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Abstract To achieve a sustainable energy system, a fur-
ther increase in electricity generation from renewable
energy sources (RES) is imperative. However, the devel-
opment and implementation of RES entail various chal-
lenges, e.g., dealing with grid stability issues due to RES’
intermittency. Correspondingly, increasingly volatile and
even negative electricity prices question the economic
viability of RES-plants. To address these challenges, this
paper analyzes how the integration of an RES-plant and a
computationally intensive, energy-consuming data center
(DC) can promote investments in RES-plants. An opti-
mization model is developed that calculates the net present
value (NPV) of an integrated energy system (IES) com-
prising an RES-plant and a DC, where the DC may directly
consume electricity from the RES-plant. To gain applicable
knowledge, this paper evaluates the developed model by
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means of two use-cases with real-world data, namely AWS
computing instances for training Machine Learning algo-
rithms and Bitcoin mining as relevant DC applications.
The results illustrate that for both cases the NPV of the IES
compared to a stand-alone RES-plant increases, which may
lead to a promotion of RES-plants. The evaluation also
finds that the IES may be able to provide significant energy
flexibility that can be used to stabilize the electricity grid.
Finally, the IES may also help to reduce the carbon-foot-
print of new energy-intensive DC applications by directly
consuming electricity from RES-plants.

Keywords Energy informatics - Integrated energy system -
Data center - Renewable energy sources - Energy
flexibility - Machine learning - Cryptocurrency mining -
Bitcoin - Edge computing

1 Introduction

In line with the Paris Agreement and the United Nations
sustainability goals, i.e., the development and implemen-
tation of a sustainable energy system including a phase-out
of fossil power plants, the share of renewable energy
sources (RES) in the global energy mix has already risen
significantly in the past years and continues to grow stea-
dily (United Nations 2015). Despite decreasing carbon
dioxide emissions, the increasing share of RES also poses
several challenges: On the grid level, the inherent inter-
mittency of RES leads to challenges for grid stability and
requires cost-intensive congestion management (Rausch
et al. 2019). In Germany alone, these circumstances yielded
costs of € 1.5 bn in 2018 for redispatch interventions
(Bundesnetzagentur 2019). Ultimately, as both electricity
grids and electricity demand have not yet been adjusted to
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the new generation structure of high shares of RES, the
intermittent electricity supply of RES can ultimately not be
optimally used within the system (Linnemann et al. 2011;
NieBe et al. 2012). This demonstrates an increased need for
flexibility, referring to the ability to balance electricity
demand and supply at short notice to ensure grid stability
and the successful integration of RES (Heffron et al. 2021;
Palensky and Dietrich 2011).

Moreover, on the level of individual plant operation, a
major challenge of RES consists in the highly volatile and
even negative electricity prices (Fanone et al. 2013):
Increasing the uncertainty of (future) income of RES-plant
operators, such price characteristics directly challenge a
viable operation of existing RES-plants and pose a possible
barrier to further investments in new RES-plants.

Hence, research and practice intensively consider dif-
ferent possibilities to tackle challenges related to RES’
intermittency: Among others, corresponding flexibility
technologies comprise batteries, sector-coupling, grid
expansion, and demand response (Heffron et al. 2020;
Lannoye et al. 2015). Furthermore, research in the field of
energy economics already discusses the approach of a local
integration, i.e., the possibility to supply local flexibility by
converting excess electricity on-site into goods, e.g.,
hydrogen, that may be stored or then sold on other non-
electricity markets (Glenk and Reichelstein 2019; Hosseini
and Wahid 2016).

With respect to the development of a sustainable energy
system with sufficient flexibility, research reflects the
crucial role of Information Systems (IS), constituting the
fields of Energy Informatics (EI) and Green IS (Buhl and
Jetter 2009; Goebel et al. 2014; Watson et al. 2010). In this
context, there exists a wide-ranging research stream deal-
ing with the energy consumption of data centers (DC) and
with the question how DCs can be designed more effi-
ciently (Beloglazov et al. 2011; Pedram 2012). This
includes (technical) literature concerning an efficient DC
operation and a corresponding design. Moreover, this
research stream also includes conceptual literature that
elaborates on benefits of using DCs for the whole elec-
tricity system, e.g., by supplying flexibility through a par-
ticipation in Demand Response (DR) programs. Another
example relates to a spatial distribution of DCs and cor-
responding flexibility (Klingert 2018; Shi et al. 2016). In
this context, Fridgen et al. (2017) discuss the idea of uti-
lizing spatially distributed DCs to effectively supply flex-
ibility by spatial load migration of computational power.
Moreover, related literature already introduces the local
combination of DCs and RES-plants (Ahmad et al. 2019;
Goiri et al. 2013). However, this literature puts DCs at the
core of research and mainly aims for lowering the elec-
tricity bill and the carbon-footprint of a DC. Thus, it lacks
the ability to address the challenges of the development of
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a sustainable energy system with respect to a viable future
operation of RES.

As highlighted above, to address the challenges of future
energy systems, research needs to focus on an appropriate
implementation and operation of RES-plants. Hence, — and
in contrast to existing literature on DCs — our work puts the
RES-plant at the core of our research and reflects on
energy-intensive DCs as a means to contribute to a viable
operation of and investment in RES-plants. We note that
there are first companies, e.g., WindCORES, which inte-
grate RES-plants and DCs in reality. However, the RES-
plant and the DC are predominantly not operated by the
same company (Moss 2018), while the theory behind these
first real-world examples is still missing. So far and to the
best of our knowledge, research does not consider the
approach of a local integration of RES-plants and elec-
tricity conversion into computing power (with respect to an
IS-application) with the aim of increasing the economic
viability of an RES-plant operation. Hence, we pose the
following research question in the light of EI:

How can the integration of an intermittent RES-plant
and a computationally intensive, energy-consuming
DC yield an increased Net Present Value compared to
a stand-alone RES-plant?

In line with Gholami et al. (2016), our paper constitutes
application-oriented IS research that addresses the two
challenges, namely the need for additional flexibility in the
future electricity system and an economically viable
operation of RES-plants. Hereby, we refer to the concept
of integrated energy systems (IES), in general consisting of
at least two plants, one of which is an energy consumer and
the other an energy supplier (Bai et al. 2016). Following
Bai et al. (2016), who provide an optimization model for an
operation of gas-electricity IES, in this paper we analyze
the impact of an IES — consisting of an RES-plant and a
temporally flexible DC application — on the economic
viability of an RES-plant using two exemplary use-cases.
Within our IES, the RES-plant generates electricity that
may either be sold on a corresponding electricity market or
consumed locally within the IES by the DC. We reflect that
an increasing Net Present Value (NPV) of the RES-plant
within an IES may lead to increasing investments in RES-
plants, and can, therefore, be considered as a means to
promote new RES-plants.

We note that the NPV of the IES can be increased by a
variety of use-cases for the integrated plant, ranging, e.g.,
from (training) Machine Learning (ML) algorithms by
cloud-computing DCs to (computerized) batch production
of physical goods. However, we are also aware of the fact
that the production of physical goods may be associated
with a higher complexity when compared to a DC use-case.
To illustrate the applicability of our approach, we therefore
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evaluate it with real-world data for two use-cases: While
also providing the basis for future research in the context of
IESs, in this paper we exemplarily reflect an integrated DC
(1) as instances for training ML algorithms (here: Amazon
Web Services (AWS)), and (2) for mining cryptocurrencies
(here: Bitcoin). Hence, the objective of this paper is the
development and quantitative evaluation of an economic
model that considers an optimal investment decision into
an IES using the NPV. To the best of our knowledge, an
IES has neither been modeled nor quantitively evaluated as
(1) opportunity to increase investments in RES-plants in
times of volatile electricity prices and (2) as a supplier of
energy flexibility in the light of EI. Moreover, we note that
our model may also be of high relevance for RES-plant
operators whose RES subsidy programs expire in the near
future — as is, for example, the case in Germany where
subsidies for 45GW of wind capacity have expired in 2020
(Friedemann 2018).

Our work contributes in various ways to research and
practice: We build on (1) research on optimizing costs of
DCs, on (2) research on Green IT, i.e., the environmentally
friendly and resource-saving use of IT throughout its entire
life cycle, and on (3) research on Green IS, i.e., using IT to
increase sustainability in various fields. We are the first to
introduce the approach of integrating RES-plants and DCs
to increase the economic viability of RES-plants, and our
evaluation illustrates that this approach is applicable in
practice. Additionally, we contribute to IS research on
energy flexibility, see e.g., Kahlen et al. (2014), Fridgen
et al. (2016), and Keller et al. (2020). Moreover and fol-
lowing Watson et al. (2010), our IES provides the oppor-
tunity to use flow networks more efficiently as it is able to
shift energy demand and, in this way, to supply local
flexibility.

The structure of our paper is as follows: We provide
relevant background for our research in Sect. 2. In line
with the research cycle proposed by Meredith et al. (1989),
Sect. 3.1 introduces our methodology while we develop
and describe our economic model in Sect. 3.2. Concerning
our evaluation, we discuss the applicability and relevance
of our use-cases in Sect. 4. Then, Sect. 5 describes the data
used for the evaluation and discusses corresponding results.
Section 6 highlights the contribution of our paper, and
Sect. 7 finally concludes, providing limitations and an
outlook for further research.

2 Related Literature and Background
In addition to the literature mentioned in the introduction,

we identify the following four research streams in aca-
demic literature that provide background for our analysis of

integrating an intermittent RES-plant and a DC: EI, DCs,
IESs, and energy flexibility.

Regarding EI, Watson et al. (2010) propose the field of
EI that aims to implement a sustainable energy system by
“analyzing, designing, and implementing systems to
increase the efficiency of energy demand and supply sys-
tems” (Watson et al. 2010, p. 24). In this light, our paper
analyzes both, the RES-plant and the integrated DC, as a
part of a flow network where both parts constitute sensi-
tized objects that are adaptable with respect to their elec-
tricity demand and supply (Watson et al. 2010). The recent
streams of EI combine — as also highlighted in the call for
this special issue — “the perspectives of electrical engi-
neering, energy economics, and information technology”
(Staudt et al. 2019). This is in line with Zhang et al. (2018),
who state that EI analyzes various digital technologies and
“their applications in the energy sectors” to tackle energy-
related challenges, see, e.g., Forderer et al. (2018) or Holly
et al. (2020). Literature in this field finds that the intelligent
management of DCs can introduce positive effects on the
stability of such flow network and offer appropriate eco-
nomic incentives (Thimmel et al. 2019). This is also clo-
sely related to the prevalent idea in IS research of IT-
enabled transdisciplinary sustainable business transforma-
tions, according to Elliot (2011), who proposes the idea
that EI can help to lower humans’ ecological impact
through research on these complex phenomena. Zhang
et al. (2011a) state that there are diverse opportunities to
contribute to EI goals and thus motivate the need for and
development of a strategic framework to effectively
implement those. This is in line with EI researchers, who
highlight both, the responsibility of IS research and cor-
responding opportunities in the near future (Buhl and Jetter
2009; Goebel et al. 2014). Therefore, our work contributes
to EI research by reflecting a DC as an enabler for a more
viable operation of RES-plants, which may, in turn, foster a
sustainable transformation.

Regarding DCs, we already mentioned the wide-ranging
research stream on energy consumption of DCs in our
introduction. While research on the operation of DCs has
focused on increasing their performance for decades,
reducing energy costs gained more attention in the last
years due to rising electricity prices (Beloglazov et al.
2011). As DCs are expected to account for about 20% of
total electricity demand in 2030 (Jones 2018), research
analyzes the question of how to make DCs more energy-
efficient in various ways (Pedram 2012). Such ways
include, e.g., technical aspects of DCs redundancy archi-
tecture and workload prediction, approaches to use heat
generated by the DC, or the participation of DCs in DR-
programs (Kliazovich et al. 2013; Klingert 2018; Shi et al.
2016; Shuja et al. 2012). The ability to take part in DR-
programs is, of course, dependent on the level of flexibility
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the DC is able to provide with respect to Service Level
Agreements (SLAs) deadlines (Keller et al. 2020). Vieira
et al. (2015) distinguish between three levels of flexibility
handling DC services requests: (i) “fixed-time requests *
(no flexibility), (ii) “floating-time requests “ (partly tem-
porally flexible, e.g., interruptible), and (iii) “variable-time
requests” (temporally flexible). Overall, current literature
on energy-efficient DCs seems to be focused on lowering
the electricity bill and the carbon-footprint of a DC.

Regarding (renewable) IESs, literature specifically
addresses two streams. On the one hand, IESs play an
important role in remote areas where reliability is impor-
tant in the subsystem (Kanase-Patil et al. 2010). On the
other hand, storage options for an efficient use of RES offer
new prospects for IESs, which are especially discussed
with respect to electricity battery storage (Connolly et al.
2012) and power conversion in Power-to-X plants (Glenk
and Reichelstein 2019). Research suggests that Power-to-X
plants converting electricity into a storable good like
hydrogen or fuel may play an important role in future
energy systems with their property to store electricity and
use it in a flexible manner (Bai et al. 2016; Glenk and
Reichelstein 2020). Within the energy research commu-
nity, this research stream is also sometimes referred to and
considered using the term smart energy systems (Lund
et al. 2017). To the best of our knowledge, we are the first
to present a model and an evaluation for an integration of
an RES-plant and a DC.

Finally, regarding energy flexibility, research considers
the concept of DR as a possible subset of Demand-Side
Management and as a possible key element for tackling the
challenge of grid stability for decades (Gellings 1985;
Palensky and Dietrich 2011). Here, literature defines DR as
the adaption of a load profile given, e.g., time-varying
electricity market price signals (Palensky and Dietrich
2011). In this way, DR is a form of energy flexibility on the
demand side (Haupt et al. 2020). Research repeatedly
stresses the crucial role of IS for an efficient DR (Fridgen
et al. 2020; Kahlen et al. 2018; Korner et al. 2019). Con-
sequently, also IS research addresses the topic of load
shifting. For example, Fridgen et al. (2016) assess the value
of IS-enabled flexibility on the demand side, with a focus
on electric vehicles. Gelazanskas and Gamage (2014) fur-
ther elaborate on what information is needed to decide on
specific DR measures. IS research also analyses how DR
can be used to gain a financial advantage in various mar-
kets, e.g., on the electricity spot market (Jickle et al. 2019).
In the light of energy flexibility, DR may, therefore, help to
increase the overall efficiency of an energy system, while
at the same time reduce the cost of energy demand for
consumers (Paulus and Borggrefe 2011). Against this
background, our work contributes to this research stream
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by illustrating that an IES supplying flexibility is applicable
and economically viable.

3 Methodology
3.1 Methodological Approach

To answer our research question, we follow the research
cycle proposed by Meredith et al. (1989) that is widely
used in IS research (Banz et al. 2016; Biirger et al. 2017).
According to Meredith et al. (1989), model development
should build on a research cycle consisting of three stages,
namely the description, the explanation, and the testing
stage. Accordingly, we develop a model that describes
investment decisions in the IES and the optimal usage of
the IES in Sect. 3.2 (also cf. Appendix A; available online
via http://link.springer.com). Our model is based upon
analytical modeling, as we assume a rational utilization of
the IES (Meredith et al. 1989). To test our model, we
evaluate it with real-world data in Sect. 5. In the following,
we consider all three stages of the research cycle in more
detail.

Meredith et al. (1989) state that the description stage is
essential for model development as it characterizes the
examined system. In line with such approach, we introduce
and locate our IES into relevant fields of research that we
identify in the literature (Sect. 2). Furthermore, we
describe how the IES relates to similar technological sys-
tems in research, especially with respect to Power-to-X
plants.

The explanation stage is characterized by developing the
causal structures or complex relationships of a system. We
constantly shift backward and forward between the
description and the explanation stage in Sect. 3.2, as new
aspects of the examined system are first described and then
analyzed, as suggested by Meredith et al. (1989). In the
light of Meredith et al. (1989), our analysis classifies as
rational and artificial in analyzing the operation of an IES.
We do so by conducting formal deductive quantitative
modeling in Sect. 3.2. Our model assumes an investor, who
acts as an economic agent that chooses the investment in
the respective plants maximizing the NPV (Hirshleifer
1958). Building the basic framework for our model, we
utilize the approach presented by Glenk and Reichelstein
(2019), who identify an optimal investment decision into
an IES consisting of an RES-plant and a Power-to-Gas
plant. Subsequently, in line with Meredith et al. (1989), we
illustrate the impact of our IES on promoting RES-plants.

In the testing stage, we examine the identified model
along with a more detailed description of the situations that
the testing is based on (Meredith et al. 1989). We begin the
testing stage in Sect. 4 by describing how the application of
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AWS instances for ML and Bitcoin mining fits the exam-
ined relationships and stating the specific assumptions for
the testing. We then quantitively apply our model in line
with Taylor (2005) and describe the results in Sect. 5.
Subsequently, we discuss the results in light of our RQ and
illustrate the contributions of our paper.

3.2 Model Development

Based on the methodological approach described above,
we first introduce the setup of our IES. We then briefly
define the most relevant variables/parameters and derive
the mathematical representation for an optimal investment
decision. Figure 1 depicts the specific setup of the IES. The
RES-plant (1) generates electricity that is either sold on the
electricity market (2) or consumed within the IES by a DC
(3). The DC thus consumes either electricity bought from
the electricity market or electricity generated within the
IES to execute computations, which are then compensated
for by an external market (4). The IES itself consists of (1)
and (3); hence the IES’s system border relates to the con-
nections between the IES and the respective markets (2)
and (4). The relevant electricity market referred to in this
work is the electricity spot market.

The objective of our model is to maximize the NPV of
an investment in an IES based on the capacity investment
decisions for the RES plant &, and the DC kp¢ (cf. detailed
variable overview in Appendices A and B). We note that
our model is based on previous work from the energy
economics community, especially on the work of Glenk
and Reichelstein (2019) and Glenk and Reichelstein
(2020). We broaden the scope of application of their
model, e.g., being applicable to real-world IS cases: we
expand the model by temporally varying efficiency factors
and output price determinants that account, for example,
for the specifics of DC hardware and DC operation (cf.
Appendix A).

We refrain from detailing out the model development
step by step but instead give an overview on the overall
model (see Appendix A for detailed model development).

Fig. 1 Integrated energy

The overall operation of the IES is split into four operation
modes, which base on the comparison of the economic
input factors, namely: the electricity selling price p,(t), the
electricity buying price p,(t), and the conversion value of
utilizing electricity in the DC CVpc(f). The operation
mode describes how to optimally utilize the IES given the
input factor prices and, thus, corresponds to the behavior of
a rational operator. Based on the specific operation mode,
the effect on the electricity grid may change when the IES
shifts from a net supplier to a net consumer. We note that
the four operation modes are not sequential, and hence,
there is no fixed order of their occurrence. The four oper-
ation modes are described as follows and are illustrated in
Fig. 2:

e Operation mode 1: The DC is idle as electricity prices
are too high to operate the DC economically. The RES-
plant operates at full capacity and sells the generated
electricity on the electricity market. This may reflect
times, when there is overdemand for electricity and
when there are low values for utilizing electricity in the
DC. Therefore, the following relation holds:
pu(t) > ps(t) > CVpc(t) > 0.

e Operation mode 2: The DC utilizes electricity gener-
ated by the RES-plant as the utilization ensures a
positive contribution margin, and additional DC capac-
ity remains idle, as an operation with bought electricity
is not economically viable. We have the following
conditions: py,(7) > CVpc(t) > ps(¢) > 0.

e Operation mode 3: The DC operates at full capacity
utilizing both the electricity generated by the RES-plant
and additional electricity bought from the market. The
following  condition  characterizes mode  3:
CVpe(t) > py(t) = py(1) 2 0.

e Operation mode 4: The DC operates at full capacity
utilizing electricity bought from the electricity market,
while the RES-plant is idle. The operator is compen-
sated for electricity bought from the electricity market
(negative electricity prices), which implies that external

system. (Adapted from Glenk m m Executed m
. : electricity 3 computation
and Reichelstein (2019)) Renewable energy Dat " Product sales
sources plant [© T T T T - ala center  e-------- market
3 information flow compensation

Electricity
market
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Fig. 2 Operation modes of the IES: Four different operation modes

electricity is utilized idling the RES-plant. The follow-
ing relation holds:CVpc() > ps(t) = 0 > p,(2).

Based on these operation modes, the NPV of an IES as
our objective function writes as follows (bars indicate a
variable’s mean; see Appendices A and B for further
details):

NPV (ke,kpc) = (1 —a)-L-[(T*-p, — LCOE) - CF -k,
+ (Ppy — Py — LFCCP) - kpc
+ (P, —py) - 2lke, kpe)]

The parameter o accounts for the operator’s tax factor, L
represents a levelization factor, I'* gives the deviation of
input factors from their mean, LCOE represent the leve-
lized cost of electricity of the RES-plant, LFCCP describe
the levelized fixed cost of computing power, and z(k., kpc)
is an auxiliary variable taking into account the respective
capacities of the two plants, whereas p,, and p_ constitute
price helper variables (a detailed description can be found
in Appendices A and B).

The above equation reflects the stand-alone values of the
specific parts of the IES by its first two terms as well as the
synergistic value by the last term. Thus, the last term in the
above equation allows us to state that the integration of an
energy-intensive DC may well increase the NPV of an
RES-plant as a part of the IES. The synergistic value is
based on the fact that costs, e.g., transmission and storage
costs, associated with the consumption of electricity from
the market may be avoided. This is in line with the findings
of Glenk and Reichelstein (2019) since these costs may be
identified as the difference between p,(¢) and py(¢) in
operation mode 3. Besides, the consumption of the DC
increases as it also operates economically viable, if
py(t) > CVpc(t) > ps(t) holds in operation mode 2. Hence,
the above objective function already illustrates that
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investments in IESs, and therefore in RES-plants, may
increase when integrated with a DC.

4 Machine Learning and Cryptocurrency Mining
as Use-Cases

In the testing stage of our methodological approach, we
evaluate our model with real-world data. Our IES may be
applicable for a variety of use-cases, i.e., the plant that is to
be integrated with the RES-plant may take a wide variety
of different forms. These forms may range from production
plants that convert electricity into physical goods to more
IS-related forms, such as the conversion of electricity into
computational power by a DC. With respect to the latter,
we evaluate two specific use-cases that differ concerning
their ratio between electricity input and product sales price,
namely AWS (on-demand) instances for training ML
algorithms and the mining of Bitcoin. While for these
specific use-cases this ratio is much higher for Bitcoin
mining as compared to AWS instances, we note that this
may result from distorted (high) prices for using AWS
instances. In this context, recent trends within the ML
industry may lead to electricity costs becoming much more
relevant for training ML algorithms (Sze et al. 2017).
However, we note that today’s AWS on-demand prices do
only depict a relatively small ratio between electricity input
and product sales price. Moreover, we note that SLAs may
prevent the operator from idling the DC because of direct
costs (due to SLA breaches) or indirect costs (due to lower
customer satisfaction as a result of downtimes). However,
regarding our evaluation, we consider the two use-cases to
execute” variable-time requests” that may be shifted tem-
porally in line with Keller et al. (2020) and Vieira et al.
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(2015). In the following, we give some more details on the
two exemplary use-cases.

4.1 Machine Learning

ML - as a subset of artificial intelligence — provides entities
with the possibility to compute human-like decisions by
algorithms being able to produce knowledge by general-
izing from examples, i.e., relations in exemplary data
(Domingos 2012; Kratsch et al. 2020). The field has grown
new interest over the past years in both, research and
practice. A variety of computing algorithms exist that
“learn” a new model based on an existing data set, e.g., to
predict unknown data. This utilization of computing power
also fits the setup of an IES as the learning needs not to
take place at a specific time but may instead be shifted
based on external market signals, in this context, specifi-
cally electricity market prices. Hence, we reflect it as
temporally flexible in the sense of Vieira et al. (2015) —
which may be some simplification with interesting future
research opportunities. Furthermore, research critically
evaluates the increasingly high demand for ML use-cases
and the corresponding energy demand (Jobin et al. 2019).
AWS is the largest operator of cloud computing capacity
and offers a variety of computing instances that are
specifically designed to run ML applications. Therefore, its
setup may serve as a use-case for an evaluation of our
work.

4.2 Bitcoin Mining

Bitcoin mining constitutes the process of creating Bitcoins
as well as validating transactions within the Bitcoin system
(Nakamoto 2008). In order to be allowed to add a new
block to the blockchain, a network participant must prove
that the user has solved the according hashcash. A hashcash
constitutes a cryptographic problem that is designed to be
arbitrarily difficult to solve; if a solution is found, it can
easily be verified whether the provided solution is correct
or not. The only opportunity to solve a hashcash is that a
computing machine randomly tries possible answers until
the right one is met (Narayanan and Clark 2017). This
process makes Bitcoin mining extraordinarily energy-in-
tensive (Sedlmeir et al. 2020). However, we note that not
all Blockchain applications may solely be regarded as
energy-intensive consumers (Albrecht et al. 2018). For
example, Niele et al. (2018) reflect Blockchain as a tech-
nology to manage parts of the energy system by intro-
ducing a Blockchain-based system for congestion
management. Moreover, for example, Utz et al. (2019)
propose a Blockchain-based smart contract system for
shared energy assets, while Wu and Tran (2018) review
several Blockchain applications, e.g., for carbon emissions

certification and trading. Regarding our evaluation, Bitcoin
mining is not only implementable in practice, but the Bit-
coin price also allows for an immediate price determination
for the product corresponding to the energy input. Addi-
tionally, the operation of Bitcoin mining may be time-in-
dependent, i.e., adjustable to electricity generation or
electricity prices without consumption catch-up effects.
Thus, Bitcoin mining is utilized as a second evaluation
case.

5 Results and Implications
5.1 Description of Data and Assumptions

Both use-cases are evaluated using real-world data from
the German electricity market of the latest available three
years 2016-2018 (see Appendix C, D). The German market
serves as a relevant use-case given two reasons. First, there
is a high share of intermittent RES on the German elec-
tricity market already today, resulting in quite volatile price
patterns. Second, with respect to Germany’s subsidy pro-
grams, the first government-subsidized RES-plants will
phase out soon, creating a new market environment that
may challenge the further operation of these plants.
Therefore, we consider a wind power station in Germany as
an exemplary RES-plant, and use the electricity spot price
(intraday) for the German price region as the price for
electricity sold on the electricity market p,(r). However, we
note that the decision concerning the market(s) to address
is itself a complex task. Our IES may also be able to
operate in long-term markets, e.g., by Power Purchase
Agreements, and short-term markets, e.g., in control energy
markets. Also, hybrid solutions may be possible, where
parts of the generated energy are traded at different mar-
kets. As a starting point, we consider the spot market which
gives important price signals for plant operators. Regarding
the purchase of electricity, p,(f), we assume a fixed sur-
charge based on industry electricity purchase (Glenk and
Reichelstein 2019).

Regarding the ML-case, we additionally assume a DC
output price in line with the publicly available on-demand
utilization prices for ML instances provided by AWS (see
Appendix C). We calculate electricity usage and costs
based on the energy consumption of the associated hard-
ware stack, including the respective investments. To
incorporate overhead server energy consumption, i.e.,
cooling and memory, we add a surcharge of 70% on the
DC’s processing chip energy consumption in line with
Dayarathna et al. (2016). As (i) the specific cost structure
and the respective energy consumption of an AWS server
stack is not publicly available, and (ii) the modeling of
highly specific costs, e.g., costs for switching on and off or
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stand-by costs of the idle DC, yields a high model com-
plexity due to discrete decisions (Dayarathna et al. 2016),
we simplify these costs and assume that they are included
in the fixed operating costs. In line with Fridgen et al.
(2017), we further assume that the energy consumption of
the DC is proportional to its load operated. Considering
research and practice, we note that there are several
promising approaches demonstrating and further improving
the proportionality between a DC’s processing capacity
and its load (Gandhi et al. 2010; Ganesh et al. 2013; Lin
et al. 2013; Tolia et al. 2008; Whitney and Delforge 2014).
However, we also note that this assumption may limit the
accuracy of our numerical results but does not affect their
general explanatory power. To address this issue, we
conducted sensitivity analyses regarding the input factors,
e.g., costs for equipment, especially overhead costs, or
energy consumption of this equipment, (for example, of
cooling servers). Some DCs also utilize significant shares
of electricity when they are idle, which is why we
increased fixed operating costs by 50%, 100%, and 200%.
The operation modes and corresponding results presented
hereinafter do not change significantly (cf. Sect. 5.2 and
5.3), whereas the NPV of the investment as well as the
optimal DC capacity shrinks due to increased costs.

Regarding the BC-case, we evaluate the model with
Bitcoin price data and the respective mining network
characteristics, i.e., mining difficulty, block reward, and
transaction fee, based on publicly available sources (see
Appendix D). We base our assumptions regarding costs
and computational power on mining hardware that was
available at the beginning of the observation period to
ensure coherent results. We maintain the assumption of
proportionality between the DC load and the corresponding
energy consumption as stated above.

Figure 3 depicts the conversion values and electricity
prices used in our evaluation. The dots depict the conver-
sion value range of the Bitcoin mining plant. The hours
within the observation period of three years, i.e., 26,304 h,
limit the abscissa in Fig. 3. The level of the conversion
value of Bitcoin mining CVpc(f) is temporarily above,
below, or between the prices for buying electricity p;(f)
(see the drawn through line) and the price for selling
electricity py(z) (see the dashed line), which illustrates the
different operation modes of IES operation an illustrates
that the four operation modes of our model (cf. Figure 2)
indeed occur within our real-world evaluation case. We
note that the conversion value CV);; based on the constant
on-demand price for AWS ML instances is above the pri-
ces for buying and selling electricity at all times (repre-
sented in Fig. 3 as dashed-dotted line).

@ Springer

5.2 Results for an Investment in Stand-alone RES-
Plants and DCs

When assessing the NPV of a stand-alone DC (without an
RES-plant), the variable k. that describes the capacity of
the RES-plant is set to zero, implying that the DC can only
consume electricity that is bought from the electricity
market. The left subfigure in Fig. 4 depicts the NPV of an
investment in a stand-alone ML-DC, depending on the
chosen capacity k of the DC. The NPV proportionally
increases (ML-case with capacity ky) or falls (BC-case
with capacity kpc) with increased investment. This is
mainly based on two facts. First, no synergies within an
IES can be used, as electricity can only be bought from the
market. Second, our model suggests that investments and
operating costs behave proportionally to the invested
capacity. In our evaluation setting, the optimal decision of
an investor is to fully invest in the ML capacity (kyz = 1)
but not at all in the mining plant (kgc = 0). The latter is
due to the fact that the price to purchase electricity on the
market is too high to recoup the capacity investment,
although the DC is active in 35% of the considered time
periods. This finding is in line with the low amount of
Bitcoin mining in Germany (Willms 2019), and also per-
sists — given the results of our sensitivity analyses — if the
fixed operating costs are increased. The optimal capacity of
the respective DC remains either 1 in the ML-case or 0 in
the BC-case. Based on the used data, the NPV of a stand-
alone RES-plant NPV}, is positive in our evaluation setting.
This analysis is generally independent of the capacity of
the plant as indicated in the right subfigure of Fig. 4, as the
slope of the NPV function is constant. The constant slope
depicts an idealized setting since a continuous construction
and dismantling of the capacities of DCs as well as RES-
plants may not be possible in reality.

5.3 Results for an Investment in an Integrated Energy
System

For the investment in an IES, we assume that the RES-
plant either sells its electricity to the electricity market or
the electricity is locally consumed in the integrated DC. As
we already described above, the NPV of the stand-alone
ML-DC may be positive (due to high ML conversion
values). Our results thus illustrate that the NPV of an IES,
consisting of an RES-plant and a ML-DC, yields a positive
NPV alike. The IES does not feed-in electricity into the
grid at any time, but it uses the generated electricity locally
for the integrated ML-DC. This effectively results in the
absence of operation mode 1 of the model. It corresponds
to expectations from real-world observations, as DC ser-
vices are normally not deactivated by providers due to high
electricity costs. The result for the ML-case demonstrates
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Fig. 4 Depiction of the NPV of the stand-alone plants: ML-DC (on the left), Bitcoin mining DC (in the middle), and RES-plant (on the right)

that the integration indeed yields synergistic effects, i.e.,
the NPV of the IES is higher than the sum of the NPV of
the two stand-alone plants. This may effectively reduce the
electricity bill for operating the energy-intensive ML
application. Furthermore, the utilization of the RES-plant
may increase as its generated electricity may also be used
in the ML-DC at times when the selling price for electricity
drops below 0. This effect is accompanied by an increase in
the share of RES that is utilized within the ML-DC in
comparison to the stand-alone case (utilizing only market
electricity), resulting in a decrease of the DC’s carbon-
footprint. The conducted sensitivity analyses suggest that
the optimal investment size remains the same, whereas the
NPV of the IES is lower in case of higher fixed costs, e.g.,
the NPV is reduced by 9% if the fixed costs are increased
by 100%. The synergistic value persists as well.

As the stand-alone Bitcoin mining plant yields no pos-
itive NPV in our evaluation setting, an investment in Bit-
coin mining capacity larger than the capacity of the RES-
plant cannot maximize the NVP of the IES. Thus, if we
normalize the capacity of the RES-plant £, to 1, the optimal
investment in the Bitcoin mining plant kzc must lie in the
closed interval [0, 1]. In contrast to the evaluation of each
stand-alone case, the left subfigure in Fig. 5 shows a con-
cave NPV function for the IES. This concavity implies that
synergies between the two parts of the IES exist as iden-
tified in our model. In particular, our results illustrate that
the NPV of the IES has a single optimal capacity of
kpc = 0.45. This implies that the peak capacity of the
mining plant equals 45% of the peak capacity of the RES-
plant. In this way, our evaluation finds that the NPV of the
IES is 32% higher than the stand-alone NPV of the RES-
plant. In comparison to the stand-alone case, the operation
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of the IES changes significantly. The IES’s inherent RES-
plant supplies 73% of the electricity that is consumed by
the mining plant. The share of 73% RES supply is more
than doubled, if compared to the German grid mix having
an average of 35.1% of RES supply during the observation
period (BMWi 2019). For this use-case, our IES may help
to reduce the carbon-footprint of Bitcoin mining. Here, we
also note that — as illustrated by Sedlmeir et al. (2020) —
other consensus mechanisms such as proof of stake or
proof of capacity may help to reduce the carbon-footprint.
Furthermore, the mining plant now operates 82% of the
time, which constitutes a significant increase compared to
the stand-alone mining plant (35%). Overall, the IES is
characterized by a net energy supply within the observation
period: the RES-plant feeds-in 12% more electricity to the
grid than the mining plant consumes. Overall, we find that
36% of the total energy generation of the RES-plant is fed-
in the grid. The mining plant consumes internal energy at
low electricity prices, which indicate a high (over-) supply
of electricity on the market. Anyhow, the underlying data
suggests a negative correlation (p = —0.33) between RES
generation and the price for selling electricity at the market
ps(t), which is supported by existing research (Saenz de
Miera et al. 2008). Consequently, the mining plant con-
sumes internally generated electricity when the opportunity
cost for selling this electricity on the market is low and the
(overall) amount of electricity that is fed into the grid is
high. Hence, the IES may contribute to grid stability by
locally using generated electricity instead of feeding it into
the grid, i.e., by supplying (local) flexibility.

In the near future, there will also be settings, in which
the specific stand-alone NPV of the RES-plant is negative,
e.g., due to higher fixed maintenance costs for the RES-
plant at the end of the plant’s lifetime RES-plant (Ziegler
et al. 2018). We also find that in cases where the NPVs of
both, the RES-plant and the DC, are negative, the optimal
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decision of an investor may be to invest in the IES. In other
words, even if both parts of the IES cannot be operated
economically viable on a stand-alone basis, the IES may be
profitable. The subfigure on the right only depicts a shift of
the NPV function (cf. vertical axes), as the synergies that
stem from the integration of the two plants remain unaf-
fected. The optimal investment in both cases is again
kpc = 0.45 and even in the setting illustrated in the right
subfigure we derive a positive NPV. We also note that this
result supports the findings of Glenk and Reichelstein
(2019), who analytically show that the synergistic value of
an IES may outweigh the negative NPVs of both stand-
alone plants. The conducted sensitivity analyses suggest
that the optimal capacity may decrease if fixed costs are
higher. For example, the optimal capacity may decrease to
kpc = 0.25 if the fixed costs may be 200% higher. Such
lower capacity further decreases the share of electricity
used internally and consequently the synergistic value of
the IES (then 41%).

To sum up, both use-cases, the ML-case and the Bitcoin-
case, yield positive NPVs resulting in the promotion of
RES-plants. Moreover, when integrated with an RES-plant,
the Bitcoin mining plant is able to provide significant
demand-side flexibility.

6 Contribution

Based on the modeling and evaluation in the previous
sections, we summarize first research contributions of our
work as well as first insights for practice and decision-
makers.

Concerning the contribution to IS research, our results
build on research on optimizing energy costs of DCs, on
research on reducing the carbon-footprint of DCs (Green
IT), and on research on how to use IT-infrastructure to
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increase the sustainability of the energy system (Green IS)
as described in Sect. 5. Moreover, our work contributes to
the research stream on IS-enabled energy flexibility, see,
e.g., Kahlen et al. (2014), Fridgen et al. (2016), and Keller
et al. (2020). Our IES constitutes a new way of providing
(local) energy demand-side flexibility. Such flexibility
results from the operation mode of the IES reacting to
electricity market signals, i.e., electricity prices; if market
signals indicate that overall electricity feed-in is (too) high,
i.e., electricity prices are low or negative, the IES’s elec-
tricity will be used by the integrated DC and the overall
amount of electricity in the system decreases. Our evalu-
ation suggests that the more relevant electricity costs of the
converted good are, as compared to its output price, the
more sensitively the IES operates with respect to external
electricity market signals (see Sect. 5). This may be of
particular interest as recent trends suggest that the rele-
vance of electricity costs for ML applications will increase
significantly. Furthermore, we also contribute to IS-re-
search and theory by building on the work of Watson et al.
(2010). Our IES provides new opportunities for increasing
the efficiency of flow networks as introduced by Watson
et al. (2010), given that the IES supplies local flexibility by
converting excess electricity on-site into computational
power. In this sense, our approach may help to use flow
networks more efficiently by implementing IS applications,
e.g., an IES. In addition, both parts of our IES, the RES-
plant as well as the integrated DC, may constitute sensi-
tized objects. In this context, our research also contributes
to further developing use-cases for the concept of edge
computing as the IES may shift computational power
towards the edges of the network. This may be particularly
relevant for research focusing on topics of sustainable edge
computing (Li et al. 2018). Moreover, we contribute to
research by transferring approaches from outside the IS-
community, i.e., Glenk and Reichelstein (2019), into the
field of EI. We develop an economic model for an IES that
reflects IS cases in which the consuming part of the IES is a
DC.

Our work is also highly relevant for practice and deci-
sion-makers when reflecting on the implementation of
IESs. In our evaluation, we illustrate that the IES performs
well for practical settings, e.g., for ML and for Bitcoin
mining as examples for (energy-intensive) applications. In
both cases, the IES has a positive NPV, i.e., the operation
of the RES-plant and the DC within the IES is economi-
cally viable. We also analyze the situation where the NPV
of a stand-alone RES-plant is negative, e.g., due to high
fixed maintenance costs or due to the expiration of subsidy
programs, resulting in a situation where a (further) opera-
tion of the RES-plant on its own may not be economically
viable (Friedemann 2018; Ziegler et al. 2018). For such
cases, our results illustrate that the NPV of the IES may be

positive even if the NPV of both, the stand-alone RES-
plant and the respective DC, is negative. Moreover, as
highlighted above, our work will also be increasingly rel-
evant for companies that deal with ML applications,
reflecting that energy costs for ML will increase within the
next years, and its usage may be shifted temporally. In
summary, as our IES has a higher NPV compared to the
stand-alone plants, it may increase investments in RES-
plants by tackling uncertainties of RES-plant operators
concerning income in time periods with low electricity
prices. From an overall energy-system perspective, the
RES generation could be promoted through a correspond-
ing integration with an energy-intensive DC.

7 Conclusion, Limitations, and Further Research

In this paper, we present an economic model that illustrates
how the integration of an RES-plant with an energy-in-
tensive DC into an IES may increase the economic viability
of an RES-plant operation. We evaluate our model by
applying two use-cases, namely, ML and Bitcoin mining to
make use of the DC. Our results illustrate that the NPV of
the IES can be higher than the NPV of the stand-alone
RES-plant as well as of a stand-alone DC. We argue that a
higher NPV of an IES may promote investments in RES-
plants. Especially with respect to the prevalent negative
correlation between RES generation and electricity market
prices, the IES could tackle uncertainties for RES-plant
operators concerning their income in times of low elec-
tricity prices. Moreover, we argue that our IES is also be
able to contribute to grid stability by supplying flexibility.
We also note that the DC — when used within the IES —
may consume a higher share of RES and thus distinctly
reduce its own carbon-footprint. Overall, we conclude that
our IES promotes the operation of RES-plants by inte-
grating energy-intensive DCs.

Given our first results, we briefly sketch some limita-
tions of our work. In general, our methodology in terms of
application-oriented modeling inhibits limitations itself,
including a simplification of a real-world application and
the exclusion of specific contextual factors such as the need
for a timely execution of computing services. These factors
may be incorporated as SLA costs or deadlines that intro-
duce additional constraints to the model at hand. Our
evaluation use-cases may limit our results as they are based
on specific economic parameters and assumptions that may
differ when assessing other applications. For example, we
base our ML-evaluation on several assumptions concerning
the costs of operating a DC, however, the cost structure of
AWS server stacks is not publicly available. Moreover, we
simplify the economics of a mining plant in our evaluation;
in particular, we assume that a large part of the DC has no
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recovery value at the end of the three-year term, whereas
the future use in reality is rather complex. For example, the
utilization of the mining processor may become obsolete
due to future mining difficulties or new mining technolo-
gies. In such cases, the equipment may still well be utilized
in application areas with lower electricity prices and
therefore sold to other operators. In consequence, specific
assumptions of our evaluation cases may not fit generic
real-world applications, which may require a more detailed
consideration of additional (technical) constraints of an IES
operation.

Our work also provides various starting points for fur-
ther research that may extend our approach, for example,
by considering other markets or the interconnection
between the IES and the grid in more detail. Here, research
may address the above limitations by applying additional
use-cases and corresponding markets, e.g., control energy
markets. Reflecting and incorporating the value of
addressing several markets with one IES may constitute the
basis for the development of specific decision support
systems for operators. Further research may also quantify
the IES’s contribution to addressing grid stability issues in
full details. Moreover, further research may consider
specific cost structures of DCs in all their particulars. With
respect to further EI research, we suggest reflecting the role
of edge computing in the light of consuming electricity
locally as it inherently shifts electricity consumption
towards the edges of a computing grid. Moreover, future
work may also discuss relevant implications for policy-
makers, e.g., analyze whether and which kinds of subsidy
programs for promoting RES-plants (that typically bear
huge costs for the general public) are needed under con-
sideration of concepts like IESs. Here, our first results
suggest that the implementation of (new) subsidy pro-
grams, especially feed-in tariffs, may reduce synergistic
effects of the IES. Feed-in tariffs generally entail higher
opportunity costs for the operator of an IES when con-
suming the electricity within the IES. Against this back-
ground, our work may serve as a profound starting point for
future research in the highly relevant field of EI.
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