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ON GENERALIZED IWASAWA MAIN CONJECTURES AND p-ADIC STARK

CONJECTURES FOR ARTIN MOTIVES

ALEXANDRE MAKSOUD

ABSTRACT. We continue the study of Selmer groups associated with an Artin representation
endowed with a p-stabilization which was initiated in [Mak20]. We formulate a main conjec-
ture and an extra zeros conjecture at all unramified odd primes p, which are shown to imply
the p-part of the Tamagawa number conjecture for Artin motives at s = 0. We also relate our
new conjectures with various cyclotomic Iwasawa main conjectures and p-adic Stark conjec-
tures that appear in the literature. In particular, they provide a natural interpretation for
recent conjectures on p-adic L-functions attached to (the adjoint of a) weight one modular
form. In the case of monomial representations, we prove that our conjectures are essentially
equivalent to some newly introduced Iwasawa-theoretic conjectures for Rubin-Stark elements.

1. INTRODUCTION

Iwasawa theory traditionally focuses on the construction of p-adic L-functions and on
their relation with arithmetic invariants of number fields. Concurrently with the first major
achievements of the theory [Kat78, DR80, MW84, Wil90, Rub91], several attempts were
made in order to define the conjectural p-adic L-function of a motive [CPR89, Coa91, Gre94]
and its corresponding Selmer group [Gre89, Gre91]. The motive in question was assumed to
admit a critical value in the sense of Deligne and to be ordinary at p, hypotheses which were
circumvented in a work of Perrin-Riou [PR95] using the so-called big exponential map and
in a work of Benois [Ben14] allowing the treatment of “trivial zeros” via Nekovář’s theory
of Selmer complexes. However, the statement of Perrin-Riou’s conjecture is “maximalist” (in
her own words) and is rather not appropriate in certain practical settings. In particular, one
would expect that the arithmetic invariants could be expressed in terms of a Greenberg-style
Selmer group for p-ordinary motives that are not necessarily critical.

While being ordinary at unramified primes, motives coming from Artin representations
are seldom critical and the arithmetic of their L-values at s= 0 is described by "refined Stark
conjectures", thanks to the work of various mathematicians beginning with Stark’s and Ru-
bin’s influential papers [Sta75, Sta80, Rub96] and culminating in [Bur11]. In the particular
case of monomial Artin motives, that is, when the associated Artin representation is induced
from a one-dimensional character, a long-term strategy to tackle these conjectures with the
aid of Iwasawa theory was presented in [BKS17]. A general main conjecture (called "higher
rank Iwasawa main conjecture") and an extra zero conjecture (called "Iwasawa-theoretic
Mazur-Rubin-Sano conjecture") are formulated in terms of Rubin-Stark elements, but nei-
ther a p-adic L-function nor an L-invariant play a part in this work. Nevertheless, the
authors verify that their extra zero conjecture generalizes the Gross-Stark conjecture. Not
long after that, Büyükboduk and Sakamoto [BS19] proved via Coleman theory that it also
implies an extra zero conjecture for Katz’s p-adic L-functions.

This aim of our paper is to provide a unifying approach to the cyclotomic Iwasawa the-
ory for general Artin motives and to the study of their L-values generalizing many aspects
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of [BKS17, BS19] which not only encompasses classical conjectures on Deligne-Ribet’s or
Katz’s p-adic L-functions, but also allows a natural interpretation of very recent construc-
tions of p-adic L-functions and of new variants of the Gross-Stark conjecture in the context
of (the adjoint of a) weight one modular form [Mak20, DLR16]. More specifically, one of
the central objects in this paper is the Selmer group X∞(ρ,ρ+) introduced and studied in
[Mak20] (see also [GV20]). It depends on the choice of an ordinary p-stabilization ρ+ of the
p-adic realization ρ of the Artin motive. Although there is no canonical choice for ρ+ when
ρ is non-critical, the key idea is to think of ρ+ as an additional parameter, following the
viewpoint of Perrin-Riou.

The question of the torsionness of Selmer groups over the Iwasawa algebra is a recurring
theme in Iwasawa theory, and it was shown in [Mak20] that delicate conjectures coming from
p-adic transcendence theory arise through the study of X∞(ρ,ρ+). A first crucial aspect
of this work is to obtain, under an unramifiedness assumption at p, finer information on
the structure of X∞(ρ,ρ+) with the aid of modified Coleman maps and of classical freeness
results on Zp-towers of global units.

On the analytic side, our conjectural p-adic L-function will interpolate the algebraic part
of Artin L-values at s = 0 given by a recipe of Stark [Sta75, Tat84]. "Extra zeros" in the
sense of Benois abound in this setting, and we will also formulate an extra zero conjecture
which is compatible with the one in [Ben14]. It involves a new L-invariant which computes
Benois’ L-invariant when the Artin motive is crystalline at p, and it also gives back various
L-invariants that appear in the literature [Gro81, RR21, RRV21, BS19].

While it might seem somewhat artificial to introduce p-stabilizations to study Artin L-
values in general, they are proving to be useful even in the setting of monomial Artin rep-
resentations where they do not naturally appear. As a striking example, we prove in this
case that the existence of a p-stabilization with a non-vanishing L-invariant implies what
the authors in [BKS17] call the "Gross’s finiteness conjecture" in their main theorem (see
Theorem 3.8.6 for a more general statement which includes unconditional results). The
p-stabilizations also naturally occur in the setting of the (adjoint of the) Deligne-Serre rep-
resentation of a classical weight one modular form f , when we deform f via Hida theory.
The techniques relying on p-adic variation turn out to be omnipresent in arithmetic geome-
try, and we believe that the recent results on the geometry of Eigenvarieties at weight one
points [BD16, BDF20] should help advance Iwasawa theory in those settings.

In the next section we formulate our principal conjecture.

1.1. The main conjecture. We fix once and for all an embedding ι∞ : Q ,→ C as well as
ιℓ :Q ,→Qℓ for all primes ℓ. Let

ρ : GQ −→GLE(W)

be a d-dimensional Galois representation of GQ = Gal(Q/Q) of finite image with coefficients
in a number field E ⊆Q. We will always assume that W does not contain the trivial represen-
tation, i.e., one has H0(Q,W) = 0. For any character η : GQ −→ Q× of finite order, we denote
by Wη the underlying space of ρ⊗η, by Eη ⊆Q its coefficient field and by Hη ⊆Q the Galois
extension cut out by ρ⊗η. Our fixed embedding ι∞ allows us to see ρ⊗η as an Artin repre-
sentation, and we let L(ρ⊗η, s) be its Artin L-function. It is a meromorphic function over C,
and it is known that L(ρ⊗η,1)∈C× provided that H0(Q,Wη)= 0. Assuming further that η is
even, the functional equation implies that L((ρ⊗η)∨, s) has a zero of order d+ = dimH0(R,W)
at s = 0. The non-abelian Stark’s conjecture describes the transcendental part of its leading
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term L∗((ρ⊗η)∨,0) at s= 0 as follows. Set H1
f ((ρ⊗η)∨(1))=HomGQ

(Wη,Eη⊗ZO
×
Hη

), where O×
Hη

is the group of units of Hη. It is a Eη-vector space of dimension d+ by Dirichlet’s unit the-
orem, and it conjecturally coincides with the group of extensions of the trivial motive Eη(0)
by the arithmetic dual of ρ⊗η, which have good reduction everywhere. There is a natural
C-linear perfect pairing

(1) C⊗H0(R,W) × C⊗H1
f ((ρ⊗η)∨(1)) C⊗

(
ι−1
∞ (R)×

⋂
O×

Hη

)
C,

1⊗log∞

where log∞ : Q× −→ R is given by log∞(a) = − log |ι∞(a)| and where log is the usual real log-
arithm. Any choice of bases ω+

∞ ∈ detE H0(R,W) and ωf,η ∈ detEη H1
f ((ρ ⊗ η)∨(1)) defines a

complex regulator Regω+
∞(ρ⊗η) ∈C× and non-abelian Stark’s conjecture [Sta75] implies

(2)
L∗((ρ⊗η)∨,0)

Regω+
∞ (ρ⊗η)

?
∈ E×

η , or, equivalently,
L(ρ⊗η,1)

(iπ)d− Regω+
∞(ρ⊗η)

?
∈ E×

η ,

where d− = d−d+.
Fix once and for all a prime number p as well as an isomorphism j :C≃Qp which satisfies

ιp = j◦ι∞. Letting Ep be the completion of ιp(E) inside Qp, one may see ρ as a p-adic represen-
tation by putting Wp =W ⊗E,ιp Ep. We will call a p-stabilization of Wp any GQp -stable linear

subspace W+
p ⊆ Wp of dimension d+, where GQp is the local Galois group Gal(Qp/Qp). Any

p-stabilization (W+
p ,ρ+) yields a p-adic analogue of the complex pairing (1) by considering

(3) Qp ⊗W+
p × Qp ⊗H1

f ((ρ⊗η)∨(1)) Qp ⊗O×
Hη

Qp,
1⊗logp

where logp :Q× −→Qp is the composition of Iwasawa’s p-adic logarithm with the embedding

ιp. A p-stabilization W+
p is said to be η-admissible if the Qp-linear pairing (3) is perfect,

and it is simply called admissible when η is the trivial character 1. A p-stabilization might
a priori be η-admissible or not, but in the special case where W+

p is motivic, i.e., when it
admits a E-rational structure, its η-admissibility follows from standard conjectures in p-adic
transcendence theory (and from a theorem of Brumer when d+ = 1, see Section 3.1). Given
a basis ω+

p ∈ detE p W+
p of any p-stabilization W+

p , we may as well define a p-adic regulator

Regω+
p
(ρ⊗η) ∈Qp which vanishes precisely when its η-admissibility fails. Furthermore, the

quantity

(4)
Regω+

p
(ρ⊗η)

j
(
Regω+

∞(ρ⊗η)
) ∈Qp

turns out to be independent of the choice of ωf,η, and it is well-defined up to multiplication
by the same non-zero element of Ep for all the quotients (for varying even characters η). The
ambiguity can even be reduced to a unit of the ring of integers Op of Ep (and of Op

⋂
E when

W+
p is motivic) once we fix a Galois-stable Op-lattice Tp of Wp, if we ask ω+

∞ and ω+
p to be

Tp-optimal. That is, they should be respective Op-bases of H0(R,Tp) and T+
p =W+

p
⋂

Tp.
Let Γ be the Galois group of the Zp-cyclotomic extension Q∞ = ∪nQn of Q and let Γ̂ ⊆

Hom(Γ,Q×) be the set of Q-valued characters of Γ of finite order. Via ι∞, the elements of Γ̂
correspond to (necessarily even) Dirichlet characters of p-power order and conductor, and
via ιp they become p-adic characters and may be seen as homomorphisms of Op-algebras
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Λ −→Qp, where Λ =Op[[Γ]] is the Iwasawa algebra. We conjecture that the special values
L∗((ρ⊗η)∨,0) for η ∈ Γ̂, suitably corrected by the quotient of regulators (4), can be p-adically
interpolated by a p-adic measure which generates the characteristic ideal over Λ of the
Pontryagin dual X∞(ρ,ρ+) of the Greenberg-style Selmer group

ker

[
H1(Q∞,Dp)−→H1(Qur

p,∞,D−
p)×

∏

ℓ 6=p
H1(Qur

ℓ,∞,Dp)

]
,

where Dp (resp. D−
p) is the divisible Op-module Wp/Tp (resp. Dp/(imW+

p → Dp)) and where

Qur
ℓ,∞ ⊆Qℓ is the maximal unramified extension of the completion of Q∞ along ιℓ. We expect

X∞(ρ,ρ+) to be of Λ-torsion and we will denote by charΛX∞(ρ,ρ+) its characteristic ideal.
By convention, we let charΛX∞(ρ,ρ+)= 0 if X∞(ρ,ρ+) is not a torsion module.
Conjecture A. Let p be an odd prime at which ρ is unramified. Fix a GQ-stable Op-lattice
Tp of Wp and a p-stabilization (ρ+,W+

p ) of Wp. Pick any Tp-optimal bases ω+
p and ω+

∞ as
before.

EXρ,ρ+ There exists an element θρ,ρ+ of the fraction field of Λ which has no pole outside the
trivial character and which satisfies the following interpolation property: for all non-
trivial characters η ∈ Γ̂ of exact conductor pn, one has

η(θρ,ρ+)=
τ(η)d−

τ(ρ⊗η)

Regω+
p
(ρ⊗η)

det(ρ−)(pn)

L∗ (
(ρ⊗η)∨,0

)

Regω+
∞(ρ⊗η)

,

where τ(−) is a Galois-Gauss sum and where det(ρ−) is the Dirichlet character corre-
sponding to the determinant of the Galois representation acting on W−

p =Wp/W+
p .

IMCρ,ρ+ : The statement EXρ,ρ+ holds, and θρ,ρ+ is a generator of charΛX∞(ρ,ρ+).

EZCρ,ρ+ : Let e be the dimension of W−,0
p = H0(Qp,W−

p ) and assume that ρ+ is admissible. Then
EXρ,ρ+ holds, θρ,ρ+ vanishes at 1 with multiplicity at least e, and one has

1

e!

de

dseκ
s(θρ,ρ+)

∣∣∣
s=0

= τ(ρ)−1 (−1)e
L(ρ,ρ+) E(ρ,ρ+) Regω+

p
(ρ)

L∗ (
ρ∨,0

)

Regω+
∞ (ρ)

,

where κs ∈ HomO−alg(Λ,Qp) is the homomorphism induced by the character 〈χcyc〉 :
Γ ≃ 1+ pZp ⊆ Q×

p, raised to the power s ∈ Zp, where L(ρ,ρ+) ∈ Qp is the L-invariant
defined in Section 3.7, and where E(ρ,ρ+) is a modified Euler factor given (in terms of
the arithmetic Frobenius σp at p) by

E(ρ,ρ+)= det(1− p−1σp|W+
p )det(1−σ−1

p |W−
p /W−,0

p ).

Note that Conjecture A satisfies an obvious p-adic Artin formalism (Remark 3.9.2). Its
truth is clearly independent from the choice of ω+

∞ and ω+
p , but its dependence on the choice

of ρ+ is somewhat subtle. Further, Conjecture A will follow immediately from Theorems
A and B below in the hypothetical (but less interesting) case where X∞(ρ,ρ+) is not of Λ-
torsion, giving θρ,ρ+ = 0.

We refer the reader to Section 6 for a detailed comparison of Conjecture A with various
"main conjectures" and "p-adic Stark conjectures" that are already available in a multitude
of special settings.

We now outline the main results of this paper.
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1.2. The main results. We fix once and for all an odd prime p at which ρ is unramified.
Our first theorem generalizes [Mak20, Théorème A] and yields an interpolation formula
for a generator of charΛX∞(ρ,ρ+) which is similar to EXρ,ρ+ . As a piece of notation, we
let U∞ = lim←−−n

Un be the Λ-module of all norm-coherent sequences of elements in the pro-p
completion Un of the group of units of H ·Qn.
Theorem A (=Theorem 3.6.4). Fix a GQ-stable Op-lattice Tp of Wp, a p-stabilization ρ+ of ρ
and a Tp-optimal basis ω+

p = t1 ∧ . . .∧ td+ of W+
p . The following assertions are equivalent:

(1) the Selmer group X∞(ρ,ρ+) is of Λ-torsion,
(2) ρ+ is η-admissible for some non-trivial character η ∈ Γ̂, and
(3) ρ+ is η-admissible for all but finitely many characters η ∈ Γ̂.

Moreover, if these three equivalent conditions hold and if d+ > 0, then there exist d+ linearly
independent GQ-equivariant homomorphisms Ψ1, . . . ,Ψd+ : Tp −→U∞ which only depend on

Tp, and there exists a generator θ
alg
ρ,ρ+ of charΛX∞(ρ,ρ+) such that

η(θalg
ρ,ρ+)=

τ(η)d−

τ(ρ⊗η)
·

p(n−1)·d+

det(ρ−)(pn)
·det

(
logp |Ψ j(t i)|η

)
1≤i, j≤d+

for all non-trivial characters η ∈ Γ̂ of conductor pn, where | · |η : U∞ −→ Un−1 stands for a
certain "η-projection" introduced in Section 3.6.

Theorem A implies that X∞(ρ,ρ+) is of Λ-torsion when d+ = 1 and ρ+ is motivic. Another
simple consequence when d+ = d (i.e., when ρ is even) is the validity of the "ρ⊗η-isotypic
component of Leopoldt’s conjecture for Hη and p" for all but finitely many η ∈ Γ̂ (see Section
3.1 for a precise statement of this conjecture). But of course, this does not suffice to prove
the Leopoldt’s conjecture for any of the fields Hη. The proof of Theorem A makes a critical
use of Coleman’s theory [Col79] and of classical results on the structure of U∞. We first
compare X∞(ρ,ρ+) with a Bloch-Kato-style Selmer group and we apply Poitou-Tate duality
theorem. Some limits of unit groups and of ideal class groups will appear via an application
of Hochschild-Serre’s exact sequence. We then use classical results of Kuz’min [Kuz72] and
Belliard [Bel02] on the Galois structure of global (p-)units, and also a construction of modi-
fied Coleman maps in order to recover some information on the structure of X∞(ρ,ρ+) as a
Λ-module.

The Tamagawa number conjecture of Bloch and Kato [BK90] expresses special values of
motivic L-functions in terms of arithmetic invariants. The following theorem is an instance
of how one can tackle Bloch-Kato’s conjecture via Iwasawa theory.
Theorem B (=Corollary 3.8.4). Fix a GQ-stable Op-lattice Tp of Wp. Then X∞(ρ,ρ+) is of
Λ-torsion for every admissible p-stabilization ρ+ of ρ such that the L-invariant L(ρ,ρ+) is
non-zero. Moreover, if there exists such a ρ+ for which Conjecture A also holds, then the p-
part of the Tamagawa Number Conjecture (in the formulation of Fontaine and Perrin-Riou
[FPR94]) for ρ is valid. In particular, for p not dividing the order of the image of ρ, one has

L∗ (
ρ∨,0

)

Regω+
∞(ρ)

∼p #HomOp[GQ](Tp,Op ⊗Cℓ(H)),

where a∼p b means that a and b are equal up to a p-adic unit, and where Cℓ(H) is the ideal
class group of the field H cut out by ρ. Here, the bases ωf and ω+

∞ used to compute Regω+
∞(ρ)

are chosen to be Tp-optimal.
The proof of Theorem B rests upon a comparison between X∞(ρ,ρ+) and Benois’ defini-

tion of the Perrin-Riou’s module of p-adic L-functions. The latter is defined in [Ben14] in
5



terms of a Selmer complex attached to certain crystalline motives endowed with a "regular
submodule" (see Section 3.8 for its definition). For the dual motive of ρ, the choice of a reg-
ular submodule amounts to the one of an admissible p-stabilization of ρ. Once the relation
between X∞(ρ,ρ+) and Perrin-Riou’s theory is fully established, Theorem B will follow from
the main result of loc. cit..

Our last result compares Conjecture A in the case where ρ is induced from a non-trivial
character χ : Gk −→ E× of prime-to-p order with Iwasawa-theoretic conjectures of [BKS17, §3-
4]. In this case, θρ,ρ+ should interpolate leading terms of abelian L-functions for which Rubin
formulated a Stark conjecture "over Z" [Rub96]. It involves some Rubin-Stark elements (εχn)n

and uχ for which we will assume the conjecture "over E" (RSχ,E , Conjecture 4.1.3), so that the
statement (2) holds. Under the conjecture "over Op" (RSχ,p, Conjecture 4.1.4), which we will
also assume, one may formulate a "higher rank Iwasawa Main Conjecture" for ε

χ
∞ = lim←−−n

ε
χ
n

(IMCχ, Conjecture 4.2.1) which generalizes the usual main conjecture, and an "Iwasawa-
theoretic Mazur-Rubin-Sano conjecture" (MRSχ, Conjecture 4.2.3) which connects uχ and
the bottom layer of εχ∞.
Theorem C (=Theorems 5.3.1, 5.3.3 and 5.4.3). Suppose that ρ = IndQ

kχ and let Tp = IndQ

kOp(χ)
be the "standard" lattice in Wp. Assume the Rubin-Stark conjectures RSχ,E and RSχ,p.

(1) EXρ,ρ+ holds true for every p-stabilization ρ+.
(2) For every p-stabilization ρ+ such that X∞(ρ,ρ+) is of Λ-torsion, IMCρ,ρ+ is equivalent

to IMCχ.
(3) MRSχ implies EZCρ,ρ+ for every p-stabilization ρ+. Conversely, if EZCρ,ρ+ holds for

every p-stabilization ρ+, and if there exists at least one admissible p-stabilization ρ+

such that L(ρ,ρ+) 6= 0, then MRSχ is valid.

Let us comment on the proof of Theorem C. The first claim mainly follows from the ma-
chinery of refined Coleman maps. Our second claim is much in the spirit of theorems which
compare a main conjecture “with p-adic L-functions” with a main conjecture “without p-adic
L-functions”. The main idea behind its proof is the use of "extended Coleman maps" as intro-
duced in Section 2, together with a variant of the description of X∞(ρ,ρ+) used for Theorems
A and B. For the last claim, we first need to compute the constant term of our extended Cole-
man maps. Roughly speaking, Conjecture MRSχ is an equality between elements in a vector

space of dimension
(d++f

d+
)
, and we reinterpret (a slightly stronger version of) EZCρ,ρ+ as the

same equality, after having applied a certain linear form attached to ρ+. To achieve the proof
of the last claim, we then prove in Section 3.9 that the validity of EZCρ,ρ+ for enough choices
of ρ+ implies EZCρ,ρ+ for all ρ+. We also would like to mention a side result which might
be interesting in itself: we show that the family of Rubin-Stark elements ε

χ
∞ is non-zero if

there exists a non-trivial character η ∈ Γ̂ such that the χ⊗η-isotypic component of Leopoldt’s
conjecture holds for Hη and p. Lastly, one should be able to remove the mild hypothesis on
the order of χ, which is mainly used to ease some algebraic computations.

Acknowledgments. This research is supported by the Luxembourg National Research
Fund, Luxembourg, INTER/ANR/18/12589973 GALF.

2. COLEMAN MAPS

2.1. Classical results on Coleman maps. Fix an odd prime number p. Let K be an
unramified finite extension of Qp and let ϕ ∈ Gal(K /Qp) be the Frobenius automorphism.
The Galois group Gal(K (µp∞)/Qp) splits into a product Gal(K /Qp)×Γcyc ≃ Gal(K /Qp)×Γ×

6



Gal(K (µp)/K ), where we have put Γcyc =Gal(K (µp∞)/K ) and where Γ is the Galois group of Zp-
cyclotomic extension of K . The cyclotomic character induces an isomorphism χcyc : Γcyc ≃Z×

p
and Γ can be identified with 1+ pZp ⊂ Z×

p . Let us fix once and for all a system of compati-
ble roots of unity ζ̃ := (ζn)n≥0 of p-power order (i.e., ζp

n+1 = ζn, ζ0 = 1 and ζ1 6= 1). Note that
ζ̃ is also norm-coherent, which means that it lives in the inverse limit lim←−−n

K (µpn)× where
the transition maps are the local norms. Coleman proved the following theorem (see [Col79,
Theorem A] or [dS87, Chapter I, §2]).
Theorem 2.1.1 (Coleman). Let v = (vn)n≥0 ∈ lim←−−n

K (µpn)×. There exists a unique power series

fv(T) ∈ Tord(v0) ·OK [[T]]×, called Coleman’s power series of v, which satisfies the following
properties:

• for all n ≥ 1, one has fv(ζn −1)=ϕn(vn),
•

∏p−1
i=0 fv(ζi

1(1+T)−1)=ϕ( fv)((1+T)p −1), where we let ϕ act on the coefficients of fv.

Furthermore, the map v 7→ fv(T) is multiplicative and it is compatible with the action of Γcyc,
i.e., one has fγ(v)(T)= fv((1+T)χcyc(γ) −1) for all γ ∈ Γcyc.

Note that fv(0) and v0 are not equal but are simply related by the formula v0 = (1−
ϕ−1) fv(0) which is easily deduced from the second property satisfied by fu. To better un-
derstand Coleman’s power series, we consider the operator L : OK [[T]]× −→ K [[T]] given
by

L( f )(T)=
1

p
logp

(
f (T)p

ϕ( f )((1+T)p −1)

)
,

where the p-adic logarithm logp : OK [[T]]× −→ K [[T]] is defined by logp(ζ) = 0 for ζ ∈ µ(K )
and logp(1+T g(T)) = T g(T)− 1

2 T2 g(T)2 + 1
3 T3 g(T)3 + . . . for g(T) ∈ OK [[T]]. Moreover, it is

known that L takes values in OK [[T]].
We can now define what is usually referred to as the Coleman map. One can associate to

any OK -valued measure λ over Zp its Amice transform Aλ(T) ∈OK [[T]] given by

Aλ(T)=
∞∑

n=0

∫

Zp

(
x

n

)
Tnλ(x)=

∫

Zp

(1+T)xλ(x).

This construction yields an isomorphism of OK -algebras (the product of measures being the
convolution product) OK [[Zp]]≃OK [[T]]. When the Amice transform of a measure λ is equal
to L( fu(T)) for some norm-coherent sequence of units u ∈ lim←−−n

O×
K(µpn ), then one can show

that λ is actually the extension by zero of a measure over Z×
p . It will be convenient to see

such a λ as a measure over Γcyc after taking a pull-back by χcyc. Let

Col : lim←−−
n

O×
K(µpn ) −→OK [[Γcyc]]

be the map sending u to the OK -valued measure λ over Γcyc whose Amice transform is
L( fu(T)). Note that Col(uu′) = Col(u)+Col(u′) for norm-coherent sequences of units u and
u′.
Proposition 2.1.2. There is an exact sequence of Gal(K /Qp)×Γcyc-modules

0 // µ(K )×Zp(1) // lim←−−n
O×

K(µpn )
Col

// OK [[Γcyc]] // Zp(1) // 0

Here, the first map sends ξ ∈ µ(K ) to (ξ)n and a ∈ Zp to (ζa
n)n, and the last one sends λ to

TrK /Qp

∫
Γcyc

χcyc(σ)λ(σ). Moreover, Γcyc acts on OK [[Γcyc]] via
∫
Γcyc

f (σ)(γ·λ)(σ) =
∫
Γcyc

f (γσ)λ(σ)
for all γ ∈Γcyc and all Qp-valued continuous function f on Γcyc.
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Proof. See [CS06, Theorem 3.5.1]. �

Now take invariants by ∆ := Gal(K (µp)/K ). As ∆ is of prime-to-p order, one can identify
OK [[Γcyc]]∆ with OK [[Γ]] via the map sending λ to the measure µ defined by

∫
Γ

g(γ)µ(γ) =
1

p−1

∫
Γcyc

g(σ mod ∆)λ(σ) for all continuous g : Γ −→ Qp. The inverse map is given by the

formula
∫
Γcyc

f (σ)λ(σ)=
∫
Γ

T f (γ)µ(γ), where f :Γcyc −→Qp is continuous and where T f :Γ−→
Qp is the sum T f (γ) =

∑
δ∈∆ f (γδ). Let us denote by Kn = K (µpn+1)∆ the n-th layer of the

Zp-cyclotomic extension of K for all n ≥ 0, and let K−1 = K0 = K . The Coleman map thus
restricts to a surjective map Col : lim←−−n

O×
Kn−1

−→OK [[Γ]] whose kernel is identified with µ(K ).

By restricting further to principal units O×,1
Kn

⊆O×
Kn

(i.e., units that are congruent to 1 modulo
the maximal ideal of OKn ), one obtains an isomorphism

(5) Col : lim←−−
n

O
×,1
Kn−1

≃−→OK [[Γ]]

of Zp[Gal(K /Qp)][[Γ]]-modules (or, equivalently, of ϕ-linear Zp[[Γ]]-modules) whose proper-
ties are now recalled. For n ≥ 2, one may see via ιp any non-trivial Q-valued Dirichlet charac-
ter η of p-power order and of conductor pn as a p-adic character of Γn−1 =Gal(Kn−1/K ) which
does not factor through Γn−2. We will denote by eη := p1−n ∑

g∈Γn−1 η(g−1)g ∈ Qp(µpn)[Γn−1]
the idempotent attached to η, and by g(η)=

∑
a mod pn η(a)ζa

n its usual Gauss sum.

Lemma 2.1.3. Let u = (un)n≥1 ∈ lim←−−n
O

×,1
Kn−1

and let µ= Col(u). For all non-trivial characters

η :Γ−→Q× of conductor pn, one has
∫

Γ

η(γ)µ(γ)=
pn−1

g(η−1)
·ϕn (

eη logp(un)
)
.

Moreover, if u0 6= 1, then u0 ∉ 1+ pZp and one has
∫

Γ

µ=
1− p−1ϕ

1−ϕ−1

(
logp(u1)

)
.

Proof. When η is non-trivial, one checks that

g(η−1)
∫

Γ

η(γ)µ(γ)= (p−1)−1
∑

a mod pn
η−1(a) ·L( fu)(ζa

n −1)

= pn−1 · eη L( fu)(ζn −1)

= pn−1 · eη ϕn
(
logp(un)−

1

p
logp(un−1)

)
.

Since η is of conductor pn, the idempotent eη kills un−1, so the first equality holds. Assume

now that u0 6= 1. If u0 ∈ 1+ pZp, then u
[K :Qp]
0 = NK /Qp (u0) would be a universal norm in

Qp,∞/Qp. As it is also a principal unit, the exact sequence (6) below shows that it should be
equal to 1, and so does u0. Hence u0 ∉ 1+ pZp, and we have

∫

Γ

µ= (p−1)−1 ·L( fu)(0)= (p−1)−1 · (1− p−1ϕ) logp( fu(0))=
1− p−1ϕ

1−ϕ−1

(
logp(u1)

)
,

because of the relation up−1
1 = u0 = (1−ϕ−1) fu(0). �
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2.2. Isotypic components. Let δ : G −→ O× be any character of a finite group G which
takes values in a finite flat extension O of Zp. There are two slightly different notions of
δ-isotypic components for an O[G]-module M, namely

Mδ := {m ∈ M | ∀g ∈G, g.m= δ(g)m}, or, Mδ := M⊗O[G]O,

where the ring homomorphism O[G]−→O is the one induced by δ. The modules Mδ and Mδ

are respectively the largest submodule and the largest quotient of M on which G acts via δ

(see [Tsu99, §2]) and they will simply be called the δ-part and the δ-quotient of M. When
p does not divide the order of G, the natural map Mδ −→ Mδ is an isomorphism, and Mδ

equals eδM, where eδ = #(G)−1 ∑
g∈G δ(g−1)g ∈O[G] is the usual idempotent attached to δ.

When O contains OK and for G = Gal(K /Qp), M = OK ⊗Zp O as in Section 2.1, the same
argument as in the proof of [Mak20, Lemme 3.2.3] shows that the internal multiplication
M −→O induces by restriction an O-linear isomorphism Mδ ≃O. When one moreover fixes
an isomorphism OK ≃ Zp[G] (given by a normal integral basis of the unramified extension
K /Qp) one also has Mδ ≃O[G]⊗O[G]O=O.
Definition 2.2.1. For any character δ of G = Gal(K /Qp) with values in a finite flat Zp-
algebra O containing OK , we define δ-isotypic component of the Coleman map as to be the
composite isomorphisms of O[[Γ]]-modules

Colδ : lim←−−
n

(
O

×,1
Kn−1

⊗Zp O

)δ Col−→
(
OK ⊗Zp O

)δ [[Γ]]≃O[[Γ]],

where Col is the restriction of isomorphism (5) to the δ-parts and where the last isomorphism
is induced by the internal multiplication OK ⊗Zp O−→O.

When δ is trivial, it will be later convenient to consider a natural extension of the map
Col1 which we construct in the rest of the paragraph. Here, we may assume that K =Qp and
that O = Zp, and we let Q̂×

p,n be the pro-p completion of Q×
p,n for all n ≥ 0. Concretely, once

we fix a uniformizer ̟n of Zp,n :=OQp,n , it is isomorphic to Z
×,1
p,n ×̟

Zp
n , while Q×

p,n =Z×
p,n ×̟Z

n.
Let A := ker

(
Zp[[Γ]]−→Zp

)
be the augmentation ideal of the Iwasawa algebra Zp[[Γ]]. We

still denote by γ the image of an element γ ∈ Γ under the canonical injection Γ ,→O[[Γ]]×.
Lemma 2.2.2. The multiplication map m : A⊗Zp[[Γ]] lim←−−n

Q̂×
p,n−1 −→ lim←−−n

Q̂×
p,n−1 is injective

and has image lim←−−n
Z
×,1
p,n−1.

Proof. We first check that m is injective and we fix a topological generator γ of Γ. As A is
Zp[[Γ]]-free and generated by γ−1, any element of A⊗Zp[[Γ]] lim←−−n

Q̂×
p,n−1 can be written as a

pure tensor (γ−1)⊗v for some v. If (γ−1)·v= 1, then vn ∈ Q̂×
p for all n ≥ 1 hence v = 1 since Q̂×

p
has no non-trivial p-divisible element. Thus m is injective. Inflation and restriction maps in
discrete group cohomology provide an exact sequence

0 H1(Γ,Qp/Zp) H1(Qp,Qp/Zp) H1(Qp,∞,Qp/Zp)Γ H2(Γ,Qp/Zp).inf res

As Γ is pro-cyclic, the last term vanishes. Moreover, the Galois action on Qp/Zp being triv-
ial, all the H1’s involved are Hom’s and one easily deduces from local class field and from
exactness of Pontryagin functor Hom(−,Qp/Zp) the following short exact sequence

(6) 0
(
lim←−−n

Q̂×
p,n−1

)
Γ

Q̂×
p Γ 0,

v 7→v1 rec

9



where the subscript Γ means that we took Γ-coinvariants and where rec is the local reci-
procity map. Since MΓ = M/AM for any Zp[[Γ]]-module M and since the map rec|1+pZp is an

isomorphism, it follows that both lim←−−n
Z
×,1
p,n−1 and the image of m coincide with the kernel of

the map lim←−−n
Q̂×

p,n−1 −→ Q̂×
p given by v 7→ v1, so they are equal. �

The following definition makes sense by Lemma 2.2.2.
Definition 2.2.3. Let O be any finite flat Zp-algebra and let IO ⊆ Frac(O[[Γ]]) be the invert-
ible ideal of O[[Γ]] consisting of quotients of p-adic measures on Γ with at most one simple
pole at the trivial character. The extended 1-isotypic component of the Coleman map is the
isomorphism

C̃ol
1

: lim←−−
n

Q̂×
p,n−1 ⊗O

≃−→ IO

given by C̃ol
1

(v)= 1
a Col1(av) for any choice of a non-zero element a in the augmentation ideal

of O[[Γ]]. For any non-trivial O-valued character δ of Gal(K /Qp), we will also let C̃ol
δ =Colδ.

2.3. Constant term of Coleman maps. We keep the same notations as in Sections 2.1 and
2.2. Fix a finite flat extension O of Zp which contains OK and let δ be an O-valued character
of Gal(K /Qp). Then δ is the trivial character if and only if β= δ(ϕ) ∈O× is equal to 1. When
δ is non-trivial, Lemma 2.1.3 shows that the constant term of µ=Colδ(u) is given by

∫

Γ

µ=
1− p−1β

1−β−1 logp(u1).

We now give a similar formula when δ is trivial.
Lemma 2.3.1. Let u ∈ lim←−−n

Z
×,1
p,n−1⊗O and put µ=Col1(u). Write u as (γ−1) ·v for some γ ∈ Γ

and v ∈ lim←−−n
Q̂×

p,n−1 ⊗O. Then

(7)
∫

Γ

µ=
(
1− p−1)

· logp(χcyc(γ)) ·ord(v1),

where ord : Q̂×
p ⊗Zp O−→O is the usual p-valuation map.

Proof. We may take O = Zp. Let us choose any π = (πn)n≥1 ∈ lim←−−n
Q̂×

p,n−1 such that π1 = p
(this is possible thanks to the short exact sequence (6)). Then π ∈ lim←−−n

Q×
p,n−1 and fπ(T) =

T p−1U(T) for some U(T)∈Zp[[T]]×, so we have

f(γ−1)·π(T)=
(
(1+T)χcyc(γ) −1

T

)p−1

·
U((1+T)χcyc(γ) −1)

U(T)
.

Hence logp( f(γ−1)·π(0))= (p−1) · logp(χcyc(γ)). If we write v as u′ ·πord(v1) with u′ ∈ lim←−−n
Z
×,1
p,n−1,

then one has by linearity
∫

Γ

µ=
∫

Γ

Col1((γ−1) ·u′) +ord(v1)
∫

Γ

Col1((γ−1) ·π)

=
∫

Γ

(
γ ·Col1(u′)−Col1(u′)

)
+ord(v1)(p−1)−1 ·L( f(γ−1)·π)(0)

= 0 +ord(v1)(1− p−1)(p−1)−1 · logp( f(γ−1)·π(0))

=
(
1− p−1)

· logp(χcyc(γ)) ·ord(v1).

�
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3. CYCLOTOMIC IWASAWA THEORY FOR ARTIN MOTIVES

Thoughout this section we keep the notations of the introduction: in particular, ρ does not
contain the trivial representation and is unramified at our fixed prime p > 2. Without loss
of generality, we will also assume that E contains the field H cut out by ρ, so the completion
Ep = ιp(E) contains K := ιp(H).

3.1. p-stabilizations.

Definition 3.1.1. A p-stabilization (ρ+,W+
p ) of (ρ,Wp) is an Ep-linear subspace W+

p of Wp of

dimension d+ which is stable under the action of the local Galois group Gal(Qp/Qp). We will
say that ρ+ is:

(1) motivic if W+
p is of the form Ep⊗E,ιp W+, where W+ is an E-linear subspace of W , and

(2) η-admissible (for a given character η ∈ Γ̂) if the p-adic pairing (3) is non-degenerate.

To explain in greater details the η-admissibility property, consider a p-stabilization W+
p

and fix a character η ∈ Γ̂. If we let ωf,η =ψ1 ∧ . . .∧ψd+ be a basis of the motivic Selmer group
H1

f ((ρ ⊗ η)∨(1)) = HomGQ
(Wη,Eη⊗O×

Hη
) and ω+

p = w1 ∧ . . .∧ wd+ be a basis of W+
p , then the

determinant of the p-adic pairing computed in these bases is given by

(8) Regω+
p
(ρ⊗η)= det

(
logp(ψ j(wi))

)
1≤i, j≤d+ ∈ Ep,η.

Here, we denoted by Ep,η ⊆Qp the compositum of Ep with the image of η, and by

(9) logp :Qp ⊗ZZ
× −→Qp

the map given by logp(x⊗ a) = x · logIw
p (ιp(a)), where logIw

p : Q×
p −→ Qp is Iwasawa’s p-adic

logarithm. The p-regulator Regω+
p
(ρ ⊗ η) does not vanish for some (hence, all) choices of

bases if and only W+
p is η-admissible.

We now recall the (weak) p-adic Schanuel conjecture [CM09, Conjecture 3.10]:
Conjecture 3.1.2 (p-adic Schanuel conjecture). Let a1, . . . ,an be n non-zero algebraic num-
bers contained in a finite extension F of Qp. If logIw

p (a1), . . . , logIw
p (an) are linearly independent

over Q, then the extension field Q(logIw
p (a1), . . . , logIw

p (an))⊂ F has transcendence degree n over
Q.
Lemma 3.1.3. Assume that W+

p is motivic. Then W+
p is η-admissible for all characters η ∈ Γ̂

if d+ = 1, or if Conjecture 3.1.2 holds.

Proof. Fix a character η ∈ Γ̂. Since W+
p is motivic, it admits a basis ω+

p which consists of
vectors of W , so Regω+

p
(ρ⊗η) is a polynomial expression in p-adic logarithms of Q-linearly

independent units in Q⊗Z×. Therefore, Regω+
p
(ρ⊗η) does not vanish if the p-adic Schanuel

conjecture holds. This is also true when d+ = 1 by the injectivity of the restriction of (9) to
Q⊗Z× proven by Brumer [Bru67]. �

We end this section by exploring the link between the η-admissibility of a p-stabilization
W+

p and the Leopoldt’s conjecture for Hη and p. We first note that W+
p is η-admissible if and

only if Ep,η⊗W+
p does not meet the linear subspace

W̃−
p =

⋂
ψ

ker
[
logp ◦ψ : Wp,η −→ Ep,η⊗O×

Hη
−→ Ep,η

]
,
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where the intersection runs over all ψ in Ep,η⊗H1
f ((ρ⊗η)∨(1)). The dimension of W̃−

p can
be written as d−+ s, where s is the dimension of the kernel of the map αη : Ep,η⊗H1

f ((ρ⊗
η)∨(1)) −→ Hom(Wp,η,Ep,η) induced by logp. By Kummer theory, the domain of αη is canon-
ically isomorphic to the global Bloch-Kato Selmer group H1

f (Q,W∗
p,η(1)), where W∗

p,η(1) is
the arithmetic dual of the Galois representation Wp,η. One may also see W∗

p,η(1) as GQp-
representation and consider the local Bloch-Kato Selmer group H1(Qp,W∗

p,η(1)), which is,

again by Kummer theory, canonically isomorphic to HomGQp
(Wp,η,Ep,η⊗O

×,1
Kη

), where O
×,1
Kη

is

the Zp-module of principal units of the completion Kη at p of Hη. Under the above identifi-
cations, the map αη is nothing but the composite map

(10) H1
f (Q,W∗

p,η(1)) H1
f (Qp,W∗

p,η(1)) Hom(Wp,η,Ep,η),
locp ≃

where locp is a localization map at p and where the second map is the isomorphism induced
by the p-adic logarithm on Kη, logp : Ep,η ⊗O

×,1
Kη

−→ Ep,η. Let Up,η be the product of the

principal units O
×,1
K ′

η
of K ′

η, where K ′
η runs over all the completions of Hη at primes above p.

There is an alternative description of H1
f (Qp,W∗

p,η(1)) in terms of semi-local Galois cohomol-
ogy which identifies locp of (10) with the map

(11) HomGQ
(Wp,η,Ep,η⊗O×

Hη
) HomGQ

(Wp,η,Ep,η⊗Up,η)

induced by the diagonal embedding ιLeo : O×
Hη

−→ Up,η. The injectivity of ιLeo, known as
Leopoldt’s conjecture, implies the injectivity of the map in (11) which should be thought as
the "ρ⊗η-isotypic component of the Leopoldt’s conjecture for Hη and p".
Lemma 3.1.4. Wp admits at least one η-admissible p-stabilization if and only if the ρ⊗η-
isotypic component of the Leopoldt’s conjecture for Hη and p holds, i.e., if the map in (11) is
injective.

Proof. There exists at least one η-admissible p-stabilization of Wp if and only if the linear
subspace W̃−

p has dimension d−, that is, if the map αη is injective. But we have seen that its
injectivity is equivalent to the one of the map in (11). �

3.2. Selmer groups. A Galois-stable lattice of Wp is a free Op-submodule of Wp of rank d
which is stable by the action of the global Galois group GQ. The pair (ρ,ρ+) will always refer
to the choice of:

(1) a Galois-stable lattice Tp of Wp,
(2) a p-stabilization W+

p of ρ,

which we will be fixed henceforth. Let W−
p = Wp/W+

p , T+
p = W+

p
⋂

Tp and T−
p = Tp/T+

p .
We also define Op-divisible Galois modules Dp = Wp/Tp and D±

p = W±
p /T±

p . Once we fix a
generator of the different of Op over Zp, one may identify O∨

p with Ep/Op where M∨ :=
HomZp(M,Qp/Zp) stands for the Pontryagin dual of a Zp-module M. This allows us to iden-

tify D∨
p with Tp. Let n ∈N∪ {∞} and let Iℓ be the inertia subgroup of Gal(Q/Qn) at the place

above ℓ determined by ιℓ.
Definition 3.2.1. The Selmer group of level n attached to (ρ,ρ+) is defined as to be

Seln(ρ,ρ+) := ker
[
H1(Qn,Dp)−→H1(I p,D−

p)×
∏

ℓ 6=p H1(Iℓ,Dp)
]
.
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The strict Selmer group Selstr
n (ρ,ρ+) of level n attached to (ρ,ρ+) is the sub-Op-module of

Seln(ρ,ρ+) whose cohomology classes are trivial on the decomposition subgroup at p.
The dual Selmer group is defined as the Pontryagin dual of Seln(ρ,ρ+), that is,

Xn(ρ,ρ+) :=Seln(ρ,ρ+)∨ =HomZp(Seln(ρ,ρ+),Qp/Zp).

We also define the strict dual Selmer group of level n by putting X str
n (ρ,ρ+)=Selstr

n (ρ,ρ+)∨.
By standard properties of discrete cohomology groups, X∞(ρ,ρ+) can be identified with the

inverse limit lim←−−n
Xn(ρ,ρ+) and it is a finitely generated module over the Iwasawa algebra

Λ=Op[[Γ]].
Lemma 3.2.2. If X∞(ρ,ρ+) is of Λ-torsion, then there is a short exact sequence of torsion
Λ-modules

0 H0(Qp,T−
p ) X∞(ρ,ρ+) X str

∞ (ρ,ρ+) 0,

where the Γ-action on the first term is trivial.

Proof. The first map is obtained by evaluating cocycles at σp and by applying Pontryagin
duality, and the second one is the dual of the inclusion Selstr

∞ (ρ,ρ+) ⊆ Sel∞(ρ,ρ+). The only
non-obvious statement is the injectivity of the first map, which will follow from [GV00, Propo-
sition (2.1)], but we must check that H0(Q∞, qDp) is finite, where qDp =Hom(Tp,µp∞). Since ρ

is unramified at p and since it does not contain the trivial representation, H0(Q(µp∞),Dp) is
finite, so H0(Q∞, qDp) ⊆ H0(Q(µp∞), qDp) = Hom(H0(Q(µp∞),Dp),µp∞) is also finite, as wanted.

�

The study of the structure of X∞(ρ,ρ+) was initiated in [Mak20], where the unramified-
ness assumption was partially released (only the quotient W−

p was assumed to be unrami-
fied). However, ρ was taken irreducible and ρ+ motivic. This last hypothesis implies the
η-admissibility of ρ+ for all characters η under the Weak p-adic Schanuel conjecture (or
when d+ = 1) as in Lemma 3.1.3. We recall the results obtained in loc. cit..
Theorem 3.2.3. Assume that ρ is irreducible and that ρ+ is motivic. If d+ = 1 or if Conjecture
3.1.2 holds, then the following four claims are true.

(1) The Selmer groups Xn(ρ,ρ+) are finite for all n ∈N.
(2) The Λ-module X∞(ρ,ρ+) is torsion and has no non-trivial finite submodules.
(3) Let θ

alg
ρ,ρ+ ∈Λ be a generator of its characteristic ideal. Then η(θalg

ρ,ρ+) does not vanish

for all non-trivial finite order characters η :Γ−→Q×.
(4) Let e = dimH0(Qp,W−

p ). Then θ
alg
ρ,ρ+ vanishes at the trivial character 1 if and only if

e = 0. Moreover, θalg
ρ,ρ+ has a zero of order ≥ e at 1, i.e.,

θ
alg
ρ,ρ+ ∈Ae,

where A is the augmentation ideal of Λ.

Proof. This follows from [Mak20, Théorème 2.1.5]. �

3.3. Artin L-functions and Galois-Gauss sums. We review some classical results on
Artin L-functions and on Galois-Gauss sums, and we give equivalent reformulations of Con-
jecture A. Our main reference is [Mar77]. Let (V ,π) be an Artin representation of GQ of
dimension d and of Artin conductor f(π). Put d+ = dimH0(R,V ) and d− = d−d+. The Artin
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L-function of π is the meromorphic continuation to s ∈ C of the infinite product (converging
for ℜ(s)> 1) over all rational primes

L(π, s)=
∏

ℓ

det(1−ℓ−sσℓ | V Iℓ),

where σℓ is the Frobenius substitution at ℓ and where Iℓ ⊆ GQ is any inertia group at ℓ.
It is known to satisfy a functional equation which can compactly be written Λ(π,1− s) =
W(π)Λ(π∨, s), where W(π) is Artin’s root number and Λ(π, s) is the "enlarged" L-function. By
definition, Λ(π, s) is equal to the product f(π)s/2

Γ(π, s)L(π, s), where Γ(π, s)=ΓR(s)d+
ΓR(s+1)d−

(and ΓR(s) :=π−s/2
Γ(s/2)) is the L-factor at ∞ of π. The Galois-Gauss sum of π is defined as

τ(π) = id−√
f(π)W(π∨)= id−

p
f(π)

W(π)
,

see loc. cit., Chapter II, Definition 7.2 and the remark that follows. In particular, when
H(Q,V )= 0, the functional equation yields

(12) L∗(π∨,0) := lim
s→0

L(π∨, s)/sd+
=

τ(π)

2d+
L(π,1)

(−iπ)d− .

Lemma 3.3.1. Keep the notations of Conjecture A. The interpolation property of θρ,ρ+ can be
written as follows:

EXρ,ρ+: for all non-trivial characters η ∈ Γ̂ of exact conductor pn, one has

η(θρ,ρ+)=
τ(η)d−

2d+

Regω+
p
(ρ⊗η)

det(ρ−)(pn)

L
(
ρ⊗η,1

)

(−iπ)d− Regω+
∞(ρ⊗η)

.

EZCρ,ρ+: If W+
p is admissible, then θρ,ρ+ has a trivial zero at the trivial character 1 of order at

least e, and one has

1

e!

de

dseκ
s(θρ,ρ+)

∣∣∣
s=0

= 2−d+
(−1)e

L(ρ,ρ+) E(ρ,ρ+) Regω+
p
(ρ)

L
(
ρ,1

)

(−iπ)d− Regω+
∞ (ρ)

.

Proof. This follows from Formula (12) applied to π= ρ⊗η. �

Lemma 3.3.2. (1) If χ is a Dirichlet character, then τ(χ) is the usual Gauss sum of χ−1,
i.e., τ(χ) = g(χ−1).

(2) We have τ(π) ∈ F× for any splitting field F ⊆Q of π.
(3) If π is unramified at p, then τ(π) is a p-adic unit.
(4) Take π= ρ⊗η with η ∈ Γ̂ and put N = f(ρ), pn = f(η). Then

τ(ρ⊗η)= τ(ρ)g(η−1)d det(ρ)−1(pn)η−1(N).

Proof. The first statement follows from the well-known fact that g(χ−1) = id−
W(χ−1)f(χ)1/2,

and the second statement from Fröhlich’s theorem [Mar77, Chapter II, Theorem 7.2]. For
the third statement, recall first that τ(π) is a product over all primes ℓ of local Galois-Gauss
sums τ(πℓ) ∈Q× attached to the local representation πℓ over Qℓ associated with π (see loc.cit.,
Chapter II, Proposition 7.1). We claim that τ(πℓ) is only divisible by primes above ℓ and
that τ(πp) = 1. Local Galois-Gauss sums are defined with the aid of Brauer induction from
the case of multiplicative characters θ of Gal(Qℓ/M) for a finite extension M/Qℓ (see loc.cit.,
Chapter II, §4. and §2.). It is known that τ(θ) is an algebraic integer dividing the norm
of the local conductor (which is a power of ℓ), and moreover that τ(θ) = 1 whenever both θ
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and M/Qℓ are unramified. This implies easily our claim and (3) as well. Since ρ and η have
coprime conductors, the statement (4) follows from loc. cit., Chapter IV, Exercise 3b). �

Proposition 3.3.3. (1) The statement EXρ,ρ+ in Conjecture A is equivalent to the exis-
tence of an element θ′

ρ,ρ+ ∈ Frac(Λ) which has at most a pole at 1 and which satisfies

the following interpolation property: for all non-trivial characters η ∈ Γ̂ of conductor
pn, we have

η(θ′ρ,ρ+)=
det(ρ+)(pn)

g(η−1)d+ Regω+
p
(ρ⊗η)

L∗ (
(ρ⊗η)∨,0

)

Regω+
∞(ρ⊗η)

.

Moreover, if EXρ,ρ+ holds, then θρ,ρ+ and θ′
ρ,ρ+ are equal up to multiplication by a unit

of Λ.
(2) If EXρ,ρ+ holds and if W+

p is admissible, then EZCρ,ρ+ is equivalent to

1
e!

de

dse
κs(θ′ρ,ρ+)

∣∣∣
s=0

=L(ρ,ρ+) E(ρ,ρ+) Regω+
p
(ρ)

L∗ (
ρ∨,0

)

Regω+
∞(ρ)

.

Proof. By Lemma 3.3.2 (4), the two quotients of p-adic measures θρ,ρ+ and θ′
ρ,ρ+ are re-

lated (when they exist) by the formula θNθ′
ρ,ρ+ = τ(ρ)θρ,ρ+ , where we have written θN =

∏
ℓ|N γ

ordℓ(N)
ℓ

∈ Γ ⊆Λ
× (and where γℓ ∈ Γ is equal to the restriction to Q∞ of σℓ). By Lemma

3.3.2 (3), one has τ(ρ) ∈O×
p , so θρ,ρ+ and θ′

ρ,ρ+ are equal up to a unit of Λ, and the proposition
follows easily. �

3.4. Local and global duality. In order to better describe our Selmer group we first need
to introduce and compare the "unramified condition" and the "f-condition" of Bloch and Kato
for (the dual of) a local Galois representation with finite image. Take any Op-representation
T of the absolute Galois group GF of a finite extension F of Qℓ (including ℓ = p). Assume
that T is of finite image, i.e., the action of GF factors through the Galois group ∆ of a finite
extension L/F. Define D = T⊗Qp/Zp and qT = T∗(1) the arithmetic dual of T. Recall that, if
I ⊆GF is the inertia subgroup of GF and M is a GF -module, then H1

ur(F, M) is the kernel of
the restriction map H1(F, M)−→H1(I, M).
Lemma 3.4.1. (1) If ℓ 6= p, then we have H1

ur(F, qT)⊆H1
f (F, qT) and H1

f (F,D)⊆H1
ur(F,D).

(2) If ℓ= p and if T is unramified, then H1
ur(F,D)=H1

f (F,D).

(3) Under the local Tate pairing H1(F, qT)×H1(F,D) −→Op ⊗Qp/Zp, the H1
f ’s are orthog-

onal complements for any prime ℓ and the H1
ur’s are orthogonal complements for any

prime ℓ 6= p.

Proof. The first point follows from [Rub00, Lemma 3.5]. Let us prove the second statement
and assume now that ℓ = p and that T is unramified. Recall that H1

f (F,D) is by definition
the image of H1

f (F,W) under the map H1(F,W) −→ H1(F,D), where we have put W = T⊗
Qp. Since W is unramified, it is easy to see that H1

f (F,W) = H1
ur(F,W). Moreover, the map

H1
ur(F,W) −→ H1

ur(F,D) is surjective because it coincides with the projection map W∆ ։ D∆

by [Rub00, Lemma 3.2.(i)], where (−)∆ means that we took the ∆-coinvariants. Therefore,
we have H1

ur(F,D) = H1
f (F,D). The third statement is standard (see [BK90, Proposition 3.8]

for Bloch-Kato’s condition and [Rub00, Proposition 4.3.(i)] for the unramified one). �
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For F = Q,Qℓ (for any prime ℓ) and for any compact Op[[GF ]]-module T, define the Iwa-
sawa cohomology along the Zp-cyclotomic extension F∞ =∪nFn of F by letting

H1
Iw,∗(F,T) := lim←−−n

H1
∗(Fn,T) (∗∈ {;, f,ur}),

H1
Iw,f,p(Q,T) := lim←−−n

H1
f,p(Qn,T),

where the subscript f, p in the last global cohomology groups means that we relaxed the
condition of being crystalline at p. We also use the standard notation H1

Iw,/f(Qℓ,T) for the

quotient H1
Iw(Qℓ,T)/H1

Iw,f(Qℓ,T). All these cohomology groups are finitely generated modules
over Λ by Shapiro’s lemma.

We keep the notations of Section 3.2 and we fix a Galois-stable lattice Tp of Wp and any p-
stabilization W+

p of Wp. By semisimplicity of linear representations of finite groups we may

(and we will) identify W−
p with a Gal(Qp/Qp)-stable complement of W+

p in Wp. Let qTp = Tp(1)∗

(resp. qT±
p = T±

p (1)∗) be the arithmetic dual of Tp (resp. of T±
p ). In particular, qT±

p is a free

Op-submodule of qTp of rank d±. We will relate Selstr
∞ (ρ,ρ+) and Sel∞(ρ,ρ+) to the following

three localization maps

Locstr
+ : H1

Iw,f,p(Q, qTp)−→H1
Iw(Qp, qT+

p )

Loc+ : H1
Iw,f(Q, qTp)−→H1

Iw,f(Qp, qT+
p ),

Loc′+ : H1
Iw,f,p(Q, qTp)−→H1

Iw(Qp, qT+
p )

⊕
H1

Iw,/f(Qp, qT−
p ).

For ℓ 6= p, it is known that the quotient of the absolute Galois group of Qℓ,∞ by its inertia sub-
group Iℓ is of order prime to p, so the restriction map H1(Qℓ,∞,D) −→ H1(Iℓ,D) is injective.
This, together with Lemma 3.4.1, implies that

lim−−→
n

H1
f (Qℓ,n,Dp)= lim−−→

n
H1

ur(Qℓ,n,Dp)= 0, and H1
Iw,f(Qℓ, qTp)=H1

Iw,ur(Qℓ, qTp)=H1
Iw(Qℓ, qTp).

Hence, the Selmer group of (ρ,ρ+) fits into an exact sequence

0 X
1
∞(Dp) Sel∞(ρ,ρ+) lim−−→n

(
H1(Qp,n,D+

p)
⊕

H1
f (Qp,n,D−

p)
)

where X
1
∞(Dp) = ker

[
H1(Q∞,Dp)−→

∏
ℓH1(Qℓ,∞,Dp)

]
is the first Tate-Shafarevitch group.

It follows from Poitou-Tate duality [Rub00, Corollary 7.5] that there is a commutative dia-
gram of Λ-modules with short exact rows

(13)

0 X
1
∞(Dp) Sel∞(ρ,ρ+) coker

(
Loc′+

)∨ 0

0 H1
ur(Q∞,Dp) Sel∞(ρ,ρ+) coker(Loc+)∨ 0

0 X
1
∞(Dp) Selstr

∞ (ρ,ρ+) coker
(
Locstr

+
)∨

0,

where H1
ur(Q∞,Dp) = ker

[
H1(Q∞,Dp)−→

∏
ℓH1(Iℓ,Dp)

]
(and where Iℓ is the inertia sub-

group of Qℓ,∞).
We close this section by proving the Weak Leopoldt conjecture for both Wp and qWp =

Wp(1)∗. The proof is self-contained and it won’t use the running assumption that ρ is unram-
ified at p (but p is still be assumed to be odd). Let Σ be a finite set of places of Q containing p
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and all the primes at which ρ is ramified. For i ∈N and T = Tp or qTp define the cohomology
groups Hi

Iw,Σ(Q,T) = lim←−−n
Hi(QΣ/Qn,T), where QΣ/Q is the maximal extension of Q which is

unramified outside Σ and ∞. We will also consider the second (compact) Tate-Shafarevich
groups X

2
∞(T)= ker

[
H2

Iw(Q,T)−→
∏

ℓH2
Iw(Qℓ,T)

]
.

Proposition 3.4.2. (1) We have X2
∞( qTp)≃X

1
∞(Dp)∨ as Λ-modules.

(2) The Weak Leopoldt conjecture along Q∞/Q for Wp and qWp holds, that is, the Λ-modules
H2

Iw,Σ(Q,Tp) and H2
Iw,Σ(Q, qTp) are torsion.

Proof. The first statement follows from Poitou-Tate duality (see, for instance, [Mil86, Theo-
rem 4.10.(a)]). Let us first prove the Weak Leopoldt conjecture for Wp. By [PR95, Proposition
1.3.2], it is equivalent to H2(QΣ/Q∞,Dp) = 0. As Gal(QΣ/Q∞) has cohomological dimension 2,
this module is p-divisible because Dp is. It is thus enough to show that H2(QΣ/Q∞,Dp)∨ is a
torsion Λ-module, which has already been shown in the proof of [Mak20, Proposition 2.5.5].
Consider now the Weak Leopoldt Conjecture for qWp. Since the groups H2

Iw(Qℓ, qTp) for ℓ ∈ Σ

are torsion Λ-modules (for ℓ = p as well) by Tate’s local duality, it is enough to show that
X

2
∞( qTp) is of Λ-torsion, or equivalently, that X

1
∞(Dp) is of Λ-cotorsion by the first point.

Recall that we denoted by G = Gal(H/Q) the Galois group of the extension cut out by ρ and
that we let H∞ = HQ∞. The inflation-restriction exact sequence shows that the kernel of the
restriction map

H1(Q∞,Dp)−→H1(H∞,Dp)=Hom(GH∞ ,Dp)

is killed by #G, so it is the same for its Pontryagin dual. Therefore, it is enough to show that
the image of X1

∞(Dp) under this restriction map is Λ-cotorsion. But its image lies inside
the submodule of morphisms σ : GH∞ −→ Dp which factor through the Galois group A∞ of
the maximal abelian pro-p extension of H∞ which is everywhere unramified. By Iwasawa’s
classical results [Iwa73], A∞ is of Λ-torsion, so Hom(A∞,Dp) = Hom(A∞,Qp/Zp)⊗Tp is Λ-
cotorsion as well as X1

∞(Dp). �

3.5. Limits of unit groups. The various cohomology groups introduced in Section 3.4 can
usefully be described in terms of ideal class groups and of unit groups.
Notation 3.5.1. Let n ≥ 0 be an integer and let w be a p-adic place of H. We still denote by
w the unique place of Hn above H, and we let

• An be the p-part of the ideal class group of Hn, and A′
n its quotient by all the classes

of p-adic primes of Hn,
• O×

Hn
(resp. OHn [ 1

p ]×) be the unit group (resp. the group of p-units) of Hn,
• Un (resp. U ′

n) be the pro-p completion of the unit group (resp. of the group of p-units)
of Hn,

• Un,w (resp. U ′
n,w) be the pro-p completion of the unit group (resp. of the group of

non-zero elements) of Hn,w.

We also let A∞, A′
∞,U∞,U ′

∞,U∞,w,U ′
∞,w respectively be the projective limits of the preceding

groups, where the transition maps are the (global or local) norm maps. All of these groups
are Zp-modules but we will keep the same notations for the Op-modules that are obtained
after tensoring with Op by a slight abuse of notation.

Fix as in Section 3.2 a Galois-stable Op-lattice Tp and a p-stabilization W+
p of Wp. We also

keep the notations of Section 3.4.
Lemma 3.5.2. Let Gp be the decomposition subgroup of G at the place w determined by ιp
and let • ∈ {;,+,−}.
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(1) The restriction maps on cohomology groups induce the following natural isomorphisms:

H1
Iw,f,p(Q, qTp)≃HomG(Tp,U ′

∞), H1
Iw(Qp, qT•

p)≃HomG p(T•
p,U ′

∞,w),

H1
Iw,f(Q, qTp)≃HomG(Tp,U∞), H1

Iw,f(Qp, qT•
p)≃HomG p(T•

p,U∞,w).

(2) The Λ-modules X1
∞(Dp)∨ and HomG(Tp, A′

∞) are isomorphic after tensoring with Qp

(as Λ⊗Qp-modules). They are isomorphic as Λ-modules if we assume that p does not
divide the order of G.

(3) The Λ-modules X1
∞(Dp) and HomG(A′

∞,Dp) are pseudo-isomorphic.

Proof. We will derive the isomorphisms from Kummer theory and from the injectivity (resp.
bijectivity) of restriction maps between certain local (resp. global) cohomology groups. Fix an
integer n ≥ 0, a prime number ℓ (including ℓ= p) and let λ|ℓ be the prime of Hn determined
by ιℓ. As in Section 3.4, let QΣ be the largest extension of Q (or, equivalently, the largest
extension of Hn) which is unramified outside Σ and ∞. Consider the finite field extension
F ′/F and the Galois groups G′ ⊆G given either by

• Hn/Qn and G′ =Gal(QΣ/Hn), G=Gal(QΣ/Qn) (first case),
• or by Hur

n,w/Qur
n,w and G′ =Gal(Qp/Hur

n,w), G=Gal(Qp/Qur
n,w) (second case),

• or by Hn,λ/Qn,λ and G′ =Gal(Qℓ/Hn,λ), G=Gal(Qℓ/Qn,λ) (third case).

Note that G/G′ can be identified with G in the first case (because H in unramified at p) and
with Gp in the third case when ℓ= p. Since F ′ never contains Q(µp∞ ), we have in all three
cases H0(G′, qTp) = T∗

p ⊗H0(G′,Zp(1)) = 0. Moreover, Hochschild-Serre’s spectral sequence ap-

plies to qTp in the first case and the third case with ℓ 6= p by [Rub00, Appendix B, Proposition
2.7], so the restriction map

Hi(G, qTp)−→H0(G/G′,Hi(G′, qTp)), (i = 1,2)

is bijective when i = 1, and surjective when i = 2. It is also injective when i = 1 in all three
cases by the inflation-restriction exact sequence.

Let us first prove the first isomorphism of (1). By taking inverse limits in the first case
with i = 1, the restriction map gives an isomorphism H1

Iw,Σ(Q, qTp)≃H1
Iw,Σ(H, qTp)G . Moreover,

this isomorphism sends H1
Iw,f,p(Q, qTp) onto H1

Iw,f,p(H, qTp)G by the injectivity of the local re-
striction maps (third case, ℓ ∈ Σ− {p}, i = 1). We compute this last module as follows: since
GH acts trivially on Tp, it is equal to HomG(Tp,H1

Iw,f,p(H,Op(1))). But Kummer theory natu-

rally identifies H1
Iw,f,p(H,Op(1)) with U ′

∞, so our claim follows. The three other isomorphisms
in (1) are proven with similar arguments.

We now study X
1
∞(Dp)∨, which is known to be isomorphic to X2

∞( qTp) by Proposition 3.4.2.
The Hochschild-Serre spectral sequence provides in our setting a commutative diagram with
exact rows

0 H1(G,H1
Iw,Σ(H, qTp)) H2

Iw,Σ(Q, qTp) H2
Iw,Σ(H, qTp)G 0

0
∏

ℓ∈ΣH1(G,
∏

λ|ℓH1
Iw(Hλ, qTp))

∏
ℓ∈ΣH2

Iw(Qℓ, qTp)
(∏

λ|ℓ∈ΣH2
Iw(Hλ, qTp)

)G
0.

α

The cohomology groups H1(G,−) on the left are killed by the order #G of G, so they vanish
after tensoring with Qp or whenever p is coprime to #G. Therefore, in order to prove the
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claim (2) it suffices to check that the module X
2
∞(H, qTp)G = kerα can be identified with

HomG(Tp, A′
∞). But again, GH acts trivially on Tp so it is enough to see that X2

∞(H,Op(1))≃
A′

∞, which is classical (see for instance [Nek06, (9.2.2.2)]).
The proof of last statement also uses inflation-restriction and is nearly identical to the

proof of [Mak20, Lemme 2.2.2], once we identify A′
∞ with the Galois group of the maximal

abelian pro-p extension of H∞ which is unramified everywhere and in which all primes
above p split completely. �

Lemma 3.5.3. Assume that U is a free Λ-module of finite rank endowed with a Λ-linear
action of G. Then the module Z =HomG(Tp,U) is also Λ-free.

Proof. First recall that any finitely generated Λ-module V is free if and only if VΓ vanishes
and VΓ is Op-free (see for example [Bel02, Lemme 1.1]). We already have ZΓ =HomG(Tp,UΓ)=
0. It is thus enough to check that ZΓ has no Op-torsion, and this will follow from the fact
that ZΓ injects into the torsion-free Op-module HomG(Tp,UΓ). Let us first check that (γ−
1)HomG(Tp,U)= HomG(Tp, (γ−1)U), where γ is a topological generator of Γ. The inclusion
⊆ is obvious, so we only consider the reverse inclusion ⊇ and we take α∈HomG(Tp, (γ−1)U).
As Tp is Op-free, one may write α = (γ−1)β for some Op-linear map β : Tp −→ U . As the
G-action is assumed to be Λ-linear, for all g ∈ G and t ∈ Tp we have β(g.t)− g.β(t) ∈UΓ = 0,
so β ∈HomG(Tp,U) and α ∈ (γ−1)HomG(Tp,U) as claimed. Therefore, we have

ZΓ =HomG(Tp,U)/(γ−1)HomG(Tp,U)=HomG(Tp,U)/HomG(Tp, (γ−1)U)

,→ HomG(Tp,U /(γ−1)U)=HomG(Tp,UΓ),

as wanted. �

Lemma 3.5.4. (1) The Λ-modules H1
Iw,f,p(Q, qTp) and H1

Iw,f(Q, qTp) are both free of rank d+.

(2) If coker(Loc+) is of Λ-torsion, then the modules coker
(
Loc′+

)
, coker

(
Loc′+

)
and the

Selmer groups X∞(ρ,ρ+) and X str
∞ (ρ,ρ+) are all of Λ-torsion, and moreover ker(Loc+)=

ker
(
Loc′+

)
= ker

(
Locstr

+
)
= 0.

Proof. Since H is unramified at p, we have µp 6⊆ H so the Λ-modules U∞ and U ′
∞ are free

by [Bel02, Théorème 1.5 and Corollaire 1.6]. Thus, both Iwasawa cohomology groups are
Λ-free by Lemmas 3.5.2 and 3.5.3. Moreover, the validity of the Weak Leopoldt conjecture
(Proposition 3.4.2 (2)) implies that they are both of rank d+ over Λ. Let us treat (2) and
assume that coker(Loc+) is of Λ-torsion. As in the proof of Proposition 3.4.2, one checks
that the Λ-module H1

ur(Q∞,Dp) is co-torsion because A∞ is of Λ-torsion. Thus, the claims
of torsionness of (2) all follow from the commutative diagram (13). Moreover, the source
and the target of Loc+ have the same rank and the source is torsion-free, so ker(Loc+) must
vanish. Since the two other kernels are submodules of ker(Loc+), they must be trivial as
well. �

3.6. Torsionness of Selmer groups. For any character η ∈ Γ̂ factoring through Γm but not
through Γm−1 for some m≥ 0, let M[η]= M⊗Λ,ηQp be the η-isotypic component of a Λ-module
M, and let

| · |η :
{

U ′
∞ −→ U ′

m[η]
(un)n≥0 7→ eη.um,

where eη ∈ Qp[Γm] is the idempotent attached to η (see Section 2.1), and where Um is seen
as a Λ-module via the projection map Λ։Op[Γm].
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Lemma 3.6.1. Let η be a non-trivial character of Γ of conductor pn. Consider the following
commutative diagram

HomG(Tp,U∞)[η] HomG(Tp,Un−1)[η]

HomG(Tp,U ′
∞)[η] HomG(Tp,U ′

n−1)[η],

where the horizontal maps are induced by | · |η. Then all the four maps are isomorphisms.

Proof. Since Γ acts trivially on the quotient U ′
∞/U∞ (resp. U ′

n−1/Un−1) and since η is non-
trivial by assumption, we have U∞[η] =U ′

∞[η] (resp. Un−1[η] =U ′
n−1[η]), so the two vertical

maps are isomorphisms. Hence, we only have to show that the bottom horizontal map is an
isomorphism. By Lemmas 3.5.2 (1) and 3.5.4 (1), its domain has dimension d+ over Qp, as
well as for its codomain because η 6= 1. Therefore, it is enough to check its injectivity, which
easily follows from the fact that the projection map injects (U ′

∞)
Γpn−1 into U ′

n−1 by [Kuz72,
Theorem 7.3]. �

Remark 3.6.2. The Qp-vector space HomG(Tp,Un−1)[η] in Lemma 3.6.1 can be identified
with HomGQ

(Wp,η,Un−1 ⊗Qp), and hence with Qp ⊗E H1
f ((ρ⊗η)∨(1)).

Fix a eigenbasis ω+
p = t1 ∧ . . .∧ td+ of T+

p for the action of Gp and let δ1, . . . ,δd+ : Gp −→O×
p

be the corresponding characters. The number of δi ’s which are trivial is f − e, where f =
dimH0(Qp,Wp) and e = dimH0(Qp,W−

p ). We define two composite maps
(14)

Cω+
p

:
∧d+

HomG(Tp,U∞)
∧d+

HomG p(Tp,U∞,w)
∧d+

(⊕d+

i=1 Uδi
∞,w

)
Λ,

C
str
ω+

p
:
∧d+

HomG(Tp,U ′
∞)

∧d+
HomG p(Tp,U ′

∞,w)
∧d+

(⊕d+

i=1(U ′
∞,w)δi

)
I f−e,

∧Loc+
∧evω+p

≃
∧i Colδi

≃

∧Locstr
+

∧evω+p
≃

∧iC̃ol
δi

≃

where the map evω+
p

is the natural map induced by the evaluation at t1, . . . , td+ , where the
last maps are the one of Definitions 2.2.1 and 2.2.3 and where I is the invertible ideal of Λ
introduced in Definition 2.2.3 for O=Op. Once we fix a topological generator of Γ and thus
an isomorphism Λ≃Op[[T]], I f−e is nothing but T−(f−e)

Λ⊆Frac(Λ).
Lemma 3.6.3. Fix an eigenbasis ω+

p of T+
p for Gp and let ω=Ψ1 ∧ . . .∧Ψd+ be an element of

∧d+
HomG(Tp,U∞) (resp. of

∧d+
HomG(Tp,U ′

∞)). Then for all non-trivial characters η ∈ Γ̂ of
conductor pn, the image θ of ω under Cω+

p
(resp. under C str

ω+
p

) satisfies

η(θ)=
(

pn−1

g(η−1)

)d+

det(ρ+)(pn)det
(
logp |Ψ j(t i)|η

)
1≤i, j≤d+ .

Proof. Let βi = δi(σp) for all 1 ≤ i ≤ d+. Note that det(ρ+)(p) =
∏d+

i=1βi. In the case where
θ =Cω+

p
(ω), Lemma 2.1.3 shows that

η(θ)= det
(

pn−1

g(η−1)
βn

i logp |Ψ j(t i)|η
)

1≤i, j≤d+

=
(

pn−1

g(η−1)

)d+

det(ρ+)(pn)det
(
logp |Ψ j(t i)|η

)
1≤i, j≤d+
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for any η ∈ Γ̂ of conductor pn > 1. Since C str
ω+

p
extends Cω+

p
, the case where θ =C str

ω+
p

(ω) follows

from the first one, noting that for non-trivial η ∈ Γ̂, the maps η◦Cω+
p

and η◦C str
ω+

p
both factor

through HomG(Tp,U∞)[η]=HomG(Tp,U ′
∞)[η] and that they clearly coincide on it. �

Theorem 3.6.4. Fix a basis ω+
p of T+

p . The following conditions are equivalent:

(i) X∞(ρ,ρ+) is a torsion Λ-module,
(ii) coker(Loc+) is a torsion Λ-module,

(iii) there exists a non-trivial character η of Γ of finite order such that Regω+
p
(ρ⊗η) 6= 0,

(iv) for all but finitely many characters η of Γ of finite order, one has Regω+
p
(ρ⊗η) 6= 0.

Moreover, if these equivalent conditions hold and if d+ > 0, then there exists linearly inde-
pendent elements Ψ1, . . . ,Ψd+ ∈ HomG(Tp,U∞) which only depend on Tp and there exists a

generator θ
alg
ρ,ρ+ of the characteristic ideal of X∞(ρ,ρ+) such that

(15) η(θalg
ρ,ρ+)=

τ(η)d−

τ(ρ⊗η)

p(n−1)·d+

det(ρ−)(pn)
·det

(
logp |Ψ j(t i)|η

)
1≤i, j≤d+ ,

for all non-trivial characters η ∈ Γ̂ of conductor pn, where we have written ω+
p = t1∧ . . .∧ td+ .

Proof. We may assume without loss of generality that the basis ω+
p = t1 ∧ . . .∧ td+ of T+

p is
an eigenbasis for Gp. The equivalence of (i) and (ii) follows from Lemma 3.5.4. We now
show the equivalence of the three last statements and we will use Lemma 3.5.2 to identify
the source and the target of Loc+ with the respective Hom’s, which are known to both be
free of rank d+ over Λ by Lemma 3.5.4. The statement (ii) is equivalent to the injectivity
of Loc+, which in turn is equivalent to the injectivity of Cω+

p
, i.e., to the non-vanishing of

θ
alg
1 :=Cω+

p
(ω̃), where ω̃= Ψ̃1∧ . . .∧Ψ̃d+ is a Λ-basis of HomG(Tp,U∞). Moreover, if (ii) holds,

then the characteristic ideal of coker(Loc+) is generated by θ
alg
1 . By Lemma 3.6.3, for any

character η ∈ Γ̂ of conductor pn > 1, one has

η(θalg
1 )=

(
pn−1

g(η−1)

)d+

det(ρ+)(pn)det
(
logp |Ψ̃ j(t i)|η

)
1≤i, j≤d+ .

Since the image of the basis Ψ̃1, . . . ,Ψ̃d+ under | · |η is a Qp-basis of Qp ⊗E H1
f ((ρ⊗η)∨(1)) by

Lemma 3.6.1 and Remark 3.6.2, the last d+× d+-sized determinant is a non-zero multiple
of Regω+

p
(ρ⊗η). Therefore, by Weierstrass preparation theorem, one has θ

alg
1 6= 0 if and only

if Regω+
p
(ρ⊗η) 6= 0 for some character η 6= 1, if and only if Regω+

p
(ρ⊗η) 6= 0 for all but finitely

many characters η 6=1. This shows the equivalence (ii)⇔(iii)⇔(iv).
Let us now assume (i)-(iv) and let θalg

2 be a generator of charΛH1
ur(Q∞,Dp)∨. By the exact-

ness of the second row of the diagram (13) and by multiplicativity of characteristic ideals, the
p-adic measure θ

alg
ρ,ρ+ := θ

alg
1 θ

alg
2 is a generator of charΛX∞(ρ,ρ+). If one moreover assumes

d+ > 0, then one can simply set Ψ1 = τ(ρ)−1 ·θN ·θalg
2 Ψ̃1,Ψ2 = Ψ̃2, . . . ,Ψd+ = Ψ̃d+ , where θN

is as in the proof of Proposition 3.3.3, and Formula (15) follows by linearity from the above
expression of η(θalg

1 ). �

3.7. An L-invariant for (ρ,ρ+). We define in this section an L-invariant for ρ which will
depend on the choice of an admissible p-stabilization W+

p of Wp. Its definition still makes
sense for ρ ramified at p and it generalizes Gross’s L-invariant (see Section 6.3). We put
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U = Ep ⊗U0 and U′ = Ep ⊗U ′
0, where U0 (resp. U ′

0) is the formal p-adic completion of the
group of global units (resp. of p-units) of H (see Notation 3.5.1 for n = 0). Recall that
the extension K of Qp cut out by ρ|GQp

is assumed to be contained in Ep. Recall also that

H1
f ,p(Q, qWp)≃HomG(Wp,U′). The p-adic valuation map and the p-adic logarithm map define

two GQp-equivariant maps ordp :U′ −→ Ep and logp :U′ −→ K ⊗Ep where the GQp-action on
the target of the first map is trivial. These maps give rise to two linear maps

ord0
p :HomG(Wp,U′)−→HomG p(Wp,Ep)=Hom(W0

p ,Ep)

logp :HomG(Wp,U′)−→HomG p(Wp,K ⊗Ep)≃Hom(Wp,Ep),

where we have put W0
p = H0(Qp,Wp) and where the last isomorphism is induced by the in-

ternal multiplication K ⊗Ep → Ep. Choose any GQp -stable complement W−
p of W+

p and let

W±,0
p =H0(Qp,W±

p ). The composition with restriction maps yields the following maps

ord±,0
p = resW±,0

p
◦ord0

p, log+
p = resW+

p
◦ logp, log−,0 = resW−,0

p
◦ logp,

which can be combined in order to obtain two linear maps

HomG(Wp,U′) Hom(W0
p ,Ep)

⊕
Hom(W+

p ,Ep)=: Z.
ord0

p⊕log+p

ord+,0
p ⊕log−,0

p ⊕log+p

Note that W+
p is admissible if and only if the restriction of log+

p to H1
f (Q, qWp) = HomG(Wp,U)

is an isomorphism onto Hom(W+
p ,Ep). Therefore, the map ord0

p ⊕ log+
p is an isomorphism.

Definition 3.7.1. Let W+
p ⊆ Wp be an admissible p-stabilization of ρ. We define the L-

invariant attached to (ρ,ρ+) as to be

L(ρ,ρ+)= det
((

ord+,0
p ⊕ log−,0

p ⊕ log+
p

)
◦
(
ord0

p ⊕ log+
p

)−1
∣∣∣ Z

)
∈ Ep.

We now give equivalent and more useful definitions of L(ρ,ρ+). Fix bases ω+
p = t+1 ∧. . .∧ t+d+

and ω
−,0
p = t−1 ∧ . . .∧ t−e of W+

p and of W−,0
p respectively. Then one may identify Z with d++ f

copies of Ep and L(ρ,ρ+) will satisfy

(∧ord+,0
p )∧ (∧ log−,0

p )∧ (∧ log+
p)=L(ρ,ρ+) · (∧ord0

p)∧ (∧ log+p)

in
∧d++f Hom(Hom(Wp,U′),Ep)= detE p Hom(H1

f,p(Q, qWp),Ep).

The kernel of ord+,0
p contains HomG(Wp,U) and is of dimension d++ e because W+

p is ad-

missible. Choose any basis ψ1∧ . . .∧ψd+ ∧ψ′
1∧ . . .∧ψ′

e of ker
(
ord+,0

p

)
such that ψ1∧ . . .∧ψd+

is a basis of HomG(Wp,U), and define the following matrices with coefficients in Ep:

A± =
[
logp

(
ψ j(t

±
i )

)]
i, j

, B± =
[
logp

(
ψ′

j(t
±
i )

)]
i, j

, O− =
[
ordp

(
ψ′

j(t
−
i )

)]
i, j

.

The square matrices A+, B− and O− have respective sizes d+, e and e. The determinant
of A+ is non-zero and it is equal to Regω+

p
(ρ) modulo E× if the basis ψ1 ∧ . . .∧ψd+ is taken

E-rational (see (8)). Also, O− is invertible.
Lemma 3.7.2. L(ρ,ρ+) can be expressed as a quotient of determinants as follows:

L(ρ,ρ+)=
det

(
A+ B+

A− B−

)

det(A+) ·det(O−)
.
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Proof. It is a simple computation of linear algebra. �

3.8. Relation to Perrin-Riou’s theory. Let M be the Artin motive attached to ρ and let
qM = M∗(1) be its dual. Then qM is a pure motive of weight −2 over Q which is crystalline at p

and whose p-adic realization is the arithmetic dual |Wp =W∗
p (1) of Wp. We relate our Selmer

group defined in Section 3.2 to Perrin-Riou’s definition of the module of p-adic L-functions
attached to qM given in [PR95] by using Benois’ interpretation in terms of Selmer complexes.
It depends on the choice of a Galois stable Op-lattice Tp of Wp and of a regular subspace D
of Dcrys( qWp) whose definition is first recalled.

Let Gp = Gal(K /Qp) and assume as before that K ⊆ Ep. Let t ∈ Bcrys be Fontaine’s p-adic

period. The Dieudonné module Dcrys( qWp)=
(

qWp ⊗Bcrys

)GQp
can be described as

(16) Dcrys( qWp)≃HomG p

(
Wp, t−1K ⊗Ep

)
≃Hom

(
Wp,Ep

)
,

where K is seen as a Gp-module for the obvious action and where the second isomorphism
is induced by the internal multiplication t−1K ⊗Ep ≃ K ⊗Ep −→ Ep. The action of the crys-
talline Frobenius ϕ is given on Hom

(
Wp,Ep

)
by ϕ( f )(w)= p−1 f (σ−1

p .w), where σp ∈Gp is the
arithmetic Frobenius at p.

Any ϕ-submodule D of Dcrys( qWp) gives rise to a regulator map rD given by the composition

rD : H1
f (Q, qWp) H1

f (Qp, qWp) Dcrys( qWp) Dcrys( qWp)/D,
locp logBK

where locp is the localization at p, where logBK is Bloch-Kato’s logarithm. The ϕ-module D
is called regular whenever rD is an isomorphism (see [Ben14, §4.1.3]).
Lemma 3.8.1. Under the identification (16) any ϕ-submodule D of Dcrys( qWp) of Ep-dimension
d− can be uniquely written as D =Hom

(
Wp/W+

p ,Ep
)

where W+
p is a p-stabilization of Wp, and

any p-stabilization W+
p of Wp defines a ϕ-submodule in this way. It is moreover regular if and

only if W+
p is admissible.

Proof. The first claim is obvious. Let us prove the second claim and put D =Hom(Wp/W+
p ,Ep),

where W+
p is a p-stabilization of Wp. Under the identification (16) the composite map logBK ◦locp

coincides with the composite map given in (10). Therefore, rD coincides with the map
H1

f (Q, qWp) −→ Hom(W+
p ,Ep) induced by the p-adic pairing (3), which, by definition, is an

isomorphism if and only if W+
p is admissible. �

Given a pure motive of weight −2 whose p-adic realization V satisfies conditions (C1-

C5) of [Ben14, §4.1.2] and given a regular submodule D of Dcrys(V ), Benois has defined an
L-invariant L(V ,D) [Ben14, §4.1.4]. It is not hard to see that V = qWp satisfies the above-
mentioned conditions: the first one follows from the finiteness of the ideal class group of H,
the second one from the running assumption H0(Q,W) = 0, the third and fourth ones from
the unramifiedness assumption at p and from the semi-simplicity of ρ(σp), and the last one
is true whenever there exists at least one regular submodule D of Dcrys( qWp).
Lemma 3.8.2. Let W+

p be an admissible p-stabilization of Wp, let V = qWp be the p-adic

realization of qM and let D be the regular submodule of Dcrys(V ) defined as in (16). Then
L(ρ,ρ+) = (−1)eL(V ,D), where L(V ,D) is Benois’ L-invariant for V and D as defined in
[Ben14, §4.1.4].
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Proof. Unwinding Benois’ definition shows that L(V ,D) is (−1)e times the quotient of deter-
minants appearing in Lemma 3.7.2, so it is equal to (−1)eL(ρ,ρ+) by the same lemma. �

The main algebraic object in Perrin-Riou’s formulation of Iwasawa theory for a motive
that is crystalline at p is the module of p-adic L-functions, introduced and studied in [PR95,
Chapter 2] and later interpreted (and generalized) in [Ben14, §6.2.3] in terms of Selmer
complexes. Its definition only makes sense when L(V ,D) 6= 0 and under the Weak Leopoldt
conjecture for V and for qV =V∗(1) together with conditions (C1-C5) of loc. cit.. It is denoted
by L

(η0)
Iw,h(N,T) in loc. cit. and it depends on the choice of a GQ-stable lattice T of V , on the

choice of a Op-lattice N of a regular submodule D of Dcrys(V ) and on a parameter h > 0.
We consider here the case of the dual motive qM of ρ. More precisely, let Tp be a GQ-stable

lattice of Wp and let W+
p be an admissible p-stabilization of Wp. We put V = qWp, T = qTp and

V− = qW−
p = ­(Wp/W+

p ). Under the identification (16), we define a regular submodule of Dcrys(V )
by letting D = Dcrys(V−)=HomG p(W−

p , t−1K⊗Ep) (see Lemma 3.8.1). Explicitly, Bloch-Kato’s
logarithm map for V− is the isomorphism

(17) H1
f (Qp,V−)=HomG p (W−

p ,O×,1
K ⊗Ep)

∼−→HomG p(W−
p , t−1K ⊗Ep)= D

induced by the p-adic logarithm logp : O×,1
K

∼−→ pOK ⊆ K ≃ t−1K , where O
×,1
K is the group of

principal units of K . We define N ⊆ D as to be HomG p(T−
p , t−1 pOK ⊗Op), so that the map

in (17) sends H1
f (Qp, qT−

p ) onto N. We also may set h = 1 in the definition of the module of

p-adic L-functions for qM since the GQp-representation V is the Tate twist of an unramified
representation.
Proposition 3.8.3. Assume that W+

p is admissible and that L(ρ,ρ+) 6= 0. Then X∞(ρ,ρ+) is

of Λ-torsion, and we have L
(η0)
Iw,h(N,T)= charΛX∞(ρ,ρ+).

Proof. Fix a topological generator γ of Γ and let

H=
{

f (γ−1) | f (X )∈ Ep[[X ]] is holomorphic on the open unit disc
}

be the large Iwasawa algebra. Consider the complex of H-modules RΓ
(η0)
Iw,h(D,V ) defined in

[Ben14, §6.1.2]. Note that it is possible because we already checked conditions (C1-5) and
because the Weak Leopoldt conjecture for V and V∗(1) holds by Proposition 3.4.2. It is a
Selmer complex in the sense of [Nek06, (6.1)] given by the following local conditions: at fi-
nite primes ℓ 6= p we take the unramified condition, and at p we take the derived version of
Perrin-Riou’s exponential map ExpV ,h : (N⊗Λ)⊗ΛH−→H1

Iw(Qp, qT−
p )⊗ΛH⊆H1

Iw(Qp,T)⊗ΛH.
As explained in [PR94, §4.1.3-5], the map ExpV ,h is induced by the inverse of Coleman’s iso-

morphism ColN : H1
Iw,f(Qp, qT−

p )
∼−→ N ⊗Λ. Since H is flat over Λ, the complex RΓ

(η0)
Iw,h(D,V )

is a base change to H of a Selmer complex RΓIw(ρ,ρ+) over Λ given by the unramified con-
dition at ℓ 6= p, and at p by the morphism of complexes N ⊗Λ[−1] −→ RΓIw(Qp,T) induced
by (ColN )−1 in degree 1. By [Ben14, Theorem 4], the Λ-module Ri

ΓIw(ρ,ρ+) vanishes when
i 6= 2 and it is of Λ-torsion for i = 2. Moreover, as in [Ben14, §6.1.3.3] we have a short exact
sequence

0 coker(Loc′+) R2
ΓIw(ρ,ρ+) X

2
∞( qTp) 0,
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where Loc′+ is the localization map introduced in Section 3.4. It follows easily from the
exactness of the first row of (13) and from Proposition 3.4.2 that X∞(ρ,ρ+) is also of Λ-
torsion, and that it shares the same characteristic ideal with R2

ΓIw(ρ,ρ+), the latter being
equal to L

(η0)
Iw,h(N,T) by construction. �

Corollary 3.8.4. Assume that W+
p is admissible and that L(ρ,ρ+) 6= 0. If Conjecture A holds,

then the p-part of Bloch-Kato’s conjecture (in the formulation of Fontaine and Perrin-Riou,
[FPR94, III, 4.5.2]) holds for the Artin motive associated with ρ, that is,

L∗ (
ρ∨,0

)

Regω+
∞(ρ)

∼p

#X(Tp) ·
∏

ℓ 6=p #
(
H1(Iℓ, qTp)GQℓ

)
tors

#H0(Q,Dp)
,

where a ∼p b means that a and b are equal up to a p-adic unit, where Regω+
∞(ρ) is computed

with respect to Tp-optimal bases ω+
∞ and ωf of H0(R,W) and H1

f (ρ∨(1)) respectively, where
X(Tp) is the Tate-Shafarevitch group of Tp [FPR94, II,5.3.4] and where Iℓ is the absolute
inertia group at ℓ. In particular, when p does not divide the order of the image of ρ, one has

L∗ (
ρ∨,0

)

Regω+
∞(ρ)

∼p #HomOp[G](Tp,Op ⊗Z Cℓ(H)),

where Cℓ(H) is the ideal class group of the field H cut out by ρ.

Proof. Assume Conjecture A for (ρ,ρ+) and consider the p-adic measure θ′
ρ,ρ+ of Proposition

3.3.3. Fix a Tp-optimal basis ω+
p of W+

p . By IMCρ,ρ+ , the p-adic analytic function Lp : s 7→
κs(θ′

ρ,ρ+) is equal (up to a unit) to the one denoted LIw,h(T, N, s) in [Ben14, §6.2.3]. Therefore,
[Ben14, Corollary 2], together with a comparison of the p-adic regulators and of the modified
Euler factors and with a straightforward computation of the local Tamagawa numbers (as in
[FPR94, I, 4.2]), shows that

1

e!
·

L(e)
p (0)

Regω+
p
(ρ)

∼p L(ρ,ρ+) ·E(ρ,ρ+) ·
#X(Tp) ·

∏
ℓ 6=p #

(
H1(Iℓ, qTp)GQℓ

)
tors

#H0(Q,Dp)
,

so we obtain the desired formula from EZCρ,ρ+ after simplification by L(ρ,ρ+) ·E(ρ,ρ+) 6= 0.
We now explain how to simplify the formula in the case where p does not divide the order

of G. It is plain that H0(Q,Dp) ,→ H1(G,Tp) = 0. To see that the local Tamagawa numbers
are all trivial, let us fix any prime ℓ 6= p. By [Rub00, Lemma 3.2 (ii) and Lemma 3.5 (ii-iii)],

one has
(
H1(Iℓ, qTp)GQℓ

)
tors

≃Wσℓ=1, where W is the quotient of qD Iℓ
p by its divisible part. But

the action of Iℓ on qDp factors through a finite group of prime-to-p order, so we must have
W = 0. Finally, the description of X(Tp) in terms of class groups directly follows from the
inflation-restriction exact sequence. �

We end this section with some applications of our results to a generalization of the ρ-
isotypic part of "Gross’s finiteness conjecture" appearing in [BKS17, Theorem 1.1]:
Conjecture 3.8.5. Let A′

∞ = lim←−−n
A′

n be the inverse limit over n of the p-split ideal class
group of Hn (see Notation 3.5.1). Then the module of Γ-coinvariants of HomG(Tp, A′

∞) is
finite.
Theorem 3.8.6. Let f = dimH0(Qp,Wp).
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(1) Let W+
p be any admissible p-stabilization of Wp such that L(ρ,ρ+) 6= 0. Any genera-

tor of the characteristic ideal of X∞(ρ,ρ+) belongs to Ae\Ae+1, where A ⊆ Λ is the
augmentation ideal and where e = dimH0(Qp,W−

p ).
(2) If there exists at least one admissible p-stabilization W+

p of Wp such that L(ρ,ρ+) 6= 0,
then Conjecture 3.8.5 holds.

(3) If f = 0 and if the ρ-isotypic component of Leopoldt’s conjecture for H and p holds (see
(11)), then Conjecture 3.8.5 holds as well.

(4) If f , d+≤ 1, then Conjecture 3.8.5 holds.

Proof. The first statement follows from Proposition 3.8.3 and from [Ben14, Theorem 5 (i)].
For the three other statements, first note that, by the exactness of the third row of (13),
by Proposition 3.4.2 (1) by Lemma 3.5.2 (ii), the existence of a p-stabilization ρ+ such that
X str

∞ (ρ,ρ+) has finite Γ-coinvariants immediately implies Conjecture 3.8.5. Therefore, claim
(2) follows from (1) and from Lemma 3.2.2. Consider (3) and assume that f = 0 and that the
map in (11) is injective for η=1. By Lemma 3.1.4, there exists an admissible p-stabilization
ρ+ of ρ, and since f = 0, one must have e = 0 as well. Therefore, L(ρ,ρ+)= 1 by Lemma 3.7.2,
so (3) follows from (2). Let us prove (4), and assume that f , d+ ≤ 1. When d+ = 1, it is easy
to produce a motivic p-stabilization ρ+ such that e = 0, so L(ρ,ρ+) = 1 (take W+

p containing
H0(Qp,Wp)). Since every motivic p-stabilization is automatically admissible by Lemma 3.1.3,
Conjecture 3.8.5 follows in this case from (2). The case where d+ = 0 follows from [Gro81,
Proposition 2.13], once we have checked that L(ρ,ρ+) generalizes Gross’s regulator for ρ+ = 0
(see Section 6.3 for details). �

3.9. Changing the p-stabilization. Let t1, . . . , td be an eigenbasis of Tp for σp. We may
define a basis of

∧d+
Wp by letting ω+

p,α = t i1 ∧ . . .∧ t id+ , where α = (1 ≤ i1 < . . . < id+ ≤ d)
runs over the set I of strictly increasing sequences of d+ integers between 1 and d. For
each α ∈ I, ω+

p,α defines a Tp-optimal basis of a p-stabilization (ρ+
α,W+

p,α) of Wp. Let ω+
p ∈

∧d+
Wp be a Tp-optimal eigenbasis of a given p-stabilization (ρ+,W+

p ) of Wp. Write ω+
p as∑

α∈I cα ·ω+
p,α for cα ∈ Op. Writing ω+

p as a pure tensor and expanding in the eigenbasis
t1, . . . , td shows that, for any α ∈ I, we have cα = 0 unless ρ+(σp) and ρ+

α(σp) share the same
list of eigenvalues. Thus, we have in particular E(ρ,ρ+) = E(ρ,ρ+

α), det(ρ±)(p) = det(ρ±
α)(p)

and e := dimH0(Qp,W−
p ) = dimH0(Qp,W−

p,α) for all α ∈ Iρ+ = {α ∈ I / cα 6= 0}. Consider the
following strengthening of EZCρ,ρ+:

sEZCρ,ρ+ : EZCρ,ρ+holds, and if W+
p is not admissible, then θρ,ρ+ has an order

of vanishing greater than or equal to e+1 at the trivial character.

Proposition 3.9.1. (1) If EXρ,ρ+
α

holds for all α ∈ Iρ+, then EXρ,ρ+ holds as well, and
θρ,ρ+ =

∑
α∈Iρ+

cα ·θρ,ρ+
α
.

(2) If sEZCρ,ρ+
α

holds for all α ∈ Iρ+ , then EZCρ,ρ+ holds as well.

Proof. Let us begin with (1), and assume that EXρ,ρ+
α

holds for all α ∈ Iρ+ . For every character
η ∈ Γ̂, the rule ω+

p 7→Regω+
p
(ρ⊗η) (where the p-adic regulator is computed in a fixed basis ωf,η

of H1
f ((ρ⊗η)∨(1))) defines a Ep-linear map

∧d+
Wp −→ Ep,η, so we have

Regω+
p
(ρ⊗η)=

∑

α∈Iρ+

cα ·Regω+
p,α

(ρ⊗η).
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Therefore, the element θρ,ρ+ ∈Frac(Λ) defined as
∑

α∈Iρ+ cα ·θρ,ρ+
α

will satisfy

η(θρ,ρ+)=
∑

α∈Iρ+

cα ·η(θρ,ρ+
α
)

= Mρ,η ·
∑

α∈Iρ+

cα ·
Regω+

p,α
(ρ⊗η)

det(ρ−
α)(pn))

= Mρ,η ·
Regω+

p
(ρ⊗η)

det(ρ−)(pn))

for all non-trivial characters η ∈ Γ̂ of conductor pn, where we have put Mρ,η = τ(η)d−

τ(ρ⊗η)
L∗((ρ⊗η)∨,0)
Regω+∞

(ρ⊗η) .

Therefore, θρ,ρ+ satisfies the interpolation property of EXρ,ρ+ . Since it has no pole outside 1
by construction, we have shown that EXρ,ρ+ is valid.

Assume for (2) that sEZCρ,ρ+
α

holds for all α ∈ Iρ+. If ρ+ is not admissible, then the only
statement to prove is EXρ,ρ+ , which follows from (1). Assume that ρ+ is admissible, and
denote by Iadm

ρ+ the subset Iρ+ consisting of the elements α∈ Iρ+ for which W+
p,α is admissible.

Since Regω+
p
(ρ) 6= 0, the formula for Regω+

p
(ρ) proven earlier shows that Iadm

ρ+ is non-empty,
and a direct computation shows that

L(ρ,ρ+)=
∑

α∈Iadm
ρ+

cα ·
Regω+

p,α
(ρ)

Regω+
p
(ρ)

L(ρ,ρ+
α).

It follows easily from (1) and from this identity that θρ,ρ+ has an order of vanishing at 1
greater than or equal to e, and that the e-th derivative of s 7→ κs(θρ,ρ+) at s = 0 satisfies the
formula predicted by EZCρ,ρ+ . �

Remark 3.9.2. Conjecture A satisfies the following "p-adic Artin formalism": if ρ = ρ1
⊕

ρ2,
and if ρ+ is a p-stabilization of ρ which splits into a sum of two p-stabilizations ρ+

1 and ρ+
2 of

ρ1 and ρ2 respectively, then the validity of IMC for any two pairs in
{
(ρ,ρ+), (ρ1,ρ+

1 ), (ρ2,ρ+
2 )

}

implies the validity of IMC for the third pair, in which case θρ,ρ+ = θρ1,ρ+
1
·θρ2,ρ+

2
. Also, either

EX or EZC for both (ρ1,ρ+
1 ) and (ρ2,ρ+

2 ) implies the same statement for (ρ,ρ+). However, ρ+

needs not split in general even if ρ is reducible. Therefore, Conjecture A for ρ (and varying
ρ+) appears to be stronger than Conjecture A for ρ1 and ρ2 taken together.

4. CONJECTURES ON RUBIN-STARK ELEMENTS

4.1. The Rubin-Stark conjecture. Let H/Q be a Galois extension which is unramified at
p and let χ be a non-trivial E-valued character of Gal(H/k), where k/Q is an intermediate
extension of H/Q. Denote by L = Hkerχ be the field cut out by χ and by ∆ the Galois group of
the abelian extension L/k. We fix for the moment an integer n ≥ 0, and we put Ln = LQn and
∆n =Gal(Ln/k)≃∆×Γn. Consider the following finite sets of places of k:

S = S∞(k)∪Sram(L/k),

S′ = S∪Sp(k),

V ′ = {v ∈ S′ | χ(∆v)= 1}= {v∞,1, . . . ,v∞,d+ ,vp,1, . . . ,vp,f },

V =V ′\Sp(k)= {v∞,1, . . . ,v∞,d+}.
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Fix once and for all a place w∞,i (resp. wp,i) of Ln above v∞,i (resp. above vp,i) for all index
i. Let YLn,S′ be the free abelian group on the set of places of Ln above S′ and define the
subgroup

XLn,S′ :=
{∑

w
aw ·w ∈YLn,S′

∣∣∣
∑
w

aw = 0
}

.

Let OLn ,S′ be the ring of S′
Ln

integers of Ln. We know by Dirichlet’s unit theorem that the
regulator map

λLn,S′ :RO×
Ln,S′

∼−→RXLn,S′ , a 7→ −
∑

w|v∈S′
log |a|ww,

is a ∆n-equivariant isomorphism (see [Rub96, §1.1]). For any character η ∈ Γ̂n =Hom(Γn,Q×),
the order of vanishing of the S′-truncated L-function of (χ⊗η)−1 is, by [Tat84, Chapter I,
Proposition 3.4],

r := ords=0LS′((χ⊗η)−1, s)= dimC(eχ⊗ηCO
×
Ln ,S′)= dimC(eχ⊗ηCXLn,S′ )=

{
d+ if η 6= 1
d++ f if η= 1,

where eχ⊗η = (#∆n)−1 ∑
δ∈∆n(χ⊗η)−1(δ)δ= eχ · eη denotes the idempotent associated with χ⊗η.

Thus, the limit L∗
S′((χ⊗η)−1,0) := lims→0 LS′(χ, s)/sr ∈C is well-defined and non-zero.

Definition 4.1.1. The χ-part of the Rubin-Stark elements

ε
χ
n ∈

∧d+

C[Γn]eχCO
×
Ln,S′ (n ≥ 1), resp. uχ ∈

∧d++f
C

eχCO
×
L,S′ (n = 0),

is defined to be the inverse image under λLn,S′ of

 ∑

η∈Γ̂n

L∗
S′((χ⊗η)−1,0)eχ⊗η


 ·

∧
w

w ∈
∧r

C[Γn]eχCYLn ,S′ =
∧r

C[Γn]eχCXLn,S′ ,

where w runs through {w∞,1, . . . ,w∞,d+ } (resp. through {w∞,1, . . . ,wp,f }). Note that the last
equality follows from our assumption that χ is non-trivial.
Remark 4.1.2. It will be convenient to see the χ-part of the Rubin-Stark elements as p-units
of H via the equality eχCO×

Ln,S′ = eχCOHn [ 1
p ]×. On the other hand, the L-series LS′((χ⊗η)−1, s)

coincides with L{p}((χ⊗η)−1, s) for χ=1 and with L((χ⊗η)−1, s) for χ 6=1.
The Rubin-Stark conjecture over Q [Rub96, Conjecture A’] implies the following conjec-

ture.
Conjecture 4.1.3 (Rubin-Stark conjecture for χ: algebraicity statement). One has

ε
χ
n ∈

∧d+

E[Γn]eχEOHn [ 1
p ]× (n ≥ 1), resp. uχ ∈

∧d++f
E eχEOH[ 1

p ]× (n = 0).

By means of the isomorphism j : C≃Qp, one may see the χ-part of Rubin-Stark elements
as living in the top exterior algebra of eχQpOHn[ 1

p ]×. For R = Op[Γn] or R =Λ and for any
finitely generated Op-free R-module M, let

⋂r
R M :=

(∧r
R M∗)∗

,→
∧r

Qp⊗RQp ⊗M

be the (r-th order) exterior bi-dual of M, where we have put (−)∗ =HomR(−,R) (see [BKS16,
§4] and [BS19, Appendix B] for its basic properties). Note that the canonical map

∧r
R M −→⋂r

R M is an isomorphism when M is R-projective.
Recall that we denoted by Un (resp. U ′

n) the Op-span of the pro-p completion of the group
of units (resp. of p-units) of Hn (Notation 3.5.1). We omit the index when n = 0. Note that
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U ′
n is torsion-free because H is unramified at p. The Rubin-Stark conjecture over Z [Rub96,

Conjecture B’] implies the following conjecture.
Conjecture 4.1.4 (Rubin-Stark conjecture for χ: p-integrality statement). One has

ε
χ
n ∈

⋂d+

Op[Γn]U
′
n (n ≥ 1), resp. uχ ∈

∧d++f
Op

U ′ (n = 0).

Recall that, if ϕ is a linear form on a R-module M (for a commutative ring R), and if t ≥ 1
is an integer, then ϕ induces a R-linear map ϕ :

∧t
R M −→

∧t−1
R M which sends m1 ∧ . . .∧mt

to
∑t

i=1(−1)i−1m1 ∧ . . .∧mi−1 ∧mi+1 ∧ . . .∧mt. More generally, s linear forms ϕ1, . . .ϕs on M
with s≤ t induce a R-linear map

∧

1≤i≤s
ϕi :

∧t
R M −→

∧t−s
R M

given by m 7→ϕs ◦ . . .◦ϕ1(m).
We take n = 0 for the rest of this section and for 1≤ i ≤ f we consider the p-adic valuation

ordwp,i : COH[ 1
p ]× −→ C induced by the place wp,i. By [San14, Proposition 3.6], the induced

map
∧

1≤i≤f
ordwp,i :

∧d++f
C

COH[ 1
p ]× −→

∧d+

C
COH[ 1

p ]×

sends uχ on the Rubin-Stark element

ξχ ∈
∧d+

C
COH[ 1

p ]×

defined as the inverse image under λL,S of L∗(χ−1,0)eχ ·w∞,1 ∧ . . .∧ w∞,d+ . Note that, if
Conjecture 4.1.3 or Conjecture 4.1.4 holds for uχ, then the corresponding statement for ξχ is
also true.

4.2. Iwasawa-theoretic conjectures. We assume in this section that χ is of prime-to-p
order. The idempotent eχ has coefficients in Op and the χ-part Mχ and the χ-quotient Mχ of
an Op-module M (see Section 2.2) both coincide with eχM. We let the integer n ≥ 0 of last
section vary and we assume Conjecture 4.1.4 for every n. As explained in [BKS17, 3B2] the
family (εχn)n≥1 is norm-compatible, so it defines an element

ε
χ
∞ ∈ lim←−−

n

⋂d+

Op[Γn](U
′
n)χ =

⋂d+

Λ
(U ′

∞)χ =
∧d+

Λ
(U ′

∞)χ.

Here, the first identification follows easily from [BS19, Corollary B.5] and the second one
from the fact that (U ′

∞)χ = H1
Iw,f,p(Q, qTp) is free (of rank d+) over Λ by the results of Section

3.5. The following conjecture is taken from [BKS17, Conj. 3.14] and should be thought as a
cyclotomic Iwasawa main conjecture for χ. Let us mention that this conjecture may also be
formulated for other Zp-extensions of k than the cyclotomic one.
Conjecture 4.2.1 (IMCχ). We have

charΛ
(∧d+

(U ′
∞)χ

)/(
Λ ·εχ∞

)
=A f ·charΛ(A′

∞)χ,

where A is the augmentation ideal of Λ and where A′
∞ is the inverse limit over n ≥ 0 of the

p-split ideal class groups of Hn (see Notation 3.5.1).
Since

∧d+
(U ′

∞)χ is free of rank one over Λ, Conjecture 4.2.1 implies immediately the non-
vanishing of εχ∞, as well as the following conjecture:
Conjecture 4.2.2 (wEZCχ). We have ε

χ
∞ ∈A f ·∧d+

(U ′
∞)χ.
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This is [BS19, Conj. 2.7] for the cyclotomic extension (and a more general number field k),
where it is referred to as the Exceptional Zero Conjecture for Rubin-Stark elements. Assume
Conjecture 4.2.2 and fix γ a topological generator of Γ. Following loc. cit. we now reformulate
the (cyclotomic) Iwasawa-theoretic Mazur-Rubin-Sano Conjecture for (χ,S,V ′) in terms of
the element κ∞,γ ∈

∧d+
(U ′

∞)χ which satisfies

ε
χ
∞ = (γ−1) f ·κ∞,γ.

For all 1≤ i ≤ f , let recwp,i : L× −→Gal((Q∞L)wp,i /Lwp,i )≃Γ be the local reciprocity map for L
at wp,i. We still denote by recwp,i the induced Op-homomorphism

recwp,i : (U ′)χ = eχ(Op ⊗O×
L,S′ )−→Op ⊗Γ≃A/A2.

Conjecture 4.2.3 (MRSχ). Conjecture 4.2.2 holds true, and if we let κγ ∈
∧d+

Op
(U ′)χ be the

bottom layer of κ∞,γ, then the map
∧

1≤i≤f
recwp,i :

∧d++f
Op

(U ′)χ −→A f /A f+1 ⊗Op

∧d+

Op
(U ′)χ

sends uχ to (−1)d+·f · (#∆)−f · (γ−1) f ⊗κγ.
Remark 4.2.4. Assuming Conjecture 4.2.2, one can check (as noted in [BS19, Rem. 2.10
(i)]) that Conjecture 4.2.3 is equivalent to [BKS17, Conj. 4.2, MRS(H∞/k,S,;,χ,V ′)]. As for
Conjecture 4.1.4, taking T =; (in the notations of [Rub96, BKS17]) is allowed because the
Zp-module U ′

n is torsion-free for all n ≥ 0. Lastly, note that, while the definition of the Rubin-
Stark elements depends on how we ordered the places vp,1, . . . ,vp,f of V ′\V and on the choice
of wp,i above vp,i, the validity of all the conjectures of this section does not depend on these
choices.

5. MONOMIAL REPRESENTATIONS

5.1. Induced representations. Let ρ be a monomial representation and fix an isomor-
phism ρ ≃ IndQ

kχ over E, where χ : Gal(H/k) −→ E× is a non-trivial character. We do not
assume yet that χ has order prime to p. The underlying space of ρ is then equal to W =
E[G]⊗E[Gal(H/k)] E(χ), where E(χ) is a E-line on which Gal(H/k) acts via χ and where the
tensor product follows the rule gh⊗ 1 = g ⊗χ(h) for all g ∈ G, h ∈ Gal(H/k). The (left) G-
action on W is given by g · (g′⊗1)= gg′⊗1 for all g, g′ ∈G. By Frobenius reciprocity we have
ρ⊗η ≃ IndQ

k (χ⊗η) for any η ∈ Γ̂, where we still denoted by η its restriction to Gk. We will
assume throughout Section 5 that the Op-lattice Tp of Wp is

Tp =O[G]⊗O[Gal(H/k)] O(χ),

so that the family (g⊗1)g∈G generates Tp over Op.
Lemma 5.1.1. (1) Given any Op[G]-module M, there is a canonical isomorphism

HomG(Tp, M)
∼−→ Mχ, ψ 7→ψ(1⊗1),

where Mχ denotes the χ-part of M, seen as a Gal(H/k)-module. In the same fash-
ion, for any η ∈ Γ̂ and for any Eη[GQ]-module M, there is a canonical isomorphism
HomGQ

(Wη, M)≃ eχ⊗ηM = Mχ⊗η.
(2) Given any Op[G]-module M, the module HomG(M,Dp) is canonically isomorphic to

the Pontryagin dual
(
Mχ

)∨ of the χ-quotient of M.
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Proof. The first statement is straightforward to check, so we only prove the second one. Once
we have fixed a generator of the different of Op over Zp, the Op-module

(
Mχ

)∨ can be iden-
tified with HomOp(Mχ,Ep/Op) as in Section 3.2. On the other hand, since induction and
co-induction functors over finite groups coincide, Dp can be described as the Op-module of
maps f : G −→ Ep/Op ⊗Op(χ) satisfying f (hg) = h · f (g) for all h ∈ Gal(H/k) and g ∈ G, the
left G-action being (g · f )(g′) = f (g′g). Therefore, the map F 7→ (m 7→ F(m)(1⊗1)) identifies
HomG(M,Dp) with HomOp(Mχ,Ep/Op). �

Notation 5.1.2. For any η ∈ Γ̂, for any module M as in Lemma 5.1.1 (1) and for any m ∈ M,
we let ψm be the element of HomG(Tp, M) (resp. of HomGQ

(Wη, M)) which satisfies ψm(1⊗1)=
m. More generally, for any ω ∈∧rM (and r ≥ 0) we let ψω be the element of

∧r
Op

HomG(Tp, M)

(resp. of
∧r

Eη
HomGQ

(Wη, M)) corresponding to ω under the induced isomorphism on exterior
products.

5.2. Complex regulators. We first define a natural basis ω+
∞ of H0(R,W) in which we will

compute all the complex regulators. The embedding ι∞ : Q ⊆ C defines a place w∞ (resp.
v∞) of Q (resp. of k) as well as a complex conjugation which will be denoted σ∞. As in
Section 4.1, we denote by V = {v∞,1, . . . ,v∞,d+ } the set of archimedean places of k which split
completely in L = Hkerχ. We choose for each i = 1, . . . , d+ an automorphism τ∞,i ∈ GQ which
sends v∞,i onto v∞ and we put w∞,i = τ−1

∞,i(w∞). For simplicity we still write τ∞,i and w∞,i

for their restrictions to finite extensions of L. We obtain a basis ω+
∞ = {t∞,1, . . . , t∞,d+} of

H0(R,W)=Wσ∞=1 by letting

t∞,i =
{

τ∞,i ⊗1 if vi is real,
τ∞,i ⊗1+σ∞ ·τ∞,i ⊗1 if vi is complex.

Note that it is moreover Tp-optimal for our fixed choice of Tp.
Lemma 5.2.1. Assume Conjecture 4.1.3. Let η ∈ Γ̂ be a character of order pn. Put ωf,η =ψeη·ε

χ
n

if η 6= 1 and ωf,η =ψξχ if η= 1 (see Notation 5.1.2). The complex regulator of ρ⊗η computed
in the bases ω+

∞ and ωf,η is equal to

Regω+
∞(ρ⊗η)= p−n·d+

·L∗((ρ⊗η)∨,0).

Proof. For a ∈ Ln which is seen in Ln,w∞,i , put

|a|wi =
{

sgn(a)a if vi is real,
a ·a if vi is complex,

where sgn is the sign function when Ln,w∞,i = R and a 7→ a is the complex conjugation when
Ln,w∞,i = C. Write eη ·ε

χ
n (or ξχ if η is trivial) as µ1 ∧ . . .∧µd+ and write ωf,η =ψµ1 ∧ . . .∧ψµd+

accordingly. Then by construction of the t∞,i ’s, one has 1⊗ (ι∞)(ψµ j (t∞,i))= |µ j|w∞,i ∈ Eη⊗R×

for all 1≤ i, j ≤ d+, so we have

Regω+
∞(ρ⊗η)= det

(
log∞ |µ j|w∞,i

)
1≤i, j≤d+ .

Since L(ρ⊗η)∨, s) = L((χ⊗η)−1, s) and since eη ·ε
χ
n = p−n ∑

g∈Γn η
−1(g)g(εχn) by definition, the

result follows directly from [Rub96, Lemma 2.2] and Remark 4.1.2. �
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5.3. Iwasawa main conjectures. In the two last sections we explore the relation between
Conjecture A and the various conjectures on Rubin-Stark elements of Section 4.1. We hence-
forth assume that χ is of prime-to-p order. In what follows, the basis ω+

p = t1 ∧ . . .∧ td+ of a
given p-stabilization W+

p of Wp is always assumed to be Tp-optimal and to be an eigenbasis
of σp as in Lemma 3.6.3.
Theorem 5.3.1. Assume Conjectures 4.1.3 and 4.1.4 and pick any p-stabilization W+

p of Wp.

(1) The statement EXρ,ρ+ in Conjecture A is true, and the element θ′
ρ,ρ+ of Proposition

3.3.3 coincides with C
str
ω+

p
(ψε

χ
∞

), where C
str
ω+

p
is the operator introduced in Section 3.6.

(2) Conjecture 4.2.2 implies that θρ,ρ+ has an order of vanishing at 1 greater than or equal
to e. The converse implication also holds if we moreover assume that W+

p is admissible
and that L(ρ,ρ+) does not vanish.

Proof. Put θ = C
str
ω+

p
(ψε

χ
∞

) and fix a non-trivial character η ∈ Γ̂ of conductor pn. By Lemma

3.6.3 and Lemma 5.2.1, we have

η(θ)= p(1−n)·d+
·
det(ρ+)(pn)

g(η−1)d+ Regω+
p
(ρ⊗η)

=
det(ρ+)(pn)

g(η−1)d+

Regω+
p
(ρ⊗η)

Regω+
∞(ρ⊗η)

L∗((ρ⊗η)∨,0),

where the regulators are computed with respect to the basis ωfη defined in Lemma 5.2.1. A
comparison with the interpolation property of θ′

ρ,ρ+ and Weierstrass’ preparation theorem

then shows that θ′
ρ,ρ+ = θ; hence, EXρ,ρ+ is true by Proposition 3.3.3, and (1) follows. The

first implication of (2) is obvious, since C str
ω+

p
is Λ-linear and since θ has at most a pole of order

f − e at 1 by construction. For the converse implication, assume that θ′
ρ,ρ+ ∈Ae (so θ is also

in Ae), that W+
p is admissible and that L(ρ,ρ+) 6= 0. Then, we know by Theorem 3.8.6 (1), by

Lemma 3.2.2 and by the exactness of the last row of (13) that the cokernel of C str
ω+

p
has finite

Γ-coinvariants, so its image is generated over Λ by an element in I f−e\I f−e−1. We may then
write θ as (γ−1) f ·θγ for some topological generator γ of Γ and some θγ ∈ im(C str

ω+
p

); hence,

Conjecture 4.2.2 follows from the injectivity of C str
ω+

p
. �

Corollary 5.3.2. Assume that there exists a non-trivial character η ∈ Γ̂ such that the χ⊗η-
part of Leopoldt’s conjecture for Hη holds, that is, the χ⊗η-part of the linear extension of the
diagonal embedding

eχ⊗η ·
(
Ep,η⊗O×

Hη

)
−→ eχ⊗η ·

(
Ep,η⊗

∏

Kη

O
×,1
Kη

)
,

where Kη runs over the all the p-adic completions of Hη, is injective. Then ε
χ
∞ 6= 0.

Proof. By Lemma 3.1.4, the χ⊗η-part of Leopoldt’s conjecture for Hη implies the existence
of a η-admissible p-stabilization W+

p of Wp. For such a W+
p we know that the map C str

ω+
p

is

injective and that θ′
ρ,ρ+ 6= 0 by Theorem 3.6.4 and by Lemma 3.5.4. Therefore, Theorem 5.3.1

implies that εχ∞ does not vanish. �
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Theorem 5.3.3. Assume Conjectures 4.1.3 and 4.1.4. Let W+
p be a p-stabilization of Wp such

that X∞(ρ,ρ+) is of Λ-torsion.

(1) If either IMCρ,ρ+ or IMCχ are true, then Conjecture 4.2.2 is also true.
(2) IMCρ,ρ+ and IMCχ are equivalent.

Proof. We have already seen that IMCχ implies Conjecture 4.2.2 because
∧d+

(U ′
∞)χ is free

of rank one over Λ. Thus, the first claim is implied by the second one, which we prove
now. By Theorem 3.6.4 and by Lemma 3.5.4 we know that the map Locstr

+ of Section 3.4 is
injective. Since its domain and codomain are free, coker(Locstr

+ ) and coker(∧d+
Locstr

+ ) have
the same characteristic ideal. On the other hand, recall that we may identify (U ′

∞)χ with
HomG(Tp,U ′

∞) via Lemma 5.1.1 and Λ ·C str
ω+

p
(εχ∞) with Λ ·θρ,ρ+ via Theorem 5.3.1. By Lemma

3.2.2 and by (13) we have exact three short exact sequences

0
(∧d+

(U ′
∞)χ

)/(
Λ ·εχ∞

)

︸ ︷︷ ︸
B

Ie−f /(
Λ ·θρ,ρ+

)
︸ ︷︷ ︸

C

coker(∧d+
Locstr

+ )︸ ︷︷ ︸
D

0

0 H0(Qp,T−
p ) X∞(ρ,ρ+) X str

∞ (ρ,ρ+) 0

0 coker(Locstr
+ ) X str

∞ (ρ,ρ+) X
1
∞(Dp)∨ 0.

C str
ω+p

The Γ-action on H0(Qp,T−
p ) being trivial, its characteristic ideal is Ae. Moreover, X1

∞(Dp)∨

and (A′
∞)χ are pseudo-isomorphic Λ-modules by Lemmas 3.5.2 (3) and 5.1.1 (2). Therefore,

by multiplicativity of characteristic ideals, we may conclude that

IMCχ ⇐⇒ charΛ(B)=A f ·charΛ(A′
∞)χ

⇐⇒ charΛ(C)=A f ·charΛX str
∞ (ρ,ρ+)

⇐⇒A f−e · (Λ ·θρ,ρ+ )=A f−e ·charΛX∞(ρ,ρ+)

⇐⇒ (Λ ·θρ,ρ+)= charΛX∞(ρ,ρ+)

⇐⇒ IMCρ,ρ+.

�

5.4. Extra zeros at the trivial character. We first construct an Op-basis of H0(Qp,Tp) as
follows. Let wp be the p-adic place of H defined by ιp, and denote by vp,1, . . . ,vp,f the p-adic
places of k which totally split in L as in Section 4.1. Fix also a place wp,i of H above vp,i , and
let

tp,i = [Hwp,i : kvp,i ]
−1 ·

∑

g∈G,
g(wp,i)=wp

g⊗1 ∈ Tp, (1≤ i ≤ f ).

This defines an Op-basis tp,1, . . . , tp,f of H0(Qp,Tp). For any t ∈ Tp, consider the following
two composite maps

ord(t)
p : HomG(Tp,U ′) Op ⊗ K̂× Op,

ιp◦evt ordp
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log(t)
p : HomG(Tp,U ′) Op ⊗ K̂× Op,

ιp◦evt logp

where evt is the evaluation map at t and where K = Hwp as in Section 3.
Lemma 5.4.1. For all 1≤ i ≤ f and u ∈ (U ′)χ, we have

ord
(tp,i )
p (ψu)= [kvp,i :Qp] ·ordwp,i (u), log

(tp,i)
p (ψu)=− logp ◦χcyc ◦recwp,i (u).

Proof. Fix 1≤ i ≤ f and u ∈ (U ′)χ = (Op ⊗OL[ 1
p ]×)χ. Since ψu is G-equivariant, we have

ιp(ψu(tp,i))= [Hwp,i : kvp,i ]
−1 · ιp




∏

g∈G,
g(wp,i)=wp

g(u)




= Ni(ιp,i(u)),

where Ni is the norm map of the extension Lwp,i = kvp,i over Qp, and where ιp,i is the p-
adic embedding of L defined by wp,i. Since ordp(Ni(ιp,i(u)))= [kvp,i :Qp] ·ordwp,i (u) and since
χcyc ◦recwp,i (u)= Ni(ιp,i(u))−1, the lemma follows easily. �

Proposition 5.4.2. (1) Let W0
p =H0(Qp,Wp). Then,

(
∧

1≤i≤f
ord

(tp,i )
p

)
(ψuχ)= (−1)d+·f ·

det(1−σ−1
p |Wp/W0

p)

(#∆) f
·ψξχ

in
∧d+

C
(C⊗O×

H)χ.
(2) Assume Conjectures 4.1.3 and 4.1.4 and 4.2.2. Fix a topological generator γ of Γ and

put ̟γ = logp ◦χcyc(γ) ∈ pZp. Then, MRSχ is equivalent to the equality
(

∧

1≤i≤f
log

(tp,i )
p

)
(ψuχ)= (−1)d+·f ·

(
−
̟γ

#∆

) f

·ψκγ

in
∧d+

Op
(U ′)χ.

Proof. Let us prove (1). First of all, a direct computation gives

det(1−σ−1
p |Wp/W0

p)=
∏

v∈S00
p (k)

(1−χ−1(v)) ·
∏

1≤i≤f
[kvp,i :Qp],

where S00
p (k) = Sp(k)− {vp,1, . . . ,vp,f } and where we saw χ as a Hecke character over k. Con-

sider the operator ΦV ′,V of [San14, Proposition 3.6] (extended by linearity to a C[∆]-linear
map), where V and V ′ are as in Section 4.1. Its χ-part is given by

eχ ·ΦV ′,V = (−1)d+·f · (#∆) f ·
∧

1≤i≤f
ordwp,i = (−1)d+·f (#∆) f

∏
1≤i≤f [kvp,i :Qp]

·
∧

1≤i≤f
ord

(tp,i)
p ,

the last equality being a consequence of Lemme 5.4.1 (1). On the other hand, by Propositions
3.5 and 3.6 of loc. cit., we know that

(
eχ ·ΦV ′,V

)
(ψuχ)=

∏

v∈S00
p (k)

(1−χ−1(v)) ·ψξχ .

The claim (1) then follows from the above three equations. As for the second claim, it follows

immediately from the formula for log
(tp,i )
p of Lemma 5.4.1. �
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We are now in a position to state and prove a theorem comparing MRSχ and EZCρ,ρ+ . Let
0 ≤ e ≤ f be an integer and take any p-stabilization (ρ̃+,W̃+

p ) of Wp such that H0(Qp,W̃+
p ) is

generated by tp,i1 , . . . , tp,i f−e , for some 1 ≤ i1 < . . . < i f−e ≤ f (this condition is empty when
e = f ). Note that the tp,i ’s live in W , so many choices of ρ̃+ are motivic, hence η-admissible
for all η ∈ Γ̂ under the hypotheses of Lemma 3.1.3.
Theorem 5.4.3. Assume Conjectures 4.1.3 and 4.1.4.

(1) MRSχ implies sEZCρ,ρ̃+ for all ρ̃+ as described above (see Section 3.9 for the formula-
tion of sEZCρ,ρ+). More generally, MRSχ implies EZCρ,ρ+ for every p-stabilization ρ+

of Wp.
(2) Conversely, if EZCρ,ρ̃+ holds for all ρ̃+ as described above, and if there exists at least

one admissible p-stabilization ρ+ such that L(ρ,ρ+) 6= 0, then MRSχ holds true.

Proof. First take any p-stabilization W+
p of Wp. From the first part of Theorem 5.3.1 we

already know that EXρ,ρ+ holds. From its second part, we may also assume without loss of
generality that wEZCχ holds and that θρ,ρ+ vanishes at 1 with multiplicity ≥ e.

We start by assuming MRSχ and we consider W+
p = W̃+

p as above. Since MRSχ does not
depend on the ordering of the vp,i ’s, we may assume that i1 = 1, . . ., i f−e = f − e. Choose
an eigenbasis t1, . . . , td of Tp for σp such that: (a) t1 = tp,1, . . . , t f−e = tp,f−e, (b) the element
ω̃+

p = t1∧ . . .∧ td+ is a basis of W̃+
p , and (c) {td++1, . . . , td++e}= {tp,f−e+1, . . . , tp,f }. For simplicity,

we put

I+,0 = {1, . . . , f − e}, I+,00 = { f − e+1, . . . , d+}, I−,0 = {d++1, . . . , d++ e}, I−,00 = {d++ e+1, . . . , d},

so we obtain a partition of {1, . . ., d}. For 1≤ i ≤ d, we also write ord(i)
p (resp. log(i)

p ) for ord
(tp,i)
p

(resp. for log
(tp,i )
p ). By Proposition 5.4.2, MRSχ is equivalent to

(18)

(
∧

i∈I0

log(i)
p

)
(ψuχ)= (−1)d+·f ·

(
−
̟γ

#∆

)f

·ψκγ ,

where I0 = I+,0 ⋃
I−,0, where γ is a fixed generator of Γ, where ̟γ = logp ◦χcyc(γ) and where

κγ is the bottom layer of the element κ∞,γ ∈ ∧d+
(U ′

∞)χ satisfying ε
χ
∞ = (γ− 1) f ·κ∞,γ. For

i ∈ I+ = I+,0 ⋃
I+,00, define ν(i) as ord(i)

p if i ∈ I+,0 and as log(i)
p if i ∈ I+,00, and apply the

homomorphism

ν=
∧

i∈I+
ν(i) :

∧d+
HomG(Tp,U ′)−→Op

to the equality (18). We explain now how to compute the left-hand side (LHS) and the right-
hand side (RHS) of the resulting equality. Taking into account the sign rule, we have, by
definition of L(ρ, ρ̃+), by Proposition 5.4.2 (1) and by Lemma 5.2.1:

LHS= (−1) f−e ·L(ρ, ρ̃+) ·
(

∧

i∈I0

ord(i)
p

)
∧

(
∧

i∈I+
log(i)

p

)
(ψuχ)

= (−1) f−e ·L(ρ, ρ̃+) ·
(

∧

i∈I+
log(i)

p

)(
(−1)d+·f ·

det(1−σ−1
p |Wp/W0

p)

(#∆) f
·ψξχ

)

= (−1) f−e+d+·f ·L(ρ, ρ̃+) ·
det(1−σ−1

p |Wp/W0
p)

(#∆) f
·

Regω̃+
p
(ρ)

Regω+
∞(ρ)

·L∗(ρ∨,0).
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Let us explicit the relation between RHS and the e-th derivative of Lp(s) := κs(θ′
ρ,ρ+) at s= 0.

By Theorem 5.3.1, we may write Lp(s)= (κ(γ)s−1)e·κs(θγ), where θγ =Cω̃+
p
((γ−1) f−e·κ∞,γ)∈Λ.

Therefore, 1
e!L

(e)
p (0) = ̟e

γ ·1(θγ). On the other hand, if we write (γ−1) f−e ·κ∞,γ as a wedge
product (γ−1) · v1∧ . . .(γ−1) · vf−e ∧ vf−e+1 ∧ . . .∧ vd+ , then Lemmas 2.1.3 and 2.3.1 together
show that

1(θγ)=̟
f−e
γ · (1− p−1) f−e ·

∏

i∈I+,00

1− p−1βi

1−β−1
i

·ν(κγ),

where βi is the eigenvalue of σp acting on t i. Since E(ρ, ρ̃+)=
∏

i∈I+(1−p−1βi)·
∏

i∈I−,00(1−β−1
i ),

we may conclude that

1

e!
L(e)

p (0)=̟
f
γ · (1− p−1) f−e ·

∏

i∈I+,00

1− p−1βi

1−β−1
i

· (−1)d+·f ·
(
−

#∆

̟γ

) f

·RHS

= (−1) f+d+·f ·
E(ρ, ρ̃+)

det(1−σ−1
p |Wp/W0

p)
· (#∆) f ·LHS

= (−1)e ·L(ρ, ρ̃+) ·E(ρ, ρ̃+) ·
Regω̃+

p
(ρ)

Regω+
∞(ρ)

·L∗(ρ∨,0).

Hence, sEZCρ,ρ̃+ holds if ρ̃+ is admissible by Proposition 3.3.3. It also holds if it is not

admissible, since the vanishing of Regω̃+
p
(ρ) implies the vanishing of L(e)

p (0) as well. An
application of Proposition 3.9.1 ends the proof of (1).

Assume now that EZCρ,ρ̃+ for all p-stabilization W̃+
p as described above and let us prove

(18). It is an equality in Y :=
∧d+

HomG(Tp,U ′), so it is enough to prove it after applying
any linear form ν0 over Y . Keeping the same notations as above, a basis of linear forms
over Y is given by the family νβ = ord(i1)

p ∧ . . .ord(ik)
p ∧ log(ik+1)

p ∧ . . .∧ log
(id+ )
p , where β = (i j) j

is such that i1 < . . . < ik are in I0 and ik+1 < . . . < id+ are in I+. In fact, any such β defines
a p-stabilization W+

p,β by taking the linear span over Ep of t i1 , . . . , t id+ , and the computation
performed above shows that applying νβ to (18) is equivalent to EZCρ,ρ+

β
; hence, MRSχ holds

under our assumption, and this concludes the proof of the theorem. �

6. EXAMPLES

6.1. Deligne-critical motives. The complex L-functions of motives and the p-adic interpo-
lation of their special values are better understood for motives that admit critical points in
the sense of Deligne. With the notations of the introduction, the Artin motives which have
this property are precisely those which satisfy d+ = d (the even ones) or d+ = 0 (the odd
ones). In particular, all Dirichlet motives fall in this category. There exists nowadays an
extensive literature on the construction and on the properties of p-adic L-functions in this
context, and we will simply recall what is needed.

Keep the notations of the introduction and assume that ρ is even, that H0(Q,ρ) = 0 and
that ρ is of type S at p > 2, which means that the extension H/Q cut out by ρ is linearly
disjoint to the Zp-cyclotomic extension. Note this last condition is weaker than being un-
ramified at p, and if we denote by ω the Teichmüller character, then the odd representation
ρ ⊗ω−1 is still of type S. There exists a p-adic measure θDR

ρ ∈ Λ satisfying the following
interpolation property:

(19) ∀ n ≥ 2, ∀ η ∈ Γ̂, η ·κn(θDR
ρ )= L{p}(ρ⊗ηω−n,1−n),
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where the subscript {p} means that we removed the Euler factor at p. The interpolation
property is first proven by the work of Deligne-Ribet [DR80] for monomial representations
and includes n = 1, and it is proven in general by a simple application of Brauer’s induction
theorem (see [Gre14]). The fact that θDR

ρ ∈Λ and not only in Frac(Λ), the so-called "p-adic
Artin conjecture" follows from [Wil90, Theorem 1.1] as a consequence of the classical Iwa-
sawa Main conjecture. The p-adic L-function attached to ρ is the p-adic analytic function
given by

Lp(ρ, s)= κ1−s(θDR
ρ ) (s ∈Zp).

Note that since ρ is of type S, the above-mentioned Euler factor at p is in fact equal to 1 at
n = 1, provided that η 6=1, and the corresponding L-value is non-zero. Therefore, the formula
(19) still holds when n = 1 and η 6=1.

6.2. Even Artin motives. We expand here upon the relation between Conjecture A, the
classical Iwasawa Main Conjecture over totally real fields and "p-adic Stark conjectures at
s = 1", when d+ = d. The only choice of p-stabilization is then W+

p = Wp, and there is no ex-
tra zeros, so e = 0 and L(ρ,ρ+) = 1. On the algebraic side, the corresponding Selmer groups
X∞(ρ,ρ+) coincides with the one studied by Greenberg in [Gre14]. It is shown in loc. cit. that
X∞(ρ,ρ+) is of Λ-torsion by using the validity of the weak Leopoldt conjecture, and that its
characteristic ideal does not depend on the choice of Tp. It is also shown that charΛX∞(ρ,ρ+)
is generated by θDR

ρ by invoking Wiles’ theorem [Wil90, Theorem 1.3]. To make the connec-

tion with Conjecture A, one needs to compare θDR
ρ with θρ,ρ+, thus, to understand the values

η(θDR
ρ ) for η ∈ Γ̂. It is precisely the content of "p-adic Stark conjectures at s = 1" attributed

to Serre by Tate in [Tat84, Chapitre VI, §5] and we refer the reader to [JN20, §4.4] for more
detail. With the notations of Conjecture 4.9 of loc. cit., it asserts for the representation ρ⊗η

that

(20) η(θDR
ρ )

?=Ω j(ρ⊗η) · j
(
L{p}(ρ⊗η,1)

)
=

{
Ω j(ρ⊗η) · j

(
L(ρ⊗η,1)

)
if η 6=1

Ω j(ρ) ·E(ρ,ρ+) · j
(
L(ρ,1)

)
if η=1.

Moreover, [JN20, Lemma 4.20] implies easily that the quantity (−1)d ·Ω j(ρ ⊗ η) coincides
with the quotient of regulators (4) for any choice of bases ω+

∞ and ω+
p of H0(R,Wp)=W+

p =Wp

such that ω+
∞ = ω+

p. Therefore, under the validity of (20) for all η ∈ Γ̂, the p-adic measure
θρ,ρ+ exists, it satisfies

θρ,ρ+ = (−2)−dθDR
ρ ,

and the full Conjecture A holds for any choice of Tp. As an example, when ρ is a one-
dimensional even character whose associated Dirichlet character χ has prime-to-p conductor
d 6= 1, for all characters η ∈ Γ̂ of conductor pn we have

Ω j(ρ⊗η)=
logp(εχ⊗ηcyc )

− j
(
log∞(εχ⊗ηcyc )

) ,

where we have put

ε
χ⊗η
cyc =

∏

a mod dpn

(
e

2iπa
d pn −1

)(χ⊗η)−1(a)
∈

(
Z[µdpn]×⊗ZQ(χ⊗η)

)χ⊗η .

The conjectural equality (20) directly follows from the well-known formula L(χ⊗ η,1) =
g(χ−1 ⊗η−1)−1 · log∞(εχ⊗ηcyc ) and from its p-adic analogue (known as Leopoldt’s formula), see
[Col00, §1.3].
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6.3. Odd Artin motives. We focus here on the connection between Conjecture A and the
"p-adic Stark conjecture at s= 0" (that is, the Gross-Stark conjecture) when d+ = 0. The only
choice of p-stabilization is then W+

p = 0, and both regulators are equal to 1. The represen-

tation ρ̃ = ρ∨⊗ω is even and of type S, and we may consider θ = Tw−1(θDR,ι
ρ̃

), where ι is the

involution of Λ induced by γ 7→ γ−1 and where Tw−1 is the twist by κ−1. We thus have

κs(θ)= Lp(ρ∨⊗ω, s),

for all s ∈Zp and moreover,

η(θ)= L((ρ⊗η)∨,0)

holds for all non-trivial characters η ∈ Γ̂ by Section 6.1. Therefore, one already can conclude
to the existence of the p-adic measure θρ,ρ+ and to the equality θ = θ′

ρ,ρ+, where θ′
ρ,ρ+ is

the renormalization of θρ,ρ+ appearing in Proposition 3.3.3. On the algebraic side, a duality
theorem for Selmer groups [Gre89, Theorem 2] and Wiles’ theorem for ρ̃ proves that θ is
a generator of the characteristic ideal of the Selmer group X∞(ρ,ρ+); hence the first part
of Conjecture A is valid. Consider now the extra zeros conjecture for (ρ,ρ+). The number
e = dimH0(Qp,W−)= dimH0(Qp,W) is nothing but the order of vanishing of the {p}-truncated
Artin L-function L{p}(ρ∨, s) at s = 0. The "Weak p-adic Gross-Stark Conjecture" for ρ∨ as
formulated by Gross in [Gro81, Conjecture 2.12b)] states that

1

e!
L(e)

p (ρ∨⊗,0)
?= Rp(W∨

p ) ·
L∗

{p}(ρ
∨,0)

(− log(p))e
= (−1)e ·Rp(W∨

p ) ·E(ρ,ρ+) ·L(ρ∨,0),

where Rp(W∨
p ) is Gross’s p-adic regulator defined in loc. cit., (2.10) and computed with re-

spect to the set of places {p,∞} of Q. It is not hard to see that Rp(W∨
p ) = L(ρ,ρ+); hence,

EZCρ,ρ+ is here equivalent to the Weak p-adic Gross-Stark Conjecture. It has already been
proven true by Dasgupta, Kakde and Ventullo in [DKV18] for monomial representations.
Moreover, it holds true for any ρ under Gross’s "Order of Vanishing Conjecture" [Gro81,
Conj. 2.12a)] for all monomial representation cutting out the same field extension as ρ (see
[Bur20, Theorem 2.6]). This last conjecture states that the p-adic L-function Lp(ρ∨⊗ω, s)
has exact vanishing order e at s = 0. It is known to be equivalent to the non-vanishing of
Rp(W∨

p ) by [Bur20, Theorem 3.1 (i) and (iii)].

6.4. Restriction to the cyclotomic line of Katz’s p-adic L-function. It was first shown
in [BS19] that the Iwasawa-theoretic properties of Rubin-Stark elements imply p-adic Beilin-
son type formulae for Katz p-adic L-functions. We follow the notations of loc. cit.. Let k be a
CM field of degree 2g and let k+ be its maximal totally real subfield. Assume as in Section
5 that ρ is induced from a non-trivial character χ : Gal(H/k) −→ E× of prime-to-p order and
that Tp = Op[G]⊗Op[Gal(H/k)] Op(χ). Hence, d = 2g and d+ = g. Under the assumption that
every prime of k+ above p splits in k (known as Katz’s p-ordinarity condition), one may pick
a p-adic CM type of k. This amounts to choosing a subset Σ ⊆ Sp(k) such that Σ and its
complex conjugate form a partition of Sp(k). To any p-adic CM type Σ one can attach a (mo-
tivic) p-stabilization (ρ+

Σ
,W+

p,Σ) of Wp by taking the linear span of {g⊗1 | g ∈G, g−1(vp) ∈Σ},
where vp is the place of k defined by ιp. By Shapiro lemma, one can show that X∞(ρ,ρ+)
is isomorphic over Λ to the χ-isotypic component of the Galois group Gal(M∞,Σ/H∞) of the
maximal pro-p abelian extension of H ·Q∞ which is Σ-ramified (as in [Mak20, Section 4.2]).
In particular, it is of Λ-torsion by [HT94, Theorem 1.2.2 (iii)], and the cyclotomic part of the
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Iwasawa main conjecture for CM fields asserts that

charΛX∞(ρ,ρ+)
?=Λ ·Lcyc,ι

p,χ,Σ,

where Lcyc
p,χ,Σ ∈Λ is the restriction to the cyclotomic extension of Katz’s p-adic L-function for

χ and Σ [HT94]. This latter is a p-adic measure on the Galois group Γ∞ of the compositum
of all Zp-extensions of k which p-adically interpolates the algebraic part of critical Hecke
L-values for χ−1 twisted by characters of Γ∞ [Kat78, HT93]. The L-values L((χ⊗η)−1,0) do
not belong to its range of interpolation, for they are not-critical. However, the (cyclotomic
part of the) explicit reciprocity conjecture [BS19, Conj. 4.7] states that

(21) C
str
ω+

p
(εχ∞)

?= Lcyc,ι
p,Σ ,

where C str
ω+

p
is the operator introduced in Section 3.6. Since C str

ω+
p

(εχ∞) = θ′
ρ,ρ+ by Theorem

5.3.1, we see that IMCρ,ρ+
Σ

is equivalent to the cyclotomic Iwasawa main conjecture for k
and Σ conditionally on (21). As for EZCρ,ρ+

Σ

, one can check that the admissibility of W+
p,Σ is

equivalent to Σ-Leopoldt’s conjecture and that L(ρ,ρ+
Σ

) is equal to the cyclotomic L-invariant
defined in [BS19, Section 5]; accordingly, the implication MRSχ =⇒ EZCρ,ρ+

Σ

of Theorem C
can be seen as a reformulation of the main theorem of [BS19] in the cyclotomic case.

In the particular case where k is an imaginary quadratic field in which p splits as pOk =
pp, the full Conjecture A is almost completely proven. Indeed, as noted in [BS19, Remark
4.8], the equality (21) is valid for both choices Σ = {p} and Σ = {p} thanks to Yager [Yag82].
The Iwasawa main conjecture for χ and Σ also holds by Rubin’s famous work [Rub91], and
MRSχ is a consequence of the equivariant Tamagawa number conjecture for χ, which was
proven by Bley [Ble06], at least when p does not divide the class number hk of k. Therefore,
Conjecture A is valid for both stabilizations ρ+

{p} and ρ+
{p}

under the same assumption. The

statement EZCρ,ρ+ even holds for any p-stabilization ρ+ by Proposition 3.9.1 when p ∤ hk,
since Wp is the direct sum of W+

p,{p} and W+
p,{p}

. Note nevertheless that this last argument

would break down when [k :Q]= 2g > 2 since there are at most 2g p-adic CM types, whereas∧d+
Wp has dimension (2g)!(g!)−2 > 2g, so Conjecture A predicts the existence of more p-adic

L-functions for χ than the ones constructed by Katz.

6.5. Weight one modular forms. The simplest examples of non-critical Artin motives are
the two-dimensional irreducible representations ρ satisfying d+ = 1. The proof by Khare and
Wintenberger of Serre’s modularity conjecture implies that the Artin representation associ-
ated with ρ is the Deligne-Serre representation of a newform f of weight 1 [KW09, Corollary
10.2 (ii)]. The newform f (q)=

∑
n≥1 anqn ∈ E[[q]] has level equal to the Artin conductor N of

ρ, and for all primes ℓ not dividing N, the ℓ-th Hecke eigenvalue aℓ of f is the trace of ρ(σℓ),
where σℓ is the Frobenius substitution at ℓ (see [DS74]). Some aspects of Iwasawa theory
for f and an odd prime p were studied in [Mak20] under the hypothesis that p ∤ N (i.e., ρ is
unramified at p) and that f is regular at p. The last assumption means that the eigenvalues
α and β of σp are distinct so there exist exactly two choices of p-stabilization of ρ, namely

the eigenspaces Wα = W
σp=α
p and Wβ =W

σp=β
p of σp. Note that both p-stabilizations are mo-

tivic, hence η-admissible for all η ∈ Γ̂ by Lemma 3.1.3. Under the extra assumption that p
does not divide the order of the image of ρ, there is only one choice of GQ-stable lattice Tp

up to isomorphism; hence, the residual representation ρ is irreducible and p-distinguished.
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Let us consider W+
p = Wβ (so W−

p = Wα), that we let correspond to the p-stabilization
fα(q) = f (q)−β f (qp) of Up-eigenvalue α of f . Under the above assumptions on f and ρ,
[Mak20, Conjecture 4.5.4] (labeled IMCfα below) proposes a potential candidate θ fα ∈Λ (well-
defined up to multiplication by a p-adic unit) for a generator of the characteristic ideal of the
torsion Λ-module X∞( fα) := X∞(ρ,ρ+) by means of Hida theory. Roughly speaking, it is the
weight one specialization of a two-variable p-adic L-function attached to the unique Hida
family f passing through fα. A careful study of the structure of Selmer groups and a local
parametrization of f around fα carried out in loc. cit. shows that the Iwasawa main conjec-
ture for members of f in classical weight ≥ 2 implies IMCfα . Moreover, an application of a
theorem due to Kato shows that one has pmθ fα ∈ charΛX∞( fα) for m big enough (see [Mak20,
Theorem C]). It is thus natural to expect that θ fα computes the L-values of f ⊗η for η ∈ Γ̂,
leading to a simple relationship between θ fα and the conjectural p-adic measures θρ,ρ+ or
θ′
ρ,ρ+.

6.6. Adjoint of a weight one modular form. Here we consider a "variant of Gross-Stark
conjecture" formulated in [DLR16] and proven in [RR21] in the adjoint setting. We take ρ

as to be the traceless adjoint of the Deligne-Serre representation ρg attached to a weight
one newform g (so ρ does not contain the trivial representation and it is three-dimensional
with d+ = 1). Assume that ρg is residually irreducible and p-distinguished and that it is
not induced from a character of a real quadratic field in which p splits. Assume also for
simplicity that α 6= −β, where α and β are the roots of the p-th Hecke polynomial of g; hence
the Frobenius substitution σp at p acts on W with distincts eigenvalues 1,α/β,β/α, and
there are accordingly three choices W1,Wα/β,Wβ/α of p-stabilizations of Wp. Note that these
three lines are motivic, hence η-admissible for all η ∈ Γ̂ by Lemma 3.1.3. Taking W+

p as to
be Ep ⊗E Wβ/α, we have then H0(Qp,W−

p ) =W1, and it follows from Lemma 3.7.2 that [RR21,
Theorem A] is equivalent to

(22) I p(g)≡L(ρ,ρ+) mod E×,

where I p(g) ∈ Ep is the p-adic period attached to gα (see [RR21, §1] and [DLR16, §6] for
its definition). By [DLR16, Lemma 4.2] and [RR21, Proposition 2.5], the quantity I p(g)
can be recast modulo E× as the value at s = 1 of the derivative of Hida-Schmidt’s p-adic
L-function (denoted by Lp(ad0(gα), s) in loc. cit.) attached to ρ and the eigenvalue α. This
p-adic L-function is defined as the quotient of the specialization at ad(gα) of Hida’s p-adic
Rankin L-function by the p-adic zeta function ζp(s), so that it satisfies the same "p-adic Artin
formalism" as the one proven for higher weights in [Das16]. In light of (22) and Conjecture
A, one might hope to find a simple relationship between Lp(ad0(gα), s) and the conjectural
p-adic L-function Lp(ρ,ρ+, s) = κ1−s(θ′

ρ,ρ+), computed with respect to a (E-rational) basis

ω+
p of Wβ/α ⊆ W+

p . For instance, assuming EZCρ,ρ+ we know that both functions have a
simple zero at s = 1 (at least if L(ρ,ρ+) 6= 0) and their leading terms satisfy L′

p(ad0(gα),1) ≡
logp(uβ/α)−1 ·L′

p(ρ,ρ+,1) mod E×, where uβ/α is any element in the ρ-isotypic component of
E ⊗O×

H on which σp acts with eigenvalue β/α. In the p-ordinary CM case, that is, when g
has CM by an imaginary quadratic field in which p splits, we can say more. Assume that ρg

is induced by a finite-order character ψ of Gk. Then we have

ρ ≃ εk
⊕

IndQ

kψad,
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where εk is the nontrivial (odd) character of Gal(k/Q) and ψad =ψ/ψ, where ψ is the complex
conjugate of ψ. Let us write pOk as pp, where p is the p-adic prime of k defined by ιp and
where p is its complex conjugate, and take β =ψ(p), so that α=ψ(p) and ψad(p) = β/α. The
p-stabilization W+

p =Wβ/α then lies in IndQ

k ψad, and with the notations of Section 6.4, it is in
fact equal to W+

p,Σ, where Σ = {p}. Therefore, the p-adic Artin formalism for θ′
ρ,ρ+, together

with the discussions of Sections 6.3 and 6.4 enables us to reinterpret [RR21, Theorem 6.2]
as

Lp(ad0(gα), s)=
f(s)

log(uβ/α)
·Lp(ρ,ρ+, s)

in the p-ordinary CM case, where f(s) is called a E-rational fudge factor in loc. cit., that
is, a rational function with coefficients in E which extends to an Iwasawa function with
neither poles nor zeroes at crystalline classical points. Unfortunately, it seems rather hard
to make f(s) explicit. A similar formula in the general case would provide strong evidence in
support of EXρ,ρ+ and EZCρ,ρ+ . A promising approach would perhaps be to prove an explicit
reciprocity law for the specialization in weight one of the Euler system of Beilinson-Flach
elements.
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