
HSM-based Key Management Solution for
Ethereum Blockchain

Wazen M. Shbair
∗
, Eugene Gavrilov †, Radu State

∗

∗ University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg
Email:{wazen.shbair, radu.state}@uni.lu

† VNX Exchange, Luxembourg
Email: eugene.gavrilov@vnx.io

Abstract—The security of distributed applications backed by
blockchain technology relies mainly on keeping the associated
cryptographic keys (i.e. private keys) in well-protected storage.
Since they are the unique proof of ownership of the underlying
digital assets. If the keys are stolen or lost, there is no way
to recover the assets. The cold wallet is a good candidate for
basic use cases, but it has a substantial challenge for more
complex applications as it does not scale. Warm and hot wallets
are more convenient options for blockchain-based solutions that
aim to transact in a cloud environment. In this work, we focus
on Hardware Security Module (HSM) based wallet. The HSM
is the de-facto standard device designed to manage high-value
cryptographic keys and to protect them against hacks. In this
demonstration, we present an HSM-based working prototype that
secures the entire life cycle of Ethereum public and private keys.

I. INTRODUCTION

Blockchain technology shows promise in its ability to create
new financial trading, payments solution, business model,
and wide range of applications. However, recent high-profile
breaches of exchanges reveal that the storage of users’ cryp-
tographic keys presents a security weakness that must be
resolved properly. In blockchain-based applications, the asso-
ciated cryptographic keys are the unique proof of ownership
of the underlying digital assets. Therefore, no one can steal
the digital asset unless he/she has access to the private key to
sign spending or transferring transactions. Even worse if the
access to the private key is lost then the fund will be locked
out and no way to access it at all [1].

Due to lack of proper key management solutions up to 23%
of Bitcoins - currently worth around $140 billion - cannot be
accessed as a result of lost or forgotten keys. Therefore, the
management of cryptographic keys is one of the most critical
and challenging components of the cryptographic system. No
blockchain-based platform is secure if its keys management
module is not well-secured [2].

The cryptocurrency wallet is a means to store private keys
securely, so they are accessible only with the right permission.
Digital assets or cryptocurrencies are not stored as physical
fiat money within the wallet, thus to make a transaction a user
retrieves a private key from secure storage and then signs the
spending transaction using the private key. Once the signed
transaction is broadcasted to the selected blockchain platform
the fund is released and stored in an immutable manner.

Various cryptocurrency wallet solutions are ranging from
paper-based to cloud-based wallets. Classifying the wallets
is varying based on various criteria. For instance, based
on the Internet connectivity we find Cold, Warm, and Hot
wallets [3]. Based on the physical status we find Software
and Hardware and Paper wallets. While based on the secure
trusted environment technology we have the Trusted Execution
Environment (TEE) and Hardware Security Module (HSM)
wallets. A comprehensive benchmarking of cryptocurrency
wallets can be found in [4].

Hereby, we focus on HSM-based wallets. HSM is a well-
known solution in the banking industry since it provides
a secure environment for transaction processing and user’s
Personal Identification Number (PIN) verification. Via strong
cryptographic algorithms, the HSM device generates and
stores keys, ensuring that the master key never leaves the
vault. Also, the HSM hardware allows executing cryptographic
operations in a trusted environment. On top of that, the HSM
device is equipped with a fully self-protecting circuit, so
if tamper sensors detect a possible attack, all critical keys
are immediately destroyed and the HSM device becomes
permanently inoperable [5].

In this demonstration, we will present a key management
solution based on the HSM technology to control the life
cycle of Ethereum public and private keys. Alongside the
cryptographic operations required for signing transactions.

II. DESIGN AND IMPLEMENTATION

HSM-based solutions are designed and certified to provide
the highest level of physical security. In this context, HSM
devices can be used to leverage this established hardware
technology to foster the security of digital wallets in the
blockchain ecosystem. This section details the core functions
of generating Ethereum wallets and calculating valid signa-
tures. Due to the high cost of HSM services our prototype
has been implemented using SoftHSM - a software emulation
framework for the HSM hardware [6].

A. Ethereum Address Generation

According to Ethereum Yellow paper [7] for a given Elliptic
Curve Digital Signature Algorithm (ECDSA) private key Pr,
the corresponding Ethereum address A(Pr) is defined as the

https://orcid.org/0000-0002-4986-8084
https://orcid.org/0000-0002-4751-9577

rightmost 160-bits of the Keccak-256 hash of the correspond-
ing ECDSA public key [8]. Algorithm 1 provides the required
steps to generate an Ethereum wallet based on a given ECDSA
key pair, where the public key will be used to calculate the
related Ethereum address, and the private key will be used
for signing transactions. Thanks to the HSM module that will
generate and store the required ECDSA key pair.

Algorithm 1: Ethereum wallet generation
Input: SoftHSM Module (mod)
Output: Ethereum wallet address

1 Function Generate_Ethereum_Wallet(mod):
2 keys← hsm session.generateKeyPair(ecdsa)
3 publicKey ← keys.publicKey
4 address hash← keccak256(publicKey)
5 eth Addr ← ”0x” + address hash.slice(−20)
6 return eth Addr

B. ECDSA Signature Calculation

The ECDSA signing algorithm typically takes as input a
message to be signed and a private key. As output it returns a
signature presented by a pair of 256-bit integers identified by
R and S [9]. As a special case, the Ethereum blockchain add
an additional V value, named recovery identifier. Therefore
the Ethereum transactions signature is notated as R,S, V . The
signature can be presented as one 65-byte-long sequence; 32
bytes for R, 32 bytes for S, and one byte for V (27 or 28). The
V value is essential since we are working with elliptic curves
(i.e ECDSA), multiple points on the curve can be calculated
from R and S alone. This may give two different public keys
that can be recovered. The V identifier indicates which one
of these points to use. Even more, sometimes the S value can
randomly be on the ’wrong side’ on the ECDSA curve. So
we need to keep signing until we get a good value of S as
detailed in Algorithm 2.

C. Ethereum Transaction Signature

The ECDSA signature assigned to an Ethereum transaction
proves that the sender of the transaction had the required
access to the private key, and the transaction has not been
changed since it was signed. Therefore, two pieces of informa-
tion should be signed; the sender’s address and the transaction
object. To sign the spending address we pass it to Algorithm 2
with the right private key. The returned values of R,S, V will
be used as parameters in the transaction object. Then the raw
transaction object is signed also using the later Algorithm,
where the returned R,S, V present the required signature
component for the transaction to be submitted and executed.

D. Prototype Implementation and Limitation

Our prototype1 has been developed using SoftHSM and
Web3.js [10]. The prototype comprises Ethereum wallets gen-
eration and storage, besides transactions building and signing

1Publicly available on https://github.com/wshbair/HSM2ETH

Algorithm 2: ECDSA signature calculation
Input: Message msg to sign, PublicKeyPk,

PrivateKeyPr
Output: Signature components R,S, V

1 Function
Calculate_ECDSA_Signature(msg to sign, Pr):

2 msg hash← keccak256(msg to sign)
3 flag ← True
4 while flag do
5 signature←

hsm session.sign(msg hash, Pr)
6 //Extract the S value from the signature
7 S = signature.slice(32, 64)
8 if S < (secp256k1.size/2) then
9 flag ← False

10 R← signature.slice(0, 32)
11 S ← signature.slice(32, 64)
12 V ← 27
13 recovered key ←

recover ecdsa publicKey(R,S, V) if
recovered key 6= Pk then

14 V ← 28

15 return R,S, V ;

functions. Ethereum Rinkeby testnet has been used to validate
the generated and signed transactions.

Our solution, however, is subject to a potential limitation
in terms of scalability. Because all generated keys are stored
inside the HSM device. However, HSM devices have a finite
number of ”slots”, and each slot has a finite number of keys.
For instance, AWS CloudHSM can store only 3300 keys [11].

To solve this, we can generate a master key using the HSM
module. The master key will be used to encrypt the seed phrase
of an Ethereum wallet. A seed phrase is a way to access
and recover a digital wallet. It contains a random sequence
of words, usually 12 or 24 English words. The sequence is
converted using formulas to numbers that give access to the
corresponding digital wallet and the public and private keys. In
this case, we can store locally the encrypted seed, the master
key, and the generated Ethereum address. Thus, to transact
on behalf of the Ethereum address we follow these steps: (1)
decrypt the seed using the master key; (2) regenerate the wallet
(i.e public and private kes) using the decrypted seed; (3) build
and sign the transaction using the regenerated wallet.

As future work, we intend to stretch this work to cover
the key management for different cryptocurrencies such as
Bitcoin, Ripple XRP, and Steller. Also, we will evaluate our
approach using well-known HSM service providers.

III. ACKNOWLEDGEMENTS

This work has received partially funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreement No 830927, the CONCORDIA project.

REFERENCES

[1] O. Boireau, “Securing the blockchain against hackers,” Network Secu-
rity, vol. 2018, no. 1, pp. 8–11, 2018.

[2] O. Pal, B. Alam, V. Thakur, and S. Singh, “Key management
for blockchain technology,” ICT Express, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405959519301894

[3] H. Rezaeighaleh and C. C. Zou, “New secure approach to backup
cryptocurrency wallets,” in IEEE Global Communications Conference-
Communication & Information Systems Security Symposium, 2019.

[4] G. Hileman and M. Rauchs, “2017 global cryptocurrency benchmarking
study,” Available at SSRN 2965436, 2017.

[5] R. Focardi and F. L. Luccio, “Secure upgrade of hardware security
modules in bank networks,” in Joint Workshop on Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of Security.
Springer, 2010, pp. 95–110.

[6] “Opendnssec softhsm,” https://opendnssec.org/softhsm, [Online; ac-
cessed 6-Jan-2021].

[7] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,”
in Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2013, pp. 313–314.

[9] T. Pornin, “Deterministic usage of the digital signature algorithm (dsa)
and elliptic curve digital signature algorithm (ecdsa),” Internet Engi-
neering Task Force RFC, vol. 6979, pp. 1–79, 2013.

[10] “web3.js - ethereum javascript api,” https://github.com/ethereum/web3.
js, [Online; accessed 7-Mar-2021].

[11] “Aws cloudhsm - user guide,” https://docs.aws.amazon.com/cloudhsm/
latest/userguide/cloudhsm-user-guide.pdf, [Online; accessed 7-Mar-
2021].

https://www.sciencedirect.com/science/article/pii/S2405959519301894
https://opendnssec.org/softhsm
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm-user-guide.pdf
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm-user-guide.pdf

	Introduction
	Design and Implementation
	Ethereum Address Generation
	ECDSA Signature Calculation
	Ethereum Transaction Signature
	Prototype Implementation and Limitation

	Acknowledgements
	References

