% 2
By, = IVE = VE2 <. m












ESTIMATES FOR THE COVARIANT
DERIVATIVE OF THE HEAT SEMIGROUP
AND COVARIANT RIESZ TRANSFORMS






Chapter 4

COVARIANT DERIVATIVE ESTIMATES AND RIESZ TRANSFORMS

The Riesz transform V(A® + )2 on a Riemannian manifold, considered by Strichartz
[ ], has been intensively studied (e.g. [ ; ; D). In particular, the
question arises to what extend the L”-boundedness of the Riesz transform that holds in
R" can be generalised to (complete) non-compact Riemannian manifolds. If the Riesz
transform is bounded in L? by the interpolation theorem the weak (1, 1)-property implies
LP-boundedness for 1 < p < 2. Notably, using this idea Coulhon & Duong [ ] showed
under the doubling volume property and an optimal on-diagonal heat kernel estimate
the LP-boundedness for 1 < p < 2. Using probabilistic methods, to wit the Bismut deriva-
tive formulae on vector bundles (cf. § 2.1), Thalmaier & Wang [ ] prove derivative
estimates for various heat semigroups on Riemannian vector bundles. As an application,
the weak (1, 1) property for a class of Riesz transforms on a vector bundle is established.
In [ ], the results are extended to manifolds whose heat kernel satisfies Gaussian
estimates from above and below: It is shown that the Riesz transform is L”-bounded on
such a manifold, for p ranging in an open interval above 2, if and only if the gradient
of the heat kernel satisfies a certain L”-estimate in the same interval of p’s. A direct ap-
plication to geometric analysis is given by the LP-Calderén-Zygmund inequalities, cf. e.g.
[ ; 1

However, the study of Riesz transform normally involves assuming a volume doubling
property of M. For the following results we only assume that the curvature and its
derivative are bounded by some constant A < oo, cf. Assumption 4.3 below.

Note that, in this chapter, in alignment with the literature and for convenience we
change the sign of the Laplacian to obey the analytic sign convention.

This chapter is based on joint work with Batu Giineysu & Baptiste Devyver. My main contri-
bution to this chapter is reflected in Theorem 4.6. The analytic insights are due to my collabo-
rators.

4.1 Setting and Notation

In this chapter, let M be a smooth connected (geodesically) complete Riemannian
manifold of dimension dim M =: m without boundary. Recall that by d(x, y) we denote
the geodesic distance and the induced open balls with B(x, r).

Given a smooth vector bundle E — M carrying a canonically given metric and a canon-
ically given covariant derivative, we denote its fibrewise metric by (-,-), with |-| = v/(:,*)
the fibrewise norm and its covariant derivative with

105
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We equip M with the Riemannian volume measure vol and sometimes use the local
volume doubling property for the measure vol, i.e. there is a C > 0 such that

M<CeCR<R> VO<r<RVze M. (LVD)

vol(B(z,r)) r

By the Bishop-Gromov comparison theorem and the well-known formula for the volume
of balls in the hyperbolic space (cf. ]I , Section 7.1.2]), property (LVD) holds if
Ric > —A for some A > 0 with some C = C(4,m). A well-known consequence [ I of
(LVD) is the following volume comparison inequality: There is a constant C > 0 such that
we have

vol(B(x,, V/? a o dax)?
Mgchef T Vhe>0Vx.x, € M. (VC,)
vol(B(x;, v/1))

Indeed: Setting r = d(xy, x,), it follows that
vol(B(x,, \/1) _ YolB(x,.r+ V)
vol(B(x;, V1) vol(B(xy, V1)
e (L ; 1> ecrnih,

t

Using the elementary inequalities

2
Ct  2er
C

e“r<ese eC‘/;sc’eC’,

we get (VC,) (with a possibly different value for the constant C).

Given a smooth metric vector bundle E — M we get the Banach spaces I ,(E) given
by equivalence classes of Borel sections y in E — M such that

lwll, := vl == vl < oo,

where |[[y[||, denotes the norm of the function |y | with respect to L?(M). Then I'2(E)
canonically becomes a Hilbert space with scalar product

(Wi, y2), =W, yn) 2 = J (V’lalllz) dvol.

Given another smooth metric bundle F — M, the operator norm of a linear map
A TL(E)— ()
will be denoted by
1All,q = sup { I Aall, : llall, < 1} € [0, co].

In this chapter, we switch to the analytic sign convention for convenience, so that the
Laplace operators acting on 0-, resp., k-forms are given by

AY = §DdO : c®(M) — C¥ (M),
AP = 8{Vd® 1+ d U8 ¢ Mew(AF T M) — Teo(AF T M).
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In particular, we have
dU=D A=1) — AG) qlh=1) and k=D AKk=D — Al gk=1) (4.)
and, by the Weitzenbdck formula 1.42,
AP = vy + 0,
where & e F(End \* T*M) is fibrewise self-adjoint, of zeroth order and
|#2®| < C(m) |R|

for some C(m) > 0 only depending on m by the explicit representation (1.12). Recall that
for k = 1, T = '%|£21(M) = Ric is the Ricci curvature, and its transpose defined by
duality respectively, are read as sections

Ric € IMcw (End(TM)) and Ric" € IMew (End(T* M)).

The Riemannian curvature tensor R can be read as (0, 4)-tensor, i.e. R € M (TOY M). We
then denote by ||R||, its ||-]l, norm. Similarly, VR can be read as a (0,4 + 1)-tensor and
we can consider ||V R]|, in the same fashion.

As M is geodesically complete, A is essentially self-adjoint in L>(M) when initially de-
fined on CX(M). Likewise, A® is essentially self-adjoint in F2(A* T*M). By a usual
abuse of notation, the corresponding self-adjoint realisations will be denoted by the
same symbol, i.e. A® >0, and A® > 0 respectively. For all square-integrable k-forms
a € T2(A* T*M), the time-dependent k-form

0,0)x M > (1, x) —> ey e NfT*Mm
X

has a smooth representative, which extends smoothly to [0, ) x M, if a is smooth. Let

—fA(k

us again denote by e )(x, y) its corresponding jointly smooth integral kernel, i.e. the

G
heat kernel of e /2",

By the classical Li-Yau heat kernel estimate [ ], assuming Ric > —A for some constant
A > 0, implies the existence of constants C;=Ci(Am>0(j=12) and D = D(A,m) > 0
(where C, =0, if A =0), such that we have

dory)?
e 2% (x, y) < €, vol(B(x, V) Te e PTF Vi>0Vx,ye M.

In particular, assuming ||R||,, < A for some A > 0 and using semigroup domination, we
get forevery 0 < k < m,
deey)?
|74, )| < CvolBex, iy leCre™ (UE)
where C, D > 0 only depend on A and m. Using commutation rules (4.1), there are well-
known pointwise heat kernel estimates for dWe=2" and kA" (cf. [ 11 ,
Appendix Al):

Lemma 4.1. Assume that ||R||,, < A for some a constant A > 0. Then there are constants
C=C(A,m) >0, D= D(A,m) > 0, such that for all 1 < k < m, we have

dexy)?

d©e2 (x )| < CvolB(x, V1) 11~ 12eCte P Vi>0Vx,ye M, (d UE)
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and

dix.p)?

8602 (¢ )| < CvolB(x, Vi) 17 PeCe™PTi - Wi>0Vx,ye M.  (8UE)

The differential d® is understood to act on the first variable of the heat kernel
d©e=2Y (x ) 1= d0e=2" (o 1)(x),
likewise for 8~1,

Remark 4.2. Alternatively, Lemma 4.1 can be proved similarly to the method we will
describe in § 4.3 but using the Bismut formulae (2.30) and (2.31).

Our main goal in this chapter is to establish analogous estimates for the covariant
derivative of the heat kernel of the Hodge Laplacian, i.e. to show pointwise estimates of
the form

dx)?
t

Ve 2" (x, )| < Cvol(B(x, V1)~ 2eCle™P (VUE)

We note that for k = 0, we have V = d©), so that (d UE) and (VUE) are equivalent. If M is
oriented, the same holds true for k = m by Hodge duality.

As we have already seen in { 2, the covariant Bismut derivative formula Theorem 2.21 not
only involves the Riemannian curvature tensor, but also its derivative. Thus, for I < k < m,
the corresponding covariant derivative estimates need stronger assumptions, to wit: a
uniform bound on the Riemannian curvature tensor and its covariant derivative.

4.2 Main Results
We first state the main results of this chapter.

Assumption 4.3. We assume that the curvature and its derivative are bounded by some
constant A < oo, i.e.

max (IRl - IV Rlls) < 4. A

Theorem 4.4. Assume that (A) holds. Then there are constants C = C(A,m) > 0 and
D = D(A, m) > 0, such that for all 1 < k < m, we have

NG C _ _pday?
‘Vxe 1A (x,y)‘ < —& 120D Vi>0Vx,ye M.

vol(B(x, /1))

Corollary 4.5. Assume that (A) holds. There is a constant y = y(A,m)> 0, and for all
1 £ p < o aconstant C = C(A, m, p) > 0, such that, for all 1 < k < m, we have

P ydxy)? Ct
”Vxe_m(k)(x, y)‘ e vol(dx) < Ce Vi > 0. (4.2)
172 vol(B(y, /1)~
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Theorem 4.6. Assume that (A) holds. For all 1 < p < oo there is a C = C(A,m,p) > 0, such
that for all 1 < k < m, we have

_iAK) _
”Ve A CeCr 12 wrs .

|r|_2n|_1'(/\k T*M)Hp,p S

The Proof of Theorem 4.4 and its Corollary 4.5 is given in § 4.3 below. The Proof of
Theorem 4.4 is based on the probabilistic representation of V,e™24"”(x, ) by using the
results developed in § 2, but now applied to a Brownian bridge from x to y in time ¢. The
localisation techniques developed in § 2 are therefore hindering as they involve the first
exit time of Brownian motion from an open ball B(x, r) around its starting point x — as
the terminal point y does not need to be in B(x,r). We therefore make use of the global
Bismut formula developed § 2.2.2 and the time reversal property of the Brownian bridge.

In the § 4.4, we prove the L?-estimate given in Theorem 4.6 by means of the local
covariant Bismut formula, Theorem 2.19, and a proper choice of the Cameron-Martin
space valued process .

As well-known from the work of Coulhon & Duong [ ], the weak (1, 1) property im-
plies L?-boundedness for 1 < p < 2. For the proof the authors assume a volume doubling
assumption and establish the spatial derivative of the heat kernel to obtain results about
the corresponding Riesz transform. Adapting the Proof of [ , Theorem 1.2] by applying
the integrated heat kernel estimate (4.2) with p = 2, we obtain the following result for
the covariant Riesz transform for 1 < p < 2:

Corollary 4.7. Assume that (A) holds. Then for all 1<k<m, A>0, the operator
V(A® 4+ 1)712 is weak (1, 1) type with a bound only depending on A, m and A. More precisely,
there is a constant D = D(A,m, ) > 0 such that forall 1 < k < m, a € T 21 (/\k T"M), we
have

_ D
vol {|V(A® + 1)™2a| > 4} < ~ llall Vi > 0.

In particular, for all 1 < p < 2, there is a constant C = C(A,m, p, A) > 0, such that for all
1 < k < m, we have

[Va® + 72| <cC.

Corollary 4.7 is proved in § 4.5, where we show that the (1, 1) property implies the L?-
boundedness. This results improves a result by Thalmaier and Wang [ , Theorem D],
in that, in [ , Theorem D] the same conclusion for the covariant Riesz transform is
obtained, however an additional assumption on the volume growth of M is made. This
volume assumption excludes, in particular, hyperbolic geometries (cf. [ 1), while such
geometries are covered by Corollary 4.7. In light of the our main result, Theorem 4.4, and
the results in [ ] for the scalar Riesz transform, it is natural to expect that a uniform
bound on R and VR implies that the covariant Riesz transform is bounded on L? for all
1 < p < oo: Specifically, we make the following conjecture:
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Conjecture 4.8. Assume that (A) holds. Then for every 1 < k < mand 1 < p < o0, we have
IVA© + 72| <o ¥A>0,

where the bound only depends on A, m, p and A.

We currently do not know whether the assumption on VR is necessary in Conjec-
ture 4.8. However, it is known that the curvature hypotheses cannot be weakened to
merely boundedness from below of the sectionnal curvature: In fact a recent result of
Marini and Veronelli [ ] shows that there are manifolds with positive sectionnal cur-
vature, for which the covariant Riesz transform is not bounded on L? for all 1 < p < 0.

It should also be noted that boundedness in L? of the Riesz transform d® (A% + 3)~172
instead of V(A®+ 1)~ is considerably easier, roughly, because we have the commutation
rule d® AR = AK+D®) 11 fact, a classical result by Bakry [ , Theorem 5.1] states that
d®(A® 4+ 1)712 is bounded in L?, if Z® and Z**D are bounded from below by constants.
More precisely, the following results holds true.

Theorem 4.9. Assume that ||R||, < oo. Then for all 0 < k < m the operators d©(A® + 2)=172
and 8®(A® + 1)~ are weakly (1, 1) with a (1, 1)-norm bound only depending on A and m. In
particular, for every 1 < p <2, we have

[[d©a® + /1)—1/2”1)’[] <o  and |84 A% + /1)-1/2”[”) < oo,

with norm bounds only depending on A, m, p and A.

The weak (1, 1) property appears to be new in this generality. The latter is established
using the estimates (d UE) and (6 UE), and Coulhon-Duong theory as in the Proof of Corol-
lary 4.7, yielding an alternative proof of the L’-boundedness of Theorem 4.9. The details
are given in { 4.5.

For applications in geometric analysis, the LP-boundedness of V(A® + 1)~ is more
important than that of d®A® + 12 For example, as shown in [ , Proof of Theorem
4.13], the former boundedness for k = 1 implies the L”-Calderén-Zygmund inequality

IHess ull, < D¢y (“A(O)u”p + ||u||p) Vu € C®(M),

where D¢ only depends on [|[V(A” + 2)~2|| . Roughly, the idea is to use the spectral
calculus, for all 4 >0,
[Vd@ul|, = [|[VdOAY + DAY + D uf,
= [V + 7 2dO@ + H7A + Aul|,
dOA? + 1)~

< HV(A‘” + A |AOu]| + 2 ||ullp) :

1/2| |
a2 |l p LP(M)NL2(M) »

where, by the essential self-adjointness of A® we used that
(A(l) n /1)—1/2 d(())g — d(O) (A(O) + A)—l/zg

for all g € L2(M) with dVg e [ 2(T*M).
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The LP-Calderén-Zygmund inequality together with ||R||, < oo, in turn, implies global
second order L”-estimates (cf. [ , Theorem 4 b))) for distributional solutions v € L?(M)
of ADy = f e LP(M) of the form

[Hess vll, + [[d@o], < C (I£1l, + lIll,) .

where C only depends on D, and an upper bound for ||R||.

Hence Corollary 4.7 directly implies, the following

Corollary 4.10. Assume that (A) holds. Then for all 1< p<?2, there is a constant
D' = D;‘mp > 0 such that

IHess@ll, < D ([|A%], + lull,)  Vue CEM), (43)
and such that for every distributional solution v € LP(M) of AOy = f e LP(M) we have

IHess oll, + [|[d®o] < DAL, + llll). (4.4)

In addition, the LP-Calderén-Zygmund inequality implies precompactness results for iso-

metric immersions, cf. [ , Theorem 1.1] and [ l. The Calderén-Zygmund-inequality
(4.3) also improves [ , Theorem D] as it does not involve a volume assumption. A
recent overview article by Pigola [ ] contains the state-of-the art for the L”-Calderon-

Zygmund inequality for large p: it can be shown that the LP-Calderon-Zygmund inequality
holds true for all p > max(2, m/2) if only ||R||, < oo. In this sense, Corollary 4.10 can be
considered a complementary result for small p.

However, Conjecture 4.8 for p > 2 is motivated on the scalar result for functions in
[ , Theorem 1.6] - noting that V = d® on functions - which states that if M satisfies
the local Poincaré inequality and has an exponential volume doubling (these conditions
are satisfied under Ric > —A for some constant A > 0), then

HVe_’A(O) <CeCr? Wi>0Vp>2

o |
|20 oy

implies (is actually equivalent to)

HV(A + A D Vp>2.

12
|L20LP(M)”pp S

Trying to extend the results of [ ], we realise that the central tools are the scalar
(k = 0) variants of Corollary 4.5 and Theorem 4.6, as well as the scalar variant of so called
Davies-Gaffney inequality, i.e. an L2 off-diagonal estimates for e and d@e=2” . we
can generalise the result for the covariant derivative of the heat kernel of the Hodge
Laplacian which is proved in § 4.6:

Theorem 4.11. There are universal constants c;,c, > 0 such that for all 1 < k < m with
R® > —A for some constant A > 0, all t > 0, all Borel subsets E,F ¢ M with compact
closure, and all a € FLz(/\k T*M) with supp a Cc E, we have

o g)(E,F)2

”ﬂFe"A(k)ozH2 + HHF\/;Ve"A(k)aHZ + H]]FtA(k)e"A(k)ar”2 <¢ (l + \/?A) e 1 |1gaf,-
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Note that the bound above implies that for small 0 <7 < 1

_dE.F?

H]]Fe_’A(k)aHZ + H]]F\/;Ve_’A(k)aHZ + ”1]FIA(k)e_’A(k)01H2 < ¢ 48 ] ||1]Ea| 2>
which is needed eventually for the strategy of the proof in [ 1
The only place where the techniques used in [ ] cannot be adjusted directly to

differential forms is where the local Poincaré inequality is used explicitly (which does not
make sense on differential forms). We currently do not know whether there is a different
method which avoids the use of the local Poincaré, proving Conjecture 4.8.

4.3 Proof of Theorem 4.4 and Corollary 4.5

4.3.1 Brownian bridges For details on Brownian bridges, we refer the reader to e.g.
[ , Section 5.4.]. An M-valued path x with explosion time ¢ = {(x) > 0 may be also
interpreted as a continuous map x : [0,00) - M such that x, € M for 0 <t < ¢ and
x; = oo forallz > ¢ if { < 0. The space of M-valued paths with explosion time is called
the path space of M and is denoted by W (M). A Brownian motion is then given as
the coordinate process X(w), = @, on (W (M), B,(W (M)), ), where SB,(W(M)) is the
o-algebra generated by the coordinate maps up to time 7 and y is the Wiener measure.

On the bridge space
I—;C’y(M) = {Cl) S W(M) LWy =X, 0 = y}

the law of the Brownian bridge from x to y in time ¢ is a probability measure P;* on
L;*Y(M) roughly given by

P,”(B) :=P(B| X, =y) VB € B, (W (M)).

The measure P;” is called Wiener measure on L;”’(M). For any s < t and F € B,
nonnegative function on W (M) and f a nonnegative measurable function on M, it can
be shown, that

E* (F(X)Pt—s(Xw y))
p[(x’ y)

EF(X) = ., 0<s<t, (4.5)

by using the Markov property. In particular, it follows that the P;*” as a measure on the
space W (M), is absolutely continuous with respect to P* on 9B, for any s < ¢ and the
Radon-Nikodym derivative is given by

P p (X
dP~r g, p(x,y)

s

Then (Ny)o<,< is a continuous local martingale under the probability P*.

The Brownian bridge admits symmetry under time reversal (time reversal property)
of the pinned Wiener measure: The pushforward of P, with respect to the B ,/%B,-
measurable map W(M) — W (M) given by = w(t —-) is P{"". In particular,

E F(w) = E” F(o(t — ). (4.6)
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4.3.2 Proof of Theorem 4.4 Next, we establish the estimate for the covariant derivative
of the heat kernel in Theorem 4.4. Therefore, we want to make use of the covariant Bismut
formula, Theorem 2.19, and disintegrate using the relation (4.5) and time reversal.

Proof of Theorem 4.4. Let r > 0, n, € T .M, 5, € N\*TEM. By the covariant Bismut
formula, Theorem 2.19, and the disintegration formula (4.5) we get, for any |£| < 1,

| )

_1AO) 1 _x o ,
+ e 2% (x,y)E[E,’y<|@z|J |@slllp(Xs(X))||‘3sldS>
0

: |

_LAK)

1 _1A0 x. o ~
Vxe 2 (x, )| < ?e 24 (x, .V)[Et Y <|Qt| J @s l(st - @s)
0

_LAO)
134
t

t
< (x, y)eCAmIESY H @;'(dB, - @)
0

_1 A0
+ C(A, m)eCAme=387 . y)).

By the time reversal property (4.6), we get

—LAO X,y
e 2 (x,yE

I ~
J G7'(dB, = @,)
0

_LAO) 2o ~
=E(e 27 (X;p(x),¥) J Q; (dB, - Q)
0

)

_LAO 2o ~
+E (e 27 (X,,), %) J @;'dB, - @)
0

)

12 N
J G;'(dB, - @,)
0

Next, by the Cauchy-Schwarz inequality,

_1A® = ~
E{e 27 (Xyp(x),y) @s (dB, - @S)
0

o 51172
< [[E (e 2 (Xt/z(x),)’)) E

212

L I

172
_1 70 _LA®O) _1A0
< C(A, myt~1/2eCAm1 “e 28 (x,z)e 28 (z,y)e 28 (z,y) Vol(dz)]

< C(A, m) VOl(B(y, A ’t/2))_1/2t_l/zeC(A’m)te_tA@)(x, y)l/2

dix.p)?
t

< C(A, m) vol(B(y, V1/2))~ 11~ 12eCtAmie=CtAm

where we have used the Li-Yau estimate
—1A® - olxpxp)*
e % (x, x,) < vol(B(xy, V1) le CAM T CAM s 0Vx,,x, € M,
twice, and

[ e 12 (x, e 734" (2, ) vol(dz) = e (x, y).

)

< C(A, m) vol(B(x, V/1/2))~ 1~ 12eC(Am1o=CAm)

Likewise, we have

_1A0) 2o ~
Ele 27 (X;p(x),y) J Q; (dB; -~ Q)
0

dx)?
t

>

so that with local doubling (LVD) we arrive at the desired estimate. |
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4.3.3 Proof of Corollary 4.5

Proof of Corollary 4.5. By Theorem 4.4 and (VC,), given y > 0, we get

P ydeey)?

J V.o 0| €5 Vol

dx.p)?
< COAm. AT ol B(y, V) [ A volax)

had _ deey)?
< C(A, m, p)eCAM P2 yol(B(y, \ﬁ))—l’z J e ~CAmMITE= ol(dx)
j=2
B(H VO\B(,Gi— V1)

+ C(A, m, p)eCAm1=P2 \ol(B(y, /1) 7+,

where we have chosen y < C(A, m, p). Finally, using the local doubling (LVD) and letting
y' :=C(A,m, p)—y >0, we have

) dx)?

Z J e’ "+ vol(dx)

j=2
B(.j VO\B(.G—DV/1)

< vol(B(y, V1) Z Me—y’([—l)z
=2 vol(B(y, V1)

(S
<VOIB(y, V1) Y jmer U= HCUmI ¢ o

J=2

finishing the proof. |

Remark 4.12. Note that Lemma 4.1 can be proved almost verbatim using the global Bis-
mut formulae analogues (2.30) and (2.31).

4.4 Proof of Theorem 4.6
Now we can give the

Proof of Theorem 4.6. We start by noting that it suffices to prove

HVe_’A(k)aH < C(Am, ™ PeCAmD gl Va € Fem(AFT* M), (4.7)
p

Indeed, to deduce the general case, we can pick a sequence (a,) C I'Ccoo(/\k T*M) such
that a, — « in L’(M). Then Ve"A(k)an is convergent in I ,(A\* T* M) by (4.7), and we have

_iA® _tA©)
He 1A (a—an)‘ <el|le™A o — a,|
P
by the Kato-Simon inequality (2.8)
_tA® At —1A©®
‘e a-a)|<eMe ™ la—a,|.

. . NG NG
where A > 0 is some lower bound on Ric > —A, so thate™ a, — ¢ ain [ (A" T*M),

tA©

_1AO) . . . o .
ase is a contraction in L’(M). Thus, as V (acting a priori on distributions) induces
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a closed operator from T ,(A*T*M) to T (T*M @ \*T*M), it follows that
Ve_’A(k)an ~ ve ™™ in M (T*M ® \* T* M), yielding the claimed inequality for the gen-
eral case. Thus, we assume that a € cho(/\k T*M) for the rest of the proof.

In the sequel, C(4, ...) denotes a constant that only depends on g, ..., and which may
differ from line to line. Lett > 0,r >0, x € M, £ € T, M be arbitrary and pick some finite
energy process £ € CM(, & A* T*M) as in Corollary 2.15. It follows from the covariant
Bismut formula 2.19 that the right hand side of (2.20) can be rewritten using the Markov
property of Brownian motion and using that { = o P-as., since M is stochastically

complete, as
_ I Alk) _
<Ve 34 a(x),5> = —[E< @/ a(X,(x), (X, + (2, >

As in the proof of Theorem 2.19, by Gronwall’s inequality, we have

t
@], \exp< J @(Xs(x))ds) Vi >0,
0

and hence
|@, |Op eClmAN ’5, g eClmAt P-as. on{s < t}. (4.8)
op
As @ and @ are invertible, we also have
|@;! |Op < eCmAY ‘@N,‘l <eCrmA  pas on{s<rt}. (4.9)
op

Then for ¢ with 1/¢ + 1/p = 1 we have

INT
(1] < ca) [[E <L @

tC(A,q,m) , 1C(q,m)
1 e g
< Clg)em1e™ 7 g,

> q/2] 1/q

where we used the Burkholder-Davis-Gundy inequality A.12 and eqgs. (4.8) and (4.9). More-
over,

[E162,19] ™ < Cmreoman) < COrcom. e

which follows from egs. (4.8) and (4.9), [¢] < |€], |p] £ C(m, A). We now estimate as follows
_ 1 Alk)
(vers*ar.¢)

E (1@, lax DIl ) +E (1@ 11X, ol 1671 )

< eCNE (Ja(X,GDIIER ) +e P AE (JaCX G0l )

1/ Vg 1/
<€A [E[a(X,(n|"] " [E16R19] T + e [E facx, con|’] [[E|e§i>f|4]
C(A 1C(A.q.m) TC(q m)
< A [ a(X,(x)|"] " Cl@eCmi e g
+ e [E[a(x,()]] " S Cm, A) ]

C(A 1C(A,q,m) tC(q )
2

= 161 < [ Ja(x,()|"] " (Cl@ec ™2 +eC0NC(m, 4)).
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Taking r - oo, we constructed C(A, m, p) < oo such that we have
IING) p
‘Ve 24 a(x)‘ < C(A, m, p)e/XAmPPRE (X, (x)|”  Vxe M Vt>0,
and

t p [
J|Ve_§A(k)a(x)‘ vol(dx) < C(A, m, p)e'CAmPo2 | E |(X,(x))|” vol(dx)

= C(A, m, p)e!CCAmD b2 J e 34” (x, ) lal? (3) vol(dy) vol(dx)

< C(A, m, p)e'AmD=r2 [ q|P (y) vol(dy),
where used Fubini and
_LAO _LAO
e 27 (x,y)vol(dx)=]e 27 (y,x)vol(dx) <1,
and so
NG
|[ve"a| < ccampectnrtyay,,

p
completing the proof. [

4.5 Proof of Corollary 4.7 and Theorem 4.9

This part of the work was carried out by Baptiste Devyver.

In this section, we explain how we can use the heat kernel estimates (UE), (VUE),
(d UE) and (8 UE) in order to get the estimates for the Riesz transforms V(A% + 1)~ and
(d + 8)(A% + 1712 ie. Corollary 4.7 and Theorem 4.9 respectively. The idea is to closely
follow the Proof of [ , Theorem 1.2] for the localised scalar Riesz transform d(A+ 4)~"2.
This proof is based on the Calderén-Zygmund decomposition and kernel estimates, which
we will see to follow from the assumed heat kernel estimates (UE), (VUE), (d UE) and (8 UE).
However we feel that in the Proof of [ , Theorem 1.2] the issue of localisation may
been partly overlooked: there, it is wrongly asserted that (LVD) implies that every open
ball of radius 1 in M is a doubling space, with a doubling constant that can be chosen
independently of the ball. But this property depends on the geometry of balls, and not
only on the (LVD) to be valid in the whole of M, and we do not see why it should hold
in the context of [ , Theorem 1.21.

In order to clarify the matter, we decided to give full proofs for the localisation pro-
cedure that we use. Note that we stick to the original notation used in [ . The
first ingredient is a localised Calderéon-Zygmund decomposition f = g + b for a smooth
section f € F(/\(k) T*M) which has support inside a ball B = B(x, 1). This decomposition
holds due to the local doubling assumption (LVD). The version of the Calderén-Zygmund
decomposition we need is the following (cf. [ land [ , Appendix B]).

Lemma 4.3 (] , Lemma 5.1). Llet E — M be a Riemannian vector bundle where M
is locally doubling. Then there is a constant C > 0, which only depends on the local doubling
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constant and has the following property: For every ballB = B(x, 1), everyu € I (E) supported

in B, and every0 < 4 < jB |u|, there is a countable collection of balls (B;),;, of integrable

c
vol(B) il

sections (b;);c; in T1(E) and a section g € ' «(E) such that:
(2) the balls (B;),c; have the finite intersection property: There is N € N such that for every
ieN:
Card{j eN: B,nB; # 2} < N.
(3) Yier vol(B) < 5 [ lul.
(4) lgl < Aae.
(5) Foralli € I, b; has support inside B;, and [, |b;| < CAvol(B;).

Furthermore, as a consequence of (2), (3) and (5), it holds for some constant C that

gl < Cllully .

The proof of this version of the Calderén-Zygmund decomposition closely follows the
classical one, with three differences: First, since we have only local doubling but not
doubling, we have to use a modified maximal function ., defined as follows:

Mu(x) ;= su J |ul,
Bax:rgs)ss vol(B) Jp

where r(B) denotes the radius of the ball B. The particular value 8 in the definition
of J is chosen for technical purposes later on (see the Proof of eq. (4.22)). Note that
local doubling implies that . is weak type (1,1) and bounded on L” for all 1 < p < o,
as follows from a careful inspection of the Proof of [ , p- 13, Theorem 1] and the
fact that the definition of . involves only balls with bounded radii. Secondly, in the
Calderon-Zygmund decomposition localised in the ball B, the balls B; do not have to be
included inside the ball B, only inside 2B. Lastly, the fact that we deal with sections
of a vector bundle instead of functions: this does not create any real difficulty and the
standard arguments apply mutatis mutandis if we put norms instead of absolute values
everywhere if necessary.

The main steps of the Proof of Corollary 4.7 and Theorem 4.9 closely follow the approach
of [CD99, Theorem 1.2]. Let T be either V(A® + 172 or (d® + 8*~D)a® + 3)~1"2.

From now on, we set again E := A® T*M. We start with boundedness of T in L2:

Lemma 4.14. For all A > 0 the operator (d® + §*~) (A% + /I)_l/z, originally defined on
e /\(k) T*M), extends to a bounded operator on I 2( /\(k) T*M) with

|@® + 8%y (a4 )7 <.

S
2,2

If IRl < A < +oo, then for all A > 0 the operator V (A® + /1)_1/2, originally defined on
e /\(k) T*M), extends to a bounded operator on I 2( /\(k) T*M) with

friso a7, <c
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where the constant C only depends on A, m and A.

Proof. Since cho(/\(k) T*M) is dense in F2(A® T*M), it is enough to show that for any
f €N T*M),

)—1/2

”(d(") +8%D) (AW + 2 f”2 < £l (4.10)

and

)—1/2

[v(a%+2)7 1| <ciri,. (@)

The first estimate is a simple consequence of the functional calculus: since the Dirac
operator D :=d + & acting on smooth, compactly supported differential forms, is essen-
tially self-adjoint on M, it follows that for all g in the domain D? = A (which is included
in the domain of D), and

lld + 8)gll5 = (Dg, Dg) = (D’¢g. g)
<((D* + 2)g.8)
2
<[[©* + He];.
Applying the above inequality to g = (D*+4)""2 £, which is the domain of D? by functional
calculus, we obtain (4.10) with C = 1.

Next, we prove (4.11). Recall that, since M is complete, the operator V*V acting on
smooth compactly supported differential forms is essentially self-adjoint, associated with
the quadratic form (u,v) — (Vu, Vo). In particular, if g € FLz(/\k T*M) is in the domain
of V*V, then

(Vg,Vg) =(V'Vg,g).
Hence, for such a g, using that | #2®|| < A’, where A’ = A’(A,m) < oo, we have
IVl = (Vg. Vg) = (V*Vg.g)
V'V + RO + Dg.g) + A llgll

<[ @+ 2) 2] + 701
We take g = (A% + /l)_ll2 f. Then g is in the domain of A®): Indeed, if we write
F=(AP 1) (A% 4 1) 1,
we have
g= (A% 4+ 1)7 (A% +1)7 (a0 4 1) 5).

But the operator A% (A% 4+ 1)_1/2 is bounded in L? by the functional calculus, while
(A% +1) f is smooth with compact support and hence in L% Thus, g = (A% + 1)_1 h
with & in L2, hence g is in the domain of A®. It follows that

)—1/2 -12

|V (&% +3

2 ;o 2
sz <l7lz+A | sz

Al
< (&)

(A% + 1)
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where we have used that ”(A(k) - )»)_1/2”22 < 472 by functional calculus. This proves
(4.11). ’ [ |

Finally, we prove Corollary 4.7 and Theorem 4.9. By Lemma 4.14 and using interpolation,
we see that it is sufficient to prove that T is bounded from i (A* T*M) into the space
of weakly integrable sections I'l_‘lv(/\k T*M), i.e, we find a constant C > 0 such that for
all 7 e r(AY T*M) and all 1> 0, we have

vol({x € M : ITfI(x)>/1})<%||f||1- (412)

By a density argument, it is sufficient to prove it for smooth f with compact support: So,
take such an f, and fix 4 > 0. Take (X;)jen @ maximal 1-separated subset, hence the balls
B(x;,1) cover M, while the balls B(x;, %) are disjoint. Local doubling then implies that
the balls B(x;,1) have the finite intersection property. Let (@) jen be a smooth partition
of unity associated to the covering of M by the balls B(x;, 1), and write f; := ¢, f. The
fact that the covering has the finite intersection property implies that for some constant
C >0,

s <D |IAl < clirl
jeN
Hence, it is enough to prove (4.12) for f; (with a constant independent of j and f). In

what follows, we therefore assume that j € N is fixed, and we denote by u = f; and
B =B(x;,1). We have two cases, according to whether

P J|u|
vol(B) Jp

or not - with C the constant in Lemma 4.13. We first treat the case where A < VolL(B) jB |ue],
for which there are two steps: first, show that

vol({x € 2B : |Tf|(x) > 4}) <

~Q

lully » (4.13)
and then show that
vol ({x € M \ 2B : |Tf|(x)>/l})<%||u||1, (414)
For (4.13), notice that {x € 2B : |Tf|(x) > A} c 2B, therefore
vol({x € 2B : |Tf|(x) > 4}) < vol(2B) < C vol(B) < % lally

where we have used successively (LVD) and the assumption on A. This proves (4.13).

Next, we show (4.14). By the Markov inequality, we see that (4.14) follows from the
L'-estimate

J | Tu|(x) vol(dx) < C ||ull; - (4.15)
M\2B

On the other hand, (4.15) can be proved as in [ , p- 1163], using the heat kernel estimates
(VUE), (d UE) and (8 UE) respectively.
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Now, we deal with the case 4 > lul. In this case, we may use the Calderdn-

c
vol(B) IB
Zygmund decomposition u=g+) ;c;b; from Lemma 4.13. Denote by r; the radius of B,

and lett; = r . Then, we write

Tu=Tg+Y Tlpe b+ 3 T —e)b+ Y Tl 3" b,

iel iel iel

The weak L'-estimate (4.12) is a consequence of the following four estimates:

A C

V01<{xeMl |Tg|>Z})<7||f||1, (4.16)

vol XEM : ZTﬂgge_t"A(k)b,- > u 9 A1y s (4.17)
iel 4 /1

vol [ xem o | Ta-e > 28 ) < Spp,, (418)
iel 4 /l

vol ({x eM : |3 Tlynape Vs, > %}) <Sifh (419)

iel

First, the fact that |g| < CA a.e. and that T is bounded on L? leads to
A 16 16 C
vol ({x e M : [Tgl > £ }) < 3 llgl < 53 lslle Nl < 5l

which shows (4.16). Concerning (4.17), the same argument using the L>-boundedness of T
shows that (4.17) follows from the L-estimate

2

< CAllull; . (4.20)
2

A
D Type i p

iel

Denote by B, = B(y;,r;). By Lemma 4.13 (5) in the Calderén-Zygmund decomposition
together with the heat kernel estimate (UE) and the fact that ¢; < 2 (since B; c 2B) imply
that

2(X.y,-)
Ct;

vol(B(x D)

_ (x,y)

i e Ct;

<Ci| ——————13(») vol(dy)
Jn volB(x, /i)

¢4 b |(x) < CAvol(B))

m d(xy)

[ d(x, y) e

<Ci 1+ 1p 1(d
°M< 7 ) VolBG. i) 5,(») vol(dy)

) _day

Ci e M 1. () voldy)

< — 1, :
Jus vol®(y /i)
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where we have used local doubling (LVD) with #; < 2 in the second last line. In order to
prove (4.20), it is then sufficient to prove that

_ 2w

Tp,(y) voldy)|| <

2

llully - (4.21)

A

C .
1 S
* Z] J w vol(B(y, /7))

To estimate the L2-norm above, we dualise against some v € [ 2(E) supported in 3B: By
Fubini, we have

_ e

[ Y —= 4, (o) voldx) vol(dy)
_— U VO VO
Mt 7 vol(B iy D T

ZJ : J _@() 1(dx) 1(dy)
_ieI B; VOI(B(y,\/t—,»)) 3Be v(x) vol(dx vol(dy).

Next, we prove that, for every i € I and y € B;, we have

_ <J T u(x) Vol(dx)> < Cllu(y). (4.22)
vol(B(y, /1)) \ J3B

Indeed: For j € N, denote by A, = B; and
A= {xe3B: 2\ <dny <2MVi}L g

Let N € N be the smallest integer so that 2N+1\/t—i > 4. Then,

d2 X,y
_ J e é,,. )v(x) vol(dx)
vol(B(y, 1/1,)) )38

E 1 _dz(x,y)
- - = Cy; 1d
=0 vol(B(y, /1)) JAj e v(x) vol(dx)

N vol(B(y, 2/*! \/t—i))e—czf 1

<)

: o]
= Vol(B(y, /1)) vol(B(y, 2/*+14/1))) J B(v.2/*1 /1))

By definition of N, we have for every j < N, 2j+1\/t—l- < 8, and therefore by local doubling,

vol(B(y, 2/ \/1)))
vol(B(, /1))
and it follows by definition of . that

<Cc2m,

1 (J G oo vold )) S e )
_ e i p(x) vol(dx) ) < Me=¢ uv(y
vol(B(y, /1)) \ /38 =

< Z 2ime=<? g u(y)
j=0
< CAV(y),

which proves (4.22).
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According to the remark made immediately after the definition of ., (LVD) implies
that the operator . is bounded in L?, so using Hélder, (3) in the Calderén-Zygmund
decomposition and (4.22), we get that
2

Ct;
: J Y gL volldy)|| <Clul2 Y vol(B)
33,; M vol(B(y, /7)) 2,; ’

2

_dew

C 2
< = loll5 Nlull; -

Dividing by ||v||§ and taking the sup over all non-zero v, we obtain

2w 2

]] e Cu
* ZI J M Vol(B(y, /1)

which proves (4.21) and hence (4.17).

15,(y) voldy)|| <

2

lully

~1Q

It thus remains to show (4.18) and (4.19). Both equations rely on the following

Lemma 4.15. Assume that ||R||,, < A for some constant A < oo. Then there is a constant
C = C(A,m) > 0, such that we have

J ¥ |(d® + 8% D] =2 (x, y)]| vol(dx) < Cs™2e™&e  Vi,5>0Vy e M.
{dC.»)=v/t}

Assume that (A) holds. Then there is a constant C = C(A, m) > 0, such that we have

t
} ‘Ve“‘A(k)(x, y)‘ vol(dx) < Cs™ 2" Vi,s>0Vye M.

J {dewzvi

Proof. For the second integral involving Ve‘SA(k)(x, y), the estimate is an immediate con-
sequence of Corollary 4.5 choosing p = 1. The proof for the first integral follows along
the lines, using (d UE) and (6 UE) instead of (VUE) for the proof of the weighted estimate
analogous to Corollary 4.5. |

The estimates (4.18) and (4.19) follow from Lemma 4.15, in the fashion as the Proof of
[ , Theorem 1.2]. Finally, this proves all four estimates (4.16), (4.17), (4.18) and (4.19), and
concludes the Proof of Theorem 4.9 and Corollary 4.7.

4.6 Proof of Theorem 4.1

This part of the work was carried out by Batu Giineysu.

We prepare the proof with the following estimate from complex analysis that can be
found in e.g. [ I:

Lemma 4.16 (Phragmen-Lindeldf’s inequality). Let

f:{Re>0} —C
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be holomorphic, and assume that there are constants A, B,y > 0, b > 0, such that

|f(2)| < B Vz € {Re > 0},
If(0)] < A7 wi>o0.

Then we have

1/(2) < Be®%  Vze (Re>0).

Proof of Theorem 4.11. We split the Proof into three steps.

10

We have

2
[1resal, < e 1l 429

Indeed: The inequality

2
‘(e_m(k)ap“2>‘2 < SN Yy, [,

valid for all @; with support in E and a, with support in F has been proved in [ ,

Lemma XI1.3.]. If we apply Phragmen-Lindelof’s inequality 4.16 with

y = d(E, F)*/4,

r@=(c* a.m). b=ld, A=B=|al,|sl

2 b
. . NG
noting that we may pick A = ||a, ||, |||, because of A% > 0 so that e™**" is a con-
traction, we get the bound
) —d(E.F)*
H(e “1’“2>H2 <em i el flaall, - (4.24)
The latter inequality is equivalent to the statement of (4.23). O
We have
_iaA® _dER?
Jeratestal, < o et (423
2
where C < o is a universal constant.
Indeed: The asserted estimate is equivalent to
d(U1.Un)?
(k) o=t AP - ==
(189 0 0| < cem o [l [l - (4.26)

where a; € [ 2(T*M) is supported in E and a, € [ 2(T*M) is supported in F. To
see (4.25), we first note that by applying the Phragmen-Lindelof estimate 4.16 to the
estimate (4.24) we get the bound

(e, < o o

5> (4.27)
valid for all z with Rez > 0. By Cauchy’s integral formula we have
*)
<e_ZA ap, (12> dz
<A(k)e_m(k)al, a2> _ _% <e_’A(k)a1, (x2> __1 J

2ri (z—1)?
z:|z—t|=t/2
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Since by (4.27) we have

_ZAK) _ZAR)
<e zA al,a2>dz _ <e zA al,(x2>

< (2n) Lt sup
(z—1)? 2t |z—1]=t/2 (z—1)?

z:|z—t|=t/2

1 _dWUy.Up)? -2
< stlally flaofl, o™ ()
this proves (4.25).
3° We have

C2(A)d(E F)?
17 all,-

|1 vVivesa| < cicae
Indeed: We pick some ¢ € CZ°(M). Then we have

H\/;(pve_m(k)“”z _ <N*((pzve_m<k> _IA(k)(X>
=2 <tq,vd(pe—tA( ) —zA<k)a> <tq02V* Ve_m(k>a, e_m(k)a>
=2 <t(pVe 1A a dp®e tA(k)(X> 4 <t§02A(k)e_,A(k)a’ e_m<k>a>

- <t(ﬂ2 Ric" e"A(k)a’ e—tA(k)a>
<ofyioscs], Vo),
+ ”tq,A(k)e—sz)a” Hq’e_m(k)“H + A2 H(pe_m(k)“H
2 2
A oo ol e fasoesuf

_ A _iAK) _+AK)
H(ptA(k)e A aH ”q)e 1A a” + A%t ”(pe 1%y
2 2

2

2

2

)

2

and so
2 2
A NG _tA® NG
”\/;(pVe 1A a” < ct ”d(p®e 1A a” +c thoA(k)e 1A aH ”qoe 1A a”
2 2 2 2

2
—_tA®)
+cA%t Ht(pe 1A a” .

Assume now that
d(E, F) }

0<e<l, ¢@lp=1, |dol,<1, supppcCF’ 2={x:d(x,F)< 3

Then we have
2
A
i vivesaa]
2
2
NG
< [vissees]
2

2
—tA® —tA® NG ENC)
< ct Hﬂpe 1A a” +c ”ﬂF/tA(k)e 1A aH HﬂF/e 1A aH + ctA? ”ﬂF/e 1A aH
2 2 2

Using (4.23), (4.25) and

2

5

d(E, F') > %d(E, F)

we get

R, _ d(E.F?
”ﬂF\/ZVe (A aH2 <o+ Ve =
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Altogether, the claim follows. |






Appendix A

APPENDIX

A.1  Conditional expectation

For a comprehensive introduction for this subsection, we refer the reader to [ 1§ 20-
22 and § 17 treating the more general case of a o-finite measure space and [ 1. First,
let us recall a central theorem in the study of the geometry of Hilbert spaces. A Hilbert

space (#, (-, ) g) is a complete inner product space, i.e. an inner product space where

every Cauchy sequence converges. Let ||-|| = (., -);/; the norm corresponding to the inner

product (-,-)g and K := {R,C}.

Theorem A.1 (Projection theorem). Let C # @ be a closed convex subset of the Hilbert space
H . For every h € Z there is a unique minimiser u € C such that

||A —u|| = inf ||h— w].
weC
This element u = Poh is called (orthogonal) projection of h onto C.

A continuous linear functional on # is a map A : # — K, h —» A(h) which is linear,
Alag + ph) = aA(g) + pA(h) Va,f € K Vg, he X
and satisfies
IAg-—mI<cN)llg—hll Vg heH

with a constant ¢(A) > 0 independent of g,h € #. In fact, all linear functional on #
arise in this way:

Theorem A.2 (Riesz representation theorem). For each continuous linear functional ¢ on
the Hilbert space # there exists a unique g € # such that

Ag(h) :=(h,g)  Vhe %.

and ||A,|; = llglig. Conversely, given h € J, then h + (h,g) is a continuous linear
functional with operator norm ||g|| .

From now on let (Q, &,P) be a probability space. A prototypical example of a Hilbert
space is # = L2(%), ie. the space of all functions whose (absolute) 2" moment is
integrable with inner product, resp. norm

12
(u,v), := Iuv dpP resp. lull, := <J |u|2dﬂ3’> .

127
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Given a sub-c-algebra & c &, the idea of a conditional expectation is to make a random
variable u € L?(&) also measurable with respect to the coarser c-algebra, ie. u € €.
Formally, construct an object E¥ € € that is €-measurable by definition.

Definition A.3. Let (Q, %,P) be a probability space and € c & be a sub-s-algebra. The
conditional expectation of u € L>(F) relative to € is the orthogonal projection onto the
closed subspace L*(%)

EY : L2(F) - LX(®), u~ E%u
It is common to write E(u | €) instead of E¥wu.

Remark A.4 (Properties of E¥). Let (Q, %.P) be a probability space and € c & be
a sub-c-algebra. The conditional expectation E¥ has the following properties, for all
u, v € L2(F), almost surely:

(i) EY e LX(®)

(ii) ||[E?u|||_2(g) llull 2o (Contraction)
(iii) (E¥%u,w) = (u,E¥w) = (E¥u, E¥w) (Symmetry)
(iv) E¥u is the unique minimiser in L?(%) such that

- [Ezu“u(% = min |lu - gll 2

eL2(®)

Vu=w = Eu=E%w
(vi) E¥(au+ pw) = aE%u + pE¥w Va,f e R (Linearity)
(vii) If €, c € is a another sub-c-algebra, then EYE¥u = E¥ou (Tower property)

(viii) E¥(gu) = gE¥u Vg € L®(®) (Pull out)

(ix) E%g =g Vg € LX(®)

X) 0<u< = 0<E%«I (Markov property)
x)yusw = E%u<E%w (Monotony)
(xii) |E¥ | < E¥ |ul (A-inequality)

(xiii) E9Yy = Eu

(xiv) EE¥u = Eu (Tower property)
xv) 0<u, tu = E%,1E% (conditional Beppo Levi)
(xvi) u, >0 = EY (liminfu,) < liminf E¥u, (conditional Fatou)

(xvii) Forall n €N, |u,| < w, Ew < o and

a.s.
u, —u = E%, - E% (conditional dominated convergence)

(xviii) ¢ : R » R convex and E [e()] < o0 = E¥(u)>c(E¥) (conditional Jensen)
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Moreover,
[E®ull, < llully YueLY®),

and EY can be extended to L'(£) by continuity and Properties (v)-(xiv) carry over to
u € L1(#). In abuse of notation this extension will be denoted by the same symbol.

Theorem A.5 (Classical definition of E¥). Let € c & be a sub-c-algebra. For X € L'(F)
and Y € LY(F) it is then equivalent:

(i) Y =E(X | &) as. - Y is a version of the conditional expectation
(ii) J YdP =J XdP VG eg,
G G

where (ii) holds on any n-stable generator for &

The proof of the following lemma follows from usual approximations arguments for
Lebesgue integrals, cf. e.g. [SP14, Appendix A.2]

Lemma A.6. Assume that X, Y c & are c-algebras and let X : (Q,F) - (C,¥) € L/€
andY : (Q, F) - (D, D) € ¥/D be two random variables such that & 1L % . Then

E(@(X,Y)| L) = ED(X.Y)| _, = E(@X,Y)| X)

holds for all bounded € x D/AB(R)-measurable function ® : CxD - R. If? : ExQ - R
is bounded and € x ¥ /9B (R)-measurable, then

E(P(X(), ) | L) = B¥(x, )| ,_y = ECP(X(), ) | X).

Corollary A.7. Assume that ', ¥ c & are o-algebrasandlet X : (Q, F) — (C,6) € /€
andY : (Q, F) - (D, D) € ¥/D be two random variables such that & L ¥ . Then

ED(X,Y) = J Ed(x,Y)P(X € dx) = E J d(x,Y)P(X € dx)

holds for all bounded € x D/AB(R)-measurable function® : CxD - R. If¥P : ExQ - R
is bounded and € x ¥/9AB(R)-measurable, then

EY(X(),") = J. EY(x, )P(X edx)=E J Y(x, )P(X €dx).

A.2 Martingales

A filtration (&), is a family of sub-c-algebras & such that & c &, for all s <t. Now,
let (2, F,(F )50, P) be a filtered probability space satisfying the usual hypotheses, i.e. a
probability space (@, &, P) equipped with a filtration that is right-continuous

F . =F,, = ﬂgzs forall 7 > 0,
s>t

and complete, i.e. & contains all subsets of P-null sets.
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Definition A.8. A stochastic process (X,). is called a martingale if it is adapted to the
filtration (F,),5 and X, € L'(P) for all # > 0 such that

EX, | F)=X, Vs<t. (A1)

Definition A.9. A continuous local martingale is an adapted continuous process X for
which there exists a sequence of stopping times (c,),5, such that ¢, 1 c as. and for
every n > 0, Xf”ﬂ (6,50} is a (true) martingale.

Remark A.10. By the martingale property (A.1), we immediately see that a martingale
has constant expectation, i.e. EN; = EN,, for all s.

Lemma A.1. Let = be an as. finite stopping and X be a continuous local martingale taking
values in a finite-dimensional Hilbert space Z . Then

E sup |Y,| < o0 = Y is a (true) martingale.

0<s<t
In order to proof that a local martingale is a true martingale the common tool is given

by the following inequality, originally to be found in the joint work of Burkholder, Davis
& Gundy 1972 [ 1

Lemma A.12 (Burkholder, Davis, Gundy). For any p € (0, ) there are positive constants
¢,, C, such that, for all local martingales X with X, = 0 and stopping times z, the following
inequality holds:

p
¢, EIX1? <E <sup |Xs|> < CEXIP.

SSAT
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Riemannian manifold, 8
stochastically complete, 28

Riemannian metric, 8
quasi-isometric, 78

Riesz transform, 105

SDE
initial condition, 29
maximal solution, 30
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section, 2
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closable, 20
closed, 20
domain of definition of q, 20
semibounded (from below), 20
symmetric, 20
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spectral theorem, 18
spectral family, 18
spectral measure, 17
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spectrum of an operator, 17
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stochastic differential equation on a man-
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stochastic process, 25
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Stratonovich differential, 26

tangent bundle, 3
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wave operators, 69
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Wiener measure, 112
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