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Abstract
Statistical methods to test for effects of single nucleotide polymorphisms (SNPs)
on exon inclusion exist but often rely on testing of associations between mul-
tiple exon–SNP pairs, with sometimes subsequent summarization of results at
the gene level. Such approaches require heavy multiple testing corrections and
detect mostly events with large effect sizes. We propose here a test to find splice-
QTL (splicing quantitative trait loci) effects that takes all exons and all SNPs into
account simultaneously. For any chosen gene, this score-based test looks for an
association between the set of exon expressions and the set of SNPs, via a random-
effectsmodel framework. It is efficient to compute and can be used if the number
of SNPs is larger than the number of samples. In addition, the test is powerful
in detecting effects that are relatively small for individual exon–SNP pairs but
are observed for many pairs. Furthermore, test results are more often replicated
across datasets than pairwise testing results. This makes our test more robust to
exon–SNP pair-specific effects, which do not extend to multiple pairs within the
same gene. We conclude that the test we propose here offers more power and
better replicability in the search for spliceQTL effects.
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1 INTRODUCTION

A gene is a chromosomal region defined onDNA, whichmay contain subunits called exons alternating with introns. After
transcription of the gene into a pre-mRNA, the introns are removed and only a subset of the exons within the gene may
be included in the mature mRNA. This process is referred to as mRNA splicing. Each distinct subset of exons potentially
yields a different transcript of the gene, which may lead to proteins with different functions. Alternative splicing is the
fact that different transcripts can be produced, as a consequence of different subsets of exons being spliced. A schematic
representation of (alternative) splicing and its link to DNA can be found in Supplementary Figure 1. Alternative splicing
events can be studied by considering exon-level counts from RNA-sequencing data: it can be observed if samples present
different relative amounts of exons of the same gene.
Understandingwhat affects alternative splicing has been recognized as yet another important challenge for postgenome

biology (Black, 2000; Modrek & Lee, 2002). Our knowledge of alternative splicing has grown through the use of RNA-
sequencing (RNA-seq). It is nowknown that between 92% and 95% ofmultiexon genes in higher eukaryotes contain at least
one alternative splicing event (Pan et al., 2008; Wang et al., 2008; Sultan et al., 2008). Single nucleotide polymorphisms
(SNPs) refer to positions in the genome that have variable genotypes in the population: individuals may have different
DNA nucleotides at such positions. These may be linked to a clinical or a molecular phenotype, such as gene expression
or splicing. There is, thus, interest in studying how SNPs affect alternative splicing.
The wider availability and affordability of high-throughput molecular profiling technology has led to an increasing

number of omics studies where each sample has multiple high-dimensional molecular profiles, including for example
both SNP and mRNA expression profiles. This paves the way for studying the impact of (populational) genomic variation
on alternative splicing. The challenge is to combine these two high-dimensional datasets bymeans of amodel and develop
a statistical test that is powerful enough to detect associations of interest.
Here we will focus on alternative splicing that is associated with SNPs, and we aim to find these spliceQTLs (splicing

quantitative trait loci). Specifically, the problem involves finding associations between exon-level mRNA data in a given
gene and SNP genotypes in a window around the gene. Methods currently available to handle this problem are based on
pairwise correlation and/or testing, thus involving one pair of exon–SNP at a time. The multiple-testing correction here is
severe due to the large number of exon–SNP pairs, leading to low power for finding effects. In addition, such approaches
ignore effects that span many exons and/or many SNPs. A method that, per gene, takes into account data of all exons, as
well as all SNPs of interest, will not only decrease the multiple-testing burden but can also benefit from considering more
data (multiple exons and SNPs) at the same time. This can be particularly useful when exon–SNP associations are not
very strong for any individual pair but exist at a detectable level for multiple exon–SNP pairs. Such associations cannot
typically be distinguished from noise when testing pairs individually, while their occurrence in multiple exon–SNP pairs
mapping to the same gene suggests that they are unlikely to be due to noise.
One way to increase the utility of the study is to decrease the multiple testing by diminishing the number of tests. Some

authors have opted for first selecting features (genes or exons, depending on the method) associated with alternative
splicing and subsequently use those features to examine whether they displayed associations with SNPs after applying
existing statistical methods (Li et al., 2018; Zhang et al., 2020; Tian et al., 2019). For example, Li et al. (2018) first used
their suggested method to estimate alternatively spliced introns, then subsequently performed a method to find eQTLs
(fastqtl proposed by Ongen et al., 2016) per intron cluster, after dimension reduction of both genotype and expression data.
Similarly, both Zhang et al. (2020) and Tian et al. (2019) used an existingmethod to first yield a set of exons associated with
alternative splicing and subsequently estimated the association between each selected exonwith each SNP locatedwithin a
givenwindow from it. The proposed selection procedures are based on comparisons between groups, for example, between
tumor and normal samples, or between different tumor types. So, using such approaches, the search for spliceQTLs is
limited to genes that display strong enough alternative splicing between two or more groups. Being critical of the choice
of the set of genes and SNPs is helpful, but they should be additional to using powerful statistical methodology. In this
paper, we focus on a novel powerful test that can be applied to any selection of genes and SNPs.
Amethod that considers all exons andmany SNPs per gene needs amodel tomake sense of all available data at once. On

the one hand, wewould like to better understand the expression variation ofmultiple exons at the same time. On the other
hand, we wish to consider how this variation is associated with genotypes of SNPs in a large window, say all SNPs located
between the start and end of the gene. One possibility is to consider a multiple regression framework, where all exon
expressions are considered as response variables and the SNP genotypes are explanatory variables. However, the number
of SNPs can amount to a number larger than the number of samples. While penalized regression would offer a solution to
fit the model (e.g., Pecanka et al., 2019), it does not yield a reliable testing tool, due to the penalty parameter estimation.
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Another important issue is the SNPs’ correlation structure. Genotypes for different SNPs can display strong and even
full association. Such strong correlations essentially make approaches based on classic regression models unsuitable
for use, as these require uncorrelated covariates and breakdown under (near) full collinearity between covariates.
Thus, methods to test for spliceQTL should be able to handle not only a large number of covariates but also correlated
covariates.
In the next section, we will present a statistical test that solves the aforementioned problems. It is based upon the score

function, which considers the association between expression data for all of the gene’s exons and all SNPs considered to
be of interest, using all data referring to a given gene at once. Our test is designed to find specifically spliceQTL effects,
and not eQTL effects, by means of conditioning the gene’s total expression (Supplementary Figure 1). Furthermore, the
empirical correlation structure between SNPs can be taken into account. In the Results section, we perform a simulation
study to evaluate the test’s power to find true effects, for various effect types. In the same section, the test is applied to
two publicly available datasets, the GEUVADIS/1000Genomes data, as well as to BIOS data, enabling us to evaluate how
reproducible the selection of genes is. Finally, we gather our findings in the Discussion.

2 METHODS

2.1 The model

Suppose a gene with 𝐾 exons is considered, with 𝐾 ≥ 2 (a gene with 𝐾 = 1 exon only has one isoform, so it cannot dis-
play alternative splicing). As response, we take the set of 𝐾 exon-specific measurements, denoted as the 𝐾 × 1 column
vector 𝐘𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝐾)𝑡 for sample 𝑖, and as covariates the 𝑀 SNP genotypes, denoted by the 𝑀 × 1 column vector
𝐗𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑀)𝑡 for sample 𝑖 (𝑖 = 1, … , 𝑛). Each exon-specific measurement quantifies the amount of RNA found to
map to that exon and, to reflect the fact that here we are handling RNA quantification, from now on we will refer to exon-
specificmeasurements as “exon expression,” even though strictly speaking exons are not individually expressed but rather
are included in transcripts. The exact definition of the covariates depends on the assumed underlying genetic model; for
an additive model, 𝑋𝑖𝑗 is equal to the number of minor alleles at the corresponding SNP (so taking values in {0, 1, 2}) and
for the dominant or recessive genetic model 𝑋𝑖𝑗 is binary. In the simulation studies, the additive model was assumed. The
relationship between exon expression levels and SNP genotypes is assumed to be

E (𝐘𝑖|𝐗𝑖) = ℎ−1
(
𝜶 + 𝐁𝑡𝐗𝑖

)
, (1)

where 𝐁 is an 𝑀 × 𝐾 matrix in which the 𝑘th column is the vector 𝜷𝑘 ≡ (𝛽1𝑘, 𝛽2𝑘, … , 𝛽𝑀𝑘)
𝑡 of regression coefficients

relating exon 𝑘 to the𝑀 SNP genotypes, and 𝜶 = (𝛼1, … , 𝛼𝐾)𝑡 is the intercept. The function ℎ is anℝ𝐾 → ℝ𝐾 link function;
it links the 𝐾-dimensional vector of expected exon-expression and the linear combination of the coded SNP genotypes for
every exon. The exact definition of this link function is determined by the distribution of 𝐘𝑖 . For the derivation of the
score test-statistic, it is assumed that the response vector 𝐘𝑖 follows a distribution belonging to the canonical exponential
family with a canonical link function (see, for instance, McCullagh and Nelder, 1989, Table 2.1). The response, exon-
expression, may either consist of raw counts or normalized values. In the first case, a multinomial distribution for 𝐘𝑖 will
be assumed, and for the latter the multivariate normal distribution would be appropriate. Both distributions are members
of the canonical exponential family.
Based on data of 𝑛 independent samples as just described, the aim is to test per gene whether there is an association

between its exon-specific expression levels and the SNP genotypes. In terms of the model, this means that we want to
test the null hypotheses H0 ∶ 𝛽𝑚1 = 𝛽𝑚2 = ⋯ = 𝛽𝑚𝐾 = 0 for all 𝑚 = 1,… ,𝑀. Note that alternative splicing may still
take place if the combined null hypotheses hold, by means of different 𝛼𝑘 in 𝜶, but this event is not associated with
the SNP genotypes. However, if 𝛼𝑘 ≡ 𝛼 for all 𝑘, all exons have the same expected expression level and there can be no
alternative splicing under the null hypothesis. Supplementary Figure 1 illustrates how SNP genotypes and exon-level data
are connected via the model.
If𝑀 is much larger than 𝑛, this test cannot be performed with 𝜷 nonstochastic, since in such a case the model cannot

be fitted. To make testing possible, we assume each 𝜷𝑘 to be a random vector with a mean zero, for 𝑘 = 1,… , 𝐾. Given the
vector of covariates 𝐗𝑖 for sample 𝑖, we define 𝑟𝑖𝑘 ∶=

∑𝑀

𝑚=1
𝑋𝑖𝑚𝛽𝑚𝑘 = 𝜷𝑡

𝑘
𝐗𝑖 as a random effect corresponding to exon 𝑘

of sample 𝑖, and 𝐫𝑖 = (𝑟𝑖1, … , 𝑟𝑖𝐾)𝑡 as the random effect column vector for sample 𝑖. By construction, 𝐫𝑖 has mean zero and
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for any pair of samples indexed by 𝑖, 𝑗 and pair of exons indexed by 𝑘, 𝑙, we have

Cov
(
𝑟𝑖𝑘, 𝑟𝑗𝑙|𝐗𝑖, 𝐗𝑗

)
= Cov

(
𝜷𝑡
𝑘
𝐗𝑖, 𝜷

𝑡
𝑙
𝐗𝑗|𝐗𝑖, 𝐗𝑗

)

= 𝐗𝑡
𝑖
Cov(𝜷𝑘, 𝜷𝑙)𝐗𝑗 ≡ 𝜎2𝐗𝑡

𝑖
𝐖𝑘𝑙𝐗𝑗, (2)

where𝐖𝑘𝑙 is an𝑀 × 𝑀 symmetric matrix and 𝜎2 is a constant chosen so that diag(𝐖𝑘𝑘) has all entries equal to 1 (for all
𝑘); below amotivation for this assumption is given. Conditional on the random effects 𝐫1, … , 𝐫𝑛, the observations𝐘1,… , 𝐘𝑛

are assumed to be independent and the link as given in (1) can be rewritten as

E (𝐘𝑖|𝐫𝑖) = ℎ−1(𝜶 + 𝐫𝑖) (3)

(with possibly a different intercept, notwithstanding the notation).
Testing the null hypothesis that 𝜷𝑘 = 0 for all 𝑘 = 1,… , 𝐾 in the original fixed effects model is now equivalent to test-

ing H0 ∶ 𝜎2 = 0 against H𝑎 ∶ 𝜎2 > 0 in the random effects model. Note that when H0 is rejected, there is evidence that
alternative splicing is observed and it displays associationwith genotypes at different SNPs, whichwe refer to as spliceQTL.
The covariance structure between random effects 𝑟𝑖𝑘 and 𝑟𝑗𝑙 depends on the matrix𝐖𝑘𝑙. By modeling this matrix, the

way the correlation between the covariates (SNPs in our case) is taken into account by the test statistic can be fine-tuned.
At this point, it is assumed that𝐖𝑘𝑘 ≡ 𝐖, for 𝑘 = 1,… , 𝐾, under H0. This can be interpreted as assuming that the corre-
lation structure between any pair of effects of covariates on one response (exon 𝑘) does not depend on the particular exon
involved. So, this assumption is equivalent to saying that the exons are exchangeable, as far as the covariances between
their effects are concerned. In addition, it is assumed that𝐖𝑘𝑙 = 0𝐈 for all 𝑘, 𝑙 = 1, … , 𝐾 with 𝑘 ≠ 𝑙, under the null hypoth-
esis H0 (for 𝐈 the identity matrix). This essentially means that random effects relating to different exons are uncorrelated.
This also seems reasonable to assume under H0.
In application,𝐖 is replaced by an estimate and either 𝐖̂ = 𝐈𝑀 or 𝐖̂ = 𝐗𝐗𝑡 is used, where 𝐗 is an𝑀 × 𝑛matrix with

𝐗𝑖 as its 𝑖th column; in particular, in the latter case a generic [𝐖̂]𝑝𝑞 entry of 𝐖̂ is given by
∑

𝑖
𝑋𝑖𝑝𝑋𝑖𝑞, which is related to

the sample covariance between SNP genotypes 𝑝 and 𝑞 across all samples. Indeed, 𝐗𝐗𝑡 represents the sample correlation
matrix if the covariates in 𝐗 are centered and scaled. In this way, the linkage disequilibrium structure of the SNPs is used
to model the corresponding correlation structures between the association effects between the SNPs and a single exon.

2.2 Test statistic for splice-changing events

In order to test for spliceQTL, that is, alternative splicing associated with SNP genotypes, the null hypothesis H0 ∶ 𝜎2 = 0

is tested against H𝑎 ∶ 𝜎2 > 0. Suppose that 𝐘𝑖 is a vector of count variables, as it would be if exon-specific expression
data were generated by RNA-seq. Then 𝐘𝑖|𝐫𝑖 (i.e., 𝐘𝑖 given the random effect 𝐫𝑖) can be assumed to follow a multinomial
distribution, given the total gene expression per sample 𝑖, and the score-test statistic (see Section 1 of the Supporting
Information for details) equals

𝑆 = trace
[
𝐘(𝐈𝑛 − 𝐇)𝑡𝐗𝑡𝐖̂𝐗(𝐈𝑛 − 𝐇)𝐘𝑡

]
, (4)

where𝐘 is a𝐾 × 𝑛matrix with the 𝑖th column given by𝐘𝑖 , so that the rows correspond to the exons and the columns to the
samples. Here 𝐈𝑛 represents the 𝑛 × 𝑛 identity matrix and 𝐇 = 𝑁−1𝐉(𝑁1, … ,𝑁𝑛) with 𝑁 =

∑𝑛

𝑖=1
𝑁𝑖 , 𝑁𝑖 =

∑𝐾

𝑘=1
𝑌𝑖𝑘 and

𝐉(𝑁1, … ,𝑁𝑛) the 𝑛 × 𝑛matrix filled with𝑁𝑗 at row 𝑗. Since for each 𝑖, 𝐘𝑖 is assumed to follow a multinomial distribution
conditional on the total gene expression

∑
𝑘
𝑌𝑖𝑘, the test statistic does not change with changing total gene expression.

This implies that the test is robust to eQTL effects, and is thus aimed at finding spliceQTL effects that cannot be explained
by changes in total gene expression associated with SNP genotypes.
In case 𝐖̂ = 𝐗𝐗𝑡, (4) becomes

𝑆𝑊 = trace
[
𝐘(𝐈𝑛 − 𝐇)𝑡𝐗𝑡𝐗𝐗𝑡𝐗(𝐈𝑛 − 𝐇)𝐘𝑡

]
, (5)

while, if 𝐖̂ = 𝐈𝑀 , (4) becomes

𝑆𝐼 = trace
[
𝐘(𝐈𝑛 − 𝐇)𝑡𝐗𝑡𝐗(𝐈𝑛 − 𝐇)𝐘𝑡

]
. (6)
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The test statistic 𝑆𝐼 in (6) involves the sample correlation matrix of the (centered and scaled) covariates in 𝐗, while 𝑆𝑊

in (5) involves the square of the same sample correlation matrix. As such, the impact of the correlation structure on the
observed value of the test statistic is smaller when 𝑆𝑊 is used, compared with when 𝑆𝐼 is used. This means that, in cases
where the covariates display strong correlation, 𝑆𝐼 will tend to yield more extreme values than 𝑆𝑊 .
The proposed test statistic depends on the term (𝐈𝑛 − 𝐇)𝐘𝑡 = 𝐘𝑡 − 𝐇𝐘𝑡. The matrix 𝐇𝐘𝑡 is an estimate of the expec-

tation E𝐘𝑖 under the null hypothesis of no association (see the Supporting Information). So, the test statistic can be
interpreted as the squared distance of the response and its expectation, corrected for the dependence between SNPs.
For the problemwhere exon-level expression data are available per gene, themultinomial distribution is a natural one to

assume for the conditional distribution of the response. However, our results can also be used for other applications with
a multivariate response. In fact, we derived a test statistic based upon the score function under the general assumption
that the conditional distribution of 𝐘𝑖 given 𝐫𝑖 belongs to a canonical exponential family (see Section 1 of the Supporting
Information). We gave here the exact form of the test statistic for a multivariate response with a multinomial distribution.
We also give an expression for the case of a responsewith amultivariate normal distribution (see Section 1 of the Supporting
Information).
The distribution of (4) under H0 is not known, so 𝑝-values are computed by using permutations on the observed data.

In this case, samples are permuted, and the test statistic is recomputed for each permuted data.
When the test statistic (4) is applied tomany genes simultaneously, multiple testing correction needs to be applied to the

computed 𝑝-values. Here we use the step-up false discovery rate (FDR) procedure proposed by Benjamini and Hochberg
(1995).

2.3 Relation with other works

The proposed test statistic (6) is related to the univariate multinomial test proposed in Goeman and Le Cessie (2006): the
two test statistics can be shown to be equivalent (see Section 2.2 in the Supporting Information). However, the formulation
used in Goeman and Le Cessie (2006) requires a vector with one observation per read as a response, indicating which
exon that read mapped to. This is not only impractical but also requires handling very large objects during computations,
making them at least inefficient. In contrast, the formulation used here is more convenient when the response variables
are tabulations of the reads observed per exon, as it is the case with exon expression, requiring much smaller objects and
thus allowing for considerably more efficient computation.
Note also that our multivariate multinomial formulation uses a vector of per-exon expression counts as a single, multi-

variate response per gene. Previously, Chaturvedi et al. (2017) proposed a test for amultivariate normal response, so the cur-
rent test statistic can be seen as an extension of this earlier test statistic for themultinomial case. In addition, we here allow
for explicit modeling of the covariance structure between effects via𝐖, which was not done by Chaturvedi et al. (2017).

2.4 Software

Functions implementing the spliceQTL test proposed are available via the R package spliceqtl, available from https://
github.com/rxmenezes/spliceQTL. Supplementary files including code and data used to generate the results in this paper
can be found at https://github.com/rxmenezes/spliceQTLsuppMat.

2.5 Experimental data used in examples

We applied our proposed test to study the association between per-gene variations in exon expression and the number of
minor alleles on SNPs within or around the gene. For this, we used two publicly available datasets that involve unrelated
samples with each RNA-seq data yielding exon-level counts. Both datasets have corresponding whole-genome SNP data.
In Example 1, we compare effects found by our proposed method with those found by a pairwise-testing approach.

In the latter, each pair of exon–SNP is tested individually. Results from each analysis are corrected for multiple test-
ing. For this, molecular profiles for samples involved in the GEUVADIS project (http://www.geuvadis.org/web/geuvadis)
were used. Briefly, in the Lappalainen et al. (2013) study, RNA from HapMap samples was sequenced and analyzed, and
the data are available via ArrayExpress with accession number E-GEUV-3. Exon expression data were obtained (http://
www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/), and for these samples SNP genotype data were produced

https://github.com/rxmenezes/spliceQTL
https://github.com/rxmenezes/spliceQTL
https://github.com/rxmenezes/spliceQTLsuppMat
http://www.geuvadis.org/web/geuvadis
http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/
http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/
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by the 1000Genomes project, obtained from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/. Only European populations were
included in the analysis, totaling 373 samples; Yoruban samples were excluded as their genetic populational structure is
too different from that of the European populations. Features mapping to chromosome 1 were used for analyses.
The SNP genotype data were taken as the number of minor allele copies per SNP and per sample. We assumed an

additive effect of the number of minor alleles on the exon expression. This allowed us to consider the number of minor
alleles for any given SNP as numeric in the model, taking a value in {0, 1, 2}, where variables were coded so that the major
allele was the one with the highest frequency in the dataset at hand. We also only kept SNPs with a minor allele larger
than 0.05.
After obtaining the RNA-seq data, exons with zero variation were excluded, and genes containing only a single exon

were left out, as in such cases no alternative splicing can be detected (in the former) or can take place (in the latter).
For each gene, we considered SNPs located within 2 megabases of the gene’s transcription start site, in either direction,

as previously done by Lappalainen et al. (2013).
In Example 2, we assess the reproducibility of the spliceQTL test by comparing results obtained using two independent

datasets. The first dataset was produced in the context of the Biobank-based Integrative Omics Study (Zhernakova et al.,
2017). Only the samples from the Leiden Longevity Study (LLS; Schoenmaker et al., 2006) were included in our analysis.
We compare lists of genes obtained with those from the GEUVADIS data, used in Example 1. To ensure better compara-
bility, the GEUVADIS data were aligned and preprocessed again in the same way as the LLS data. By assessing the extent
to which results can be replicated across these datasets, we draw conclusions about the robustness of the spliceQTL test,
relative to that of pairwise testing.

3 RESULTS

3.1 Simulation study

We ran a simulation study to evaluate the performance of using our multinomial-response test statistic, using either 𝑆𝑊

as in (5) or 𝑆𝐼 as in (6), and each under various scenarios. For clarity, both are spliceQTL test statistics, with 𝑆𝑊 using the
square of the sample correlationmatrix while 𝑆𝐼 involves the untransformedmatrix. We constructed scenarios of practical
interest and made various assumptions. For a full description, see Section 3 of the Supporting Information. Below we give
a brief description of our method for clarity.
It is difficult to generate SNP data at random in a way that represents realistic correlation structures. To ensure that

our simulation was based on a realistic situation, we used experimental SNP data produced by the 1000Genomes study
to generate two sets of 100 SNP datasets each. Specifically, we used SNP genotype data included in windows around
two different genes. These genes were chosen at random from those found to be significant by the spliceQTL test on
chromosome 1. We then partitioned at random the 373 samples available for each dataset into five disjoint subsets of
around 74 samples each and used 20 distinct partitions, yielding a total of 100 SNP genotype sets of around 74 samples
each. This is done in order to generate 100 SNP datasets with a realistic correlation structure and sample size. In particular,
the structure in the SNP data can accommodate the significant association with the exon-level counts. We will refer to
results originating from each of those original SNP data matrices as “gene 1” and “gene 2” because they arise from two
separate genes while noting that they actually refer merely to different SNP data.
Matrices of effect sizes were generated at random to represent different effect patterns, which we call “scenarios,” as

follows: the strong effect of just a few (2%) SNPs on the response vector (S1), weak effect of a few (2%) SNPs (S2), and weak
effect of many (20%) SNPs (S3). The same matrices were applied to both genes for each given scenario. As a consequence,
results for gene 1 and gene 2 only differ in that the SNPs used are different. While the effect sizes are generated at random
and independently from each other, the underlying SNPsmay be correlated, yielding correlated random effects. The use of
independent effect sizes means that responses are simulated under the assumption that𝐖 = 𝐈. However, the underlying
SNP correlation may lead to a departure from this assumption.
SNPs in the two original SNP data matrices differ noticeably how strong are their pairwise correlations. Indeed, those

arising from gene 1 display stronger correlations in general than those arising from gene 2 (Supplementary Figure 2).
These two genes represent somewhat extremes in terms of how correlated their SNPs are, with other sets of consecutive
SNPs displaying correlation patterns in between (Supplementary Figure 3). As a consequence, results using SNPs from
gene 1 are more likely to display differences between the test statistics using 𝐖̂ = 𝐈 and those using 𝐖̂ = 𝐗𝐗𝑡, than those
from gene 2.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
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F IGURE 1 ROC curves generated for all scenarios, using the multinomial test with either 𝐖̂ = 𝐼 (left: multin.i) or 𝐖̂ = 𝑋𝑡𝑋 (right:
multin.w). The different scenarios are as follows: strong effect of just a few (2%) SNPs on the response vector (S1), weak effect of a few (2%)
SNPs (S2), and weak effect of many (20%) SNPs (S3). A full description of the study setup is given in Section 3 of the Supporting Information

The different scenarios are used to illustrate different patterns of association between SNPs and exons: we want to illus-
trate that in scenario S1 effects are not missed by our approach which takes many exons and many SNPs simultaneously
into account. Scenario S3 is where our approach should perform particularly well, by taking many (correlated) variables
into account. Scenario S2 is an intermediate between S1 and S3.We evaluate the performance of our spliceQTL test using a
combination of genes (in fact, simply different SNP datamatrices, with a somewhat different degree of correlation between
SNPs involved) and scenarios, to assess the impact of these aspects on the overall power of the test. Finally, we also con-
sider two numbers of exons in the response: 3 and 50. This helps us assess the impact of a possible dilution of effects in
the presence of many (50), compared to only a few (3). As a reference, human transcripts can have up to 363 exons, with
50% having up to 9 exons and 99% of them having up to 44 exons (Piovesan et al., 2019).
After generating response vectors with either 3 or 50 exons, we used the multinomial spliceQTL test with either 𝑆𝐼 or

𝑆𝑊 , on 100 datasets, per scenario, gene, and number of responses. For each dataset, half of the samples were assumed
to involve an effect of SNPs on the response vector, while the remaining samples had response vectors simulated with
no effect. This may represent a situation observed in practice, where a subset of samples display an association between
SNPs and exon expression levels. Such inter-individual variability in the strength of the association between SNP and exon
expression may arise through differences in cell-type composition and environmental signaling, which has been shown
to exist for eQTLs (Zhernakova et al., 2017).
Using only the results for the response vectors with no effect, we note that the test level is on average the desired level

(top-row graphs of Supplementary Figure 4 and Supplementary Table 3), with results for 𝑆𝐼 and 𝑆𝑊 approximately the
same. Indeed, the variation in test level is largest between genes (larger for gene 2 than for gene 1) and scenarios (the tests
tend to select more false positives in S2), than between the two test formulations. In addition, the empirical distribution
of the computed 𝑝-values is very similar to the uniform distribution in all cases (data not shown).
Receiver-operator characteristic (ROC) curves for the different situations and genes suggest that the power to find effects

varies, depending on how strongly the SNPs are correlated, as well as the scenario (Figure 1). This variability is observed
both when 𝑆𝐼 was used, as well as when 𝑆𝑊 was used. A general trend is that the area under the curve (AUC) is higher
when SNPs aremore strongly correlated (gene 1, the left-hand side graph in Figure 1) thanwhen they areweakly correlated
(gene 2, the right-hand side graph in Figure 1). The lowest AUCswere obtainedwhen SNPs displayed low correlation (gene
2; see Figure 1): the lowest was for a small effect, involving few SNPs (S2), followed by the one with a large effect, again
involving few SNPs (S1). Note that each ROC curve combines results using 3 exons as a response vector, with those using
50 exons as a response vector.
We also observed that the AUC was in general higher when 𝑆𝐼 was used than when 𝑆𝑊 was used in all considered

situations (Supplementary Figure 5). As the data were simulated using 𝐖̂ = 𝐈, this was expected. This is confirmed by
the proportions of response vectors selected using various thresholds (bottom-row graphs in Supplementary Figure 4).
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However, the differences in AUCs are smaller between the results using 𝑆𝐼 and 𝑆𝑊 than those between genes or
scenarios. This suggests that the test is robust to the misspecification of 𝐖 in practical situations where the true matrix
𝐖 is unknown.

3.2 Example 1: Comparison with pairwise testing

We will compare results of the spliceQTL test with those obtained by testing all exon–SNP pairs individually. For this,
we will use data from the GEUVADIS study, previously analyzed in Lappalainen et al. (2013). Here we use only the test
statistic 𝑆𝑊 given by (5), as the true 𝐖 is unknown but it is unlikely that the SNPs are uncorrelated. Pairwise testing
involved using the linear regression to test for the association between the expression of each exon and each SNP variable,
for each exon–SNP pair per gene. This yielded a matrix of 𝑝-values per gene.
The data were preprocessed as indicated in Section 2.5. Additionally, the exon-length effect on expression was corrected

by means of a mixed-effects model (see Section 4 of the Supporting Information and Supplementary Figure 6).
Testing for spliceQTL was done per gene, as follows. We used our spliceQTL model to test for the association of

exon-level counts with all SNP variables, yielding one 𝑝-value per gene. For comparison, we used the linear regression
to test for association between each pair of exon–SNP, with the exon-level counts as response variables and the SNP
(number of minor alleles) as explanatory variables. Per test type, 𝑝-values were corrected for multiple testing using the
Bonferroni method.
As expected, the number of tests performed in the pairwise approach (53,286,610) is much larger than the number of

genes on chromosome 1 (1,376), which is the same as the number of tests required by the spliceQTL approach. The obvious
consequence is that the multiple testing correction in the former is much more severe than in the latter. Thus, an effect
size at the exon–SNP pair level must be much larger to yield a significant test result compared to the effect size required
to yield a significant test with the spliceQTL test.
In order to compare results at the exon–SNP level, we further refined the associations selected with the spliceQTL

test using a sequential approach, as described in the Supporting Information (Section 5 and Supplementary Figure 7).
Briefly, the sequential approach involves the following steps: (i) testing for association between all exons and all SNPs at
once, per gene; (ii) testing for association between each exon and all SNPs of genes selected in step (i); and (iii) testing
for association between exon–SNP pairs, for exons selected in step (ii). Multiple testing correction is done in this case by
controlling the family-wise error rate considering the test tree, as suggested by Meinshausen (2008). Doing this enabled
us to compare the number of selected (or not) tests for each exon–SNP pair between the two approaches (Supplementary
Table 4). Specifically, out of the total 53,286,710 exon–SNP pairs, 9784 were selected by both approaches, 3259 were selected
only by the spliceQTL approach, and 15,850 were selected only by the pairwise testing.
Note that using the spliceQTL test sequentially as described above requires an overall smaller number of tests, compared

with a pairwise approach. This is because exon–SNP pairs within genes or exons not selected in the first two steps are not
tested. As such, a less severe multiple testing correction ensues, yielding more power to find effects involving multiple
exons and multiple SNPs per gene (to the extent that the gene and involved exons are selected). So, as long as the test
used can be applied to multiple responses as well as more covariates than samples (𝑝 ≫ 𝑛), the sequential approach is
preferable to the pairwise approach to find such effects. The gain in power increases with the number of genes and exons
not selected as significant in the first two stages. Obviously, the only situation where the two approaches yield the same
number of tests is when all genes, as well as all of their exons, are selected as being associated with their corresponding
SNP sets.
To illustrate this, we compare here the number of tests required by each approach.We havementioned that the pairwise

approach involves testing for all 53,286,610 exon–SNP pairs. In contrast, the sequential approach started by testing 1376
genes, yielding 34 significant tests. Testing for an association between each exon in these 34 genes and all SNPs required
a further 1793 tests. By subsequently selecting only the significant exons, a further 1,617,287 exon–SNP pairs had to be
tested. So, the total number of tests required (1,619,114) amounted in this case to just 3% of all 53,286,610 tests required by
the pairwise approach.
While considerable overlap exists between results obtained with the two approaches, there are also findings obtained

by only one of the approaches. For example, gene ENSG00000007341_12 (Figure 2) is selected by the spliceQTL test, while
the linear regression does not select any of the exon–SNP pairs involved. Indeed, Spearman correlations between each
exon–SNP pair are mostly between −0.2 and 0.2, so are individually too small to be selected. However, when considered
as a set, they clearly display a pattern that is highly unlikely to be due to chance alone, which is why the gene is selected by
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F IGURE 2 Heatmap representing Spearman correlations between 3961 individual SNPs (columns) and 17 exons (rows) for gene
ENSG00000007341_12. The top-left scale bar indicates which color corresponds to which Spearman correlation value. The left-hand side
vertical bar indicates which exons are selected at the second step of sequential testing (blue) or not (gray)—see the bottom-left hand-side
legend. The top-horizontal bar indicates which SNPs are located within (black) or outside (gray) the gene—see the top-right hand-side legend.
This gene was selected by the spliceQTL test to have SNP profiles associated with the exon expression levels as a whole, but none of the
individual exon–SNP pairs was selected as significant using the pairwise approach. SNPs in the gene 1 set to display more correlation than
those in the gene 2 set

the spliceQTL test. We also notice from the heatmap in Figure 2 that most SNPs located within the gene display a stronger
association with (almost all) exons, compared to SNPs located well outside the gene. In fact, only some SNPs just to the
“right” of those within the gene display a comparable correlation with exon counts, as evidenced by a subset of columns
displaying more intense colors for SNPs just outside the gene. Note that both positive (red tones) as well as negative (blue
tones) correlations are observed, as the spliceQTL test is sensitive to their absolute size, regardless of the direction.
In contrast, gene ENSG00000131236_11 (Figure 3) was not selected by the spliceQTL test, while the linear regression

selected a few of the exon–SNP pairs involved. Spearman correlations between each exon–SNP pair are again mostly
between −0.2 and 0.2, but in a relatively small number of cases they are smaller than −0.4. Their number is too small
relative to the total, so those correlations become diluted by the spliceQTL test. However, some of them are individually
strong enough to be selected by pairwise testing.
So, we conclude that the spliceQTL test may find associations between exon-level counts and SNPs that are individually

small but are observed for a “large enough” subset of exon–SNP pairs. Of course, what is large enough here depends on
many aspects, including effect sizes, the correlation between SNPs, and the number of exon–SNP pairs displaying nonzero
correlation, relative to the total number of pairs. In addition, the sequential approach requires a smaller number of tests,
thus requiring less severe multiple testing correction. The pairwise approach may, however, potentially find exon–SNP
associations that are individually large but are not observed for any other pair within the same gene.

3.3 Example 2: Replication of results

In this example, we assess the reproducibility of spliceQTL test results, compared with that obtained using pairwise test-
ing. For this, we will apply both approaches to the GEUVADIS and the LLS data, and per approach check if results are
replicated. For each approach, we included in tests only SNPs located within the gene, that is, between the start and end
of the gene. Data preprocessing was done as described in Section 2.5. Note that the features (exons, SNPs) measured in
the two datasets did not completely overlap. Only overlapping pairs are taken into account. For the same reasons as in
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F IGURE 3 Heatmap representing Spearman correlations between 3697 individual SNPs (columns) and 15 exons (rows) for gene
ENSG00000131236_11. The top-left scale bar indicates which color corresponds to which Spearman correlation value. The left-hand side
vertical bar indicates which exons are selected at the second step of sequential testing (blue) or not (gray)—see the bottom-left hand-side
legend. The top-horizontal bar indicates which SNPs are located within (black) or outside (gray) the gene—see the top-right hand-side legend.
This gene was not selected by the spliceQTL test to have SNP profiles associated with the exon expression levels, but some of the individual
exon–SNP pairs were found to be significant using the pairwise approach

Example 1, we used here only 𝑆𝑊 defined in (5). Results of the two approaches were compared at the gene level, so no
sequential testing was used.
Comparison between the spliceQTL test results used the per-gene 𝑝-values, based upon which we computed: (a) the

Pearson correlation between 𝑝-values on the −log scale; (b) the number of genes with the 𝑝-value under a cutoff, for
different cutoff values, without and with multiple testing correction.
Comparisons between the pairwise testing results were done using various summaries at the gene level: (i) via the

Pearson correlation between the (−log-scale) 𝑝-values for all exon–SNP pairs for that gene, yielding one correlation value
per gene; (ii) computing the proportion of 𝑝-value pairs per gene valued under a cutoff, for various cutoff values.
The density of the correlations between 𝑝-values from pairwise testing shows that, while many genes display a positive

association between results, many displays even negative associations (Supplementary Figure 8). Indeed, 38% of the genes
display relatively low correlations between −0.2 and 0.2 (vertical dashed-gray lines in Supplementary Figure 8), half of
the genes display correlation below 0.076, 42% below 0, and 22% below −0.2. Such low or negative correlations may arise
due to effects or noise that are data specific.
In contrast, the spliceQTL results yield a Pearson correlation of 43%, and only 24% of the per-gene correlations of the

pairwise testing results had a value at least as large as that (or ≥ 0.43; indicated by a vertical dashed-black line in Sup-
plementary Figure 8). These arguments suggest that the association between spliceQTL test results is stronger than those
between pairwise testing results.
We then examined the scatterplots of the proportions of selected exon–SNP pairs per gene, for three different cutoffs

(Supplementary Figure 9). These results show that, for all cutoffs, there is an increase in proportions that are very close
to zero for one dataset and much larger in the other. This pattern is behind the negative correlations obtained between
gene-specific results. In contrast, the scatterplot between (−log) 𝑝-values of the spliceQTL test displayed no such pattern
(Supplementary Figure 10). Note that, for both methods, using the LLS data a larger number of genes are selected: the
number of genes with proportions larger than 0.5 with pairwise testing is larger, and the number of genes with small
spliceQTL test 𝑝-values is larger.
The reason why the spliceQTL test results are more often replicated across these two datasets is that it takes multi-

ple covariates (SNPs) and responses (exons) into account, making it more robust to fluctuations that are exon–SNP pair
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specific but do not extend to multiple pairs within the same gene. While the pairwise testing approach may identify inter-
esting local effects that the spliceQTL test has low power to find, as it is susceptible to data-specific effects its results are
very often not replicated across datasets.
The strong concordance between spliceQTL test results is further illustrated by per-chromosomeManhattan plots of the

results of both datasets (Supplementary Figures 11–15): for these, we computed the per-gene FDRs (computed as indicated
in Section 2.2), and these yielded virtually the same pattern for the two datasets.
We conclude that the spliceQTL test results are more often replicated across datasets than pairwise testing results. This

is likely due to the spliceQTL test that takes into account many variables at once, which averages out data-specific effects.

4 DISCUSSION

We proposed a test based upon the score function that can at once check for the association between expression levels of
all of the gene’s exons as well as all SNPs considered to be of interest. It has more power to find genes where exon-level
expression is associated with SNP genotypes for many pairs of exons and SNPs, compared to when testing one exon–SNP
pair at a time. It can be used when the number of SNPs is larger than the number of samples, as it does not require
estimating parameters for individual SNPs. It is possible to use the test as part of a three-stage procedure to look for, and
better understand, spliceQTL effects, by first considering all exon–SNP pairsmapping to a gene, then looking for the exons
that display significant associations with all SNPs, and finally looking for exon–SNP pairs that are significant from among
the exons found to be significant.
Our test is designed to find specifically spliceQTL effects that cannot be linked to eQTL effects, and it does this by con-

ditioning on the gene’s total expression. So in our approach, we consider exon expression data arising from amultinomial
distribution, with the total being equal to the total gene expression. For studying eQTL effects, for example, the global
test (Goeman et al., 2004) can be used, using the total expression of each gene as a response and all SNPs of interest as a
covariate set.
In our examples,wehave considered SNPswith anminor allele frequency (MAF)> 0.05, as thesewere assumed to repre-

sent reliable signals. From amethodological point of view, this restriction is not necessary. The power to find associations
between outcome and rare variants may, however, be limited as with most methods. In addition to the MAF, multiple
aspects affect the power, including its effect size, correlation structure with neighboring SNPs and, therefore, also the
effect size of these neighboring SNPs. Because of the latter, for rare variants the proposed statistical test is expected to be
more powerful than procedures where every SNP is tested one by one.
Score-based tests can yield too much power, especially when declaring significant effects that are too small to be biolog-

ically relevant. While this is difficult to illustrate and verify due to the high-dimensional nature of the data, one possible
reason for this may be that covariates are in fact correlated, while the test is developed under the assumption they are not.
Correlated covariates do not invalidate the test’s results (see the next paragraph), yet it is undesirable to have increased
power to find effects so small as to have little biological relevance. Our method takes into account the covariates’ correla-
tion structure, which helps to avoid this issue. We illustrated this in the simulation study, where the results obtained with
the extra correction for SNP data correlation yield slightly smaller AUCs for the SNP data with weaker correlation (gene 2)
comparedwith those for the SNP datawith stronger correlation (gene 1), using the same effects on the responses. By taking
the SNP correlation structure into account, our test thus avoids yielding too many small effects of little biological interest.
The original formulation of a score test for association between a covariate set and a univariate response, used in

Le Cessie and van Houwelingen (1995) and Goeman et al. (2004), assumes that random effects are uncorrelated under
the null hypothesis. However, when this assumption does not hold the test is not invalidated, but rather it has increased
power to find effects in directions where the covariates are highly correlated (Goeman et al., 2006). This differentiates
this approach from classic regression models, which generate unreliable results when explanatory variables are highly
correlated. In particular, classic regression models do not have unique model parameter estimators if any subset of the
explanatory variables is perfectly correlated. The approach used here does not involve inverting the design matrix, and,
thus, testing can be done even under collinearity, including in cases when there are more covariates than samples. Here
we take this framework further, by fine-tuning the modeling of the covariates’ correlation structure.
Goeman and Le Cessie (2006) proposed a test to find associations between a set of covariates (possibly with 𝑝 > 𝑛) and

a multinomial response. Their test was designed for a univariate response, which for the application at hand would be a
variable representing the exon each read maps to. As such, the data would have to be formatted in very large objects, with
a response as long as the number of reads per sample, for all samples. While our proposed test statistic 𝑆𝐼 can be shown to
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yield the same results as the one they proposed, theirs cannot be used for studying spliceQTL due to practical constraints.
Chaturvedi et al. (2017) were the first to propose a test for association between a set of covariates (with possibly 𝑝 > 𝑛) and
amultivariate response vector, for the case where the response follows amultivariate normal distribution. Here we extend
this formulation to the multinomial case and allow for taking into account the correlation between covariates explicitly
in the test statistic.
Through simulation studies, we showed that the spliceQTL test is particularly suitable for finding effects that

are small but that are spread across multiple exon–SNP pairs. This was confirmed by our results using the GEU-
VADIS/1000Genomes data (Example 1). By applying the test to two independent datasets in Example 2 (GEUVADIS and
LLS data), we concluded that the spliceQTL test results are more often replicated across these two datasets, compared
with pairwise testing. This is likely due to the spliceQTL test taking multiple covariates (SNPs) and responses (exons) into
account. This makes the test more robust to exon–SNP pair-specific fluctuations, which do not extend to multiple pairs
within the same gene and therefore are also less likely to be observed for other datasets. In general, approaches that take
a small subset of variables into account at a time, such as pairwise testing of each exon–SNP pair individually, are better
able to pick up very strong associations observed only for a small subset of exon–SNP pairs, within a gene, as we have
shown in Example 1. Such associations need to be very strong so as to be detectable after heavy multiple testing. Driven by
just a single or subset of exon–SNP pairs, these are more likely to be data specific and therefore less likely to be replicated
across datasets.
Ourmethod is general for finding genes thatmay display differences in the distribution of reads across exons, associated

with a set of covariates. Differences in the distribution of reads across exons can ensue in various situations, with alterna-
tive splicing across samples just the most obvious one. In addition, the spliceQTL test can also be applied for covariates
other than SNPs. Indeed, it could equally well be applied to studying spliceMeth events, that is, changes in splicing asso-
ciated with methylation changes. Furthermore, exons corresponding to multiple genes can be considered, for example, to
try to find associations between differential exon usage across multiple genes and sets of covariates.
Our test statistic makes use of the assumption that random effects relating to different exons are uncorrelated. However,

when cassettes of multiple consecutive exons are included or excluded as a whole, a process which is quite common in
practice, random effects relating to different exons may well be correlated. The framework we developed can be extended
to cover this situation.
In developing the test statistic and in examples, we have focused on the situation where the exon-level variables are

counted, as often happens with RNA-seq data. However, a very similar development can be used to yield a test statistic
if exon-level variables are continuous. If 𝐘𝑖 is a vector of continuous variables, then 𝐘𝑖|𝐫𝑖 may be assumed to follow a
multivariate normal distribution. The score test statistic for testing for spliceQTL has the same form as in (4), with the
only difference that the matrix 𝐇 equals an 𝑛 × 𝑛 matrix filled with 1∕𝑛 at every entry (where 𝑛 represents the number
of samples in the data). Examples where this could be applied to include studies where exon-level expression values
correspond to normalized and scaled measurements from either RNA-seq or microarrays, as well as when the response is
a vector of image-derived variables, such as the ones yielded by radiomics.
Our spliceQTL test is based on the assumption that SNP-specific effects on exons can be modeled by a linear function

between the number ofminor alleles and the exon counts.While this is likely to be the case formany genes, in cases where
it does not hold our test can still work as it uses a first-order approximation. Furthermore, the simplified illustration of
spliceQTL in our Supplementary Figure 1 does not depict the realistic possibility where, when SNP1 has 1 minor allele,
two transcripts are observed. Our test would in fact be able to detect such effects, as these would result in different read
distributions across exons. Indeed, our test can find evidence of alternative splicing, avoiding the much more difficult
problem of transcript reconstruction. It can in fact serve as a basis for transcript reconstruction, for which many methods
exist (Steijger et al., 2013).
Monlong et al. (2014) have proposed a test to find associations between alternative splicing ratios and one SNP at a time

but not for multiple SNPs. Ourmethod can in fact also be applied to the sort of data they consider (a multivariate response
composed of many splicing ratios, instead of exons as considered here), and as such can handle the same problems as well
as those involving many SNPs, making it more general.
Some authors have tried to handle this problem by first performing dimension reduction on one or both datasets. This

often involves a two-stage procedure, for example, first finding features (genes or exons, depending on the method) asso-
ciated with alternative splicing and subsequently using those features to examine whether they display association with
SNPs applying existing statistical methods. As such methods rely on a group comparison in the first stage, it is difficult
to compare them with the spliceQTL test proposed here, which does not require a group comparison, focusing on finding
significant association patterns between sets of exons and SNPs.
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To conclude, we have proposed a powerful test for spliceQTL effectsthat is able to find even small effects which are
spread across multiple exons and/or SNPs. Compared with methods based on pairwise tests, our test results are more
likely to be replicated across datasets, as the test takes into account multiple exons and SNPs simultaneously, making it
robust to exon–SNP pair-specific effects. These characteristics make it a tool to help in uncovering alternative splicing
events associated with QTL effects.
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