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Abstract—Random access (RA) protocols are suitable for
the support of massive connectivity especially in machine-type
communications, such as the Internet of Things (IoT). In this
context, ALOHA protocols (both slotted and unslotted) have
been re-introduced as promising enablers due to a potentially
high throughput when enhanced via successive interference
cancellation (SIC). Meanwhile, SIC has become the most popular
solution for RA detection problems.

In this work, we first point out the weaknesses of SIC and
then propose a novel method based on joint detection of all
randomly scheduled data packets. The proposed method is based
on the joint computation of a-posteriori probabilities for all data
symbols and packet localizations, such that optimal detection for
RA is obtained.

Index Terms—Random access, joint detection, MAP, ALOHA

I. INTRODUCTION

RANDOM access (RA) to medium resources has recently

re-gained the attention of the research community due

to the massive connectivity envisioned for both terrestrial and

satellite-assisted Internet of Things (IoT) as well as beyond

5G communication systems [1], [2]. In such networks, the

nodes may wake up at random instants of time and start their

transmission without having to wait for a free slot or a grant

as in traditional medium access schemes.

In many communication systems, packet-based slotted

transmissions are preferred where each time slot has a fixed

length corresponding to the length of a data packet and

uncoordinated interference is avoided. In contrast, in unslotted

RA multiple packet transmissions are allowed to overlap in

time without any prior timing or frame synchronization. Such

unslotted transmission offers an additional flexibility for the

network design but requires highly complex detection meth-

ods since the missing synchronization imposes an additional

uncertainty for the symbol detection compared to slotted RA

[3]. Symbol-based slotted RA assumes a sufficiently accurate

sampling phase synchronization but does not require any frame

synchronization. Hence, this type of RA provides an increased

flexibility compared to the packet-based slotted RA but does

not entail such an extremely high computational complexity

for the detection as the unslotted RA. In this context, the

traditional slotted and unslotted ALOHA protocols have been

enhanced with additional features such as error correction [4],

replica transmissions [5] and interference cancellation [6], and

spread-spectrum approaches [7].

Steven Kisseleff is with the Interdisciplinary Centre for Security, Reli-
ability and Trust (SnT), University of Luxembourg, Luxembourg, E-mail:
steven.kisseleff@uni.lu.

Wolfgang H. Gerstacker is with the Institute for Digital Communica-
tions, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen,
Germany, E-mail: wolfgang.gerstacker@fau.de.

The typical characteristics that are used to describe RA are

medium access (MAC) load, packet length and number of

users. The knowledge of these quantities at the receiver can

be exploited to improve the detection reliability [8].

There are two main strategies for detecting multiple overlap-

ping data streams: joint detection (JD, cf. [9]) and iterative pro-

cessing via successive interference cancellation (SIC, cf. [6]).

In particular, JD is optimal in case of continuous transmissions

and known communication channels for each node. However,

for discontinuous transmissions of short data packets with

known length, JD according to the state of the art is suboptimal

since the knowledge of the packet length is not incorporated

into the detection process. In contrast, SIC based detectors

incorporate all available information from the respective node

in each iteration, since interference cancellation requires a

complete packet detection and decoding [6], [7]. However, SIC

can only operate properly if combined with packet localiza-

tion1. Hence, prior to detection a packet localization needs

to be performed which is typically associated with preamble

detection via correlation, cf. [7]. Due to a time-varying in-

terference variance2, preamble correlation may not always be

reliable. Intuitively, the correlation should be replaced by a

maximum ratio combining in presence of noise/interference

power fluctuations [12]. Furthermore, if a correlation opera-

tion is applied in the SIC receiver, such scheme is clearly

suboptimal since the characteristics of the interfering signals

(i.e., packet lengths, probability of transmission, etc.) are not

taken into account, cf. [8].

A better strategy would be to perform a JD of all data

streams by taking into account all known quantities of the

underlying random processes since an optimal RA receiver

should exploit all available information. As an example, JD

in [9] is not fully optimal due to the multi-stage processing

where the localization of the transmitted packets is performed

prior to the symbol detection. In fact, none of the existing JD

frameworks is optimal since either the packet localization is

applied prior to the symbol detection or the symbol detection

is done prior to the selection of the packet position hypothesis.

In this work, we propose a novel method of JD for symbol-

based slotted RA based on concatenated Markov chains. A

joint packet localization and data detection is performed by

computing the a-posteriori probabilities (APPs) for all sym-

1In fact, all packet-based slotted ALOHA protocols rely on perfect frame
synchronization and thus packet localization, cf. [4], [10]. Furthermore, SIC
relies on the capture effect, i.e., on sufficiently separable signals with large
power discrepancy [11].

2Here, we refer to the interference from the colliding transmissions which
have not yet been removed by SIC, cf. [8].
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bols of all overlapping data packets resulting in an optimal

detection performance. Hence, the performance of this detector

corresponds to an upper bound for any practical scheme.

This paper is organized as follows. In Section II, the system

model is introduced. A novel method of packet detection is

described in Section III. A performance analysis is provided

in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

We assume that N network links are active simultaneously

in principle and each corresponding node n may start transmit-

ting its data packet with probability pn in the current time step.

The knowledge about the transmission probability is either ac-

quired from the nodes via measurements or available according

to the system characteristics.3 Note that the distribution of idle

and busy symbol intervals, which depends on the transmission

probability, is beyond the scope of this work. Unlike previous

works where each packet transmission is supported by the

transmission of multiple replicas or segments of the code word,

we focus on a single transmission per packet.

For the signal detection, we consider an observation win-

dow of W symbols. The transmitted data is encoded via

forward error correction (FEC) coding and linearly modulated.

Each data packet from node n consists of Ln symbols and

has the duration LnT , where T is the symbol interval and

Ln ≪ W, ∀n holds. The number of symbols in each packet

Ln is known to the receiver, since it corresponds to the length

of the employed FEC codeword. Furthermore, we assume

that the transmission is impaired by additive white Gaussian

noise (AWGN) with a constant known variance σ2
N . While

intersymbol interference effects are modeled as negligible,

an extension of the proposed scheme to frequency-selective

channels is possible in principle.4

We denote the symbols of packet l of node n as an,l[m], 0 ≤
m < Ln. We consider the use of a finite alphabet An with

Mn symbols cn,i ∈ An, 1 ≤ i ≤ Mn for modulation. In

addition, an accurate symbol level synchronization is assumed

such that each node knows when the symbol intervals begin

and transmits its data packets accordingly. The discrete time

instant of beginning of packet l of node n is denoted as τn,l.
Note that τn,l is an integer number which corresponds to an

offset relative to the first symbol of the observed sequence

of symbols. Furthermore, τn,l may differ for different nodes.

The packets belonging to the same node are modeled as non-

overlapping. The total data sequence transmitted by node n
consists of an infinite number of packets and is given by

xn[m] =

∞
∑

l=0

an,l[m− τn,l], ∀n, 0 ≤ m < W. (1)

The received signal y[m] at the input of the detector comprises

the transmit signals xn[m], ∀n weighted by a fixed complex-

valued channel coefficient hn and discrete-time AWGN w[m],

y[m] =

N
∑

n=1

hnxn[m] + w[m], 0 ≤ m < W. (2)

3In some applications, pn may be related to the duty cycle of the nodes
and thus is known. Otherwise, it can be estimated based on prior detections.

4For this, the state definitions in Section III.B and III.C have to be extended
to include all past data symbols affecting a receive symbol.
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Fig. 1. Sequence of symbols received from three nodes with L1 = 5, L2 = 3
and L3 = 4; W = 23. As an example, in the 13th symbol interval we obtain
y[12] = h1a1,4[3]+h2a2,27[2]+h3a3,11[0]+w[12]. Note that the packet
state (in colored square) is set according to the proposed method.

In this paper, we assume ideal channel knowledge since we

focus on the principle of the proposed detection algorithm.5

An example of packet reception and the composition of the

received signal y[m] is shown in Fig. 1. For the decoding of

the messages of each of the nodes we utilize a soft-decision

decoder which is based on the Viterbi algorithm (VA). As input

to the VA, log-likelihood ratios (LLRs) based on APPs are

needed. Thus, the optimum computation of LLRs taking into

account all available signal characteristics including the packet

length should be addressed. In the following, we propose

such method for computation of LLRs / APPs for multiple

overlapping short packet transmissions.

III. OPTIMAL PACKET DETECTION

A. Outline of the method

The transmission of a packet from node n with parameters

hn, pn, Ln and An, is modeled as a Markov process. Cor-

respondingly, in line with general detection approaches for

Markov processes, conditional probabilities characterizing the

transitions between any two states of the packet are obtained

and stored in a state transition matrix P, and conditional

probabilities of the observations y[m] for given transitions

are computed and stored in a likelihood matrix R[m]. Then,

the well-known BCJR algorithm (cf. [14]) is applied in order

to determine the joint probabilities (JPs) for observing the

received signal y[m], ∀m and an occurrence of a given state

s[m]. Subsequently, the APPs are determined by combining

the JPs and used to calculate the LLRs for the VA. In the

following, we discuss the calculation of matrices P and R[m]
based on specifically designed Markov chains as well as the

calculation of the APPs.

B. Markov chain for transmissions from a single node

For simplicity, we start with the detection of randomly

scheduled data packets from a single node, i.e., N = 1. Since

the packet length is assumed to be known at the receiver, we

define a ’packet state’ as a number of receive symbols to be

still affected by the data packet including the current symbol.

For example, once a new data packet arrives, its packet state is

L1, see Fig. 1. In the subsequent symbol intervals the packet

state reduces to L1−1, L1−2, etc. A packet state ’0’ indicates

5In a practical application of the advocated scheme, channel estimation
has to be incorporated, exploiting e.g. training sequences transmitted for
initial symbol synchronization also for channel acquisition, and embedding
per-survivor processing, cf. [13], in the BCJR algorithm for channel tracking.
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Fig. 2. Markov chain with packet states for a single node and L1 = 3. p1
denotes the probability of transmission.
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Fig. 3. Extended Markov chain with states comprising packet states and
hypothetical transmit symbols with N = 1, L1 = 3, and binary modulation.

the absence of the useful signal in a particular symbol interval.

An example of a corresponding Markov chain for L1 = 3 is

shown in Fig. 2. Here, we have only four possibilities (’0’, ’1’,

’2’ and ’3’) for the respective packet state. The transition from

state ’0’ into state ’3’ occurs with probability p1 corresponding

to the transmission of a new packet. A transition from states

’3’, ’2’ and ’1’ is only possible into states ’2’, ’1’ and ’0’,

respectively. This indicates that a packet transmission will not

stop before all symbols of the packet are transmitted.

In addition, we need to distinguish between the different

transmitted symbols in each symbol interval of the data packet.

To this end, we append a hypothetical symbol from A1 to

each packet state. Hence, multiple sets of states are obtained,

where each set corresponds to a particular current transmit

symbol. We denote these sets as Sc,1. As an example, for

a binary modulation alphabet A1 = {−1,+1} and a packet

length L1 = 5, [4,−1] ∈ S−1,1 and [2,+1] ∈ S+1,1

are two possible states. All valid combinations of packet

states and hypothetical transmit symbols are interpreted as

states of an extended Markov chain. With a given a-priori

probability distribution of the symbols in the alphabet and a

given transmission probability p1, the transition probability

between any two states of the extended Markov chain can be

calculated. In case of equal a-priori probabilities, the transition

from a Markov chain state pertaining to the packet state

1 < q ≤ L1 into a Markov chain state corresponding to the

packet state q − 1 occurs with a probability of 1/M1. In Fig.

3, the resulting extended Markov chain for L1 = 3 and binary

modulation is shown. Apparently, there are 1 + L1M1 = 7
states corresponding to concatenated packet states and transmit

symbols: [0], [1, +1], [2, +1], [3, +1], [1, -1], [2, -1], [3, -1]. In

addition, we show a trellis diagram according to the extended

Markov chain of Fig. 3 in Fig. 4. For a transmission of two

packets [+1, -1, -1] and [-1, +1, -1], the path through the trellis

diagram is marked in red.

C. Markov chain for transmissions from multiple nodes

Next, we modify the above approach of state definition for

random transmissions from multiple nodes.

A Markov product-chain is created resulting from com-

bining multiple extended Markov chains pertaining to the

different nodes. Each state of this product-chain corresponds to

a concatenation of respective states of the individual extended
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Fig. 4. Trellis diagram for a single node, L1 = 3, and BPSK modulation.
The path corresponding to a transmission of two packets [+1, -1, -1] and [-1,
+1, -1] is marked in red.
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Fig. 5. Markov chain of packet states for two nodes and L1 = L2 = 3.

chains. For instance, ([3,−1], [5,+1], [0], [1,+1]) is a possible

state for N = 4 and Ln = 5, ∀n. For the clarity of exposition,

we show an example of a Markov chain for two nodes without

the transmit symbols, i.e., only the packet states are depicted,

see Fig. 5. The state of the product-chain in time m is denoted

as sp[m], and ãn(sp[m]) represents the symbol transmitted by

the nth node when the product-chain is in state sp[m]. The

transition probabilities between the states of the product-chain

are calculated via multiplication of the transition probabilities

between respective states of the individual extended chains,

since the transmissions from different nodes are statistically in-

dependent. It should be noted that for dependent transmissions

the transition probabilities should be calculated differently.

D. Joint probabilities

APPs can be computed using the BCJR algorithm which

utilizes matrices P and R[m], where P contains the tran-

sition probabilities between any two states of the Markov

product-chain and R[m] comprises the conditional pdf values

pdf(y[m]|sp[m]) related to the transmission channel for time

instant m, 0 ≤ m < W . In the presence of AWGN, the

conditional pdf pdf(y[m]|sp[m]) is given by

pdf(y[m]|sp[m]) =

exp

(

−
|y[m]−

∑
n
hnãn(sp[m])|2

σ2
N

)

πσ2
N

. (3)

All pdf values pdf(y[m]|sp[m]) are determined and stored in

matrix R[m] after reception of the whole sequence y[m], 0 ≤
m < W denoted as y[·] in the following.

The BCJR algorithm applies a forward and a backward

recursion based on the two matrices and determines JPs
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λ(sp[m]) = Pr(y[·], sp[m]) for each state of the Markov

product-chain, cf. [14]. Next, we utilize these JPs in order

to detect the data streams and calculate the APPs.

Obviously, this approach for calculating the JPs can be ap-

plied for an arbitrary number of nodes, various symbol constel-

lations, and packet lengths. The main challenge in this context

is the computational complexity which is related to the number

of Markov product-chain states given by
∏N

n=1(1 + LnMn).
According to [15], the required number of multiplications per

information bit in the BCJR algorithm is proportional to the

number of states. Hence, we obtain the asymptotic complex-

ity O
(

W
∏N

n=1 LnMn

)

. Furthermore, the total number of

elements in matrices R[m] indicates a high consumption of

memory given by O
(

W
∏N

n=1 L
2
nM

2
n

)

. However, the number

of states associated with JD can be reduced using the methods

described in [16]. In addition, reduced-state BCJR algorithms

can be employed in practice, cf. [17], which entail a trade-off

between performance and complexity. Alternatively, the pro-

posed scheme can be incorporated into a SIC based detection

scheme, considering two or three users simultaneously in each

iteration step of SIC for a performance improvement.

E. Detection of data streams

In order to obtain a valid solution which corresponds to

actual data packets rather than arbitrarily arranged symbols, it

is necessary to locate the packets within the received sequence

of symbols.6 For this, we generate all possible hypotheses

H(Tk), ∀k for the positions of packets, where k is the hypoth-

esis index. Each hypothesis is described by a set Tk, which

contains τn,l, ∀n, l. Given Tk, it is possible to distinguish be-

tween valid and invalid JPs, since Tk confines the packet state

of each node in each symbol interval. We propose to consider

the sum of all JPs belonging to a given hypothesis H(Tk)
irrespective of the transmit symbols as hypothesis selection

criterion. A full search over all hypotheses is performed with

respect to this criterion and the best hypothesis H(Tmax) is

chosen for the further processing.

For the symbol detection, the JPs that simultaneously pertain

to the same transmit symbol of a node and to the selected

hypothesis (i.e., only time instants within the selected packet

locations are considered) are summed up to obtain APPs which

are used to determine the LLRs,

LLRn[m, i] = log





∑

sp[m]∈X
n,i

1

λ(sp[m])
/

∑

sp[m]∈X
n,i

0

λ(sp[m])



 ,

(4)

where Xn,i
1 and Xn,i

0 denote the set of states which pertain to

1 and 0, respectively, for the ith bit of the mth data symbol.7

F. Pilot symbols

The use of known symbols (pilots) can substantially en-

hance the detection performance. Here, the individual Markov

chains are adjusted such that states pertaining to invalid

6Note that this sequential processing does not lead to a suboptimality of the
proposed method according to the arguments in Section I, since all available
information has already been incorporated in the calculation of the JPs.

7This notation follows the convention for the description of bit-interleaved
coded modulation [18].
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Fig. 6. Decoding performance for Lp ∈ {0, 7, 11} and a single node.

symbols at the dedicated pilot positions are removed. As an

example, consider Lp = 2 pilot symbols [+1,+1] at positions

q1 = 1 and q2 = 2 of the packet with L1 = 4. In this case, the

extended Markov chain would consist of the following states:

[0], [1,+1], [1,−1], [2, +1], [3, +1], [4,+1], [4,−1]. Although

any pilot sequence would improve the performance, we have

observed that sequences with low cross-correlation perform

best.

IV. NUMERICAL RESULTS

For our simulations, we assume that the data is encoded

with a convolutional code (CC) with code rate 1/3, constraint

length 7, and generator polynomials [155 123 137] in octal

notation (no puncturing), and binary modulation is employed,

A1 = {−1,+1}. The probability of transmission is set to p1 =
0.1. The channel magnitudes for all nodes are set to one while

the channel phases are randomly selected but known to the

receiver. The received energy per symbol and the power spec-

tral density of the AWGN is denoted as Es and N0, respec-

tively. Furthermore, we employ Barker sequences of length

Lp ∈ {7, 11} as pilot sequences in order to enable an accu-

rate packet detection, given by [+1,+1,+1,−1,−1,+1,−1]
and [+1,+1,+1,−1,−1,−1,+1,−1,−1,+1,−1], respec-

tively. We consider the detection of a single randomly sched-

uled packet per node in our simulations. The results obtained

using the proposed method are compared with the traditional

SIC method, where the packet detection is accomplished via

correlation of the received signal with the pilot sequence, and

with a genie-aided detector, which has a perfect knowledge

of the packet position and thus corresponds to an upper

performance bound for the symbol detection. The performance

is evaluated in terms of packet error rate (PER) determined by

averaging over 104 transmitted packets.

In Fig. 6, we show the impact of the pilot sequence on

the detection performance for packet transmissions with L1 =
30 + Lp from a single node. Since correlation is not feasible

with Lp = 0, we employ an energy detector (ED) for this case.

We observe that the proposed method substantially outper-

forms the correlation method for all relevant values of Lp. The

reason is that the information about the packet structure is well

incorporated in the proposed detection scheme while only the

preamble is taken into account in correlation based detection.
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Furthermore, for Lp = 0, the ED is outperformed by the new

method since the latter utilizes not only the information about

the received energy during packet transmission but also about

the absence of the useful signal in other symbol intervals. For

Lp = 11, the PER of the proposed method is already very

close to the upper performance bound. In order to demonstrate

the usefulness of the proposed scheme also for other FEC

codes and other code rates, we show the decoding performance

for an LDPC code of rate 1/2. Here, a MacKay-Neal based

LDPC matrix has been employed, and a log-domain sum-

product algorithm has been used for decoding. We can observe

similar gains of the proposed method compared to correlation

based detection (Lp = 11 in both cases) and an only slight

degradation compared to the upper bound. Due to a higher

code rate of the adopted LDPC code compared to the used

convolutional code, the performance of the LDPC code is

somewhat inferior in the considered range of packet error rates.

In Fig. 7, we show results obtained for transmissions from

one and two nodes, respectively, with L1 = L2 = 23 and

Lp = 11. We restrict ourselves to a small number of nodes

due to a very high computational complexity and high memory

requirements otherwise. We observe a substantial performance

degradation with two nodes compared to transmissions from

a single node. Nevertheless, the proposed method clearly

outperforms SIC based detection. Moreover, for both methods

an error floor occurs in the PER curve due to the remaining

uncertainty related to the mutual interference between the

nodes. Still, it is possible to reach PERs in the order of

2 ·10−2 with the proposed method which is typically sufficient

in the majority of scenarios related to massive machine-type

communication systems. Furthermore, we observe that the

PER with the proposed method and two nodes is only two

times higher than the theoretical upper bound given by the

genie detector. Such performance close to the upper bound is

in agreement with the fact that the LLRs are computed in an

optimum way in the proposed method. Note that a multi-stage

JD scheme, similar to [9], has been implemented for compari-

son, which shows a slight PER reduction compared to SIC. In

addition, we show results obtained using a reduced-state BCJR

algorithm, where the complexity has been drastically reduced

to a total of 110 multiplications per BCJR execution. We

observe only a slight performance degradation with increasing

Es/N0 compared to the full-state BCJR algorithm.

V. CONCLUSION

In this paper, a novel detection method for multiple random

access based packet transmissions has been proposed. Our

approach makes use of a joint MAP detection of symbols from

multiple nodes accounting for the individual packet lengths.

The proposed method is optimal with respect to the total

symbol error rate of all nodes. Furthermore, it noticeably

outperforms SIC. Since the complexity of the proposed method

is very high, only a few overlapping data streams can be

supported in a practical application. In the presence of a large

number of nodes, suboptimal methods might be preferred and

could be developed in future work.
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