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Abstract. We first investigate Congruence Theorems for convex polygons
involving only sidelengths and angle measures (the sides and angles that we
know have a fixed relative position, as it is customary for triangles). Moreover,
we prove that a convex n-gon is determined up to congruence in the following
cases: for n > 4, if we know n sides and all but 2n − 7 diagonals; for n > 7,
if we know all but n − 5 diagonals; for n > 5, if we know all but n − 3 sides
or diagonals. Notice that the results are optimal, as they would not hold for n
smaller than the given bound, or by increasing the number of exceptions.

Math. Classification: 51M04, 97G40

1. Introduction

Two subsets of the Euclidean plane are said to be congruent if one is the image of
the other via an isometry. The general aim of Congruence Theorems is specifying
enough information on such a set as to be able to determine it up to congruence.
Congruence Theorems for triangles are an important topic in geometry and in
school mathematics, however not much is known for polygons.

We prove Congruence Theorems for convex n-gons, where n can be arbitrarily
large: the information are the length of various sides and diagonals, and the
measure of various angles (by which we mean interior angles). All interior angles
of a convex n-gon are assumed to be strictly smaller than 180◦. Following the
usual convention, when we say for example that we know one side length in the
triangle ABC, then we mean that there is a specific side, e.g. AB, of which we
know the length.

Congruence Theorems for triangles are well-known since Euclid [7]. Congru-
ence Theorems for convex quadrilaterals have been studied following the classical
approach for triangles (see [5], where it is shown for example that at least 5 con-
ditions are necessary) and also with a modern point of view (see [3], where the
slightly weaker notion of congruent-like is considered). We refer the reader to
[4] for an axiomatic introduction (didactically interesting) to the general topic of
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congruence for polygons.
Some interesting work has recently been made concerning how many measure-
ments are needed for generic Congruence Theorems for polygons (see [1], despite
the focus of the article is on general polyhedra). In particular, for some excep-
tional polygons, the amount of measurements needed is larger than expected.
The novelty of the results that we present in this article consists in being as
precise as possible on how many sides or diagonals or angles measurements are
needed, so not only counting the total amount of measurements.

We prove the following general result for convex quadrilaterals:

Theorem 1. For a convex quadrilateral, suppose to know the length of x sides,
the measure of y angles, and the length of z diagonals. Those triples (x, y, z) for
which the convex quadrilateral is determined up to congruence are:

(4,> 0,> 1) (4,> 1,> 0) (3,> 2, 0) (3,> 0, 2) (2,> 3, 2) .

For convex polygons, part of the following result may be found in [6].

Theorem 2. For n > 3, a convex n-gon is determined up to congruence if we
know at least one of the following:

(1) the length of n sides and the measure of n− 3 angles;
(2) the length of n− 1 sides and the measure of n− 1 angles;
(3) the length of n − 1 sides and the measure of n − 2 angles, such that the

two unknown angles are both at the unknown side;
(4) the length of n − 2 sides and the measure of n − 1 angles, such that the

two unknown sides are consecutive.

The assumptions in the above statement are optimal in the following sense:

Theorem 3. For n > 4, a convex n-gon is not necessarily determined up to
congruence if we know exactly one of the following:

(1) the length of n − 1 sides and the measure of n − 2 angles, provided that
the two unknown angles are not both at the unknown side;

(2) the length of n − 2 sides and the measure of n − 1 angles, provided that
the two unknown sides are not consecutive;

(3) the length of n − t sides and the measure of n − 4 + t angles for some
t ∈ {0, 1, 2, 3}.

Most notably, we prove three general Congruence Theorems involving sides and
diagonals:

Theorem 4 (Perucca). For n > 4, a convex n-gon is determined up to congru-
ence if we know the length of all sides and of all but 2n− 7 diagonals.
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Theorem 5 (Perucca). For n > 7, a convex n-gon is determined up to congru-
ence if we know the length of all diagonals with at most n− 5 exceptions.

Theorem 6 (Perucca). For n > 5, a convex n-gon is determined up to congru-
ence if we know the length of all sides and diagonals with at most n−3 exceptions.

Notice that the number of exceptions in the above statements is optimal, and
the results would not hold for n smaller than the given bound. Moreover, notice
that for n = 4, 5, 6 knowing all diagonals is not sufficient to determine a convex
n-gon up to congruence by Theorem 1, Example 8 and Example 9 respectively.

We conclude by giving some directions of future research on the topic of Con-
gruence Theorems. As an exercise, the reader could make precise the relative
position of the known objects in Theorem 1 (as done e.g. in Theorem 2 (3)), or
generalize that result to convex pentagons. In general, one can try to determine
the triples x, y, z such that a convex n-gon is determined up to congruence if we
know x sides, y angles, and z diagonals. One could also consider for example
the length of medians, or the angle between two diagonals. Notice that we did
not address Similarity Theorems, but these would also be interesting. Finally,
one could remove the assumption of convexity, or even investigate further shapes
beyond polygons, possibly working in a higher-dimensional Euclidean space (very
few results are known in this general higher dimensional setting, see [1]).

Part of the above-mentioned problems (for convex quadrilaterals or pentagons)
can be assigned as open-ended exercises for a Math Circle, while the investiga-
tion of more general results is an accessible research project for undergraduates.
Moreover, the known results can be a source of school exercises and of problems
for mathematical competitions. Last but not least, school pupils can understand
the statements and the research questions presented in this article, and with them
they can gain a new perspective on the Congruence Theorems for triangles that
they are most likely to learn in school.

Acknowlegdements. We are indebted to Louis-Hadrien Robert for his coun-
terexample (see Example 9) which solved the tricky question whether a convex
hexagon is determined up to congruence if the length of all its diagonals are
known. We also sincerely thank Serena Dipierro, Enrico Valdinoci, Hugo Parlier,
Lassina Dembélé, Carolina Oliveira Costa, Jean-Marc Schlenker, Bryan Advo-
caat, Flavio Perissinotto for inspiring discussions and feedback.

2. Convex quadrilaterals, pentagons, and hexagons

We say that a convex n-gon with some given properties has a minimal deformation
if for every real number ε > 0 there is a convex n-gon with the same properties
which is not congruent to it and which is obtained by moving each vertex at a
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distance at most ε. Provided that ε is sufficiently small, moving the vertices at
a distance at most ε gives again in a convex n-gon (no three vertices become
aligned and the angles are still less than π).

Lemma 7. A convex quadrilateral of whom we know the length of all sides (re-
spectively, the length of one side and the measure of all angles) has a minimal
deformation.

Proof. Let ABCD be the vertices of the quadrilateral in cyclic order. Suppose
first that we know all sides. We slightly rotate BC around B: if the rotation
is sufficiently small, then we may get back the original length of CD by slightly
rotating DA around A. In this way we do not change the length of the sides but,
provided that the rotations are small, we alter the measure of the angles at A and
B. For the second assertion we slightly move C and D on the lines containing
BC and DA without changing the direction of CD: we preserve all angles and
AB but we alter BC and DA. �

Example 8. We construct a minimal deformation for the regular hexagon pre-
serving the length of all diagonals but one. By removing one vertex, this also
gives a minimal deformation for some convex pentagon preserving the length of
all diagonals.

V1

V2

V3

V4

V5

V6

Call the vertices V1 to V6 in cyclic order, and fix V1, V3, V5 (preserving V1V3, V1V5,
V3V5). We slightly rotate V2 around V5, V4 around V1, V6 around V3 (preserving
V1V4, V2V5, V3V6). We obtain again a convex hexagon, and we conclude by
showing that we may also preserve V2V6, V4V6. Rotating slightly V2 towards V1
has the effect of decreasing the length of V2V6. By rotating V6 slightly towards V5
we can make sure that V2V6 is preserved. Finally, by rotating V4 towards V3 we
can make sure that V4V6 is preserved (we can do this if V6 stays in a sufficiently
small circle around its original position, and this holds provided that the rotation
of V2 was sufficiently small).
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The proof of Theorem 1. Recall that having y = 3 is equivalent to having y = 4.

We exclude (4, 0, 0) by considering all rhombi with a given side length. We
exclude (1, 4, 2) by considering an isosceles trapezoid and taking a parallel shift
of the small basis (provided that the diagonals are almost perpendicular to the
oblique sides at the vertices of the small basis). We exclude (2, 4, 1) by considering
a parallelogram of which we know the two longer sides and the short diagonal,
and by taking a parallel shift of one of these sides (if the short diagonal and
the oblique side are almost perpendicular). We exclude (2, 2, 2) by constructing
two quadrilaterals ABCD and ABC ′D as follows: consider a half-circle with
diameter AB and two non-congruent inscribed right triangles ABC and ABC ′;
the perpendicular bisector of CC ′ passes through the middlepoint of AB, and
we select a point D on it outside the semicircle. We exclude (3, 2, 1) by cutting
the given quadrilateral with the known diagonal, and working with the triangle
of which we only know two sides: if the two known angles are opposite to the
known diagonal, then we can exploit a counterexample to the SSA Congruence
Theorem for triangles.

To determine the convex quadrilateral up to congruence, it suffices to determine
the position of all vertices and hence it suffices to know three sides and the
two angles between them. This is clear for (3, 4, 0), while for (3, 0, 2) it can be
seen by applying the SSS Congruence Theorem to both triangles made by two
known sides. To prove that (4, 0, 1) is suitable we apply the SSS Congruence
Theorem to both triangles made by the known diagonal and two sides. Then, to
prove that (4, 1, 0) is suitable, it suffices to know a diagonal: we apply the SAS
Congruence Theorem to the triangle made by the two sides at the known angle.
Finally, we prove that (2, 4, 2) is suitable: this is immediate if the known sides
are consecutive, else apply the SsA Congruence Theorem to the triangle made
by a diagonal and two sides such that the angle opposite to the diagonal is not
acute. �

3. Congruence Theorems involving sides and angles

Convex n-gons are determined by their n vertices, each of which has two Carte-
sian coordinates. They live in a space with 2n degrees of freedom, as by slightly
moving some vertices of a convex n-gon one gets again a convex n-gon. Congru-
ence is preserved by the isometries, which are the composition of translations,
rotations at the origin, and the line symmetry at the x-axis. Allowing for one line
symmetry does not decrease the number of degrees of freedom (it is a discrete
transformation, and it cannot be constructed by a continuous process). Transla-
tions are determined by the image of the origin and rotations around the origin
are characterised by one angles. Thus convex n-gons up to congruence live in
a space with 2n − 3 degrees of freedom. Consequently, no congruence n-gon is
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determined up to congruence if we know less than 2n− 3 measurements (lengths
or angle measures) and, prescribing more than 2n − 3 such measurements, the
n-gon is over determined (most likely, it won’t exist).

The proof of Theorem 2. Recall that knowing n−1 angles is equivalent to know-
ing n angles. Moreover, by the Congruence Theorems for triangles we may sup-
pose n > 4. Under assumption (2) or (3), the polygonal line obtained by removing
the unknown side is determined up to congruence hence so is the given n-gon.
Now consider assumption (4), and let AB, BC be the unknown sides. The (n−1)-
gon obtained by removing B is determined up to congruence by assumption (3),
and we conclude by the ASA Congruence Theorem at ABC. Finally consider
assumption (1) and let ABC be the vertices at which we do not know the angles.
The polygonal line consisting of the sides between A and B (respectively, B and
C or C and A) is determined up to congruence. In particular we know AB, BC,
CA. We conclude because by the SSS Congruence Theorem at ABC (thanks to
the convexity of the n-gon) the three polygonal lines fit in a prescribed way. �

The proof of Theorem 3 (1),(2). Consider (1), and let AB be the unknown side.
If the unknown angles are at two further vertices X, Y , then we can slightly
decrease their two angles, keeping invariant all known sides and all angles at the
vertices different from A,B,X, Y , and also preserve the direction of AB (hence
the angles at A and B are preserved). If the unknown angles are at A and at
some vertex C 6= A,B, then ABC is not determined up to congruence (the known
angle is not between the two known sides). Then we may replace BC and CA by
polygonal lines (for example those given by consecutive sides of a regular m-gon
with m large enough to ensure convexity) on the outside of ABC and construct
two non-congruent n-gons as requested. Now consider (2): for n = 4 consider two
non-congruent rectangles with the same basis and for n > 5 replace the known
sides of these rectangles by polygonal lines with the appropriate number of sides
(we may choose the number of sides separating the two unknown ones). �

The proof of Theorem 3 (3). For t = 0, the vertices at the unknown angles form
a convex quadrilateral where only the sides are known, and this has a minimal
deformation by Lemma 7: moving accordingly the polygonal curves between two
unknown angles, we obtain a minimal deformation of the n-gon.

For t = 1, let AB be the unknown side. If the unknown angles are at A,B,X,
then we can slightly decrease the angle at X and ensure that the polygonal line
consisting of the sides between B and X (respectively, X and A) gets mapped to
a congruent one. If the unknown angles are at A,X, Y (with A,B,X, Y distinct
and in cyclic order), then it suffices to find a minimal deformation of ABXY
preserving all sides except AB and the angle at B: it exists because we can fix
B and X and slightly rotate Y around X and move A on the line AB. If the
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unknown angles are at X, Y, Z (with A,B,X, Y, Z distinct and in cyclic order),
then it suffices to find a minimal deformation of ABXY Z preserving all sides
except AB and the angles at A, B: we can slightly increase AB preserving the
angles at A, B and AZ, BX, and also slightly increase the angle at Y so that
also XY , Y Z are preserved.

For t = 2, by Theorem 3(2) we may suppose that the unknown sides are consec-
utive, so call them AB and BC. If the two unknown angles are among A, B, C,
then ABC is not determined up to congruence and we conclude. If the unknown
angles are at A, X, with X 6= A,B,C, then it suffices to find a minimal defor-
mation for ABCX preserving CX, XA and the angles at B, C. Suppose that
ABCX is a rectangle: fix the angle at C and CX, and slightly rotate XA; by
adjusting the length of AB, BC we also preserve the angle at B. If the unknown
angles are at B, X, with X 6= A,B,C, then the (n−1)-gon obtained by removing
B has a minimal deformation where only the angles at X, A, C and AC change,
thus by rescaling ABC we construct a minimal deformation for the n-gon. Finally
suppose that the unknown angles are at X, Y , with A,B,C,X, Y distinct and
in cyclic order. It suffices to find a minimal deformation for ABCXY preserving
the angles at A, B, C and CX, XY , Y A: we fix XY and slightly rotate CX and
Y A such that the sum of the angles at X and Y is invariant, and we preserve the
angles at A, C (and at B, because the sum of all angles is invariant).

For t = 3, if the three unknown sides are consecutive, then it suffices to apply
Lemma 7 to construct a minimal deformation. If the unknown sides are AB,
BC, XY (with A,B,C,X, Y distinct and in cyclic order), suppose that AC, XY
are parallel: we can slightly decrease the length of AC, XY preserving CX, Y A,
and all angles of ACXY ; we then replace ABC by a smaller similar triangle
to complete the construction of a minimal deformation. If the unknown sides
are AB, CD, EF , where A,B,C,D,E, F are in cyclic order and form a regular
hexagon, then we can find a minimal deformation of BCDE such that we are
only altering CD, BE, and by Lemma 7 we can find a minimal deformation of
ABEF such that we are only altering AB, BE, EF . Provided that BE is altered
in the same way, we get a minimal deformation for the n-gon. �

4. The Congruence Theorem knowing all sides and some diagonals

We prove Theorem 4, where by Theorem 1 we may suppose n > 5. Since a convex

n-gon has n(n − 3)/2 diagonals, by assumption we know n(n−7)
2

+ 7 diagonals.
Notice that this number of diagonals is optimal (for n = 4 see Theorem 1, while
for n > 5 the known diagonals could be all in the (n−2)-gon obtained by removing
two consecutive vertices hence we could move these by Lemma 7).
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We may suppose that no n − 3 known diagonals start from a same vertex, else
these partition the convex n-gon into triangles to whom we can apply the SSS
Congruence Theorem. Moreover, it suffices to determine the (n−1)-gon obtained
by removing one vertex V (apply the SSS Congruence Theorem at the triangle
made by the two sides at V ).

For n = 5, calling ABCDE the vertices in cyclic order, the known diagonals are
w.l.o.g. AC and BE hence we determine ABCE by applying the SSS Congruence
Theorem to ABC and ABE.

We call J2 diagonal (respectively, J3 diagonal) a diagonal that cuts the convex
n-gon into two parts containing 2 and n− 2 (respectively, 3 and n− 3) sides.

For n = 6, at least two known diagonals start from some vertex V , and we consider
the possible cases. Suppose to know the J3 diagonal and a J2 diagonal at V : the J3
diagonal cuts the hexagon into two quadrilaterals, and the one containing the J2
diagonal is determined by Theorem 1; since we know a diagonal at a vertex outside
this quadrilateral, we can fix this vertex thanks to the SSS Congruence Theorem.
Suppose to know the J2 diagonals connecting three vertices: we can determine the
triangle that they form, and conclude by applying the SSS Congruence Theorem
to the triangles made by one of these diagonals and two sides. Suppose to know
the two J2 diagonals at V and the J2 diagonal around V : we determine the
triangle made by the sides at V and then, applying again the SSS Congruence
Theorem, we fix the position of all vertices not opposite to V . Finally, suppose
to know two J2 diagonals at neighboring vertices: we determine the quadrilateral
having these two diagonals; since we know a diagonal at a vertex outside this
quadrilateral, we can fix this vertex thanks to the SSS Congruence Theorem.

We now prove the statement by induction for n > 5 (only the induction step is
missing), supposing that at most n− 5 known diagonals have a common vertex.
Notice that there is a known diagonal which is a J2 diagonal or a J3 diagonal.
If we know a J2 diagonal around some vertex V , then we apply the result to
the convex (n − 1)-gon obtained by removing V (because there were at most
n− 5 known diagonals at V ). If we know a J3 diagonal around some consecutive
vertices V ,W , then we can apply the result to the convex (n − 2)-gon obtained
by removing V , W (because there were at most 2n − 10 known diagonals at V
or W ); since we know some diagonal at V or W , we may fix the position of an
additional vertex thanks to the SSS Congruence Theorem.

Finally, we prove the statement for n > 7, supposing to know n− 4 diagonals at
some vertex V . Let V X be the unknown diagonal for some vertex X. If there
is some vertex A such that AV and AX are sides, then the convex (n − 2)-gon
obtained by removing A and X is determined because we know all its sides and
all its diagonals at V ; since we know a diagonal at A or X, we may fix the position
of an additional vertex thanks to the SSS Congruence Theorem. Now we may
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suppose that the vertices on each side of V X and distinct from X form a k-gon
and a (n − k)-gon for some 3 6 k 6 n − 3. Since we know all diagonals at V
except V X, we can determine both polygons with the SSS Congruence Theorem.
There are two known diagonals not contained in the two polygons because we
have

k(k − 3)

2
+

(n− k)(n− k − 3)

2
6
n(n− 7)

2
+ 3

(the left-hand-side is maximal when k(n−k) is minimal, hence for k = 3, n−3). If
we know a diagonal between vertices on distinct sides of V X, then we can deter-
mine the angle of the convex n-gon at V thanks to the SSS Congruence Theorem
and hence determine the (n − 1)-gon without X. Else, we know two diagonals
XA and XB for some vertices A,B 6= V , and we conclude by determining V X:
calling Y , Z the vertices of the n-gon next to X, we know all sides and four
diagonals of the hexagon V XY ZAB hence this is determined up to congruence.

5. The Congruence Theorem knowing some diagonals

In this section we prove Theorem 5 by induction (and present Example 9). By

assumption we know n(n−5)
2

+ 5 diagonals, and this number is optimal (if n − 4
diagonals are unknown, then there can be vertices V , V ′ such that V V ′ is the
only known diagonal at V hence we can rotate V around V ′).

For the inductive step, let n > 7 and consider a convex (n + 1)-gon. Removing

some vertex V we obtain a convex n-gon of which we know at least n(n−5)
2

+ 5
diagonals, so this is determined up to congruence by the induction hypothesis.
Since there were at least two known diagonals at V , we may conclude by the SSS
Congruence Theorem for triangles.

Now consider a convex heptagon, naming the vertices V1 to V7 in cyclic order.
Suppose that the unknown diagonals are V1V3 and V1V6 (in the picture we show
the known diagonals).

V1

V2

V3

V4 V5

V6

V7
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We apply several times the SSS Congruence Theorem for triangles: we determine
V2V5V7 up to congruence, so we fix the position of V2, V5, V7; we determine V2V4V7
up to congruence, so we fix the position of V4 (thanks to the convexity of the
heptagon); we determine V3V5V7 and V2V4V6 and V1V4V5 up to congruence, so we
fix the position of V3, V6, V1.

The other cases are completely analogous, so we conclude by describing the list
of cases according to the two unknown diagonals. Recall that a J2 (respectively,
J3) diagonal jumps 2 (respectively, 3) sides. If the two unknown diagonals have
a common vertex, then they can be two J2 diagonals or two J3 diagonals, else
one is a J2 diagonal and one is a J3 diagonal and w.l.o.g. the former is V1V3
and the latter is V1V4 or V1V5. Now suppose that the two unknown diagonals do
not have a common vertex. They could be two J2 diagonals (respectively, a J2
diagonal and a J3 diagonal), either crossing or non-crossing. Finally, they can be
two crossing J3 diagonals and w.l.o.g. the first is V1V4 and the second is V2V5 or
V2V6.

Example 9 (Robert). We show that knowing all 9 diagonals is not sufficient
to determine a convex hexagon up to congruence (note that 9 is the number of
degrees of freedom for the space of convex hexagons up to congruences). Given
a convex hexagon, we label its vertices V1 to V6 in cyclic order. If we know the
lengths of all diagonals, then in particular we know the triangles V1V3V5 and
V2V4V6 up to congruence. We can imagine fixing the triangle V1V3V5 and rotating
V2V4V6 in such a way that the length of the segments V1V4 and V2V5 does not
change (to achieve this, we can rotate V4 around V1 and V2 around V5 coherently
so that the length V2V4 is preserved; finally, one places V6 so that the triangle
V2V4V6 has changed to a congruent triangle with the same orientation). Doing
this provides a one-parameter family of convex hexagons for which the length
of V3V6 varies. At least in the case depicted in the figure below, the length of
V3V6 achieves a local maximum and hence, moving slightly away from it in both
directions, we find two convex hexagons such that all corresponding diagonals
have the same length. Apart from some exceptional symmetric cases, these two
hexagons are not congruent.

6. The Congruence Theorem knowing some sides or diagonals

In this section we prove Theorem 6 by induction. By assumption we know n(n−3)
2

+
3 sides or diagonals, and this number is optimal (if n − 2 sides or diagonals are
unknown, then there could be a vertex at which we know one side but no diagonal,
and then we can construct a minimal deformation by slightly rotating the known
side at this vertex). For n = 4, the result would not hold, as knowing 4 sides is
not sufficient by Theorem 1.
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The base case for the induction is n = 5, and there are various cases: two
unknown sides (either consecutive or not); two unknown diagonals (either having
a common endpoint or not); one unknown side and one unknown diagonal (either
having a common endpoint or not, and in the former case we must distinguish
whether the other endpoint of the diagonal is the vertex opposite to the given side
or not). The idea is to show that in every case it is possible to find a triangulation
of the convex pentagon and apply Congruence Theorems for triangles. We leave
this easy check as an exercise for the reader.

For the inductive step, let n > 5 and consider a convex (n + 1)-gon of which

we know (n+1)(n−2)
2

+ 3 sides or diagonals. We claim that removing some suitable

vertex V we obtain a convex n-gon of which we know at least n(n−3)
2

+5 diagonals,
so this is determined up to congruence by the induction hypothesis. Since there
were at least two known sides or diagonals at V , we may conclude by the SSS
Congruence Theorem for triangles.

We conclude by proving the claim. For a vertex of the n-gon, we have a total of
n sides or diagonals touching it. Supposing to pick a vertex at which there is at
least one unknown side or diagonal we have removed at most n−1 known objects

and we conclude because (n+1)(n−2)
2

+ 3− (n− 1) = n(n−3)
2

+ 3.
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