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ABSTRACT
Automated learning systems allow educators to scale up
their efficacy, while personalized systems retain the ability
to customize to the individual student. A core issue in devel-
oping such adaptive learning systems is to understand how
different items (e.g., math exercises) relate to one another,
and to exploit this understanding to predict performance on
an item. Data-driven approaches aim to discover latent con-
cepts through embeddings that predict similarity between
items, typically using only performance data or item data,
but not both. While these embeddings are meant to uncover
latent concepts (e.g., associativity in mathematics or chem-
istry), they are better construed as representing topics that
reflect the similarity structure in performance or item fea-
tures. One major difficulty is that embedded concepts may
differ only in presentation and not in substance. For exam-
ple, when learning about numbers, young children struggle
with different representational formats (e.g., finger counts,
Hindu-Arabic numeral) despite the underlying concept be-
ing the same (e.g., “3”). By incorporating item informa-
tion that allows structured similarity comparison between an
item’s content and representational format, we can begin to
parse out what aspects lead to behavioral differences. Here
we develop a deep learning framework for learning concept
embeddings that integrates behavioral and item-features to
better factorize embeddings into content and presentation.
This allows us to fully represent the complexity of the items
space, while still extracting scientifically-useful results from
the analysis.
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1. INTRODUCTION
Personalized learning systems use student performance to
assess their current knowledge in order to present appropri-

ate questions; understanding item similarity helps in this in-
ference process [6]. When the goal is to predict performance,
this similarity measure should most likely correspond to the
abilities or skills the items are meant to test (e.g., whether
a student knows multiplication or not). Data-driven dis-
covery methods for similarity are needed for larger sets of
items [1]. There are many ways to measure similarity [6],
however all require that items be represented in the same
feature space. This means that one of the most important
decisions in computing similarity is the choice of input data,
because it determines the meaning of the discovered simi-
larity [7]. Having a rich input feature space which correctly
corresponds with the intended application maximizes dis-
covery of relevant relationships. For instance, if a user can
struggle with either an item’s content or presentation, then
features relevant for both are necessary to determine which
impacts performance.

Importantly, raw features can be projected into a latent or
embedded representational space. This is the common ap-
proach for topic modeling in text analysis [3], which finds la-
tent ‘topic’ representations for documents and words. Typ-
ically these embeddings are discovered using either perfor-
mance or item data, but not both. Using both types of data
appropriately is challenging because the method of discov-
ering the embeddings must respect the structural relation-
ship between item features and performance data, and the
structure in the item features themselves. To understand
the similarity in educational concepts, we want to represent
item similarity in terms of how the item features interact
with performance data. This is because educational con-
cepts refer to not just intrinsic aspects of the item, but the
way that different learners interact with and represent them.

An example that illustrates the difficulty of discovering such
embeddings in education is in number representations. Adults
can easily switch between various representational formats
of numbers (e.g., Hindu-Arabic numerals to mathematical
concepts, finger counts to roman numerals, etc) to make as-
sessments [8]. By contrast, young children struggle with
some representational formats, which can greatly impact
their ability to perform on an otherwise simple problem.
This is similar to creating representations that respect the
’style vs. content’ distinction [9], in that the latent represen-
tation must correspond to the structure that is hypothesized
in the data.
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The difficulties in estimating similarity are partly due to
the complexity of item features. We demonstrate this using
Mathemarmite (mathemarmite.lu), an educational game de-
signed to teach children numeracy. Mathemarmite requires
children to appropriately count using different representa-
tions (e.g., digits, fingers) (see figure 1). Each item re-
quires selecting the right number of each ingredient to mix
together, with the ingredient count represented in various
ways. Trials are structured hierarchically, as a single“recipe”
can include multiple representations at once with varying
count. In other words, each item can have multiple “sub-
items” that must be completed in any order for successful
item completion. This produces an added complexity where
any method we develop must deal with both variable num-
ber of features and permutation invariance [10]; the order of
the items completed is arbitrary.

Figure 1: A standard trial in the educational
game Mathemarmite. Children change the visuals
of the monster (on the right) by correctly follow-
ing recipes on the scroll. Ingredients from the shelf
can be placed in the cauldron, with correct number
of each ingredient shown on the recipe using vari-
ous numeric representations (here tick marks and a
die). Item features include the number of lines, line
representation, and number of ingredients per line.
Mathemarmite uses an adaptive difficulty system, to
keep users engaged at their skill level.

Here we develop a deep learning approach towards discover-
ing similarity in Mathemarmite. Our approach is similar to
partial least squares [2], in that we find a directed latent
space representation where item similarity is constrained
based on similar performance. It is also similar to work
by [11], who develop a dynamic key-value memory network
(DKVMN) which learns a concept embedding for items, and
models an evolving knowledge-state of a learner. A similar
memory-augmented neural network approach in educational
systems was used by [4]. These approaches use long short-
term memory (LSTM) networks to compress a user’s history,
along with attention-based mechanisms to compute similar-
ity among items. We limit ourselves to a non-dynamic sys-
tem, given the data size we are working with. Our approach
focuses on user-independent concept space (see figure 2), at-
tempting to find a similarity score across users.

Figure 2: Item features vj and vi are used to predict
performance on item j by embedding them in a sim-
ilarity space C. The similarity score cij is used along
with performance on problem i to predict problem
j. This constrains the similarity space to finding
scores that are similar in terms of their impact on
performance.

2. METHODS
2.1 Datasets
We present results using one simulated dataset and one col-
lected educational game dataset (i.e., Mathemarmite). The
Mathemarmite dataset is based on 4961 trials from 140 users
(after cleaning to remove users with less than 5 trials and
users who are not in the target demographic i.e., remove
adults). The simulated dataset is constructed to mimic the
structure of the Mathemarmite dataset, based on the as-
sumptions of the similarity network (e.g., figure 2). That
is, we generate 5 latent “concepts”, represented as 5 Gaus-
sian spheres in concept space (each 5d), and sample item
concepts from them. Items are then transformed to produce
observed features using simple random linear projection ma-
trices, and then these latent concepts determine performance
based on a cosine similarity between the concept latent space
and the item’s concept space score, where the latent spaces
are weighted based on user performance. If a user is good
at a concept, and there is high overlap between that con-
cept and the item’s latent score, then the user has a high
performance. We generate 5000 samples from this dataset
for 5 users each (25000 items) for training. We also compare
training performance on one user versus on all users, refer-
ring to them as “Multi user simulated data” and “Single user
simulated data”.

2.2 Targeted similarity network
2.2.1 Network Architecture

Here we develop a deep learning framework for learning
concept embeddings that integrates behavioral and item-
features (see figure 3). We construct a targeted similarity
network that learns an embedded representation for simi-
larity comparison, based on item performance. We attempt
to learn a similarity space for item features vi by learning
a predictive model p(ri|vi, vj , rj) = σ(cij × rj), that is we
want to predict the performance of problem i from problem
j and the similarity between the two (where σ is a sigmoid
function).

Categorical features are embedded into a linear space, using
a learned embedding matrix E1. We then employ a deep
set architecture to deal with permutation invariance in the
subproblems. Consider an item that involves a series of sub-
problems to be solved, each of which can be solved in any
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Figure 3: Top: Network feature embedding compo-
nent, where embedded features are then passed into
the main network. Features are processed through
these steps, separating line features to deal with per-
mutation invariance, and then concatenated with
side features. Bottom: Main network embedding,
where features are embedded into a similarity space
and similarity scores between all items are computed
for prediction.

order. We can then consider the problem P to be com-
posed of subproblems pk, and side features s. Therefore:
Pi = {p1, p2, . . . , pm, s}, where the indices k of the subprob-
lems may be swapped, and m is variable across problems
(i.e., the number of sub-problems can vary, such that Pi

might include only a single subproblem). Each subproblem
has an associated feature vector of length l. As mentioned
above, each subproblem has one categorical feature labeled
ak, we embed with the same matrix (note pk = [ak, zk] with
non-categorical zk features). To model the permutation in-
variance, we use sum-decomposition via latent space as in
[10], to produce a single vector per problem that represents
the combined influence of all subproblems.

Each problem also has a vector of side features, which in-
cludes a feature coding the number of subproblems. The
decomposed subproblems are then concatenated with the
side features to produce an overall item feature set, which
we label xi for problem i. We can describe this initial fea-
ture embedding process with the set of functions (see figure
3):

âk = ET
1 ak for each ak in Pi (1)

vi = σ(summ(ET
2 P̂i)) (2)

xi = [vi, si] (3)

where âk are the embedded categorical features for each sub-
problem and E2 is the linear weights for the sum-decomposition
(size l by e2 latent space). The sum is down the same di-
mension as the stacked feature vectors, such that vi is length
e2. Then we compute item similarity by projecting the em-
bedded feature matrix X to the similarity space S, and take
the cosine similarity of S with itself: Item performance is
them predicted off of the similarity score and other item’s
performance (represented -1 or 1 for incorrect, correct), and
passed through a sigmoid function. Items with high simi-
larity are then predicted to have similar performance, while
those with low similarity are not. Since our interest is in

Table 1: Final AUC Test Scores
Model Dataset AUC Score

Network Single-user sim ∼ 0.999
Network Multi-user sim 0.998
Network Mathemarmite 0.518

Subject average Mathemarmite 0.762
Item average Mathemarmite 0.541

the similarity space itself, we allow all items in a batch to
predict the performance of all other items, by adding their
prediction.

S = σ(WTX) (4)

C = sim(S) (5)

R̂ = CR (6)

Where R is a batch-size square matrix of the response vec-
tor copied down the rows. sim(S) computes the similarity
score of all items using positive cosine similarity, sim(s) =

relu(ŜŜT ) where Ŝ = S
||S|| . This allows C to take on the in-

terpretation of item by item similarity matrix where Cji (jth
row and ith column) being the i → j similarity for predic-
tion. The final prediction is then made by summing across
R̂ column space (ignoring the diagonal i → i similarity),

that is
∑

i R̂ji to produce a vector of predicted j responses
when passed through a final sigmoid output.

3. RESULTS
All network experiments are coded using Pytorch. Networks
are trained using Binary Cross Entropy loss. Hyperparam-
eter selection is done via cross-validated AUC scores on 100
runs, finding an embedded similarity space of 7 for Mathe-
marmite and 5 for both simulated datasets. We then train
these networks on 500 runs (epochs) with those parameters
using a 20% train-validation split (split trials selected at
random), showing both train and validation AUC scores in
figure 4.

We also compared against two baseline models: predicting
performance off of each subject’s average performance, and
predicting performance off of each items’s average perfor-
mance (leaving out the given trial in both cases). Final
AUC test scores are shown in table 1.

Note that AUC of 0.5 is by chance with 1 being perfect,
so the Mathemarmite dataset is just above chance perfor-
mance.

3.1 Visualization
The significant value of this network is in being able to con-
struct a similarity space to compare the items, and then
interpret the resulting space. To visualize the space, we use
t-SNE [5], which allows us to project the similarity weights of
items down to a 2D space for visualizing clusters. As shown
in figure 5, we are able to reconstruct our latent concept
space in the simulated dataset using the network (single-
user). Similar projection exists for multi-user dataset.
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Figure 4: AUC scores across training epochs. Black
line indicates chance performance, while dashed line
is baseline prediction in the Mathemarmite dataset
(average subject performance).

Figure 5: Recovered latent spaces in simulated data
(single user). Colors correspond to arbitrary latent
concept.

While we do not have ground truth for the Mathemarmite
dataset, we can still perform the same visualization. How-
ever, given our final performance score, we cannot directly
interpret the resulting space, and it is therefore not a mean-
ingful latent concept space.

4. CONCLUSION
In this paper we developed a novel network for learning a
similarity space for educational test data, and applied it to
simulated and real data. Given that the performance on the
simulated dataset is high, the network is able to reconstruct
the latent space of items appropriately, given the assump-
tions of the underlying data generative process. However,
the network does not perform well on the collected dataset.
Given that we can predict line performance using a stan-
dard logistic regression model (AUC at ∼ 0.65, where line
features predict line performance), item features are infor-
mative of line performance, and therefore item performance
(recall that items are made of multiple lines). A possible
issue with the Mathemarmite dataset is that we intermix
different users, with high variability across users. Given the
adaptive algorithm that underlies Mathemarmite, only play-
ers with higher performances will attempt otherwise harder
problems, making it more difficult to separate user and item
relations.

An important limitation of our current model is it does not
incorporate individual user differences in terms of the found
similarity space, therefore it cannot account for changes in
a user performance as well (i.e., due to learning); our net-
work cannot learn what it cannot represent. An alternative
is to incorporate user-level features, and structure the net-
work in a bilinear fashion, much like standard item response
theory. In other words, expert users likely have a different
concept space than novice users. Future work involves de-
veloping a network that instead allows multiple similarity
spaces across users. Such additional complexity should cap-
ture the underlying structure of the Mathemarmite dataset
and lead to insights on number representational space.
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