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Abstract: 24 

Background: Burden analysis in epilepsy has shown an excess of deleterious ultra-rare variants 25 

(URVs) in few gene-sets, such as known epilepsy genes, constrained genes, ion channel or GABAA 26 

receptor genes. We set out to investigate the burden of URVs in a comprehensive range of gene-sets 27 

presumed to be implicated in epileptogenesis. 28 

Methods: We investigated several constraint and conservation-based strategies to study whole exome 29 

sequencing data from European individuals with developmental and epileptic encephalopathies (DEE, 30 

n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), and non-acquired focal epilepsy (NAFE, n 31 

= 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. The 32 

burden of 12 URVs types in 92 gene-sets was compared between epilepsy cases (DDE, GGE, NAFE) 33 

and controls using logistic regression analysis. 34 

Results: Burden analysis of brain-expressed genes revealed an excess of different URVs types in all 35 

three epilepsy categories which was largest for constrained missense variants. The URVs burden was 36 

prominent in neuron-specific, synaptic and developmental genes as well as genes encoding ion channels 37 

and receptors, and it was generally higher for DEE and GGE compared to NAFE. The patterns of URVs 38 

burden in gene-sets expressed in inhibitory vs. excitatory neurons or receptors suggested a high burden 39 

in both in DEE but a differential involvement of inhibitory genes in GGE, while excitatory genes were 40 

predominantly affected in NAFE. Top ranking susceptibility genes from a recent genome-wide 41 

association study (GWAS) of generalized and focal epilepsies displayed a higher URVs burden in 42 

constrained coding regions in GGE and NAFE, respectively. 43 

Conclusions: Using exome-based gene-set burden analysis, we demonstrate that missense URVs 44 

affecting mainly constrained sites are enriched in neuronal genes in both common and rare severe 45 

epilepsy syndromes. Our results indicate a differential impact of these URVs in genes expressed in 46 

inhibitory vs. excitatory neurons and receptors in generalized vs. focal epilepsies. The excess of URVs 47 

in top-ranking GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants 48 

in the pathogenesis of generalized and focal epilepsies. 49 
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Keywords: burden analysis, ultra-rare variants, gene-sets, epilepsy, exome sequencing. 50 

Introduction: 51 

Dismantling the genetic architecture behind epilepsy is yet to be within reach in many individuals. The 52 

role of genetic causality is apparent in the developmental and epileptic encephalopathies (DEE) (1–3), 53 

sometimes with consequences on precision treatments (4–7). In contrast, only few individuals with 54 

familial or sporadic genetic generalized epilepsies (GGE) or non-acquired focal epilepsies (NAFE) 55 

harbor monogenic causative variations (8–10). Therefore, statistical methods investigating the 56 

mutational burden of neurobiologically meaningful gene-sets improve the prospects to dissect the joint 57 

effects of multiple genetic factors underlying the complex genetic architecture of these common 58 

epilepsy syndromes. Such ‘gene-set’ analysis approaches are likely to provide valuable insights into the 59 

role of certain gene-sets and pathways in epilepsy. Recent gene-set burden analyses have shown an 60 

enrichment in ultra-rare deleterious variants both in common and rare epilepsies in genes associated 61 

with dominant epilepsy syndromes, developmental and epileptic encephalopathy genes, and neuro-62 

developmental disorders (NDD) with epilepsy genes, emphasizing a shared genetic component (8,10). 63 

Evidence for the enrichment of rare missense variants in genes encoding GABAA receptors and 64 

GABAergic pathway genes in genetic generalized epilepsies pointed to the importance of the inhibitory 65 

pathway (9,10). We used the large-scale dataset collected by the Epi25 Collaborative (10) for a 66 

comprehensive, exome-based case-control study to examine the burden of Ultra-Rare Variants (URVs) 67 

in a large number of candidate gene-sets for three different epilepsy forms (DEE, GGE, NAFE), aiming 68 

to understand the specific roles of deleterious URVs in key pathways implicated in epileptogenesis. 69 

Focusing on regional constraint and paralog conservation, we identified relevant and specific gene-set 70 

associations in these three epilepsy forms. 71 

Methods: 72 

Study Samples: The Epi25 Collaborative collected and generated phenotyping and exome sequencing 73 

data from individuals with different subtypes of epilepsy (10). We analyzed subjects from recruitment 74 

years 1 and 2 (n=13,197). The epilepsy classification, phenotyping and consent procedures have been 75 

previously described (10). Five control cohorts, from the database of Genotypes and Phenotypes (11) 76 
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(dbGAP) and the Epi25 Collaborative, were available for this analysis (n=13,299), including Italian 77 

controls from the Epi25 Collaborative, the Swedish Schizophrenia Study (dbGAP: phs000473), and 78 

three Myocardial Infarction Genetics (MIGen) Consortium cohorts: Leicester UK Heart Study (dbGAP: 79 

phs001000), Ottawa Heart Study (dbGAP: phs000806) and the Italian Atherosclerosis, Thrombosis, 80 

and Vascular Biology “ATVB” Study (dbGAP: phs001592). Sequencing was performed on an Illumina 81 

HiSeq 2000 or 2500 platform at the Broad Institute (Cambridge, MA, USA). The data generation 82 

process has been previously described (10). 83 

Baseline sample QC: For this analysis, we considered samples from three epilepsy categories (DEE, 84 

GGE, and NAFE) as classified by the Epi25 phenotype review (10). Controls with Coronary Artery 85 

Disease (CAD) diagnosis from the MIGen cohorts were not considered. Outliers on key sample calling 86 

metrics (total SNVs/indels counts, TiTv ratio, Ins-Del ratio, Hom-Het ratio, autosomal heterozygosity), 87 

samples with genotyping rate less than 90%, duplicates and related samples up to the 3rd degree (one 88 

from each pair), and samples with ambiguous/discordant sequencing gender were removed (Fig. S1, 89 

Fig. S2). Using multi-dimensional scaling, the genotypes of the remaining samples were projected on 90 

the 1000 Genomes space (12). The major continental ancestry was then predicted using a Support 91 

Vector Machine (Fig. S3). Samples labeled as European were further subclassified (non-Finish and 92 

Finnish) following visualization of the first two principal components. Those samples with a predicted 93 

ancestry other than non-Finnish European were filtered. Following this baseline filtering, 7,836 cases 94 

and 8,822 controls (out of 13,197 cases and 13,299 controls) remained for subsequent analysis. These 95 

filtering steps were performed using the Genome Analysis Toolkit (GATK) v4.1.4.1 (13), PLINK v1.9 96 

(14) and KING v2.2.4 (15). For additional details, see “Baseline sample quality control” in the 97 

supplemental methods (Additional file 1). 98 

Baseline variant QC: Variants located outside Gencode v.33 (16) coding sequencies (CDS) boundaries 99 

or in low complexity regions (17) were not considered. Multi-allelic calls were split, and the variants 100 

were normalized. Variants with low variant quality score log-odds, covered at mean depth < 10x in the 101 

baseline filtered sample set, at minimum depth of 10x in less than 95% of cases and controls, with large 102 

difference in mean depth or call rate between the cases and controls, or with allele count equal to 0 were 103 
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removed. Low depth/quality genotype calls were set to missing. Variant filtering was performed using 104 

bcftools/htslib v1.10.2 (18), vt v0.57721 (19) and GATK (13). See the supplemental methods section 105 

“Baseline variant quality controls” for further details (Additional file 1). 106 

Case control matching and call rate harmonization: We performed multiple iterations of principal 107 

component analysis (PCA) on our baseline filtered dataset. Following the first round of PCA using 108 

PLINK (14), the Swedish Schizophrenia Study control cohort showed poor clustering (PC1/2) with the 109 

rest of study samples and was removed. Subsequently, outliers on top principal components were 110 

filtered using EIGENSTRAT v6.1.4 (20,21). For details, see “Residual stratification” in supplemental 111 

methods (Additional file 1). To handle the residual stratification caused by platform differences, we 112 

removed all variants with call rate < 95% in any of the remaining sequencing cohorts (Epi25, Leicester, 113 

Ottawa, ATVB) or with difference in call rate > 0.5% between any pair of cohorts. Also, variants with 114 

Hardy-Weinberg Equilibrium p-value less than 1x10-6 (on the combined case-control cohort) were 115 

excluded. These variant calling metrics were obtained using bcftools/htslib (18) and PLINK (14). The 116 

final analysis set included 7,589 cases (DEE=1,003, GGE=3,064, NAFE=3,522) and 3,962 matched 117 

controls (ATVB = 1,673, Leicester=1,082, Ottawa=924, Epi25 Italian=283) of non-Finnish European 118 

ancestry (Table S1 and Table S2). The use of predominantly male or male-only control cohorts from 119 

ATVB and Leicester studies resulted in a misbalanced sample sex ratio (53.6% female cases vs. 19,4% 120 

female controls). We observed a total of 1,267,392 variants in the final dataset, comprising 1,247,342 121 

SNVs and 20,050 indels. The QC-ed case-control cohort (Fig. S5) showed a balanced distribution of 122 

variants and comparable variant calling metrics (Fig. S6). 123 

Qualifying variants (QVs): The variants were annotated using snpEff v4.3 (22) and Annovar 124 

v20191024 (23). We focused on URVs as these have shown a strong burden of deleterious pathogenic 125 

variants in multiple studies of epilepsy and other neurological disorders (8,10,24–28). Here, URVs were 126 

defined based on their population Minor Allele Frequencies (MAFs) in DiscovEHR (MAFDiscovEHR) and 127 

gnomAD r2.1 (MAFgnomAD) population databases (29,30)  and their Minor Allele Counts (MACs) 128 

calculated separately for each analysis (MACDEE+Controls, MACGGE+Controls, MACNAFE+Controls), as follows 129 

(i) MAFDiscovEHR = 0 (ii) MAFgnomAD ≤ 2x10-5 (iii) MACEpilepsy+Controls ≤ 3 in the respective analysis group. 130 
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Performing three separate analyses for the three epilepsy phenotypes, with independent calculation of 131 

MAC in each analysis, was intended to provide stringent control for inflation. Accordingly, the reported 132 

variant counts in the control sets may differ slightly between the three analyses (see Additional file 3). 133 

URVs were categories further into multiple conditions of qualifying variants (QVs) based on their 134 

functional consequences. We considered thirteen variant conditions (QVs matching the specified effect 135 

classes) including synonymous (presumed neutral), protein-truncating (presumed loss-of-function) and 136 

multiple groups of missense variants (mix of loss- and gain-of-function mechanisms). The grouping of 137 

missense variants in multiple (partially overlapping) conditions of QVs focused on three perspectives: 138 

conventional in-silico deleteriousness, constraint and paralog conservation. It was based on multiple 139 

predictions, namely, PolyPhen2 (PPh2) (31), Sorting Intolerant From Tolerant (SIFT) (32), Missense 140 

Badness Polyphen and Constraint (MPC) (33), Missense Tolerance Ratio (MTR) (34), Constrained 141 

Coding Regions (CCR) (35) and para-Z-score for paralog conservation (36). PPh2 (31) and SIFT (32) 142 

are two conventional, commonly used, in-silico missense deleteriousness scores that are widely used in 143 

genetic studies to identify likely benign and likely deleterious variants based on a number of features 144 

including the sequence, phylogenetic and structural information. MPC score (33) aims to identify 145 

regions within genes that are specifically depleted of missense variation and combines this information 146 

with variant-level metrics that measures the increased deleteriousness of amino acid substitutions when 147 

they occur in missense-constrained regions. MTR score (34) estimates the intolerance of genic regions 148 

by comparing the observed proportion of missense variation to the expected proportion in the sequence 149 

context of the protein-coding region understudy. While MPC and MTR scores are scaled down to 150 

individual missense alterations, CCR score (35) aims to identify coding regions that are completely 151 

devoid of variation in population databases. Functionally critical protein regions are usually encoded 152 

by bases in regions with high CCR scores. Paralog conservation-based missense variant analysis was 153 

recently shown to aid variant prioritization in neurodevelopmental disorders (36). It has been proposed 154 

that most disease genes in humans have paralogs (37). The analyzed variant conditions (Table S6) were 155 

(i) “Synonymous” variants that served as a control condition for inflation. (ii) Benign missense variants: 156 

as predicted by PPh2 and SIFT. (iii) Damaging missense variants as predicted by PPh2 and SIFT. (iv) 157 

Protein Truncating Variants (PTVs) that included stop-gained, start-lost, frameshift, splice-donor and 158 
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splice-acceptor variants. (v) All functional variants combined PTVs, in-frame indels and deleterious 159 

missense variants (PPh2 and SIFT) (vi) “MPC 1” missense variants: constrained missense with MPC 160 

score ≥ 1. (vii) “MPC 2” missense variants: highly constrained missense with MPC score ≥ 2 (enriched 161 

for de novo variants). (viii) “MTR ClinVar” missense variants: constrained missense with MTR score 162 

≤ 0.825 which is the median for ClinVar variants not denoted as de novo. (ix) “MTR DeNovo” missense 163 

variants: highly constrained missense with MTR score ≤ 0.565 which is the median for ClinVar de novo 164 

variants. (x) “CCR 80” missense variants: highly constrained missense variants in regions with CCR 165 

score ≥ 80, with MPC score ≥ 1, and MTR score ≤ 0.825. (xi) “paralog-non-conserved”: missense 166 

variants located in sites not conserved across paralog genes as indicated by a para-Z-score ≤ 0. (xii) 167 

“paralog-conserved”: missense variants located in sites conserved across paralog genes as indicated by 168 

a para-Z-score > 0. (xiii) “paralog highly conserved”: missense variants in highly conserved sites 169 

between paralog genes with para-Z-score ≥ 1. 170 

Gene-sets: 92 gene-sets were tested. In addition to exome-wide burden testing (one gene-set of all 171 

protein coding genes), we defined additional 91 specific gene-sets as follows: (a) 34 sets based on gene 172 

expression patterns in the brain: brain-expressed genes grouped by their intolerance profiles including 173 

loss-of-function intolerant and missense intolerant genes (30,38), genes grouped by their regional brain 174 

expression in the cortex and hippocampus from Genotype-Tissue Expression project v8 (39), 175 

developmentally-relevant genes (40–42) , brain-enriched genes from the Human Protein Atlas v20.1 176 

(43,44), genes enriched in specific cell types (45,46) (neurons, excitatory and inhibitory neurons, glia, 177 

astrocytes, microglia, oligodendrocytes, and endothelial cells) and localization in certain neuronal 178 

compartments (47,48); (b) 28 functional groups including ion channels (8), GABAA receptors (9), 179 

excitatory receptors (9), GABAergic pathway (9), PSD-95 interactors (8), Gene Ontology (GO) gene-180 

sets of GABAergic and glutamatergic synapses (40,41,49), neuronal pathways from Kyoto 181 

Encyclopedia of Genes and Genomes (KEGG) (50) and neuronal gene-sets from  Reactome database 182 

(51); (c) 14 gene-sets of known disease-related genes including monogenic epilepsy-causing genes (8–183 

10), epilepsy genome-wide association study (GWAS) top-ranking genes (positional mapping within a 184 

window of 250 kb of significant loci and mapping based on chromatin interaction between gene 185 
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promoters and the significant locus) (52), co-regulated genes in the brain (53,54); and (d) 15 non-186 

neuronal gene-sets including genes not expressed in the brain (39,43,44), cancer and metabolic 187 

pathways (50). The gene-sets are outlined in Table 1, Table S7 and Table S8 (see Additional file 1 and 188 

Additional file 2). 189 

Table (1): Gene-sets investigated in this study. (see end of text). 190 

Gene-set burden analysis: We examined the burden of qualifying ultra-rare variants (QVs) in thirteen 191 

variant conditions (Table S6) for 92 gene-sets in three epilepsy phenotypes (DEE, GGE, and NAFE) 192 

against a set of matched controls. Gene-set burden testing was done using logistic regression by 193 

regressing case-control status on the individual QVs counts. In each sample, QVs were collapsed by 194 

gene and aggregated (summed) across a target gene-set to get a burden score (assuming equal weights 195 

and direction of effects) which was used as a predictor in a binomial model while adjusting for 196 

additional covariates (sex, top ten principal components, exome-wide variant count, and exome wide 197 

singletons count) using glm() function from stats package (55). Likelihood ratio test (LRT) from lmtest 198 

package (56) was used to compare a model with QVs burden and covariates against a null model 199 

(covariates only). Log-odds from LRT and their respective 95% confidence intervals and p values are 200 

presented here as a measure of enrichment in tested gene-sets. We employed a Benjamini-Hochberg 201 

false discovery rate (FDR) multiple testing adjustment for p values that accounted for 3312 tests (92 202 

gene-sets x 3 epilepsy phenotypes x 12 test variant conditions, excluding the synonymous variants) as 203 

implemented in p.adjust() function from stats package (55). The cut-off for substantial enrichment was 204 

defined as FDR-corrected p value < 0.05. For simplicity, p values (FDR corrected except for 205 

synonymous variants) are indicated throughout the presented plots using stars as follows: no star > 0.05, 206 

* < 0.05, ** < 0.005, *** < 0.0005, **** < 0.00005. To estimate the extent of bias that might have been 207 

introduced by the imbalance in male-to-female ratios between cases and controls, we performed a 208 

secondary analysis excluding chromosome X genes. Also, to ensure adequate control for any bias 209 

introduced by differences in capture kits, we performed another supplementary analysis between two 210 

groups of control samples (Leicester study controls vs. Ottawa and ATVB controls) representing two 211 

main enrichment kits (Illumina ICE vs. Agilent SureSelect kits). The statistical analysis was performed 212 
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in R 3.3.3 (55). The analysis approach is outlined in Fig. 1 and the methods are detailed in Additional 213 

file 1. A list of tested gene-sets and genes in each set is provided in Additional file 2.  214 

Results: 215 

URV excess in brain-expressed genes  216 

First, we investigated the burden of ultra-rare variants across all protein coding genes following the 217 

analysis approach outlined in Fig. 1. This revealed a clear enrichment in constrained missense variants 218 

that was maximum in consensus constrained coding regions predicted by Missense-badness Polyphen 219 

and Constraint (MPC), Missense Tolerance Ratio (MTR) and Consensus Coding Regions (CCR) scores 220 

(Fig. 2).  The combination of the three metrics (see methods) identifies highly deleterious variants in 221 

functionally critical genic regions. In this particular analysis in all three phenotypes, about half of the 222 

cases, in contrast to roughly one-fourth of controls, harbored one or more ultra-rare highly constrained 223 

variants (Fig. S10). The primary analysis (10) examined loss-of-function intolerant genes and 224 

demonstrated an increased burden in ultra-rare constrained as well as protein truncating variants 225 

(PTVs). Here, the examination of brain-expressed intolerant genes showed, similarly, a marked 226 

enrichment in PTVs in addition to a burden in constrained missense variants comparable to what is seen 227 

exome-wide (Fig. 2 and Fig. S11). 228 

When we examined protein coding genes grouped by their relative brain expression, damaging missense 229 

variants were only substantially enriched in genes highly expressed in the cortex or hippocampus, 230 

whereas those expressed at medium or low levels only showed an enrichment for the most constrained 231 

missense variants (Fig. 3). Genes not expressed in brain did not show a substantial enrichment for any 232 

variant type (Fig. S15). Genes showing a higher expression in the adult brain compared to other tissues 233 

(brain-enriched & brain-enhanced) were also preferentially enriched, as well as genes associated with 234 

brain development. Genes related to late rather than early development showed a slightly higher 235 

enrichment in all three phenotypic groups (Fig. 3).  236 

Focusing further on cell-type specific expression, neuron-specific genes were preferentially affected 237 

compared to those enriched in glial cells, particularly in GGE (Fig. 4). To obtain further insight into the 238 
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nature of this neuronal enrichment, we used sets of genes representing paralogs of mouse genes found 239 

to be enriched in excitatory or inhibitory neurons (see Additional file 1). Interestingly, genes 240 

preferentially expressed in inhibitory neurons showed a an increased burden only in GGE, whereas 241 

those preferentially expressed in excitatory neurons showed a more prominent signal in NAFE. Since 242 

well-established epilepsy genes, like ion channels and receptors, show differential distributions in 243 

different neuronal compartments (57,58), we examined further sets of genes based on subcellular 244 

localization. We found that pre- and postsynaptic genes were enriched with variants in cases vs. 245 

controls, as well as a very small set of 17 genes located in axon initial segments (most prominent in 246 

DEE) (Fig. S13). 247 

Burden of URVs in ion channel, neurotransmitter receptor encoding and related genes 248 

Next, we examined functional gene-sets that could, more specifically, underlie the observed enrichment 249 

in neuronal and synaptic genes. Ion channels, neurotransmitter receptors and transporters are widely 250 

implicated in epilepsy, especially in monogenic and familial forms, displaying considerable phenotypic 251 

heterogeneity and presenting as mild or severe epilepsies (59–61). Variants in GABAA receptors were 252 

enriched in GGE but not in DEE and NAFE while those in gene-sets representing genes encoding N-253 

Methyl-D-Aspartate receptor and Activity-Regulated Cytoskeleton protein (NMDAR-ARC) were 254 

enriched in NAFE and DEE. A comprehensive gene-set for the GABAergic pathway genes (9) showed 255 

a prominent signal in GGE and DEE, and less in NAFE. In contrast, a gene-set representing PSD-95 256 

interactors showed comparable enrichment in NAFE and GGE (Fig. 4). Brain-expressed ion channels 257 

were found to be enriched for highly constrained missense variants (CCR 80 condition) in common as 258 

well as rare epilepsies (Fig. 4). 259 

Patterns of burden in gene-sets representing inhibitory vs. excitatory signaling 260 

We then compared the patterns of URVs enrichment in genes involved in the GABAergic (main 261 

inhibitory) pathway and synapse against those in the glutamatergic (main excitatory) pathway and 262 

synapse in the brain, by examining their unique and overlapping genes based on KEGG pathways (50) 263 

and GO synaptic gene-sets (41) and sets of specific receptors (Fig. 5). GGE showed a higher burden in 264 
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GABAergic vs. glutamatergic synapse (GO) and pathway (KEGG) genes, in GABAA receptors vs. 265 

excitatory receptors/NMDAR-ARC genes, and in GABAergic pathway genes (comprehensive gene-266 

set) vs. PSD-95 interactors, thus matching the higher burden in genes representing inhibitory vs. 267 

excitatory neuronal signaling. The CCR 80 analysis of GO gene-sets in NAFE showed a higher burden 268 

in glutamatergic vs. GABAergic synapse genes, akin to the pattern seen in genes enriched in excitatory 269 

vs. inhibitory neurons. The analysis of KEGG glutamatergic vs. GABAergic pathway genes did not 270 

confirm this finding (Fig. 5). It is notable that the overlap between GO synapse and KEGG pathway 271 

gene-sets is minimal (Fig. S18), and the size of GO and KEGG gene-sets was comparable in 272 

GABAergic but discordant in glutamatergic genes.  273 

Altogether, these comparisons of the burden in missense variants in highly constrained sites between 274 

GGE and NAFE (Fig. 4 and Fig. 5) suggest the following patterns: (i) brain-expressed ion channels, 275 

genes enriched in excitatory neurons, enriched in astrocytes, PSD-95 interactors, GABAergic and 276 

glutamatergic synapse/pathway genes show an increased burden in cases vs. controls both in GGE & 277 

NAFE; (ii) in GGE, this enrichment is coupled with a stronger enrichment in inhibitory neuronal genes, 278 

in GABAA receptors and in GABAergic synapse-specific genes. (iii) in NAFE, this is accompanied by 279 

an absence of enrichment in the later gene-sets and increased burden in the NMDAR-ARC gene-set.  280 

Burden in gene-sets of known epilepsy-related genes 281 

The primary Epi25 Collaborative analysis (10) demonstrated a high burden of missense variants in 282 

constrained sites with MPC score ≥ 2 in DEE, GGE, and NAFE, seen in dominant epilepsy genes, DEE 283 

genes, and NDD-Epilepsy genes. We observed similar enrichment patterns (Fig. 6) in MPC 2 and MTR 284 

DeNovo conditions (enriched for de novo mutations). In addition, we saw a substantial enrichment for 285 

other analysis conditions (MPC score ≥ 1 and MTR ClinVar) with lower odds ratios. Limiting the 286 

analysis to highly constrained genic regions (CCR 80 condition) resulted in a marked increase in 287 

missense burden, as was the trend in all the tested gene-sets so far. Testing these sets also unraveled 288 

strong enrichment in PTVs and missense variants in paralog-conserved sites. PTVs and missense 289 

variants in paralog-conserved sites did not show substantial enrichment in exome-wide analysis and 290 

most of other expression-based, localization-based or pathway-based gene-sets. However, we saw a 291 
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modest increase in PTV burden in highly intolerant genes with probability of Loss-of-function 292 

Intolerance (pLI) > 0.995 in all epilepsies (Fig. 2 and Fig. S11). In the gene-set of known DEE genes, 293 

where highly intolerant genes are rather prevalent, we saw a prominent enrichment in PTVs burden in 294 

DEE. Also, there was an increased burden in missense variants in paralog-conserved sites in sets of 295 

epilepsy-related disease genes (DEE genes, dominant Epilepsy genes, NDD-Epilepsy genes). This 296 

burden was very strong in DEE but not as remarkable in GGE and NAFE (Fig. 6).  297 

Enrichment in top GWAS hits captures divergence between common epilepsies 298 

Recent efforts from the ILAE consortium on complex epilepsies identified multiple associations in a 299 

large GWAS of common epilepsies (52). To examine the hypothesis that genes located near to top 300 

GWAS hits are also affected by rare variants, we tested the enrichment in sets of the 100 top-ranking 301 

genes derived from the GWAS in generalized, focal, and all epilepsies. Interestingly, when limiting the 302 

analysis to Consensus Coding Regions (CCR80 condition), top-ranking genes derived from the GWAS 303 

of either GGE or focal epilepsies were preferentially enriched for rare variants in the respective 304 

phenotypic groups of GGE and NAFE (Fig. 7). Although the observed enrichment was rather subtle, 305 

this result was corroborated by a similar pattern for two rather small sets of known epilepsy genes that 306 

are associated with either generalized or focal epilepsy (9). 307 

Brain- and epilepsy-related co-expression modules 308 

We also aimed to touch upon the role of brain co-expression modules identified in post-mortem brain 309 

tissues from healthy individuals (54) and contrast these to the networks and modules identified in brain 310 

tissue derived from epilepsy patients (53). A brain expression module was found to be substantially 311 

enriched for rare deleterious variants in an independent cohort of DEE (54). A link to common epilepsy 312 

phenotypes was also inferred, but a burden in ultra-rare variants was not examined so far. This module 313 

showed a non-specific enrichment in all three epilepsy subtypes with highest odds in DEE. It is 314 

noteworthy that this module overlaps largely with known epilepsy genes (Fig. S19). In resected 315 

hippocampi of individuals with temporal lobe epilepsy (TLE), Johnson and colleagues identified two 316 
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co-expression modules (M1 and M2) within a gene-regulatory transcriptional network (53). A subtle 317 

enrichment was seen in these modules in DEE and GGE, but not NAFE (Fig. 7). 318 

Additional neuronal and non-neuronal pathways 319 

Other neuronal gene-sets were enriched in our analysis (Fig. S14). Genes encoding neurexins and 320 

neuroligins, important elements of pre- and post-synaptic interaction promoting adhesion between 321 

dendrites and axons (62), were enriched in DEE (Fig. S14). Also, the synaptic vesicle cycle pathway 322 

(KEGG) showed a prominent signal in both DEE and GGE. We also examined the burden in the mTOR 323 

pathway (KEGG), hypothesizing that it could have potential relevance to focal epilepsies, but did not 324 

detect a substantial enrichment (Fig. S14). Interestingly, NAFE analysis displayed a burden in 325 

endothelial and astrocyte-specific genes in constrained genic regions (Fig. 4). Detailed results from all 326 

tested conditions including the counts of genes with observed QVs, variant counts in cases and controls, 327 

logistic regression odds of the individual QVs burden in cases vs. controls and related p values are 328 

provided as supplemental material (see Additional file 3). 329 

Specificity of the observed enrichment patterns 330 

All four sets of genes not expressed in the brain that were tested (high confidence genes with depleted 331 

RNA and protein expression in the brain, genes with no RNA detected in the cortex, the hippocampus 332 

or any brain tissue) were not substantially enriched in almost all the tested variant conditions (Fig. S15). 333 

In these sets, only one test across all thirteen conditions and three epilepsy subtypes showed an adjusted 334 

p value < 0.05 (genes with no expression in brain tissues in GTEx portal; MTR DeNovo condition in 335 

GGE). Additionally, we examined eleven metabolic and cancer pathways (KEGG) to have some 336 

insights into the specificity of the observed signals to neuronal processes and genes. In tests targeting 337 

functional variants (3 epilepsy subtypes, 11 KEGG metabolic and cancer pathways, 12 conditions/types 338 

of variants excluding synonymous), 16/396 tests revealed corrected p values < 0.05. At least for some 339 

of those, the significance could be explained by an overlap with genes known to play a role in epilepsy. 340 

For instance, genes forming the Type II Diabetes KEGG pathway are substantially enriched in DEE 341 

(corrected p values of 0.007 for MTR DeNovo and 0.01 for CCR 80 conditions). This pathway contains 342 
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two genes that are known to cause DEE, namely, CACNA1A (63) and CACNA1E (64). The enrichment 343 

is no longer seen after removal of these two genes (p values > 0.05).  344 

Bias and inflation in gene-set burden testing 345 

The analysis for synonymous and benign missense variants did not show more substantial enrichment 346 

than expected by chance, indicating sufficient control for inflation, particularly in exome-wide models 347 

and gene-sets with large number of genes. Few gene-sets showed p values < 0.05 in the synonymous 348 

variants’ analysis (Additional file 3). The proportion of these tests (5%; 14 out of 276 tests of 92 gene-349 

sets and 3 phenotypes) was within the limit expected by chance under a true null hypothesis. Possible 350 

alternative explanations for such subtle signals include residual stratification and differences in exome 351 

capture not adjusted by covariates (exome-wide variant counts and principal components) and the 352 

presence of synonymous variants with functional consequences (65). Another potential source of bias 353 

in our burden testing was the imbalance in male-to-female ratios between cases and controls (Table S4). 354 

We provide results from a secondary analysis that excluded all genes located on chromosome X, which 355 

shows that any bias not captured by the inclusion of sample sex as a covariate is likely marginal 356 

(Additional file 5). To exclude any major residual stratification resulting from the use of different 357 

enrichment kits, we additionally performed a controls-only analysis (Additional file 5) in which we 358 

compared control samples enriched with Illumina ICE capture kits (from Leicester study) to controls 359 

enriched using Agilent SureSelect kits (ATVB study and Ottawa study). This analysis reflected a good 360 

control for any potential bias introduced by different exome capture systems and also demonstrated that 361 

the mixing of controls included (Leicester and Ottawa) or not included (ATVB) in gnomAD is unlikely 362 

to have affected our main outcomes. 363 

Discussion: 364 

By analyzing the sequencing data of 11,551 unrelated European individuals, we show an exome-wide 365 

burden in ultra-rare missense variants in epilepsy cases compared to controls. These variants are mainly 366 

found in constrained sites across three different subtypes of common generalized and focal epilepsies 367 

as well as rare and mostly severe developmental and epileptic encephalopathies. This ultra-rare variant 368 
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burden was prominent for missense variants enriched for de novo alterations, yet also substantial in 369 

analyses examining a likely combination of inherited and de novo variants. While this burden was 370 

consistently higher with increased constraint in various gene-sets, PTVs were specifically relevant in 371 

known disease genes (Fig. 6) and brain-expressed loss-of-function intolerant genes in comparison to all 372 

protein coding genes (Fig. 2). This replicates the findings of the primary analysis (10) which indicated 373 

an increased PTV burden in known disease-causing epilepsy related genes and genes with pLI > 0.995 374 

but not those with pLI 0.9-0.995 (Fig. S11). In general, PTVs are known to be associated with several 375 

phenotypes with their effect being most prominent in LOF-intolerant genes (30,38,66). Similar to PTVs, 376 

we did not observe a substantial increase in the burden of missense variants in paralog-conserved sites 377 

in a group of all protein coding genes, but it was remarkably high in gene-sets of known disease genes. 378 

The increased burden was very prominent in DEE but not in GGE and NAFE. Missense variants in 379 

paralog-conserved sites showed prominent enrichment in neurodevelopmental disorders (36), a 380 

phenotypic category that overlaps largely with DEE. Although this may reflect a true disparity based 381 

on the importance of these highly conserved sites (with their disturbance possibly resulting in severe 382 

rather than mild epilepsy phenotypes), it is possible that our analysis lacked power to detect small effect 383 

sizes in common epilepsies.  384 

In addition to their utility in estimating the contribution of certain variant conditions/types in different 385 

epilepsy phenotypes, gene-sets with known relation to epilepsy, especially to monogenic forms, 386 

constitute high-effect-size gene-sets that can also serve as technical validation sets. The presented 387 

results are consistent with previous analysis of missense variants in a small number of gene-sets 388 

examined in similar cohorts (8–10). The systematic analysis of gene-sets and more different 389 

conditions/types of variants revealed interesting findings about the neurobiology of distinct types of 390 

epilepsy and clearly revealed that the pathological burden is markedly higher in constrained coding sites 391 

and regions. Although associated with higher odds ratios of an epilepsy phenotype, these variants are 392 

not deterministic on their own, since about one-fourth of the controls also carry a qualifying variant in 393 

the CCR 80 analysis (Fig. S10). As such, the phenotype is determined by a constellation of other factors, 394 
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possibly including patterns of multiple variations, oligogenic contribution from rare variants (67), and 395 

polygenic risk from common variants (68). 396 

The excess of ultra-rare missense variants in the epilepsies clearly stemmed from genes with enriched 397 

expression in the brain compared to other tissues, including developmentally relevant genes. A strong 398 

link exists between brain development and rare DEE and NDD, since both present with marked 399 

developmental deficits accompanied with different seizure types (69,70). The relation of developmental 400 

genes to common epilepsies is not as clear. At the cellular level, the enrichment was primarily seen in 401 

neuron-specific genes. Synaptic genes with their various pre- and postsynaptic localizations were main 402 

drivers in all epilepsies, with prominent signals in postsynaptic genes (Fig. S13). A similar enrichment 403 

in synaptic genes has been observed in neurodevelopmental disorders with epilepsy (70,71), 404 

schizophrenia (24) and autism (72), highlighting a shared genetic architecture not only between epilepsy 405 

subtypes but also with other related neurological disorders, as has been shown previously for common 406 

variants (73). Ion channel genes were enriched for ultra-rare, constrained variants in all epilepsy 407 

phenotypes (Fig. 4), as has been shown in previous work focusing on ultra-rare variants (8,10).  408 

Despite the common genetic and phenotypic features, DEE, GGE and NAFE represent well-recognized 409 

phenotypic clusters with defined electro-encephalographic and clinical characteristics. Given the 410 

phenotypic severity of DEE, the prevalence of de novo variants and ‘monogenic’ cases in DEE, and the 411 

description of phenotypic spectra for genes involved in DEE that also span the milder GGE or NAFE, 412 

the distinction between severe and mild epilepsies could be attributed, at least to some extent, to the 413 

severity of the genetic defects, their functional effects or their localization within certain channel regions 414 

(61,74–77). The distinction between GGE and NAFE, however, is probably functional, at least in part, 415 

as suggested by previous work demonstrating the centrality of GABAergic genes in generalized 416 

epilepsies (9,10). Also, it is well recognized that few genes present with focal, but not generalized, 417 

epilepsy syndromes (78). Here, phenotype-specific patterns were seen in comparisons of GGE and 418 

NAFE. GABAA receptor genes, GABAergic pathway genes and genes enriched in inhibitory neurons 419 

were preferentially affected in GGE in comparison to the glutamatergic pathway genes. In contrast, 420 

NMDA receptor and ARC genes, and genes expressed in excitatory neurons were enriched in NAFE. 421 
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Corroborating this finding for GGE, we found that the enrichment in the GABAergic pathway is 422 

stronger in core genes that are not shared with the glutamatergic pathway. An opposing pattern (albeit, 423 

not as prominent) was seen in NAFE, where the burden in genes enriched in excitatory neurons and 424 

glutamatergic synapse was more prominent than the burden in their inhibitory and GABAergic 425 

counterparts, providing evidence for the importance of the former in focal epilepsies.  426 

Additional disparities in key gene-sets point to a possible genetic-functional divergence, so that a 427 

common background of shared risk seems to be overlaid by specific risk entities. Groups of known 428 

genes implicated in focal vs. generalized epilepsy were enriched in NAFE vs. GGE. Interestingly, the 429 

same pattern was found for the 100 top ranking genes associated with GWAS hits, which were 430 

preferentially enriched in respective phenotypic groups. The enrichment of rare variants in GWAS 431 

genes also supports the convergence of ultra-rare and common variants in conferring epilepsy risk. 432 

According to our findings, a link between common and rare variants is likely to be also relevant for the 433 

phenotypic heterogeneity observed in seizure disorders. Notably, polygenic risk scores also pointed out 434 

the specificity of the risk profiles in common epilepsies (68). We also found an enrichment of ultra-rare 435 

de novo variants in DEE in a previously identified brain co-expression module (54), and the same 436 

module was also enriched for constrained variants in GGE and NAFE. Although co-expressed genes 437 

are not necessarily part of a single pathway, they represent closely orchestrated networks with possible 438 

functional correlations. It is therefore conceivable that differentially expressed genes in individuals with 439 

epilepsy would highlight modules in which altered transcription, ultra-rare variants, or both contribute 440 

to cause both rare and common epilepsies. 441 

Study limitations 442 

Despite their robustness, the associations presented in this work should be interpreted with the caveats 443 

of gene group testing in mind (79). Given that pathways and molecular processes are not consistently 444 

defined in different resources, it is not always easy to define genes that represent a certain pathway. For 445 

instance, GABAergic and glutamatergic pathway definitions based on GO terms and KEGG databases 446 

are widely discordant (Fig. S18). These differences may explain the discrepancies we observed in 447 

enrichment patterns in the same pathway. One gene with abundance of qualifying variants in the GO-448 
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based analysis of the glutamatergic pathway was PPFIA3 (see Additional file 4), a highly intolerant 449 

gene that encodes a synaptic receptor tyrosine phosphatase highly expressed in the brain. However, 450 

PPFIA3 is not part of the KEGG-based glutamatergic pathway. Attempting to overcome such 451 

discrepancies, we examined multiple overlapping gene-sets from different resources. Associations that 452 

are seen regardless of the gene-set source (e.g., the consistent pattern of enrichment in inhibitory vs. 453 

excitatory neuronal/pathway genes in GGE vs. NAFE) are, therefore, likely to underscore a genuine 454 

biological relevance.  455 

The analysis presented here has additional limitations which we aimed to overcome using stringent 456 

analysis and quality control strategies. The limited use of about half of the controls from the primary 457 

analysis to maximize case-control matching affected the overall power. Nevertheless, we were able to 458 

reproduce most of the major signals from gene-sets with large effect sizes, the latter thereby active as 459 

positive controls. The male-to-female ratios were not well-balanced in our case and control sets. Based 460 

on a secondary analysis excluding X chromosomal genes, this does not seem to introduce a substantial 461 

bias (see Additional file 5). The overlap between the controls used in this study and gnomAD controls 462 

resulting from MIGen Leicester and Ottawa controls (Table S2) created some challenges in defining 463 

ultra-rare variants, usually defined as those variants not observed in population databases. For 464 

population frequency filtering, we allowed around five alleles in gnomAD (allele frequency of 2x10-5). 465 

This count that exceeds our internal filtering cut-off for ultra-rare variants (three alleles) would allow 466 

for the retention of ultra-rare variants from our control that are also seen in gnomAD while still filtering 467 

common variants and prevalent sequencing artifacts. Also, multiple in-silico algorithms for predicting 468 

missense deleteriousness and estimating constraint (including MPC, MTR, and CCR scores) were 469 

derived from or validated in the Exome Aggregation Consortium (80) and gnomAD databases. 470 

Examination of control conditions and control gene-sets that are not expected to show an enrichment 471 

(e.g., genes not expressed in the brain) did not indicate any prominent inflation and supported the 472 

validity of the overall analysis. Interestingly, some signals in ‘non-neuronal’ gene-sets could be 473 

explained by the inclusion of well-established epilepsy genes (Fig. S20), like CACNA1A (63) and 474 

CACNA1E (64), which are in fact key neuronal genes of synaptic transmission.  475 
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Conclusions: 476 

Missense URVs affecting constrained sites in brain-expressed genes are key genetic drivers in epilepsy. 477 

Patients with both common and rare epilepsy subtypes show an increased exome-wide burden of such 478 

variants that is primarily derived from neuronal genes, where key gene-sets including ion channels, 479 

developmental and synaptic genes are enriched across the phenotypic spectrum of epilepsy. Genes 480 

implicated by common GWAS variants may also be disrupted by URVs in various epilepsy phenotypes, 481 

suggesting a convergence of rare disruptive variants, and common variants in the pathogenesis of 482 

epilepsy. Enrichment patterns of URV-affected genes suggest a preferential involvement of inhibitory 483 

genes in GGE and excitatory genes in focal epilepsies.  484 

Additional files: 485 

- Additional file 1: PDF file. Supplemental methods, tables and figures; affiliations of the Epi25 486 

Collaborative members.  487 

- Additional file 2: Excel xlsx file. List of genes and gene-sets. 488 

- Additional file 3: Excel xlsx file. Gene-set burden analysis results. 489 

- Additional file 4: Excel xlsx file. Top-ranking genes per gene-set in the CCR 80 analysis. 490 

- Additional file 5: Excel xlsx file. Secondary analysis results. 491 
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ATVB: Atherosclerosis, Thrombosis, and Vascular Biology Study. 494 

CAD: Coronary Artery Disease. 495 
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FDR: False Discovery Rate. 500 

FMRP: Fragile-X Mental Retardation Protein. 501 

GATK: Genome Analysis Toolkit. 502 

GGE: Genetic Generalized Epilepsy. 503 

GO: Gene Ontology. 504 

GWAS: Genome-Wide Association Study. 505 

KEGG: Kyoto Encyclopedia of Genes and Genomes. 506 

ILAE: International League Against Epilepsy. 507 

MAC: Minor Allele Counts. 508 

MAF: Minor Allele Frequencies. 509 

MGI: Mouse Genome Informatics. 510 

MIGen: Myocardial Infarction Genetics Consortium. 511 

MPC: Missense Badness Polyphen and Constraint.  512 

MTR: Missense Tolerance Ratio.  513 

NAFE: Non-Acquired Focal Epilepsy. 514 

NDD: Neuro-Developmental Disorders. 515 

NMDA: N-methyl D-Aspartate. 516 

PCA: Principal Component Analysis. 517 

PPh2: PolyPhen2  518 

PSD-95: Post-synaptic density protein 95. 519 

PTVs: Protein Truncating Variants. 520 
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QVs: Qualifying Variants. 521 

SIFT: Sorting Intolerant From Tolerant  522 

URV: Ultra-Rare Variants. 523 
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Table (1): Gene-sets investigated in this study. 853 

Group of all protein coding genes (1):   
 
-all genes annotated by snpEff as protein coding. 
 
Groups based on brain expression (34):  Expression in the brain, regional, cellular and sub-
cellular expression patterns. 
 
Brain-expressed LOF-
intolerant genes: 
excluding genes with no expression 
in the cortex/hippocampus 
 
-pLI > 0.995. 
-pLI 0.9-0.995. 
-pLI 0.8-0.9. 
 
Brain-expressed missense-
intolerant genes: 

Cortical and hippocampal 
expression level: 
-High, Moderate, Low in the 
cortex. 
-High, Moderate, Low in the 
hippocampus.  
 
Brain development: 
-Brain development genes 
(Gene-Ontology group). 

Cell-type-specific 
enrichment: 
-Neurons -glial cells  
-Excitatory neurons -
Inhibitory neurons -
Astrocytes -Microglia  
-Oligodendrocytes -
Endothelium. 
 
Neuronal Localization: 
-Axon Initial Segment. 
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excluding genes with no expression 
in the cortex/hippocampus 
 
-Z-score > 3.09. 
-Z-score 2.5-3.09. 
-Z-score 2-2.5. 

-Brain developmental genes 
(extended group). 
-Early developmental genes. 
-Late developmental genes. 
 
Enrichment in the brain: 
-Brain-enriched -Brain-enhanced. 

-Synaptic (curated group). 
-Synaptic (extended group). 
-Synaptic vesicle and active 
zone. 
-Pre-synaptic. 
-Post-synaptic. 
-Pre-synaptic only. 
-Post-synaptic only. 

 
Functional gene-sets (28): Ion channels, transporters, synaptic cycles, pathways and 
neurotransmitter cycles. 
 
Ion channels, neurotransmitter 
receptors and related genes: 
-Voltage-gated ion channels. 
-Voltage-gated cation channels. 
-Brain-specific voltage-gated 
ion channels. 
-GABAA receptors. 
-GABAergic pathway. 
-Excitatory receptors. 
-NMDAR & ARC. 
-PSD-95 interactors. 
 
GABAergic/Glutamatergic 
synapses (GO groups): 
-GABAergic synapse -
Glutamatergic synapse  
-only in GABAergic -only in 
glutamatergic  
-shared genes. 

GABAergic/Glutamatergic 
pathways (KEGG database): 
-GABAergic pathway -
Glutamatergic pathway  
-only in GABAergic -only in 
glutamatergic  
-shared genes. 
 
Additional neuronal pathways 
(KEGG): 
-Cholinergic pathway. 
-Dopaminergic pathway. 
-mTOR pathway. 
-Synaptic vesicle cycle. 
 
Glutamate release, uptake and 
clearance cycle. 

GABA/glutamate cycles 
(Reactome database; 
pooled from multiple 
groups): 
-GABA release, receptor 
activation, and clearance - 
 
Additional neuronal 
groups (Reactome 
database): 
-Presynaptic depolarization. 
-Neurexins and 
Neuroligins. 
-Synaptic Adhesion 
molecules. 
-Receptor-type Protein 
Tyrosine Phosphatases. 

   
Disease-associated and intolerant genes (14): Genes and gene-sets with known associations with 
epilepsy and related neurological diseases 
   
Monogenic disease-causing 
genes: 
-Generalized epilepsy genes. 
-Focal epilepsy genes. 
-Dominant epilepsy genes 
-DEE genes. 
-NDD with epilepsy genes. 
-FMRP targets. 
-MGI seizure genes. 

Top-ranking 100 genes in 
ILAE2 GWAS: 
-Generalized epilepsy GWAS. 
-Focal epilepsy GWAS. 
-All epilepsies GWAS. 
 
Brain co-expression module: 
-Co-expressed module identified 
in non-diseased post-mortem 
brain tissues. 
(enriched for de novo variants in 
DEE). 

Regulatory and co-
expression modules in 
epilepsy: 
-Co-expression network 
identified in brain tissues of 
Temporal Lobe Epilepsy 
patients  
- Two modules within this 
network. 

 
Control groups (15): 
 
Genes not expressed in the 
brain: 

KEGG metabolic pathways: 
-Type II Diabetes. 
-Carbohydrate Absorption & 
Digestion. 

KEGG cancer pathways: 
- CA Breast, CA Lung, CA 
Colon, CA Prostate, Renal 
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-RNA not detected in cortex, in 
hippocampus, or all GTEx 
regions. 
-Protein is depleted in the brain. 

-Protein Absorption & Digestion. 
-Fat Absorption & Digestion. 

Cell Ca, CA Pancreas, 
Hepatocellular Ca. 

 854 

 855 

Figure legends: 856 

Fig. 1: Outlines of the burden analysis method. Thirteen (synonymous and twelve functional) 857 

variants models with focus on missense variants in constrained or paralog-conserved sites were tested 858 

in the three epilepsy phenotypes against a shared set of matched controls. The burden was examined in 859 

92 gene-sets (detailed in table 1) using a logistic regression model with the count of qualifying variants 860 

per sample as a predictor and sample sex, ten principal components, singletons and exome-wide variant 861 

counts as covariates. Two secondary analyses were performed: one analysis restricting gene-sets to 862 

autosomal genes (to exclude bias introduced by male-to-female ratio imbalances) and another analysis 863 

testing controls prepared for exome sequencing using Illumina ICE capture kits against controls 864 

prepared with Agilent SureSelect capture kits (to exclude bias caused by differences in enrichment 865 

kits).  866 

Fig. 2: Exome-wide burden of ultra-rare variants in the epilepsies. The burden in developmental 867 

and epileptic encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-acquired focal 868 

epilepsies (NAFE) in 19,402 protein coding genes (A) and 1,743 loss-of-function intolerant genes with 869 

pLI score > 0.995 (B) is shown in multiple test and control conditions (y-axis) as odds ratio (x-axis) 870 

from Likelihood Ratio Test (bars indicate 95% confidence intervals). FDR corrected p values (not 871 

corrected for synonymous variants) are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 872 

0.005, *** < 0.005, **** < 0.0005. There is an incrementing burden with a higher level of missense 873 

constraint. Both synonymous and benign missense alterations are not enriched, suggesting sufficient 874 

control for inflation.  875 

Fig. 3: Burden of ultra-rare missense variants in brain expressed and developmental genes. The 876 

burden of benign or damaging missense variants and missense variants in highly paralog-conserved or 877 

highly constrained sites in developmental and epileptic encephalopathies (DEE), genetic generalized 878 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.18.440264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440264
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

35 

epilepsies (GGE) and non-acquired focal epilepsies (NAFE) is shown in gene-sets based on levels of 879 

RNA/protein expression in the cortex and hippocampus (A) or enrichment in adult or developing brain 880 

(B). Gene-sets are shown on the y-axis (number of genes between brackets). Log odds ratio (Likelihood 881 

Ratio Test) are shown on the x-axis (error bars indicate 95% confidence intervals). The variant 882 

conditions are shown in vertical panels. FDR corrected p values (not corrected for synonymous variants) 883 

are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 0.0005. 884 

Brain enriched genes (Human Protein Atlas: more than four-fold expression compared to other tissues) 885 

show higher burden in DEE compared to those genes with only enhanced expression (higher but less 886 

than four-fold expression in the brain). This difference is less prominent in GGE and NAFE. 887 

Developmental genes enriched in late development show higher burden than genes enriched in early 888 

development.   889 

Fig. 4: Burden in neuronal and glial cells, ion channels, receptors and related interactors. The 890 

burden in developmental and epileptic encephalopathies (DEE), genetic generalized epilepsies (GGE) 891 

and non-acquired focal epilepsies (NAFE) in shown on the x-axis (log-odds from Likelihood Ratio 892 

Test; error bars indicate 95% confidence intervals). Gene-sets are shown on the y-axis (number of genes 893 

between brackets). The variant conditions are shown in vertical panels. FDR corrected p values (not 894 

corrected for synonymous variants) are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 895 

0.005, *** < 0.005, **** < 0.0005. (A) Comparisons based on the cellular expression patterns show 896 

that the enrichment is prominent in neuron-enriched compared to glial genes, particularly in GGE. GGE 897 

shows relatively higher enrichment in inhibitory neuron genes while NAFE shows a relatively higher 898 

burden in excitatory neuronal genes. (B) Variants in GABAA receptors and GABAergic pathway are 899 

preferentially enriched in GGE compared to groups of genes coding for NMDA receptor and neuronal 900 

activity-regulated cytoskeleton-associated protein (ARC). In NAFE, the variants are enriched in the 901 

NMDA receptor & ARC gene-sets, but not GABAA receptors. 902 

Fig. 5: Enrichment in major neuronal synapses and pathways. Comparison of enrichment patterns 903 

in GABAergic and glutamatergic synapses and pathway genes based on Gene-Ontology (GO) (A) or 904 

Kyoto Encyclopedia for Genes and Genomes (KEGG) (B) The burden in developmental and epileptic 905 
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encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-acquired focal epilepsies 906 

(NAFE) in shown on the x-axis (log-odds from Likelihood Ratio Test; error bars indicate 95% 907 

confidence intervals). Gene-sets are shown on the y-axis (number of genes between brackets). The 908 

variant conditions are shown in vertical panels. FDR corrected p values (not corrected for synonymous 909 

variants) are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 910 

0.0005. Complete groups, genes specific to one of the two synapses/pathways as well as their 911 

intersection were tested. Both GO and KEGG gene sets show an increased burden in GGE when 912 

“GABAergic only” genes are tested. GGE shows a relatively higher burden in GABAergic compared 913 

to glutamatergic gene sets.  914 

Fig. 6: Burden of ultra-rare variants in groups of epilepsy-related known disease genes. The 915 

burden in five gene-sets (y-axis; number of genes between brackets) in developmental and epileptic 916 

encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-acquired focal epilepsies 917 

(NAFE) (horizontal panel) in selected variant conditions (vertical panels) is shown on the x-axis (log 918 

odd ratios from Likelihood Ratio Test; error bars indicate 95% confidence intervals). FDR corrected p 919 

values (not corrected for synonymous variants) are indicated with stars as follows: no star > 0.05, * < 920 

0.05, ** < 0.005, *** < 0.005, **** < 0.0005. NDD-Epilepsy: neurodevelopmental disorders with 921 

epilepsy. FMPR: Fragile-X Mental Retardation Protein targets. MGI: Mouse Genome Informatics 922 

database.  923 

Fig. 7: Risk elements in GWAS top-ranking genes and co-expression modules. The burden of 924 

missense variants in highly constrained sites (log-odds on the x-axis; error bars indicate 95% confidence 925 

intervals) in developmental and epileptic encephalopathies (DEE), genetic generalized epilepsies 926 

(GGE) and non-acquired focal epilepsies (NAFE) is shown in monogenic epilepsy genes, top-ranking 927 

epilepsy GWAS genes, brain co-expression modules and TLE-related co-expression modules (y-axis; 928 

number of genes between brackets). FDR corrected p values (not corrected for synonymous variants) 929 

are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 0.0005.  930 

(A) Generalized or focal epilepsies (presumed monogenic) as well as top-ranking 100 genes from 931 

GWAS of generalized and focal epilepsies are preferentially enriched for constrained missense variants 932 
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(CCR 80) in respective phenotypic cohorts indicating a possible convergence between common and 933 

rare variants in GWAS genes. (B) Enrichment in co-expressed genes identified in post-mortem brain 934 

tissues of healthy individuals (module of 320 genes) or in brain tissues from TLE patients (network of 935 

395 genes) as well as two sub-modules of this network (M1 and M2).  936 
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Fig. 1: Outlines of the burden analysis method. Thirteen (synonymous and twelve functional) variants models 
with focus on missense variants in constrained or paralog-conserved sites were tested in the three epilepsy 
phenotypes against a shared set of matched controls. The burden was examined in 92 gene groups (detailed in table 
1) using a logistic regression model with the count of qualifying variants per sample as a predictor and sample sex, 
ten principal components, singletons and exome-wide variant counts as covariates. Two secondary analyses were 
performed: one analysis restricting gene groups to autosomal genes (to exclude bias introduced by male-to-female 
ratio imbalances) and another analysis testing controls prepared for exome sequencing using Illumina ICE capture 
kits against controls prepared with Agilent SureSelect capture kits (to exclude bias caused by differences in 
enrichment kits).
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Fig. 2: Exome-wide burden of ultra-rare variants in the epilepsies. The burden in developmental and epileptic 
encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-acquired focal epilepsies (NAFE) in 19,402 
protein coding genes (A) and 1,743 loss-of-function intolerant genes with pLI score > 0.995 (B) is shown in 
multiple test and control conditions (y-axis) as odds ratio (x-axis) from Likelihood Ratio Test (bars indicate 95% 
confidence intervals). FDR corrected p values (not corrected for synonymous variants) are indicated with stars as 
follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 0.0005. There is an incrementing burden with 
higher level of missense constraint. Both synonymous and benign missense alterations are not enriched, suggesting 
sufficient control for inflation.
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Fig. 3: Burden of ultra-rare missense variants in brain expressed and developmental genes. The burden of 
benign or damaging missense variants and missense variants in highly paralogue-conserved or highly constrained 
sites in developmental and epileptic encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-
acquired focal epilepsies (NAFE) is shown in gene groups based on levels of RNA/protein expression in the cortex 
and hippocampus (A) or enrichment in adult or developing brain (B). Gene groups are shown on the y-axis 
(number of genes between brackets). Log odds ratio (Likelihood Ratio Test) are shown on the x-axis (error bars 
indicate 95% confidence intervals). The variant conditions are shown in vertical panels. FDR corrected p values 
(not corrected for synonymous variants) are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, 
*** < 0.005, **** < 0.0005. Brain enriched genes (Human Protein Atlas: more than four-fold expression compared 
to other tissues) show higher burden in DEE compared to those genes with only enhanced expression (higher but 
less than four-fold expression in the brain). This difference is less prominent in GGE and NAFE. Developmental 
genes enriched in late development show higher burden than genes enriched in early development.
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Fig. 4: Burden in neuronal and glial cells, ion channels, receptors and related interactors. The burden in developmental and epileptic encephalopathies (DEE), genetic generalized 
epilepsies (GGE) and non-acquired focal epilepsies (NAFE) in shown on the x-axis (log-odds from Likelihood Ratio Test; error bars indicate 95% confidence intervals). Gene groups are 
shown on the y-axis (number of genes between brackets). The variant conditions are shown in vertical panels. FDR corrected p values (not corrected for synonymous variants) are 
indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 0.0005. (A) Comparisons based on the cellular expression patterns show that the enrichment is 
prominent in neuron-enriched compared to glial genes, particularly in GGE. GGE show relatively higher enrichment in inhibitory neuron genes while NAFE show a relatively higher 
burden in excitatory neuronal genes. (B) Variants in GABAA receptors and GABAergic pathway are preferentially enriched in GGE compared to groups of genes coding for NMDA 
receptor and neuronal activity-regulated cytoskeleton-associated protein (ARC). In NAFE, the variants are enriched in NMDA receptor & ARC gene group, but not GABAA receptors.
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Fig. 5: Enrichment in major neuronal synapses and pathways. Comparison of enrichment patterns in GABAergic and glutamatergic synapses and pathway genes based on 
Gene-Ontology (GO) (A) or Kyoto Encyclopedia for Genes and Genomes (KEGG) (B) The burden in developmental and epileptic encephalopathies (DEE), genetic 
generalized epilepsies (GGE) and non-acquired focal epilepsies (NAFE) in shown on the x-axis (log-odds from Likelihood Ratio Test; error bars indicate 95% confidence 
intervals). Gene groups are shown on the y-axis (number of genes between brackets). The variant conditions are shown in vertical panels. FDR corrected p values (not 
corrected for synonymous variants) are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 0.0005. Complete groups, genes specific to 
one of the two synapses/pathways as well as their intersection were tested. Both GO and KEGG gene sets show an increased burden in in GGE when “GABAergic only” genes 
are tested. GGE show a relatively higher burden in GABAergic compared to glutamatergic gene sets.
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Fig. 6: Burden of ultra-rare variants in groups of epilepsy-related known disease genes. The burden in five gene groups (y-axis; number of genes between brackets) in 
developmental and epileptic encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-acquired focal epilepsies (NAFE) (horizontal panel) in selected variant 
conditions (vertical panels) is shown on the x-axis (log odd ratios from Likelihood Ratio Test; error bars indicate 95% confidence intervals). FDR corrected p values (not corrected for 
synonymous variants) are indicated with stars as follows: no star > 0.05, * < 0.05, ** < 0.005, *** < 0.005, **** < 0.0005. NDD-Epilepsy: neurodevelopmental disorders with epilepsy. 
FMPR: Fragile-X Mental Retardation Protein targets. MGI: Mouse Genome Informatics database.
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Fig. 7: Risk elements in GWAS top-ranking genes and co-expression modules. The burden of missense 
variants in highly constrained sites (log-odds on the x-axis; error bars indicate 95% confidence intervals) in 
developmental and epileptic encephalopathies (DEE), genetic generalized epilepsies (GGE) and non-acquired 
focal epilepsies (NAFE) is shown in monogenic epilepsy genes, top-ranking epilepsy GWAS genes, brain co-
expression modules and TLE-related co-expression modules (y-axis; number of genes between brackets). FDR 
corrected p values (not corrected for synonymous variants) are indicated with stars as follows: no star > 0.05, * < 
0.05, ** < 0.005, *** < 0.005, **** < 0.0005. (A) Generalized or focal epilepsies (presumed monogenic) as well 
as top-ranking 100 genes from GWAS of generalized and focal epilepsies are preferentially enriched for 
constrained missense variants (CCR 80) in respective phenotypic cohorts indicating a possible convergence 
between common and rare variants in GWAS genes. (B) Enrichment in co-expressed genes identified in post-
mortem brain tissues of healthy individuals (module of 320 genes) or in brain tissues from TLE patients (network 
of 395 genes) as well as two sub-modules of this network (M1 and M2).
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