
Adaptively Secure Laconic
Function Evaluation for NC1

Shweta Agrawal1 and Răzvan Roşie2

1 Indian Institute of Technology, Madras, India shweta.a@cse.iitm.ac.in
2 University of Luxembourg, Luxembourg

razvan.rosie@uni.lu

Abstract. Laconic Function Evaluation (LFE) is a novel primitive in-
troduced by Quach, Wee and Wichs (FOCS ’18) that allows two parties
to perform function evaluation laconically in the following manner: first,
Alice sends a compressed “digest” of some function – say C – to Bob.
Second, Bob constructs a ciphertext for his input M given the digest.
Third, Alice, after receiving the ciphertext from Bob and having access
to her circuit, can recover C (M) and (ideally) nothing more about Bob’s
message. The protocol is said to be laconic if the sizes of the digest and
ciphertext are much smaller than the circuit size |C |.
Quach, Wee and Wichs provided a construction of laconic function eval-
uation for general circuits under the learning with errors (LWE) assump-
tion (with subexponential approximation factors), where all parameters
grow polynomially with the depth but not the size of the circuit. Under
LWE, their construction achieves the restricted notion of selective secu-
rity where Bob’s input M must be chosen non-adaptively before even
the CRS is known.
In this work, we provide the first construction of LFE for NC1, which
satisfies adaptive security from the ring learning with errors assumption
(with polynomial approximation factors). The construction is based on
the functional encryption scheme by Agrawal and Rosen (TCC 2017).
Using the compiler from Quach, Wee andWichs which bootstraps LFE to
succinct, single key FE generically, we obtain a significant simplification
of the succinct single key FE of Agrawal and Rosen.

Keywords: functional encryption, laconic function evaluation, laconic
oblivious transfer.

1 Introduction

Laconic Function Evaluation (LFE) is a novel primitive that was introduced in
a recent work by Quach, Wee and Wichs [11]. Intuitively, the notion proposes a
setting where two parties want to evaluate a function C in the following manner:
Alice computes a “digest” of the circuit representation of C and sends this digest
to Bob; Bob computes a ciphertext CT for his input M using the received digest
and sends this back to Alice; finally Alice is able to compute the value C (M) in
the clear without learning anything else about Bob’s input.

The work of [11] provided an elegant construction of laconic FE for all cir-
cuits from LWE. In their construction, the size of the digest, the complexity
of the encryption algorithm and the size of the ciphertext only scale with the
depth but not the size of the circuit. However, under LWE, their construction
only achieves the restricted notion of selective security where Bob’s input M
must be chosen non-adaptively before even the CRS is known. Moreover they
must rely on LWE with subexponential modulus to noise ratio, which implies
that the underlying lattice problem must be hard for subexponential approxima-
tion factors. Achieving adaptive security from LWE was left as an explicit open
problem in their work.

In this work, we provide a new construction of LFE for NC1 circuits that
achieves adaptive security. Our construction relies on the ring learning with
errors (RLWE) assumption with polynomial modulus to noise ratio. We start
with the construction by Agrawal and Rosen for functional encryption for NC1

circuits [4] and simplify it to achieve LFE. To achieve a laconic digest, we make
use of the laconic oblivious transfer (LOT) primitive [7,12]. Our main result may
be summarized as follows.

Theorem 1 (LFE for NC1 – Informal). Assuming the hardness of RLWE with
polynomial approximation factors, there exists an adaptive-secure LFE protocol
for NC1.

We also reduce the size of the digests using laconic oblivious transfer as in [11].
The authors of [11] also studied the relations between LFE and other primi-

tives, and in particular showed that LFE implies succinct functional encryption
(FE) [5, 10]. Functional encryption is a generalisation of public key encryption
in which the secret key corresponds to a function, say f , rather than a user. The
ciphertext corresponds to an input x from the domain of f . Decryption allows to
recover f(x) and nothing else. Succinctness means that the size of the ciphertext
in the scheme depends only on the depth of the supported circuit rather than
on its size [2, 4, 8]. We may apply the LFE to FE compiler of [11] to our new,
adaptively secure LFE for NC1, thus obtaining a much simpler construction of
adaptively secure, succinct FE for NC1. We believe our construction of succinct
FE significantly simplifies the original construction of Agrawal and Rosen [4]
which is quite complex.

Technical Overview. The techniques that we use exploit the algebraic struc-
ture in the construction by Agrawal and Rosen [4]. Say that the plaintext M ∈
{0, 1}k. If the encryption algorithm obtains a ciphertext CT := {C1, . . . , Ck}
where each Ci encrypts a single bit Mi of plaintext, in isolation from all different
Mj , we say that the ciphertext is decomposable.

The construction supports circuits of depth d and uses a tower of moduli
p0 < p1 < . . . < pd. Building upon a particular levelled fully homomorphic
encryption scheme (FHE) [6], it encrypts each bit of the plaintext, independently,
as follows:

2

– first multiplication level – the ciphertext consists of a “Regev encoding”:

C1 ← a · s+ p0 · e+Mi ∈ Rp1

where Mi ∈ Rp0 and s←$Rp1 is a fixed secret term; a←$Rp1 is provided
through public parameters, while e←χRp1 is the noise;

– next multiplication level – two ciphertexts are provided under the same s:

a′ · s+ p1 · e′ + C1 ∈ Rp2 and a′′ · s+ p1 · e′′ + (C1 · s) ∈ Rp2 .

The computational pattern is repeated recursively up to d multiplication
levels, and then for every bit of the input.

– an addition layer is interleaved between any two multiplication layers Ci and
Ci+1: essentially it “replicates” ciphertexts in Ci and uses its modulus pi.

– the public key (the “~a ”s) corresponding to the last layer are also the master
public key mpk of a linear functional encryption scheme Lin-FE [1, 3].

– the decryption algorithm computes C obliviously over the ciphertext, layer
by layer, finally obtaining:

CTC (M) ← C (M) + Noise + PKC · s (1)

where PKC is a “functional public key” that depends only on the public key
and the function C , and can be viewed as a succinct representation of C .
The term PKC · s occurring in (1) will be removed using the functional key
skC , in order to recover C (M) plus noise (which can be modded out).

The crux idea when building an LFE is to set the ciphertext to be essentially
the data-dependent part of the FE ciphertext, while the digest to be PKC . Con-
cretely, the mpk will form the crs. Whenever a circuit C is to be compressed,
a circuit-dependent public value – denoted PKC – is returned as digest. The
receiver samples its own secret s and computes recursively the Regev encodings
(seen above) as well as PKC · s + pd−1 · Noise (the skC -dependent term), which
suffice to recover C (M) from (1) on the sender’s side.

Our construction departs significantly from the approach in [11]. In short,
the original work makes use of generic transforms for obtaining attribute-based
LFEs (AB-LFEs), obtaining AB-LFEs supporting multi-bit outputs, using the
transform of [8] to hide the “attribute” in AB-LFE and compressing the digests
via laconic oblivious transfer [7]. On the other hand, we do not need to go
via AB-LFE, making our transformation simpler. Moreover, by relying on the
adaptive security of the underlying FE scheme that we use, we obtain adaptive
security.

Towards Short Digests. As in [11], we use the laconic oblivious transfer protocol
in the following way: after getting the digest in the form of PKC , we apply a
second compression round, which yields:

(digestLOT, D̂)← LOT.Compress(crsLOT,PKC) .

3

We stress that both compression methods used are deterministic. Put differently,
at any point in time, the sender, in full knowledge of her circuit representation,
can recreate the digest. On the receiver’s side, instead of following the technique
proposed in [11] – garbling an entire FHE decryption circuit and encrypting
under an ABE the homomorphic ciphertext and the labels – we garble only the
circuits that provides

PKC · s+ pd−1 · Noise ,

while leaving the actual ciphertext intact. The advantage of such an approach
resides into its conceptual simplicity, as the size of the core ciphertext Bob sends
back to Alice remains manageable for simple C , and is not suppressed by the
size of the garbling scheme.

Paper Organization. In Section 2, we introduce the standard notations to
be adopted throughout the paper, followed by the definitions of the primitives
that we use as building blocks. Section 3 reviews the decomposable FE scheme
proposed by Agrawal and Rosen in [4]. In Section 4, we introduce a new LFE
scheme for NC1 circuits, and show in Appendix A how to combine it with laconic
oblivious transfer in order to achieve a scheme with laconic digests. Appendix B
recalls the LFE to single-key succinct FE compiler.

2 Preliminaries

Notations. We denote the security parameter by λ ∈ N∗ and we assume it is
implicitly given to all algorithms in the unary representation 1λ. An algorithm is
equivalent to a Turing machine. Algorithms are assumed to be randomized unless
stated otherwise; PPT stands for “probabilistic polynomial-time” in the security
parameter (rather than the total length of its inputs). Given a randomized al-
gorithmA we write the action of runningA on input(s) (1λ, x1, . . .) with uniform
random coins r and assigning the output(s) to (y1, . . .) by (y1, . . .)←$A(1λ, x1, . . . ; r).
When A is given oracle access to some procedure O, we write AO. For a finite
set S, we denote its cardinality by |S| and the action of sampling an element
x uniformly at random from X by x←$X. We let bold variables such as w
represent column vectors. Similarly, bold capitals stand for matrices (e.g. A).
A subscript Ai,j indicates an entry in the matrix. We overload notation for the
power function and write αu to denote that variable α is associated to some level
u in a leveled construction. For any variable k ∈ N∗, we define [k] := {1, . . . , k}.
A real-valued function Negl(λ) is negligible if Negl(λ) ∈ O(λ−ω(1)). We denote
the set of all negligible functions by Negl. Throughout the paper ⊥ stands for
a special error symbol. We use || to denote concatenation. For completeness, we
recall standard algorithmic and cryptographic primitives to be used.

2.1 Computational Hardness Assumptions

The Learning With Error (LWE) search problem [13] asks to find the secret
vector s over F`q given a polynomial-size set (A,A · s + e), where A denotes a

4

randomly sampled matrix over Fk×`q , while e ∈ Fk is a small error term sampled
from an appropriate distribution χ. Roughly, the decision version of the problem,
asks to distinguish between the aforementioned distribution as opposed to the
uniform one.

Definition 1 (Learning With Errors). The advantage of any PPT adver-
sary Adv in distinguishing between the following two distributions is negligible:

AdvLWE
A (λ) := Pr[1← Adv

(
1λ,A,u

)
]−Pr[1← Adv

(
1λ,A,A · s+ e

)
] ∈ Negl(λ)

where s←$Z`q, A←$Zk×`q , e←χZkq and u←$Zkq .
Later, Lyubashevsky, Peikert and Regev [9] proposed a ring version. Let

R := Z[X]/(Xn + 1) for n a power of 2, while Rq := R/qR for a safe prime q
satisfying q ≡ 1 mod 2n.

Definition 2 (Ring LWE). For s←$Rq, given a polynomial number of sam-
ples that are either: (1) all of the form (a, a ·s+e) for some a←$Rq and e←χRq
or (2) all uniformly sampled over R2

q; the (decision) RLWEq,φ,χ states that a
PPT-bounded adversary can distinguish between the two settings only with neg-
ligible advantage.

2.2 Standard Primitives

Garbling Schemes. Garbled circuits were introduced by Yao in 1982 [14, 15]
to solve the famous “Millionaires’ Problem”. Since then, garbled circuits became
a standard building-block for many cryptographic primitives. Their definition
follows.
Definition 3 (Garbling Scheme). Let {Ck}λ be a family of circuits taking as
input k bits. A garbling scheme is a tuple of PPT algorithms (Garble,Enc,Eval)
such that:
– (Γ, sk)←$Garble(1λ,C): takes as input the unary representation of the secu-

rity parameter and a circuit C ∈ {Ck}λ and outputs a garbled circuit Γ and
a secret key sk.

– c←$Enc(sk, x): given as input x ∈ {0, 1}k and the secret key sk, the encryp-
tion procedure returns an encoding c.

– C (x)← Eval(Γ, c): the evaluation procedure receives as inputs a garbled cir-
cuit as well as an encoding of x returning C (x).

We say that a garbling scheme Γ is correct if for all C : {0, 1}k → {0, 1}`
and for all x ∈ {0, 1}k we have that:

Pr

[
C (x) = y

∣∣∣ (Γ, sk)←$GS.Garble(1λ,C)∧
y ← GS.Eval(Γ,GS.Enc(sk, x))

]
= 1 .

Yao’s Garbled Circuit [14]. An interesting type of garbled schemes is repre-
sented by the original proposal of Yao, which considers a family of circuits of k
input wires and outputting a single bit. In his proposal, a circuit’s secret key can
be viewed as two labels (L0

i , L
1
i) for each input wire, where i ∈ [k]. The evaluation

of the circuit at point x corresponds to an evaluation of Eval(Γ, (Lx1
1 , . . . , L

xk
k)),

where xi is the ith bit of x — thus the encoding c = (Lx1
1 , . . . , L

xk
k).

5

Laconic Oblivious Transfer

Definition 4 (LOT). A Laconic Oblivious Transfer (LOT) scheme consists of
a tuple of PPT algorithms (crsGen,Compress,Enc,Dec) with the following func-
tionality:

– crs←$ crsGen(1λ, 1k, 1d): takes as input the security parameter λ and outputs
a common reference string crs.

– (digest, D̂)←$Compress(crs,D): given a database D and the crs, outputs a
digest of the circuit as well as a state of the database, denoted digest and D̂
respectively.

– CT←$Enc(crs, digest, `,M0,M1): the randomized encryption algorithm takes
as input the common reference string crs, the digest, an index position `, and
two messages; it returns a ciphertext CT.

– M ← Dec(crs, digest, D̂,CT, `): the decryption algorithm takes as input D̂,
an index location `, the digest digest and the common reference string crs; it
outputs a message M .

We require an LOT to satisfy the following properties:

– Correctness: for all (M0,M1) ∈ M×M, for all D ∈ {0, 1}k and for any
index ` ∈ [k] we have:

Pr

M = MD[`]

∣∣∣∣∣
crs←$ LOT.crsGen(1λ, 1k, 1d)∧
(digest, D̂)←$ LOT.Compress(crs,D)∧
CT←$ LOT.Enc(crs, digest, `,M0,M1)∧
M ← LOT.Dec(crs, digest, D̂,CT, `)

 = 1 .

– Laconic Digest: the length of the digest is a fixed polynomial in the security
parameter λ, independent of the size of the database D.

– Sender Privacy against Semi-Honest Adversaries: there exists a PPT
simulator S such that for a correctly generated crs the following two distri-
butions are computationally indistinguishable:∣∣∣Pr [A(crs, LOT.Enc(crs, digest, `,M0,M1)

)]
−

Pr
[
A
(
crs,S(crs,D, `,MD[`])

)] ∣∣∣ ∈ Negl(λ) .

Appendix C.1 describes the LOT construction put forth in [7].

2.3 Functional Encryption Scheme - Public-Key Setting

We define functional encryption [5] in the public key-settings and provide a
simulation-based security definition. Roughly speaking, the semantic security of
the functional encryption scheme guarantees the adversary cannot learn more
on M as by knowing only C (M).

6

Definition 5 (Functional Encryption - Public Key Setting). Let F =
{Fλ}λ∈N be an ensemble, where Fλ is a finite collections of functions C :Mλ →
Yλ. A functional encryption scheme FE in the public-key setting consists of a
tuple of PPT algorithms (Setup, KeyGen, Enc, Dec) such that:

– (msk,mpk)←$FE.Setup(1λ) : takes as input the unary representation of the
security parameter λ and outputs a pair of master secret/public keys.

– skC←$FE.KeyGen(msk,C): given the master secret key and a function C ,
the (randomized) key-generation procedure outputs a corresponding skC .

– CT←$FE.Enc(mpk,M): the randomized encryption procedure encrypts the
plaintext M with respect to mpk.

– FE.Dec(CT, skC): decrypts the ciphertext CT using the functional key skC

in order to learn a valid message C (M) or a special symbol ⊥, in case the
decryption procedure fails.

We say that FE satisfies correctness if for all C :Mλ → Yλ we have that:

Pr

y = C (M)

∣∣∣∣∣
(msk,mpk)←$FE.Setup(1λ)∧
skC←$FE.KeyGen(msk,C)∧
CT←$FE.Enc(mpk,M)∧
y ← FE.Dec(CT, skC)

 = 1 .

A public-key functional encryption scheme FE is semantically secure if there
exists a stateful PPT simulator S such that for any PPT adversary A,

AdvFULL-SIM-FE
A,FE (λ) :=

∣∣∣∣Pr[FULL-SIM-FEAFE(λ) = 1]− 1

2

∣∣∣∣
is negligible, where the FULL-SIM-FE experiment is described in Figure 1 (left).

FULL-SIM-FEAFE(λ):
b←$ {0, 1}
(msk,mpk)←$FE.Setup(1λ)
C ← A(mpk)
skC ← FE.KeyGen(msk,C)
M∗ ← A(mpk, skC)
if b = 0:

CT∗←$FE.Enc(mpk,M∗)
else:

CT∗ ← S(mpk, skC ,C ,C (M∗))
b′←$A(CT∗)
return b′ = b

FULL-SIM-LFEALFE(λ):
b←$ {0, 1}
(1k, 1d)←$A(1λ)
crs←$ LFE.crsGen(1λ, 1k, 1d)
(M ∗,C)←$A(crs)
digestC←$ LFE.Compress(crs,C)
if b = 0:

CT∗←$ LFE.Enc(crs, digestC ,M
∗)

else
CT∗←$S(crs,C , digestC ,C (M ∗))

b′←$A(CT∗)
return b = b′

Fig. 1. Left: FULL-SIM-FE-security defined for a functional encryption scheme in the
public-key setting. Right: the simulation security experiment FULL-SIM-LFE defined
for a laconic function evaluation scheme LFE.

7

2.4 Laconic Function Evaluation

We described the motivation behind LFE in Section 1. We proceed with its
definition from [11].

Definition 6 (Laconic Function Evaluation [11]). A laconic function eval-
uation scheme LFE for a class of circuits Cλ consists of four algorithms (crsGen,
Compress, Enc, Dec):

– crs←$ LFE.crsGen(1λ, 1k, 1d): assuming the input size and the depth of the
circuit in the given class are k and d, a common reference string crs of
appropriate length is generated. We assume that crs is implicitly given to all
algorithms.

– digestC←$ LFE.Compress(crs,C): the compression algorithm takes a descrip-
tion of the circuit C and produces a digest digestC .

– CT←$ LFE.Enc(crs, digestC ,M): takes as input the message M as well as the
digest of C and produces a ciphertext CT.

– LFE.Dec(crs,CT,C): if the parameters are correctly generated, the decryption
procedure recovers C (M), given the ciphertext encrypting M and circuit C
or a special symbol ⊥, in case the decryption procedure fails.

We require the LFE scheme to achieve the following properties:

– Correctness - for all C : {0, 1}k → {0, 1}` of depth d and for all M ∈
{0, 1}k we have:

Pr

y = C (M)

∣∣∣∣∣
crs←$ LFE.crsGen(1λ, 1k, 1d)∧
digestC←$ LFE.Compress(crs,C)∧
CT←$ LFE.Enc(crs, digestC ,M)∧
y ← LFE.Dec(crs,C ,CT)

 = 1 .

– Security: there exists a PPT simulator S such that for any stateful PPT
adversary A we have:

AdvFULL-SIM-LFE
A,LFE (λ) :=

∣∣∣∣Pr[FULL-SIM-LFEALFE(λ) = 1]− 1

2

∣∣∣∣
is negligible, where FULL-SIM-LFE is defined in Figure 1 (right side).

– Laconic outputs: As per [11, p13-14], we require the size of digest to be
laconic |digestC | ∈ O(poly(λ)) and we impose succinctness constraints for
the sizes of the ciphertext and public parameters.

3 Background on the AR17 FE Scheme

Overview. In this section, we recall a construction of functional encryption for
circuits with logarithmic depth d in input length [4].

8

3.1 The AR17 Construction for NC1

In [4], the authors provided a bounded key functional encryption scheme support-
ing general circuits. The first distinctive feature is represented by the supported
class of functions, which are now described by arithmetic, rather than Boolean
circuits. Second, the ciphertexts’ size in their construction is succinct, as it grows
with the depth of the circuit, rather than its size. Third, the ciphertext enjoys
decomposability: assuming a plaintext is represented as a vector, each of its k
elements gets encrypted independently. We describe the scheme for NC1, and
formalize it in Appendix C.2.
Regev Encodings. We commence by recalling a simple symmetric encryption
scheme due to Brakerski and Vaikuntanathan [6]. Let “s” stand for an RLWE
secret acting as a secret key, while a and e are the random mask and noise:

c1 ← a ∈ Rp
c2 ← a · s+ 2 · e+M ∈ Rp

(2)

Recovering the message M (a bit, in this case) is done by subtracting c1 · s from
c2 and then removing the noise through the mod 2 operator. This plain scheme
comes up with powerful homomorphic properties, and is generalized in [4] to
recursively support levels of encodings. Henceforth, we use the name “Regev
encoding” for the following map between rings E i : Rpi−1

→ Rpi , where:

E i(M) = ai · s+ pi−1 · ei +M ∈ Rpi . (3)

As a general notation, we write as an superscript of a variable the level to which
it has been associated.

The NC1 Construction. To be self-contained in the forthcoming parts, we
give an informal specification of AR17’s procedures.

Encryption. The encryption procedure samples a RLWE secret s, and computes
a Regev encoding for each input Mi ∈ Rp0 independently. This step produces the
following set

{
E1(Mi)| Mi ∈ Rp0 ∧ i ∈ [k]

}
, where E1 is the encoding mapping

E1 : Rp0 → Rp1 defined in Equation (3). This represents the Level 1 encoding of
Mi. Next, the construction proceeds recursively; the encoding of Mi correspond-
ing to Level 2 takes the parent node P (in this case P is E1(Mi)), and obtains
on the left branch:

E2(P) = E2(E1(Mi)) = a21,i · s+ p1 · e21,i +
(
(a11,i · s+ p0 · e11,i +Mi) · s

)
,

while for the right branch:

E2(P · s) = E2(E1(Mi) · s) = a22,i · s+ p1 · e22,i +
(
(a11,i · s+ p0 · e11,i +Mi) · s

)
,

where (a21,i, a
2
2,i)←$R2

p2 and noise terms are sampled from a Gaussian distribu-
tion: (e21,i, e22,i)←χχ2

p2 . This procedure is executed recursively up to a number of
levels – denoted as d – as presented in Figure 2.

9

Mi

E1(·)

E2(·)

E3(·)

...
...

×
s

E3(·)

...
...

×
s

×
s

E2(·)

E3(·)

...
...

×
s

E3(·)

...
...

×
s

×
s

×s

Fig. 2. The tree encoding Mi in a recursive manner corresponds to ciphertext CTi.

Between any two successive multiplication layers, an addition layer is inter-
leaved. This layer replicates the ciphertext in the previous multiplication layer
(and uses its modulus). As it brings no new information, we ignore additive lay-
ers from our overview. The encoding procedure is applied for each M1, . . . ,Mk.
In addition, Level 1 also contains E1(s), while Level i (for 2 ≤ i ≤ d) also con-
tains E i(s · s). Hitherto, the technique used by the scheme resembles to the ones
used in levelled fully homomorphic encryption. We also remind that encodings
at Level i are denoted as CTi and are included in the ciphertext. The high level
idea is to compute the function C obliviously with the help of the encodings.

However, as we are in the FE setting, the ciphertext also contains additional
information on s. This is achieved by using a linear functional encryption scheme
Lin-FE. Namely, an extra component of the form:

d← w · s+ pd−1 · η (4)

is provided as an independent part of the ciphertext, also denoted as CTind,
where η←χRpd stands for a noisy term and w is part of mpk. d is computed
once, at top level d.

The master secret key of the NC1 construction is set to be the msk for
Lin-FE. The master public key consists of the Lin-FE.mpk (the vector w ap-
pended to ad) as well as of the set of vectors

{
a1,a2, . . . ,ad−1

}
that will be used

by each E i. Once again, we emphasize that the vector ad from Lin-FE.mpk coin-
cides with the public labelling used by the mapping Ed. It can be easily observed
that the dimension of ai+1 follows from a first-order recurrence:

|ai+1| = 2 · |ai|+ 1 (5)

where the initial term (the length of a1) is set to the length of the input. The
extra 1, which is added per each layer is generated by the supplemental encod-
ings of the key-dependent messages

{
E1(s), E2(s2), . . . , Ed(s2)

}
.

10

A functional-key skC is issued through the Lin-FE.KGen procedure in the
following way: (1) using the circuit representation C of the considered function
as well as the public set of

{
a1,a2, . . . ,ad

}
, a publicly computable value PKC ←

EvalPK(mpk,C) is obtained by performing C -dependent arithmetic combinations
of the values in

{
a1,a2, . . . ,ad

}
. Then, a functional key skC is issued for PKC .

The EvalPK(mpk,C) procedure uses mpk to compute PKC .
Similarly, EvalCT(mpk,CT,C) computes the value of the function C obliv-

iously on the ciphertext. Both procedures are defined recursively; that is to
compute PKkC and CTiC (x) at level i, PK

i−1
C and CTi−1C (x) are needed. For a better

understanding of the procedures, we will denote the encoding of C i(x)3 by ci,
i.e. ci = E i(C i(x)) and the public key or label of an encoding E i(·) by PK(E i(·)).

Due to space constraints, we defer the description of the evaluation algo-
rithms to Appendix C.2.

Decryption works by evaluating the circuit of C (known in plain by the
decryptor) over the Regev encodings forming the ciphertext. At level d, the
ciphertext obtained via EvalCT has the following structure:

CTC (x) ← PKC · s+ pd−1 · ηd + pd−2 · ηd−1 + . . .+ p0 · η1 + C (x) (6)

Next, based on the independent ciphertext d ← w · s + pd−1 · η and on the
functional key, the decryptor recovers

PKC · s+ pd−1 · η′ ∈ Rpd . (7)

Finally, C (x) is obtained by subtracting (7) from (6) and repeatedly applying
the mod operator to eliminate the noise terms: (mod pd−1) . . . (mod p0).

More details on EvalPK and EvalPK are given below.

3.2 Ciphertext and Public-Key Evaluation Algorithms

Let C n be the circuit representation of some function restricted to level n. For
a better understanding of the procedures, we will denote the encoding of C n(x)
by cn, i.e.

cn ← En(C n(x)) ,

and the public key or label of an encoding En(·) by PK(En(·)). Furthermore, Cn
are a set of level n encodings provided by the encryptor to enable the decryptor
to compute cn.

EvalPK(∪t∈[n]PK(CTt), `) computes the label for the `th wire in the n level circuit,
from the ith and jth wires of k − 1 level:

1. Addition Level:
3 Here, by C i we denote the restriction of the circuit C computing f to level i.

11

– If n = 1 (base case), then, compute PK(c1`)← PKi + PKj .

– Otherwise, let an−1i ← Evaln−1PK (∪t∈[n−1]PK(CTt), i) and
an−1j ← Evaln−1PK (∪t∈[n−1]PK(CTt), j). Compute PK(cn`)← an−1i + an−1j .

2. Multiplication Level:
– If n = 2 (base case), then compute PK(c2`) ← a1i · a1jPK(E2(s2)) − a1j ·

PK(E2(c1i s))− a1i · PK(E2(c1js)).

– Otherwise, let an−1i ← Evaln−1PK (∪t∈[n−1]PK(CTt), i) and
an−1j ← Evaln−1PK (∪t∈[k−1]PK(CTt), j).
Compute PK(cn`) ← an−1i · an−1j · PK(En(s2))− an−1j · PK(En(cn−1i s))−
an−1i · PK(En(cn−1j s)).

EvalCT(∪t∈[n]CTt, `) computes the encoding of the `th wire in the n level circuit,
from the ith and jth wires of n− 1 level:

1. Addition Level:
– If n = 1 (base case), then, compute c1` ← E1(xi) + E1(xj).

– Otherwise, let cn−1i ← Evaln−1CT (∪t∈[n−1]CTt, i) and
cn−1j ← Evaln−1CT (∪t∈[n−1]CTt, j). Compute CTn` ← cn−1i + cn−1j .

2. Multiplication Level:
– If n = 2 (base case), then compute c2` ← c1i · c1j · E2(s2)− a1j · E2(c1i s)−
a1i · E2(c1js).

– Otherwise, let cn−1i ← Evaln−1CT (∪t∈[n−1]CTt, i) and
cn−1j ← Evaln−1CT (∪t∈[n−1]CTt, j). Compute
CTn` ← cn−1i ·cn−1j +an−1i ·an−1j En(s2)−an−1j ·En(cn−1i s)−an−1i ·En(cn−1j s).

4 Laconic Function Evaluation for NC1 Circuits

We show how to instantiate an LFE protocol starting from the AR17 scheme
described above (formally summarized in Appendix C.2). Furthermore, we show
our construction achieves adaptive-security under RLWE with polynomial ap-
proximation factors. Finally, we compare its efficiency to the scheme for general
circuits proposed in [11].

4.1 LFE for NC1 Circuits

The core idea behind our proposal is rooted in the design of the AR17 con-
struction. Specifically, the mpk in AR17 acts as the crs for the LFE scheme.
The compression procedure generates a new digest by running EvalPK on the

12

fly, given an algorithmic description of the circuit C (the circuit computing the
desired function). As shown in [4], the public-key evaluation algorithm can be
successfully executed having knowledge of only mpk and the gate-representation
of the circuit. After performing the computation, the procedure sets:

digestC ← PKC .

The digest is then handed in to the other party (say Bob).
Bob, having acquired the digest of C in the form of PKC , encrypts his message

M using the FE encryption procedure in the following way: first, a secret s is
sampled from the “d-level” ringRpd ; s is used to recursively encrypt each element
up to level d, thus generating a tree structure, as explained in Section 3.1. Note
that Bob does not need to access the ciphertext-independent part (the vector
w from Section 3.1) in any way. This is a noteworthy difference from the AR17
construction: an FE ciphertext is intended to be decrypted at a latter point, by
(possibly) multiple functional keys. However, this constitutes an overkill when it
comes to laconic function evaluation, as there is need to support a single function
(for which the ciphertext is specifically created).

As a second difference from the way the ciphertext is obtained in [4], we
emphasize that in our LFE protocol Bob computes directly:

PKC · s+ pd−1 · ηd

where PKC is the digest Alice sent. Thus, there is no need to generate a gen-
uine functional key and to obtain the ciphertext component that depends on w.
Directly, the two former elements constitute the ciphertext, which is sent back
to Alice. Finally, the LFE decryption step follows immediately. Alice, after com-
puting the auxiliary ciphertext in (6) “on the fly” and having knowledge of the
term in (7), is able to recover C (M).

Formally, the construction can be defined as follows:

Definition 7 (LFE for NC1 Circuits from [4]). Let FE denote the functional
encryption scheme for NC1 circuits proposed in [4].

– crs←$ crsGen(1λ, 1k, 1d): the crs is instantiated by first running FE.Setup

(mpk,msk)←$FE.Setup(1λ, 1k, 1d) .

As described, mpk has the following elements:

{a1, . . . ,ad−1, (ad,w)}

with (ad,w) coming from the mpkLin-FE and msk← mskLin-FE.
Set crs← {a1, . . . ,ad} and return it.

– digestC ← Compress(crs,C): the compression function, given a circuit de-
scription of some function C : {0, 1}k → {0, 1} and the crs, computes
PKC ← EvalPK(a

1, . . . ,ad,C) and then returns:

digestC ← PKC .

13

– CT←$Enc(crs, digestC ,M): the encryption algorithm first samples s←$Rpd ,
randomness R and computes recursively the Regev encodings of each bit:

(CT1, . . . ,CTk,CTind)← FE.Enc((a1, . . . ,ad), (M1, . . . ,Mk); s,R)

Moreover, a noise ηd is also sampled from the appropriate distribution χ and

PKC · s+ pd−1 · ηd (8)

is obtained. The ciphertext CT that is returned consists of the tuple:PKC · s+ pd−1 · ηd︸ ︷︷ ︸
CTa

, CT1, . . . ,CTk,CTind︸ ︷︷ ︸
CTb

 .

– Dec(crs,C ,CT): first, the ciphertext evaluation is applied and CTC is ob-
tained:

CTC ← EvalCT(mpk,C ,CT) . (9)

Then C (M) is obtained via the following step:(
CTC − (PKC · s+ pd−1 · ηd)

)
mod pd−1 . . . mod p0

Proposition 1 (Correctness). The LFE scheme in Definition 7 enjoys cor-
rectness.

Proof. By the correctness of EvalCT, the structure of the resulting ciphertext at
level d is the following:

PKC · s+ pd−1 · ηd + . . .+ p0 · η1 + C (M) (10)

Given the structure of the evaluated ciphertext in (10) as well as the second
part of the ciphertext described by (8), the decryptor obtains C (M) as per the
decryption procedure in (9). ut

Lemma 1 (Security). Let FE denote the FULL-SIM-FE-secure functional en-
cryption scheme for NC1 circuits described in [4]. The LFE scheme described in
Definition 7 enjoys FULL-SIM-LFE security against any PPT adversary A such
that:

AdvFULL-SIM-LFE
A,LFE (λ) ≤ d · AdvRLWE

A′ (λ) .

Proof (Lemma 1). First, we describe the internal working of our simulator. Then
we show how the ciphertext can be simulated via a hybrid argument, by describ-
ing the hybrid games and their code. Third, we prove the transition between
each consecutive pair of hybrids.

The Simulator. Given the digest digestC , the circuit C , the value of C (M ∗)
and the crs, our simulator SLFE proceeds as follows:

– Samples all Regev encodings uniformly at random.

14

– Replaces the functional-key surrogate value PKC · s + pd−1 · ηd with PKC ·
s+pd−1 ·ηd−

∑d−1
i=0 pi ·µi+1−C (M ∗). Observe this is equivalent to running

EvalCT with respect to random Regev encodings, and subtracting lower noise
terms and C (M ∗).

The Hybrids. The way the simulator is built follows from a hybrid argument.
Note that we only change the parts that represent the outputs of the intermediate
simulators.

Game0: Real game, corresponding to the setting b = 0 in the FULL-SIM-LFE
experiment.

Game1: We switch from PKC · s + pd−1 · ηd to EvalCT − Noise − C (M ∗), such
that during decryption one recovers Noise + C (M ∗). The transition to the
previous game is possible as we can sample the noise Noise η∗ such that:

SD
(
PKC ·s+pd−1 ·ηd,PKC ·s+pd−1 ·ηd−

d−1∑
i=0

pi ·µi+1−C (M ∗)
)
∈ Negl(λ) .

This game is identical to Game2,0.
Game2.i: We rely on the security of RLWE in order to switch all encodings on

level (d + 1) − i with randomly sampled elements over the corresponding
rings Rpd+1−i . Note that top levels are replaced before the bottom ones; the
index i ∈ [d].

Game2.d: This setting corresponds to b = 1 in the FULL-SIM-LFE experiment.

We now prove the transitions between the hybrid games.

Claim (Distance between Game0 and Game1). There exists a PPT simulator S1
such that for any stateful PPT adversary A we have:

AdvGame0→Game1
A (λ) :=

∣∣∣∣Pr[GameA0 (λ)⇒ 1]− Pr[GameA1 (λ)⇒ 1]

∣∣∣∣
is statistically close to 0.

Proof. Let D0 (respectively D1) be the distribution out of which CTa is sampled
in Game0 (respectively Game1). The statistical distance between D0 and D1 is
negligible:

SD(D0,D1) =
1

2
·
∑
v∈Rpd

∣∣∣∣Pr[v = PKC · s+ pd−1 · ηd]−

Pr[v = EvalCT(C) +

d−1∑
i=0

pi · µi+1 − C (M ∗)]

∣∣∣∣
=

1

2
·
∑
v∈Rpd

∣∣∣∣Pr[v = PKC · s+ pd−1 · ηd]−

Pr[v = PKC · s+
d−1∑
i=0

pi · µi+1]

∣∣∣∣
15

We apply the same technique as per [4, p. 27], and we sample a noise term ηd∗
such that:

SD(ηd∗ ,
d−1∑
i=0

pi · νi+1) ≤ ε .

Thus, the advantage of any adversary in distinguishing between Game0 and
Game1 is statistically close to 0. ut

Games 1 and 2.0 are identical.

Claim (Distance between Game2.i and Game2.i+1). There exists a PPT simulator
S1 such that for any stateful PPT adversary A we have:

Adv
Game2.i→Game2.i+1

A (λ) :=

∣∣∣∣Pr[GameA2.i(λ)⇒ 1]− Pr[GameA2.i+1(λ)⇒ 1]

∣∣∣∣
≤ AdvRLWE

B (λ) .

Proof. The reduction B is given as input a sufficiently large set of elements
which are either: RLWE samples of the form a · s(d−i) + pd−1−i · η(d−i) or u
where u←$Rpd−i .
B constructs CTb as follows: for upper levels j > d − i, B samples elements

uniformly at random over Rpj . For each lower levels j < d − i, R samples
independent secrets sj and builds the lower level encodings correctly, as stated
in Figure 2.

For challenge level d−i, B takes the challenge values of the RLWE experiment
– say z –, and produces the level d−i encodings from the level d−1−i encodings
as follows:
– for each encoding Ed−1−i in level d− i− 1, produce a left encoding in level
d− i:

zd−i1 + Ed−1−i .
– for each encoding Ed−1−i in level d− i− 1, produce a right encoding in level
d− i:

zd−i2 + Ed−1−i · sd−1−i .
Note that sd−1−i is known in plain by B.

Considering level 1, the message bits themselves are encrypted, as opposed to
encodings from lower levels.

The first component of the ciphertext – CTa – is computed by getting v ←
EvalCT(C , {Ci}i∈[d]) over the encodings, and then adding the noise and the value
C (M ∗).

The adversary is provided with the simulated ciphertext. The analysis of the
reduction is immediate: the winning probability in the case of B is identical to
that of the adversary distinguishing. ut
Finally, we apply the union bound and conclude with:

AdvFULL-SIM-LFE
A,LFE (λ) ≤ d · AdvRLWE

A′ (λ) .

ut
In Appendix A, we show how the digest can be further compressed.

16

References

1. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Sim-
ple functional encryption schemes for inner products. In Jonathan Katz, ed-
itor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg,
March / April 2015.

2. Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions
and attacks. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 3–35. Springer, Heidelberg, August 2017.

3. Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional en-
cryption for inner products, from standard assumptions. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, August 2016.

4. Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 173–205. Springer, Heidelberg, November 2017.

5. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
253–273. Springer, Heidelberg, March 2011.

6. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, Au-
gust 2011.

7. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402
of LNCS, pages 33–65. Springer, Heidelberg, August 2017.

8. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 555–564. ACM Press, June 2013.

9. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 1–23. Springer, Heidelberg, May / June 2010.

10. Adam O’Neill. Deterministic public-key encryption revisited. Cryptology ePrint
Archive, Report 2010/533, 2010. http://eprint.iacr.org/2010/533.

11. Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and ap-
plications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer
Society Press, October 2018.

12. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

13. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93. ACM Press, May 2005.

14. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

15. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

17

http://eprint.iacr.org/2010/533
http://eprint.iacr.org/2005/187

A Achieving a Laconic Digest

In this part, we put forth an LFE scheme with a digest independent by the
size of the input, starting from the LFE construction in Section 4.1. The main
idea consists in using a laconic oblivious transfer (see Appendix C.1) in order
to generate a small digest. In doing so, our strategy departs from the one used
in [11].

The bulk of the idea is to observe that the encryption algorithm in Section 4.1
outputs a ciphertext having two components: the first one consists of the AR17
ciphertext; the second component is literally PKC · s + pd−1 · ηd. We create an
auxiliary circuit Caux that takes as input PKC and outputs PKC ·s+pd−1 ·ηd. We
garble Caux using Yao’s garbling scheme (Section 2.2) and use LOT to encrypt
the garbling labels. Thus, instead of garbling a circuit that produces the entire
ciphertext (i.e. following the template proposed by [11]) we garble Caux. Such
an approach is advantageous, as the complexity of the latter circuit, essentially
performing a multiplication of two elements over a polynomial ring, is in general
low when compared to a circuit that reconstructs the entire ciphertext. We
present our construction below:

Definition 8 (LFE for NC1 with Laconic Digest). Let LFE denote the
laconic function evaluation scheme for NC1 circuits presented in Section 4.1,
LOT stand for a laconic oblivious transfer protocol and GS denote Yao’s garbling
scheme. LFE stands for a laconic function evaluation scheme for NC1 with digest
of size O(λ):

– crs←$ LFE.crsGen(1λ, 1k, 1d): the crs is instantiated by running the LFE.Setup

crs←$ LFE.Setup(1λ, 1k, 1d) .

Let crsLOT stand for the common reference string of the LOT scheme.

Set crs← (crs, crsLOT) and return it.

– digestC ← LFE.Compress(crs,C): the compression function, given a circuit
description of some function C : {0, 1}k → {0, 1} and the crs← (crs, crsLOT),
computes PKC ← LFE.Compress(crs,C) and then returns:

digestC ← PKC .

Then, using crsLOT, a new digest/database pair is obtained as:

(digestC , D̂)← LOT.Compress(crsLOT, digestC) .

Finally, digestC is returned.

18

– CT←$ LFE.Enc(crs, digestC ,M): after parsing the crs as (crsLOT, crs)
4, the en-

cryption algorithm first samples s←$Rpd , randomness R and computes re-
cursively the Regev encodings of each bit:

CTLFE ← LFE.Enc(crs, (M1, . . . ,Mk); s,R)

Moreover, a noise ηd−1 is also sampled from the appropriate distribution χ
and an auxiliary circuit Caux that returns

PKC · s+ pd−1 · ηd (11)

is obtained, where PKC constitutes the input and s, pd−1 · ηd are hardwired.

Then, Caux is garbled by Yao’s garbling scheme:

(Γ, {L0
i , L

1
i }ti=1)←$GS.Garble(Caux)

and the labels are encrypted under LOT:

Li←$ LOT.Enc(crsLOT, digestC , i, L
0
i , L

1
i),∀ i ∈ [t]

The ciphertext CT is set to be the tuple (CTLFE, Γ, L1, . . . , Lt).

– LFE.Dec(crs,C ,CT): First, the labels Li corresponding to the binary decom-
position of PKC are obtained:

L
PKC [i]
i ← LOT.Dec(crsLOT, digestC , i, Li)

When feeding Γ with Li, the decryptor recovers PKC · s+ pd−1 · ηd−1.

Then, the ciphertext evaluation is applied and CTC is obtained:

CTC ← EvalCT(mpk,C ,CT) . (12)

Then C (M) is obtained via the following step:(
CTC − (PKC · s+ pd−1 · ηd)

)
mod pd−1 . . . mod p0

Proposition 2 (Correctness). The laconic function evaluation scheme in Def-
inition 8 is correct.

Proof. By the correctness of the LOT scheme, the correct labels corresponding
to the value of PKC are recovered. By the correctness of the garbling scheme,
when fed with the correct labels, the value of PKC · s + pd−1 · ηd is obtained.
Finally, by the correctness of LFE, we recover C (M). ut
4 Even if we omit that explicitly, note that crs includes mpk, consistently with the
execution of the subroutine FE.Enc().

19

In what follows, we show the scheme achieves simulation security, assuming
the same security level from the underlying primitive.

Theorem 2 (Security). Let Cλ denote a class of circuits and let LFE de-
note the laconic function evaluation scheme defined Definition 8. Let GS and
LOT denote the underlying garbling scheme, respectively laconic oblivious trans-
fer scheme. The advantage of any PPT bounded adversary A against the adaptive
simulation security of the LFE scheme is bounded as follows:

AdvFULL-SIM-LFE
LFE,A (λ) ≤ AdvFULL-SIM-GS

GS,B1
(λ)+AdvFULL-SIM-LOT

LOT,B2
(λ)+AdvFULL-SIM-LFE

LFE,B3
(λ) .

Proof (Theorem 2). We show the construction achieves adaptive security. In our
proof we make use of the LFE simulator as well as the simulation security of the
garbling protocol and of the LOT scheme.

Simulator. We build the simulator SLFE as follows: first, we run the simulator
of the underlying LFE scheme in order to obtain the bulk of the ciphertext.
Independently, we run the simulator of the garbled circuit SGS. Finally, we run
the simulator of the LOT scheme (SLOT) on the labels obtained from the SGS.

The proof requires a hybrid argument. We present below the games and the
transitions between them:

Game0: corresponds to the FULL-SIM-LFE game where b is set to 0.

Game1: in this game, we use the simulator SLOT to simulate the corresponding
component of the ciphertext (i.e. Li) . The distance to the previous game is
bounded by the simulation security of the LOT protocol.

Game2: in this game, we switch to the usage of the garbled scheme simulator
GS in order to compute the labels corresponding to the second part of the
ciphertext. The game hop is bounded by the simulation security of the gar-
bling scheme.

Game3: we change the bulk ciphertext to the one obtained by the SLFE simula-
tor, the distance to the previous game being bounded by the advantage in
Lemma 1.

Claim (Transition between Game0 and Game1). The advantage of any PPT ad-
versary in distinguishing between Game0 and Game1 is bounded as follows:

AdvGame0→Game1
A1

(λ) ≤ AdvFULL-SIM-LOT
LOT,B1

(λ) .

Proof (Game0 → Game1). We provide a reduction to the LOT security experi-
ment, which initially samples and publishes crsLOT. Let B1 denote the reduction.
B1 simulates the LFE game in front of the PPT bounded adversary A1: (1) First,
it samples crsLFE, and publishes (crsLFE, crsLOT); (2) Next, B1 receives from the

20

LFE adversary A1 the tuple (C ,C (M ∗)); (3) computes the digest digestC , the
underlying LFE ciphertext, and the garbled circuits with the associated labels.

Next, B1 impersonates an adversary against the LOT security game, by sub-
mitting the tuple

(
PKC · s+ pd−1 · ηd, {Li,i0, Li,1}i∈|digestC |

)
.

The LOT game picks a random b ∈ {0, 1} and provides the adversary with
either a correctly generated LOT ciphertext encrypting the labels L0

i , L
1
i under

position i, or by a simulated ciphertext. The latter ciphertext is generated by
SLOT.

Thus B1 obtains the entire LFE ciphertext, which is passed to A1. A1 returns
a bit, indicating its current setting. It is clear that any PPT adversary able to
distinguish between the two settings breaks the LOT security of the underlying
LOT scheme. ut
Claim (Transition between Game1 and Game2). The advantage of any PPT ad-
versary to distinguish between Game1 and Game2 is bounded as follows:

AdvGame1→Game2
A2

(λ) ≤ AdvFULL-SIM-GS
GS,B2

(λ) .

Proof (Game1 → Game2). By the input and circuit privacy of the garbled circuit,
there exists SGS that produces a tuple (Γ̃ , {L̃0

i , L̃
1
i }i∈[t]).

Let B2 denote the reduction, and let A2 denote the adversary against the LFE
game. As for the previous game, B2 samples and publishes crsLFE, A2 provides
(C ,C (M ∗)). B2 builds the LFE ciphertext.

Next, B2 impersonates an adversary against the GS security experiment.
B2 provides the GS game with (Caux,PKC · s + pd−1 · ηd), and receives either
correctly generated garbled circuit and labels or a simulated garbled circuit and
the simulated labels.

Thus, if A2 distinguishes between the two games, B2 distinguishes between
the two distributions of labels in the GS game. ut
Claim (Transition between Game2 and Game3). The advantage of any PPT ad-
versary to distinguish between Game2 and Game3 is bounded as follows:

AdvGame2→Game3
A3

(λ) ≤ AdvFULL-SIM-LFE
LFE,B3

(λ) .

Proof (Game2 → Game3). Finally, we use the security of the LFE scheme in
order to switch elements of the first component of the ciphertext to simulated
ones. The advantage of any adversary noticing the transition is bounded by the
advantage of winning the FULL-SIM-LFE security of the underlying LFE.

The FULL-SIM-LFE experiment generates crsLFE. B3 samples crsLOT and pro-
vides the resulting crs to A3. The adversary returns (C ,C (M ∗)), which are
forwarded to FULL-SIM-LFE. The experiment generates the ciphertext either
correctly or using SLFE.

Then B3 employs SGS and SLOT to obtain the remaining LFE ciphertext com-
ponents and runs A3 on the full ciphertext. B3 returns the corresponding output
to the setting indicated by A3.

We also note that this setting simulates the FULL-SIM-LFE experiment with
b = 1. ut

21

This completes the proof of Theorem 2. ut

Size of parameters. A main benefit of the LFE schemes in Definitions 7 and 8 is
the simplicity of the crs, digestC and ciphertext structures. These are essentially
elements over known rings of polynomials. The sizes of the ringsRpi are enforced
by the prime factors p0, p1, . . . , pd. As stated in [4, Appendix E] pd ∈ O(B2d

1)
where B1 denotes the magnitude of the noise used for Level-1 encodings and
being bounded by p1/4 in order to ensure correct decryption5. However, we
observe that a tighter bound may have the following form: pd ∈ O(B2Mul

1), where
Mul denotes the number of multiplicative levels in the circuit. From the point
of view of space complexity, we rely on the original analysis of [4] that provides
guidelines for the size of the primes p0, p1, . . . , pd. As we are only interested in the
case stipulating that |pd| belongs to O(poly(λ)). The condition can be achieved
by imposing further restrictions on the multiplicative depth of the circuit, namely
d ∈ O(log(poly(λ))), meaning that the digest is short enough whenever the circuit
belong to NC1 class. The size of the digest in Definition 8 is laconic, given the
fact that LOT produces laconic digests.

Handling multiple bits of output. Regarding the ability to support multiple out-
put bits (say `), this is inherent by using an arithmetic circuit and setting
blog(p0)c = `. If binary circuits are needed, then ` public evaluation can be
obtained through EvalPK, and the scheme modified by having the garbling cir-
cuit producing ` outputs.

Another potentially beneficial point of comparison is the ability of the schemes
in Definitions 7 and 8 to support a bounded number of circuits without changing
the data-dependent ciphertext. This happens when the second party involved is
stateful: given two functions f, g represented through circuits Cf ,Cg, and assum-
ing the receiver stores s (it is stateful), the Enc algorithm may simply recompute
PKg ·s+pd−1 ·µd in the same manner it has already computed PKC ·s+pd−1 ·ηd.

B Bootstrapping LFE to succinct single-key FE

Quash et al. [11] proposed a compiler from an LFE protocol to a succinct single-
key functional encryption scheme. We recall their result below.

Theorem 3 (LFE to FE Compiler from [11]). Assuming the existence
of a selectively (respectively adaptively) secure LFE scheme, there exists a suc-
cinct, selective (respectively adaptive), simulation-secure, single-key, functional
encryption scheme.

If an LFE, for a circuit family {C k, d}k∈N,d∈N with circuit parameters (k, d),
has an encryption circuit of size T = T (λ, k, d) (where the inputs to the encryp-
tion circuit are both the message and the randomness for the LFE encryption),

5 Our scheme is intended to support Boolean circuits, thus p0 is set to 2.

22

then the resulting FE has encryption time and ciphertext size T · poly(λ).

Their transformation follows:

– FE.Setup(1λ): compute crsLFE ← LFE.crsGen(1λ) and (mpkFE,mskFE)←$FE.Setup(1λ).
Return:

mpk← mpkFE

msk← (crsLFE,mskFE)

– FE.KeyGen(msk,C): let CLFE be a circuit that takes as input the plaintext M
and some randomness R and returns an LFE ciphertext: LFE.Enc(crsLFE, digestCLFE

,M ;R).
Issue a functional key:

skCLFE
←$FE.KeyGen(mskFE,CLFE) .

Return:
skC ← (skCLFE

,C , crsLFE) .

– FE.Enc(mpk,M): sample randomness R and return

CT← FE.Enc(mpkFE, (M ,R)) .

– FE.Dec(skC ,CT): parse skC as (skCLFE
,C , crsLFE), obtain digestC from C ,

then return

LFE.Dec(crsLFE, digestC ,FE.Dec(skCLFE
,CT)) .

B.1 A New FE from the “LFE to FE” Compiler

In this part, we consider a novel, single-key and succinct FE, obtained through
the transform above, using as building blocks: (1) the LFE scheme proposed in
Appendix A, and (2) the FE scheme from [4]. In our analysis, we consider the size
of the ciphertext. For the case of the original AR17 construction described in [4],
its size grows exponentially within the multiplicative level, but also linearly with
the length of the plaintext.

On the contrary, considering the FE obtained through the compiler above,
the ciphertext should support CLFE. Since CLFE outputs three main components:
a) an AR17 ciphertext, b) a garbled circuit, c) a set of LOT labels, the mul-
tiplicative depth of the circuit computing these components will be lower: the
depth-dominating component is the one computing the AR17 ciphertext. How-
ever, CLFE can handle computing all Regev encodings in parallel; thus, the circuit
CLFE has a smaller depth compared to C 6.

We assume we bootstrap using the FE from Theorem 3. Therefore, the size of
the FE ciphertext (i.e. AR17 ciphertext) is enforced by the depth CLFE, which is
lower compared to the depth of the original C . As a consequence, the ciphertext
corresponding to FE is asymptotically more efficient.
6 This is also guaranteed by the laconic requirement of an LFE, which stipulates the
time of computing the ciphertext should be lower than the size of the original circuit.

23

C Further Definitions

C.1 Construction of LOT in [7]

In [7], Cho et al. first present an LOT construction based on the DDH assump-
tion, for which the hash function compresses a database of length 2λ into a digest
of length λ (factor-2 compression). Afterwards, the authors explain how to build
an LOT scheme for a database of arbitrarily poly(λ) length M .

For the factor-2 compression LOT, the construction is based on two primitives
called Somewhere Statistically Binding Hash Functions (SSB) and Hash Proof
System (HPS). We recall their definitions.

Definition 9 (Somewhere Statistically Binding Hash). An SSB hash
function SSBH consists of three algorithms crsGen, bindingCrsGen and Hash with
the following syntax.

– crs ← crsGen(1λ): takes the security parameter λ as input and outputs a
common reference string crs.

– crs ← bindingCrsGen(1λ, i): takes as input the security parameter λ and an
index i ∈ [2λ], and outputs a binding common reference string crs.

– y ← Hash(crs, x). For some domain D, it takes as input a common reference
string crs and a string x ∈ D2λ, and outputs a string y ∈ {0, 1}λ.

We require the following properties from an SSB hash function:

1. Statistically Binding at Position i: For every i ∈ [2λ] and an overwhelm-
ing fraction of crs in the support of bindingCrsGen(1λ, i) and every x ∈ D2λ,
we have that (crs,Hash(crs, x)) uniquely determines xi. More formally, for
all x′ ∈ D2λ such that xi 6= x′i we have that Hash(crs, x′) 6= Hash(crs, x).

2. Index Hiding: It holds for all i ∈ [2λ] that crsGen(1λ) ≈c bindingCrsGen(1λ, i),
i.e., common reference strings generated by crsGen and bindingCrsGen are
computationally indistinguishable.

Definition 10 (Hash Proof System). Let Lz ⊆ Mz be an NP-language
residing in a universe Mz, both parameterized by some parameter z. Moreover,
let Lz be characterized by an efficiently computable witness-relation R, namely,
for all x ∈ Mz it holds that x ∈ Lz ⇔ ∃ w : R(x,w) = 1. A hash proof system
HPS for Lz consists of three algorithms KeyGen, Hpublic and Hsecret with the
following syntax.

– (pk, sk) ← KeyGen(1λ, z): takes as input the security parameter λ and a
parameter z, and outputs a public-key and secret key pair (pk, sk).

– y ← Hpublic(pk, x, w). Takes as input a public key pk, an instance x ∈ Lz,
and a witness w, and outputs a value y.

– y ← Hsecret(sk, x): takes as input a secret key sk and an instance x ∈ Mz,
and outputs a value y.

We require the following properties of a hash proof system.

24

1. Perfect Completeness: For all z, for all (pk, sk) in the generated by KeyGen(1λ, z),
and for all x ∈ Lz having witness w (i.e., R(x,w) = 1), it holds that:

Hpublic(pk, x, w) = Hsecret(sk, x)

2. Perfect Soundness: For every z and every x ∈ Mz, let (pk, sk) generated
by KeyGen(1λ, z), then it holds that:

(z, pk,Hsecret(sk, x)) ≡ (z, pk, u)

where u is distributed uniformly random in the range of Hsecret.

Furthermore, we recall some notions, which are used in the description of
the LOT construction in [7]. We denote by M̂ = gM ∈ Gm×n the element-wise
exponentiation of g with the elements of M. We also define L̂ = ĤM ∈ Gm×k,
where Ĥ ∈ Gm×n and M ∈ Zn×kp as follows: each element L̂i,j =

∏n
k=1 Ĥ

Mk,j

i,k

This is an abuse of notation, but intuitively this operation corresponds to matrix
multiplication “in the exponent”.

LOT with Factor-2 Compression. In this part, we will present initially the
constructions presented in [7] of SSBH and HPS, followed by their factor-2 com-
pression LOT.

SSB Hash Function. Let n be an integer such that n = 2λ, and let (G, ·) be a
cyclic group of order p and with generator g. Let Ti ∈ Z2×n

p be a matrix which
is zero everywhere except the i-th column, which is equal to t = (0, 1)>. The
three algorithms of the SSB hash function are defined below.

crsGen(1λ):
H←$Z2×n

p

Ĥ← gH

return Ĥ

bindingCrsGen(1λ, i):
w = {(1, w2)

>|w2←$Zp}
a←$Znp
A← w · a>
H← Ti +A

Ĥ← gH

return Ĥ

Hash(crs, x):
y← Ĥx

return y

Note that in the definition of Hash, x ∈ {0, 1}2λ needs to be parsed in a vector
x ∈ Znp . Furthermore, the output y ∈ G2 has to be returned parsed as a binary
string y. Thus, in order to achieve factor-2 compression, i.e. y ∈ {0, 1}λ, a bit-
representation for a group element in G of size λ

2 is required.

Hash Proof System. Fix a matrix Ĥ ∈ G2×n and an index i ∈ [n]. Let
HPS = (KeyGen,Hpublic,Hsecret) be defined for the following language LĤ,i:

LĤ,i = {(ŷ, b) ∈ G2 × {0, 1}|∃ x ∈ Znp s.t. ŷ = Ĥx ∧ xi = b}

25

Furthermore, for the ease of explanation, it would be convenient to work with a

matrix Ĥ′ =

(
Ĥ

ge
>
i

)
where ge

>
i ∈ Znp is the i-th unit vector, with all elements

equal to 0 except the i-th one which is equal to 1. The three algorithms of the
HPS are defined as follows.

KeyGen(1λ, (Ĥ, i)):
r←$Z3

p

ĥ← ((Ĥ′)>)r

pk ← ĥ, sk ← r
return (pk, sk)

Hpublic(pk, (ĥ, b), x):
ẑ ← (pk>)x = (ĥ>)x

return ẑ

Hsecret(sk, (ĥ, b)):

ŷ′ ←
(
ŷ

gb

)
ẑ ← ((ŷ′)>)sk = ((ŷ′)>)r

return ẑ

LOT Scheme. Let SSBH := (SSBH.crsGen, SSBH.bindingCrsGen, SSBH.Hash)
be the SSB hash function with domainD = Zp. Also, abstractly let the associated
hash proof system be HPS = (HPS.KeyGen, HPS.Hpublic, HPS.Hsecret) for the
language Lcrs,i = {(digest, b) ∈ {0, 1}λ×{0, 1} | ∃D ∈ D2λ : SSBH.Hash(crs, D) =
digest ∧D[i] = b}.
The LOT scheme `OT := (crsGen, Compress, Enc, Dec) follows:

– crsGen(1λ):
crs← SSBH.crsGen(1λ)
return crs

– Compress(crs, D ∈ {0, 1}2λ):
digest← SSBH.Hash(crs, D)

D̂ ← (D, digest)

return (D̂, digest)
– Enc(crs, digest, L,m0,m1):

Let HPS be the hash-proof system for the language Lcrs,L

(pk, sk)← HPS.KeyGen(1λ, (crs, L))
c0 ← m0 ⊕ HPS.Hsecret(sk, (digest, 0))
c1 ← m1 ⊕ HPS.Hsecret(sk, (digest, 1))
e← (pk, c0, c1)
return e

– DecD̂(crs, e, L):
e = (pk, c0, c1), D̂ = (D, digest)
b← D[L]
m← cb ⊕ HPS.Hpublic(pk, (digest, b), D)
return m

26

The above LOT protocol has factor-2 compression and satisfies the correct-
ness and sender privacy requirements.

LOT for arbitrarily large input databases. The authors then provide a
construction to bootstrap an `OT scheme with factor-2 compression into an LOT
scheme with an arbitrary compression factor, which can compress a database of
an arbitrary (a priori unbounded polynomial in λ) size M . They achieved such
generalization through Merkle Trees.

We briefly recall their approach. Assume for ease of exposition thatM = 2d ·
λ. First, the construction partitions the arbitrarily large database D ∈ {0, 1}M
into strings of length 2λ (leaves). Then each of these strings is compressed into
a new string of length λ via the factor-2 LOT Compress algorithm (node). Next,
such strings are paired, forming new strings of length 2λ, which can be com-
pressed, in turn, through Hash, and so on. This process forms a Merkle tree
structure. The Compress function of the general LOT scheme will exploit such
structure, in fact it will compute (D̂, digest), where D̂ is the entire Merkle tree,
and digest is the root of the tree.

Now, it is easy to see that, in order to verify that a database D, with hash
root digest, has a certain value b at a location L, there is no need to provide the
entire Merkle tree. Instead, it is sufficient to provide a path of siblings from the
digest to the leaf that contains location L. It can then be easily verified if the
hash values from the leaf to the root are correct.

C.2 Formal Description for NC1 Construction in [4]

Formal description.

– (msk,mpk)←$FE.Setup(1λ, 1k, 1d): let d stand for the circuit depth, k stand
for the length of the supported inputs and λ for the security parameter.

for i← 1, . . . , d− 1 :

ai←$RLipi
The set {pi : i ← 1, . . . , d} stands for a set of d primes, while Li denotes
the size of an encoding (we assume they are a priori known). Then, a Lin-FE
scheme is instantiated:

(Lin-FE.mpk, Lin-FE.msk)←$ Lin-FE.Setup(1λ)

where Lin-FE.mpk← (w,ad). The following variables are set and returned:

mpk← (a1, . . . ,ad,w)

msk← Lin-FE.msk

– FE.KGen(msk,C): given a function C represented as a circuit of depth d:

PKC←$EvalPK(mpk,C)

27

Invoke key-derivation for Lin-FE to obtain skC
7 and return it:

skC←$ Lin-FE.KGen(msk,PKC)

– FE.Enc(mpk,M = [M1, . . . ,Mk]): first, for each Mj , compute its encodings,
recursively, as shown in Figure 2 for all multiplicative levels 1→ d:

Cij←$ E i(. . . E1(Mj) . . . · s · . . .), ∀i ∈ [d] .

Then, set d as follows:

d← w · s+ pd−1 · µ .

Finally, set the ciphertext corresponding to M as CTM ←
(
{Ci}i∈[d],d

)
.

– FE.Dec(skC ,CTM): compute

CTC (M) ← EvalC ({Ci}i∈[d],C)

which is equivalent to:

CTC (M) ← PKC · s+ pd−1 · ηd−1 + . . .+ p0 · η0 + C (M) ∈ Rpd .

Compute also:

(PKC · s+ pd−1 · η′)← Lin-FE.Dec(skC ,d) .

Subtract the last two equations and remove the noise terms to obtain C (M).

More details on EvalPK and EvalPK are given below. We note that correctness
should follow from the description of these algorithms.

7 Note that w> · skC = PKC .

28

	 Adaptively Secure Laconic Function Evaluation for NC1

