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Abstract. Laconic Function Evaluation (LFE) is a recently proposed
primitive (FOCS’18), that allows two parties to perform function evalu-
ation in the following way: a “digest” of a circuit representing a function
f , is sent by Alice to Bob; next, Bob obtains a ciphertext corresponding
to his plaintext m using the digest; finally, Alice, after receiving Bob’s
ciphertext and having knowledge of her circuit, can decrypt f(m). The
protocol is dubbed laconic if the sizes of the common reference string,
digest and ciphertext are “tiny”, and certainly much smaller than the cir-
cuit size |f |. The inceptive work provides a laconic function evaluation
protocol for general circuits under the learning with errors (LWEn,q,χ)
assumption, such that ciphertext and digest grow polynomially with the
depth d, but not the size of the circuit. However, the LWE modulus grows
as O(2poly(n,d)).
This work puts forward a post-quantum secure and asymptotically more
efficient laconic function evaluation protocol, but for a restricted class
of circuits. In particular, we obtain LFE for L/poly (the class of cir-
cuits admitting branching programs of polynomial length) from lattice
assumptions. Our LWE modulus belongs to Õ

(
poly

(
n7 · 24d

))
, such that

its size is growing additively with the depth, as opposed to multiplica-
tively. Our protocol is inspired by an attribute-based encryption scheme
proposed by Gorbunov and Vinayagamurthy (AC’15).

Keywords: branching programs, laconic function evaluation, ABE.

1 Introduction

Laconic Function Evaluation (LFE) has been introduced as a novel and forceful
primitive in a recent work by Quach et al. [QWW18]. Roughly speaking, imag-
ine a scenario where two parties want to evaluate a function f in the following
manner: (1) on the one hand – Alice – computes a “digest” of the circuit repre-
sentation of some function f and sends this digest to the other party involved –
Bob; (2) Bob computes a ciphertext CT given two components: the digest of the
circuit and his input message m. The ciphertext CT is sent back to Alice; (3)
finally, Alice is able to learn the value of f(m) in plain. All these computations
are done in a common reference string model, which is proven to be necessary.



The main catalyst behind introducing LFE consists in having protocols that
are “Bob-optimized”. The challenges posed by the field of “Big Data”, where it is
often the case that data has to be processed by third parties, draw to attention
reliable and practical cryptographic solutions such as secure multi-party com-
putation [GMW87,Yao82a]. Multiple motivating examples are suggested in the
introductory article [QWW18], but the key difference that is emphasized is the
need for a “laconic” protocol: it must be the case the digest that Alice sends
to Bob is less than the size of the circuit C representing the function f to be
computed.

To give a flavour of such a setting, assume a researcher in neuroscience (Al-
ice) devised a massive program C that processes images of human brains’ mag-
netic resonance. Such automated investigations, can be used, for instance to
detect brain diseases in early stages, using modern machine learning techniques.
Through LFE, the researcher will simply publish the digest of C (which is short),
and a hospital (managed by Bob), interested in Alice’s research, may use the
digest to encrypt his magnetic resonance (MR) image repository. Then Alice can
decrypt the ciphertext and obtain the results of her program on the dataset that
Bob sent. Thus, the patients’ personal data would remain private, while Alice
would obtain the output of her program.

A second example may look into program patching. If Alice has acquired
an operating system (OS) while Bob is the OS developer, it may be the case
that from time to time, Bob releases updates for his product. If this is the case,
Alice may simply provide a digest for her program that includes the OS source,
takes the patch and outputs an updated version of OS. In such a scenario, Bob
encrypts the patch through LFE and Alice runs the heavy operation on patching
the OS on her side. Clearly, this is advantageous as the size of the program Alice
would have sent to the Bob would be large.

Existing work. Quach et al. [QWW18] put forth an LFE construction sup-
porting general circuits. Their protocol can be thought as a composition of
several steps: first, they achieve an attribute-based laconic function evaluation
scheme. Second, they show how to reduce the size of the digest Alice sends
to Bob, by employing laconic oblivious transfer. Finally, they obtain a scheme
for general circuits, by applying the techniques developed in [GKP+13]: Bob
encrypts his message through a fully homomorphic encryption (FHE) scheme
[Gen09,BGV12,GSW13]; then Bob encrypts the FHE ciphertext via the attribute
based laconic function evaluation (step 1), together with the labels of a garbled
circuit performing FHE decryption. Essentially, this is similar to [GKP+13], up
to the noticeable change of using attribute-based LFE, rather then a plain ABE.

Although QWW18’s techniques are clearly interesting, they have to rely on
existing works, in order to obtain their main tool – the attribute-based laconic
function evaluation for general circuits. Namely, they make use of the public and
ciphertext evaluation algorithms introduced by Boneh et al. in [BGG+14]. The
predicament induced by these powerful evaluation algorithms is the representa-
tion size of the LWE modulus q, which will be poly(λ, d).
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Of independent interest are the relations between LFE and other primitives:
the authors of [QWW18] remark that LFE is sufficiently powerful to imply suc-
cinct functional encryption3 (FE). However, the authors leave open the question
of the converse being true. A second open question would consider obtaining
adaptive-secure schemes via tight(er) reductions.
Our Contribution. In this work, we provide a lattice-based, post-quantum se-
cure construction of LFE for L/poly circuits – the class of circuits representable
through branching programs of polynomial length – that achieves selective secu-
rity under LWE with polynomial approximation factors4. Our construction relies
on LWE with asymptotically smaller parameters, when compared to [QWW18].
Our main result may be summarized as follows.

Theorem 1 (LFE for L/poly – Informal). Let f : {0, 1}k → {0, 1}` de-
note a function having its circuit belonging to L/poly. Assuming the hardness
of LWEn,q,χ with polynomial approximation factors, there exists a selectively-
secure LFE protocol for f , having laconic digests, common reference strings and
ciphertexts. Moreover, the LWE modulus q belongs to Õ

(
poly

(
n7 · 24d

))
.

L/poly LFEs from ABEs for Branching Programs. From a technical per-
spective, we consider different paths for obtaining laconic function evaluation
schemes for circuits in L/poly. The approach we propose is somewhat different
from existing schemes, as we would like to exploit a different representation.

Consider the branching program representation of some function in L/poly.
Assuming the minimal circuit representation of the function has depth d, the
branching program will have L ≤ 22d states. At first sight, such a representation
seems discouraging. However, some existing attribute-based encryption schemes
[GV15, Yam16] that are designed to evaluate branching programs outperform
the classical gate-evaluation techniques, ending up with better parameters of
ciphertexts.

To give a flavour, consider the gate evaluation ABE algorithms presented
in [BGG+14], which form the backbone of [QWW18]. The LWE modulus in
[BGG+14] has the size growing as:

|q| ≈ log(n) · d + smaller factors .

This is in stark contrast with [GV15], where the LWE modulus grows as:

|q| ≈ log(n) + 4 · d + smaller factors

Therefore, it seems that considering such primitive for branching programs may
offer an alternative to classical gate evaluation algorithms.
Paper Organization. In Section 2, we introduce the standard notations to
be adopted throughout the paper, followed by the definitions of the primitives
3 Succinctness means that the size of the functional ciphertext depends on the depth
of the supported circuit rather than on its size [GKP+13].

4 It can also be turned into an adaptively-secure scheme under LWE with sub-
exponential approximation factors.
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that we use as building blocks. Appendix B reviews the original LFE protocol
proposed by Quach et al. in [QWW18]. In Sections 3 and 4, we introduce a
new LFE scheme for L/poly circuits, and show how to combine it with laconic
oblivious transfer in order to achieve a scheme with tiny digests.

2 Preliminaries

Notations. We denote the security parameter by λ ∈ N∗ and we assume it is
implicitly given to all algorithms in the unary representation 1λ. An algorithm is
considered equivalent to a Turing machines and is supposed to be randomized;
“Probabilistic polynomial-time” in the security parameter is denoted by PPT.
Given some (randomized) algorithm A, the action of running A on input(s)
(1λ, x1, . . . ) with uniform random coins r and assigning the output(s) to (y1, . . . ),
is denoted by (y1, . . . )←$A(1λ, x1, . . . ; r). When A is given oracle access to some
procedure O, we write AO. For a finite set S, we denote its cardinality by |S|
and the action of sampling an element x uniformly at random from X by x←$X.
Bold variables such as w represent column vectors, while, bold capitals stand for
matrices (e.g. A). A subscript Ai,j refers to entry (i, j) in the matrix. For any
variable k ∈ N∗, we define [k] := {1, . . . , k}. A real-valued function Negl(λ) is
negligible if Negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions
by Negl. Throughout the paper ⊥ stands for a special error symbol. We use ||
to denote concatenation. For completeness, we recall standard algorithmic and
cryptographic primitives to be used. We consider circuits as the prime model of
computation for representing (abstract) functions. Unless stated otherwise, we
use k to denote the input length of the circuit and d for its depth.

2.1 Cryptographic Assumptions

The Learning With Error problem, proposed by Regev in [Reg05], requires one to
find the secret vector s over F`q, given a polynomially many relations of the form
(A,A·s+e); here A denotes a randomly sampled matrix over Fk×`q , while e ∈ Fk
is a small error term sampled from an appropriate distribution χ. Roughly, the
decision version of the problem, asks to distinguish between the aforementioned
distribution as opposed to the uniform one.

Definition 1 (Decisional LWE). The advantage of any PPT adversary Adv
in distinguishing between the following two distributions is negligible:

AdvLWE
A (λ) :=

∣∣∣Pr [1← Adv
(
1λ,A,u

)]
−Pr

[
1← Adv

(
1λ,A,A · s+ e

)] ∣∣∣ ∈ Negl(λ)

where A←$Zk×`q , s←$Z`q, e←χZkq while u←$Zkq is a randomly sampled vector.

In our work, we will make use of the following standard result:

Lemma 1 (Smudging Lemma). Let B,B′ denote two integer bounds, mod-
elled as polynomials in some parameter λ. Let δ ∈ [−B,B] and γ ∈ [−B′, B′] be
sampled uniformly at random. Then the distribution of γ is statistically indis-
tinguishable from that of δ + γ as long as B/B′ is negligble in λ.
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2.2 Standard Primitives

Branching Programs. A branching program corresponds to a sequential repre-
sentation of a circuit. One should imagine it as a layered graph, the arcs between
two layers representing the possible transitions between consecutive states (or
levels). A branching program is evaluated from a starting node which has two
emerging paths. Depending on the value of some input bit, one of the two paths
is chosen. The process is repeated at any given step, until a terminal state is
reached. In a celebrated result, [Bar89] has shown how to convert any circuit in
NC1 into a branching program having a polynomial number of states – herein
denoted by L – and a width fixed to 5. We defined them below.

Definition 2 (Branching Programs). Let f : {0, 1}k → {0, 1}` be a func-
tion whose circuit representation belongs to NC1. A branching program BP for f
consists of L tuples of the form:(

{var(i), πi,0, πi,1}i∈[L]
)
,

where var : [L] → [k] denotes a function that associates a state with some in-
put bit, while {πi,0, πi,1}i∈[L] are two permutations that are used to evaluate the
branching program. The evaluation of the branching program is done according
to:

b← πL,xvar(L)
◦ πL−1,xvar(L−1)

◦ . . . ◦ π1,xvar(1)
(σ0)

and is equivalent with the output of f(x) for some x ∈ {0, 1}k. σ0 denotes the
initial state (1, 0, 0, 0, 0).

Fully-homomorphic encryption [GSW13] and garbling schemes [Yao82b], are
considered standard primitives and not defined or reviewed herein.

2.3 Attribute-Based Encryption

An attribute-based encryption scheme (ABE) (in the key-policy setting) is an
encryption scheme where a key is generated for a Boolean predicate P , while a
ciphertext is the encryption of a set of attributes α and of some message. Thus,
the owner of the key can recover the secret message encrypted together with
attributes α if P (α) = 1, or nothing otherwise.

Definition 3 (ABE [GPSW06]). A key-policy attribute-based encryption
scheme is a tuple of PPT algorithms such that:

– (mpk,msk)←$ Setup(1λ): takes as input the unary representation of the secu-
rity parameter λ and outputs the master public key mpk and a master secret
key msk.

– skP←$KeyGen(msk, P ): given the master secret key and a policy P , the (po-
tentially randomized) key-derivation outputs a corresponding skP .

– CT←$Enc(mpk, α,M): the randomized encryption procedure encrypts the plain-
text M with respect to some attribute set α.

5



– Dec(skP ,CT): decrypts the ciphertext CT using the key skP and obtains M if
P (α) = 1 or a special symbol ⊥, in case the decryption procedure fails (i.e.
P (α) = 0).

We say that an ABE satisfies correctness if for all m ∈ M, for all predicates P
and for all attributes α we have:

Pr

y = m

∣∣∣∣∣
(msk,mpk)←$ABE.Setup(1λ)∧
skf←$ABE.KeyGen(msk, P )∧
CT←$ABE.Enc(mpk,m, α)∧
y ← ABE.Dec(CT, skP ) ∧ P (α) = 1

 = 1 .

We say an attribute-based encryption is selectively secure if the advantage of
any PPT adversary A in winning the following game is negligible: m ∈ M, for
all predicates P and for all attributes α we have:

Pr


b = b′

∣∣∣∣∣
α∗←$A(1λ, 1k, 1d)
(msk,mpk)←$ABE.Setup(1λ, 1k, 1d)∧
(m0,m1)←$A(mpk)∧
b←$ {0, 1}∧
skf←$AKeyGenmsk(·)(mpk)∧
CT∗α←$ABE.Enc(mpk,mb, α

∗)∧
b′ ← AKeyGenmsk(·)(mpk,CT∗α)


= 1 .

The only restriction that we impose is that A does not query for keys correspond-
ing to {P : P (α∗) = 1}.

sFULL-SIM-LFEALFE(λ):
b←$ {0, 1}
(m∗,C , k, d)←$A(1λ)
crs←$ LFE.crsGen(1λ, 1k, 1d)
digestC←$ LFE.Compress(crs,C )
if b = 0:

CT∗←$ LFE.Enc(crs, digestC ,m
∗)

else
CT∗←$S(crs,C , digestC ,C (m∗))

b′←$A(crs,CT∗)
return b = b′

FULL-SIM-LFEALFE(λ):
b←$ {0, 1}
(k, d)←$A(1λ)
crs←$ LFE.crsGen(1λ, 1k, 1d)
(m∗,C )←$A(crs)
digestC←$ LFE.Compress(crs,C )
if b = 0:

CT∗←$ LFE.Enc(crs, digestC ,m
∗)

else
CT∗←$S(crs,C , digestC ,C (m∗))

b′←$A(CT∗)
return b = b′

Fig. 1. Left: the selective simulation security experiment sFULL-SIM-LFE defined for
a laconic function evaluation scheme LFE. Right: its adaptive version.
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2.4 Laconic Function Evaluation

Definition 4 (Laconic Function Evaluation [QWW18]). Let LFE denote
a laconic function evaluation scheme for a class of circuits Cλ. It consists of four
algorithms (crsGen, Compress, Enc, Dec):

– crs←$ LFE.crsGen(1k, 1d, 1λ): assuming the input size and the depth of the
circuit in the given class are k and d, a common reference string crs of
appropriate length is generated. We assume that crs is implicitly given to all
algorithms.

– digestC←$ LFE.Compress(crs,C ): the compression algorithm takes a descrip-
tion of the circuit C and produces a digest digestC .

– CT←$ LFE.Enc(crs, digestC ,m): takes as input the message m as well as the
digest of C and produces a ciphertext CT.

– LFE.Dec(crs,CT,C ): if the parameters are correctly generated, the decryption
procedure recovers C (m), given the ciphertext encrypting m and circuit C or
a special symbol ⊥, in case the decryption procedure fails.

We require the LFE scheme to achieve the following properties:

– Correctness - for all C : {0, 1}k → {0, 1}` of depth d and for all m ∈ {0, 1}k
we have:

Pr

y = C (m)

∣∣∣∣∣
crs←$ LFE.crsGen(1λ, 1k, 1d)∧
digestC←$ LFE.Compress(crs,C )∧
CT←$ LFE.Enc(crs, digestC ,m)∧
y ← LFE.Dec(crs,C ,CT)

 = 1 .

– Security: there exists a PPT simulator S such that for any stateful PPT
adversary A we have:

AdvFULL-SIM-LFE
A,LFE (λ) :=

∣∣∣∣Pr[FULL-SIM-LFEALFE(λ) = 1]− 1

2

∣∣∣∣
is negligible, where FULL-SIM-LFE is defined in Figure 1 (right side).
A relaxed version of the security experiment, denoted sFULL-SIM-LFE asks
the adversary to provide the challenge message and function in the beginning
of the security experiment.

– Laconic outputs: As per [QWW18, p13-14], we require the size of digest
to be laconic |digestC | ∈ O(poly(λ)) and we impose succinctness constraints
for the sizes of the ciphertext and public parameters.

Remark 1 (Comparison between the security definitions of FE and LFE.). The
security definition depicted in Figure 1 seem very close to the one of a func-
tional encryption scheme (see for example [GKP+13]), but one has to notice
a conceptual difference. A functional encryption scheme should be imagined as
involving three distinct entities: a trusted third party that generates parameters
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and issues functional keys, the encrytor, and the decryptor that has to operate
on correctly generated ciphertexts and functional keys. On the other hand, a
laconic function evaluation protocol has only two parties5, which imposes some
restrictions: Alice has to generate the digest corresponding to some f correctly6,
and the ciphertext Bob generates is expected to be correct.

3 LFEs for L/poly with Smaller Parameters

Motivation - Reducing Ciphertext’s Size. The existing laconic function
evaluation constructions that target general circuits have the size of the resulting
parameters dependent by the depth d of the circuits to be evaluated. A natural
question that remains is to optimize the prior result, by further reducing the
dimensions of digest and/or ciphertext. Considering circuits in L/poly, the answer
is positive, although such a transform is not straightforward.

Gorbunov and Vinayagamurthy observe in [GV15] that evaluating branch-
ing programs (Definition 2) of length L, and using custom-made evaluation
EvalPK and EvalCT algorithms induces a reduced noise level, up to the point that
q = Õ

(
poly

(
n7 · L2

))
, where q, n, χ are parameters of the Learning with Errors

problem. Put differently, the size of the modulus q has the following form:

7 · log(n) + 2 · log(L) + log (7 · log(n) + 2 · log(L)) + log(const)︸ ︷︷ ︸
smaller factor

Assuming that L ≤ 4d, where d is the depth of the circuit, and ignoring the
double-log part, we can approximate the size of q by:

|q| ≈7 · log(n) + 2 · log(L)
|q| ≈7 · log(n) + 4 · d

(1)

Clearly, when comparing the size of the LWE modulus in Equation (1) to
the one [QWW18] we observe its magnitude grows additively with the depth, as
opposed to multiplicatively. A second notable thing is the fact that evaluating
branching programs requires encrypting a small state. That is beneficial, as the
overhead an attribute-based laconic function evaluation scheme will add to the
FHE ciphertext7 is slightly small.

Remark 2. Even more impressive is the result of Yamada [Yam16], that shows
the construction of Gorbunov can evaluate unbounded length branching pro-
grams while maintaining a compact ciphertext under standard LWE (with poly-
nomial approximation factors).

Appendix B reviews the main scheme in [QWW18]. In what follows, we
describe an attribute-based laconic function evaluation (AB-LFE) scheme, whose
definition and security experiments are in Appendix B.1.
5 We ignore the parameter generation step.
6 This is equivalent with an honest key generation process in FE.
7 FHE is needed to support full circuits
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3.1 Attribute-Based LFE for L/poly

We start with a simple construction of an attribute-based laconic function eval-
uation, which follows immediately from the scheme in [GV15]. The main idea is
to release LWE encodings of attributes, as well as 5 matrices that are used in
the evaluation of the branching program8. The message is going to be blinded
separately. The scheme follows the intuition described in Section 1.

Definition 5 (Attribute-Based LFE for L/poly). Let Cd,k,` denote a class of
boolean circuits in L/poly, taking as input k bits, ` output bits and having depth d,
and let BPL denote the corresponding class of branching programs parametrized
by length at most L and width at most 5. Let LWE be the learning with errors
problem parametrized by dimension n = poly(λ), a modulus q = Õ(n7 · L2),
m = Ω(n · log(q)) and some noise distribution χ. Our attribute-based laconic
evaluation function AB-LFE consists of the following algorithms:

AB-LFE.crsGen(1λ, 1k, 1d):
For every input bit i ∈ [k], sample uniformly at random a matrix Ai over
Zn×mq :

Ai←$Zn×mq .

Furthermore, sample Ac ← Zn×mq , as well as 5 matrices to encode a state of
the branching program:

V0,i←$Zn×mq ,∀i ∈ [5].

Return crs←
(
Ac, {A1, . . . ,Ak}, {V0,1,V0,2,V0,3,V0,4,V0,5}

)
.

AB-LFE.Compress(crs,C ):
Let {BPj}j∈[`] denote the branching programs corresponding to the circuit
representation C of some f : {0, 1}k → {0, 1}`. Compute:

VBPj ← EvalPK
(
BPj ,A

c, {Ai}i∈[k], {V0,i}i∈[5]
)
,∀ j ∈ [`] ,

using EvalPK as defined in [GV15]. Set digestC ← {VBPj}j∈[`] and return it.

AB-LFE.Enc (crs, digestC , (α,m)):
Sample s←$Zmq , ei←$χm for each i ∈ [k] and compute:

~bi ← s> · (Ai − αi ·G) + e>i ,

where G is the Matrix Gadget [GMP19,GSW13].

Let the initial BP state vector be v0 ← (1, 0, 0, 0, 0). Let the noise terms
e0,i←χχ . For each i ∈ [5] sample the ciphertexts corresponding to the first
level of the branching program:

v0,i ← s> · (V0,i + vi ·G) + e0,i , where vi is the ith bit of v.
8 The factor 5 is due to the evaluation of the branching program.
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Compute the auxiliary ciphertext:

~bc ← s> · (Ac +G) + ec

Parse the digest as {VBPj}j∈[`] and encode m := (m1, . . . ,m`) as:

~bm,j ← s> ·
(
VBPj +G

)
+ em,j + bq/2e ·mj

AB-LFE.Dec(crs,BP, digestC ,CT) :
Compute

~rj ← EvalCT
(
BPj , {Ai}i∈[k],Ac, {V0,i}i∈[5], {~bi}i∈[k],~bc, {~v0,i}i∈[5]

)
. (2)

By the correctness of the underlying ABE scheme, Equation (2) is equivalent
with (if BPj(α) = 1)

s> ·
(
VBPj +G

)
+ eBPj . (3)

Subtract from ~bm,j the vector ~rj and obtain:

em,j − eBPj + bq/2e ·mj .

Remove the noise and recover mj.

Proposition 1 (Correctness). The construction in Definition 5 is correct.

Proof (Proposition 1). By the correctness of the underlying ABE scheme, the
correctness of our scheme follows trivially. We iterate over al j ∈ [`] the following
steps. First, we invoke the correctness of the EvalCT algorithm in [GV15], in order
to end up with ~rj in Equation (2):

Then, we are left with em,j − eBPj + bq/2e ·mj . The precondition is that the
noise generated by EvalCT – namely eBPj – is small. Therefore, we can subtract
r from bm,j and extract the noise. ut

Theorem 2 (Security for AB-LFE for Branching Programs). Under
the LWEn,q,χ assumption with polynomial approximation factors, the scheme in
Definition 5 is a selectively-secure attribute-based laconic function evaluation
scheme (Definition 8).

Proof. First, we describe the internal working of our simulator. Then we show
how the ciphertext can be simulated via a hybrid argument, by describing the
hybrid games and their code. Third, we prove the transition between each con-
secutive pair of hybrids.
Simulator. Our simulator SAB-LFE is given the digest digestC , the circuit C , the
value of C (α∗) (i.e. m∗), together with crs. Given that we are in an attribute-
based setting, the value C (α∗) can be either ⊥ – in which case the simulation is
trivial – or an actual value to be simulated (m∗). Henceforth, SAB-LFE proceeds
as follows: (1) samples all LWE encodings uniformly at random; (2) replaces the
component ~bm with a surrogate.

We use a hybrid argument, and show the transitions between hybrids below.
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Game0: this is the real LFE experiment adapted to the attribute-based setting.
Game1.0 is identical to Game0.

Game1.j: in this game, we change the distribution of each ~bm,j . To this end, we
rely on a smudging lemma introduced in [AJL+12], in order to add to each
~bm,j encrypting challenge m∗j , an extra noise component eBPj .

Game2: finally, we change all components that are used to encrypt the state
through a reduction to LWE.

Claim (Game1.0 → Game1.1). The distance between Game1.0 and Game1.1 is
statistically close to 0.

Proof. We change the distribution of ~bm,j from:

~bm,j ← s> ·
(
VBPj +G

)
+ em,j + bq/2e ·m∗j

to
~bm,j ← s> ·

(
VBPj +G

)
+ em,j − eBPj + bq/2e ·m∗j

This change is possible thanks to the smudging lemma (Lemma 1). ut

The previous argument is used to justify every transition, for j ∈ [`].

Claim (Game1.` → Game2). The distance between Game1.` and Game2 is bounded
by the advantage against LWEn,q,χ with polynomial approximation factors.

Proof. The LWE game provides us with either correctly generated LWE tuples (as
per Game1.`) or with uniformly sampled elements (Game2). The simulator uses
the given elements in order to simulate the following ciphertext components:(

{~bi}i∈[k], {~v0,i}i∈[5],~bc
)

Note that the simulation is always possible given some vector ~u (which is either a
proper LWE sample or random): the simulator can interpret the public matrices
constituting the crs, being of form Ai−αi ·G or Vi+vi ·G. Note that decryption
is possible due to the previous game hop and to the additional noise component.
This setting corresponds to a fully simulated ciphertext. ut

Finally, by applying the union bound, we can conclude that the AB-LFE is se-
lectively secure under LWE with polynomial approximation factors. ut

4 LFE for Branching Programs in L/poly

We introduce our LFE construction for L/poly built on top of the multi-bit
attribute-based LFE introduced previously. As per [QWW18,GKP+13], for sim-
plicity, we use of a two-outcome attribute based laconic function evaluation
scheme, which can be obtained generically from an AB-LFE. Its functionality
can be summarized as follows:

AB-LFE2.Dec(crs,C , digestC ,AB-LFE2.Enc(crs, digestC , (α,m0,m1)) = mC (α) .

11



That is, the decryption returns one out of two messages, as pointed out by the
output bit of C (m). We define the scheme below, and postpone its correctness
and security analysis to Appendix A.

Definition 6 (LFE for L/poly with Succinct Parameters). Let AB-LFE de-
note the attribute-based laconic function evaluation scheme for L/poly circuits
of depth d, presented in Section 3.1. Let FHE stand for a semantic secure fully
homomorphic encryption scheme and let GS denote a semantic secure garbling
scheme. Let the length of a message be denoted by k and the length of an FHE ci-
phertext encrypting k bits be t. Then LFE stands for a laconic function evaluation
scheme for L/poly having succinct ciphertexts.

– crs←$ LFE.crsGen(1λ, 1k, 1d): the crs is instantiated via AB-LFE2.Setup

crsAB-LFE←$AB-LFE2.Setup(1
λ, 1k, 1d) .

Set crs← crsAB-LFE and return it.

– digestC ← LFE.Compress(crs,C ): run AB-LFE2.Compress and return its out-
put9 as digestC :

digestC ← AB-LFE2.Compress(crsAB-LFE,FHE.Eval(C , ·)) .

– CT←$ LFE.Enc(crs, digestC ,m): the encryption algorithm first samples FHE
keys (hpk, hsk) and encrypts m:

CTFHE←$FHE.Enc(hpk,m) ,

such that |CTFHE| = t.
Consider Caux(·) that hardcodes hsk, takes as input an FHE ciphertext and
returns FHE.Dechsk(·). Garble Caux and obtain:

(Γ, {L0
i , L

1
i }ti=1)←$GS.Garble(Caux) .

Use AB-LFE2 to encrypt the ciphertext and each label Lbi , for all i ∈ [t] and
b ∈ {0, 1}:

CT← AB-LFE2.Enc(crsAB-LFE, digestC ,
(
CTFHE, {Li,0, Li,1}i∈[t]

)
)

The ciphertext CT is set to be the tuple (Γ,CTFHE,CT).

– LFE.Dec(crs,C , digestC ,CT): Recover the labels corresponding to FHE.Enc(hpk,BP(m)):

{Li}i∈[t] ←AB-LFE.Dec(crsAB-LFE, digestC ,BP,CT)

Return GS.Dec (Γ, {L1, . . . , Lt}).
9 Internally, C is represented as a sequence of branching programs.
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A Analysis of the Scheme in Section 4

Proposition 2 (Correctness). The laconic function evaluation scheme in Def-
inition 6 is correct.

Proof. The correctness follows immediately from the correctness of AB-LFE2

and GS. First, we get the labels Lxii , where xi ← FHE.Eval(C ,FHE.Enc(hpk,m)).
Then, via Yao’s garbling scheme we get C (m). ut

Simulation security follows through a hybrid argument.

Theorem 3 (Security). Let Ck,d denote a class of circuits and let LFE be
the laconic function evaluation scheme from Definition 6. Let GS and FHE de-
note a garbling, respectively fully homomorphic encryption schemes. Then LFE is
an adaptively secure laconic function evaluation scheme for L/poly under LWE
with polynomial approximation factors. Moreover, the advantage of any PPT
bounded adversary A against the adaptive simulation security of the LFE scheme
is bounded as follows:

AdvsFULL-SIM-LFE
LFE,A (λ) ≤ AdvFULL-SIM-GS

GS,R1
(λ)+AdvFULL-SIM-FHE

FHE,R2
(λ)+2·AdvsFULL-SIM-ABLFE

AB-LFE,R3
(λ) .

Proof. Simulator.We describe the execution of SLFE: first, it runs the simulator
corresponding to FHE ciphertext; second, it executes the simulator of the garbled
circuit SGS; finally, it runs the simulator of the underlying attribute-based LFE
scheme in order to obtain the bulk of the ciphertext.

The proof requires a hybrid argument. We present below the games and the
transitions between them:

14



Game0: corresponds to the FULL-SIM-LFE game where b is set to 0.

Game1: we change the bulk ciphertext to the one obtained by the SAB-LFE sim-
ulator, the distance to the previous game being bounded by the advantage
in Theorem 2.

Game2: in this game, we switch to the usage of the garbled scheme simulator
GS in order to compute the labels corresponding to the second part of the
ciphertext. The game hop is bounded by the simulation security of the gar-
bling scheme.

Game3: we change the underlying FHE ciphertext, relying on its semantic secu-
rity.

Claim (Transition between Game0 and Game1). The advantage of any PPT ad-
versary in distinguishing between Game0 and Game1 is bounded as follows:

AdvGame0→Game1
A1

(λ) ≤ 2 · AdvsFULL-SIM-ABLFE
AB-LFE,B1

(λ) .

Proof (Game0 → Game1). Our proof relies on the security of AB-LFE scheme in
order to switch elements of the first component of the ciphertext to simulated
ones. The reduction B1 gets some message m, together with a circuit C , from
the sFULL-SIM-LFE adversary A1. B1 also samples the FHE keys, constructs the
FHE ciphertext, and garbles the FHE decryption circuits. These quantities are
sent to the sFULL-SIM-ABLFE game.

The sFULL-SIM-LFE experiment generates crsLFE, the digest corresponding
to C . Then, depending on the value of bit b, the ciphertext is either correctly
generated (b = 0) or obtained from a simulator (b = 1).

The reduction forwards the ciphertext obtained, as well as CTFHE and the
garbled circuit Γ to A1. It thus correctly simulate an LFE ciphertext. If A1

wins the game with advantage ε, B1 wins the sFULL-SIM-ABLFE with a similar
advantage10. ut

Claim (Transition between Game1 and Game2). The advantage of any PPT ad-
versary in distinguishing between Game1 and Game2 is:

AdvGame1→Game2
A2

(λ) ≤ AdvFULL-SIM-GS
GS,B2

(λ) .

Proof (Game1 → Game2). The simulation security of the garbling scheme we
make use of guarantees the existence of a simulator SGS that produces a tuple
(Γ̃ , {L̃0

i , L̃
1
i }i∈[t]).

We define by B2 the reduction we build, and let A2 stand for the adversary
against the LFE game. As usual, B2 starts by sampling and publishing crsLFE,
while A2 provides (C ,m∗). B2 concocts the FHE ciphertext. This step is followed
by another one, where B2 plays the role of an adversary against the GS security
10 Up to a constant loss because of the usage of a two-outcome AB-LFE.
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experiment. B2 provides the GS game with the challenge tuple (Caux,C (m∗)),
and receives either some correctly generated garbled circuit and labels or a sim-
ulated garbled circuit and the simulated labels. Note that B2 can assemble the
AB-LFE ciphertext component.

Directly, if A2 distinguishes between the two settings, B2 distinguishes be-
tween the two distributions of labels in the GS game. ut

Claim (Transition between Game2 and Game3). The advantage of any PPT ad-
versary to distinguish between Game2 and Game3 is:

AdvGame2→Game3
A3

(λ) ≤ AdvFULL-SIM-FHE
FHE,B3

(λ) .

Proof (Game2 → Game3).
By the semantic security of the underlying FHE scheme, the distribution

of ciphertexts CTFHE encrypting m is indistinguishable from the distribution of
ciphertexts encrypting some constant 0. Therefore, any adversary noticing this
transition will distinguish between Game2 and Game3. ut

We also note that this setting simulates the sFULL-SIM-LFE experiment with
b = 1. ut

A.1 Laconic Parameters

As shown in the motivational part of Section 3, we enhance the size of the LWE
modulus:

|q| ≈ 7 log(n) + 4 · d
Furthermore, we can show that our scheme achieves laconic parameters as

well, in the sense that they depend on the depth of the supported circuit.

Digest: The digest of our LFE protocol is identical to the AB-LFE counterpart
in Definition 5. The latter consists of ` matrices, one corresponding to each
output bit. Those matrices are computed using the public evaluation algo-
rithm introduced in [GV15]. Therefore, |digestC | ∈ ` · poly(log(n) + log(d)).

Ciphertext: The ciphertext of our LFE scheme consists of three main compo-
nent. The garbled circuit Γ , the FHE ciphertext CTFHE, as well as the AB-LFE
ciphertext component. The first two components are trivial to analyse: by
notation the FHE ciphertext has length t, where t is a polynomial in the in-
put length k. The garbled circuit should perform the FHE decryption (which
belongs to NC1), and therefore, the garbled circuit has a succinct size.
Each of t AB-LFE ciphertexts have succinct size, consisting of a (k + `) ·
poly(log(n) + log(d)) number of elements of size |q|.

Common Reference String Finally, the common reference string consists of
k + 6 matrices. Those include the k matrices used to encrypt the input,
the 5 matrices representing a state of the branching program, as well as
an auxiliary matrix. Therefore, we can conclude that the size of crs depends
exclusively on depth d, rather than on the size of C : |crs| ∈ k . . . poly(log(n)+
log(d)).
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B Warm-Up: the LFE for General Circuits in [QWW18]

In this section, we provide a compressed overview of LFE scheme introduced
in [QWW18]. Our rationale for doing so are twofold: first, we are going to use
some intermediary results described in [QWW18]; second, we can zoom into its
internal working in order to have a good point of comparison with the protocol
put forth in Section 3. Regarding the protocol itself, four successive steps are
required, that we sketched below.

First, the authors show how to achieve an attribute-based laconic function
evaluation scheme supporting a specific conditional disclosure functionality11

starting from a specific LWE-based ABE construction [BGG+14].
Second, the previous construction is slightly changed to support circuits hav-

ing multi-bit outputs.
Third, the latter construction is made laconic: the key idea consists in using

a laconic oblivious transfer scheme [CDG+17], such that a laconic digest is gen-
erated. On Bob’s side, a circuit emulating the real LFE encryption procedure is
garbled, the labels being LOT-encrypted. The crux point is to garble the circuit
that has the crs and the message hardwired, while taking the LFE digest as input.

Finally, in the fourth step, an LFE for general circuits is obtained through
the means of a levelled FHE scheme. The techniques used in this part are closely
related to the ones presented in [GKP+13].

B.1 Attribute-Based Laconic Function Evaluation

The Basic Construction for AB-LFE. In [QWW18], the authors introduce
LFE supporting Conditional Disclosure Functionality :

Definition 7 (Conditional Disclosure Functionality). Let C : {0, 1}k →
{0, 1}` be a circuit representation of some function f . We define the Conditional
Disclosure Functionality as:

CDCC (x, (y1, . . . ,y`)) := (x, (y1, . . . ,y`)) where

yj =

{
yj if Cj(x) = 0 .

⊥ if Cj(x) = 1 .

(4)

and x ∈ {0, 1}k, yj ∈ {0, 1}w and Cj is the j-th output bit of C (M).

The formal definition of attribute-based laconic function follows.

Definition 8 (Attribute-Based LFE). An attribute-based laconic function
evaluation protocol AB-LFE for a class of circuits Cλ that represents a conditional
disclosure of secrets CDCC is similar to an LFE protocol for Cλ except for the
following changes:

– CT←$Enc(crs, digestC , (x,y)): the randomized procedure encrypts takes as
input the digest, but also the plaintext y and some attribute set x.

11 Described below.
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– Dec(crs,C , digestC ,CT): Evaluates C over the attributes x and if C (x) = 1,
outputs y.

The security definition is essentially similar to the one in Figure 1, up to the
change that the adversary issues (C , (x∗,y∗)) in the challenge phase.

sFULL-SIM-ABLFEAAB-LFE(λ):
b←$ {0, 1}
((k, d,x∗,y∗),C )←$A(1λ)
crs←$ LFE.crsGen(1λ, k, d)
digestC←$ LFE.Compress(crs,C )
if b = 0:

CT∗←$AB-LFE.Enc(crs, digestC , (x
∗,y∗))

else
CT∗←$S(crs,C , digestC ,y∗)

b′←$A(crs,CT∗)
return b = b′

FULL-SIM-ABLFEAAB-LFE(λ):
b←$ {0, 1}
(k, d)←$A(1λ)
crs←$ LFE.crsGen(1λ, 1k, 1d)
((x∗,y∗),C )←$A(crs)
digestC←$ LFE.Compress(crs,C )
if b = 0:

CT∗←$AB-LFE.Enc(crs, digestC , (x
∗,y∗))

else
CT∗←$S(crs,C , digestC ,y∗)

b′←$A(CT∗)
return b = b′

Fig. 2. The selective and adaptive experiments for the case of attribute-based LFE.
We stress the AB-LFE simulator receives the outcome of CDCC (α), that is y∗, and not
x.

We avoid describing QWW18’s one-bit of output attribute-base LFE con-
struction since it would be implicit in the multiple-output version. Their attribute-
based LFE construction from LWE outputting multiple bits is summarized below:

crsGen(1λ, 1k, 1d):
For every input bit i ∈ {1, 2, . . . , k}, a matrix Ai is sampled:

Ai←$Zn×mq .

The crs is assigned the following set matrices:

crs←
(
A1, . . . ,Ak

)
.

Compress(crs,C ):
Let C : {0, 1}k → {0, 1}`. Output:

digestC ← {ACj}j∈[`] = EvalPK(C , {Ai}i∈[k]) ,

where EvalPK is defined over multi-bit outputs.

Enc(crs, digestC , (m, (µ1, . . . , µ`))):
Pick ~s ∈ Znq , ~ei←$χm and for each i ∈ [k] compute:

~bi ← ~s> · (Ai −mi ·G) + ~e>i
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where G is the Gadget matrix. For each j ∈ [`] sample Tj←$ (G−1($))w ∈
Zn×wq and set Dj ← ACj · Tj . Then compute ∀j ∈ [`]:

βj ← ~s> ·Dj + ~ej
>
+ µj · bq/2e ∈ Z1×w

q ,

where ~ej←$ [−B;B]w. Output:

CT← ({~bi}i∈k, {βj}j∈[`],m) .

Dec(crs,C , digestC ,CT) :
Compute{

~bjj∈[`] ← EvalCT (C , {Ai}i∈[k], {~bi}i∈[k], {Tj}j∈[`],m)

}
.

Then, for all j ∈ [`] if Cj(m) = 1 we set µj ← ⊥. Otherwise, set µj ←
b(βj −~bj · Tj)/qe. Finally, return (µ1, . . . , µ`).

Compressing the Digest. In [QWW18], the authors propose a method to
compress the digest through the usage of laconic oblivious transfer. For the sake
of self-containess, we reproduce their transform:

Let LOT denote a laconic oblivious transfer scheme (e.g. [CDG+17]). Let
GS denote a garbling scheme, and let AB-LFE denote an attribute-based laconic
function evaluation scheme. One can construct an attribute-based AB-LFE′ =
(crsGen′,Compress′,Enc′,Dec′) with a compressed digest as follows as follows:

crsGen′(1λ, 1k, 1d):
Compute crsLOT←$ LOT.crsGen(1λ, 1k, 1d), crs←$AB-LFE.crsGen(1λ, 1k, 1d) and
set

crs′ ← (crsLOT, crs) .

Compress′(crs′,C ):
Compute digestC←$AB-LFE.Compress(crs,C ) and then

(digest′, D̂)←$ LOT.Compress(crsLOT, digestC )

Return digest′.

Enc′(crs′, digest′, (m, (µ1, . . . , µ`))):
Let E(·) be the circuit with crs,m, (µ1, . . . , µ`) and the random coins r
hardwired, taking as input digestC and outputting AB-LFE.Enc(crs, digestC ,
(m, (µ1, . . . , µ`))). The circuit is garbled using GS and (Γ, {L0

i , L
1
i }i∈[t]) is

obtained. Let
CTi←$ LOT.Enc(crsLOT, (i, L

0
i , L

1
i )i∈[t])

and return as ciphertext the folowing tuple:

CT′ ← (Γ, {CTi}i∈[t]) .
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Dec′(crs′,C ,CT′): Compute digestC ← AB-LFE.Compress(crs,C ) and then (digest′,
D̂) ← LOT.Compress(crsLOT, digestC ). Decrypt and recover the labels as

Li ← LOT.DecD̂(crs,CTi) ,

compute CT← Γ.Eval(Γ, {Li}i∈[k]) and output:

AB-LFE.Dec(crs,C ,CT) .

B.2 LFE for General Circuits via FHE

A transformation relying on FHE is put forward in [QWW18]. We note it follows
closely the one introduced in [GKP+13].

Let C denote a class of circuits of depth d taking k bits as input. Let FHE
denote a levelled fully homomorphic encryption scheme supporting circuits of
depth d′ = poly(λ, d). Let AB-LFE denote a laconic function evaluation scheme.
One can construct an LFE supporting circuits in C as follows:

crsGen(1λ, 1k, 1d):
Return crs←$AB-LFE(1λ, 1poly(λ,k,d), 1poly(λ,d)).

Compress(crs,C ):
Return digestC←$AB-LFE.Compress(crs,FHE.Eval(C , ·))

Enc(crs, digestC ,m):
Generate on the fly (hsk, hpk)←$FHE.Setup(1λ, 1d) and compute

m←$FHE.Enc(hpk,m) .

Then compute as follows:

(Γ, {L0
i , L

1
i }i∈[t])←$Γ.Garble(FHE.Dec(hsk, ·))

CTAB-LFE←$AB-LFE.Enc(crs, digestC , (m, {L0
i , L

1
i }i∈[t]))

CT← (Γ,CTAB-LFE)

Dec(crs,C ,CT):
Let {Li}i∈[t] ← AB-LFE.Dec(crs,FHE.Eval(C , ·),CTAB-LFE).
Return Γ.Eval(Γ, {Li}i∈[t]).

We state formally the result in [QWW18], which refers to the transformation
above.

Lemma 2 (Compiler AB-LFE to LFE for General Circuits [QWW18]).
Assuming the existence of secure garbling schemes and secure fully homomorphic
evaluation. Then, any attribute-based laconic function evaluation scheme can be
turned into a laconic function evaluation protocol.
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