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Abstract
In this paper we develop a framework for solving inverse deformation problems using the FEniCS Project finite-element 
software. We validate our approach with experimental imaging data acquired from a soft silicone beam under gravity. In 
contrast with inverse iterative algorithms that require multiple solutions of a standard elasticity problem, the proposed method 
can compute the undeformed configuration by solving only one modified elasticity problem. This modified problem has a 
complexity comparable to the standard one. The framework is implemented within an open-source pipeline enabling the 
direct and inverse deformation simulation directly from imaging data. We use the high-level unified form language (UFL) 
of the FEniCS Project to express the finite-element model in variational form and to automatically derive the consistent 
Jacobian. Consequently, the design of the pipeline is flexible: for example, it allows the modification of the constitutive 
models by changing a single line of code. We include a complete working example showing the inverse deformation of a 
beam deformed by gravity as supplementary material.

Keywords Inverse deformation · Rest position · Undeformed configuration · SOFA · FEniCS Project

1 Introduction

1.1  Motivation

The organization of a standard biomechanical deformation 
analysis pipeline typically proceeds as follows. First, using 
imaging techniques such as Magnetic Resonance Imag-
ing (MRI) a segmented image of the region of interest is 
obtained. This segmented image is then meshed so that it 
can be used as input for a finite-element simulation. The 
mesh is considered as the initial, undeformed or reference 
configuration of an elastic body. Then, by applying external 
forces to this elastic body we can find its deformed (or cur-
rent) equilibrium configuration.

Conversely, an inverse deformation analysis allows us 
to find the undeformed configuration of a body knowing 
its deformed configuration. In the case of an object sub-
ject to gravity, the undeformed configuration can be seen 
as a theoretical gravity-free configuration. Consequently, 
determining the rest-position of an organ is of interest in 
many (bio)mechanical problems, as explained in Fig. 1. For 
example, in abdominal aortic aneurysms to compute the 
residual stresses [1, 2]or open-configuration [3] or in breast 
cancer as an intermedial configuration between the imaging 
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and surgical stance [4]. Besides, this approach can also be 
used in problems of industrial interest, such as tire or turbine 
blade design [5, 6].

1.2  Problem statement

The objective of inverse deformation analysis is to deter-
mine the undeformed configuration of an object such that 
it attains a known deformed configuration under the action 
of a known loading. It is important to note the distinction 

between inverse deformation analysis and common inverse 
problems. In a typical inverse problem, we might assume we 
know the applied forces, the initial and deformed configu-
ration, and the goal is to determine the model parameters 
that minimize some distance (metric) between initial and 
deformed configurations. In an inverse deformation analysis, 
we assume we know the applied forces, boundary condi-
tions, model parameters, and the deformed configuration. 
The objective is to determine the undeformed configuration 
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Fig. 1  Our pipeline starts with the acquisition of a medical image, in 
which the organ can be segmented. The organ is observed at equilib-
rium under the effect of external forces due to its environment (e.g., 
gravity). In the usual pipeline (1, in red), the segmented geometry 
is considered as the initial geometry. Then, the external forces are 
applied until equilibrium to obtain the intermediate geometry used 
for simulating the procedure. We propose an alternative approach (2, 

in green), where we constrain the intermediate geometry to be identi-
cal to the segmented geometry. It involves the computation of a new 
geometry (represented by the question mark symbol), which is the 
organ geometry such that it would deform to the segmented/imaged 
configuration if external forces were applied. Here, the final result 
takes into account the undeformed geometry of the organ
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that would lead to the deformed configuration if the external 
forces were to be applied.

1.3  Background

Several authors have tackled the problem of inverse defor-
mation analysis using a variety of strategies. To the best of 
our knowledge, Adkins [7] was the first to propose exchang-
ing the role of the deformed and undeformed configurations, 
i.e., to express the displacement of the body as a function 
of the deformed state. The study was limited to plane strain 
deformations and uniform extension. Schield [8] applied the 
same formalism to a homogeneous elastic material, with-
out body force. He showed the equivalence of the equilib-
rium equations if the initial and deformed configurations 
are interchanged as well as the volumetric strain energies. 
The results provided by this approach are shown to be com-
mensurate with those of Adkins [7] but are based on dual 
relations between the initial configuration and the deformed 
configuration. Carlson [9] used a variational principle to 
achieve the same as Schield [8] and showed the validity of 
the approach for different elastic materials. More recently, 
Carroll [10] mathematically analyzed the Schield transfor-
mation and the proven inverse deformation theorem. The 
theorem states that if a particular deformation is supported 
without body force for a specific strain energy W, then the 
inverse deformation is another energy W∗ , derived from the 
first: W∗(F) = det(F)W

(
F−1

)
 , where F is the deformation 

gradient.
Govindjee [11, 12] introduced the reparameterization of 

the weak form of the forward problem of finite elasticity as a 
solution method for the inverse problem. This approach only 
requires C0 continuity and has a direct physical connection to 
the problem. In addition, the procedure eliminates boundary 
condition difficulties, can be straightforwardly implemented 
using standard forward numerical methods, and can deal 
with both compressible or incompressible materials.

Inspired by Govindjee [12] (Eulerian model) and Yamada 
[13] (arbitrary Lagrangian–Eulerian (ALE)), Fachinotti [14] 
rewrote the constitutive equations in terms of Lagrangian 
variables. In contrast to Eulerian and ALE variables, the 
Lagrangian formulation requires only a few modifications 
from the direct to the inverse analysis code (i.e., the com-
putations of the finite-element residual vector and the Jaco-
bian matrix). The formulation is convenient and allows to 
solve inverse design problems such as finding the unloaded 
shape of a turbine blade under known loading. However, 
few drawbacks arise such as the difficulty of deriving and 
implementing the consistent Jacobian of the finite-element 
formulation. Despite the usefulness of the approach, to our 
knowledge, this type of analysis is still not available in any 
widely used commercial simulation software.

Iterative methods identify the undeformed configura-
tion based on several forward calculations. The algorithm 
is introduced by Sellier [15] with a fixed-point method for 
elastostatic problems and then generalizes as the backward 
displacement method by Bols [16] for patient-specific blood 
vessel simulations. The iterative algorithm of Sellier has 
been widely applied to many image-based biomechanical 
simulations, mainly thanks to its algorithmic simplicity and 
its ability to use a standard non-linear elasticity simulation 
software [4]. However, when applied to strongly non-linear 
problems resulting from material or geometric non-linearity, 
the algorithm lacks robustness. Furthermore, iterative meth-
ods usually require at least one non-linear elasticity prob-
lem solution, resulting in higher costs compared with the 
approach of Fachinotti [14].

In the computer graphics community, Chen [17] used 
asymptotic numerical methods (ANM) to compute the 
rest-shape of elastic objects with a neo-Hookean material 
model. The ANM considers a parametrized version of the 
static equilibrium: f (x,X) + �g = 0 , where g is gravity, � 
a loading parameter and f are the internal forces with the 
given deformed configuration x and the unknown rest-con-
figuration X. Then, the algorithm incrementally computes 
the asymptotic expansion of the curve in ( X, � ) space until 
� = 1 , which corresponds to the rest-position. In this study, 
ANM offers superior performance, robustness, and conver-
gence speed over traditional Newton-type methods for highly 
nonlinear material models. However, the major drawback of 
the method is the complexity of changing the model formu-
lation. Indeed, using a different material model implies to 
establish a different quadratic relationship between Cauchy 
stresses and the rest-position, then deriving the asymptotic 
local expansion. More recently, Ly [18] developed an inver-
sion algorithm applicable to geometrically non-linear thin 
shells, including the effects of contact and dry friction with 
an external body.

1.4  Contribution

In this paper, we propose to use the Lagrangian formulation 
of Fachinotti [14] coupled with automatic code generation 
tools provided by the FEniCS Project finite-element software 
[19] to compute the rest or undeformed configuration of an 
object knowing the deformed configuration, the external 
loads and the material properties. We show experimental 
validation that the methodology is effective at recovering the 
undeformed configuration from imaging data. The formula-
tion requires only a few minor modifications of the direct 
simulations, making it easy to implement. The automated 
differentiation tools from FEniCS Project provide a great 
deal of flexibility, for example, permitting users to quickly 
and easily modify the material model to suit their own 
problem.
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1.5  Outline

This paper is organized as follows; first, we explain the 
inverse deformation analysis methods as well as the near-
incompressible hyperelastic model used for the study. 
We test our formulation on some simple analytical cases 
described in [20, 21]. Then, we show in a numerical example 
how our variational formulation can surpass the iterative 
algorithm proposed by Sellier [15]. Finally, we demonstrate 
a relevant real-world application by retrieving the unde-
formed configuration of a Polydimethylsiloxone (PDMS) 
beam under the action of gravity from imaging data.

2  Inverse finite strain elasticity formulation

This section presents two methods to compute the unde-
formed configuration knowing the deformed configuration 
under known loading. We first introduce our methodology 
derived from Fachinotti [14], then we briefly outline a sim-
ple iterative geometric algorithm described in [15].

2.1  Inverse FEM method

2.1.1  Mathematical operators

In this paper, we define the colon operator ( : ) as the inner 
product between tensors (summed pairwise product of all 
elements). Let A and B be rank-2 tensors, the inner product 
is then defined as A ∶ B = tr(ATB) = AijBij using the Ein-
stein notation. In a same way, we define the dot product 
between vectors as u ⋅ v = uivi . Finally, ∇(∙) denotes the vec-
tor differential operator such that ∇v = �vj

�xi
.

Consider a deformable body B . We denote the unde-
formed configuration �0 . The location of a particle of B 
in �0 is denoted X . Conversely, the deformed configura-
tion is noted � , and the location of a particle of B in � is 
noted � . A one-to-one mapping � maps the position of a 
particle X in �0 to the position of the same particle x in 
� , i.e., x = �(X) . The configuration � can be obtained by 
�
(
�0

)
=
{
�(X) | X ∈ �0

}
.

The weak form of the static equilibrium of the inverse 
deformation is expressed in the deformed configuration:

where � is the Cauchy stress tensor and ∇(∙) the gradient in 
� with respect to the deformed spatial position of the test 
function � . � is the density of the material in the deformed 
configuration and b are the external forces in the deformed 
configuration. Finally, a traction boundary condition pre-
scribed on a part Γ of the boundary as � ⋅ n = t with n the 

(1)∫
�

� ∶ ∇� d� = ∫
�

�b ⋅ �d� + ∫Γ

t ⋅ � dΓ,

outward unit normal at the boundary. On the remaining part 
of the boundary, we assume that the value of the displace-
ment is given, i.e., a Dirichlet condition.

This approach has the advantage of being based on clas-
sical mechanical principles. However, mechanical quanti-
ties such as strains or stresses are defined depending on X . 
Whereas, in the inverse approach, the initial geometry is 
replaced by the deformed geometry x . We redefine the clas-
sical displacement u(X) = x − X = �(X) − X as

Note that trivially

This redefinition does not modify the classical finite-element 
pipeline: the unknown position is still the first term in which 
the known position is subtracted. In addition, as we compute 
gradients in the deformed configuration, this necessitates the 
redefinition of the deformation gradient as well:

Henceforth, when performing an inverse deformation analy-
sis, F and all derived quantities (strain measures, invariants, 
energy densities, stress measures etc.) are always computed 
using the above redefinition in terms of u′.

This new formulation requires us to only make one 
change compared to the classical direct finite-element pipe-
line; rewrite F in terms of u′ . This formulation can find the 
undeformed configuration of an object, knowing only the 
deformed configuration and the applied forces. The process 
is not iterative (we perform several Newton–Raphson itera-
tions but only one simulation) and based on the equation of 
continuum mechanics.

2.2  Nearly‑incompressible constitutive model

For many materials, simple elastic models such as the St. 
Venant Kirchhoff model are not sufficient to describe the 
observed behavior. More complex hyperelastic models pro-
vide a mechanism of modeling the stress–strain behavior of 
complex materials, such as elastomers or biological tissues. 
They can be assumed compressible, i.e., the volume may 
change during deformation or nearly incompressible or even 
completely incompressible, i.e., the volume is preserved dur-
ing deformation detF ∼ 1.

For a hyperelastic material, the strain energy density 
function describes the stored energy as a function of the iso-
choric deformation, i.e., shape deformations without volume 
change. However, using the standard displacement-based 

(2)u�(x) = X − x.

(3)u�◦� + u = 0.

(4)
F =

��(X)

�X
=
(
�X

�x

)−1

=

(
�u�(x)

�x
+ I

)−1

=
(
∇u� + I

)−1
.
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finite-element method to describe incompressible material 
behavior may cause numerical problems typically referred 
to as locking. Simply put, locking occurs when too many 
constraints are imposed on the discrete formulation and its 
overall approximation power is destroyed.

To overcome these difficulties, mixed formulations have 
been developed. In these formulations, the variational prin-
ciple is modified by writing the potential energy functional. 
The strain energy is expressed in terms of the deviatoric 
component only and the incompressibility constraint is 
explicitly enforced using a Lagrange multiplier with physical 
meaning akin to pressure (p). It turns out that the Lagrange 
multipliers can be expressed as a function of the hydrostatic 
pressure values f(p) [34]:

where J is the Jacobian defined as J = detF and C is the 
right Cauchy–Green deformation tensor. Among the hyper-
elastic materials, we chose to use neo-Hooke [33] and 
Mooney–Rivlin [31, 32] models, often used for modeling 
soft object deformations.

Neo-Hookean By calculating f(p), we can deduce the 
mixed displacement–pressure formulation of a nearly-
incompressible neo-Hookean material:

with

and

where � and � are material constants called the Lamé 
parameters.

Mooney–Rivlin By calculating f(p), we can deduce the 
mixed displacement–pressure formulation of a nearly-
incompressible Mooney–Rivlin material:

with C1 , C2 , D1 material constants, in addition of

(5)�(C, p) =�deviatoric(C) + f (p),

(6)
f (p) =�hydrostatic(J), with p = �hydro

=
1

3
tr(�) =

��hydrostatic(J)

�J
,

(7)�NH(C, p) =
�

2
(IB − 3) − � ln(J) + p ln(J) −

1

2�
p2,

(8)�deviatoric(C) =
�

2
(IB − 3) − � ln(J),

(9)�hydrostatic(J) =
�

2
ln(J)2,

(10)

�MR(C, p) = C1

(
IC − 3

)
+ C2

(
IIC − 3

)
+ p(J − 1) −

1

4D1

p2,

(11)�deviatoric(C) = C1

(
IC − 3

)
+ C2

(
IIC − 3

)
,

and

with the modified invariants IC = J
−

2

3 IC , IIC = J
−

4

3 IIC and 
classic invariants IC = tr(�) , IIC =

1

2

(
(tr(�))2 − tr

(
�2

))
 . 

These nearly-incompressible energy densities are used to 
generate the results from the FEniCS Project presented in 
this paper.

Finally, the strain energy density can be related to the 
second Piola–Kirchhoff S and then to the Cauchy stress ten-
sor by recalling the relation �J

�C
=

1

2
JC−1:

where f ′ denotes the differentiation of f(p) with respect to p.

2.3  Finite‑element solver

We use the FEniCS Project finite-element software [19] 
to discretise both the standard finite strain elasticity prob-
lem and the inverse finite strain elasticity problem that we 
will outline in the next section. We use a mixed displace-
ment–pressure finite-element formulation with second-order 
continuous Lagrangian finite elements for displacement � 
and first-order continuous Lagrangian finite elements for 
pressure p. This pairing is well-known to be inf-sup stable 
[36] and relatively robust with respect to numerical locking.

The variational form of the residual Eq. 1 is defined in 
the unified form language (UFL) [22] and symbolically dif-
ferentiated to derive an expression for consistent Jacobian. 
The FEniCS form compiler (FFC) [23] is used to automati-
cally generate low-level C++ code from the high-level UFL 
description that can calculate the Jacobian and residual 
cell tensors. The overall solution process is driven by the 
DOLFIN finite-element library [24]. We use a standard 
Newton–Raphson algorithm with continuation in the load-
ing parameter. The linear system within the Newton–Raph-
son algorithm is solved using the direct solver MUMPS via 
PETSc [25]. To be more precise, inside PETSc we use the 
direct sparse MUMPS solver as a preconditioner to a single 
iteration of a Krylov method, leading to convergence in one 
iteration. The relative tolerance of the solve is in the order 
of 1e−12 . The complete implementation of the standard or 
inverse problem is around 100 lines of Python code that 
closely follows the mathematical structure of the problem. 
We refer the reader to the supplementary material [26] for 
further details.

(12)�hydrostatic(J) = D1(J − 1)2,

(13)S =2
��

�C
= 2(f �(p)

�J

�C
+

�deviatoric

�C
),

(14)� =J−1FSFTJ = f �(p) + 2J−1F
�deviatoric

�C
FT ,
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2.4  Iterative geometric algorithm

Sellier [15] proposed an iterative geometric algorithm (IGA, 
not to be confused with isogeometric analysis). The algo-
rithm is simple to implement and only requires an exist-
ing (standard) forward deformation solver. The algorithm 
starts with an initial guess for the undeformed configuration 
(usually chosen, for lack of a better choice, the deformed 
one) and applies successive displacement fields to it until a 
convergence criterion is reached. The sequence of displace-
ment fields is obtained from the direct simulations of the 
current rest-configuration undergoing external forces. The 
shape of the object after the direct simulation provides an 
error compared to the exact rest-configuration by measuring 
the distance to the initial configuration. An updated estimate 
of the undeformed configuration is calculated by correcting 
the previous guess with the difference between the computed 
and deformed configuration. The algorithm stops when 
the error (computed using the l2-norm) is below a defined 
threshold � or a maximum number of iterations NBmax has 
been reached. The process is outlined in Algorithm 1.

(a) (b)

Fig. 2  Single tetrahedron test, plane view. The two bottom nodes are 
fixed ( u = (0, 0, 0)T for y = 0 ). In part I, a force f  is applied on the 
"free node" ( y = 1 ) generating a displacement u . Then a second force 
f ′ = f  (generating u′ ) is applied on the same node to retrieve the ini-
tial configuration. In part II, we reiterate the same procedure as part I 
except that we first apply f ′ and then f  on the "free node"

Algorithm 1: Iterative geometric algorithm from Sellier [15].
1 X0 ← Xini

2 run direct simulation 0 with X0 the initial configuration
3 u0 ← x0 −X0

4 err ← error between x0 and Xini

5 j ← 1
6 while err > ε and j < NBmax do
7 Xj ← X(j−1) − u(j−1)

8 run direct simulation j with X(j−1) the initial configuration
9 uj ← xj −Xj

10 err ← error between xj and Xini

11 j ← j + 1
12 end

3  Numerical results

The inverse deformation framework is very similar to the 
traditional direct framework. To assess the numerical preci-
sion of the inverse method, we first applied a serie of tests to 
verify the soundness of the direct and inverse approaches in 
which an analytical solution is known. We tested our formu-
lation on some simple analytical cases described in [20, 21], 
such as simple and generalized shears. Due to the triviality 
of the tests, they are detailed in the Appendix and can be 
found in the supplementary material [26].

3.1  Single unit tetrahedron

3.1.1  Part I

Let us consider a mesh with a single unit tetrahedron with a 
linear Lagrangian finite-element space. Its domain is denoted 
�T

0
 . The nodal coordinates are [0, 0, 0]T , [1, 0, 0]T , [0, 1, 0]T 

and [0, 0, 1]T . The nodes with y = 0 are fixed, leaving only 
one free node. A uniform force f  is applied along the y-axis. 
The tetrahedron is deformed so that the free node moves 
along the y-axis.
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In a first step, we compute the deformation � with the 
direct method. A displacement u is computed for the free 
node. The deformed domain is �T = �(�T

0
) . In a second 

step, the initial geometry is the deformed geometry �T , 
i.e., a unit tetrahedron with the nodes y = 0 fixed, and the 
remaining node displaced from u . The same uniform force 
f ′ = f  is applied. An inverse simulation is computed so 
that the displacement of the free node is u′ . This example is 
depicted in Fig. 2a.

3.1.2  Part II

We consider the same unit tetrahedron, with the same 
boundary conditions. A uniform force f ′ is applied along 
the y-axis.

In the first step, an inverse simulation is computed, lead-
ing to a displacement of u′ . In the second step, the resulting 
geometry is deformed with a direct simulation leading to a 
displacement of u . This part of the example is depicted in 
Fig. 2b.

The difference with the first part of the test is the order of 
the successive simulations. In part I, the inverse simulation 
is performed after the direct simulation. In part II, it is the 
opposite. In both parts of the test, the goal is to verify that 
the following relationship: u′ = −u.

Furthermore, the inverse simulation is computed 
with IGA to compare the results and performance with 
our method. In this test, the error measure is defined as: 
‖u′ + u‖l2 . We measured this error with different constitutive 
equations and varying their associated mechanical param-
eters. In total, we performed 153 tests and provided a statisti-
cal analysis in Table 1.

We observe that the accuracy of the iterative algorithm 
depends on the number of iterations, but it also increases the 
computational cost, because each iteration calls a direct sim-
ulation. Our method provides high accuracy while requiring 

only the solution of a problem with similar complexity to a 
single iteration of IGA. Beyond the numerical results, one 
point is that in 7 tests over the 153 of the part II, the iterative 
algorithm was not able to reach the accuracy of our method 
within 50 iterations.

3.2  Sagging block

In Appendix, we applied different displacements on a cube 
using simple and generalized shears. For the sagging block 
case, we use the same pipeline as mentioned in Sect. 3.1. 
Namely, we deform and object by applying a force and 
recover its initial shape by exercising the opposite force on 
the deformed object. The geometry is a three-dimensional 
unit cube of 1 m length, fixed at the bottom (Dirichlet condi-
tion u = (0, 0, 0)T when y = 0 ) with gravity as a body force 
applied to the entire object. For the material model, we 
used the incompressible Neo-Hookean defined in Eq. 7. We 
performed several Monte Carlo (MC) simulations which to 
study the error of the recovered initial shape using different 
material parameters. For the sake of simplicity, we assumed 
that � and � were both following an uniform distribution 
between an acceptable range of values:

We empirically chose those values as lower and upper 
limits, because we could observe large visible deforma-
tions within these bounds. We draw 100 samples of each 
parameters and make all possible combinations leading to 
1002 = 10,000 simulations. To study the error, we calculated 
the mean absolute error (MAE) between the initial shape 
and the initial shape predicted by our inverse deformation 

� ∼ U(2.0 × 103, 2.0 × 105),

� ∼ U(8.0 × 104, 8.0 × 106).

Table 1  Benchmark results on a 
single tetrahedron simulation

We compare our inverse FEM deformation algorithm (FEM), with the iterative geometric algorithm (IGA 
(1)) with the arbitrary convergence criterion 10−6 , and with the IGA at the same accuracy than PB (IGA 
(2)). We compute statistical indicators such as the average error, the standard deviation (SD) of the error, 
the minimum and maximum errors. In addition, we calculate the average number of simulations (avg #sim-
ulations), the average time needed to reach the convergence criterion (avg time) and the average time ratio 
(avg time ratio) obtained with avg time

FEM avg time

Part I Part II

FEM IGA (1) IGA (2) FEM IGA (1) IGA (2)

Average error 4.49E−12 2.12E−6 2.28E−12 5.22E−12 1.98E−6 2.28E−12
SD 1.07E−11 1.09E−6 6.69E−12 1.25E−11 1.05E−6 2.41E−12
Minimum 9.26E−22 5.44E−8 4.15E−35 1.04E−21 5.47E−8 6.76E−12
Maximum 5.52E−11 4.48E−6 5.11E−11 7.26E−11 3.99E−6 5.04E−11
Avg #simulations 1 4.70 11.2 1 4.84 13.4
Avg time (ms) 34 162 387 33 162 387
Avg time ratio 1 4.75 11.35 1 4.70 11.70
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algorithm. The MAE is defined as MAE =
∑N

i
∣e∣

N
 , where 

e = xprediction − xinitial and N the number of points of the cube.
The result of the MC simulations are shown in the 3D 

plot in Fig. 3. We observe a small error when the mate-
rial parameters are on the upper limit of our distribution, 
e.g., a MAE = 1.21 × 10−9 m for � = 175 × 103 Pa and 
� = 50 × 105 Pa. On the contrary, when moving to smaller 
values, e.g., � = 20 × 103 Pa and � = 30 × 105 Pa, the MAE 
is increasing to 1.21 × 10−5 m. This behavior is expected 
as choosing smaller values of � and � induce larger dis-
placements increasing the MAE. Hence, the obtained MAE 
are more than acceptable and choosing lower values of 
the material parameters will surely increase the MAE but 
also create convergence issues for such large deformations. 

Furthermore, we performed a mesh convergence analysis 
shown in Fig. 4 proving that refining the mesh leads to a 
smaller MAE.

4  Experimental results

In this section, we will demonstrate that our inverse simula-
tion method can match the outcome of a real experiment 
and, therefore, has value as a predictive modelling tool.

We fixed one extremity of a beam made from Polydi-
methylsiloxane (PDMS) to a vertical support and allowed 
it to deform under gravity, slowly accompanied to the equi-
librium position by hand and released in that position. The 
deformed steady state was reached in about 1 min (after 

Fig. 3  Sagging block Monte 
Carlo simulations using a 
uniform distribution of Neo-
Hookean material parameters. 
The mean absolute error (MAE) 
between the initial shape and 
the predicted shape of the 
inverse deformation algorithm 
is calculated for 10,000 simula-
tions

Fig. 4  Semilog plot of the mesh 
convergence analysis of the 
sagging block simulation. The 
mean absolute error (MAE) 
between the initial shape and 
the predicted shape of the 
inverse deformation algorithm 
is calculated for different mesh 
refinement with fixed param-
eters ( � = 80 × 104 Pa and 
� = 25 × 103)
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vibrations were completely damped) resulting in the con-
figuration displayed in Fig. 5. To conduct the experiment, 
the room environmental temperature was recorded to 19◦ C 
and the humidity at around 50% (the metrology lab is set to 
keep these temperatures and humidities). It is known that the 
mechanical properties of the PDMS material are very sen-
sitive to its curing temperature. On the contrary, the mate-
rial is very stable once it is fully cured and the mechanical 

properties are constant for a large range of temperatures 
centered around the 19◦ C used for testing. This is obviously 
not the case if the sample is heated up to temperatures in 
the range of 80–90◦ C, but these are not biological values 
and are out of the scope of the study. Note that the humidity 
effects are negligible, since the material is quite hydropho-
bic. To extract the mesh of the deformed configuration from 
the image, we used the software Blender1 and contoured 
the beam on 2D images by hand, as shown in Fig. 6. From 
Blender, we exported a quadrilateral surface mesh as an.obj 
file. Then, using the CGAL library, we generated tetrahe-
drons from the surface mesh. A custom code converted the 
tetrahedra data structure to a dolfin-compatible.xml file. This 
code is available as a submodule on our Github page [26]. 
This mesh will be called the "reference" and used as ground-
truth for this section.

To run the inverse deformation algorithm, we need three 
input parameters: the applied force field, the deformed con-
figuration, and the mechanical properties. In this section, 
the force field is gravity and the deformed configuration was 
obtained by manual processing. A separate experiment was 
performed to obtain the mechanical properties and will be 
detailed in the following section.

4.1  Materials

We used a PDMS (Sylgard 184, Ellsworth Adhesives) cylin-
der of density 965kg∕m3 of undeformed dimensions 182 mm 
and 8.5 mm for length and diameter, respectively.

For the sample preparation the elastomeric part and cur-
ing agent were mixed in a 10:1 ratio and cured at room tem-
perature for 24 h before being tested [27]. A surgical knife 
was used for cutting cylindrical shapes from the second cyl-
inder of PDMS, for compression tests samples (diameter 11 
mm, height 7 ± 1 mm).

To characterize the material properties, we used the 
Mach-1TM mechanical testing system (Biomomentum, Can-
ada) as a testing rig for the unconfined compression tests. 
We used the following protocol:

– A 1.5 mm single-axis load cell with a resolution of 75μN 
was used to measure the vertical force.

– The vertical displacement was measured by the moving 
stage of the rig with a resolution of 0.1μN.

– To minimize friction, paraffin oil was used between the 
sample and the compression platens.

– One loading cycle was executed on each specimen. To 
detect the response of the material at large strains, the 
samples were compressed at a constant speed of 0.083 
mm/s until a displacement corresponding to 30% of the 

Fig. 5  Experimental setup: initially a straight PDMS cylindrical beam 
of 182 mm length and 8.5 mm diameter, clamped on the left side and 
deformed by gravity

Fig. 6  Manual process in Blender to delineate the contours and 
extract the 3D mesh of the deformed configuration

1 https:// www. blend er. org/.

https://www.blender.org/
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measured height was achieved. Particular attention was 
used to monitor the samples that had uniformly expanded 
in the radial direction and that their upper and lower faces 
remained adhered to the moving platen and the fixed plat-
form for the entire duration of the test.

– The Abaqus evaluation routine was used to fit the true 
stress–true strain experimental curves with a Mooney–
Rivlin model. Abaqus employs a linear least-squares fit 
for the Mooney–Rivlin form to find the optimal model 
parameters.

In our case, the optimal parameters are: D1 = 7.965 × 10−8 
Pa, C10 = 101.709 kPa, C01 = 151.065 kPa. The value 
of D1 is close to 0 which validates our incompressibility 

hypothesis. The two obtained values of C10 and C01 are the 
optimal values to describe the behavior of the PDMS using 
a Mooney–Rivlin material formulation.

4.2  Direct simulation

We run three simulations with identical geometry, mate-
rial properties, boundary conditions, and material model 
to verify that these commonly used softwares produce 
quantitatively similar results. For each software, we used 
an incompressible Mooney–Rivlin model and boundary 
conditions imitating the setup shown in Fig. 5. Namely, 
a Dirichlet boundary condition of u = 0 on the left side 
of the beam (to imitate the clamping of the beam to the 
support) and the gravity is applied as a body force on the 
entire object.)

FEniCS We use the same model as described in Sect. 2.2.
Abaqus We use a static step with a gravity load to solve 

the beam deformation in Abaqus. Abaqus/Standard uses 
Newton’s method as a numerical technique for solving the 
nonlinear equilibrium equations. We employed C3D8RH 
elements, an 8-node linear brick, hybrid/mixed, constant 
pressure, reduced integration with hourglass control. Hybrid 
elements are usually used in Abaqus when the material defi-
nition is close to incompressibility to avoid locking. The 
reduced integration is used to speed up computational time 
and avoid numerical locking.

SOFA We employ the multiplicative Jacobian energy 
decomposition method (MJED) which is an optimized algo-
rithm for building the stiffness and tangent stiffness matrices 
of non-linear hyperelastic materials [28]. An MJED imple-
mentation is available in SOFA [29] for finite- element for-
mulation using linear tetrahedral elements. The linear system 
of equations is solved in every step of quasi-static simulation 

Fig. 7  Comparison of the deformation of the beam for the direct 
simulation of three different softwares. The three simulations have the 
same geometry, boundary conditions, material model, and mechani-
cal parameters corresponding to the experiment’s material (PDMS) 
found in Sect. 4.1. From top to down, in magenta: the experimental 
data, in blue: the SOFA simulation, in wire-frame green: the FEniCS 
simulation and in red: the Abaqus simulation

Fig. 8  Mesh convergence 
analysis of the forward simula-
tion. We calculate the maximum 
deformation of the tip of beam 
for several level of refinement 
of the mesh
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using a fast in-house linear equation solver based on the 
Cholesky [35] decomposition.

The visual result of the forward simulations using the 3 
softwares are shown in Fig. 7. For each model, we perform 
a mesh convergence analysis shown in Fig. 8, where we plot 
the maximum deformation of the beam (located at the tip) 
for different mesh resolutions.

We observe that the tip displacement for the three soft-
ware converges to similar solutions (FEniCS: 132.52 mm, 
Abaqus: 132.71 mm, SOFA: 130.31 mm), while the experi-
mental value is 127.68 mm. We observe a small difference 
between the numerical solutions and the experiment.

FEniCS and Abaqus give similar results, while SOFA is 
2 mm off, compared to the 2 others softwares. We observe 
in Fig. 8 that FEniCS and Abaqus converged with 60,000 
points, while SOFA is still not converged with 160,000 
points (due to computational resources limitations). One 
reason is that SOFA is usually designed for real-time sim-
ulation and only uses dynamic solvers which can lead to 
inaccuracy compared with static solvers from FEniCS and 
Abaqus. Furthermore, the differences between numerical 
solutions can be explained by the use of three slightly dif-
ferent formulations of the Mooney–Rivlin law as well as 
different solvers for solving the equation. Finally, one can 
note that the ABAQUS simulation converges very quickly. 
Possibly because ABAQUS is using a hexahedral cell shape 
with quadratic polynomial interpolation of the displacement 
field, against tetrahedron cells in FEniCS and SOFA. It is 
well known, at least in the Engineering community, that 
finite elements based on hexahedral cells often perform bet-
ter in practice.

Some factors can explain the difference between the 
numerical solutions and the experimental value. For 
instance, the variation may be explained by inadequate con-
stitutive equations or boundary conditions. Then, uncertain-
ties in the mechanical properties measures may also be a 
factor, especially because the PDMS might exhibit slightly 
asymmetric behaviour under compression and tension. 
Finally, we obtained the reference mesh of the undeformed 
configuration manually based on 2D imaging data, where 
inaccuracies can be introduced.

4.3  Inverse simulation

In the previous section, we compared the forward simula-
tions of three different software with our experimental solu-
tion. In this section, we want to verify the possibility of 
retrieving the undeformed configuration of our experimental 
solution knowing only the surface of the deformed configu-
ration, the known applied loads and the material properties.

For this, we converted our experimental surface mesh 
of the deformed configuration into a volumetric mesh and 
applied our inverse deformation algorithm implemented 

using FEniCS. We previously showed a deformation differ-
ence of 4.84 mm for the forward simulation in FEniCS. Of 
course, we do not expect to obtain a perfectly straight beam 
(the ideal undeformed configuration), but rather an error on 
the same order as in the forward simulation (i.e., 4.84 mm).

We show in Fig. 9 the result of the inverse deformation 
algorithm. As expected, the inverse simulation (in yellow) 
applied to the experimental data (deformed configuration in 
magenta) is slightly different from the theoretical straight 
beam that we should obtain (in black). To be more precise, 
we achieve an error of 5.36 mm compared with the ideal-
ized straight beam. As mentioned previously, we expect an 
error on the order of that for the standard deformation prob-
lem (4.84 mm) due to the inherent parametric and modeling 
uncertainties (material model, material properties, bound-
ary conditions, geometry) already discussed. We, therefore, 
judge that the proposed methodology has strong potential for 
prediction of the undeformed configuration of a soft body.

5  Conclusions

In the present paper, we performed two physical experiments 
and one numerical experiment to address the inverse defor-
mation problem. First an unconfined experiment to find the 
material properties, and then the cantilever beam problem 
to find the deformed configuration. The inverse deforma-
tion was a computational exercise to see if the undeformed 
configuration could be recovered.

Our study used the Lagrangian formulation of [14] as a 
basis for implementing the inverse algorithm in the FEniCS 
Project finite-element software. We took advantage of the 
automatic differentiation and code generation capabilities 
to bypass the difficulties of deriving and implementing the 

Fig. 9  3D plot of the inverse simulation. From down to top, in 
magenta: the experimental data we wish to retrieve the undeformed 
configuration, in wire-frame black: the theoretical straight beam, in 
yellow: the result of the FEniCS inverse simulation



 Engineering with Computers

1 3

consistent Jacobian. The user must then supply the deformed 
configuration, the mechanical properties, boundary condi-
tions and the applied forces. The user can easily modify 
the input mesh, run the code efficiently in parallel, change 
the constitutive model or change the boundary conditions 
according to their needs. We have made the code and data 
available in the supplementary material.

We applied the approach to simple academic examples, 
where we considered two different incompressible hyper-
elastic models (neo-Hookean and Mooney–Rivlin) and dif-
ferent boundary conditions. We demonstrated on a simple 
test case that our method is more efficient in terms of robust-
ness and accuracy than the IGA method of [15]. We have 
only compared with the classical IGA method of Sellier but 
other works like [30] have improved on this algorithm. How-
ever, we can say that unless an iterative approach requires 
only one forward model solution, in most circumstances the 
mechanics-based approach detailed here is likely to be faster 
and more robust.

Finally, we applied the method to an experiment with 
a PDMS beam deformed under gravity. We verified and 
quantified the performance of the direct simulations of three 
different widely used software (Abaqus, FEniCS, SOFA). 
Using the inverse deformation algorithm we achieve an error 
of 5.36 mm for the tip displacement compared to the ideal-
ised straight beam.

Despite our progress in providing a flexible inverse 
deformation algorithm, some work remains to assess its 
robustness. Our experiments were only focused on using 
homogeneous nearly incompressible hyperelastic models. 
Other works such as [14] were interested in more complex 
behaviors, such as anisotropy. Similarly, our experiments 
were only based on simple geometries and more complex 
geometries should be considered.

We showed the validity of our approach for the beam 
problem by generating a mesh of the deformed configura-
tion from 2D images and recovering the undeformed con-
figuration. In future work we intend to apply this algorithm 
to segmented 3D geometries to calculate the undeformed 
configuration of an organ.

Appendix

A.1 Verification of the direct simulation

The inverse deformation framework is very similar to the 
traditional direct framework. To assess the numerical preci-
sion of the inverse method, we first apply a series of tests 
to verify the soundness of the direct approach in which an 

analytic solution is known. The geometry for every example 
will remain the same with a unit cube discretized in 216 
points.

A.1.1 Shear deformation

Simple shear Simple shear deformation is a popular bench-
mark test [20]. The initial geometry is a unit cube with pre-
scribed Dirichlet boundary conditions u0 = (y ⋅ k, 0, 0)T with 
y the y-coordinate and k a constant, as illustrated in Fig. 10.

For simple shear deformation, the deformation gradient 
is equal to

Now, let us consider a cube made of a Mooney–Rivlin mate-
rial. Following [20], we can obtain the energy density and 
the components of the Cauchy stress tensor �

(15)F = ∇0u + I =

⎛
⎜
⎜
⎝

1 k 0

0 1 0

0 0 1

⎞
⎟
⎟
⎠
.

(16)� = k2(C1 + C2),

Fig. 10  2D plane cut of a simple shear deformation of a unit cube. An 
x-displacement of y ⋅ k is applied on the boundary, while the bottom 
is subject to a null Dirichlet boundary ( u0 = (0, 0, 0)T when y = 0)

Fig. 11  2D plane cut of a generalized shear deformation of a unit 
square. An x-displacement of y2 ⋅ k is applied to the boundary of 
the cube, while the bottom is subject to a null Dirichlet boundary 
( u0 = (0, 0, 0)T when y = 0)



Engineering with Computers 

1 3

The values of � and � have been evaluated in our frame-
work with several values of k, degrees of discretization, and 
constitutive parameters. The relative error (by using the l2
-norm) in strain energy and Cauchy stress tensor, compared 
to the analytical values, shows the exactness of the direct 
deformation framework to machine precision ( 10−12 mag-
nitude error).

Generalized shear The generalized shear deformation test 
is similar to the simple shear deformation [20]. The initial 
geometry is a unit cube with prescribed Dirichlet boundary 
conditions u0 = (y2 ⋅ k, 0, 0)T with y the y-coordinate and k 
a constant, as illustrated in Fig. 11.

For generalized shear deformation, the deformation gradi-
ent is equal to

In the same manner as in the simple shear deformation, we 
consider a cube made of a Mooney–Rivlin material and can 
apply the same methods to find the analytical strain energy 
density function � and the Cauchy stress tensor components 
�

(17)

�00 =
k2(2C2 + 4C1)

3
,

�11 = −
k2(4C2 + 2C1)

3
,

�22 =
k2(2C2 − 2C1)

3
,

�01 = k(2C2 + 2C1),

�02 = �12 = 0.

(18)F =

⎛
⎜
⎜
⎝

1 2ky 0

0 1 0

0 0 1

⎞
⎟
⎟
⎠
.

(19)

� = ∫
1

0

[C1(I1 − 3) + C2(II1 − 3)] dy

= ∫
1

0

4k2y2(C1 + C2) dy

=
4k2(C1 + C2)

3
,

(20)

�00 =
k2(8C2 + 16C1)

9
,

�11 = −
k2(16C2 + 8C1)

9
,

�22 =
k2(8C2 − 8C1)

9
,

�01 = k(2C2 + 2C1),

�02 = �12 = 0.

We realize the same tests as the simple shear (different k val-
ues, mesh precision, and mechanical parameters) and evalu-
ate the identical quantities, � and � values. We observed 
an impact of the mesh on the strain energy and the Cauchy 
stress. The error quickly decreases on mesh refinement to 
reach relative errors under 2%.

A.2 Verification of the inverse simulation

This section presents a series of tests to verify the consist-
ency of our inverse method with the direct approach. More 
precisely, we show that the undeformed configuration corre-
sponds to the initial configuration used to deform it. During 
these tests, we also compare our method to the IGA method 
presented in Sect. 2.4 and evaluate their performance and 
convergence rates.

A.2.1 Inverse shear deformation

This test is based on the direct shear deformation verification 
performed in Sect. 1. We verify that the inverse deformation 
of the simple shear and the generalized shear is consistent 
with the direct finite-element analysis. The idea is to start the 
test with the deformed configuration and apply the inverse 
deformation to verify that the rest-configuration corresponds 
to the initial geometry of the direct deformation. Since both 
shear deformations are entirely determined by a displace-
ment field, the inverse deformation consists of applying the 
opposite displacement field. It is then trivial to claim that 
the geometry will be recovered, i.e., a unit cube. However, 
this test also verifies the deformation gradient, the strain 
energy, and stress tensors are sound. As explained previ-
ously, those measures should be equal in both inverse and 
direct deformation. We verify these statements numerically 
in these tests.

Fig. 12  2D plane cut of an inverse simple shear deformation of a unit 
cube. An x-displacement of −y ⋅ k is applied on the boundary, while 
the bottom is subject to a null Dirichlet boundary ( u0 = (0, 0, 0)T 
when y = 0)
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Inverse simple shear: For the inverse simple shear defor-
mation, the material points are now shifted by −k ⋅ y on the 
x-axis, while the bottom is fixed ( y = 0 ). As illustrated in 
Fig. 12.

We calculate the deformation gradient F which is equal 
to the deformation gradient in Eq. 15, as expected:

Therefore, the strain energy, which is usually defined 
depending on F , is equal to the strain energy in Eq. 16, and 
the stress tensor of Eq. 17 remains valid. Since the defor-
mation is homogeneous (constant deformation gradient), 
our quadratic finite-element method is able to reproduce the 
analytical solution down to machine precision.

Inverse generalized shear: Similarly, the inverse ver-
sion of the generalized shear deformation leads to the same 
deformation gradient tensor (Eq. 18), then to the same strain 
energy density function (Eq. 19). The relative error is evalu-
ated with different discretizations of the initial mesh but the 
same parameters set and we obtain with high precision the 
initial geometry.
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