

PhD-FSTM-2020-082

The Faculty of Science, Technology and Medicine

DISSERTATION

Presented on 18/12/2020 in Esch-Sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Abdoul Wahid MAINASSARA CHEKARAOU
Born on 03 June 1991 in Niamey (Niger)

LARGE SCALE PARALLEL SIMULATION

FOR THE EXTENDED DISCRETE ELEMENT

METHOD (XDEM)

Dissertation defense committee:

Chairman: Prof. Dr. Pascal BOUVRY

University of Luxembourg, Luxembourg

Vice-Chairman: Prof. Dr. Miriam MEHL

IPVS, University of Stuttgart, Germany

Jury Member: Dr. Emmanuel JEANNOT

LaBRI, INRIA, France

Jury Member: Dr. Sebastien VARRETTE

University of Luxembourg, Luxembourg

Ph.D. Supervisor: Prof. Dr. Ing. Bernhard PETERS

University of Luxembourg, Luxembourg

Ph.D. Advisor: Dr. Xavier BESSERON

University of Luxembourg, Luxembourg

3

DECLARATION OF

AUTHORSHIP

I, Abdoul Wahid MAINASSARA CHEKARAOU, declare that this thesis titled, “Large

Scale Parallel Simulation for Extend Discrete Element Method (XDEM)” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at University of Luxembourg.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

5

“Fifty years ago Kurt Gödel... proved that the world of pure mathematics is inexhaustible.

No finite set of axioms and rules of inference can ever encompass the whole of mathematics.

Given any finite set of axioms, we can find meaningful mathematical questions which the

axioms leave unanswered. This discovery... came at first as an unwelcome shock to many

mathematicians. It destroyed... the hope that they could solve the problem of deciding by a

systematic procedure the truth or falsehood of any mathematical statement. ...Gödel’s theorem,

in denying ...the possibility of a universal algorithm to settle all questions, gave... instead,

a guarantee that mathematics can never die. ...there will always be, thanks to Gödel, fresh

questions to ask and fresh ideas to discover..”

Freeman Dyson, Infinite in All Directions (1988)

7

ABSTRACT

Abdoul Wahid MAINASSARA CHEKARAOU

Large Scale Parallel Simulation for Extend Discrete Element

Method (XDEM)

Numerical models are commonly used to simulate or model physical processes

such as weather forecasts, fluid action, rocket trajectory, building designs, or biomass

combustion. These simulations are immensely complex and require a hefty amount

of time and computation, making it impossible to run on a standard modern laptop

in a reasonable and fair period. This research work targets large scale and parallel

simulations of DEM and DEM-CFD couplings using high-performance computing

techniques and optimizations. This thesis aims to analyze, contribute, and apply the

DEM approach using the XDEM multi-Physics toolbox to physical processes that

have been reluctant to be used due to their required computational resources and

time.

The first step of this work is to analyze and investigate the performance bottle-

necks of the XDEM software. Therefore, the latter has been profiled, and some critical

parts as the contact detection were identified as the main bottlenecks of the software.

A benchmark has also been set up to assess each bottleneck part’s performance using

a baseline case. This step is crucial as it defines the general guidelines to follow in

optimizing any application in general.

A complete framework has been developed from scratch and aims to test and

compare several contact detection algorithms and implementations. The framework,

which also has a parallel version, has been used to select an appropriate algorithm

8

and implementation for the XDEM software. The link-cell approach, combined with

a new Verlet list concept, proved to be the best option for significantly reducing the

contact detection part’s computational time. The Verlet buffer concept developed

during this thesis takes the particle flow regime into account when selecting the skin

margin to enhance the algorithm’s efficiency further.

In order to target the high-performance computers for large-scale simulations, a

full hybrid distributed-shared memory parallelization has been introduced by adding

a fine-grain OpenMP implementation layer to the existing MPI approach. A shared

memory parallelization allows taking full advantage of personal workstations with

modern CPU architecture. On the other hand, a hybrid approach is one of the best

ways to fully exploit the computing nodes capacities of our modern CPU clusters

that mainly have a NUMA architecture. Macro-benchmarking performance analy-

sis showed that we could entirely exploit 80% (speed-up) of 85 computing nodes

representing 2380 cores on the ULHPC supercomputer.

Finally, a life-size biomass combustion furnace is developed and used as an

application test to demonstrate the complex and heavy cases that the XDEM software

can accommodate at this time. The furnace is the combustion chamber of a 16 MW

geothermal steam super-heater, part of the Enel Green Power "Cornia 2." power plant

located in Italy. It proves that DEM, in general, and XDEM in particular, can be used

for real-case applications that discourage users due to their complexity and especially

the time required to deliver the outcome results.

9

ACKNOWLEDGEMENTS

Foremost, I would like to express my deep gratefulness to my supervisor Prof. Bern-

hard PETERS for his continuous support of my Ph.D study and research.

Besides my supervisor, I would like to thank Dr Xavier BESSERON and Alban

ROUSSET for their motivation, enthusiasm and immense knowledge. Their guidance

helped me in all the time of research and writing of the thesis. I could have not

imagined better advisors and mentors for my Ph.D study.

My sincere thanks goes also to all my colleagues at the LUXDEM team.

Last but not least, I would like to thank my family and specially my parents

for all their support since day one. I could have not achieve all of this without their

unconditional love, support and advise.

11

CONTENTS

Declaration of Authorship 3

Abstract 7

Acknowledgements 9

Contents 11

List of Figures 17

List of Tables 25

List of Abbreviations 27

List of Symbols 29

1 Introduction 1

1.1 Granular materials modeling and particle simulations 2

1.1.1 Granular materials . 2

1.1.2 Modeling Methods . 3

1.1.2.1 Continuum approach 3

1.1.2.2 Discrete approach . 4

1.1.3 Particle simulations . 5

1.1.4 The eXtended Discrete Element Method(XDEM) 6

1.2 High performance computing . 10

1.3 DEM software: A state of art . 12

1.4 Motivation and Objectives . 15

1.5 Contributions . 15

1.6 Structure of the thesis . 16

12

I Methodology 19

2 Performance assessments 21

2.1 Introduction . 22

2.2 Baseline . 23

2.2.1 XDEM version . 24

2.2.2 Metrics of performance . 24

2.2.2.1 Characteristics of performance metrics 25

2.2.2.2 Type of performance metrics 25

2.2.3 Real test case . 27

2.3 Profiling . 27

2.3.1 Tracing profilers . 28

2.3.2 Statistical profilers . 29

2.4 Benchmarking . 30

2.4.1 Macro and micro benchmarks . 30

2.4.2 Evaluation criteria . 31

2.5 Performance models . 31

2.5.1 Roofline model . 31

2.5.2 Execution-Cache-Memory . 34

2.5.2.1 In-core model . 34

2.5.2.2 Data transfer model . 35

2.6 Application . 36

2.6.1 Hotspots analysis . 36

2.6.2 Memory footprint analysis . 39

2.6.2.1 Heap and stack profiling 39

2.6.2.2 Memory leaks detection and cache profiling 41

2.7 Summary . 43

3 Contact Detection in the eXtended Discrete Method (XDEM) 45

3.1 Abstract . 46

3.2 Introduction . 47

3.3 Broad-phase collision detection . 49

3.3.1 Axis-Aligned Bounding Boxes (AABBs) 50

13

3.3.2 Oriented Bounding Boxes (OBBs) 51

3.3.3 Bounding Spheres . 51

3.4 Broad-Phase algorithms . 52

3.4.1 Spatial partitioning . 53

3.4.2 The Brute Force approach . 54

3.4.3 The Octree and k-d tree . 54

3.4.4 Loose Octree . 56

3.4.5 Grid-based spatial partitioning algorithms 58

3.4.6 Sweep and prune . 60

3.4.7 Bounding volume hierarchy (BVH) 60

3.4.8 Framework and C++ library for collision 61

3.5 Benchmark . 62

3.5.1 Sequential runs . 62

3.5.2 Parallel runs . 65

3.5.3 Adaptive approach . 67

3.6 Conclusion . 68

4 Local Verlet buffer approach for broad-phase interaction in DEM 71

4.1 Abstract . 72

4.2 Introduction . 73

4.3 Related work . 75

4.4 Background . 77

4.4.1 XDEM flow chart . 78

4.4.2 Collision detection in XDEM . 79

4.5 Local Verlet buffer approach . 82

4.5.1 The local skin parameter . 85

4.5.2 Automatic update and validity of the Verlet list 87

4.6 Performance Evaluation . 90

4.6.1 Methodology . 90

4.6.2 Test-cases . 91

4.6.3 Experimental settings . 96

4.6.4 Results . 97

14

4.7 Conclusion . 101

5 Predicting near-optimal skin distance in Verlet buffer for DEM 105

5.1 Abstract . 106

5.2 Introduction . 107

5.3 Background . 109

5.3.1 The Extended Discrete Element Method 109

5.3.2 Verlet buffer method for XDEM 110

5.3.3 Dakota Software Package . 112

5.4 Skin distance optimisation problem . 114

5.4.1 Definition . 114

5.4.2 Evolution optimisation of the skin distance parameter 115

5.5 Near-optimal skin distance characterisation 117

5.5.1 Design of experiments . 117

5.5.2 Methodology . 118

5.5.3 Results . 121

5.6 Parallel Execution of DAKOTA SOFTWARE on HPC cluster 124

5.7 Conclusion . 127

6 Hybrid MPI+OpenMP Implementation of XDEM 129

6.1 Abstract . 130

6.2 Introduction . 131

6.3 Challenges and implementation for the OpenMP parallelization of

XDEM . 133

6.3.1 Data structures and concurrent accesses 134

6.3.2 Memory allocation . 138

6.4 Experimental Results . 140

6.4.1 Case for experimental evaluation 140

6.4.2 Experimental settings . 140

6.4.3 Impact of data structures . 140

6.4.4 Impact of memory allocator . 142

6.4.5 OpenMP and MPI scalability . 142

6.4.6 Hybrid execution . 145

15

6.5 Conlusion . 146

II Performance analysis and Application 149

7 Performance analysis 151

7.1 Introduction . 152

7.2 New vs old XDEM versions performance 152

7.2.1 Biomass furnace combustion . 153

7.2.2 Sequential performance . 154

7.2.3 Parallel performance . 157

7.3 Large scale XDEM-OPENFOAM coupling performance 162

7.3.1 Dam break test case . 162

7.3.1.1 Configuration . 162

7.3.1.2 Parallel set-up . 166

7.3.2 Strong scalability and Speed Up 167

7.4 Conclusion . 174

8 Numerical Analysis of a Grate Firing Combustion Process 177

8.1 Abstract . 178

8.2 Introduction . 179

8.3 Numerical model and simulation conditions 180

8.4 Results and performance analysis . 187

8.5 Conclusion . 192

III Conclusion 195

9 Conclusion 197

9.1 Summary . 197

9.2 Future tasks . 200

IV Bibliography 203

Bibliography 205

17

LIST OF FIGURES

1.1 Examples of granular materials in industry: Tablets pills medicine, Silo

for storing corn, and Crusher with conveyor 2

1.2 Common approaches in computational mechanics. 5

1.3 Discrete element method loop’s scheme. 7

1.4 Classic MPI domain decomposition layer. Process 0 and 1 exchange

particles from ghost layers. 9

1.5 University of Luxembourg’s Iris cluster Infiniband interconnection. . . 10

1.6 June 2020 Ranking of the Top 5 super computers in the world (June

2020 top500 poster). 11

2.1 Moore’S law . 23

2.2 The roofline model for the naive brute force algorithm in collision

detection. The roofline was generated using the Intel advisor tool. . 33

2.3 Schönauer vector triad (left column = bandwidth of data path, black

arrow = cache line transfer, red arrow = write- allocate cache line

transfer) (Erlangen Regional Computing Center, 2019) 36

2.4 XDEM call-graph . 38

2.5 GRAPH . 39

3.1 Workflow of an XDEM simulation: the Broad-phase Collision Detection

finds the pairs of particles that may interact with each other by replac-

ing the particles real shape with bounding volume and it returns a list.

The latter is used in the Narrow-phase Collision Detection to perform a

collision detection with particles real shape. 48

18

3.2 Type of bounding volumes used in broad-phase: sphere, axis-aligned

bounding box (AABB), oriented bounding box (OBB), eight-direction

discrete orientation polytope (8-DOP), and convex hull (Ericson, 2004). 49

3.3 Check object one against all other objects, then object two against all

other objects (except object one). 54

3.4 Left: Recursive subdivision of a cube into octants. Right: The corre-

sponding octree (Truong, Arikatla, and Enquobahrie, 2019). 55

3.5 A quadtree node with the first level of subdivision shown in black

dotted lines, and the following level of subdivision in gray dashed

lines. Dark gray objects overlap the first-level dividing planes and

become stuck at the current level. Medium gray objects propagate

one level down before becoming stuck. Here, only the white objects

descend two levels (Ericson, 2004). 57

3.6 Regular domain decomposition as a quadtree. 57

3.7 Loose quadtree representation. The nodes have been expanded by half

the node width in the two directions. 57

3.8 Representation of a regular quadtree and loose quadtree (Ericson, 2004). 57

3.9 (A) . 58

3.10 (B) . 58

3.11 Uniform grid approach. (A) Uniform grid subdivision in equal sized

cells. Each particle is assigned to a cell where its center is located. (B)

The dark blue particle is checked with the light blue particle contained

in the same cell. It is also checked against green particles located in the

direct neighboring cells in light green. 58

3.12 Hierarchical grid level 0. 59

3.13 Hierarchical grid level 1. 59

3.14 Hierarchical grid level 2. 59

3.15 Hierarchical grid level 3. 59

19

3.16 Two dimensional hierarchical grid example. The level 0 corresponds to

the domain and contains all the particles. The first level is the coarser

grid (in red) and contains the biggest particle in red. The second level

encapsulated the yellow particles without the biggest red particle. The

third and last level contains the blue and green particles, that inserted

in all the three grids. 59

3.17 An example of a bounding volume hierarchy using rectangles as

bounding volumes (Schreiberx, 2020). 61

3.18 Comparison results for Slow Broad-Phase Algorithms from 1k to 100k of

particles. 63

3.19 Comparison results for Fast Broad-Phase Algorithms from 1k to 1M of

particles. 64

3.20 OpenMP scalable results for Fast Broad-Phase Algorithms from 1 to 24 of

cores. 66

4.1 Flow chart of XDEM software detailing the main different steps in an

iterative simulation. 80

4.2 Collision detection (broad-phase and narrow-phase) process workload

in XDEM. The broad-phase is the main computational time consumer. 81

4.3 Illustration of the cell linked method. For the particles in green cell,

a collision is checked with particles in the same cell (green particles),

and also within the immediate neighbour cells (blue). 82

4.4 Initial configuration and update of the Verlet list. 84

4.5 New flow chart of XDEM software. A construction of the Verlet list

is added. If the conditions are satisfied, the list is kept and the broad-

phase is skipped and the simulation continues directly to the narrow-

phase. 86

4.6 The test case used for the performance evaluation simulates the hopper

discharge of 125k, 250k and half a million particles. It shows any

overview of the set-up with the particles coloured according to their size. 92

20

4.7 Granular flows on roughed inclined plane. The rough plane has parti-

cles vibrating at 50Hz frequency with 200mm amplitude. The free flow

particles are coloured according to their velocity 93

4.8 Simulation of an avalanche at the top of a habitable valley. The particles

bed represents a cohesive snow model. 94

4.9 Furnace of the combustion of Biomass. The particle bed is arranged

on four (4) moving grates. The bed is heated up in the combustion

chamber by inlets located below the grates. The particles are colored

according to their surface temperature. 95

4.10 Powder levelling for Selective Laser Melting. 96

4.11 Dependence of broad-phase, narrow-phase and interactions models

on skin K factor. The vertical blue dashed lines show the optimum K

for each simulations corresponding to the lowest overall simulation

time. The orange horizontal line represents the simulation time for a

constant skin equal to the particles radius. The skin distance is capped

by the cell size in all simulations. 97

4.12 Dependence of executed broad-phase in percentage upon the skin K

factor. The percentage correspond to the number of executed broad-

phase over the total number of steps in the simulation. 100

4.13 Simulation time overhead compared to the optimum for each K value

for all test cases. 101

5.1 XDEM user specifications. 108

5.2 In the Verlet buffer approach, the bounding sphere of the particles is

extended by the skin distance such as RNL = RC + skin. 111

5.3 The loosely-coupled or “black-box” interface between DAKOTA SOFT-

WARE and a user-supplied simulation code (Adams et al., 2019). 113

5.4 Dependence of broad-phase, narrow-phase and interactions models

on skin distance factor K. 115

5.5 The SOGA solver convergence with the biomass case. Three popula-

tions with different initial sizes have been considered: 10, 20, 50. 117

21

5.6 Design of experiment steps. S f : Solid fraction, Cs: Ratio cell to particle

size, Vel: Velocity, n: Number of particles, T: XDEM computational time.119

5.7 Figure of a homogeneous particle system for near-optimal skin distance

determination. 120

5.8 Response surfaces for the near-optimal skin distance factor K for solid

fraction and ratio cell to particle size. 123

5.9 Response surfaces for the near-optimal skin distance factor K for solid

fraction and velocity. 123

5.10 Response surfaces for the near-optimal skin distance factor K for solid

fraction and number of particles. 123

5.11 Response surfaces for the near-optimal skin distance factor K for ratio

cell to particle size and velocity. 123

5.12 Response surfaces for the near-optimal skin distance factor K for ratio

cell to particle size and number of particles. 123

5.13 Response surfaces for the near-optimal skin distance factor K for veloc-

ity and number of particles. 123

5.14 The DAKOTA SOFTWARE parallelism and scheduling scheme. 126

6.1 The different phases of an XDEM iteration loop. 135

6.2 The test case used for the performance evaluation simulates the hopper

discharge of 1 million particles. The left part shows an overview of

the setup with the particles colored according to their size. The right

side displays the middle slice allowing us to see the particle velocity

distribution during the discharge process. 139

6.3 Impact of data structure in sequential for Hopper test (from 250k left

to 1M right). 141

6.4 Impact of different memory allocators on one iteration time with

OpenMP version on one node (from 1 to 28 cores) for Hopper test

case (1M particles). 143

6.5 SpeedUp of MPI and OpenMP versions on one node i.e. up to 28 cores. 144

22

6.6 Speedup of hybrid MPI+OpenMP executions for different number

of threads per process on the Hopper Discharge case with 1 million

particles. 146

7.1 The Enel Green Power "Cornia 2" biomass combustion power plant. . . 153

7.2 Sequential simulation time comparison between 03/2017 and 10/2020

XDEM versions. 155

7.3 XDEM main parts simulation time comparison between 03/2017 and

10/2020 XDEM versions. The y-axis is represented in log time. 156

7.4 Strong scaling of the main loop’s simulation time. The number of MPI

processes is on the x-axis, and the log simulation time on the y-axis.

The execution was made on one node with 28 cores. 157

7.5 Strong scaling of the main loop’s simulation time of three hybrid

MPI/OpenMP parallel configurations. The number of cores is on the

x-axis, and the simulation time on the y-axis. The executions was made

on one node with 28 cores (exclusive reservation). 159

7.6 Speed up comparison between 03/2017 XDEM version in Full MPI

configuration and 10/2020 XDEM version in Full OpenMP configura-

tion. The x-axis represents the number of processes and the speed up

on the y-axis. The executed was made on one node with 28 cores. . . . 160

7.7 Improvements comparison between 03/2017 XDEM version in Full

MPI configuration and 10/2020 XDEM version in Full OpenMP con-

figuration. The comparison is made between sequential and parallel

simulations using 28 cores. We compare the improvements of some

critical parts of the XDEM code: the broad-phase, the narrow-phase,

the integration (dynamic and conversion), and the dynamic models.

The x-axis represents the critical parts of the XDEM code and the

improvement in percentage (compared to sequential) on the y-axis. . . 161

7.8 Dam break initial configuration. Light particles (bottom) in yellow and

heavy particles in red (upper) are initially positioned within a column

of water. 163

23

7.9 Different length scales in high-Stokes three-phase flows: bulk (coarse)

scale and fluid fine scale (left figure). Schematic of the solution proce-

dure for the bulk and fine length-scale in the simulation. The two boxes

represent the different models adopted, while the arrows show the

communication between the scales schematically. A coarse grid (top) is

used to perform the volume averaging and to solve the fluid-particle in-

teraction. Particle-related fields are mapped to the supporting domain

(bottom) then, a finer grid is used to solve the fluid equations (Pozzetti

and Peters, 2018). 164

7.10 Three-phase dam-break multi-scale strategies. 165

7.11 XDEM and OPENFOAM parallelization strategies. XDEM uses an

hybrid MPI+OpenMP approach while OPENFOAM is partitioned

using only MPI. 166

7.12 The Iris cluster computing nodes. 167

7.13 Speed up of hybrid MPI/OpenMP runs with different process/thread

configurations. The x-axis represents the number of processes and the

speed up on the y-axis. 169

7.14 XDEM and OPENFOAM simulation time proportion comparison. The

left figure compares the proportions for a Full MPI configuration for

XDEM. The right figure compares the proportions for a hybrid 2 MPI

processes per node and 14 OpenMP threads per MPI process for XDEM.171

7.15 XDEM and OPENFOAM load-imbalances for the dam-break domain

decomposition in the Full MPI parallel configuration. 172

7.16 XDEM load-imbalances for the dam-break domain decomposition in

the hybrid MPI/OpenMP parallel configuration. 173

8.1 Biomass combustion chamber 2D design. 181

8.2 Biomass combustion chamber 3D views. 183

8.3 Gas phase temperature distribution at different simulation time: 5s

(upper left), 50s (upper right), 250s (lower left), 600s (lower right). . . . 188

8.4 Surface bed temperature distribution. 189

8.5 Particle composition in the inlet, outlet and along the grate length. . . 190

24

8.6 Particle average composition in the inlet, outlet and along the grate. . . 191

8.7 Time proportion of XDEM and OpenFoam in the coupling simulation. 192

25

LIST OF TABLES

1.1 Table to compare DEM software specifications. 15

2.1 Hotspots in XDEM using INTEL VTUNE. 37

2.2 Time table memory allocation details. 40

2.3 Cache data access summary. 42

3.1 Algorithms that have been implemented and parallelized in the C++

framework. The brute force, the grid and tree algorithms were im-

plemented from scratch. The CGAL and Bullet libraries use spatial

partitioning algorithms while FCL was used with a AABB tree based

algorithm. 53

4.1 Summary of the performance results of the Verlet buffer method over

the different testcases. 102

5.1 SOGA parameters . 116

5.2 Simulation designs for near-optimal skin distance. 121

5.3 Overview of the Verlet buffer method results with the surrogate model

over the different test-cases. 124

5.4 Scheduled job statistics. 127

6.1 Characteristics of the containers used in XDEM before and after our

optimizations. Only the operations used in XDEM are considered. . . 138

7.1 Table to compare XDEM versions simulation times in sequential. . . . 154

7.2 Table to compare XDEM versions simulation times in parallel, full MPI

configuration. 158

7.3 Gas and liquid phases properties. 165

26

8.1 Characteristics and operating conditions of the super-heater. PA =

primary air, SA = secondary air . 181

8.2 Biomass analysis. ar = as received, daf = dry ash free 182

27

LIST OF ABBREVIATIONS

DEM Discrete Element Method
XDEM eXtended Discrete Element Method
LuXDEM Luxembourg eXtended Discrete Element Method Centre
MD Molecular Dynamic
CFD Computational Fluid Dynamic
HPC High Performance Computing
BP Broad Phase
NP Narrow Phase
AABB Axis Align Bounding Box
OBB Oriented Bounding Box
DOP Discrete Oroented Polytope
CGAL Computational Geometry Algorithms Library
FCL Fast Collision Library
BVH Bounding Volume Hierarchy
CPU Central Processing Unit
GPU Graphic Processing Unit
NUMA Non Uniform Memory Access
SMP Symmetric Multi Processing
EDR Eighteen Data Rate
GPFS General Parallel File System
DAKOTA Design Analysis Kit for Optimisation and Terascale Applications
DACE Dace Analysis Computer Experiments
SOGA Single Objective Genetic Algorithm
MOGA Multiple Objective Genetic Algorithm
PA Primary Air
SA Secondary Air
FGR Flue Gas Recirculation
PaSR Partially Stirred Reactor
FEM Finite Element Method
FDM Finite Difference Method
FVM Finite Volume Method

29

LIST OF SYMBOLS

a distance m
W power W (J s−1)

ω angular frequency rad
W angular frequency rad

31

To my dear family. . .

1

Chapter 1

Introduction

2 Chapter 1. Introduction

1.1 Granular materials modeling and particle simulations

1.1.1 Granular materials

Granular materials are an aggregation of macroscopic particles and are omnipresent,

and their behavior is of great importance in pharmaceutical, mining, food process-

ing, iron making industries, avalanches, cereal storage, powder mixing, and fric-

tional materials (concrete). They can be classified into two categories: powders and

granulars. Particles above 100 µm are considered granular, and their dynamics are

strongly influenced by their interaction with their neighbors and/or surrounding

fluid through frictional contact. On the other hand, powders are composed of tiny

particles (1−100 µm) that easily float in a gas. The behavior of granular materials can

range from solid-like material (cohesive soil (Peters and Džiugys, 2002)) to fluid-like

due to their variety and usually involves multi-scale phenomena. Medicine tablets,

coffee, coal, wood chips, sand, snow, rocks, planets, or even galaxies are few examples

considered granular materials.

Granulates are distinguished from molecules and fine particles by the size of the

particles that compose them. They must be large enough so that their motion is not

vulnerable to thermal fluctuations.

FIGURE 1.1: Examples of granular materials in industry: Tablets pills
medicine, Silo for storing corn, and Crusher with conveyor

Granulates are the most widely manipulated material on the planet after wa-

ter (Richard et al., 2005). However, despite their far-reaching importance in countless

fields, efforts to understand and predict the specific granular behavior remain under-

researched despite a need for a better understanding. Even today, the design of

simple structures handling granular materials such as static grain silos often fail.

Therefore, there is a need and demand for new predictive tools such as numerical

1.1. Granular materials modeling and particle simulations 3

simulations or analytical procedures to understand granular materials behaviors in

industrial environments.

Simulations have become great tools that have been used to design and optimize

industrial processes. The granular materials are no exceptions, and simulations are

used to deepen the understanding of their behaviors. These simulations use physical

and mathematical modeling as a basis to reproduce, predict, and set-up the physical

process.

1.1.2 Modeling Methods

When it comes to modeling and simulation of physics process in general and particu-

late systems, there are two widely used approaches: continuum or Eulerian (Liu and

WALkINGTON, 2001) and discrete or Lagrangian (Lagrange, 1853). The continuum

approach assumes the materials to be continued in their internal structure represen-

tation. It has been successfully applied to different domains and materials, such as

fluids, metals, and most homogeneous materials. On the other hand, the discrete

approach considers materials as a system of independent and interacting particles.

1.1.2.1 Continuum approach

In the continuum method, granular matter’s constitutive behavior is defined by con-

stitutive laws, commonly expressed in the form of differential equations that relate to

mechanical field variables (e.g., Stress and Strain). The simulation of material with

this approach assumes that it is continuous and fills the space it occupies. As a con-

sequence, the behavior of individual particles is ignored. The resulting constitutive

equations are solved numerically (e.g., Finite Element Method). The crucial issues

involved in using continuum methods for the granular material simulation are the

proper formulation of constitutive behavior. Relevant stress-strain laws for materials

often do not apply or are unnecessarily complicated. Particle system processes are

often strongly dependent on particle level behavior.

The most commonly used continuum methods are the Finite Element Method

(FEM), Finite Difference Method (FDM), and the Finite Volume Method (FVM).

4 Chapter 1. Introduction

• The most straightforward approach to discretizing partial differential equations

is the finite-difference method. You consider a point in space where you take the

equation’s continuum representation and substitute it with a series of discrete

equations called equations of finite-difference. On a regular grid, which can

be used for very effective solution methods, the finite-difference method is

usually defined. Therefore for unconventional geometries, the approach is not

commonly used, but most frequently for rectangular or block-shaped versions.

• The finite-element method is a method that subdivides a material into geomet-

rically simple shapes of small but finite-sized elements. The so-called finite

element mesh constitutes the collection of all these simple shapes.

• The finite-volume method is similar to the finite-element method in that the

model is first divided into small but finite-sized elements of geometrically

simple shapes. Apart from this, the finite-volume method is very different from

the finite-element method, beginning with the concept of elements, which are

instead referred to as cells.

1.1.2.2 Discrete approach

In comparison to the continuum approach, discrete methods model every particle

as a discrete object and portray granular material as a bulk system of particles. The

overall (macroscopic) system behavior results from individual particle interactions.

It makes the discrete solution very useful for analyzing phenomena at the particle

length scale and gives a better simulation of the particles’ mass behavior. As granular

material micromechanics can be more accurately modeled with discrete methods, they

are best suited for modeling the flow and massive displacements of discontinuous

material (Kabore et al., 2018).

The discrete methods or particle-based models are numerical models that con-

sider materials into individual and independent particle system (Nambu and Jona-

Lasinio, 1961). Therefore, they are perfect at modeling granular materials and can

also be used to model fluids, metals, and most homogeneous materials. The idea

that matter is made of discrete elements dates back over 2000 years, with the Ancient

1.1. Granular materials modeling and particle simulations 5

Greek atomists Leucippus, Democritus, and Epicurus (Berryman, 2004b; Berryman,

2004a; Furley, 1967) arguing that nature was composed of atomos or indivisible indi-

viduals. Numerical modeling of materials behavior considers different scales from

atomic to macro scale. These different scale levels are captured in different methods

such as the Molecular Dynamics (MD), the Particle In Cell (PIC), and the Discrete

Element Method (DEM) (see Fig. ??).

Nano/atomic Micro Mesoscopic Macro

Discrete
Element

Method (DEM)
Modecular Dynamics /

Particle In Cell
Continuum
Mechanics

FIGURE 1.2: Common approaches in computational mechanics.

The computational mechanics’ field can be divided into different scales, as

presented in Fig. 1.2: macro, mesoscopic, microscopic, and nanoscales. Molecular

Dynamics can be used at micro, meso, and nano scales structures. The DEM approach

can be used at micro, meso, and even macro-scales structures, making the DEM a

perfect method to model granular materials in its broad diversity. The continuum

mechanics is commonly used to model the macro-scale structures, where the finite

element method can be used.

1.1.3 Particle simulations

Simulations of particulate matter started with the invention of molecular dynamics

in the late 1950s, which models the physical motion of atoms and molecules in a

multi-body simulation. The atoms’ motion is determined by solving Newton’s second

law of motion for a system of interacting particles, where forces between the particles

6 Chapter 1. Introduction

and potential energy are defined by inter-atomic potentials or molecular mechanics

force fields.

Particle-based methods introduced new simulations that were hardly possible

with the continuum approach but come with additional difficulties, extra computing

time, and programming effort. Indeed, while such Lagrangian approaches can have

substantial advantages over conventional mesh-based methods, their accurate and

effective implementation often poses several challenges.

The Discrete Element Method (DEM) is a family of numerical methods for

computing discrete particles’ motions. The global behavior of the system is gauge

from the individual motion and mutual interactions of the particles. Typically, each

DEM particle represents a separate and independent element with a calculated

momentum and energy field. The DEM approach can be schematized as described in

the Fig. 1.3 below. Cundall (Cundall and Strack, 1979) first proposed it in 1971. While

very similar to MD, the DEM method is characterized by the addition of rotational

degrees of freedom and elastic contact, and complicated geometry. These additions

make the method ideally suited for modeling the bulk behavior of granular materials.

It has become possible to simulate millions of particles on a single processor

numerically with developments in computing power and numerical algorithms for

nearest neighbor sorting. DEM simulations, however, are relatively costly, intensive,

and challenging in terms of calculation, reducing either the length of a simulation or

the number of particles. Additional challenges are also faced when coupling DEM

simulations to continuum solvers such as Computational Fluid Dynamics (CFD).

1.1.4 The eXtended Discrete Element Method(XDEM)

The XDEM software is a numerical multi-physics simulation framework (Samiei

and Peters, 2010) based on the dynamics of granular material or particles described

by the classical DEM (Cundall and Strack, 1979; Allen and Tildesley, 1990). It is

extended by additional properties such as the thermodynamic state, stress/strain

or electro-magnetic field for each particle (Peters, 2013; Peters and Pozzetti, 2017;

Mahmoudi et al., 2016a). It is organized as a C++ library composed of a set of

1.1. Granular materials modeling and particle simulations 7

Particle domain
initialization

Contact detection

Forces and torques
interaction

Particle's acceleration
and velocity

Update particle's
position

Newton's law

Contact mechanics

FIGURE 1.3: Discrete element method loop’s scheme.

8 Chapter 1. Introduction

modules: Dynamics for the pure DEM part, Conversion for the chemical conversion

and thermodynamics, CFD coupling for the coupling through an external CFD library

such as OpenFOAM (Jasak, Jemcov, and Tukovic, 2007).

An XDEM simulation is an iterative time loop which contains the following main

phases:

• Prediction: initiates and prepares the quantity of particle motion for the upcom-

ing calculation. It is an optional phase used only with some specific integration

models;

• Broad-Phase: uses a fast but approximate collision detection to build a list of

particle pairs that can potentially interact. During this phase, the particles are

represented by bounding spheres with an appropriate radius (to express the

interaction range);

• Narrow-Phase: processes the list of potentially interacting particle pairs and

performs a precise contact detection using the actual shape of the particle (e.g.

sphere, cube, disk, cylinder, triangle, etc.). It calculates the overlap/distance,

the contact point, and the direction between the two particles;

• Apply Physics Model: this phase selects the physics models defined in the

particle properties (e.g. for impact, bonding, rolling, conduction, radiation,

chemical reaction) and calculates the contribution of the interaction to each

particle involved (in terms of force, torque, heat flux, chemical specie mass

fraction, Etc.).

• Integration: updates the state of the particles after accumulating all the interac-

tions’ contributions. Different integration models are available for the different

components of the particles’ state (e.g. position/orientation, temperature, chem-

ical composition).

Each of the simulation modules can be enabled separately and have specific time

settings. The XDEM simulation driver is responsible for executing at each iteration

the required phases for the activated modules.

1.1. Granular materials modeling and particle simulations 9

To benefit from larger-scale As described in previous work (Besseron et al., 2013),

XDEM parallelization is based on a classical domain decomposition approach. It

relies mainly on three concepts:

• the simulation domain containing all the particles, is split in regular sub-division

called cells;

• cells are grouped to form a sub-domain or partition which will be assigned to

processes participating in the simulation;

• a partitioning algorithm is responsible for the creation of these partitions (Rous-

set, Besseron, and Peters, 2017).

Sub-domain on Process 0
G

host layer from
 P1 G

ho
st

 la
ye

r f
ro

m
 P

0

Sub-domain on Process 1

MPI communication from 0 to 1

MPI communication from 1 to 0

FIGURE 1.4: Classic MPI domain decomposition layer. Process 0 and 1
exchange particles from ghost layers.

The parallel simulation driver executes the different partitions’ evaluation while

computations inside a partition or a sub-domain are performed sequentially. Because

of parallel execution, additional communications are required to exchange particle

data between neighboring cells located on different partitions. A layer of ghost cells (or

ghost layer as shown on Fig. 1.4) is added at the boundaries of each partition for this

purpose. These layers are thus used to represent cells located on the other processes.

10 Chapter 1. Introduction

1.2 High performance computing

High-performance computing (HPC) is a set of techniques for performing billions of

billions of operations on large amounts of data using super-powered computers. It

is also defined as the "use of parallel processing for running advanced application

programs efficiently, reliably, and quickly." The supercomputers are an aggregation

of computing power involving thousands of processors performing billions of com-

putations on a massive amount of data in parallel using fast network infrastructure

(Fig. 1.5). It is today an essential tool for researchers and engineers to solve cutting-

edge problems.

FIGURE 1.5: University of Luxembourg’s Iris cluster Infiniband inter-
connection.

HPC has enabled tremendous applications in weather prediction, nuclear, envi-

ronment, fluid mechanics, aerospace, astrophysics, data science, artificial intelligence,

and hydrology. It is possible to simulate large scale and parallel systems that require

high computing power and are data intensive. There is currently a development

race for the most powerful supercomputer between Western nations (Europe and

1.2. High performance computing 11

the US) and China. TOP500 is a world ranking project of supercomputers that ranks

the first 500 supercomputers in the world based on the number of floating-point

operations per second (FLOPS/s) they can perform. In 2020, the rank is dominated

by the Japanese machine Fugaku (see Fig. 1.6) which is installed at the RIKEN Cen-

ter for Computational Science (R-CCS) in Kobe, Japan and has a theoretical peak

performance of 415.5 petaflops with more than 7 million cores.

FIGURE 1.6: June 2020 Ranking of the Top 5 super computers in the
world (June 2020 top500 poster).

12 Chapter 1. Introduction

The high computational demand is one of the key disadvantages of the DEM

method, despite numerous advantages. Modern computers have provided high-

performance computing with powerful hardware platforms, but many current DEM

codes are usually serially coded, which entirely prevents them from using modern

computing capability. Adapting DEM codes to run on supercomputers enables to run

large scale DEM simulations that will accelerate research outcomes by dramatically

reducing the computational time for these studies while providing high-resolution

representation of physical experiments.

1.3 DEM software: A state of art

A bibliographical search allowed us to establish a list of several existing platforms or

projects of parallel DEM platforms. This list is not exhaustive, but it is intended to be

as complete as possible.

LIGGGHTS (Kloss et al., 2012) is a well known DEM software developed by

DCS Computing GmbH, Linz, in Austria. It is constructed on top of LAMMPS (Plimp-

ton, Crozier, and Thompson, 2007), a classical molecular dynamics simulator. LIGGGHTS

is an open-source software package for DEM simulations, including granular materi-

als and heat transfer. It is inherited from LAMMPS, and it is parallelized through

MPI but with a dynamic domain decomposition (unlike LAMMPS). XDEM and

LIGGGHTS decompose the simulation domain in a very similar manner. However,

unlike LIGGGHTS (in its free version), XDEM does not produce a Cartesian grid of

the subdomain (it also has RCB decomposition in the commercial license). XDEM on

the other hand uses topological, geometric, and Hypergraph partitionners from the

ZOLTAN toolkit (Devine et al., 2002). It gives us an edge over a better load balance

among the MPI processes and more flexibility. LIGGGHTS has, in its commercial

license, a lock-free OpenMP parallelization (Berger et al., 2015) on top of the MPI

decomposition and can therefore perform hybrid simulations. In (Berger et al., 2015),

a speedup of 64 over 128 cores for a Hopper discharge (silo) test case with 1.5 million

particles was shown, as well as a speedup 55 on 128 cores with a mixing process test

case with 770000 particles.

1.3. DEM software: A state of art 13

YADE (Kozicki and Donze, 2009) is an open-source C++ and Python framework

for discrete numerical models, focused on Discrete Element Method. The code has a

generic design to provide extreme flexibility in order to add new features. It can also

be coupled to other software or import data from a third software. YADE also directly

incorporates Lattice Geometrical Models (LGM) and FEM, making it a complete

software. A parallel version using shared memory (OpenMP) of the software was

released in 2013 and consisted of a brute force parallelization of loops in addition to a

parallel collision module. It presents a speedup of 12 on 20 threads for a simulation

of one million particles (DEM8 open-source presentation). In 2018, a distributed

memory (OpenMPI) working alpha version was released with no substantial change

to the existing code. The MPI parallelization of the code is divided between Python

and C++ as follows: 90% of Python parallelization with mpi4py and 10% of C++

using OpenMPI. An ETA "beta" was released in 2019. Unlike XDEM, YADE does not

offer additional thermodynamics properties for particles with a conversion module.

It, therefore, offers less possibility of simulating complex and complete DEM cases

such as a fluidized bed.

MERCURYDPM is a scientific software for discrete particle simulations. It is a

very adaptable, object-oriented C++ and Fortran code working on Linux distributions,

Mac OS, and Windows 10 and released under the BSD 3-clause license (Weinhart et al.,

2020). It was initially designed for granular chute flow but can now be used for more

granular problems, including geophysical modeling of cinder cone creation (Weinhart

et al., 2020). MERCURYDPM supports polydiverse particles, curved walls, and

coarse-graining analysis for extracting continuum fields as density, momentum, and

stress. Many contact force models are implemented, including elastic or dissipative

normal forces and tangential friction. Flat or polyhedral walls are modeled, as well

as fixed-particle walls. The code support parallel processing through a distributed

approach using MPI. The domain decomposition is classical and Cartesian, where

the subdomains have equal size and are associated with an MPI process. It does,

therefore, not support complex domain decomposition, unlike XDEM. The code is

claimed to have 40% speedup with hyper-threading and above 60% speedup without

a rotating drum with varying width.

14 Chapter 1. Introduction

ROCKY DEM (Granular Dynamics International and Software, 2020) is commer-

cial and industry-oriented software developed by ESSS and is claimed by authors to

be one of the complete DEM software available on the market. It simulates the flow

behavior of bulk and granular materials with complex shapes and size distributions

(polydiverse particles). It supports 3D shapes, 2D shells, and fibers that are flexible or

rigid. The main feature that distinguishes the ROCKY DEM software is its support

of breakage models to mimic the breakage behavior of particle shape. It also fully

integrates the ANSYS package for CFD. The code can be executed mainly on GPU

but also CPU. Since release 4 of Rocky, the software allows execution with multiple

GPUs through MPI. ROCKY DEM can therefore run on many GPU cards.

EDEM (“2.4 Theory Reference Guide, 2011”) is also a commercial software

developed by DEM-Solutions. It is aimed to simulate and analyze the behavior of

bulk materials such as coal, mined ores, soil, tablet, and powders. It supports a large

range of complex shapes and thousands of pre-calibrated material models for rocks

and ores. The EDEM software can be coupled with Finite Element Analysis (FEA),

Multi-body Dynamics (MBD), and Computational Fluid Dynamics (CFD). EDEM

is parallelized for both shared and distributed memory and offers the way to target

CPU and GPU architectures. It also supports multi-GPU capacity through MPI.

Finally, BLAZE DEM (Govender, Wilke, and Kok, 2016) is A GPU Based Poly-

hedral DEM particle transport code and specifically targeted for NVIDIA GPU plat-

forms.

In Tab. 1.1, we compare the DEM software mentioned above according to five

criteria: license, target node, parallelization approach, programming language, and coupling

capabilities.

Without going into individual comparisons, all the above software tools were

mainly developed with a particular purpose in mind. As such, all of them are useful

tools that serve very well in their field of applicability. However, there are no universal

tools that could be used for everything. For this reason, each of these platforms is

briefly presented, focusing mainly on three main criteria: the parallelization strategies

used such as distributed or shared memory (MPI, OpenMP), the targeted architecture

1.4. Motivation and Objectives 15

DEM software specifications
Software License Target node Parallel approach Language CFD coupling

LIGGGHTS Open Source CPU MPI C++ YES
YADE Open source CPU MPI C++ YES

MERCURYDPM Open source CPU MPI/OpenMP C++ NO
ROCKYDEM Commercial GPU/CPU Cuda/MPI Cuda C++ YES

EDEM Commercial GPU/CPU Cuda/MPI Cuda C++ YES
BLAZEGPU Open source GPU Cuda MPI Cuda C++ NO

XDEM Commercial CPU MPI C++ YES

TABLE 1.1: Table to compare DEM software specifications.

(CPU or GPU), and some scalability or speedup information when it is available

(speedups are challenging to interpret because it is very test case dependent).

1.4 Motivation and Objectives

The main objective of this doctoral research is to run large scale systems with the

XDEM software on HPC platforms. The first motivation behind this research is to

understand the behavior, limitations, and bottlenecks (communications overhead,

load balance, scalability limits) of the XDEM software by performing a complete

profile of the code. The second objective is to develop and apply several HPC tech-

niques, algorithms, and parallelization methods to overcome the software limitations.

The final objective is to be able to use XDEM to perform highly scalable simulations

of applications such are Blastfurnace for iron making simulation, Biomass combustion

for green energy production, and particle flow (Avalanche, landslides. To achieve this

goal, it is fundamental to adopt computing and memory-efficient implementation

techniques combined with different parallelization taxonomies with the use of HPC

resources.

1.5 Contributions

The main benefits and contributions of the current thesis are summarized as follows:

• A complete review and development of collision detection algorithms and their

implementation in a shared memory approach. A C++ framework has been

16 Chapter 1. Introduction

developed to implement, study and compare most popular collision detection

algorithms. The best approaches were implemented within the XDEM software.

• An original Verlet list implementation for DEM that takes the particle flow

regime into account when selecting the skin margin to further enhance the

efficiency of the algorithm is presented with performance comparison. An

optimization study has been conducted to determine which optimum skin

margin gives the best computing performance depending on particle local flow

regime parameters. Therefore, a polynomial function expressing the optimum

skin margin as a function of the simulation parameters was proposed.

• A full OpenMP parallelization layer has been added to the XDEM software.

The implementation enables the possibility of running hybrid MPI/OpenMP

simulations taking advantages of modern supercomputer NUMA architecture.

• Development of an entire large scale biomass combustion case. The application

is an XDEM-OpenFOAM (DEM-CFD) coupling approach, with thousands of

particles interacting with the surrounding gas phase.

1.6 Structure of the thesis

The current thesis is partially a collection of published and submitted scientific papers

to peer-reviewed conferences and journals. The different papers give an overview of

the optimization process of a large, complex, and legacy software such as the XDEM

software.

The third chapter’s content is an extended version of an article published in the

2017 Particles conference and is intended to be published in a journal as an extended

version. The fourth chapter is a journal article currently under review and submitted

to the Advances in Engineering Software. The fifth chapter has been presented in the

10th IEEE Workshop Parallel/Distributed Combinatorics and Optimization (PDCO

2020) and published in the IEEE International Parallel and Distributed Processing

Symposium (IPDPS2020). The eighth chapter has been published at the 12th Euro-

pean Conference on Industrial Furnaces and Boilers (INFUB12). The sixth chapter is

1.6. Structure of the thesis 17

an article presented in the 9th Workshop on Applications for Multi-Core Architectures

(WAMCA) and published in the 30th International Symposium on Computer Archi-

tecture and High-Performance Computing (SBAC-PAD). The remaining chapters will

be presented in paper format and are intended for publication.

Chapter 2 describes in-depth the process of profiling a software code to find

bottlenecks. Different approaches are presented with a different tool to perform the

profiling alongside performance metrics. The hotspots and memory footprint of the

XDEM software are analyzed and presented, and the chapter outcomes’ are used as

steps to follow throughout the thesis.

The third chapter 3 is a consequence of the second chapter where the contact

detection broad-phase has been identified as a hotspot. Therefore, it presents a general

review of the broad-phase algorithms found in the literature and the implementation

of a few of them in a framework for comparative benchmarking. An OpenMP parallel

version of most of the algorithms is also proposed and their implementation and

integration in the XDEM software.

Chapter 4 introduces a new Verlet list approach called the Local Verlet buffer

approach. The method extends the classical Verlet list by taking into account the

local flow regimes of each particle for the choice of the optimum skin margin. The

method has been tested and compared against the classical Verlet list and different

approaches (skin values) to assess its performance over the classical approach.

The fifth chapter 5 studies the different parameters that influence the optimum

skin margin in the local Verlet buffer method. For this purpose, an optimization

problem that required hundreds of simulations is solved using the DAKOTA software.

In chapter 6, we present the OpenMP implementation of the XDEM software in

order to target the different high-performance computers. The different obstacles and

challenges of parallelizing an existing and legacy code are presented with different

solutions on algorithms and data structures. A performance test on hundreds of cores

has also been conducted, and the results are analyzed through the scalability and

speed up performance.

18 Chapter 1. Introduction

Chapter 7 focus on studying the XDEM parallel performance using two test

cases: dam-break and biomass. We first compared the 03/2017 and 10/2020 XDEM

versions to highlight the gains brought by our optimizations. We then study the

dam-break test case’s performance by running parallel simulations on 85 nodes on the

HPC cluster. The scalability, speed up, and load imbalance are the different methods

used to perform the parallel performance study in this chapter.

The eighth chapter 8 presents an application test case: a full and extensive

scale biomass combustion process. It demonstrates the new capabilities of the XDEM

software to run large scale, parallel, and coupled DEM-CFD simulations with millions

of particles in a very reasonable time and computing resources.

19

Part I

Methodology

21

Chapter 2

PERFORMANCE ASSESSMENTS

“Measurements is the first step that leads to control and eventually to improvement.”

H. James Harrington

“The First Rule of Program Optimization: Don’t do it. The Second Rule of Program Opti-

mization (for experts only!): Don’t do it yet.”

Michael A. Jackson

“We should forget about small efficiencies, say about 97% of the time: premature optimization

is the root of all evil. Yet we should not pass up our opportunities in that critical 3%”

Donald Knuth

22 Chapter 2. Performance assessments

2.1 Introduction

Measuring the performance and the efficiency of a computer program during or

after software development is a path that any developer should follow. More often

than not, especially in the research community, numerous software properties such

as correctness, functionality, reliability, robustness, or portability are more valuable

than performance. The latter statement is reinforced by the increase in the power of

modern computing resources. As stated by Moore’s law (Moore, 1965), the number

of transistors inside a single chip has been doubling almost every two years since the

70s though the cost of computers is halved. Moore’s law also resulted in the doubling

of the processor frequency with that of transistors. It means that every two years,

the new generation of CPUs is twice faster than the previous generation and costs

half as much. From this perspective, programmers can only wait two years for new

generation processors to run their programs twice faster than before without doing

anything more (Sutter, 2005).

Nevertheless, Moore’s law is an empirical and observational law that has to

come to an end (Schaller, 1997). Some say it has already been happening, or we are no

longer at the same rate. “It is over. This year that became clear,” says Charles Leiserson

in 2019. Since 2005, although the number of transistors per processor has continued to

increase at the rate predicted by Moore’s law, we have experienced a decrease of the

processor frequency, as shown in Fig. 2.1. Indeed, although single-core CPUs became

more and more complex, that complexity is not translated into more performance, but

rather, it turns into the failure of most programs to take advantage of this complexity.

It also raised another difficulty to processor vendors: the power density (W/cm2)

inside a chip is increased by approximately 25 ∼ 30% per year (Gelsinger, 2004)

generating an overheating problem inside chips. Overheating inside processors has

become a serious concern, and the cooling systems are becoming more and more

expensive.

One solution brought by the industry to overcome the issue of power dissipation

is to make processors with many cores: multi-core processors. It has brought in new

programming paradigms, multi-threaded programs, which come at an overhead price

2.2. Baseline 23

FIGURE 2.1: CPU transistor densities, clock speeds power and perfor-
mance from 1970-2015 (Stewart and Lampl, 2017).

cost, and since programmers have to pay attention to the design and behavior of their

code to get the most performance out of the CPUs. Multi-core processors come with

complex memory design and hierarchy shared by the cores, and it has become difficult

to understand how to take full benefit from such structure. It is, in summary, how

performance becomes nowadays a widely used property for software requirements.

However, what is performance, and what makes a program performant? How do we

measure and analyze the performance of a computer program?

Sections 2.3 and 2.4 introduce two common methods for assessing a computer

program performance and applied to our XDEM software. The results are discussed

in section 2.6 and gave the path to follow during this research work.

2.2 Baseline

It is essential to have a starting point for the measure when carrying out a given

program’s performance tests. The starting point is usually the program’s perfor-

mance results at a given state of the period before making modifications or applying

whatever optimization. It is then used as a reference state for upcoming performance

24 Chapter 2. Performance assessments

tests. In this section, we will define our baseline code used later on to compare with

all optimizations we have made during the research. We will also introduce the

metrics we have used to characterize our performance results and what makes them

an excellent metric to measure a specific performance count. Finally, we present

the real-life test case used to assess the progress achieved with all our optimizations

improvements.

2.2.1 XDEM version

XDEM as introduced in section 1.1.4 of chapter 1 is a C++ legacy software that

has been developed inside the LuxDEM team for more than fifteen years. Several

researchers/developers are continuously working and using it in a continuous inte-

gration manner. Therefore, it was necessary to define a baseline version to be used as

a starting point for any optimization and comparison.

As we started the doctoral research on 1st of March 2017, it was then obvious to

take an XDEM version from March 2017 (git hash: 18a22cbfdadf7fe2afd8bbc9ba02744d75b775d0).

It is a straightforward and perfect choice to begin with as a significant update on

the partitioner has been made at the beginning of the year, and no other extensive

updates were expected in the following months. The results presented in section 2.6

has been collected using the baseline XDEM version.

2.2.2 Metrics of performance

Measuring a computer program’s performance involves measuring a metric that can

be a count of occurring events, a period, or an amount of a defined parameter. How-

ever, it is usually convenient and interesting to normalize event counts to a common

time basis to provide a speed metric such as instructions or operations executed per

second. This metric is called a rate metric or throughput and is calculated by dividing

the number of events that occurred in a given interval by the time interval over which

the events occurred (Lilja, 2005). Since a rate metric is normalized to a common time

basis, such as seconds, it is useful for comparing different measurements made over

different time intervals (Lilja, 2005).

2.2. Baseline 25

2.2.2.1 Characteristics of performance metrics

The choice of the metric only depends on the needs and the cost of measuring that

metric. However, metrics need to fulfill some characteristics to be considered good

metrics (Lilja, 2005).

• A good metric is certainly consistent, meaning that its units and definition

remain the same across different systems.

• A metric is reliable when system or configuration A always gives better perfor-

mance metrics than system or configuration B. The comparison outcome should

always give the same result no matter how many times the test is executed.

• A performance metric should also be repeatable by having the same value

measured every time the same test is executed.

• The last property but not least, that a useful performance metric should have

is the easiness of its measurement. The easiest a metric is to be measured, the

better chance it has to be correctly measured, and there is nothing worse than a

lousy metric that is incorrectly measured. It should be noted that most of the

widely used performance metrics do not satisfy altogether the characteristics

mentioned in this section.

2.2.2.2 Type of performance metrics

Most of the performance metrics we have been using are processor-related metrics.

The MFLOPS performance metric count the number of operations that has been

performed by/in a computer program when being executed (Smith, 1988). It is

a throughput or arithmetic operation rate defined as the millions of floating-point

operations executed per second giving by the formula MFLOPS = fn
Tn×106 where fn is

the count of floating-point operations executed in Tn seconds. This metric does have

a good fit with a DEM application that performs a substantial amount of floating-

point operations. However, it does certainly not consider any part of the program

that does not perform floating-point operations but does affect the performance.

The MFLOPS performance metric may differ from different systems (they may not

26 Chapter 2. Performance assessments

perform the same floating-point operations) and is therefore considered as unreliable

and inconsistent.

The MBytes memory bandwith is a memory performance metric that expressed

the rate at which data is read and stored to and from caches and the main memory. It

is a throughput or memory rate defined as the millions of bytes read/stored per second

giving by the formula MBytes = Bn
Tn×106 where Bn is the count of bytes memory read

or stored in Tn seconds. It is a handy metric to detect whether a computer program’s

performances are bounded by the memory accesses (it is usually the case rather than

bounded by computation).

The execution time is one of the most commonly used performance metrics

as programmers are mostly interested in how fast a program can be executed on a

system (Stewart, 2001). Version B of a computer program performs better than its

version A if version B execution time is lesser than A’s. It is essential to be aware of

the precision and accuracy of the time measurement method and to distinguish the

difference between wall clock time (including system execution overhead as the time

waiting for memory to be un/loaded) and the CPU time, which does not incorporate

the time the program is context switched out while running other applications. The

execution time can considerably fluctuate between different runs due to random

events such as the operating system tasks and the cache mappings, and it is a non-

deterministic metric. Nonetheless, the execution time is reliable, repeatable, easy to

measure, consistent, natural and fulfill all the characteristics listed in section 2.2.2.1

and can thus be considered as a good metric.

The speedup is a normalized performance metric that can be derived from exe-

cution time. The speedup measures the relative performances between two systems

or different versions of the same computer program. It is usually used to show the

improvement in speed of execution for a parallel program but can be used more gen-

erally to illustrate the performance effect between two systems or program versions

after optimization or update (Sun and Gustafson, 1991). Considering program A

and program B, the speedup of program B with respect to program A is defined as

SB−>A = TB
TA

, where TA and TB are respectively the global execution time for program

A and program B. Thus, if SB−A is greater than 1, then program B is SB−>A faster

2.3. Profiling 27

than program A, if not, program B is 1
SB−>A

slower than program A.

2.2.3 Real test case

Three different test cases have been used to assess and conduct our performance study.

They have been chosen to cover many aspects: large scale, application, dynamic,

conversion, coupling, and industry use. The cases are:

1. Biomass furnace. The test case simulates the behavior of a combustion

chamber of a 16 MW geothermal steam super-heater. It is a coupling XDEM-

OPENFOAM case where particles are treated as discrete elements coupled

by heat, mass, and momentum transfer to the surrounding gas continuous

phase. The particles are taken into consideration via XDEM (Dynamic and

conversion modules are active), while the gaseous phase is described by

Computational Fluid Dynamics (CFD) with OPENFOAM. The case is used in

section 7.2 as a baseline case to compare the performance gains between the

03/2017 and 10/2020 XDEM versions.

2. Dam-break. The Dam break is a famous case for two-phase flow simulations.

The entire case comprises 2.35 million particles interacting with the column

water in an XDEM-CFD coupling approach. It uses a multi-scale DEM-VOF

method that adopts a dual-grid multi-scale approach with a coarse grid that

performs the coupling between CFD and DEM code at a bulk scale, while

a finer and non-uniform grid is adopted to discretize the CFD equations.

The case is used in section 7.3 to study the XDEM-OPENFOAM coupling

performance in a large scale simulation.

2.3 Profiling

As discussed in the introduction section 2.1, we need to use an accurate technique and

procedure to measure and quantify the performance of a computer program. Profiling

is a complex software analysis that measures memory utilization, the use of explicit

instructions, and the frequency and length of function calls during program execution.

28 Chapter 2. Performance assessments

It is necessary to identify computational bottlenecks, and it helps developers focus

their optimization efforts on the program’s bottlenecks by spotting the critical sections

of code.

There exist many PROFILERS that can help to identify performance bottlenecks.

We have been using many of them, such as SCALASCA, ARM MAP, INTEL VTUNE,

PERF, VALGRIND, GOOGLE GPERFTOOLS, PAPI, and LIKWID because they sometimes

offer different performance aspects. Performance profilers can be classified into

two main categories: tracing and sampling profilers. Some, as SCALASCA, are

instrumenting profilers that are code or executable intrusive, which require modifying

the source code and the compilation process. The majority of the remaining profilers

are sampling profilers that let applications run without any run-time modifications,

and the order of execution is not affected, and all the profiling work is done outside

the application’s process.

In the end, they all answer the question "How often is any method called in my

code?" and "How much time does each method take?" It is then easier to identify

which methods are on the top of the list in CPU or/and memory usages and then

find a way to improve them. We have constantly used MAP and INTEL VTUNE in the

pursuit of everyday improvement because what makes a difference is a continuous

improvement over time.

2.3.1 Tracing profilers

A tracing or event-based profiler tracks and collects data from a set of predefined

events during the program’s execution. The events can be defined as entering or

leaving a function, process communication, memory allocation for an object, or

throwing an exception (Wadleigh and Crawford, 2000). They are usually trace-based,

meaning that the compiler keeps track of the collected data based on events.

It is recommended to use event-based profilers when it is crucial to track specifics

events. For example, one may want to track all the return statements occurring

in a program. They are, therefore, instrumental in profoundly understanding the

performance issue. However, the set of events to be tracked can be large, and so

2.3. Profiling 29

will be the generated output data (Doglio, 2015). They can also have a considerable

overhead (100− 1000%) that slows down the program’s execution.

SCALASCA, EXTRAE and VALGRIND in a certain way are tracing profilers. They

provide accurate call stacks, functions call (except inline functions), and the number

of calls but require more time to run. A VALGRIND profiling can be 10 times slower

than the normal simulation time, and EXTRAE can generate hundreds of gigabytes of

trace files.

2.3.2 Statistical profilers

A statistical or sampling profiler tracks and collects data by probing the program’s call

stack at regular intervals using the operating system interrupts. At each interruption,

the profiler determines which function is currently being executed (by using the

program stack) and increases the sample count for that function (An introduction to

profiling mechanisms and Linux profilers). The output generated by the profilers is a

collection of functions and the number of times they were found being executed

during the execution of the program. Each function’s execution time can then be

approximated by multiplying the number of occurrences by the interruption time

period.

The sampling method has the advantage of having very little overhead (5− 15%)

compared to tracing profilers and produces fewer data to analyze. It allows the

program to be executed at almost the usual execution time. It is recommended to use

sampling profilers at first to get a glimpse overview of the program execution and

detect the hotspots. In return, it gives less accuracy in the output information as it

uses statistical approximation (Mytkowicz et al., 2010).

ARM MAP, INTEL VTUNE, PERF, GPERFTOOLS and LIKWID are sampling profiling

tools that also support the code instrumentation. They have a low memory footprint,

small trace files, and do not change the application time. The call stacks and the

function calls are inaccurate, as not all of them are captured (depend on the sampling

period).

30 Chapter 2. Performance assessments

2.4 Benchmarking

To solve a given problem, we are sometimes faced with different algorithms and

implementations as a solution. For example, there are more than fifty algorithms for

solving collisions’ detection in a DEM simulation. We may also use different data

structures to implement those algorithms on different computer systems. Therefore, a

given problem must compare the performances (using performance metrics) of some

of the available methods to make a suitable choice.

Benchmarking the performance of different methods or different computer

systems is the procedure that consists of comparing their performance against a

standard method or computer system using a range of performance metrics and

evaluation criteria. It is defined to be the “systemic measurement of some aspect of a

computer system’s performance” (Berry, Cybenko, and Larson, 1991).

2.4.1 Macro and micro benchmarks

In our current work, we have been conducting two kinds of benchmarking: micro

and macro benchmarks. A micro benchmark aimed to focus on the performance of a

particular and specific computer program section. As it is introduced in chapter 3,

we developed a benchmark on the broad-phase (see Fig. 3.3) of the collision detection

process of the XDEM software. It is a neutral benchmark as it only compares existing

algorithms with enhanced implementations. In a general manner, we benchmark

the hotspots functions detected during profiling and presented in section 2.6.1. The

goal is to assess the following statement: “This particular implementation of this function

benchmark of a given size on this given computing node executes in this particular time using

the compiler with this level of optimization.” (Hockney, 1996).

A macro benchmark, on the other hand, tests the performance of the whole

application or system. In chapter 7, we present a macro benchmark of XDEM applied

to a real test case. We compared the performance of two versions or states of XDEM:

the baseline version (03/2017) presented in section 2.2.1 and the very last version

(10/2020) defined as the version having all the optimizations.

2.5. Performance models 31

2.4.2 Evaluation criteria

Comparing methods in a benchmark is based on at least one performance metric (We-

ber et al., 2019). The latter requires at least one of the characteristics detailed in

section 2.2.2.1 to make it a good performance metrics. Unfortunately, measuring such

metrics leads to uncertainties that are considered as errors or noise. There are many

sources of errors introduced during measurements, such as precision and accuracy, or

errors due to experimental mistakes. They are classified into two categories: systemic

(experimental) and random errors. It is, therefore, important to understand and take

them into account before drawing any conclusion. Even though it is almost impossi-

ble to quantify the systemic errors since it is a function of bias, it is essential to use a

model for random errors (Gaussian) to quantify the precision and the repeatability of

the measurements.

2.5 Performance models

The performance model generates knowledge about software-hardware interaction.

Its main purpose is to come up with a quantitative estimate for expected performance.

Without an expected performance estimate, it is impossible to decide on performance

optimizations as there is no clear knowledge of what aspect of software/hardware

interaction limits the performance and what could be the optimal performance. You

formulate a model to estimate expected performance and compare this to applica-

tion benchmarking. Additionally, performance profiling may be used to validate

model predictions. In case the validation fails, either the profiling or performance

measurement is wrong, the model assumptions are not met, or the model inputs are

wrong.

2.5.1 Roofline model

It is important to consider the computer system architecture when evaluating the

performance of a computer program. As it can perform differently depending on

the architectural characteristics. Therefore, there is a need for programmers to have

32 Chapter 2. Performance assessments

a performance model that helps them understand which performance they can

expect from a given architecture. Statistical and stochastic models are available

models (Tikir et al., 2007; Boyd et al., 1994) that can be used to precisely foresee a

program performance on multi-core architectures. However, these models do not

provide any understanding of the reasons for an underperforming program.

The roofline model is a visual performance model used to provide perceptive

performance evaluations of a given compute kernel (Williams, 2009). It gives an

insightful and visual representation of the program’s intrinsic bounds and possible

optimizations on multi-core CPU or GPU architectures. The roofline model is unique

to each architecture and integrates in-core performance, memory bandwidth, and

locality into a single, easy-to-understand performance figure.

The roofline model uses the operational intensity to measure the traffic between

the caches and the DRAM to include memory optimizations into the model’s bound

and bottleneck. It is defined as the ratio of the Work to the memory traffic Q and

express the number of operations per byte of memory traffic:

I =
W
Q

(2.1)

, where W is the work defined as the number of operations performed by the compute

node and Q, denotes the number of bytes of memory transferred by the compute node

during an execution. The operation defined in the model can be one of the metrics

introduced in section 2.2.2 or any operation, such as the number of integer or floating-

point operations. The roofline model can capture other performance ceilings other

than simple peak bandwidth and performance, such as instruction level parallelism

(ILP), single instruction multiple data (SIMD) and Balance floating-point operation mix

peaks that give hints for the programmer on which optimization to focus on.

The Fig. 2.2 is a roofline graphic representation of the brute force algorithm used

in collision detection. The x-axis shows the arithmetic or operational intensity mea-

sured in the number of floating-point operations (FLOPs) or/and integer operations

(INTOPs) per byte, and y-axis shows performance measured in billions of floating-

point operations per second (GFLOPS) or/and billions of integer operations per

2.5. Performance models 33

second (GINTOPS). The diagonal chart lines indicate memory bandwidth limitations

preventing loops/functions from achieving better performance without some form

of optimization. The L1 diagonal chart line indicates the L1’s bandwidth maximum

amount of work that can get done at a given arithmetic intensity if it always hit the L1

cache. The horizontal chart lines indicate the compute capacity limitations preventing

loops/functions from achieving better performance without optimizing. The Scalar

Add Peak represents the peak number of addition instructions that can be performed

by the scalar loop under these circumstances. The Vector Add Peak represents the peak

number of addition instructions that can be performed by the vectorized loop under

these circumstances.

FIGURE 2.2: The roofline model for the naive brute force algorithm
in collision detection. The roofline was generated using the Intel

advisor tool.

From Fig. 2.2, we can state that our brute force approach is a memory-bound

algorithm as the red dot is positioned below the DRAM diagonal chart line. It

indicates that our program misses too much often the cache lines when fetching data.

It can be expected as the objects are stored without any particular order, which favors

a lot of memory jump. A possible solution to improve the algorithm’s performance is

34 Chapter 2. Performance assessments

to apply a space-filling curve approach to store the objects based on their position in

the space. Objects spatially close to each other should be stored close to each other in

the memory. The red dot is also positioned below the DP Vector Add Peak but above

the Scalar Add peak horizontal line, indicating that the loops are vectorized but bound

by the DRAM memory accesses.

2.5.2 Execution-Cache-Memory

The ECM (Execution-Cache-Memory) performance model is a resource-based analytic

performance model. It can predict the runtime of serial straight-line code (usually an

innermost loop body) on a specific processor chip. Runtime predictions are based on

maximum throughput assumptions for instruction execution and data transfers, but

refinements can be added. The model, in its simplest form, can be set up with pen

and paper.

The model decomposes the overall runtime into several contributions, which are

then put together according to a machine model. A processor cycle is the only time

unit used. All runtime contributions are provided for several instructions required to

process a certain number of (source) loop iterations; we typically choose one cache

line length (e.g., eight iterations for a double-precision code), which makes sense

because the smallest unit of data that can be transferred between memory hierarchy

levels is a cache line. For simple calculations, bandwidths and performance are

consistently specified in “cycles per cache line.” However, this choice is essentially

arbitrary, and one could just as well use “cycles per iteration.” Unless otherwise

specified, an “iteration” is one iteration in the high-level code.

2.5.2.1 In-core model

The primary resource provided by a CPU core is instruction execution. Since in-

structions can only be executed when their operands are available, the ECM model’s

in-core part assumes that all data resides in the innermost cache. It further assumes

out-of-order scheduling and speculative execution to work correctly so that all the

2.5. Performance models 35

instruction-level parallelism available in the code can be provided by the hardware,

resources permitting (on a given microarchitecture) (Stengel et al., 2015).

In practice, the first step is to ignore all influences preventing maximum instruc-

tion throughput, such as:

• Out-of-order limitations

• Instruction fetch issues

• Instruction decoding issues

• Complex register dependency chains

2.5.2.2 Data transfer model

Data transfers are a secondary resource required by code execution. Modeling data

transfers starts with analyzing the data volume transferred over the various data

paths in the memory hierarchy. Some knowledge about the CPU architecture is

required for this in order to know what path cache lines take to get from their initial

location into L1 cache and back. It is assumed that latencies can be perfectly hidden

by prefetching, so all transfers are bandwidth limited. Additional data transfers from

cache conflicts are neglected (it is still possible to extend the model to account for

additional transfers). With known (or measured) maximum bandwidths, the data

transfer analysis results in additional runtime contributions from every data path 2.3.

How to put together these contributions and with the in-core execution time is part

of the machine model. The two extreme cases are:

• Full overlap: The predicted execution time is the maximum of all contributions.

• No overlap: The predicted execution time is the sum of all contributions

There is a large gray zone in between these extremes. On most modern Intel

Xeon CPUs, data transfer times must be added up, and everything that pertains

to “work” (i.e., arithmetic, loop mechanics, etc.) overlaps with data transfers. It

yields the most accurate predictions on these CPUs, but other architectures behave

differently.

36 Chapter 2. Performance assessments

FIGURE 2.3: Schönauer vector triad (left column = bandwidth of data
path, black arrow = cache line transfer, red arrow = write- allocate

cache line transfer) (Erlangen Regional Computing Center, 2019)

2.6 Application

In this section we evaluate the performance of our baseline version (03/2017) defined

in section 2.2 by profiling the reference test case presented in section 2.2.3. Our

preeminent objective is to identify the parts of the code that need to be optimized and

redesigned by improving the algorithms, using the appropriate data structures and

parallelization techniques.

2.6.1 Hotspots analysis

The hotspots analysis provides a deep understanding of an application flow and

identifies the functions where the code is mostly executed: bottlenecks. We used

available profiling tools evoked in section 2.3 to generate a sampling profile as at

this stage, we are only interested in quantifying how fast is the XDEM program.

The results in tab 2.1 presents the seventh most time consuming functions and was

gathered using INTEL VTUNE’s user-mode sampling method on an INTEL XEON CPU

2.6. Application 37

at 3.40GHZ. The execution time were collected running with a pure dynamic XDEM

optimized version compiled with debug info −g and the −O3 level optimization in

sequential.

TABLE 2.1: Hotspots in XDEM using INTEL VTUNE.

Index % Total Self (s) Children (s) Function name Parent index

1 99.66 0.0 835.032 Run_simulation 1
2 91.50 0.0 773.460 Collision_detection 1
3 30.33 2.64 392.671 Interaction_models 2
4 27.36 0.77 168.773 Narrow_phase 2
5 15.44 5.69 186.354 Broad_phase 2
6 14.23 4.75 71.865 Reset_pair_interaction_list 2
7 13.97 0.19 154.509 Save_interactions_history 3

The first column shows the function’s index, and the second column shows the

proportion of the CPU run time of each function to the total CPU run time of the

entire simulation. It is fair to say that most of the time (∼ 92%) is spent in the particle

interactions process. It is no surprise as we were running a pure dynamic version

with particle-particle and particle-wall interactions.

The third column shows the running time of the function executing itself, and

we can see that most of the functions spend very little time doing so. Furthermore,

the reason is clarified in CPU Time:Children column, which indicates the time spent

by the function requesting others’ functions. The function Collision_detection does not

perform any computation but rather calls other functions that themselves mostly call

some core functions not displayed in tab 2.1.

The last column Parent index specifies the caller and callee relationships be-

tween functions. Among the callee functions of Collision_detection, three of them

appears to be the most time-consuming and are executed in the code in this order

Broad_phase→ Narrow_phase→ Interaction_models. They are closely tied as the first

step of detecting collisions in a DEM simulation is the broad-phase, which finds out the

closest pairs of particles that are possibly in contact. The Narrow_phase, on the other

hand, returns the pairs of particles that actually are in contact using the previous

phase results. The Interaction_models applies all the defined models between pair of

particles as the contact, attraction, impact, bond, and rolling models defining how

38 Chapter 2. Performance assessments

the particles behave when in contact with each other or the walls. Actually, this

function may not be the most time-consuming since it is not necessary to have all the

interaction models defined; most of the time, only the impact and contact models are

defined. Those three DEM procedures are explained in more detail in chapter 3.

A dynamic call-graph, as represented in Fig. 2.4, is a profiling graph (tree view)

that visualizes the calling relationships between the functions during the execution of

a computer program. In Fig. 2.4, each node represents a function of XDEM and each

edge between any node A and B indicates a caller and callee relationships. Surely

not all function relationships are shown in the call-graph but only the most important

one that provides hints on where and what to look at.

FIGURE 2.4: Call-graph profile of XDEM. The redder the node is, the
more computational time it consumes

In the Fig. 2.4, the redder the node is, the more computational time it consumes.

We can then identify a hot path connecting the redder nodes going from top to

down the tree. As a result, we can spot what is probably an abusive use of map’s

insert function or even more as an improper usage of C++ map data structure in

Save_interactions_history function. The program also spent 10% of the running time

2.6. Application 39

dynamically allocating memory in the heap with the C++ new operator. It overall

indicates the reason why the Interaction_models function is time-consuming is mostly

an implementation and memory issues.

We are aware of the limits of such a call-graph approach on a complex program

alike XDEM that uses dynamic method binding (Spivey, 2004). In dynamic binding,

the compiler is not able to resolve the call at compile-time, and the binding is known

at run-time such that the profiler is unable to capture the call.

2.6.2 Memory footprint analysis

As we have spotted in the previous section 2.6.1, memory management can be a major

issue in computer program performance. Usually, a hotspots or call-graph are not

suitable for detecting bad memory usage or management and is therefore necessary

to profile the memory itself using a memory profiler.

2.6.2.1 Heap and stack profiling

We have been using valgring and massif tools to measure how much heap memory

the XDEM program uses. It provides information about heap blocks and stack sizes,

which are very useful to track memory usage or leaks (when memory is allocated but

not used).

FIGURE 2.5: Heap profile of XDEM generated by valgrind’s massif
tool.

40 Chapter 2. Performance assessments

Fig. 2.5 shows the different memory allocations in the heap during an XDEM

simulation using our baseline. Part of the graph’s fluctuations is due to the sampling

period where valgrind collects the data and finds out which functions call the mem-

ory allocator. The other reason is that the XDEM application allocates and releases

memory at each iteration, calling the memory allocator very often. We back-traced

the allocation/deallocation process to the function, which updates the interaction

history list (it is used for some integration model) after every iteration: the previous

interaction history list is freed, and a new one is created.

Fig. 2.5 shows how our baseline case allocates memory in the heap at the peak

of 93MiB after initialization. It is by any means, not an excessive use of the heap.

However, what is surprising in this figure is that the application allocates three

times the same size, 16.5MiB of memory, and it appears from the timeline that the

latter two are copies of the primary allocation. The first allocation was backtraced

to initialization, where a time table that governs the grate motion is loaded from the

input file. The two copies were made in functions using the time table data without

passing it by reference.

The tab. 2.2 presents the memory call-graph at the end of an XDEM simulation

and shows the functions that load the timetable for boundaries motion. The useful-

heap is defined as the memory that is allocated for the time table and, the extra-heap

is defined as the memory allocated for the book-keeping.

Percent (%) time (ms) total (B) useful-heap (B) extra-heap (B) Function

56, 32% 424, 631 52, 385, 992 51, 304, 4932 1, 081, 499 read_vec3D_tables_from_file

TABLE 2.2: Time table memory allocation details.

The storage of the time table data with the two extra-copies that were made

represents more than 55% of the total memory allocated in the heap. Preventing the

extra-copies decreases the time table memory footprint to almost 20%.

2.6. Application 41

2.6.2.2 Memory leaks detection and cache profiling

One of the most challenging bugs to detect and that can cause serious performance

issues is memory leaks. It happens when a program allocates memory and does not

release it when it is no longer needed or can not access it. It has consequences of

slowing down the running program by reducing the amount of available memory

and eventually leading to the program crash when no more memory is accessible. A

full memory leak check with valgrind tool confirmed as in section 2.6.2.1 that there

no such leaks in XDEM program. We have regular daily and nightly memory leak

tests that detect any leak as soon as they are introduced. All memory allocated in the

heap, mostly with the new operator, are released when not needed anymore by the

delete instruction. Using the C++ smart pointers approach is a good practice that

simplifies memory management.

The cache memory is a small and extremely fast memory that acts as a buffer

between the RAM and the CPU. It should be used to store and access frequently used

data and instructions so that the CPU can access them immediately when required.

The more the CPU can access data from the cache memory, the less time it takes for

data to be accessed. A cache performance can be defined in order to be able to assess

the performance of the cache access by characterizing two quantities:

• A cache hit occurred when the CPU reads the requested data directly from the

cache.

• A cache miss occurred when the CPU does not find the requested data in the

cache location and thus copies the data from the main memory to the cache

before processing the data.

The hit ratio defined as the ratio of cache hits to the sum of the number of cache

hits and cache misses is commonly used to measure the cache performance.

In tab 2.3, the first column lists the branch prediction and cache level instruc-

tions, while the second column is the count of missed or mispredicted instructions

during the program execution. The last column is the mispredicted branch and

missed caches rate defined as the instructions count ratio to the missed count. Two

42 Chapter 2. Performance assessments

types of branches prediction and caches are shown in the table as returned by the

valgrind tool. A conditional branch instruction only branches to a new address if a

specific condition is true while an indirect branch instruction branches to a specified

address. Conditional and indirect branch are not mutually exclusive, a branch can

be conditional and indirect. L1 corresponds to the first 1st cache level and LL to the

last cache level, gathering the second 2nd and third 1rd cache levels (when L2 and L3

are available).

Summary Miss[-] Miss rate[%]

L1 Instructions fetch (l1mr) 10, 719, 727 0.024
L1 Data read (D1mr) 410, 790, 558 0.913
L1 Data write (D1mw) 143, 380, 535 0.318
L1 Miss Sum (L1m = l1mr + D1mr + D1mw) 564, 890, 820 1.255
LL Instructions fetch (lLmr) 550, 563 0.001
LL Data read (DLmr) 74, 892, 997 0.166
LL Data write (DLmw) 66, 163, 592 0.147
LL Miss Sum (LLm = lLmr + DLmr + DLmw) 141, 607, 152 0.314
Conditional Branch (Bcm) 316, 484, 354 0.703
Indirect Branch (Bim) 107, 703, 340 0.240
Sum Branch (Bm = Bcm + Bim) 424, 187, 694 0.942

TABLE 2.3: Cache data access summary.

We can notice from tab 2.3 that there is a significant cache miss sum (∼ 1.3%) that

possibly represents a significant overhead. Our XDEM program is cache and memory-

bounded though it is not uncommon for computer programs because the memory

access is costlier than computation in modern CPUs, and designing a cache-friendly

program is a very tedious job. It is also not surprising since the test case was running

in sequential using only one core on one CPU, and sometimes there is nothing more

we can do with serial code due to usual CPU limitations as pipelining and memory

bandwidth. Parallelization is then very useful to overcome those limitations.

The mispredicted branches in tab 2.3 count every time the CPU predicted the

results of conditional branches, and the predictions have proved to be incorrect.

The misprediction has cycles penalty costs because it stalls the CPU (mispredicted

instructions are discarded, and new correct predicted instructions are loaded in the

execution pipeline). Once identified and when possible, making the branches more

2.7. Summary 43

"predictable" or simply avoiding branches will increase performance.

2.7 Summary

In this chapter, we have presented the process of evaluating XDEM software perfor-

mances. This step is crucial as it states the code’s initial conditions and will serve as a

baseline comparison for the upcoming optimizations.

We presented the profiling results in section 2.6 were the main hotspots of

our XDEM program have been identified. In a pure dynamic simulation, these

hotspots are mainly located in the collision detection processes. Section 2.6 also

introduced a call-graph representation of XDEM which describes the caller and

callee relationships among functions. We have spotted particles’ collision detection

as the most consuming computational time segment for the test case we defined in

section 2.2.3. The process, divided into two phases, the broad and narrow-phases,

represents a combined ∼ 33% of the total running time. Half of the simulation time is

then spent applying the bond, contact, impact, and rolling models. Those parts are

therefore defined as our main priorities for optimization, redesigning, refactoring,

and remodeling. The next chapters will, therefore, focus on optimizing the collision

detection processes.

In the next chapter 3, we reviewed in detail the collision detection process of a

DEM simulation. We presented and compared the different algorithms commonly

used and propose an optimized algorithm that gives the best results for our XDEM

approach. For this purpose, we have developed a benchmark framework to test and

compare the collision algorithms’ performance most often found in the literature.

45

Chapter 3

CONTACT DETECTION IN THE

EXTENDED DISCRETE METHOD

(XDEM)

46 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

3.1 Abstract

Extended Discrete Element Method (XDEM) is a multi-physics approach that extends

the classic Discrete Element Method (DEM) by attaching chemical and thermody-

namic state to the particles. One of the essential and most computation-intensive

parts of XDEM is the interaction/collision detection phase during which objects

in-contact or in close-range are identified. This work evaluates and compares ten

different Broad-Phase Collision Detection algorithms while considering a large DEM

test case. It appears that the choice of the best algorithm is a trade-off between

many criteria, including the size of the search space, the number of particles, and the

memory usage a.

Highlights

• Contact detection in DEM is presented.

• Performance of Broad-phase is investigated in contact detection.

• Broad-phase algorithms comparison.

• Test on a real test case.

aA short version of this chapter was published in AIP Conference Proceedings (Rousset et al., 2018)

3.2. Introduction 47

3.2 Introduction

The Discrete Element Method (DEM) is a Lagrangian approach that models granu-

lar materials by representing every single particle as an independent and distinct

entity. It is used to numerically determine the displacements of a large but finite

number of particles taking particle interactions into account. The eXtended Discrete

Element Method (DEM) is a multi-physics framework that extends the classic DEM

approach by assigning a chemical and thermodynamic state to the representation

of the particle. It is an iterative computation method that simulates the motion of

particles and their chemical/thermodynamic state. DEM also supports coupling with

Computational Fluid Dynamics (CFD) (Mahmoudi et al., 2016c) or Finite Element

Method (FEM) (Michael and Peters, 2013; Michael, Nicot, and Peters, 2013).

The entire system behavior in a DEM simulation results from the respective

interactions between particles. It provides the desired results. The contact or collision

detection is a memory and computation expensive process that is therefore funda-

mental to identity all the collisions between the particles so that the model works

and requires to check the distance between all the particles in the system. For the

sake of optimization and readability, the contact detection process is usually, as in

our XDEM software, subdivided into two parts: the broad and narrow phases. As

shown on Fig. 3.1, within each time-step, the Interaction step is typically divided into

two phases:

• The Broad-Phase interaction process identifies the pairs of particles that might

interact with each other within the whole system. It can lead to a hefty amount

of computation. For that reason, the broad-phase algorithms work on approxi-

mate objects such as bounding boxes to quickly generate an approximate list of

colliding particles. This list includes every pair of colliding objects, but it may

also include pairs of objects whose bounding boxes intersect but are still not

close enough to collide. To account for close-range interactions (e.g., radiation),

the bounding boxes are extended by the value of the predefined interaction

range.

48 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

• The Narrow-Phase will work on an approximate list of colliding particles (re-

turned by the broad-phase) and perform precise calculations according to

particle geometry.

During the Integration step, all interaction resultants (forces, torques, heat flux,

species fractions, etc.) coming from the different particles are accumulated and

integrated to calculate the new state the particle for the next time-step.

Particle A at time t

Particle B at time t

Particle A at time
t+Δt

Particle B at time
t+Δt

Broad phase
find pairs of

particles in close
range

Narrow phase
Collision

detection with
exact shape

Interaction / Collision / Contact Integratio
n

Integration

Timestep from t to t+Δt Timet t+Δt

Force, Torque, Heat flux,
Species fractions, etc.20% of simulation

30% of simulation

FIGURE 3.1: Workflow of an XDEM simulation: the Broad-phase Colli-
sion Detection finds the pairs of particles that may interact with each
other by replacing the particles real shape with bounding volume and
it returns a list. The latter is used in the Narrow-phase Collision Detection

to perform a collision detection with particles real shape.

As spotted in section 2.6.1 of chapter 2, one of the essential and most computation-

intensive part of XDEM is the Broad-Phase phase (the percentage greatly depends on

the test case) during which objects in-contact or in-close-range are identified. Com-

bined with the Narrow-Phase, it takes about 50% of the entire XDEM computational

work. Therefore it is crucial to take a close look at the collision detection process and

make a clear decision of which algorithm or approach to single out.

The current chapter is structured as follows: We first introduce the commonly

used broad-phase algorithms with their specificities, limitations, and advantages

in section 3.4. Secondly, the design of our benchmark framework is presented in

section 3.5. Finally, the results of sequential and parallel runs are described and

discussed in section 3.5.

3.3. Broad-phase collision detection 49

3.3 Broad-phase collision detection

Collision detection is an ongoing research and optimization source in many fields,

including video games and numerical simulations (Coumans, 2015; Jiménez, Thomas,

and Torras, 2001). Collision detection aims to report geometric contact when it is

about to occur or has occurred. Unfortunately, precise and exact collision detection

for large amounts of objects represents an immense amount of computations, naively

n2 operations with n being the number of objects (Lin, 1997). To avoid and reduce

these expensive computations, the collision detection is decomposed into two phases

as shown in Fig. 3.1: the Broad and Narrow phases.

The broad-phase’s primary goal is to prune away pairs of particles that are too

far away from each other and thus have no chance to collide. It aims to quickly

report if two particles do not intersect and therefore must scale very well with the

number of particles in the system to make sure the time complexity is under O(n2).

The broad-phase replaces the real particle shape (and usually complex shape such as

polygons) to perform an upper bound for the collision to achieve this low complexity.

The particle shape is encapsulated inside the bounding volume (see Fig. 3.2) such

that if two bounding volumes do not cut across, then their real shapes do also not

intersect. There are many popular bounding volumes used in the literature as the

sphere, bounding boxe or convex shape.

FIGURE 3.2: Type of bounding volumes used in broad-phase: sphere,
axis-aligned bounding box (AABB), oriented bounding box (OBB),
eight-direction discrete orientation polytope (8-DOP), and convex

hull (Ericson, 2004).

50 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

They offer different complexities and accuracy; a sphere bounding volume offers

a bad bound (for non-spherical shapes) as it does not match very well the particle’s

actual shape but provides a fast check and needs little memory to be stored (only the

center coordinates and the radius). On the other hand, bounding volumes such as

superquadrics shapes are more accurate and return a result similar to the real shapes

but have a more elaborate check algorithm and require much more memory storage.

3.3.1 Axis-Aligned Bounding Boxes (AABBs)

The most popular bounding volume found in the literature is probably the axis-aligned

bounding volume. It has a simple parallelepiped shape and has always it faces aligned

with the axes, i.e., the edges of the box are parallel to the (Cartesian) coordinate

axes (Schneider and Eberly, 2002). The assets of an AABB volume are its memory

efficiency, as there is only a need to store min and/or max points and the radius to

represent the volume. It is also computationally efficient as it has a quick overlap

check that simply involves the direct comparison of individual coordinate values.

Two AABBs intersect if and only if they overlap on the three-axis. It is, therefore,

straightforward to discard pairs of particles that do not intersect. If the AABB has a

min-max points representation, the overlap check will look like as follow:

bool OverlapAABBs (AABB box1 , AABB box2)

{

//Check i n t e r s e c t on X Axis

i f (box1 . max [0] < box2 . min [0] || box1 . min [0] > box2 . max [0])

re turn f a l s e ;

//Check i n t e r s e c t on Y Axis

i f (box1 . max [1] < box2 . min [1] || box1 . min [1] > box2 . max [1])

re turn f a l s e ;

//Check i n t e r s e c t on Z Axis

i f (box1 . max [2] < box2 . min [2] || box1 . min [0] > box2 . max [2])

re turn f a l s e ;

//Overlap on the three Axis

re turn true ;

}

LISTING 3.1: C++ snipped code of intersection of two axis-aligned

bounding boxes (Ericson, 2004).

3.3. Broad-phase collision detection 51

3.3.2 Oriented Bounding Boxes (OBBs)

Once more, AABBs do not perfectly match a real particle shape, hence the introduction

of OBBs. Unlike AABBs, OBBs edges are not aligned with the axis coordinates. It

is a parallelepiped volume with an arbitrary orientation. There is much possible

representation of OBBs, the most commonly used representation has a center point, a

matrix orientation, and three half-edge lengths.

c l a s s OBB

{

Point c ; // The OBB c e n t e r

Vector u [3] ; // Local a x i s coordinates

Vector e ; // Halfwidth along each a x i s

}

LISTING 3.2: C++ snipped code of oriented bounding boxes data

structure (Ericson, 2004).

The intersection of OBBs is more complicated than for AABBs, and the algorithm

can be found in the reference book of Christer Ericson (Ericson, 2004).

3.3.3 Bounding Spheres

The sphere is also a ubiquitous bounding volume convenient as it is memory and

computationally efficient. It also has a short overlap check, few branches compared

to AABBs, and only needs to compute the two-sphere centers’ distance.

bool OverlapSpheres (Sp sphere1 , Sp sphere1)

{

//Compute d i s t a n c e between the two c e n t e r s

f l o a t d i s t a n c e = (sphere1 . c e n t e r − sphere2 . c e n t e r) * (sphere1 . c e n t e r − sphere2 .

c e n t e r) ;

f l o a t radiusSquared = (sphere1 . radius + sphere2 . radius) * (sphere1 . radius +

sphere2 . radius) ;

//Check the i n t e r s e c t i o n

return d i s t a n c e <= radiusSquared ;

}

LISTING 3.3: C++ snipped code of intersection of two

spheres (Ericson, 2004).

52 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

The bounding sphere can be obtained by first calculating the AABB of the object.

The sphere is then deduced by choosing the midpoint of the AABB as the center of the

sphere and the midpoint’s distance to the farthest point as the radius of the sphere.

Many more elaborated algorithms try to bound the object as much as possible in a

very efficient manner (Ritter, 1990).

3.4 Broad-Phase algorithms

For this study, ten different Broad-phase collision detection algorithms have been

considered covering grid, tree, and sorting approaches. Some of those algorithms

were implemented from scratch, and the remaining were taking from open-source

libraries. The Bullet (Coumans, 2015), CGAL (Fabri and Pion, 2009; Zomorodian and

Edelsbrunner, 2000), and the flexible collision library (FCL) (Pan, Chitta, and Manocha,

2012) frameworks have therefore been included in our benchmark framework. When

available, the studied algorithms’ implementation is directly taken from their authors’

book or article. Alternatively, we also proposed our implementations directly from

the description or the algorithm of an enhanced version of their given and available

implementations.

As referenced in tab. 3.1 Different tree based algorithms have been implemented

such as Octree, Loose Octree, and Kd-tree (Ericson, 2004). About grid based algorithms,

Uniform grid and Hierarchical grid (Pabst, Koch, and Straßer, 2010; Ericson, 2004) have

been implemented and finally the Sweep and Prune (Ericson, 2004) algorithm for the

sorting based approach. For comparison, the naive approach by Brute Force has also

been implemented.

As stated in section 3.3, the broad-phase algorithms do not rely on the particles’

real shape to perform a collision check. The main purpose is to avoid the complex

shape of particles that can affect the algorithms’ efficiency. Therefore it is reasonable

to use a bounding volume that encapsulated the particle to primaryorm a fast overlap

check. Bounding sphere and axis-aligned bounding boxes have been used in our

current implementations for all the algorithms described below.

3.4. Broad-Phase algorithms 53

Algorithms Implementation Parallelization
Brute force Scratch Yes

Octree Scratch No
Loose Octree Scratch No

Kdtree Scratch No
Hierarchical grid Scratch No

Uniform grid Scratch Yes
Sweep and Prune Scratch Yes

Bullet Bullet library No
CGAL CGAL library No
FCL FCL library No

TABLE 3.1: Algorithms that have been implemented and parallelized
in the C++ framework. The brute force, the grid and tree algorithms
were implemented from scratch. The CGAL and Bullet libraries use
spatial partitioning algorithms while FCL was used with a AABB tree

based algorithm.

3.4.1 Spatial partitioning

Apart from the bounding volumes, the broad-phase algorithms rely on the domain

properties like the locality, and partitioning and we can distinguish three types of

the broad-phase algorithm that rely on a partition method: spatial partitioning and

sorting, , grids, and tree structures.

The spatial partitioning techniques operate by dividing space into many regions

that can be quickly tested against each object (Lubbe et al., 2020). Two objects possibly

intersect if only they are contained in the same region of space; there is no need to

check overlap between objects that do not overlap the same region (Glass, 2005). The

number of pairwise is therefore drastically reduced, and the O(n2) operations (or

complexity) is down to something more manageable (O(log n), O(n), or O(n log n)).

Two main types of spatial partitioning will be considered: grids and trees.

The spatial sorting is a topological method based on the position of particles

relative to the others. The algorithm consists of a sorted spatial ordering of objects.

Axis-Aligned Bounding Boxes (AABBs) are projected onto x, y, and z axes and put

into sorted lists. By sorting projection onto axes, two objects collide if they overlap on

the three axes. This axis sorting reduces the number of pairwise tested by reducing

the number of tests to perform to only pairs, which collide on at least one axis. The

number of operations or complexity is estimated at n log n.

54 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

The grid-based algorithms consist of a spatial partitioning process by dividing

space into regions/cells and testing if objects overlap the same region of space.

Furthermore, this reduces the number of pairwise to test.

The tree-based algorithms use a tree structure where each node spans a partic-

ular space area. It reduces the pairwise checking cost because only tree leaves are

checked. The number of operations or complexity is estimated at log n.

3.4.2 The Brute Force approach

The brute force algorithm is the very naive and simplest way of proceeding a collision

detection. Every particle is checked for collision with every other particle in the

system (see Fig.3.3). Therefore, it is not an efficient approach and should not be used

for large systems with a substantial number of particles.

1

6

2

7

13

12

11

10

9
4

14

8

3

1

6

2

7

13

12

11

10

9
4

14

8

3

FIGURE 3.3: Check object one against all other objects, then object two
against all other objects (except object one).

This algorithm has a complexity of O(n2) and scales quadratically with the

number of particles as it loops twice through all the system particles.

3.4.3 The Octree and k-d tree

The octree is the common tree-based spatial (axis-aligned hierarchical) partitioning

method in 3D, where each node has eight children. The root node is usually the

bounding volume divided into eight equal-size sub-cubes, also called octants, by

3.4. Broad-Phase algorithms 55

dividing equally in half the x, y, and z-axis. These octants form the child node of the

root node. Recursively, each octant is divided in the same manner as the root node

(see Fig. 3.4). It is, by definition, a divide and conquers algorithm. A criterion for

stopping the recursive construction of an octree is the definition of a maximum depth

or a minimum size for the octants.

The analogous structure to the octree in two dimensions is known as a quadtree.

FIGURE 3.4: Left: Recursive subdivision of a cube into octants. Right:
The corresponding octree (Truong, Arikatla, and Enquobahrie, 2019).

In practice, most of the octrees do not exceed five levels as a complete octree of

n levels has 8n−1
7 nodes, that is, to say it can overgrow. An octree node data structure

can be implemented as shown in listing 3.4 containing a center point of the node, an

octree node pointers point to the eight leaves children and a list of particles in the

current node.

c l a s s OctreeNode

{

//Node c e n t e r

Vector3d c e n t e r ;

//Node p o i n t e r s to the e i g h t ch i ldren nodes

OctreeNode * c h i l d [8] ;

//Pointer to the p a r t i c l e s contained in the current nodes

P a r t i c l e * p ar t s ;

}

56 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

LISTING 3.4: C++ snipped code of intersection of an Octree node

data structure (Ericson, 2004).

The octree pointers representation in listing 3.4, although it uses pointers, is

memory intensive as it stores eight nodes per node. linear-octree is an alternative

representation of an octree that stores its locational code that can be used to compute

the children nodes’ locational code. There is, therefore, no longer a need to store

explicit pointers to the children.

The k-d tree is a tree structure that generalizes the octree and quadtree structures

in a k-dimension space (Zhou et al., 2008). The k-d tree dimension does not have to

be the same as the space dimension. In a quadtree and octree, space is respectively

divided into two and three and are therefore considered as 2-d tree and 3-d tree. For a

k-d tree structure, on the other hand, space is usually divided in the cycle following

the axis in a k-d tree structure. It is, therefore, possible to construct a 3-d tree from a

2-d space by first dividing the x-axis, then the y-axis, and finally the x-axis again.

3.4.4 Loose Octree

During the construction of a dynamic octree (or quadtree), some objects become stuck

due to the straddling of the partitioning planes (Ulrich, 2000) as described in Fig. 3.5.

This problem is overcome by expanding the node volumes to some extent to

make them partially overlapping. The resulting relaxed octrees have been dubbed

loose octrees. The loose nodes are commonly extended by half the side width in all

six directions (but may be extended by any amount). It effectively makes its volume

eight times larger.

It is now possible to compute particles’ depth level from their size for a constant

O(1) insertion. The particles have a higher level than in a regular octree and therefore

offer more possibility of discarding possible collisions. However, the larger the nodes,

the more they overlap on a level, and this leads to more particles being checked

against each other for contact detection.

3.4. Broad-Phase algorithms 57

FIGURE 3.5: A quadtree node with the first level of subdivision shown
in black dotted lines, and the following level of subdivision in gray
dashed lines. Dark gray objects overlap the first-level dividing planes
and become stuck at the current level. Medium gray objects propagate
one level down before becoming stuck. Here, only the white objects

descend two levels (Ericson, 2004).

FIGURE 3.6: Regular
domain decomposition

as a quadtree.

FIGURE 3.7: Loose
quadtree representa-
tion. The nodes have
been expanded by half
the node width in the

two directions.

FIGURE 3.8: Representation of a regular quadtree and loose
quadtree (Ericson, 2004).

58 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

3.4.5 Grid-based spatial partitioning algorithms

The uniform grid approach’s basic but efficient idea is to split the domain into

subdomains or cells of equal size (Fig. 3.9). The objects are then associated with the

cells; they overlap by usually using a spatial hashing. The pair of bounding volumes

that do not overlap the same cells or neighbor cells are discarded for the contact list.

An object is checked against objects contained in the same cell but also against all

objects that lay in the direct neighbor cells, as shown in Fig. 3.10.

FIGURE 3.9: (A) FIGURE 3.10: (B)

FIGURE 3.11: Uniform grid approach. (A) Uniform grid subdivision
in equal sized cells. Each particle is assigned to a cell where its center
is located. (B) The dark blue particle is checked with the light blue
particle contained in the same cell. It is also checked against green

particles located in the direct neighboring cells in light green.

The main concern of the uniform grid approach is the critical choice of the cell

size. A too fine grid or small cell size potentially leads to excessive memory to store a

large number of cells. Many cells have to be updated for large and moving objects

covering a broad space, causing performance degradation. On the other hand, large

cell size could have contained too many objects and lost the approach’s discriminatory

power and a drop in performance. Therefore, it is challenging in a world-size problem

consisting of objects of different sizes to choose an optimal cell size.

One approach to deal with the object of vastly different sizes in a grid subdivision

3.4. Broad-Phase algorithms 59

is to consider a hierarchical grid method. It consists of building multiple overlapping

grids with different cell sizes. Objects are part of the grid level with the smallest cell

size to fit even though objects can overlap multiple cells within multiple grids. The

hierarchical grid approach is, in some ways, similar to the recursive octree method.

FIGURE 3.12: Hierar-
chical grid level 0.

FIGURE 3.13: Hierar-
chical grid level 1.

FIGURE 3.14: Hierar-
chical grid level 2.

FIGURE 3.15: Hierar-
chical grid level 3.

FIGURE 3.16: Two dimensional hierarchical grid example. The level
0 corresponds to the domain and contains all the particles. The first
level is the coarser grid (in red) and contains the biggest particle in
red. The second level encapsulated the yellow particles without the
biggest red particle. The third and last level contains the blue and

green particles, that inserted in all the three grids.

The size of the largest object contained in the current grid is usually different

from that level grid cell size at every level. For efficiency’s sake, the cell size is often

chosen to be a fraction of the biggest contained object. This fraction is the ratio of

60 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

the cell size to the particle size and can be adjusted to control the number of objects

per cell and grid and the number of grids. There exist two common approaches to

check objects overlapping. The Bottom-up or Top-down sorts the objects in ascending

or descending order based on objects size (Mirtich, 1996). For the Bottom-up approach

(respectively Top-down), objects of a given level are only checked against an object of

the same level and higher (respectively lower). The second approach would insert an

object in all overlapping cells from all grid levels. For contact detection, an object is

then checked with objects overlapping the same cells at all levels.

3.4.6 Sweep and prune

The sweep and prune method (Cohen et al., 1995) is also known as sort and sweep (Baraff,

1992) is a spatial sorting broad-phase collision detection method that uses the AABBs

bounding volume and does not have straddling limitations as in a tree or grid

approaches. In sweep and prune approach, the AABBs are sorted based on each

coordinate’s projections (start or lower bound and end or upper bound) on the

axis. Two objects intersect when all X, Y, and Z coordinates axis projections overlap.

The performance of the sweep and prune method greatly depends on the temporal

coherency of the objects. When this is not the case, i.e., objects move significantly

between two time-steps, sorting the complete list will greatly impact the performance.

This approach does not perform well when the particles are especially clustered along

any particular axis.

3.4.7 Bounding volume hierarchy (BVH)

A bounding volume hierarchy (BVH) is a tree structure of bounding volumes that

form the tree’s leaf nodes. Each node corresponds to a partition of the domain or set

of bounding volumes, as shown in Fig. 3.17.

First, each of the bounding volumes forms the leaf nodes of the bounding volume

hierarchy. After that, the nodes are arranged in multiple collections and enclosed

within a larger bounding volume constituting a new set of nodes. The latter nodes

are then enclosed in a larger bounding volume, and the tree is therefore constructed

3.4. Broad-Phase algorithms 61

A
B C

A

B C

FIGURE 3.17: An example of a bounding volume hierarchy using
rectangles as bounding volumes (Schreiberx, 2020).

recursively, eventually resulting in a tree structure with a single bounding volume at

the top of the tree (Ericson, 2004). During a collision detection in a BVH approach,

only leaf nodes (children) with the same parent are tested for intersection hence its

discriminating power. The main difference between the BVH approach and the spatial

partitioning approach, such as the uniform grid 3.4.5 lies in the fact that the bounding

volumes in BVH can overlap the same domain regions, whereas the uniform grid

partitions the domain in distinct regions.

3.4.8 Framework and C++ library for collision

We have also included three open-sourced collision detection libraries in our frame-

work test: Bullet, CGAL, and FCL.

• Bullet is a real-time collision detection engine for virtual really(VR), games,

visual effects, robotics, machine learning (Coumans, 2015). It is available on C++

version under Zlib license. The bullet library supports discrete and continuous

collision detection for soft and rigid body dynamics. It provides a dynamic

AABB tree contact detection algorithm and acceleration structures for distance

and penetration points. Sphere, box, cylinder, convex, and non-convex meshes

are the collision shapes supported by bullet.

• CGAL or Computational Geometry Algorithms Library (Fabri and Pion, 2009) is

a software project that provides easy access to efficient and reliable geometric al-

gorithms in the form of a C++ library. It provides collision detection algorithms

62 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

such as loose and k-d trees, Convex hull algorithms, Shape analysis, fitting, and

distances.

• FCL or Flexible Collision Library (Pan, Chitta, and Manocha, 2012) is a library

for performing three types of proximity queries on a pair of geometric models

composed of triangles. It can perform collision detection to find pairs of inter-

acting shapes, distance computation for computing the closest point between

two shapes, and provide continuous collision detection. Also, it is possible

to access the contact information as contact points and normal. We use the

recommended AABB tree algorithm 3.4.7 available in the FCL library as it is the

fastest algorithm.

All three libraries are well-known and used in various domains such as robotics,

virtual reality, computer games, and computational geometry. They all offer a differ-

ent level of flexibility and implementation architecture and can easily be interfaced

with other third-party libraries and software.

3.5 Benchmark

To compare the algorithms presented in sections 3.4, we have developed a C++ frame-

work to test their different algorithms implementations. For this purpose, a set of test

cases have been defined. They consist of a packed bed of up to one million spherical

particles with random radii in a 3D environment. The benchmark experiments were

performed with the google benchmark library that offers easy building with fixtures,

automatic iteration, argument parameters, or CVS outputs. The experiment was

carried out on Intel(R) Xeon(R) E5-2667 @ 2.90GHz processor and the values reported

are the means of at least 150 executions.

3.5.1 Sequential runs

The results presented in this section are from sequential implementations of the

algorithms. We compared the simulation time over different number of particles from

one thousand (1k) to one million (1M) particles. The algorithms have been separated

3.5. Benchmark 63

in two groups: slow and fast as it appears that some algorithms are unable to perform

the collision detection over 100k particles in a reasonable computational time. The

Bruteforce, Hierarchical Grid, Kd-tree, LooseOctree, and Octree are categorized as the Slow

Algorithms and the FCL, Bullet, CGAL, Sweep&Prune, Uniform Grid as Fast Algorithms.

The running time (and the standard error deviation stddev) of the Slow Algorithms

is presented in Fig. 3.18. Surprisingly, overall, the brute force approach is the fastest

algorithm with a O(n2) quadratic complexity.

0 20 40 60 80 100
Number of particles [K]

100

101

102

103

104

105

106

R
e
a
l
ti

m
e
(l

o
g
 s

ca
le

)[
m

s]

Error plot of the running time against number of particles

BM_Hgrid_Collision_mean

BM_LooseOctree_Collision_mean

BM_BruteForce_Collision_mean

BM_Kdtree_Collision_mean

BM_Octree_Collision_mean

FIGURE 3.18: Comparison results for Slow Broad-Phase Algorithms from
1k to 100k of particles.

It can be explained by the fact that the tree algorithms(Kd-tree, LooseOctree, and

Octree) require complex data structure that needs to be updated, which is incredibly

costly in our test case where all particles move. They also require more memory for

their structures. On the other hand, the brute force approach does not require any

extra data-structures that involve overhead due to structure creation. The big surprise

comes from the Hierarchical Grid approach, which was not expected to perform as one

of the slowest but can be explained by the fact that the Hierarchical Grid approach does

64 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

not suit our mono-disperse test case. Still, we were expecting it to perform better than

the naive approach. The performance of the Hierarchical Grid depends on the size of

the cell and particle size, the variance of the particle size, and, more importantly, the

hash function. Therefore, it was ruled out, and we did not dig further to integrate

it into our framework, but we did implement it inside our XDEM software as a

non-negligible part of our test cases is poly-diverse. However, tree algorithms were

not considered for implementation within the XDEM software as it implies complex

data structure modifications.

100 101 102 103

Number of particles(log scale)[k]

10-1

100

101

102

103

104

105

R
e
a
l
ti

m
e
(l

o
g
 s

ca
le

)[
m

s]

Error plot of the running time against number of particles

BM_UnifLargeGridOpti_mean

BM_UnifMediumGridOpti_mean

BM_UnifSmallGrid_mean

BM_UnifMediumGrid_mean

BM_FCL_mean

BM_UnifSmallGridOpti_mean

BM_CGAL_mean

BM_Swp_mean

BM_Bullet_mean

BM_UnifLargeGrid_mean

FIGURE 3.19: Comparison results for Fast Broad-Phase Algorithms from
1k to 1M of particles.

On Fig. 3.19, we compare the Fast Algorithms: FCL, Bullet, CGAL, Sweep&Prune

and Uniform Grid algorithms. We have implemented two versions of the uniform

grid: a classical approach creating and using cell structure and an optimized version

where the cell structure is not constructed, but interpolation is used to compute each

particle’s corresponding cell. The optimized version also uses a data locality approach

by using a Morton space-filling curve, which consists of accessing cell data closely

3.5. Benchmark 65

stored in memory (Gaede and Günther, 1998). The Uniform Grid algorithm has also

been evaluated in three different variations: Small (S), Medium (M), and Large (L)

grid size corresponding to three different cell sizes. The purpose is to evaluate the

impact of the number of cells in a grid decomposition method performance.

We can see on Fig. 3.19 that the three frameworks (FCL, CGAL and Bullet) and

the Sweep&Prune algorithms are very efficient for small number of particles up to

10k. Above 50k particles, the uniform grid approaches appear to fit a large number

of particles best. As expected, the optimized uniform grid implementation is faster

than the traditional approach, especially with many particles. The grid size impacts

the uniform grid decomposition because the smaller the grid is, the better it suits

a small number of particles. On the other hand, the more particles there are, the

better it is to have a larger grid. Compared to other algorithms, the grid approaches

under-performed for a small number of particles due to the grid creation’s overhead.

However, the grid approach’s running time is constant for the number of particles up

to 50k because the overhead time exceeds the actual collision detection load. Using

a small number of particles and larger cell size increases the grid-browse overhead

because more cells are visited than particles (contained). Using a large number of

particles and a small grid partitioning increases the particles’ check overhead. Indeed,

this situation is similar to performing a brute force approach. From the above analysis,

it can be stated that it is better to use FCL, CGAL, Bullet, and Sweep&Prune when

dealing with a small number of particles. However, there is a significant drawback to

using third-party libraries: they use their own data structures to perform collision

detection. Converting or adjusting our own data structures in XDEM to a third-party

library structure to perform the contact detection and converting back the results

to our structure has a non-negligible overhead that makes it not practical to use in

XDEM. For that explicit complexity, even if the third-party libraries are open-sourced,

we did not consider them for further implementation inside our XDEM software.

3.5.2 Parallel runs

Some algorithms and implementations among the ones presented in this chapter have

been parallelized with OpenMP. Among the slow algorithms, only the brute-force has

66 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

been parallelized to serve as a baseline comparator. Among the fast algorithms, sweep

and prune and six variants of the uniform grid algorithms (original and optimized

with small, medium and large grid sizes) have adapted to an OpenMP parallelization.

Fig. 3.20 presents the (strong) scalability results of the parallelized algorithms using

100k random particles in the test case. The number of cores/threads have been varied

from 1 to 24.

0 5 10 15 20 25
Number of cores

100

101

102

103

104

105

R
e
a
l
ti

m
e
(l

o
g
 s

ca
le

)[
m

s]

Running time against number of threads for 100k particles
BM_UnifSmallGridOpti_OpenMP_Collision_mean

BM_UnifSmallGrid_OpenMP_Collision_mean

BM_UnifMediumGridOpti_OpenMP_Collision_mean

BM_Swp_OpenMP_Collision_mean

BM_UnifLargeGridOpti_OpenMP_Collision_mean

BM_UnifMediumGrid_OpenMP_Collision_mean

BM_BruteForce_OpenMP_Collision_mean

BM_UnifLargeGrid_OpenMP_Collision_mean

FIGURE 3.20: OpenMP scalable results for Fast Broad-Phase Algorithms
from 1 to 24 of cores.

It appears in Fig. 3.20 that the algorithms are divided into three groups:

• The first group is composed of only the brute-force approach. We can

observe that the brute-force algorithm remains the slowest approach. How-

ever, it scales very well as the load(particles) is perfectly balanced between

the OpenMP threads.

• The second group is composed of the original uniform grid with the dif-

ferent cell sizes and the sweep and prune approaches. In uniform grid, the

large cell method is fastest than the medium and small cell methods.

3.5. Benchmark 67

Medium and small methods appear to be much closer (in simulation

time) with a slight advantage for the medium medium. The three meth-

ods’ performance order agrees with the sequential results for a large

number of particles, as shown in Fig. 3.19. With the scalability, the order

does not change with the increase in the number of cores. The sweep and

prune curve lies in between the uniform grid curves. As in Fig. 3.19 and

section 3.5.1 showing the sequential performance, the sweep and prune

performance is worst than (in sequential) the uniform grid approach. How-

ever, it scales very well (as there are only comparisons and data accesses)

and has a similar performance than the uniform grid approach when the

number of threads increases.

• Finally, the third and fastest group is composed of the optimized uniform

grid with different cell sizes. The large cell method is fastest than the

medium and small cell methods. Medium and small methods appear

to be very close (in simulation time). The three methods’ performance

order agrees with the sequential results for a large number of particles, as

shown in Fig. 3.19. With the scalability, the order does not change with the

increase in the number of cores. As stated in section 3.5.1, using a Morton

space-filling curve improves the uniform grid approach performance.

3.5.3 Adaptive approach

Looking at Fig. 3.5.1, we have noticed the algorithms could be classified into three

groups along the x-axis:

• From 100 to 5k particles. In this interval, even the slowest algorithms as the

brute-force are very competitive. It is faster than the uniform grid approach.

Therefore, the brute-force, CGAL, Bullet, FCL and sweep, and prune can all be

considered as the preferred approach for this range number of particles;

• From 5k to 50k particles. In this interval, the Bullet and FCL libraries are the

most competitive approaches. However, this is not of great interest to us

because they have not been integrated into XDEM. But we can notice that the

68 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

original uniform grid approach is in general faster than the optimized uniform

grid approach using a Morton space-filling curve (it implies sorting overhead).

As a result, the original uniform grid approach is preferred when using a case

number of particles between 5k and 50k;

• And from above 50k particles. In this interval, the optimized uniform grid

method is the best approach to adopted as it gives the best performances and

scalability.

From the above observation and based on the algorithms’ complexities, we

have implemented a naive adaptive method that chooses the best contact detection

approach depending on the number of particles and threads (when performing

parallel simulations) based on our early observations. For a simulation case with

less than 5k particles, the sweep and prune approach is used for the collision detection

process. The original uniform grid approach is used for simulation case with number

of particles between 5k and 50k. Finally, we use the optimized uniform grid for all

simulation case with more than 50k particles.

3.6 Conclusion

This chapter investigates the collision detection process performance in the DEM

method by developing a C++ benchmark for comparing multiple algorithms. An eval-

uation of different Broad-Phase algorithms has been investigated using the Execution

time metric.

Section 3.3 introduces the implementation, advantages, and disadvantages of

the bounding volumes commonly used in the broad-phase: Axis-Align Bounding

Box (AABB), Oriented Bounding Box (OBB), and Sphere. In section 3.4, we have

presented the different broad-phase algorithms implemented in the benchmark: brute-

force, sweep and prune, tree-based, grid-based, and bounding volume hierarchy.

Performance results were proposed within a test case composed of 100 to 1M

million of particles placed in a three-dimensional environment. It appears that some

algorithms perform better with a low number of particles, whereas others are more

3.6. Conclusion 69

efficient with large numbers of particles. Of course, those results are very tied to

the implementation of those algorithms and the test case, which means that the best

algorithms’ choice depends on the application. The number of particles heavily

impacts algorithms’ performance. In this regard, an adaptive approach has been

implemented to select the best algorithm depending on the number of particles. The

brute-force and the algorithms and implementations considered as the fastest (sweep

and prune and uniform grid) have been parallelized with the OpenMP approach. The

trend observed in the sequential runs is confirmed in the parallel runs because the

implementations scale very well.

Finally, this work is meant to provide a reference and benchmarks for future

works. The next step is to feature parallel implementations of these Broad-Phase

algorithms using GPU capabilities.

71

Chapter 4

LOCAL VERLET BUFFER

APPROACH FOR BROAD-PHASE

INTERACTION IN DEM

@authors: Abdoul Wahid Mainassara Checkaraou, Xavier Besseron, Al-

ban Rousset, Fenglei Qi, and Bernhard Peters

Under review in journal of Advances in Engineering
Software

72 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

4.1 Abstract

The Extended Discrete Element Method (XDEM) is a novel and innovative numerical

simulation technique that extends the dynamics of granular materials or particles

as described through the classical discrete element method (DEM) by additional

properties such as the thermodynamic state, stress/strain for each particle. Such

DEM simulations used by industries to set up their experimental processes are

complex and heavy in computation time.

Those simulations perform at each time step a collision detection to generate a

list of interacting particles that is one of the most expensive computation part of a

DEM simulation. The Verlet buffer method, which was first introduced in Molecular

Dynamic (MD) (and is also used in DEM), allows to keep the interaction list for many

time step by extending each particle neighborhood by a certain extension range, and

thus broadening the interaction list. The method relies mainly on the stability of the

DEM, which ensures that no particles move erratically or unpredictably from one

time step to the next: this is called temporal coherency. In the classical and current

approach, all the particles have their neighborhood extended by the same value,

which leads to sub-optimal performances in simulations where different flow regimes

coexist. Additionally, and unlike in MD (which remains very different from DEM on

several aspects), there is no comprehensive study analyzing the different parameters

that affect the performance of the Verlet buffer method in DEM.

In this work, we apply a dynamic neighbor list update method that depends on

the particle’s individual displacement and an extension range specific to each particle

and based on their local flow regime for the generation of the neighbor list. The update

of the interaction list is analyzed throughout the simulation based on the particle

displacement allowing a flexible update according to the flow regime conditions.

We evaluate the influence of the Verlet extension range on the performance of the

execution time through different test cases, and we empirically analyze and define

the extension range value giving the minimum global simulation time.

4.2. Introduction 73

4.2 Introduction

Discrete Element Method (DEM), originally proposed by Cundall (Cundall and Strack,

1979), is a popular simulation approach for studying and diagnosing bulk powder/-

granular dynamic systems, which are ubiquitous in the pharmaceutical industry, food

processing, chemical engineering, mining industry, and energy systems (Ketterha-

gen, Ende, and Hancock, 2009; Ransing et al., 2000). Considering the large scale of

applied systems, one of the key efforts in the DEM development is to enhance the

simulation capability of DEM software, such as by adopting advanced parallelism

schemes (Maknickas et al., 2006), utilizing graphics processing units (GPU) (Gan,

Zhou, and Yu, 2016) and developing coarse-grain models (Weinhart et al., 2016). How-

ever, one unavoidable functionality that DEM codes need to optimize is the collision

detection, which, includes neighbor search, represents a major computational part in

DEM simulations (Rousset et al., 2018; Páll and Hess, 2013).

Collision detection is often split into two phases: a broad-phase, which formu-

lates a potential collision list for each particle (neighbor list), and a narrow-phase

accounting for accurately resolving the collision instance of each pair of particles in

the neighbor list. Different algorithms for constructing neighbor list in the broad-

phase are available, including brute force approach (Kockara et al., 2007) of O(n2)

time complexity, binning approach (Tracy, Buss, and Woods, 2009) and linked-cell

method (Welling and Germano, 2011) of O(n) complexity. However, the broad-phase

computational efficiency is not solely determined by the time complexity of the

adopted algorithm (Rousset et al., 2018), which are also affected, for instance, by the

ratio of cell size to particle size in the commonly used linked-cell approach or by

the frequency of updating the neighbor list in the broad-phase. The latter is usually

related to the Verlet list approach that is firstly proposed in MD simulations by Loup

Verlet (Verlet, 1967) for reducing the unnecessary cost of rebuilding the neighbor list

at every simulation time step. The mechanism for skipping neighbor list rebuild is

achieved by providing an extra margin (often called "skin") on top of the particle

pairwise cut-off interaction distance. The neighbor list built is called a Verlet list.

With this mechanism, the Verlet list remains unchanged until a particle displacement

exceeds a certain threshold distance defined beforehand.

74 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

For MD simulations, the systems are often homogeneous, and a uniform (global)

buffer is satisfactory to achieve a good speed-up. However, for the majority of

powder and granular dynamic systems, the variation of particle flow properties such

as particle velocity and solid fraction in the systems is significant. It becomes less

efficient to adopt a uniform skin margin for particles at regions of different flow

conditions. Intuitively, in such systems, providing a larger skin margin for particles

moving faster leads to a more reasonable neighbor list updating frequency globally.

Many parameter studies on the skin margin determination have been reported in

MD simulation research (Verlet, 1967; Chialvo and Debenedetti, 1990; Chialvo and

Debenedetti, 1991; Mattson and Rice, 1999; S. and S., 2006). For MD, in Lennard Jones

systems, often skin = 0.3σ, where σ is the diameter of a Lennard Jones particle. For

DEM development, Li et al. (Li et al., 2010) compared the performances of Verlet

buffer and linked-cell approaches in gravity-driven granular collapse simulation.

It is reported that appropriate determination of parameters such as search radius

(skin + cut-off distance), cell size, and updating interval time step is critical for

improving simulation efficiency in the Verlet buffer approach. Although the Verlet

buffer mechanism has also been implemented in several DEM codes (Fang, Tang,

and Luo, 2007; Munjiza, Walther, and Sbalzarini, 2009), a uniform skin margin is

often adopted for all the particles. In (Angeles and Celis, 2019), the performance of

neighbor search methods (Verlet table and linked cell) and associated computational

costs are parametrically evaluated, and an evaluation of their suitability for carrying

out the DEM/CFD numerical simulations is made. The main outcome of their

research showed that the Verlet list has a strong dependency on the skin factor, and

the value for this parameter equal to the particle radius does not create problems in

the identification of particle pairs. Unfortunately, one noticeable problem is to set the

update frequency of the Verlet list according to the uniform skin margin and globally

to the maximum velocity leading to stability issues (Li et al., 2010; Fang, Tang, and

Luo, 2007) considering that particles have the possibility of migrating over the skin

distance within updating interval. The performance concern of Verlet buffer arises as

a result of heterogeneous flow conditions commonly found in real particle systems,

which makes the adoption of a uniform skin margin parameter less computationally

efficient. Dynamically determining a local skin margin for each particle according to

4.3. Related work 75

local flow conditions is suggested in lots of researches, but the optimal determination

of the skin margin needs to be thoroughly studied.

In this research, we proposed a local Verlet buffer approach using a new skin

margin formulation, which dynamically expresses the skin margin for each particle

according to the neighborhood flow conditions and based on the particle velocity.

This approach enables the heterogeneity of real particle systems to be taken into

account for better computational time efficiency. In this study, the potential stability

problem of particles moving over the skin distance in a period of update time is fixed

by recording each particle displacement and automatically deciding when the Verlet

list is to be rebuilt. We ensured and demonstrated that there are no missed interactions

in our current approach, and thus our results are identical to using the naive approach.

To assess the efficiency of our proposed formulation, we have implemented the local

Verlet buffer approach in our in-house eXtended Discrete Element Method (XDEM)

software (Peters, 2013). We, therefore, explored how the skin margin value affects

the broad and narrow-phase in particular and the global simulation time in general.

The main goal of this paper is to propose a broad analysis of our skin formulation

implemented in DEM software like our in-house XDEM toolbox. It points out the

advantages of using such formulation and its best-use case but also its drawbacks.

This paper provides a general overview of the XDEM software in the back-

ground section 4.4 and describes the collision detection method before our current

research. The contribution of the article is presented in section 4.5, which describes

the local Verlet buffer approach for building the list of interacting particles and proof

of the method’s validity. In section 4.6, The skin margin parameter is studied by

employing deterministic designs to explore the effect of parametric changes within

simulation models. The results and conclusion are discussed in section 4.6.4. We

finally give a general conclusion of the paper in section 4.7.

4.3 Related work

The Verlet list was first introduced for molecular dynamic simulations by Loup Verlet

in his article (Verlet, 1967) back to 1967. The method is now widely used in DEM

76 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

simulations and considerably decreases the simulation time. The Verlet list allows

to reduce the evaluation of the unnecessary interactions and to keep a neighbor list

for several time-steps until a breach. Loup Verlet himself proposed to extend the

particles interaction range by a certain skin margin given by:

RNL = RC + skin, (4.1)

where RNL is interaction range and RC the cut-off radius. It is then possible

to have the exact update interval time step for a given interaction range. Sutmann

et al. (S. and S., 2006), Awile et al .(Awile et al., 2012), Mattson et al. (Mattson and

Rice, 1999), and Chialvo et al. (Chialvo and Debenedetti, 1990) proposed different

procedures to determine the skin value in MD depending on parameters as: density,

temperature, time step, system size, and molecular geometry.

Chialvo et al. (Chialvo and Debenedetti, 1990) investigate the effects of the pa-

rameters cited above upon the optimum neighbor list radius and update frequency.

The theoretical predictions (according to which the optimum neighbor list radius

increases with sample size, temperature, and time step and decreases with density)

validate the simulation results. The study of the paper is in some ways similar to

this paper, unlike their study is based on MD simulations, while this work focuses

on DEM simulations, which are very different from MDs in many aspects. In both

methods, N or K, the update interval time step is not a fixed number but determined

by the particle displacement. The difference comes actually from the displacement

calculation method: we consider a linear displacement since the last neighbor list up-

date and Chialvo et al. considered in their paper the displacement as the accumulated

displacement suffered by the particle since the last neighbor list update.

Sutmann in (S. and S., 2006) investigates the performance of neighbor list tech-

niques in MD simulations depending on a variety of parameters, which may be

adjusted for maximum efficiency. The model presented allows choosing optimal

parameters for the performance of the Verlet list and linked-cell lists. The paper

targets only Lennard–Jones MD systems.

4.4. Background 77

Awile (Awile et al., 2012) presents a novel adaptive-resolution cell list (AR cell

list) algorithm and the associated data structures that provide efficient access to

the interaction partners of a particle, independent of the (potentially continuous)

spectrum of cut-off radii present in a simulation. They characterize the computational

cost of the proposed algorithm for a wide range of resolution spans and particle

numbers. Mattson presents a modified method here, allowing for reductions in the

cell sizes and the number of atoms within the volume encompassing the neighbor

cells. The algorithms determine the volume with the minimum number of neighbor

cells as a function of cell size and the identities of the neighboring cells. It also

evaluates the serial performance as function of cell size and particle density for

comparison with the performance using the conventional cell-linked list method. The

two papers by Awile and Mattson target the cell linked list method rather than the

Verlet list or a combination of the two methods.

LIGGGHTS and LAMMPS (Kloss et al., 2012; Plimpton, Crozier, and Thompson,

2007) software allow setting parameters that affect the building of pairwise neighbor

lists. All-atom pairs within a neighbor cut-off distance equal to their force cut-off

plus the skin distance are stored in the list. The default value for skin depends on the

choice of units for the simulation and the inputs.

The methods presented previously and found in the literature mainly focused on

MD simulations (some on DEM) where neighbor list updates frequency is usually (not

always) fixed beforehand. Our paper, on the other hand, presents an interaction range

(skin) formulation based on the velocity of each individual particle. It also focused

on an automatic update list technique based on particle displacement avoiding a

divergence or crash of the system while reaching optimal performances in DEM

simulations.

4.4 Background

The XDEM software is a numerical multi-physics simulation framework (Peters,

2013; Samiei and Peters, 2010) supporting parallel processing (Besseron et al., 2013;

Checkaraou et al., 2018a), and based on the dynamics of granular material or particles

78 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

described by the classical DEM (Cundall and Strack, 1979; Allen and Tildesley, 1990).

It is extended by additional properties such as the thermodynamic state and stress/s-

train for each particle for more complex simulations in various domains (Peters et al.,

2019; Peters and Pozzetti, 2017; Mahmoudi et al., 2016a). As in any DEM code, the

particle interaction detection is a major part of XDEM, and it uses the linked-cell

method to generate the interacting particles list. Firstly, an overview of the XDEM

work-flow is provided with different key parts. Then the collision detection tech-

niques and the different issues making it a major DEM component are presented.

Finally, an overview of the linked-cell method and its current implementation in

XDEM is given.

4.4.1 XDEM flow chart

A flow chart, as shown in Fig. 4.1, illustrates the main components of XDEM software

for particle dynamics simulation. An iterative time loop is composed of five major

phases:

• Broad-phase: uses a fast but approximate contact detection to build a list of

particle pairs that can potentially interact. It should be noted that the pairs of

potentially interacting particles are stored in a unique list. During this phase,

the particles are represented by a bounding volume shape. It builds the list of

interacting particle pairs by dividing the domain into cells with uniform size

using the linked-cell method. The broad-phase could take up to 65% of the total

computational time;

• Narrow-phase performs a rigorous contact detection of each pair of particles in

the broad-phase list using the actual shape of the particle and calculates the pair-

wise collision parameters such as overlap, contact location, and direction. The

XDEM software supports complex shapes by using the sub-shapes techniques

(a shape is composed of many simple shapes as spheres) and super- quadratics.

The narrow-phase represents around 15% of the total computational time;

• Apply physical models: based on the collision parameters and collision history

information, calculate all interaction forces by applying corresponding physical

4.4. Background 79

models such as normal and tangential contact models, rolling models, and

cohesive models and so on;

• Integration: updates the particle location, velocity, rotational velocity, and

orientation information by numerically integrating Newton’s second law with

various numerical algorithms such as leapfrog and velocity-Verlet schemes;

4.4.2 Collision detection in XDEM

The contact detection being carried out on a large number of particles, it is split

into two phases in order to reduce the computational complexity: a first, fast and

approximate phase called the broad-phase and an accurate second phase called

narrow-phase as indicated in Fig. 4.1 and already mentioned in Section 4.4.1.

Fig. 4.2 illustrates the collision detection process for two colliding particles of any

shapes in XDEM. A bounding volume enclosing any type of particle entity replacing

the real particle shape is used to achieve a rapid broad-phase detection. In XDEM

software, the broad-phase is carried on using bounding spheres, slightly increasing

the memory usage (BS requires additional data) but greatly improves and reduces

data access from the CPU. With the BSs, the distance computation becomes less

computationally expensive.

Realizing that two particles far away from each other have very little chance to

generate any interaction, the neighbor particle detection is often limited to a certain

distance. The Algorithm 1 describes the linked-cell technique used in XDEM to

spatially limit the contact detection process of a pair of particles.

The linked-cell approach is utilized to perform the neighbor list construction,

which guarantees the time complexity to be linear in the number of particles in the

system. As illustrated in Fig. 4.3, the pairwise interactions for a single particle are

limited with all particles within the same cell (green) and in the immediate or adjacent

neighboring cells (blue). The cell size is uniform and must not be smaller than the

maximum bounding sphere size of all particle entities.

80 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

Start

Broad-Phase: Fast contact detection
 Approximate contact list

Narrow-Phase: Rigorous contact detection on broad-phase list
 Calculate overlap/distance

 Exact contact list

Apply models: Impact, bonding, conduction, radiation
models

Integration: Update particles position, orientation,
temperature

Stop?

Output

END

No

YES

Operates on bounding sphere shape

Operates on particle real shape

FIGURE 4.1: Flow chart of XDEM software detailing the main
different steps in an iterative simulation.

4.4. Background 81

Particle A at time t

Particle B at time t

Particle A at time
t+Δt

Particle B at time
t+Δt

Interaction / Collision / Contact

Int
eg

ra
tio

n

Integration

Timestep from t to t+Δt Timet t+Δt

Computational time Bottleneck

Narrow-phase
Collision

detection with
exact shape

Bounding Volume Linked-cell

Broad-phase: find pairs of particles in close range

FIGURE 4.2: Collision detection (broad-phase and narrow-phase)
process workload in XDEM. The broad-phase is the main

computational time consumer.

Algorithm 1: Linked-cell algorithm

1 Uniform decomposition of the domain in cells;
2 for all Ca in cell list do
3 for Cb in the immediate neighbour of Ca do

// Make sure to check each pair of cells only once

4 if index(Cb) < index(Ca) then
5 for each Pa among all particles in cell Ca do
6 for each Pb amoung all particles in cell Cb do

// Check if the bounding spheres of Pa and Pb intersect

7 if ||Xa − Xb|| ≤ ra + rb then
8 List← (Pa, Pb);
9 end

10 end
11 end
12 end
13 end
14 end

82 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

FIGURE 4.3: Illustration of the cell linked method. For the particles in
green cell, a collision is checked with particles in the same cell (green

particles), and also within the immediate neighbour cells (blue).

The narrow-phase, using the shapes of the real particles, is performed on the

broad list of interacting pairs of particle returned by the broad-phase. The time

complexity for narrow-phase collision detection is largely determined by the particle

shape. For spherical particles, the narrow-phase detection is simply checked following

identity:

δ = ri + rj − ||Xi − Xj|| (4.2)

where, ri represents the radius of particle i, and Xi is the center coordinates of particle

i. If the overlap δ is positive, the two particles collide and vice versa. For other

particle shapes such as superquadratics, the collision detection becomes complex,

and usually, an optimization problem needs to be solved (Williams and Pentland,

1992).

4.5 Local Verlet buffer approach

The Verlet buffer, unlike the conventional Verlet list, does not build a neighborhood

list for each particle but rather a global list of interacting particle pairs, also called the

Verlet list. In both methods, the particle cutoff radius (bounding sphere in DEM) is

surrounded by a skin margin (Allen and Tildesley, 1990; Allen and Tildesley, 2017),

4.5. Local Verlet buffer approach 83

to give a larger neighborhood. Another difference lies in the ability to work with any

broad-phase algorithm.

In our approach, we extend the bounding spheres used by the broad-phase to

perform an approximate collision detection. The extensive range of the bounding

spheres is called skin, and it will increase the number of potential interactions found

by the broad-phase by considering pairs of particles that are located further away

from each other. On one side, this will make the broad and the narrow phases costlier

to evaluate, but on the other side, the broad-phase does not have to be executed at

every time step anymore. By considering a larger surrounding in the broad-phase

collision detection, the list of potential interactions now includes interactions that

could happen in the next time steps.

In the local buffer method, the skin margin used to extend the bounding volumes

is unique to every particle and is computed according to their local flow conditions.

Additionally, we propose a condition that allows checking that the result of the previ-

ous broad-phase (i.e., the list of potential interactions) is still correct (Noske, 2004).

When this condition is broken, we force the execution of a new broad-phase. In any

case, the narrow-phase is always executed on this approximated list of interactions,

and that guarantees that the results will be strictly identical with the case of having

the broad-phase always executed.

The application of Verlet buffer in particle collision detection process is illustrated

in Fig. 4.4. In the example of Fig. 4.4a, the two particles, with different shapes, have

their bounding spheres extended by a skin margin, often called the Verlet skin.

This phase extends each particle neighborhood and includes the pair of particles

in the Verlet list, which without the extension, would not have been considered as

potentially interacting. Fig. 4.4b shows that after a couple of steps, the Verlet list does

not need to be updated. The particles, or more precisely the bounding sphere of each

particle, did not leave their respective extended bounding spheres that was used to

perform the broad-phase collision detection initially. That shows how an extension

of a skin margin in the neighborhood of the particle includes the pair of particles in

the Verlet list and catches an active collision that happens a few steps later. Finally,

Fig. 4.4c illustrates the case where one of the particles moves out of its skin margin.

84 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

����

��

Bounding sphere
Particle position at ��

Extended Bounding sphereAt time ��

�
�

�

(A) Extension of the interaction range by
surrounding the cut-off radius by a skin

margin.

Particle position at +�� ��

dx displacementAt time +�� ��

(B) Collision in extended interaction
range when the two particles are still in

the Verlet list. The narrow-phase is
applied to check the actual collision.

Particle outside of Verlet range
At time + � ×�� ��

(C) New broad-phase required, the green
particle have moved for more than a skin

distance(and could have moved in
another particle’s neighborhood).

FIGURE 4.4: Initial configuration and update of the Verlet list.

4.5. Local Verlet buffer approach 85

This means that the Verlet list is not valid anymore, and the broad-phase must be

executed again to generate a Verlet list.

The overall procedure for constructing the Verlet buffer list in XDEM is shown

in Fig. 4.5

During a broad-phase collision detection, for a particle i, every particle j in its

neighbor cell is checked, as described in the linked-cell method, to determine whether

the pair (i, j) should be included in the Verlet list or not. Particle i and j constitute

a pair in the Verlet list, if they satisfy the condition of two overlapping bounding

spheres. The radius of the bounding volume for particle i, called the neighborhood

list radius, is calculated as:

RNL,i = RC,i + skini, (4.3)

where, RC,i is the interaction cutoff radius determined by applied physical models,

and skini is the local Verlet skin distance, the value of which depends on the local

flow properties. The construction of the Verlet list process loops over all the pairs of

particles in the linked-cell neighbor list for completion. In the next following steps,

the displacement of each particle starting since the last Verlet list build is examined

against a local threshold. The Verlet list remains unchanged, and the broad-phase

collision detection is skipped until a violation occurs. The following talks about how

to determine the local skin distance and a scheme for automatically updating the

Verlet list in this approach.

4.5.1 The local skin parameter

To choose the skin distance parameter, we extend the equation proposed by Loup

Verlet in 1967 (Verlet, 1967) for MD and we propose to use the formula:

skinp = K× vp.∆t (4.4)

86 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

Start

Broad-Phase: Fast contact detection Verlet list

Narrow-Phase: Rigorous contact detection on Verlet list
 Calculate overlap/distance

 Exact contact list

Apply models: Impact, bonding, conduction, radiation
models

Integration: Update particles position, orientation,
temperature

Stop?

Output

END

No

YES

Operates on bounding sphere shape

Operates on particle real shape

Verlet list
update?

No

YES

FIGURE 4.5: New flow chart of XDEM software. A construction of the
Verlet list is added. If the conditions are satisfied, the list is kept and
the broad-phase is skipped and the simulation continues directly to

the narrow-phase.

4.5. Local Verlet buffer approach 87

where vp is the particle velocity in the system, ∆t is the time step in the simulation, and

K is the prescribed number of skipped steps in the broad-phase collision detection.

This research started with Eq. 4.4 to determine the local skin parameter for each

particle by replacing bulk velocity v with particle local velocity vp.

4.5.2 Automatic update and validity of the Verlet list

In this section, we detail a condition that allows determining if the Verlet list, com-

puted during a previous time step, is still valid (Grindon et al., 2004).

Definition 1. The Verlet list VL at time t is correct if

‖ ~AB‖t 6 RA + RB =⇒ {A, B} ∈ VL

We use the following condition as a way to determine if the Verlet list at time t is

still valid.

∀ particle p, ∆xp 6 skinp (4.5)

Where ∆xp is the particle displacement of the particle since the last broad-phase.

If this condition is violated, it means that a new broad-phase must be executed to

update the Verlet list.

Definition 2. We define our automatic Verlet update scheme by:

• re-using the previous Verlet list while condition 4.5 is still valid;

• re-executing a new broad-phase to update the Verlet list otherwise.

We will now prove that our proposed automatic Verlet update scheme always

returns the correct results.

Theorem 1. The automatic Verlet update scheme defined at 2 ensures that all pairs of particles

that can possibly collide are in the Verlet list.

88 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

The claim in theorem 1 avoids the potential simulation accuracy and stability

issues that take place in the fixed update interval scheme, as reported in (Chialvo and

Debenedetti, 1990). The proof of the theorem is provided in the following step:

Proof. We assume that the initial broad-phase executed at time t, performed on the

extended bounding spheres, is correct and returned the correct Verlet list, and thus

by definition 1, we have:

‖ ~AB‖t 6 RNLA + RNLB =⇒ {A, B} ∈ VL, (4.6)

Where RNLA and RNLB are the respective extended interaction ranges of particle

A and particle B.

We want to show that, at any time t
′
= t + ∆t, the Verlet list is valid. According

to the definition 1, that means that considering {A, B} a pair of particles, we need to

prove the hypothesis H0, that if A and B collide at time t′, then {A, B} is in the Verlet

list VL:

‖ ~AB‖t′ 6 RCA + RCB =⇒ {A, B} ∈ VL, (H0) (4.7)

Where RCA and RCB are the respective cutoff distance of particles A and B.

It exists two possibilities:

1. The condition 4.5 is no more valid, i.e.:

∃A | ‖ ~AA′‖t′ > skinA, (4.8)

where A is a particle at a given position at time t, A′ the same particle in a new

position at t′ time. In that case, a new broad-phase, on the extended bounding

spheres, has to be executed at time t′, and a new correct Verlet list is generated.

So if we consider two colliding particles A and B at time t′, then we have

4.5. Local Verlet buffer approach 89

‖ ~AB‖t′ 6 RCA + RCB because A and B are interacting

6 RCA + skinA + RCB + skinB

6 RNLA + RNLB

(4.9)

and because the newly generated Verlet list is correct, then we have {A, B} ∈ VL.

The hypothesis H0 is verified.

2. The condition 4.5 is still valid, i.e.:

∀A, ‖ ~AA′‖ 6 skinA (4.10)

where ‖ ~AA′‖t′ is the distance covered by particle A from time t to t′.

So if we consider two colliding particles A and B at time t′, then we have

‖ ~AB‖t′ 6 RCA + RCB

=⇒ ‖ ~AB‖t′ + ‖ ~AA′‖ 6 RCA + RCB + skinA by adding Eq. 4.10 for particle A

=⇒ ‖ ~AB‖t′ + ‖ ~AA′‖+ ‖ ~BB′‖ 6 RCA + RCB + skinA + skinB by adding Eq. 4.10 for particle B

=⇒ ‖ ~AB‖t′ + ‖ ~AA′‖+ ‖ ~BB′‖ 6 RNLA + RNLB

=⇒ ‖ ~A′B′‖+ ‖ ~AA′‖+ ‖ ~BB′‖ 6 RNLA + RNLB as ‖ ~AB‖t′ = ‖ ~A′B′‖

Additionally, from the triangle inequality, we have

‖ ~AB‖ 6 ‖ ~AA′‖+ ‖ ~A′B‖ 6 ‖ ~AA′‖+ ‖ ~A′B′‖+ ‖ ~B′B‖

and which finally gives us

‖ ~AB‖t′ 6 RCA + RCB =⇒ ‖ ~AB‖t′ 6 RNLA + RNLB

=⇒ {A, B} ∈ VL because of Eq. 4.6

The hypothesis H0 is verified.

90 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

4.6 Performance Evaluation

We carried out extensive numerical experiments to assess the performance of our

proposed approach.

4.6.1 Methodology

In section 4.5, we presented our first model to establish the skin margin value of a

particle:

skinp = K× vp.∆t (4.11)

where vp is the particle velocity in the system, ∆t is the time step in the simula-

tion, and K is the prescribed number of skipped steps in the broad-phase collision

detection.

Dynamic determination of the skin margin allows particles from different flow

velocity to adopt distinct skin margins, but with the same K number of time steps

between two consecutive updates of the Verlet list. What is the optimum K value

giving the best computational efficiency? To answer this question, we performed a

parameter study on the skin margin by varying the value of K. It varies from 0 to

5000 in the current study that was conducted on five different real test-cases with

different purposes and flow velocity.

In the following XDEM simulations, we used the Velocity Verlet integration

scheme and the Linear Spring Dashpot III contact model (only the static friction

force is taken into account in the classical Linear Spring Dashpot model). All the

five test-cases have been simulated for at least 5000 time steps. The Verlet buffer

method is coupled with the linked-cell method with the constraint on the neighbor

list range to be smaller than the cell size. This gives an upper-bound to the skin value

4.6. Performance Evaluation 91

RNL <= minx,y,z LC. This means that in practice, the skin will be set for each particle

independently to

RNL,p = min(RC,p + skinp, min
x,y,z

LC) (4.12)

4.6.2 Test-cases

The following real-world example serves as concrete benchmarks for the evaluation

of our implementation.

• Hopper Discharge The Hopper Discharge presented in Fig. 4.6 is a test case

used with 125k, 250k and 500k particles. The simulation works as follows: the

selected number of particles (thus up to half a million) with different diameter

are dropped off in a silo. Then the notch at the bottom is opened, letting all

particles fall down into a chute. In this case study, the workload moves from

the top portion of the domain downwards. Since the lower part of the silo is

narrowed, the workload is focused on the center region of the domain.

• Granular flows on vibrating rough inclined planes

The test case in Fig. 4.7 simulate a granular (spherical particles) flowing down

on a roughed and incline plane. The particles are colored according to their

velocity. In this test case, a silo is filled with particles of uniform size that are

dropped off on an inclined plane. The latter has a roughed surface composed of

many bigger particles, literally vibrating. In the free flow of particles, the ones

on the top of the bed present a higher velocity because being the least in contact

with the rough surface and therefore undergoing the least lateral vibrations.

• Avalanche

Fig. 4.8 describes a simulation of an avalanche debut at the top of a habitable

valley. Particles located upstream of the valley descend throughout the valley

with an increased speed due to the inclined surface. The goal is to predict

the path and the rate at which the avalanche will reach the bottom of the

92 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

FIGURE 4.6: The test case used for the performance evaluation
simulates the hopper discharge of 125k, 250k and half a million
particles. It shows any overview of the set-up with the particles

coloured according to their size.

4.6. Performance Evaluation 93

DEM Simulation of Granular Avalanche on Vibrated Inclines

Vx
Roughed plane

surface Free flow particles

Incline angle: 25
Size ratio: Drough/Dflow= 3
Vibration frequency: f=50 Hz
Vibration amplitude: A=200 mm

Fenglei Qi*, Peters Bernhard*, Kiesgen De Richter Sebastien**
*Faculty of Science, Technology and Communication, University of Luxembourg

**Kiesgen De Richter Sebastien, LEMTA, University of Lorraine

FIGURE 4.7: Granular flows on roughed inclined plane. The rough
plane has particles vibrating at 50Hz frequency with 200mm

amplitude. The free flow particles are coloured according to their
velocity

94 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

valley at the housing level. The case, a cohesive model, uses the Elastic-plastic

spring-dashpot rolling model.

Snow particles bed

Houses in thalweg

FIGURE 4.8: Simulation of an avalanche at the top of a habitable
valley. The particles bed represents a cohesive snow model.

• Biomass combustion

Fig. 4.9 shows a simulation of a combustion chamber of a 16 MW geother-

mal steam super-heater, which is part of the Enel Green Power "Cornia 2"

power plant (Wikipedia contributors, 2019). The test case relies on a hybrid

four-way coupling between the Discrete Element Method (DEM) and the Com-

putational Fluid Dynamics (CFD). In this approach, particles are treated as

discrete elements that are coupled by heat, mass, and momentum transfer to the

surrounding gas as a continuous phase. For individual wood particles, besides

the equations of motion, the differential conservation equations for mass, heat,

and momentum are solved, which describe the thermodynamic state during

thermal conversion.

• Powder leveling for Selective Laser Melting in Additive Manufacturing

Additive manufacturing and specifically metal selective laser melting (SLM)

processes are rapidly being industrialized (Donoso and Peters, 2018). The case

showed in Fig. 4.10 simulates a Powder leveling for Selective Laser Melting

4.6. Performance Evaluation 95

FIGURE 4.9: Furnace of the combustion of Biomass. The particle bed
is arranged on four (4) moving grates. The bed is heated up in the

combustion chamber by inlets located below the grates. The particles
are colored according to their surface temperature.

96 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

(SLM) in Additive Manufacturing (AM) process. In this test case, an advanced

discrete-continuous concept is used to address the physical phenomena in-

volved during laser powder bed fusion. The concept treats the Powder as a set

of particles by XDEM, predicting the thermodynamic state and phase change of

each particle. The fluid surrounding is solved with multiphase CFD techniques

to determine the momentum, heat, gas, and liquid transfer.

FIGURE 4.10: Powder levelling for Selective Laser Melting.

4.6.3 Experimental settings

The experiments were carried out using the Iris cluster of the University of Luxem-

bourg (Varrette et al., 2014) which provides One hundred sixty-eight 168 computing

nodes for a total of 4704 cores. The nodes used in this study feature a total a 128 GB of

memory and have two Intel Xeon E5-2680 v4 processors running at 2.4 GHz, that is to

say, a total of 28 cores per node. The nodes are connected through a fast, low-latency

EDR InfiniBand (100Gb/s) network organized over a fat-tree topology.

We used version 67f029de of XDEM software, compiled with GCC Compiler

6.4.0. The nodes were reserved for exclusive access in order to ensure the stability of

the measurements. Additionally, each performance value reported in this section is

the average of at least a hundred measurements. No major variance in the results was

indicated by the standard deviation and is also not shown in the following graphs.

4.6. Performance Evaluation 97

4.6.4 Results

The different simulations conducted in this study are intended to analyze and inter-

pret the impact of the skin margin upon the performances of the automatic update

algorithm presented in subsection 4.5. In this section, we take a look at how the

skin = Kv∆t model affects the test cases’ computational times. The simulation time

of the broad-phase, narrow-phase and apply models are illustrated in Fig. 4.11 as a

function of K factor. We also compare our model of skin = Kv∆t (skin is different for

each particle) with the popular approach where the skin is uniform and equal to the

particle radius (Angeles and Celis, 2019) (all cases are monodisperse and therefore

the skin is identical for all the particles).

Optimum K

Optimum K

Optimum K

Optimum K

Optimum K

Optimum K

Optimum K

Powder_leveling

Hopper125k Hopper250k Hopper500k

Avalanche Biomass Granular_flows

1 10 100 1000

1 10 100 1000 1 10 100 1000 1 10 100 1000

1 10 100 1000 1 10 100 1000 1 10 100 1000
0

500

1000

1500

0

500

1000

0

300

600

900

0

500

1000

0

1000

2000

3000

4000

0

250

500

750

1000

0

200

400

600

K factor [−] (log scale)

T
im

e
[s

]

Apply_Models
Broadphase

Narrowphase
Other_computation

Skin=Radius
Total

FIGURE 4.11: Dependence of broad-phase, narrow-phase and
interactions models on skin K factor. The vertical blue dashed lines

show the optimum K for each simulations corresponding to the
lowest overall simulation time. The orange horizontal line represents
the simulation time for a constant skin equal to the particles radius.

The skin distance is capped by the cell size in all simulations.

It follows from Fig. 4.11 that:

• The broad-phase simulation time decreases with the K value and therefore

98 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

with the skin. For the Avalanche case, BPa = 3172.758s without the Verlet

buffer method and BP = 42.418s for K = 400, representing a 98.66% of time

improvement.

Increasing the K factor decreases the overall broad-phase time but does increase

a single broad-phase time due to the extend of the neighborhood (more pair of

particles in the Verlet list). But this goes hand in hand with a decrease in the

number of performed broad-phase, which decreases the overall time.

• The narrow-phase simulation time increase with the K value and thus with skin.

For the Biomass case, NPb = 288.155s without the Verlet buffer method and

NP = 323.626s for K = 1000. It is a 10.96% increase in the narrow-phase time.

The rise is due to the enlargement of the Verlet list during an increase of K, on

which the narrow-phase performs an exact collision detection.

• When K increases, the simulation time decreases to a low peak before starting

to increase for almost all the cases, especially for the Biomass case. Without

using the Verlet buffer method, simulation time equals to 962.901s and equals

to 594.899s for K = 200 that is an increase of 61.86% of speed up overall. But at

K = 5000, the overall simulation increases to 1100.208s, an increase of 12.48%

compare to no Verlet buffer method.

• The most improvement is achieved with the AVALANCHE test case with a 70%

of simulation time improvement. The least gain is obtained with the BIOMASS

test case with a 38% of time improvement. The latter can be explained by the

fact that it includes a CFD coupling with OPENFOAM, adding, therefore, more

computations. The percentage gain relative to broad-phase is similar to in the

AVALANCHE test.

The behavior confirms the existence of an optimum K value for the Verlet

buffer method. The decrease in the simulation time observed at the beginning

is a result of the two preceding bullet points. Undoubtedly, the values of K

after zero offer a larger gain in broad-phase time than the increase noticed in

aBroad-phase simulation time
bNarrow- phase simulation time

4.6. Performance Evaluation 99

the narrow-phase. But after a value referenced as the optimum K value, the

increase in the narrow-phase time is more significant than the decrease in the

broad-phase time resulting in an increase of the overall simulation time.

• At a fixed state condition, the optimum K increases with the system size due to

the density and cell size change. For the hopper discharge case, Koptimum = 100

for N = 125k particles and Koptimum = 200 for N = 500k particles.

• The simulation time does not increase at any point but stabilizes rather at a

minimum after a clear decrease as the interaction radius reaches the minimum

cell size for the powder laser melting case.

• We can notice that our current approach of a dynamic skin gives a better

performance when reaching the optimum skin. The difference is observable

even for a case(biomass furnace) with a relatively homogeneous flow regime.

• The optimum skin distance and K value depend on the test case and, therefore,

on several parameters as the solid fraction, the cell size, the ratio of particle to

cell size, and the number of particles. A study on how to compute the optimum

skin distance depending on the aforementioned parameters is presented in our

paper (Checkaraou et al., 2018b)

In summary, the bigger K is, the wider the interaction range is, and the wider the

neighborhood is, involving a reduction in broad-phase and simulation overall time,

although the narrow-phase is increasing. Then, after K reaches an optimum value,

the decrease time in the broad-phase does no longer compensate the increased time

in the narrow-phase leading to an increase of the overall simulation. This behavior is

observed when interaction never reaches the cell size. When it reaches the cell size,

the simulation time remains unchanged since the skin margin is down to the value

of the minimum cell size. The number of executed broad-phase as a function of K

value is shown in Fig. 4.12. There is a clear decrease in the number of performed

broad-phase when increasing the K (increase in the number of skipped broad-phase),

but an equilibrium is reach around K = 200. It means that after this value, there

should be no more significant gain in skipping the broad-phase. It appears from all

100 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

1

10

100

10 100 1000
K factor [−]

E
xe

cu
te

d
pe

rc
en

ta
ge

 [%
]

Avalanche
Biomass

Granular_flows
Hopper125k

Hopper250k
Hopper500k

Powder_leveling

Percentage of executed broadphase against k factor

FIGURE 4.12: Dependence of executed broad-phase in percentage
upon the skin K factor. The percentage correspond to the number of
executed broad-phase over the total number of steps in the simulation.

our simulations that the biggest drop in the simulation time is made around K = 10

and K = 50, although there is a clear gain by increasing the skin after those values.

Fig. 4.13 enables us to put our previous observations (not significant gain after

K = 200) into perspective. It shows the time overhead for several K values compared

to the optimum time value. It confirms that the biggest time drop is made around

K = [10− 50] for all the test cases. It also helps to notice that K = 200 is a value close

to the optimum for all the test cases and can thus be chosen as a common and default

value.

The table 4.1 presents a performance comparison between the optimum case,

considered as the K value given the lower simulation time, which is specific to each

test case and a default case. The latter is defined as the K value given an excellent

performance compromise for any case. In table 4.1, the improvement in percentage is

defined by the gain made compared to a simulation without using the Verlet buffer

method. It is given by the following formula:

Improvement =
Timew/o Verlet bu f f er − Timecase

Timew/o Verlet bu f f er
× 100 (4.13)

4.7. Conclusion 101

0

20

40

60

2 5 10 20 50 100 200 300 500 1000 2000 5000
K factor [−]

O
ve

rh
ea

d
co

m
pa

re
d

to
 o

pt
im

um
 c

as
e

[%
]

Avalanche
Biomass

Granular_flows
Hopper_125k

Hopper_250k
Hopper_500k

Powder_leveling

Time overhead compared to optimum time for severals K factor

FIGURE 4.13: Simulation time overhead compared to the optimum for
each K value for all test cases.

where Timecase is the simulation time depending on which value of K is used for the

Verlet buffer method.

The OVERHEAD column corresponds to the time difference (percentage) between

the case where the optimum K value is used and the default case with the acceptable K

value. We can notice from table 4.1 that a default K = 200 is an excellent compromise

to the optimum K value that can be used for all the test cases. Actually, it has a

maximum overhead of 2% when used for all the test cases. We then recommend

choosing K = 200 when using the Verlet buffer method as a good arrangement to the

optimum value.

4.7 Conclusion

In this article, we proposed a local Verlet buffer solution with a new skin formulation

that expresses each particle’s skin margin according to the neighborhood flow con-

ditions and based on the particle velocity. The method has also been implemented

in our home software with an automatic update scheme for DEM simulations of

granular material. It is an improvement and a generalization of the conventional

Verlet list method for DEM simulations. The method allows to keep several time

102 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

T
A

B
L

E
4.1:Sum

m
ary

ofthe
perform

ance
results

ofthe
Verletbuffer

m
ethod

over
the

differenttestcases.

W
ithoutV

erlet
buffer

O
ptim

um
V

alue
for

K
Selected

D
efaultV

alue
K
=

200

Testcase
Sim

ulation
tim

e
[s]

K
[−

]
Sim

ulation
tim

e
[s]

Im
provem

ent
[%

]
Sim

ulation
tim

e
[s]

Im
provem

ent
[%

]
O

verhead
to

optim
um

[%
]

A
valanche

5595.77
500

1673.18
70.12

1687.24
69.84
69.84
69.84

0.83

Biom
ass

962.90
200

594.89
38.21

594.89
38.21
38.21
38.21

0.00

G
ranular

flow
s

2084.74
1000

1191.64
42.83

1206.19
42.14
42.14
42.14

1.20

H
opper

125k
1164.40

100
694.14

40.38
701.52

39.75
39.75
39.75

1.05

H
opper

250k
1564.46

50
943.14

39.71
945.67

39.55
39.55
39.55

0.26

H
opper

500k
1614.37

200
975.27

39.58
975.27

39.58
39.58
39.58

0.00

Pow
der

leveling
733.98

1000
367.22

49.96
375.25

48.87
48.87
48.87

2.14

4.7. Conclusion 103

steps the potentially interacting pairs of particles list by surrounding the particle

cut-off radius by a skin margin, in case the contact detection is divided into two steps:

the broad and narrow phases. It has the advantage of giving the possibility to use any

contact detection algorithm to generate the approximate interacting pairs of particles

list during the broad-phase process.

We presented a new skin margin formulation based on individual-particle dis-

placements for easy implementation and better consider the different flow velocity

regimes that often coexist in granular flow DEM simulations. A parameter study on

the skin margin was conducted to assess its effects on the method performances. It

appears as expected, a decrease in the broad-phase overall time and an increase in the

narrow-phase time while increasing the skin margin, resulting in a global decrease

in simulation time. Beyond specific skin margin values, we found an opposite effect

where the increase in the narrow-phase time is too high, resulting in a global simu-

lation time increase. The study showed that most computational time gain is made

around K = 20, and there is often after that value some gains to make, but not as

significant.

105

Chapter 5

Predicting near-optimal skin

distance in Verlet buffer for DEM

106 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

5.1 Abstract

The Verlet list method is a well-known bookkeeping technique of the interaction list

used both in Molecular Dynamic (MD) and the Discrete Element Method (DEM).

The Verlet buffer technique enhances the Verlet list that consists of extending each

particle’s interaction radius by an extra margin to take into account more particles in

the interaction list. The extra margin is based on the local flow regime of each particle

to account for the different flow regimes that can coexist in the domain. However, the

choice of the near-optimal extra margin (which ensures the best performance) for each

particle and the related parameters remains unexplored in DEM, unlike in MD.

In this study, we demonstrate that the near-optimal extra margin can fairly be

characterized by four parameters that describe each particle local flow regime: the

particle velocity, the ratio of the containing cell size to particle size, the containing

cell solid fraction, and the total number of particles in the system. For this purpose,

we model the near-optimal extra margin as a function of these parameters using a

quadratic polynomial function. We use the DAKOTA SOFTWARE to carry out the

Design and Analysis of Computer Experiments (DACE) and the sampling of the

simulations’ parameters. For a given instance of the set of parameters, a global

optimization method is considered to find the near-optimal extra margin. The latter

is required for the construction of the quadratic polynomial model. The numer-

ous simulations generated by the sampling of the parameter were performed on a

High- Performance Computing (HPC) environment granting parallel and concurrent

executions.

This work provides a better understanding of the Verlet buffer method in DEM

simulations by analyzing its performances and behavior in various configurations.

The near-optimal extra margin can reasonably be predicted by two out of the four

chosen parameters using the quadratic polynomial model. This model has been

integrated into XDEM to choose the extra margin automatically without any input

from the user. Evaluations on real industrial-level test cases show up to 26% of

reduction of the execution time a.
aThis chapter was published as an article in IPDPS2020 (“Local Verlet buffer approach for broad-

phase interaction detection in Discrete Element Method”)

5.2. Introduction 107

Keyword

Verlet, DEM, HPC, Optimization, Dakota

5.2 Introduction

The Extended Discrete Element Method (XDEM) is an advanced numerical process

that enhances the granular material properties in classical Discrete Element Method

(DEM) (Cundall and Strack, 1979) by supplementary states such as thermodynamic,

stress, and strain (Peters, 2013). As part of the ongoing XDEM software development,

we have implemented an optimized variant of the Verlet list (Verlet, 1967) using the

local flow regime of each particle (“Local Verlet buffer approach for broad-phase in-

teraction detection in Discrete Element Method”, submitted to Advances in Engineering

Software). This method, called Verlet buffer, is applied to the broad-phase and takes

advantage of the temporal coherency of a DEM simulation.

Multiple works in the literature have studied the behavior of the Verlet-list for

Molecular Dynamics (MD) (Verlet, 1967; Chialvo and Debenedetti, 1990; Chialvo and

Debenedetti, 1991; Mattson and Rice, 1999; S. and S., 2006), in particular how far

the list can be expanded and what are the primary influence parameters. However,

no such complete study exists for DEM simulations. (Li et al., 2010) compared

in DEM the performances of the Verlet list and linked-cell methods in a gravity-

driven granular collapse simulation. It showed that special care must be carried

when choosing the interaction range (skin + cut-off distance), cell size, and updating

interval time as they are crucial to obtain the best performance out of the Verlet list

method. The latter interaction range is controlled and adjusted by the user through

the skin distance.

In XDEM, this skin distance parameter does not change the result of the sim-

ulation, but it can significantly influence the performance of the execution (“Local

Verlet buffer approach for broad-phase interaction detection in Discrete Element

Method”). The best value for the skin distance factor typically depends on each input

case and the local conditions on each part of the case. As described in the upper

108 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

User XDEM run
(Input,)����

 ����

Results in execution time.�

User
XDEM run

(Input,)�������

Surrogate
= (Input)������� �

Results in execution time.� ′ < �

Input

Input

FIGURE 5.1: XDEM user specifications.

diagram of Fig. 5.1, the user can specify the skin distance along with the input case

when running its XDEM simulation. However, finding the best value for the skin

distance factor can be difficult and time-consuming. Thus, the work presented in this

article focuses on finding an intuitive approach to optimize this hyper-parameter. As

shown in the bottom part of Fig. 5.1, our goal is to construct a surrogate function that

determines, at low-cost, a near-optimal value for the skin distance to speed-up the

XDEM simulation.

The literature is replete with numerous hyper-parameter optimization algo-

rithms (e.g., Grid Search Bergstra and Bengio, 2012, Bayesian Optimisation Snoek,

Larochelle, and Adams, 2012, etc ...). Nevertheless, this meta-optimization approach

should be performed for different simulation contexts. Therefore, the near-optimal

skin distance value is a function of the simulation inputs and can be approximated

using a surrogate/predictor function. Our contribution relies on this surrogate func-

tion’s definition using a training data set obtained by optimizing the skin distance on

a pre-established number of simulation cases.

5.3. Background 109

The remainder of this article is organized as follows. Section 5.3 introduces

the XDEM simulation toolbox and the problem around the Verlet buffer method.

Section 5.4 formalizes the skin distance optimization problem and then explicit the

methodology to tackle it. Section 5.5 describes the design and the implementation

of a surrogate function to characterize the near-optimal skin distance for different

inputs. Experiments using the DAKOTA SOFTWARE are highlighted in section 5.6.

Finally, the last section 5.7 concludes this work and proposes future investigations.

5.3 Background

5.3.1 The Extended Discrete Element Method

The XDEM software is a multiphysics toolbox (Samiei and Peters, 2010) based on

the dynamics of granular material described by the classical DEM (Cundall and

Strack, 1979; Allen and Tildesley, 1990). It extends the usual particle properties

with thermodynamic state, stress/strain or electromagnetic field (Peters, 2013; Peters

and Pozzetti, 2017; Mahmoudi et al., 2016a). The software is written in C++ and

is composed of a set of modules: Dynamics governing the motion of the particles,

Conversion for the chemical conversion and thermodynamics, CFD Coupling for the

coupling through an external CFD library such as OpenFOAM (Jasak, Jemcov, and

Tukovic, 2007). Each of the simulation modules can be enabled separately and have

specific time settings. The XDEM simulation driver is responsible for executing at

each iteration the necessary phases for the activated modules.

An XDEM simulation is an iterative time loop which contains the following main

phases:

• The Broad-Phase uses a fast but approximate collision detection to build a list

of particle pairs that can potentially interact. During this phase, the particles

are represented by bounding spheres with an appropriate radius (express the

interaction range).

110 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

• The Narrow-Phase processes the list of potentially interacting particle pairs

and performs a precise contact detection using the actual shape of a parti-

cle (e.g. sphere, cube, disk, cylinder, triangle-based shape). It calculates the

overlap/distance, the contact point, and the direction between the two particles.

• Apply Physics Model: this phase selects the physics models defined in the

particle properties (e.g. for impact, bonding, rolling, conduction, radiation,

chemical reaction) and calculates the contribution to each particle involved (in

term of force, torque, heat flux, chemical species mass fraction).

• The Integration updates the state of the particles after accumulating the contri-

butions of all the interactions. Different integration schemes are available for

the different components of the state of the particles (e.g. position/orientation,

temperature, chemical composition).

To leverage large-scale HPC platforms, XDEM supports parallel distributed and

shared-memory executions based on MPI and OpenMP (Checkaraou et al., 2018a;

Besseron et al., 2013).

5.3.2 Verlet buffer method for XDEM

The Verlet buffer method is an enhancement of the broad-phase, which is detailed

in (“Local Verlet buffer approach for broad-phase interaction detection in Discrete

Element Method”). Instead of calculating the list of potential interactions for the

direct neighboring particles, it considers particles that are further away from each

other by increasing their bounding spheres. As a result, the interaction list also

contains potential future interactions, and then the broad-phase does not need to be

re-executed at every iteration. As shown on Fig. 5.2, the interaction range of each

particle, or cut-off radius RC, is extended by a skin distance, skin, that offers a broader

neighbourhood, or neighbour list radius RNL:

RNL = RC + skin (5.1)

5.3. Background 111

� �

��
�

FIGURE 5.2: In the Verlet buffer approach, the bounding sphere of the
particles is extended by the skin distance such as RNL = RC + skin.

112 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

In contrast to the conventional Verlet list (Allen and Tildesley, 1990; Allen

and Tildesley, 2017), the Verlet buffer does not create a neighborhood list for every

particle, but rather a global list of interacting particle pairs referred to as the Verlet

list. Additionally, because it merely applies to each particle’s bounding sphere, our

approach applies to any broad-phase algorithm (“Local Verlet buffer approach for

broad-phase interaction detection in Discrete Element Method”; Rousset et al., 2018).

We also propose a condition that enables the previous broad-phase results (i.e., the

list of potential interactions) to be ascertained. It will compel the execution of a new

broad-phase if this condition is broken. In any case, the narrow-phase is always

performed on this approximate interaction list and ensures that the results are the

same as our approach.

In practice, the skin distance of every single particle is unique in the local buffer

procedure and is calculated according to local flow conditions, e.g. the particle

velocity. The skin distance is initially determined according to a borrowed algorithm

to Molecular Dynamics (Chialvo and Debenedetti, 1990):

skin = K×Vp × ∆t, (5.2)

where K is called the skin distance factor, Vp is the particle velocity in the system, and

∆t the DEM time step interval.

5.3.3 Dakota Software Package

The DAKOTA (Design Analysis Kit for Optimisation and Terascale Applications)

toolkit provides a flexible and extensible interface between simulation codes and

iterative analysis methods. DAKOTA SOFTWARE contains algorithms for optimization

with gradient and non-gradient-based methods; uncertainty quantification with

sampling, reliability, and stochastic expansion methods; parameter estimation with

non-linear least squares methods; and sensitivity/variance analysis with design of

experiments and parameter study methods. By employing object-oriented design

to implement abstractions of the critical components required for iterative systems

5.3. Background 113

analyses, the DAKOTA SOFTWARE toolkit provides a flexible and extensible problem-

solving environment for design and performance analysis of computational models

on high-performance computers.

FIGURE 5.3: The loosely-coupled or “black-box” interface between
DAKOTA SOFTWARE and a user-supplied simulation code (Adams

et al., 2019).

The DAKOTA SOFTWARE supports multiple optimization capabilities, includ-

ing gradient-based, derivative-free methods local, and global methods (as Genetic

Algorithm used in this study) for use in science and engineering design applica-

tions (Adams et al., 2019). The toolkit also supports multi-objective and surrogate-

based optimization. The methods and algorithms in DAKOTA SOFTWARE are designed

to exploit parallel computing resources such as those found in a desktop multipro-

cessor workstation, a network of workstations, or a massively parallel distributed

computing platform. For more details, one should refer to DAKOTA SOFTWARE Users

Manual (Adams et al., 2019).

In this research, the optimization and surrogate capabilities have been combined

in a nested model. High-performance capabilities have also been used through coarse

and fine-grained parallelism on a cluster node.

114 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

5.4 Skin distance optimisation problem

This section discusses the optimization process and methods used to find the near-

optimal skin distance for a given input case.

5.4.1 Definition

In the Verlet buffer approach, the skin distance parameter can be tuned to provide

better performances. Each particle’s neighborhood depends on the skin distance,

which once enlarges, increases the size of the interaction list in the broad-phase. A

broad list means that the broad-phase execution can be skipped more often, and the

list could be kept for longer (time-steps). That is where the gain in time is achieved.

Nevertheless, the narrow-phase executed at each time-step has now to be performed

on a more extensive list, which has a negative impact on the performance, i.e., an

increase in computing time. The computing time gained in the broad-phase may not

compensate for the time lost in the narrow-phase leading to an increase in overall

computational time. The simulation time is, therefore, a non-linear function of the

skin distance parameter. To find the best trade-off between the two phases, one

needs to find the near-optimal skin distance according to the overall computing time.

As an example to motivate the search of this optimum, Fig. 5.4 depicts a real-case

related to biomass simulation. This example illustrates the existence of such near-

optimal skin distance and shows the simulation of a combustion chamber of a 16

MW geothermal steam super-heater, which is part of the Enel Green Power" Cornia

2" power plant (Wikipedia contributors, 2019). It relies on a hybrid 4-way coupling

method between the XDEM and the OpenFOAM toolboxes (XDEM+OpenFOAM).

Fig. 5.4 shows the simulation time of the broad-phase, narrow-phase, and appli-

cation models as a function of the skin distance factor (K). The skin distance factor K

varies from 0 to 2000 in current experiments. The vertical blue dashed line shows the

best skin distance factor K, corresponding to the lowest overall simulation time. It

confirms the existence of a near-optimal skin distance factor K and, therefore, of a

near-optimal skin distance.

5.4. Skin distance optimisation problem 115

Optimum K

Biomass

1 10 100 1000

0

300

600

900

K factor [−] (log scale)

T
im

e
[s

]

Apply_Models Broadphase Narrowphase Other_computation Total

FIGURE 5.4: Dependence of broad-phase, narrow-phase and interac-
tions models on skin distance factor K.

5.4.2 Evolution optimisation of the skin distance parameter

Due to the non-linear property of the skin distance optimization problem, Evolu-

tionary Optimisation (EO) has been considered. EOs are bio-inspired optimization

algorithms that belong to the class of meta-heuristics. They have been widely used

in single-level optimization cases to tackle NP-hard problems. Among the EOs

algorithms, Genetic Algorithms (GAs) have been retained to determine the near-

optimal skin distances. Since the execution time of the simulations is subject to noise,

gradient-based approaches are prohibited. XDEM simulations have been carried

out on exclusive nodes with pinned threads to reduce those fluctuations as much as

possible. Thus, a global and derivative-free approach such as GA seems to be more

robust, reliable, and inherently parallel for solving the skin distance optimization

parameter.

The choice has been made to use the SOGA solver, a Single Optimisation Genetic

Algorithm to solve the skin distance optimization problem since it supports parallel

and concurrent execution on HPC systems. SOGA is a generational and population-

based algorithm relying on Darwin’s theory of evolution. In a nutshell, an initial

116 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

population of solutions (i.e., skin distance) is randomly generated. This population

is then evolved using natural selection principles. From generation to generation,

promising genetic material is transmitted to offspring solutions and tends to conver-

gence towards an optima which are not necessarily realized. To escape local optimal,

punctual mutation of the solutions can modify solutions sensibly to keep enough

diversification among the population (Haftka and Gürdal, 2012; Zames et al., 1981).

Table. 5.1 summaries the SOGA parameters considered in this work for solving

the optimisation problem with the biomass case. DAKOTA SOFTWARE starts multiple

evaluations on the Iris HPC cluster (Varrette et al., 2014). During initial population

generation, crossover and mutation, the XDEM evaluations are made concurrently to

speed up considerably the workflow of SOGA.

TABLE 5.1: SOGA parameters

Parameters SOGA
Iterations 500
population size 10/20/50
Selection Roulette Wheel
Crossover operator SBX
Crossover probability 0.8
Mutation operator Polynomial / Uniform
Mutation probability 0.2

A study has been conducted to observe the convergence rate for 10,20 and 50

individuals to determine the best population size. Fig. 5.5 illustrates the SOGA solver

convergence rate for these different population sizes.

One can notice that the population size selection has a non-negligible effect

on the number of simulations to perform. The benefit of using a population of 50

solutions is, in this case, minimal compared to the overhead cost. On the contrary, a

population of 10 solutions converges too rapidly due to a lack of diversity. Finally,

this approach uses a population of 20 solutions that show the best trade-off between

the solution quality and the number of simulations executed. Last but not least, the

population size also depends on computing power. In some cases, the simulation

cost becomes too high and requires a small population for some practical results.

5.5. Near-optimal skin distance characterisation 117

o o o o o
o o o o

o o o

o
o

o o o o o o o o o

0 5 10 15 20 25

60
0

65
0

70
0

75
0

Soga solver generations evolution

Generations[-]

M
in

im
um

 s
im

ul
at

io
n

tim
e[

s]

* * * *
* * * * * * * * * * * * *

* * * * * *
^ ^

o

*
^

10 pop, 950 simulations
20 pop, 2300 simulations
50 pop, 3760 simulations

FIGURE 5.5: The SOGA solver convergence with the biomass case.
Three populations with different initial sizes have been considered: 10,

20, 50.

5.5 Near-optimal skin distance characterisation

In the Verlet buffer approach, the near-optimal skin distance is case-dependent and

can be characterized by a few parameters that define the particles’ local flow regime.

Indeed, it is not uncommon in particulate flow systems that both slow and rapid

motion coexist. Dynamic determination of the skin distance grants particles from

different flow regimes to adopt distinct skin distances. Local flow conditions decide

the optimum. Therefore, when adopting a skin distance value for a DEM case, some

physics parameters should be taken into account.

5.5.1 Design of experiments

In this study, four parameters describing particle local flow have been chosen to

characterize the near-optimal skin distance:

• Solid or void fraction (S f) of the cells, which defines the quantity particles or

vacuum present in the cells;

• Ratio of (containing) cell size to particle size (Cs);

• Particle velocity (Vel);

118 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

• Number of particles in the system (n).

The characterization can be summaries in five steps, as described in Fig. 5.6.

1. First, a sample covering the four parameters space is generated. It is used to

construct XDEM box cases for the next step.

2. For each box, the optimisation problem describes in subsection 5.4.2 is solved

and the skin distance factor K, Kopt, is returned.

3. Those Kopt are used as training data for the construction of a predictor model.

The boxes’ training case is a homogeneous particle system, as shown in Fig. 5.7,

in which parameters such as particle velocity, solid fraction, the ratio of cell size to the

particle size and system size, can be easily varied. The mean particle size is 5mm with

10% variation of the size to prevent crystallization. The solid fraction varies from 0.1

to 0.6, and velocity magnitude is in the range of [0.1,20] with random direction at the

beginning, and the ratio of cell size to the particle size is varied from 1.11 to 3.0 in the

design of the experiment.

In the DEM simulation, the Hertz-Mindlin contact model is adopted with a

reduced Young’s module Y = 5× 106 to account for the stiffness of particles and cube

walls. To arrive at a steady-state, energy dissipation due to friction and damping

is ignored, which is achieved by setting friction coefficient µ = 0 and coefficient of

restitution e = 1. Initially, the particle is organized in a lattice structure and allowed

to evolve until a steady state is reached, which usually requires a time duration of

10(π/6φ)1/3dp/Vp. Thereafter, the computational performance of each numerical

experiment is evaluated for a time duration of 2(π/6φ)1/3dp/Vp. In the simulation,

the DEM time step interval remains a constant value of 1× 10−6 s. The gravitational

acceleration is set to 0 in all simulations.

5.5.2 Methodology

To evaluate the relationship between the near-optimal skin distance (corresponding

to the best computational efficiency) and the flow conditions, the particle system

presented in the design of experiment section 5.5.1 is used to generate multiple boxes

5.5. Near-optimal skin distance characterisation 119

Input ~ parameters(, , , �)�� �� ���

Sampling inputs data
covering parameters space

�

Generate boxes�

���1 ���� ����

Solve optimization����

= ��� � (��� (�))�����
min

�
�����

 training data: �

{ , ..., , ..., }����1 �����
�����

Predictor construction
� : (, , , �) →�� �� ��� ����

FIGURE 5.6: Design of experiment steps. S f : Solid fraction, Cs: Ratio
cell to particle size, Vel: Velocity, n: Number of particles, T: XDEM

computational time.

120 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

FIGURE 5.7: Figure of a homogeneous particle system for near-optimal
skin distance determination.

of different solid fraction, cell size, particles average velocity and number of particles.

For each of these boxes, the optimization problem in Eq. 5.3 is solved with the SOGA

solver as described in Section 5.4.2.

minimize
skin

f (skin) (5.3)

With the different near-optimal skin distances obtained from the boxes, a quadratic

polynomial model is constructed to express the near-optimal skin distance factor K

as a function of the flow conditions. The latter are presented in Tab. 5.2.

All the methodology steps are done in one process with the DAKOTA SOFTWARE

as detailed below:

1. First, a Latin Hypercube Sampling (LHS) is used to generate the different points

of the flow regime conditions;

2. For each point, the related optimisation problem is solved by:

• generating the corresponding box;

5.5. Near-optimal skin distance characterisation 121

TABLE 5.2: Simulation designs for near-optimal skin distance.

System
particles

L/dp

Solid
fraction φ

Velocity Vp
[m/s]

Ratio cell to
particle size

∆L/dp

skin
distance
factor K

5− 80 [0.1, 0.6] [0.1, 20.0] [1.11, 3.0] 0-2000

∆t is the DEM time step interval.
L is the box length, dp, and Vp are the particles’ mean size and velocity.
∆L is the cell size and K the skin distance factor from Eq. 5.2.

• perform all XDEM evaluations of the box queried by the SOGA solver;

• returned the near-optimal skin distance factor K;

3. Construct the quadratic polynomial (with zero-order additive correction) model

by using the surrogate model capabilities of DAKOTA SOFTWARE;

(a) the first construction of the models;

(b) use root_mean_squared cross-validation (CV) to refine the models;

(c) generate new points using LHS again;

(d) refine the models by using the previous and new points;

(e) back to 3b until CV convergence;

4. Export the models.

5.5.3 Results

In this section, we present the surrogate model expressing the near-optimal skin

distance factor K as a function of the flow conditions (Tab. 5.2). The polynomial

function is given by the following equation:

KOpt =
n

∑
k=1

(ck ×
j

∏
i=1

(xp(k,i)
i)), (5.4)

where n = 15 and j = 4. xi and ck are respectively the polynomial variables and

coefficients, and p(k, i) the variables degrees.

122 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

The variables degrees and coefficients of the polynomial function are presented

below:

KOpt(S f , Cs, Vel , n) = 4257

− 5189 × S f

+ 3190 × S2
f

+ 1031 × S f × Cs

+ 12.34× S f ×Vel

− 2309 × Cs

+ 377.3× C2
s

− 14.00× Cs ×Vel

− 21.27×Vel

+ 1.580×V2
el

(5.5)

The polynomial model has been used to generate response surfaces of the flow

conditions. The results are shown in six figures, each presenting two (of the four)

parameters at the average value of the other two parameters.

The near-optimal skin distance factor K shows in Fig. 5.8 both solid fraction

and ratio cell to particle size as a large effect in the response surface. Lower values

of the solid fraction and ratio cell to particle size drive up to higher values of the

near-optimal skin distance factor K. One can notice in Fig. 5.10, 5.12, 5.13 that the

number of particles has little impact on the near-optimal skin distance factor K. On

the other hand, the solid fraction and the ratio cell to particle size are confirmed to

have the highest impact.

Tab 5.3 presents a performance comparison between the near-optimal case,

considered as the K value returned by the polynomial model, which is specific to each

test case, and a default case. The latter is defined as the K value given an excellent

performance compromise for any case. The default K value has been established in

previous work (“Local Verlet buffer approach for broad-phase interaction detection

in Discrete Element Method”). In Tab 5.3, the improvement in percentage is defined

5.5. Near-optimal skin distance characterisation 123

Solid franction
0.000.140.280.420.56

Ratio cell to particle size

1.0161.4661.9152.3652.816

0
200
400
600
800

1000
1200
1400

Near-optimal skin distance factor K

0
150
301
451
601
752
902
1052
1202
1353

FIGURE 5.8: Response
surfaces for the near-
optimal skin distance
factor K for solid frac-
tion and ratio cell to

particle size.

Solid franction
0.000.140.280.420.56

Velocity

0 4 8 12 16 20

0
200
400
600
800

1000
1200
1400

Near-optimal skin distance factor K

0
150
301
451
601
752
902
1052
1202
1353

FIGURE 5.9: Response
surfaces for the near-
optimal skin distance
factor K for solid frac-

tion and velocity.

Solid franction
0.00

0.14
0.28

0.42
0.56

Number of particle

0
160000

320000
480000

0
200
400
600
800

1000
1200
1400

Near-optimal skin distance factor K

0
150
301
451
601
752
902
1052
1202
1353

FIGURE 5.10: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
solid fraction and
number of particles.

Ratio cell to particle size1.0161.4661.9152.3652.816
Velocity

0 4 8 12 16 20

0
200
400
600
800

1000
1200
1400

Near-optimal skin distance factor K

0
150
301
451
601
752
902
1052
1202
1353

FIGURE 5.11: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
ratio cell to particle

size and velocity.

Ratio cell to particle size1.0161.4661.9152.3652.816

Number of particle

0
160000

320000
480000

0
200
400
600
800

1000
1200
1400

Near-optimal skin distance factor K

0
150
301
451
601
752
902
1052
1202
1353

FIGURE 5.12: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
ratio cell to particle
size and number of

particles.

Velocity
048121620

Number of particle

0
160000

320000
480000

0
200
400
600
800

1000
1200
1400

Near-optimal skin distance factor K

0
150
301
451
601
752
902
1052
1202
1353

FIGURE 5.13: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
velocity and number

of particles.

124 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

TABLE 5.3: Overview of the Verlet buffer method results with the
surrogate model over the different test-cases.

Without Verlet Selected Default Value K = 200 Optimum Value for KOpt = ∑n
k=1(ck ×∏

j
i=1(xp(k,i)

i))

Testcase Simulation time [s] Simulation
time [s]

Improvement
[%]

KOpt[−] Simulation
time [s]

Improvement
compared to default

case [%]

Avalanche 3201 581 81.8 392 459 3.23.23.2

Biomass 492 267 45 481 245 5.005.005.00

Granular flows 1167 648 44.5 444 342 26.226.226.2

Hopper 125k 415 295 29 170 284 2.572.572.57

Hopper 250k 580 432 25.51 210 427 0.80.80.8

Hopper 500k 954 774 18.87 602 750 2.512.512.51

Powder leveling 374 187 50 286 164 6.156.156.15

by the gain made compared to a simulation without using the Verlet buffer method.

It is given by the following formula:

Improvement =
Timew/o − Timecase

Timew/o
× 100 (5.6)

where Timecase is the simulation time depending on which value of K is used for the

Verlet buffer method. Timew/o is the simulation time without using the Verlet buffer

technique.

The OVERHEAD column corresponds to the time difference (percentage) between

the case where the near-optimal KOpt = ∑n
k=1(ck ×∏

j
i=1(xp(k,i)

i)) value is used and

the default case with the acceptable K value. We can notice from table 5.3 that a

default K = 200, although being an excellent compromise to the near-optimal KOpt

value, presents some important overhead in some cases. It has a minimum overhead

of 2.51%, which may appear limited but can be very substantial when running

simulations for days. The near-optimal KOpt given by the polynomial model provides

more than 25% of performance gain in the granular flows. Given the above results,

the polynomial model can be used to figure out the near-optimal K value in the Verlet

buffer technique.

5.6 Parallel Execution of DAKOTA SOFTWARE on HPC cluster

5.6. Parallel Execution of DAKOTA SOFTWARE on HPC cluster 125

The University of Luxembourg has a High-Performance Computing infrastructure for

research and development. It is used by all the University of Luxembourg researcher

community and some partners. The DAKOTA SOFTWARE toolbox has a different level

of parallelism in order to take advantage of workstations or HPC resources and are

categorized four levels (Adams et al., 2019).

In this study, although DAKOTA SOFTWARE supports MPI parallelization, it

has been run in sequential with a master process. The latter managed the coarse-

grained parallelism (Adams et al., 2019) by starting multiple jobs concurrently using

asynchronous job launching techniques. Each of every job launched by DAKOTA

SOFTWARE’s master runs in parallel, taking advantage of the fine-grained paral-

lelism (Adams et al., 2019) of the function evaluation. The data are then collected

in a blocking synchronization manner. All jobs in the queue are completed before

exiting the scheduler and returning the results to the algorithm. The job queue fills

and then empties, which provides a synchronization point for the algorithm (GAs do

not support asynchronous). Fig. 5.14 syntheses and explains the process.

The Iris cluster uses the SLURM scheduler for managing the workload of the

job (Yoo, Jette, and Grondona, 2003). It is configured with a set of partitions and QOS

that enable advanced workflows and accounting. The quality of service (QOS) is

related to the partitions as follows: qos-batch, bigmem, GPU, interactive, long with

one additional QOS called qos-besteffort. It is preemptible by all other QoS but has

the advantage of not having the limitations imposed on the other QOS, such as the

maximum number of nodes, wall-time. Best-effort jobs can be set to be automatically

re-queued if pre-empted by regular jobs.

To disturb users as little as possible, we configured DAKOTA SOFTWARE iterators

to start concurrent jobs using the best-effort QoS. In this way, we only use available

resources not used by the other users. When a DAKOTA SOFTWARE evaluation job is

running on a resource requested afterward by another user, the concerned resource

is freed for the user, and the evaluation is re-queued. For our study that required

almost 15000 evaluations, the latter situation happened only 18 times (see Tab 5.4). It

means that the other users were hardly affected by our study.

126 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

Dakota master process

XDEM
job 1

XDEM
job 2

XDEM
job 3

XDEM
job n

C1

C3

C2

C4

Multi-cores
simulation

Multi-cores
simulation

Multi-cores
simulation

Multi-cores
simulation

C1

C3

C2

C4

C1

C3

C2

C4

C1

C3

C2

C4

Optimizer iterator

FIGURE 5.14: The DAKOTA SOFTWARE parallelism and scheduling
scheme.

5.7. Conclusion 127

Jobs Total Percentage
Completed 146387 99.9877%
Canceled 18 0.0122%

TABLE 5.4: Scheduled job statistics.

5.7 Conclusion

The Verlet buffer technique relies on particles’ local flow regime and can be tuned

to achieve better efficiency. The latter can be reached by predicting the near-optimal

skin distance. In this article, we revealed the existence of such near-optimal skin

distance on a life-size case of a biomass furnace. The paper portrays the highlighting

of the near-optimal using the Genetic Evolutionary algorithm. The near-optimal skin

distance has also been characterized by the solid fraction, the ratio cell to particle

size, the velocity, and the number of particles. Those parameters have been used to

construct a quadratic polynomial model in order to predict the near-optimal skin

distance for any DEM case.

From the polynomial model, we have been able to characterize the near-optimal

skin distance. Indeed, the latter is mostly biased by the solid fraction and the cell’s

ratio to particle size. Lower solid fraction and small cell size lead to a high near-

optimal skin distance. Conversely, velocity, especially the number of particles, has a

minor impact on the near-optimal skin distance. Density in cells is all(most) what

matters.

This model has been implemented in XDEM in order to predict a suitable skin

distance for any given input simulation case. The performance evaluation on various

real industrial-level test cases shows a reduction of the execution time up to 26%.

129

Chapter 6

Hybrid MPI+OpenMP

Implementation of XDEM

130 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

6.1 Abstract

The Extended Discrete Element Method (XDEM) is a novel and innovative numerical

simulation technique that extends classical Discrete Element Method (DEM) (which

simulates the motion of granular material), by additional properties such as the

chemical composition, thermodynamic state, stress/strain for each particle. It has

successfully been applied to numerous industries for the processing of granular

materials such as sand, rock, wood, or coke (Peters and Pozzetti, 2017; Mahmoudi

et al., 2016a).

In this context, computational simulation with (X)DEM has become a more and

more essential tool for researchers and scientists to set up and explore their experi-

mental processes. However, increasing the size or the accuracy of a model requires

the use of High-Performance Computing (HPC) platforms over a parallelized imple-

mentation to accommodate the growing needs in terms of memory and computation

time. In practice, such a parallelization is traditionally obtained using either MPI

(distributed memory computing), OpenMP (shared memory computing), or hybrid

approaches combining both of them.

In this paper, we present the results of our effort to implement an OpenMP

version of XDEM allowing hybrid MPI+OpenMP simulations (XDEM being already

parallelized with MPI). Far from the basic OpenMP paradigm and recommendations

(which consists of decorating the main computation loops with a set of OpenMP

pragma), the OpenMP parallelization of XDEM required a fundamental code re-

factoring and careful tuning to attain acceptable performance. There are two main

reasons for those difficulties. Firstly, XDEM is a legacy code developed for more

than ten years, initially focused on accuracy rather than performance. Secondly, the

particles in a DEM simulation are highly dynamic: they can be added, deleted, and

interaction relations can change at any time-step of the simulation. Thus this article

details the multiple layers of optimization applied, such as a deep data structure

profiling and reorganization, the usage of fast multi-threaded memory allocators

and of advanced process/thread-to-core pinning techniques. Experimental results

evaluate each optimization’s benefit individually and validate the implementation

6.2. Introduction 131

using a real-world application executed on the HPC platform of the University of

Luxembourg. Finally, we present our Hybrid MPI+OpenMP results with a 15%-20%

performance gain and how it overcomes scalability limits (by increasing the number

of computing cores without dropping of performances) of XDEM-based pure MPI

simulations a.

Keyword

DEM, OpenMP, MPI, High Performance Computing(HPC)

6.2 Introduction

Granular materials are widely used in industry and are an active field of research (Du-

ran, 2012). The eXtended DEM is a novel approach that proposes to extend the

classical DEM technique by simulating, besides the motion of granular particles, ad-

ditional properties like thermodynamics state, chemical conversion, magnetic fields

or stress/strain (Peters, 2013). A computational simulation like eXtended DEM is

becoming increasingly important in numerous research fields.

Recently, thanks to the availability of large scale High-Performance Computing

(HPC) platforms, the interest for parallel DEM simulations has grown as it allows us

to obtain more accurate and meaningful results previously intractable. The detailed

physics models, together with many particles required for realistic DEM simula-

tions, increase the amount of computation and memory consumption automatically.

However, nowadays, throughput towards memory is not increasing as quickly as

processor computing power, which increases the gap between the memory speed and

the cores’ theoretical performance, hence the time lost by the processors waiting for

the memory (Wulf and McKee, 1995). It brings the question to mind: how do we take

advantage of modern and massively parallel machines’ increasing power?

aThis chapter is an article published in the IEEE 30nd International Symposium on Computer
Architecture and High-Performance Computing

132 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

Two major programming models allow to exploit efficiently large scale HPC

platforms: Firstly, the distributed memory approach, e.g., Message Passing Interface

(MPI) (Clarke, Glendinning, and Hempel, 1994), exploits distributed nodes connected

via a high-performance network but requires extra communication even within the

same computing node. Secondly, the shared memory approach using OpenMP (Chan-

dra et al., 2001) takes advantage of multi-core nodes and avoid costly communication

using a multi-threaded process but is limited to a single node.

The combination of both, specifically hybrid MPI+OpenMP, allows us to over-

come these bounds. The hybrid MPI+OpenMP approach brings the following advan-

tages compared to a pure MPI implementation by reducing the number of processes

in favor of many threads per process: Memory savings for implementations having

many replicated data or data structures depending on the number of MPI processes.

Furthermore, the number of ghost layers between distributed processes can be re-

duced. Better load balance because the number of partitions to be generated (one

per process) is reduced. Improved scalability by reducing the number of messages

exchanged between processes. Fit more modern NUMA architectures that are also

hybrid with a distributed memory across nodes and shared within a node (but unique

addressing for all NUMA nodes).

In this paper, we present the results of our effort to implement an OpenMP

version of XDEM allowing hybrid MPI+OpenMP simulations (XDEM being already

parallelized with MPI (Besseron et al., 2013)). Our work goes beyond the basic

OpenMP paradigm and recommendations (which summarizes by decorating the

main computation loops with a set of OpenMP pragma). Our OpenMP parallelization

of XDEM required a fundamental code refactoring and careful tuning to reach

acceptable performance. There are two main reasons for those difficulties. Firstly,

XDEM is a framework code developed through many years by abounding developers,

preferring accuracy over performances. Secondly, the particles in a DEM simulation

are highly dynamic: they can be added, deleted, and interaction relations can change

at any time-step of the simulation. As a consequence, the contributions of this work

are three-fold:

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 133

1. the main optimizations applied in order to parallelize our XDEM code effi-

ciently with OpenMP are detailed. Beyond the classic DEM, our approach could

be applied to other highly dynamic code;

2. the impact on the performance of each of the proposed optimizations are evalu-

ated independently;

3. finally, the scalability of the proposed new hybrid MPI+OpenMP implementa-

tion of XDEM application is assessed.

The remainder of this paper is organized as follows. In the next section, we

introduce general background notions on XDEM software and its MPI parallelization.

Section 6.3 presents the challenges solved for the OpenMP parallelization of XDEM.

Experimental results and performance evaluation are detailed in Section 6.4. Finally,

we draw our conclusions in Section 6.5.

6.3 Challenges and implementation for the OpenMP paral-

lelization of XDEM

The OpenMP parallelization layer over an MPI parallelization of XDEM proved to

be challenging and required various optimizations and customizations to be efficient.

Indeed, the basic OpenMP paradigm which consists of decorating the main computa-

tion loops with dedicated pragmas, was not applicable within the XDEM software.

There are two main reasons for those difficulties. Firstly, XDEM is a code developed

within the dynamic LUXDEM group for years, used to make very accurate simula-

tions at the expense of performance. Secondly, the particles in a DEM simulation are

highly dynamic: they can move from one process to another, which means that they

are deleted on one process and created on the other. Also, interaction relations can

change at any timestep of the simulation. It follows that to achieve the significant

performance improvements reported in this article, a fundamental code re-factoring

has been necessary. The steps taken to reach an effective OpenMP parallelization are

now detailed.

134 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

6.3.1 Data structures and concurrent accesses

One of the biggest challenges that affect the performance of a program is the choice

of data structures. For a C++ application like XDEM, the Standard Template Library

(STL) (Stepanov and Lee, 1995) offers a wide range of efficient data structures. For

an OpenMP program, the best performance is traditionally reached using containers

offering random access and contiguous memory, like C arrays or C++ std::vector

or std::array. However, because XDEM code is dynamic (the number of particles

can change at every timestep, the number of collisions are hard to predict) fixed-

size structure are not well-suitedb. A careful analysis of the used structures within

XDEM is, therefore, necessary to select the most appropriate approach, depending

on the potential for parallelization. For this reason, Fig. 6.1 lists the main phases that

constitute the XDEM time loop, where the colors indicate on which element a given

phase operates.

Prediction and Integration phases loop through the particles. In the sequential

implementation, the particles were initially stored in a std::map using the particle ID

as the key. It allowed operations like fast search (necessary when receiving particle

state update from remote processes), deletion (when particles leave the domain), and

insertion (when new particles are created or move from another process). However,

the biggest drawback of the map is that it does not provide any random access iterators,

which prevents any efficient OpenMP parallelization. Additionally, the map elements

are not stored contiguously in memory (but in a tree instead), which significantly

slow down the memory accesses.

As a replacement, we decided to use the flat_map data structure provided

by the Boost library (Schäling, 2011). Indeed, boost::flat_map presents the same

functionality as the STL map but relies on a vector to store its elements and sorts

them according to the key. A direct benefit of such an approach is the availability

of a random access iterator as well as a contiguous memory storage. However

the insertion of new elements can be costly as it may require a re-allocation of the

array and a copy of its content. This drawback can be circumvented by reserving

bFor example, adding a new element in a vector requires to re-allocate memory and copy the whole
content of the vector to the newly allocated space.

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 135

Beginning of step

End of step

Output

Communication

Particles

Pairs of particles

Interactions

Sequential

Parallel

Integration

Parallel
Sequential

Apply models

Narrow Phase

Broad Phase

Prediction

FIGURE 6.1: The different phases of an XDEM iteration loop.

136 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

additional space to amortize the overhead induced by insertion operations upon their

occurrence.

As regards to the Broad-Phase, this stage operates on pairs of particlesc and

generates a list of particle pairs that can potentially interact. While the Broad-Phase

would also benefits from flat_map when iterating on the particles, such a data

structure would not be adapted. Indeed, the result of the Broad-Phase is a list of

particle pairs whose size is not known in advance – the number of contacts can

vary significantly from zero to many times the number of particles depending on

the packing level of the particles. Additionally, in an OpenMP parallelization, the

elements added to this list will be generated from multiple threads. The sequential

implementation of XDEM was naturally using the std::list data structure in which

new element can be added in constant time. And for the OpenMP implementation of

XDEM, we decided to use an STL deque structure to accumulate the list of particle

pairs. A deque can be considered as a list of vectors of constant size. Insertion at the

end is done in constant time (even when a new block is allocated because there is no

need to copy data from the previous blocks).

There is still the problem of concurrent accesses from the different threads to

add new pairs to this list. OpenMP proposes different mechanisms, like atomic or

critical regions and Reduction clause (since OpenMP 3.0) to handle safely this type of

concurrent operations. However, they represent a major performance bottleneck. As

detailed in the Listing 6.1, our solution to this problem is to accumulate the results of

each OpenMP thread in their private deque. In a second step, each thread’s results

are copied into a single result std::vector. The access range of the result vector is

calculated for each thread using the simple prefix calculation on the deque size of

each thread. In practice, this approach appeared to be much more efficient than a

critical region (in particular with large number of threads) or a Reduction clause that

does a merge operation for each element of the loop rather than for each thread.

The Narrow-Phase and Apply Physics Model phase operate on the list of in-

teractions (or pair of particles) generated during the Broad-Phase. Thanks to the

cOf course, efficient broad-phase algorithms do not consider all pairs (Rousset et al., 2017).

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 137

std : : vector < P a r t i c l e _ P a i r > i n t e r a c t i o n s ;
s td : : vector <int > s i z e s ;

#pragma omp parallel
{

s td : : deque< P a r t i c l e _ P a i r > private_deque ;

i n t i_ thread = omp_get_thread_num () ;
i n t nb_threads = omp_get_max_threads () ;

#pragma omp single
{

s i z e s . r e s i z e (nb_threads + 1) ;
s i z e s [0] = 0 ;

}

#pragma omp for
// Parallel broad-phase algorithm:
// - Check particle pairs for interaction
// - If interacting, add in the private deque
f o r (. . .)
{

i f (i n t e r a c t i n g (p1 , p2))
{

private_deque . push_back (P a r t i c l e _ P a i r (p1 , p2)) ;
}

}

s i z e s [i_ thread +1] = private_deque . s i z e () ;

#pragma omp barrier
#pragma omp single
{

s td : : part ia l_sum (s i z e s . begin () , s i z e s . end ()) ;
i n t e r a c t i o n s . r e s i z e (s i z e s [nb_threads]) ;

}

s td : : copy (private_deque . begin () , private_deque . end () , i n t e r a c t i o n s . begin () +
s i z e s [i_ thread]) ;

}

LISTING 6.1: Algorithm to accumulate the list of interactions from
different OpenMP threads

optimizations applied to the Broad-Phase, the list of interactions is now stored in an

STL vector, which naturally provides random access to its elements.

As a summary, the main optimizations of XDEM data structures are: (1) the

STL map of particles have been changed to a Boost flat_map; (2) the STL list of the

interactions generated during the Broad-Phase is now performed using a private STL

deque for each thread, a prefix calculation on the sizes and then a copy in an STL

vector.

Those changes allow to benefit from random data access for the OpenMP par-

allelization and to avoid concurrent accesses to shared containers. Finally, Tab. 6.1

summarizes the characteristics of the different data structures used in XDEM before
cInsertion and removal in a flat_map have a logarithmic search time, plus linear with the number

of elements bigger than key.

138 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

and after our optimizations (applied for the OpenMP parallelization). We only con-

sider the operations that are used in the XDEM. The complexity values are taken

directly from the official STL and Boost documentation.

6.3.2 Memory allocation

As detailed before, XDEM is a highly dynamic C++ code. It implies the creation and

deletion of objects all along of a simulation. This results in an intensive call of the

memory allocator (e.g. malloc() and free()), many of them happening within the

OpenMP parallel regions. Standard system memory allocator like GNU C library, or

glibc, use mutexes to prevent concurrent access to allocator structures and preserve

their consistency. In multi-threaded applications such as XDEM, different threads

concurrently invoke memory allocator, and as a result, we have a large number of lock

conflicts. So most of the time is spent in locking/unlocking mutexes even if threads

are working autonomously (thread is accessing objects created only by itself). This

result in some critical contentions which limited the scalability of our implementation.

The obvious solution is to avoid the creation of objects in dynamic memory and

allocate objects on the stack instead, but it is not always possible or convenient. To

workaround this issue, we have used alternative memory allocators: jemalloc (Evans,

2006) and TCMalloc (Ghemawat and Menage, 2009) which are designed to support

highly multi-threaded workflow. Those optimized memory allocators use multiple

independent arenas (for jemalloc) or thread caches (for TCMalloc) to reduce contention

in a multithread application. They can be used by explicitly linking the executable to

the memory library or by merely setting the LD_PRELOAD environment variable.

TABLE 6.1: Characteristics of the containers used in XDEM before
and after our optimizations. Only the operations used in XDEM are

considered.

Container Insert Erase Find Random
Access

Memory
Contiguity

map O(log n) O(log n) O(log n) No No
flat_map O(n)c O(n)c O(log n) Yes Yes

Container Push Back Random
Access

Memory
Contiguity

list O(1) No No
deque O(1) Yes Partially
vector Not used Yes Yes

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 139

FIGURE 6.2: The test case used for the performance evaluation simu-
lates the hopper discharge of 1 million particles. The left part shows
an overview of the setup with the particles colored according to their
size. The right side displays the middle slice allowing us to see the

particle velocity distribution during the discharge process.

140 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

6.4 Experimental Results

In order to assess the validity of our approach and evaluate the scalability of the

proposed strategies, we have set up and executed the Hopper Discharge test case

described in the section 6.4.1 below and illustrated in Fig. 6.2.

6.4.1 Case for experimental evaluation

To investigate the performance and the behavior of the OpenMP and Hybrid imple-

mentation, the Hopper Discharge test case is used with 250K and 1M particles. The

test case has been introduced in section 2.2.3.

6.4.2 Experimental settings

The experiments were carried out using the Iris cluster of the University of Lux-

embourg (Varrette et al., 2014) which provides 168 computing nodes for a total of

4704 cores. The nodes used in this study feature a total a 128 GB of memory and

have two Intel Xeon E5-2680 v4 processors running at 2.4 GHz, that is to say, a total

of 28 cores per node. The nodes are connected through a fast, low-latency EDR

InfiniBand (100Gb/s) network organized over a fat-tree topology. We used XDEM

version b6e12a86, compiled with GCC Compiler. Parallel executions were performed

using OpenMPI over the InfiniBand network. The nodes were reserved for exclusive

access to ensure the stability of the measurement. Additionally, each performance

value reported in this section is the average of at least a hundred measurements. The

standard deviation showed no significant variation in the results.

6.4.3 Impact of data structures

In this section, we highlight the impact of the data structure optimizations applied

to the XDEM code. We made a comparison between our original code and the new

OpenMP version on sequential execution.

6.4. Experimental Results 141

0

20

40

60

Hopper 250k Hopper 500k Hopper 750k Hopper 1M

Number of particle

S
eq

ue
nt

ia
l o

ne
 it

er
at

io
n

tim
e

[s
]

Legend Original Optimized

FIGURE 6.3: Impact of data structure in sequential for Hopper test
(from 250k left to 1M right).

142 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

Within this context, Fig. 6.3 compares the iteration time with the two versions of

XDEM for the hopper discharge test case with a different number of particles. We can

see the clear benefit of those optimizations, even in sequential execution, reducing

the execution time by 16% to 26% depending on the size of the case.

6.4.4 Impact of memory allocator

In this section, we quickly investigate the impact of the memory allocator on the

code’s performances. We compare the default memory allocator glibc to TCMalloc

and jemalloc.

Fig. 6.4 is a plot comparing the main loop time with glibc, TCMalloc and

jemalloc memory allocators previously introduce in Section 6.4.1 for the hopper

discharge test case with 250k particles. As expected, jemalloc and TCMalloc offer

better performances in multi-threaded programs, and the glibc performances drop as

the number of thread increases. Nevertheless, we see that jemalloc is slightly more

efficient than TCMalloc. In multi-threaded programs, the heap is a bottleneck that

makes the program not scalable. When multiple threads simultaneously allocate

or deallocate memory from the allocator, the operation is "serialized" by the glibc

allocator. jemalloc and TCMalloc allow to reduce the contention for memory operations

by using independent arenas (Evans, 2006) or thread caches (Ghemawat and Menage,

2009). XDEM code makes intensive use of the allocator (manual allocations and calls

to the C++ STL) that slow down the program as the number of threads increases.

jemalloc and TCMalloc eliminate this bottleneck by emphasizing fragmentation

avoidance and scalable concurrency.

6.4.5 OpenMP and MPI scalability

We have measured the execution time of the main loop of XDEM for the Hopper

Discharge case with 250K particles for our pure MPI and pure OpenMP versions

on one node, varying the number of cores from 1 to 28. Fig. 6.5 shows the speedup

comparison of the two approaches with the number of cores on the x-axis and the

speedup on the y-axis.

6.4. Experimental Results 143

●

●

●

●

●

● ●

●
● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20

40

60

0 10 20
Number of threads

O
ne

 it
er

at
io

n
tim

e[
s]

Memory allocator

●

glibc
tcmalloc
jemalloc

FIGURE 6.4: Impact of different memory allocators on one iteration
time with OpenMP version on one node (from 1 to 28 cores) for Hopper

test case (1M particles).

144 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

● ● ●
●

●

● ●

● ●
●

●
●

●

0

10

20

0 10 20

Number of Cores

S
pe

ed
up

Legend ● ● ●Ideal MPI OpenMP

FIGURE 6.5: SpeedUp of MPI and OpenMP versions on one node i.e.
up to 28 cores.

6.4. Experimental Results 145

The pure MPI version with a speedup of 23 (82% efficiency on 28 cores) scales

better than the OpenMP version with a speedup of 18 (64% efficiency on 28 cores).

We would expect the pure OpenMP version to perform better than the pure MPI

due to the overhead of the MPI communication but it is not the case. One possible

explanation is that, as shown on Fig. 6.1, the XDEM workflow is composed of differ-

ent phases which corresponds to different parallel OpenMP sections and therefore

represents implicit barriers. On the other end, the MPI version only uses barriers

during the communication phase.

6.4.6 Hybrid execution

To analyze the hybrid performance, we measured the main loop’s average time

per process with different schemes within our SMP nodes. The goal is to compare

different hybrid configurations with the same number of cores. Our cluster nodes

are composed of two processors, one per socket, and each socket has fourteen cores.

Taking into account this configuration, we have tested various hybrid MPI+OpenMP

strategies per node:

• 28 OpenMP threads per node, full OpenMP threads;

• 1 MPI processes per socket and 14 threads per MPI;

• 2 MPI processes per socket and 7 OpenMP per MPI;

• 7 MPI processes per socket and 2 OpenMP per MPI;

• 14 MPI processes per socket, full MPI processes;

The speedup tests were performed on 18 nodes i.e. 504 cores with the Hopper

Discharge one million case. The first remark is the OpenMP version under-performing

compared to the hybrid and full MPI version. The main reason comes from insufficient

workload as the number of cores increases. From 1 to 12 nodes, the full MPI speedup

better than the different hybrid strategies but from 12 (336 cores) to 18 nodes (504

cores) the hybrid "7 MPI processes per socket and 2 OpenMP per MPI" speedup better

than the full MPI. It is mainly due to the MPI communications overhead when the

146 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

●

●

●

●

●

●
● ●

●

● ●

●

●

●
● ●

●

●

0

100

200

300

400

500

100 200 300 400 500

Number of Cores

S
p

e
e

d
u

p

Nb threads
per process

●

1

2

7

14

28

FIGURE 6.6: Speedup of hybrid MPI+OpenMP executions for different
number of threads per process on the Hopper Discharge case with 1

million particles.

number of processes is increasing. The primordial advantage over a hybrid code is to

overcome full MPI bottleneck at an equal number of computing cores.

6.5 Conlusion

The Extended DEM is a C++ legacy code parallelized with MPI and developed for

more than ten years by many researchers contributing to several distinct feature of the

code. In this paper, we present the results of our effort to implement a complementary

OpenMP version of XDEM allowing for hybrid MPI+OpenMP simulations. In

particular, from the deep data structure profiling, a non-trivial code reorganization has

been performed, which includes several drastic changes in the used data structures,

as well as the selection of optimized fast multi-threaded memory allocators. Our

design choices are performance-oriented, and the experimental results obtained on a

real-world application validate the implementation changes and permitted to comfort

the proposed approach. More precisely, when comparing the performances of our

full MPI, full OpenMP, and different hybrid strategies in a HPC context, i.e. up to

504 computing cores (18 nodes) of the HPC facility of the University of Luxembourg,

6.5. Conlusion 147

we demonstrate the relevance of the hybrid version when increasing the computing

cores with a 15%− 20% performance gain. These open novel perspectives for the

efficient parallelization of the XDEM software. In particular, the future work induced

by this study includes the addition of a GPU layer within XDEM, and a detailed

cache optimization analysis to mainly improve sequential runs for bulky cases.

149

Part II

Performance analysis and

Application

151

Chapter 7

PERFORMANCE ANALYSIS

152 Chapter 7. Performance analysis

7.1 Introduction

In chapter 2, we introduced some standard methods to evaluate a computer program

performance. We have detected several hot-spots that have been addressed and

other aspects as the memory footprint that we ensured stay reasonable during our

developments. From chapters 3 to 6, we presented the major optimizations intro-

duced in our XDEM software to improve it. This chapter will therefore analyze

the global impacts of all those optimizations by setting-up a macro benchmarking

(using the Dam break test case) approach and comparing the latest version (10/2020,

git hash: 11ee77d0093b8409f1c6c8ec7dec749775c0da34) to the old version (03/2017,

git hash: 18a22cbfdadf7fe2afd8bbc9ba02744d75b775d0) of XDEM using the Biomass

baseline test case. The goal of the current chapter is therefore to firstly compare the

performance of the old and latest versions of XDEM by highlighting where the gains

have been made in sequential and parallel runs. The behavior of our XDEM software

in a coupled simulation with OPENFOAM is also studied at a large and parallel scale

environment.

Strong scaling and speed up have been performed using the execution time as a

performance metric.

7.2 New vs old XDEM versions performance

In this section, we compare the performance of the 03/2017 and 10/2020 XDEM

versions using the baseline biomass test case defined in section 7.2.1. The main

purpose is to assess and highlight the performances brought by all the efforts made

during this doctoral research. As for our previous performance assessments, the

simulation time has been chosen as a performance metric as it is the main performance

criteria for XDEM users. Only the simulation time of the dynamic and conversion parts

of XDEM are presented and studied in this comparison.

7.2. New vs old XDEM versions performance 153

7.2.1 Biomass furnace combustion

The DEM test case presented in the section is an application case used throughout

the research to assess our optimization developments’ performance. The test case

simulates a combustion chamber’s behavior of a 16 MW geothermal steam super-

heater, which is part of the Enel Green Power "Cornia 2" power plant and includes

both the moving wooden bed and the combustion chamber above it. In this test case,

the XDEM simulation platform is based on a hybrid four-way coupling between

the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD).

In this approach, particles are treated as discrete elements coupled by heat, mass,

and momentum transfer to the surrounding gas as a continuous phase. Besides

the equations of motion for individual wood particles, the differential conservation

equations for mass, heat, and momentum, which describe the thermodynamic state

during thermal conversion, are solved. This test case aims to propose a numerical

approach that can combine computationally low-cost simulations and practical use

of the design for industrial applications with sufficient accuracy of the results.

FIGURE 7.1: The Enel Green Power "Cornia 2" biomass combustion
power plant.

The case has 2224 particles arranged on moving and fixed grates. The grate has

154 Chapter 7. Performance analysis

three different moving sections to ensure adequate mixing of the biomass parts and

an appropriate residence time. The primary air (PA) enters from below the grate in

the combustion chamber. Those grates are split into four different zones (sections).

Furthermore, a secondary air (SA) is injected at high velocity straight over the fuel

bed through two circular nozzles. A Flue Gas Re-circulation (FGR) is partly injected

through two jets along the vertical channel and partly from below the grate (see

Fig. 7.1). The biomass furnace’s geometric data and operating conditions can be

found in the Master thesis (LUPI, 2017a) and chapter 8.

7.2.2 Sequential performance

Fig. 7.2 compares the sequential simulation time of the 03/2017 and 10/2020 versions

of XDEM using the baseline biomass test case with Dynamic and Conversion modules.

The performance evaluation does not include OPENFOAM as it was disabled. The

plot is a stacked barplot of the different XDEM main parts for the old and new

versions. We can notice a clear gain in the performance as the actual 10/2020 version

is 13× times faster than the 03/2017 version, and they respectively have 1567s and

120.53s simulation times.

The speed up from the old to new version of the code is perceptible in all the

main parts of the simulation, as shown in Tab. 7.1.

XDEM Parts 03/2017 [s] 10/2020 [s] Speed up (between the two versions)
Broad phase 235 6 40

Narrow phase 438 30 14.60
Dynamic models 470 36 13

Integration 235 18 13.05
Conversion 16 1.20 13.33

Others 31.34 18 1.72

TABLE 7.1: Table to compare XDEM versions simulation times in
sequential.

The gains shown in Fig. 7.2 and Tab. 7.1 demonstrated that the multiple opti-

mizations and improvements also benefit the sequential runs. The significant changes

introduced in data structures, algorithms and many small improvements have proved

their benefits in the sequential runs. It is an essential performance gain for XDEM

7.2. New vs old XDEM versions performance 155

0

500

1000

03/2017 10/2020
Version [−]

T
im

e
[s

]

XDEM_part
BroadPhase
NarrowPhase
Dynamic_Models
Integration
Conversion
Others

XDEM versions sequential time comparison

FIGURE 7.2: Sequential simulation time comparison between 03/2017
and 10/2020 XDEM versions.

156 Chapter 7. Performance analysis

users as the sequential runs are often used to set-up a case before production runs,

which are usually performed in parallel.

4

32

256

BroadPhase Conversion Dynamic_Models Integration NarrowPhase Others
Sections

T
im

e
(lo

g)
 [s

]

Version
03/2017
10/2020

XDEM main parts time comparison

FIGURE 7.3: XDEM main parts simulation time comparison between
03/2017 and 10/2020 XDEM versions. The y-axis is represented in

log time.

In Fig. 7.3, we present the simulation times of the main parts of the XDEM

software: broad and narrow-phases, dynamic integration and contact models, and

conversion (chemical reactions). It compares the 03/2017 and 10/2020 versions. It

comes out that we have made a big step forward in the collision detection processes

as the most gains were made in the broad/narrow phases and dynamic models (see

also Tab. 7.1). The broad-phase simulation time is reduced from 235 to 6 seconds,

illustrating a huge speed up of 40 between the old and new versions. On the other

hand, the narrow-phase and dynamic models’ simulation times are down from 438

to 30 seconds and from 235 to 18, respectively, showing speed ups of 15 and 13.

This comes as a non surprise as the chapters 3, 4, and 5 focused on the collision

detection processes optimization. Indeed, the sequential runs’ significant gains come

from optimizing the algorithms, implementations, and data structures. Important

7.2. New vs old XDEM versions performance 157

performance gains were also made in the Integration and Conversion parts (speed up

of 13 for both).

7.2.3 Parallel performance

This section compares the parallel runs simulation time of the 03/2017 and 10/2020

XDEM versions with Dynamic and Conversion modules. The performance evaluation

does not include OPENFOAM as it was disabled. Fig. 7.4 shows the primary loop

simulation time over the number of cores of the old and new XDEM versions. We

can observe that the 10/2020 version is much faster (11 times on 28 cores) than the

03/2017 version in parallel as it was in sequential runs. There is a speed up of 13 in

sequential and 11 in parallel using 28 cores between the two versions.

32

256

2048

0 10 20
Number of cores [-]

Si
m

ul
at

io
n

tim
e

(lo
g)

 [s
]

Version
03/2017
10/2020

Full MPI simulation time

FIGURE 7.4: Strong scaling of the main loop’s simulation time. The
number of MPI processes is on the x-axis, and the log simulation time

on the y-axis. The execution was made on one node with 28 cores.

Tab. 7.2 compares the main loop simulation times of the two XDEM versions

in Full parallel MPI. The number of cores is also the number of MPI processes. On

158 Chapter 7. Performance analysis

average, in parallel, the 10/2020 version is 11 times faster than the 03/2017 version

(13 times in sequential).

Number of cores 03/2017 [s] 10/2020 [s] Speed up [-] (between the two versions)
1 1567 120.53 13
2 800.10 68.40 11.70
4 458.10 40.40 11.34
8 232.20 23 10.10
16 118.60 12.50 9.50
24 93.40 8.30 11.25
28 76.90 6.80 11.30

TABLE 7.2: Table to compare XDEM versions simulation times in
parallel, full MPI configuration.

In full MPI configuration, the 10/2020 version’s strong scalability is better than

the 10/2020’s version highlighting the performance gains that have also been made

through MPI optimizations. However, the 10/2020 XDEM version has OpenMP

parallel capabilities and offers different hybrid MPI/OpenMP configurations. In

Fig. 7.5, we compare the strong scalability of three different hybrids MPI/OpenMP

parallel configurations: full OpenMP, 2 MPI processes per node and 14 OpenMP threads

per MPI process, and 14 MPI processes per node and 2 OpenMP threads per MPI process.

We can notice that the three strategies are very close in simulation time, but the

full OpenMP emerges as the fastest strategy. All hybrid configurations are better than

the full MPI configuration. Hybrid configurations have less MPI process, thus less

communication overhead, and therefore less simulation time and better speed up.

Fig. 7.6 shows the speed up comparison between the 03/2017 and 10/2020

XDEM versions using the baseline test case. The 03/2017 version was performed

using a full MPI configuration, as it was the only parallel configuration available.

The latter version used the fastest parallel configuration, in full OpenMP to take

advantage of the OpenMP implementation introduced during this doctoral research

(chapter 6). The simulations were performed on one node (28 cores).

We observe in Fig. 7.6 that XDEM most recent version 10/2020 outperforms the

03/2017 version as it has a better speed up. Indeed, the recent version, with all the

latest optimizations, has a speed up of 24 over 28 cores (∼ 86% of parallel efficiency

compared to sequential run) while the 03/2017 version has got only 12 speed up

7.2. New vs old XDEM versions performance 159

0

25

50

75

100

125

1 2 4 8 16 24 28
Number of cores[−]

S
im

ul
at

io
n

tim
e

[s
]

Version 14_MPI/2Threads 2_MPI/14Threads 28_Threads

Hybrid MPI/OpenMP simulation time

FIGURE 7.5: Strong scaling of the main loop’s simulation time of three
hybrid MPI/OpenMP parallel configurations. The number of cores is
on the x-axis, and the simulation time on the y-axis. The executions

was made on one node with 28 cores (exclusive reservation).

160 Chapter 7. Performance analysis

●●
●●

●

● ●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

10

20

0 10 20
Number of Cores

S
pe

ed
up

Configuration ● ●03/2017_FullMPI 10/2020_FullOpenMP

FIGURE 7.6: Speed up comparison between 03/2017 XDEM version in
Full MPI configuration and 10/2020 XDEM version in Full OpenMP
configuration. The x-axis represents the number of processes and the
speed up on the y-axis. The executed was made on one node with 28

cores.

over 28 cores (∼ 43% of parallel efficiency). Therefore, it is evident that a shared

memory approach over one node is the best strategy to follow. Thus, it justifies the

OpenMP implementation for simulations on workstations, personal computers, and

large supercomputers (where the hybrid configuration is the best strategy).

In Fig. 7.7, we compare the improvement percentage (between sequential and

parallel (on 28 cores) simulation times) of some essential parts of the XDEM code:

the broad-phase, the narrow-phase, the integration (dynamic and conversion), and

the dynamic models. The improvement is defined as follow:

Improvement =
Tseq − Tpara

Tseq
(7.1)

where Tseq and Tpara are respectively the sequential and parallel (28 cores) simulation

times.

The main gain was made in the broad and narrow-phases whose improvements

went from 55% to 91% and 47% to 78% respectively. That is a significant gain as it

plays a massive part in the overall gains. A critical gain was also made in the dynamic

7.2. New vs old XDEM versions performance 161

0

25

50

75

Apply_Dynamic_Models BroadPhase Integration NarrowPhase
XDEM part [-]

Im
pr

ov
m

en
t [

%
]

Version
03/2017
10/2020

XDEM main parts speed up comparison

FIGURE 7.7: Improvements comparison between 03/2017 XDEM ver-
sion in Full MPI configuration and 10/2020 XDEM version in Full
OpenMP configuration. The comparison is made between sequential
and parallel simulations using 28 cores. We compare the improve-
ments of some critical parts of the XDEM code: the broad-phase, the
narrow-phase, the integration (dynamic and conversion), and the dy-
namic models. The x-axis represents the critical parts of the XDEM
code and the improvement in percentage (compared to sequential) on

the y-axis.

162 Chapter 7. Performance analysis

models’ module as the speed up went from 29% to 63%. The lesser gain that was

accomplished is the Integration module with speed up going from 58% to 69%.

7.3 Large scale XDEM-OPENFOAM coupling performance

In this section, we want to study the behavior of a coupled XDEM+OPENFOAM

simulation at a large scale. The goal is to evaluate the performance of XDEM in

this particular coupling use case. For this purpose, we selected a test case which is

big enough (in domain size and number of particles) to be executed with thousand

of cores. Therefore, we measured the main loop’s simulation time using different

parallelization schemes within our SMP nodes to analyze the performance of the

dam-break (see the case in section 7.3.1 below) XDEM-OPENFOAM test case.

7.3.1 Dam break test case

The Dam break is a very common benchmark for two-phase flow simulations. The

case domain is a box of dimensions. 0.2m× 0.1m× 0.3m in which a column of water

of extension 0.05m× 0.1m× 0.1m is located in the left corner and where two layers

of spherical particles are disposed (see Fig.7.8). The first and bottom layers are

composed of light particles of a 7.5mm radius, and the upper and layer are composed

of heavy particles of a 10mm radius.

It should be noted, as shown in Fig. 7.8 that our configuration does not contain

any intermediate obstacle.

7.3.1.1 Configuration

The entire case comprises 2.35 million particles interacting with the column water in

an XDEM-CFD coupling approach. The benchmark was originally chosen to highlight

the benefit of using a multi-scale DEM-VOF method over the classical DEM-VOF

method (Pozzetti and Peters, 2018).

7.3. Large scale XDEM-OPENFOAM coupling performance 163

FIGURE 7.8: Dam break initial configuration. Light particles (bottom)
in yellow and heavy particles in red (upper) are initially positioned

within a column of water.

164 Chapter 7. Performance analysis

Our multi-scale DEM-VOF method uses a dual-grid multi-scale approach with a

coarse grid that performs the coupling between CFD and DEM code at a bulk scale,

while a finer and non-uniform grid is adopted to discretize the CFD equations. An

interpolation strategy between the grids ensures the correct exchange of information

between the bulk scale at which the inter-physics coupling is performed and the fine

fluid scale at which the fluid equations are solved. It has been shown in (Pozzetti

and Peters, 2018) that the approach produces grid-convergent results and provides a

higher accuracy if compared to a standard DEM-VOF method.

FIGURE 7.9: Different length scales in high-Stokes three-phase flows:
bulk (coarse) scale and fluid fine scale (left figure). Schematic of the
solution procedure for the bulk and fine length-scale in the simula-
tion. The two boxes represent the different models adopted, while
the arrows show the communication between the scales schematically.
A coarse grid (top) is used to perform the volume averaging and to
solve the fluid-particle interaction. Particle-related fields are mapped
to the supporting domain (bottom) then, a finer grid is used to solve

the fluid equations (Pozzetti and Peters, 2018).

We discretized the fine grid into 10M CFD cubic cells (identical) while the coarse

grid is discretized into 500k cubic cells (see Fig. 7.10). The gas (light) phase has a

density of 1kg/m3 and a viscosity of 10−5Pas. The density and viscosity of the liquid

(heavy) phase are respectively 1000kg/m3 and 10−3Pas (see Tab.7.3).

A linear dashpot impact model with a spring constant of 1200N/m is used for

particle-particle and particle-wall collisions. We also used a restitution coefficient of

0.9 and a friction coefficient of 0.3.

7.3. Large scale XDEM-OPENFOAM coupling performance 165

Property

Phase
Density Viscosity

Gas 1kg/m3 10−5Pas
Liquid 1000kg/m3 10−3Pas

TABLE 7.3: Gas and liquid phases properties.

FIGURE 7.10: Three-phase dam-break multi-scale strategies.

166 Chapter 7. Performance analysis

7.3.1.2 Parallel set-up

The multi-scale DEM-VOF method is accomplished by coupling the XDEM and the

OPENFOAM software, both of them having parallelization capabilities. As detailed in

chapter 5, we now can perform hybrid MPI+OpenMP simulations within the XDEM

framework. OPENFOAM, on the other hand, has only MPI parallelization approach

allowing to discretize the fluid mesh (fine grid). Parallelization makes it possible to

amortize the additional cost induced by choosing a fine grid for the fluid phase.

XDEM

OpenFOAM

MPI+OpenMP
Parallelization

MPI
Parallelization

FIGURE 7.11: XDEM and OPENFOAM parallelization strategies.
XDEM uses an hybrid MPI+OpenMP approach while OPENFOAM is

partitioned using only MPI.

Fig. 7.11 describes the parallelization strategies of XDEM and OPENFOAM

software. OPENFOAM is always used in full MPI parallel configuration as it is the

only parallel strategy available. On the other hand, XDEM is used with both full MPI

and hybrid MPI+OpenMP parallel strategies. We also use different configurations

in the hybrid strategy by varying the number of MPI processes per node and the

number of OpenMP threads per MPI process.

The experiments were carried out using the Iris cluster of the university of

7.3. Large scale XDEM-OPENFOAM coupling performance 167

Luxembourg (Varrette et al., 2014). The Iris cluster is the most powerful computing

platform available within the University of Luxembourg (since 2017) running on

CentOS Linux operating system (see Fig. 7.12). It’s composed of 196 nodes, to say

5824 cores (28 cores/node) for a theoretical peak performance (RPeak) of 1.095PFlops.

The nodes are distributed between CPU Skylake and Broadwell processors nodes (168)

and GPU NVIDIA Tesla V100 SXM2 nodes (28). The nodes are connected through an

Infiniband EDR (100Gb/s) network and use three different parallel file systems for

data storage: GPFS (10GiB/s read and write), Lustre (10GiB/s read and write) and

Isilon OneFS.

FIGURE 7.12: The Iris cluster computing nodes.

7.3.2 Strong scalability and Speed Up

This section presents the speed up results performed on 85 nodes to say 2380 cores.

The goal is to compare different hybrid configurations with the same number of

168 Chapter 7. Performance analysis

cores to get the best strategy for running a dam-break case. Three different parallel

configurations have been tested:

• Full MPI run. All 2380 cores are used for MPI processes to decompose the

XDEM and CFD domains.

• Hybrid MPI/OpenMP run. This configuration uses 2 MPI processes per node,

each process on a different socket, and 14 OpenMP threads per MPI process.

The XDEM and CFD domains are, therefore, decomposed using 170 processes.

• Hybrid MPI/OpenMP run. This configuration uses 14 MPI processes per node,

7 processes on a socket, and 2 OpenMP threads per MPI process. The XDEM

and CFD domains are, therefore, decomposed using 1190 processes.

In Fig. 7.13, we compute the speed ups relative to the simulation time on one

node (for each configuration) rather than with the simulation time on one core (takes

much time). We can see that the two different hybrid configurations (2MPI/14Threads

and 14MPI/2Threads) have overall higher speed up than the full MPI configurations

(on 2380 cores). Indeed, the latter configurations have respectively 1690 and 1380 of

speed up over 2380 cores while the full MPI has only a speed up of 1142 (on 2380

cores). That is a gain of 32% of speed up between the best hybrid and the full MPI

configurations.

We can also observe that below 1000 cores, the full MPI configuration outper-

formed the hybrid configuration with a better speed up. The configurations with

more MPI processes performed better than the ones with more OpenMP threads. At

a first look, it is surprising as we would expect the hybrid configurations always to

perform better than the full MPI because they have fewer MPI processes and, thus,

less communication. However, looking at the simulation times, it turns out that

the full MPI is the slowest strategy and the hybrid configurations are faster. The

full MPI has a better speed up only because it is the slowest strategy on one node,

which simulation time is used to compute the speed up. From 1000 cores, the full

MPI configuration speed up falls compared to the hybrid configurations. It can be

explained by the fact that we have reached a performance wall. The communication

between the MPI processes has an overhead that has a significant impact on the

7.3. Large scale XDEM-OPENFOAM coupling performance 169

●●●●●●●●●
●●●

●●●
●●● ●

●
● ●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

500

1000

1500

2000

0 500 1000 1500 2000
Number of Cores

S
p

e
e

d
u

p

Configuration ● ● ●14_MPI/2_Threads 2_MPI/14_Threads Full_MPI

FIGURE 7.13: Speed up of hybrid MPI/OpenMP runs with different
process/thread configurations. The x-axis represents the number of

processes and the speed up on the y-axis.

overall performance. On the other side, having a hybrid configuration allows us to

minimize the MPI processes. Thus, we minimize the MPI inter-processes communi-

cations while using the same amount of resources and having a better performance

rate.

As the dam-break test case uses a coupling CFD-DEM model with XDEM

and OPENFOAM, it is imperative to understand and highlight the contribution

of each software. Fig. 7.14 shows the simulation time proportion of XDEM and

OPENFOAM for different number of cores. Fig. 7.14a shows the proportions in the

full MPI parallel configuration of XDEM and OPENFOAM, and we can notice that

XDEM’s contribution (proportion in the simulation time) increases as the number of

cores increases. With 56 cores, the contributions are even as we have 56% and 44%

proportions for XDEM and OPENFOAM respectively. But the proportion of XDEM

increases and reaches 81% with 2380 cores while the OPENFOAM proportion is down

to 19%. XDEM is, therefore, a performance bottleneck in the coupling approach with

OPENFOAM when using the full MPI parallel configuration. Fig. 7.14b shows the

simulation time proportions in the hybrid (2 MPI processes per node and 14 OpenMP

170 Chapter 7. Performance analysis

threads per MPI process) parallel configuration for XDEM and full MPI configuration

for OPENFOAM, and in this configuration, we can notice that the two contributions

do not evolve much as the number of cores increases. XDEM’s contribution goes

from 52% to 63% for 56 and 2380 cores, respectively, and those contributions are

better (lower) than in the full MPI configuration highlighting the benefits of the

hybrid configuration. The justification lies in the communication and computation

load-imbalances defined as the uneven distribution of communication/computation

works, respectively, across the MPI processes. Therefore, it is evident that our XDEM

presents load imbalance issues as the number of MPI processes increases. That is

why the hybrid configuration performs better as it has fewer MPI processes and less

computational and communication load-imbalances.

In Fig.7.15, we compare XDEM and OPENFOAM load-imbalances for the dam-

break for different numbers of cores in the full MPI configuration.

We observe in Fig. 7.15, as it can be suspected, the more processes there are, the

more computation imbalances there are. The OPENFOAM imbalance goes from 3%

with 56 cores to almost 100% with 2380 cores. It also presents a steady and continuous

increase. Typically, for OPENFOAM, with 2830 cores, there is a computation load

difference of 100%, meaning there is 100% computation load difference between the

MPI process with the lowest computation load and the MPI process with the highest

computation load. On the other hand, the XDEM computation load-imbalance goes

from 3% with 56 cores to almost 160% with 2380 cores. We observe a big load-

imbalance jump between 840 and 1260 (from 25% to 90%) cores. It is in accordance

with the scalability and speed up results presented in Fig. 7.13, where we noticed

a fall down of the speed up around 1000 cores. With 2830 cores, for XDEM, there

is a computation load difference of 160%, meaning there is 160% computation load

difference between the MPI process with the lowest computation load and the MPI

process with the highest computation load.

Fig. 7.16 presents the computation load imbalance for the two hybrid MPI/OpenMP

strategies. Without any surprise, the hybrid strategy with 2 MPI processes per node

and 14 OpenMP threads per MPI process has the lowest communication load im-

balance as it has the least number of MPI processes. It imbalance goes from 0.15%

7.3. Large scale XDEM-OPENFOAM coupling performance 171

0

25

50

75

100

56 168 504 840 1260 1512 2380
Number of cores[−]

S
im

ul
at

io
n

tim
e

[%
]

Software
OpenFOAM
XDEM

XDEM and OpenFOAM proportion comparison for Full MPI configuration

(A) Simulation time percentage for Full MPI configuration for XDEM and OPENFOAM.

0

25

50

75

100

56 168 504 840 1260 1512 2380
Number of cores[−]

S
im

ul
at

io
n

tim
e

[%
]

Software
OpenFOAM
XDEM

XDEM and OpenFOAM proportion comparison for hybrid configuration

(B) Simulation time percentage for Hybrid MPI/OpenMP.

FIGURE 7.14: XDEM and OPENFOAM simulation time proportion
comparison. The left figure compares the proportions for a Full MPI
configuration for XDEM. The right figure compares the proportions
for a hybrid 2 MPI processes per node and 14 OpenMP threads per

MPI process for XDEM.

172 Chapter 7. Performance analysis

0

50

100

150

56 168 504 840 1260 1512 2380
Number of cores[-]

Im
ba

la
nc

e
[%

]

Software
OpenFOAM
XDEM

Full MPI configuration domain decomposition imbalances

FIGURE 7.15: XDEM and OPENFOAM load-imbalances for the dam-
break domain decomposition in the Full MPI parallel configuration.

7.3. Large scale XDEM-OPENFOAM coupling performance 173

with 56 cores to only 17% with 2380 cores (170 MPI processes). It is nine (9) times

lower than the imbalance of the full MPI strategy on 2380 cores. The difference is as

expected because this hybrid approach has fourteen (14) times less MPI processes

than the full MPI approach. On the other hand, the hybrid strategy with 14 MPI

processes per node and 2 OpenMP threads per MPI process imbalance goes from 1.2%

with 56 cores to 94% with 2380 cores (1190 MPI processes). It is 1.7 times lower than

the imbalance of the full MPI strategy on 2380 cores. The difference is as expected

again because this hybrid approach has two (2) times less MPI processes than the full

MPI approach. So with the hybrid parallelization, the XDEM domain decomposition

presents even less load communication imbalance than OPENFOAM, which clearly

benefit the coupling simulations.

0

25

50

75

56 168 504 840 1260 1512 2380
Number of cores[-]

Im
ba

la
nc

e
[%

]

Parallel_Strategie
14MPI/2_Threads
2MPI/14_Threads

Hybrid configurations domain decomposition imbalances

FIGURE 7.16: XDEM load-imbalances for the dam-break domain
decomposition in the hybrid MPI/OpenMP parallel configuration.

We can conclude that the OPENFOAM software scales better than our XDEM

(in full MPI parallel configurations) for this dam-break test case mainly because

it presents a better load balance. However, the imbalance loads of XDEM in the

174 Chapter 7. Performance analysis

hybrid strategies are better (than full MPI) as they use less MPI process and thus

have less load imbalance. As shown in Fig. 7.10, the particles are located in the

first half of the domain in the initial configuration of the dam-break, leaving the

rest of the domain empty. As a result, despite our efficient partitioning algorithms

(Zoltan), it generates load and communication imbalance among MPI processes that

strongly impact the performance as it generates overhead and imbalance. It should

be noted that only hundreds of steps were performed without dynamic load balance

for the performance analysis. Therefore, the dam-break remains more or less in its

initial configuration. The latter results state once again the benefit of using hybrid

MPI/OpenMP simulation at a large scale, specially for coupling cases with OpenMP.

7.4 Conclusion

In this chapter, we presented the scalability results of the different implementation

made to the XDEM code. The goal was to assess the gains brought by all the contri-

butions conducted during the doctoral research. For this purpose, we introduced the

dam-break test case with more than two million particles (2.35M) with two different

piles of particles (light and heavy). We also presented our multi-scale DEM-VOF

method that uses a dual-grid multi-scale approach with a coarse grid that performs

the coupling between CFD and DEM code at a bulk-scale; a finer non-uniform grid is

adopted to discretize the CFD equations.

The parallelization set up was to use a hybrid MPI/OpenMP approach to execute

XDEM while using a pure MPI configuration for the CFD domain with OpenFOAM.

The scalability tests were performed on the Iris cluster of the University of Lux-

embourg on 85 nodes, as to say 2380 cores. We then compare different parallel

configurations: pure MPI approach and hybrid 2 MPI processes per node and 14

OpenMP threads per MPI process and 14 MPI processes per node, and 2 OpenMP

threads per MPI process. We showed that our approach allows reaching a speed up

of 1690 and a parallel efficiency of more than 70% on 2380 cores with the hybrid con-

figuration of 2 MPI processes per node and 14 OpenMP threads, which is better than

the pure MPI approach. We compared the communication load imbalance of three

7.4. Conclusion 175

parallel strategies with OPENFOAM’s and we noticed that the full MPI presented

the lowest speed up because it also has the most communication imbalance. Our

hybrid configurations has also lower communication imbalance than OPENFOAM

highlighting the benefit of using hybrid strategies in XDEM+OPENFOAM coupling

simulations. We also noticed that the best strategy in the dam-break case is different

from the hopper case described in chapter 6. The main difference between these

two cases is the load imbalances in the MPI processes. Therefore, when the MPI

domain decomposition presents a high load (communication and computation) im-

balance, we recommend using the maximum OpenMP threads possible in the hybrid

MPI/OpenMP strategies.

We also compared the scalability and speed up of the early 03/2017 and later

10/2020 XDEM versions. The results compared the scalability and speed up of the

main loop simulation time on one computing node. It appears that the full OpenMP

parallel configuration is the best strategy to chose on one node. We then compared

the main parts of the XDEM simulation loop: the broad and narrow-phases, the

integration (dynamic and conversion), and the dynamic models. The results indicated

a massive gain in the collision detection part due to the algorithm implementation

introduced in chapter 3 and the new Verlet buffer developed in chapter 4.

Finally, we have presented the benefit of using the OpenMP new capability to

perform hybrid MPI/OpenMP configurations. Apart from the OpenMP’s perfor-

mance gains, it also allows us to use more and more computing resources while

bringing more performance.

177

Chapter 8

NUMERICAL ANALYSIS OF A

GRATE FIRING COMBUSTION

PROCESS

178 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

8.1 Abstract

Biomass as a renewable energy source continues to grow in popularity to reduce

fossil fuel consumption for environmental and economic benefits. In the present

contribution, the combustion chamber of a 16 MW geothermal steam super-heater,

which is part of the Enel Green Power "Cornia 2" power plant, is being investigated

with high-performance computing methods. For this purpose, the extended discrete

element method (XDEM) developed at the University of Luxembourg is used to

simulate the moving wooden bed and the combustion chamber above it in a high-

performance computing environment. The XDEM simulation platform is based on a

hybrid four-way coupling between the Discrete Element Method (DEM) and Com-

putational Fluid Dynamics (CFD). In this approach, particles are treated as discrete

elements coupled with heat, mass, and momentum transfer to the surrounding gas

as a continuous phase. Besides the equations of motion for individual wood particles,

the differential conservation equations for mass, heat, and momentum are solved,

which describe the thermodynamic state during thermal conversion. The consistency

of the numerical results with the actual system performance is discussed in this paper

to determine the potentials and limitations of the approach a.

Keyword

Biomass Combustion XDEM CFD ENEL GREEN POWER SpA

aThis chapter was published as an article in Infub12 conference

8.2. Introduction 179

8.2 Introduction

Grate firing is one of the fundamental techniques used for heat and power generation

by combustion of biomass, as it allows the burning with little or no planning of a

wide range of fuels, including waste. Grate systems can be classified into different

categories depending on the manner the fuel transport is achieved, i.e., through

just gravity (stationary sloping grates), conveyor belts (traveling grates), moving

bars (forward-acting, reverse-acting, and reciprocating grates) or shaking movement

(vibrating grates) (Yin et al., 2008; Liyan et al., 2013). The grate system helps the

motion, mixing, and conversion of the fuel, thus improving the combustion rate and

minimizing the presence of unburnt carbon and pollutant emissions. The numeri-

cal investigation by (Peters et al., 2005) was carried out using the Discrete Element

Method (DEM) for the mix and segregation of biomass particles in a forward-acting

grate. (Sudbrock et al., 2011) studied whether DEM simulations can quantitatively

predict solid material mixing behavior on grates by analyzing the influence of opera-

tional parameters such as bar velocity, bar stroke, and moving patterns. (Simsek et al.,

2009) studied the motion (2D/3D DEM) and chemical conversion (heating, drying,

pyrolysis, and char combustion) of solid fuels in a packed bed composed of polydis-

perse spherical particles moving on a forward-acting grate and coupled to the reacting

flow above the combustion chamber. (Samiei and Peters, 2013) used a DEM model to

outline the particle residence time on forwarding and backward-acting grates. (Sun

et al., 2015) analyzed the effects of amplitudes and frequencies of moveable grates in

reciprocating grates. The works cited above justify DEM’s use in the study of particle

motion and mix in reciprocating grate firing. The biomass combustion process on a

moving grate involves multi-scale, multi-phase, and multi-species phenomena, which

increase the difficulties of predicting the biomass conversion, ultimately altering the

performances. There exist two main different numerical approaches categorizing

a biomass simulation to tackle all these interacting phenomena: single-phase and

multi-phase models. The single-phase directly solves the gas phase in the freeboard

through Computational Fluid Dynamics (CFD) (Yin et al., 2008). The effect of the

particle bed is taken into account by assigning the correct boundary conditions to the

freeboard CFD model (Patronelli et al., 2017). In multi-phase, both solid and gaseous

180 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

phases are taken into account by using an Eulerian-Eulerian (Yang et al., 2004; Kurz,

Schnell, and Scheffknecht, 2012) or Eulerian-Lagrangian approaches. In the latter, the

particle bed is treated by the DEM method for the motion and drying, devolatilization,

and char oxidation for the conversion process. The particles are treated as discrete

elements coupled with heat, mass, and momentum transfer to the surrounding gas

as a continuous phase. Besides the equations of motion, the differential conservation

equations for mass, heat, and momentum are solved for individual particles, which

describe the thermodynamic state during thermal conversion. In the present work,

we simulate the behavior of a large-scale, i.e. 15.7MWth, reciprocating grate system,

which is part of a hybrid plant, integrating biomass and geothermal energy, by ap-

plying a CFD-XDEM approach. The aim is to propose a numerical approach that

can combine a low computational cost by the use of high performance computing,

allowing the realistic use of the design with a sufficient accuracy of the results for

industrial applications.

8.3 Numerical model and simulation conditions

The grate has three different moving sections to ensure good mixing of the biomass

parts and an appropriate residence time. The primary air (PA) enters from below the

grate and is split into four different zones (sections). Furthermore, a secondary air

(SA) is injected at high velocity straight over the fuel bed through two circular nozzles.

A Flue Gas Re-circulation (FGR) is present and partly injected through two jets along

the vertical channel and partly from below the grate (see Fig. 8.1). Fig. 8.2a is a top

view of the 3D representation of the grates and particle motion. Fig 8.2b shows the

gas phase circulation through the combustion chamber with velocity arrows. The

surface bed temperature is displayed, and the particles are colored according to their

surface temperature distribution.

The geometric data and operating conditions of the biomass furnace are summa-

rized in Tab. 8.1 and can be found in the master thesis (LUPI, 2017b).

In this model, the biomass fuel bed is composed of 80% wood-chips and 20%

of agricultural residues corresponding to the biomass plant’s real conditions. The

8.3. Numerical model and simulation conditions 181

FIGURE 8.1: Biomass combustion chamber 2D design.

TABLE 8.1: Characteristics and operating conditions of the super-
heater. PA = primary air, SA = secondary air

Input Thermal Power [MW] 15.7
Fuel Mass Flow Rate [kg/h] 5433
PA Mass Flow Rate [kg/h] 20745
SA Mass Flow Rate [kg/h] 8890

FGR Mass Flow Rate [kg/h] 30000
PA Temperature [◦] 200
Lower SA jet arrays 2×7

Upper FGR jet arrays 2×6
Grate Tilt [◦] 15

Specific Heat Load [kW/m2] 715
Number of Inlet Sections 4

Independent Groups of Mobile Steps 3

182 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

proximate and ultimate analysis of the biomass is provided in Tab. 8.2.

TABLE 8.2: Biomass analysis. ar = as received, daf = dry ash free

Properties Woodchips Residues Mixture
Mix Fraction [%wt,ar] 80 20 100
Granulometry range [mm] - - 5÷400
Average particle size [mm] - - 30
Moisture [%wt,ar] 34.0 51.0 37.4
Volatiles [%wt,ar] 53.7 35.6 50.1
Fixed Carbon [%wt,ar] 11.3 8.3 10.7
Ashes [%wt,ar] 1.0 5.1 1.8
Carbon [%wt,daf] 49.60 51.15 49.82
Hydrogen [%wt,daf] 5.95 6.23 5.99
Oxygen [%wt,daf] 44.23 41.67 43.86
Nitrogen [%wt,daf] 0.22 0.95 0.33

The numerical model presented in this paper is based on a multi-phase approach.

The biomass particles are taken into consideration via the XDEM (Peters, 2013), while

the gaseous phase is described by CFD with OpenFoam.

XDEM is a novel and innovative numerical simulation technique that extends the

dynamics of granular materials or particles as described through the classical discrete

element method (DEM) by additional properties such as the thermodynamic state,

stress/strain for each particle (Peters et al., 2015). Thus, the particles’ combustion

on the moving beds in the furnace is processed by XDEM through conduction,

radiation, and conversion (Mahmoudi et al., 2016b) along with the interaction with

the surrounding gas phase, accounted for by CFD. The coupling of CFD-XDEM as

an Euler-Lagrange model is used in this paper, the fluid phase is a continuous phase

handled with an Eulerian approach, and each particle is tracked with a Lagrangian

approach. Energy, mass, and momentum conservation are applied for each particle.

The interaction of particles with each other in the bed and the surrounding gas phase

is considered. Hence, the sum of all particle processes represents the entire process,

like a fixed bed. The full 2D/3D multi-phase CFD-XDEM model simulations of the

biomass with the particle dynamics and conversion are performed using the XDEM

code, while the gaseous phase with the primary air (PA), the secondary air (SA), and

the flux gas recycled (FGR) is computed with CFD using the extend-OpenFOAM

software. The current CFD-XDEM coupling is a complete model that especially

8.3. Numerical model and simulation conditions 183

(A) Top view of the wood inlet and forward moving grates. The particles are colored
according their composition: wood chips (red particles) and residues (yellow particles).

(B) Velocity arrows, surface bed temperature and gaseous phase temperature in 3D
combustion chamber.

FIGURE 8.2: Biomass combustion chamber 3D views.

184 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

suits a biomass furnace, taking into account both particle motion and conversion,

including the interaction with the surrounding gas. An individual particle can have

solid, liquid, gas, or inert material phases (immobile species) at the same time. The

different phases can undergo a series of conversion through various reactions that can

be homogeneous, heterogeneous, or intrinsic. In the porous particles system, Darcy’s

law is applied for the chemical species transport (the gas captures in the porous

structure is considered ideal) under boundary conditions specified by the interaction

with the surrounding gas phase. The equilibrium model is used for the drying process,

assuming that the water vapor within the particle’s pores is in equilibrium with the

liquid and the bound water in the biomass combustion process. The shrinking phase

of the particle radius is taken into account in the current simulation. Further details

about the model can be found in (Mahmoudi et al., 2015). Pyrolysis is described with

three independent reactions expressing decomposition of wood to its main products

(char, tar, and gas), as given:

wood→ char (8.1)

wood→ tar (8.2)

wood→ νCO + νCO2 + νH2O + νH2 + νCH4 (8.3)

wood→ νCOCO + νCO2 CO2 + νH2OH2O + νH2 H2 + νCH4 CH4 (8.4)

Tar may also be subjected to a secondary crack reaction and form light gases:

tar → γtarinert tarinert + γCOCO + γCO2 CO2 + γH2 H2 + γCH4 CH4 (8.5)

Where in the above reactions, ν and γ are the mass fractions (Di Blasi, 2000; Wurzen-

berger et al., 2002).

In the whole process and the composition of gas products, homogeneous re-

actions during the gas phase play an essential role. During pyrolysis, the volatiles

released can react with oxygen, generating heat. In this analysis, we are using the

following four gas-phase reactions:

8.3. Numerical model and simulation conditions 185

CO + 0.5O2 → O2 (8.6)

CH4 + 2O2 → CO2 + 2H2O (8.7)

2H2 + O2 → H2O (8.8)

tar + 2.9O2 → 6CO + 3.1H2 (8.9)

The heterogeneous reactions, gasification, and combustion can occur to the

remaining char from the wood’s pyrolysis. These heterogeneous reactions are detailed

in the following reactions:

γC(s) + O2 → 2 (γ− 1)CO + (2− γ)CO2 (8.10)

C(s) + H2O→ CO + H2 (8.11)

C(s) + CO2 → 2CO (8.12)

where the partition coefficient γ is evaluated as (Johansson, Thunman, and

Leckner, 2007):

γ =
2
[
1 + 4.3e−

3390
TP

]
2 + 4.3e−

3390
TP

(8.13)

The rate expression and the kinetic data of these reactions can be found in (Mah-

moudi et al., 2016b). The char combustion and gasification reaction rates are based

on the particle’s oxidizing/gasifying agent’s partial pressure. Particles are assumed

to be isotropic in their scaling model and their properties to change along the radius.

The distribution of temperature and chemical species within the particles is assessed

through a solution of one-dimensional transient conservation equations describing

particle heat-up, drying, pyrolysis, and char oxidation/gasification with boundary

conditions at the particle surface deriving from the gas phase CFD solution (Mah-

moudi et al., 2015). The gas flow through the bed’s void space is modeled by applying

the governing equations for a flow passing through a porous medium, which is solved

186 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

using the finite volume method with OpenFOAM as a CFD tool. The Favre-averaged

formulation is used by closing Reynolds stresses with the Boussinesq hypothesis

and employing the standard k − ε model to determine the turbulent viscosity µt.

The interaction of chemistry with turbulence in the gas phase is treated through the

Partially Stirred Reactor (PaSR) model. Each computational cell is divided into a

reacting part and a non-reacting part. The former is represented as a perfectly stirred

reactor where all chemical species are assumed to be homogeneously mixed and

reacted. After the reactions have taken place, the species are mixed due to turbulence

for a mixing time τ mix and the resulting concentration represents the final one for

the entire, partially stirred reactor (Kadar, 2015). The mixing time-scale depends on

the local turbulence as:

τmix = Cmix

√
µe f f

ρε
(8.14)

where Cmix is a constant, µe f f is the effective dynamic viscosity (i.e., µe f f = µ + µt)

and ε is the turbulent dissipation rate.

The radiative flux coming from the walls ensures the particle ignition. The coupling

model enables applying a different flux to various bed surfaces, heat propagating

from top to bottom of the particle bed through conduction, taking the different visual

factors into account with the combustion chamber walls. Heat then propagates

through conduction from the upper to the lower layers of the particle bed. The

incident radiative flux is then estimated as:

qrad = ασ
(

T4
wall − T4

b

)
(8.15)

where α = 0.75, σ = 5.67 · 10−8 W/ m2 K4 is the Boltzmann constant. The average wall

temperature was set as Twall = 1200 K as available from thermocouples positioned

near the combustion chamber wall, while the average biomass temperature was that

of the first two biomass layer (and thus changes with iterations).

As previously noted, in addition to PA, the SA and RFG injection nozzles were

considered in the 2D/3D coupling model. The two types of biomass, wood-chips and

agricultural residues, have been used to compose the furnace’s particle bed. Such

8.4. Results and performance analysis 187

piles join the domain via a specific source that matches the volumetric system of the

drawer. The grate has alternated longitudinal movement in the three mobile units,

with roughly 80% being the advance and the remaining 20% being moved to the

initial position. The movement of each series is changed by the next 30s.

8.4 Results and performance analysis

The Fig. 8.3 illustrates the biomass bed temperature evolution in time and the heat-up

of the combustion chamber. The lower side colors bar represents the bed surface

temperature while the left middle color bar represents the gas phase temperatures.

After 5s simulation, both bed particles and gases are still cold and do not show any

heat-up phase (Fig. 8.3a). However, at 50s of simulation time, the firsts layers of the

bed start to warm up slightly even if the gas phase temperature appears relatively

the same as previous (Fig. 8.3b). From then on, around 250s, the ignition takes place

in the combustion chamber of the furnace with some high-temperature gas streaks

(around 1500K) that are due to the oxidation of volatile gases coming from the fuel

bed (Fig. 8.3c). After 600s, the gas streak temperature substantially increases, and the

combustion chamber appears to be characterized by those streaks with temperatures

locally exceeding 2000K (Fig. 8.3d). The same gas streaks scheme occurs when

simulating until 1200s suggesting that we reached a stable state after 600 ∼ 700s.

During the pseudo steady-state, the position of the gas streaks can oscillate due to

the grate movement.

The figures above show a change in shape as well as temperature when looking

at the fuel surface. The pseudo-steady conditions state, achieved around a time

simulation of 600 ∼ 700s, is confirmed in Fig. 8.4, which shows the average surface

bed temperature as a function of time. The high-temperature gas-streaks that seem

to govern the furnace’s thermal are unlikely to be predicted by a freeboard-only

approach (without fuel bed) but can be highlighted with a CFD-XDEM approach.

Additionally, we can note that the more prominent streak with higher temperature is

located in the grate area (4) close to the ash pit, suggesting that the significant release

188 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

(A) Combustion chamber bed temperature
at time t = 5s.

(B) Combustion chamber bed temperature at
time t = 50s.

(C) Combustion chamber bed temperature at
time t = 250s.

(D) Combustion chamber bed temperature
at time t = 600s.

FIGURE 8.3: Gas phase temperature distribution at different
simulation time: 5s (upper left), 50s (upper right), 250s (lower left),

600s (lower right).

of volatile happens at the end of the biomass path, particularly close to the ash pit.

Before that, the streaks are less pronounced and more consistent.

The average composition of all bed particles was calculated and reported in

Fig. 8.5 to analyze the different phenomena occurring in the combustion chamber

throughout the grating length. It can be noticed that devolatilization can complete

only near the outlet (length 7.5 in the Fig. 8.5); a very negligible amount of organic

matter is still present in this zone. At the outlet, the particles contain, on average, 8%

of char and 92% of ashes by wt., meaning that there remain some unburnt carbon

resulting from incomplete combustion. The 92% of ash at the outlet corresponds to

the initial residual ash present in the dry biomass within the feeding (it represents 5%

of the drying mass).

These results are consistent with actual data obtained from the residual solid’s

sampling in the industrial plant. From Fig. 8.5, we can notice the presence of little

moisture in the particles up to length 6.0, signaling that the drying process is still not

complete for many particles in these lengths. It can be explained that some particles

8.4. Results and performance analysis 189

0 200 400 600 800 1000 1200

Time [s]

200

300

400

500

600

700

800

900

1000

1100

A
v
e
ra

g
e
 b

e
d
 s

u
rf

a
ce

 t
e
m

p
e
ra

tu
re

 [
K

]

Average bed surface temperature temperature over time

FIGURE 8.4: Surface bed temperature distribution.

190 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

In

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

O
u
t

Grate zone [m]

0

20

40

60

80

100

C
o
m

p
o
si

ti
o
n
 [

%
]

Average particle composition over the bed length

Organic matter

Water

Ash

Char

FIGURE 8.5: Particle composition in the inlet, outlet and along the
grate length.

8.4. Results and performance analysis 191

located at the bottom of the bed are being pushed upwards later on the grate, thus

not able to complete their drying process.

Fig. 8.6 shows the average composition (wood, water, ash, and char) of particles

alongside the grates.

In

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

O
u
t

Grate length [m]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

C
o
m

p
o
si

ti
o
n
 [

K
g
]

Average particle composition over the bed length

Organic matter
Water
Ash
Char

FIGURE 8.6: Particle average composition in the inlet, outlet and along
the grate.

We can also notice how the moisture evaporates within the particles to a complete

drying process in the length of 6.0. The amount of ash remains constant throughout

the grating length and corresponds to the initial 5% ash introduced since the feeding.

The whole simulation of the complete 2D case has been run for around 1200s in

approximately five (5) hours thanks to advanced optimization techniques and the

parallelization of XDEM using the OpenMP approach (Checkaraou et al., 2018a). The

experiments were carried out using the Iris cluster of the University of Luxembourg,

which provides 168 computing nodes for 4704 cores. The nodes used in this study

feature a 128 GB of memory and have two Intel Xeon E5− 2680v4 processors running

at 2.4GHz; that is to say, a total of 28 cores per node. The nodes are connected through

192 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

a fast, low-latency EDR InfiniBand (100GB/s) the network is organized over a fat-tree

topology. Fig. 8.7 compares the simulation times of OpenFoam and XDEM in a

sequential and parallel coupling simulation. The proportion of XDEM in the coupling

simulation time goes from 80% in sequential to 55% in parallel using 28 OpenMP

threads, showing a speedup of 26 over 28 threads (93% compared to sequential).

FIGURE 8.7: Time proportion of XDEM and OpenFoam in the coupling
simulation.

8.5 Conclusion

In this paper, we presented a full 2D/3D CFD-XDEM model (given the plant’s

industrial size) to investigate biomass combustion in a large-scale reciprocating grate.

In our coupling model, the XDEM software is used to simulate the granular flow

along with the grates (with dynamic and conversion), and OpenFoam dealt with

the surrounding gases. We showed that there exists a pseudo-steady state after

600 ∼ 700s allowing a deeper analysis of the composition of the particles through

8.5. Conclusion 193

the grate lengths. Importantly, we were able to spot the level of unburnt carbon,

i.e., approximately 8%, which was inconsistent with the evidence in the real plant.

Therefore, the expected thermal field complied with the few provided experimental

data, acknowledging a proper consideration of the interaction between chemical

kinetics and turbulence. In particular, the model allows us to understand the effect

of flue gas recirculation on the combustion process injection. First and foremost, the

computational cost was relatively low due to the 2D/3D feature of the multi-phase

CFD-XDEM model, the XDEM code’s parallelization, and the high-performance

computers. It was a fundamental aspect to suggest using the present numerical

model for a real biomass plant’s practical operation.

195

Part III

Conclusion

197

Chapter 9

Conclusion

9.1 Summary

In this thesis, an optimization process of the XDEM software to perform large scales

and parallel simulations was discussed. The different contributions presented in this

work were developed during the whole length of the Ph.D., and this thesis is just a

collection of some of the most significant contributions presented and published in

different international conferences and journals. The optimization process consists

of evaluating XDEM software performances by conducting a series of profile using

benchmarks. This step is crucial as it spots the code’s weaknesses, the hotspots,

and the part to be addressed and optimized. As a result, we have spotted particle

collision detection as the most consuming computational time segment. We, therefore,

developed a complete C++ framework for collision detection algorithms that were

included within the XDEM software. Besides, we also proposed a new approach

of the Verlet list technique that takes the particles’ local flow regime conditions and

enhances the algorithm’s performance. We have developed a full OpenMP layer

within the XDEM platform that unlocks new parallel simulation strategies targeting

HPC systems.

The first contribution was introduced in chapter 3 with the development of a

C++ framework for testing the broad-phase algorithms. We evaluate and compare ten

different Broad-Phase Collision Detection algorithms (spatial partitioning and sorting,

grids, and trees) while considering a large DEM test case. It appears that the choice

of the best algorithm is a trade-off between many criteria, including the size of the

198 Chapter 9. Conclusion

search space, the number of particles, and memory usage. The new algorithms were

validated through a series of tests on different cases. They were afterward integrated

within the XDEM platform with the possibility to select a different type of algorithms

depending on the running case.

The second and third contributions are the development of an original Verlet

list implementation for DEM that takes the particle flow regime into account when

selecting the skin margin to enhance the algorithm’s efficiency further. The approach

is presented with a performance comparison with the standard and usual Verlet

approach. We also conducted an optimization study to determine which optimum

skin margin gives the best computing performance depending on particle local flow

regime parameters (velocity, solid fraction, number of particles, the ratio of particle

size to cell size). Hundreds of simulations were performed using the DAKOTA

software to solve the optimization problem (using genetic algorithms). Therefore, we

proposed a polynomial function expressing the optimum skin margin as a function

of the simulation parameters. The two contributions were introduced in chapters 4

and 5.

The fourth contribution is a complete implementation of an OpenMP strategy

within the XDEM software. It was presented in chapter 6 and was aimed to target the

High-Performance Computers (HPC) and systems by offering more parallel strate-

gies. Adding an OpenMP layer needed a consequent code implementation and data

reorganization, which required a vast code change effort as XDEM is legacy. It un-

doubtedly brings performance for parallel executions but also sequential executions.

This contribution is a significant accomplishment of the doctoral candidate during

his Ph.D. as it unlocks new possibilities and considerably speeds up the simulations

(as shown in chapter 7). It allows new complexes and bulky cases to be simulated.

3D Blast-furnace and Biomass simulations (chapter 8) were therefore performed in a

very reasonable time, accelerating the different research projects.

Finally, chapter 8 presents a biomass combustion test case. It a large scale applica-

tion coupling XDEM-OPENFOAM with thousands of particles. The case investigates

biomass combustion in a large-scale reciprocating grate. In the adopted coupling

approach, the XDEM software is used to simulate the granular flow (particles) along

9.1. Summary 199

with the grates (with dynamic and conversion), and OPENFOAM dealt with the

surrounding gases. We were able to spot the level of unburnt carbon, i.e., approx-

imately 5% that was in consistency with evidence in the real plant. This test case

acknowledged a proper consideration of the interaction between chemical kinetics

and turbulence in our coupling model as the expected thermal field complied with the

few provided experimental data. In particular, the model allows for understanding

the effect of flue gas recirculation on the combustion process injection. The proposed

approach is thus strongly recommended as it also presents a relatively low computa-

tional cost, thanks to the 2D/3D feature of the multi-phase CFD-XDEM model, the

XDEM code’s parallelization, and the high-performance computer systems.

Overall, this thesis’s different contributions developed during the doctoral re-

search and not introduced in this thesis allow large scale and parallel simulations that

were out of reach. Our contributions considerably speed up the XDEM simulation

platform and enable new research to be conducted and the exploration of new fields,

such as 3D models of biomass combustion chambers and complete Blast furnaces.

200 Chapter 9. Conclusion

9.2 Future tasks

The research presented in this thesis was intended to optimize the XDEM software to

run large scale and parallel DEM simulations using HPC capabilities and resources.

For this purpose, the entire collision detection process was reviewed with the im-

plementation of different algorithms. The Verlet was also enhanced with a newly

developed approach that further consider the particle flow regime. A full OpenMP

implementation of XDEM was designed to take full advantage of the shared memory

resources and the NUMA configuration of the supercomputers computing nodes.

Given these points already developed in this thesis, we propose to deepen and expand

the following topics:

1. The Hierarchical grid is among the algorithm implemented in the C++ bench-

mark and presented a relatively good performance. Nevertheless, it presents

an auspicious performance in the literature (Krijgsman, Ogarko, and Luding,

2014; Kroiss, 2013; Fan et al., 2011; Weinhart et al., 2020) for polydiverse

simulation case. Therefore we recommend implementing a hierarchical grid

algorithm within the XDEM framework. The new feature will add new

capabilities as it will be possible to efficiently simulate polydiverse cases

as the rotating drum (or mill charge) and granular flow for calibration and

validation.

2. Using machine learning techniques to further predict the optimal skin dis-

tance in the Verlet buffer method is another essential task that future work

should focus on. At the moment, we use a simple polynomial function to

predict the optimal skin distance. With more simulation data, better tech-

niques such as the random forest, logistic regression, or the gaussian process exist

to predict the optimal skin distance accurately.

3. A major challenge when using a distributed memory parallelization strategy

is to efficiently balance the load among the resources while maintaining the

numerical solution’s high accuracy throughout the computation. In DEM

simulations, we often deal with particles dynamically moving through the

entire domain going from to another region. There is, therefore, a demand

9.2. Future tasks 201

for a finer mesh in the regions where the particles go through. Thus, we

recommend to implement the Adaptative Mesh Rrefinement (ARM) for

DEM within the XDEM software. ARM is a method that adaptively refines

the mesh in certain regions of the domain to increase the solution accuracy.

An ARM can refine the mesh and the particle flow displacement for better

collision detection and flow prediction. Such a high-performance computing

technique is essential for computational efficiency in moving regions of inter-

est for distributed-memory parallel computer architectures where domain

decomposition is applied, especially with MPI. Moving regions of interest

are dynamically deforming and migrating through the domain during simu-

lations and require high spatial resolution of solution features (Rettenmaier

et al., 2019). ARM coupled with Dynamic Load Balancing (DLB) offer the

benefit to effectively reduced computational effort on large scale and parallel

simulations.

4. As presented in chapter 1, there is much existing software (open-sources and

commercials) available in the literature (Granular Dynamics International

and Software, 2020; “2.4 Theory Reference Guide, 2011”; Govender, Wilke,

and Kok, 2016) using GPU and multi-GPU capabilities. They have been

applied to many different applications with excellent performances. With the

additional computing resources available with a GPU, such implementations

make a massive simulation with complex shapes possible that were out of

reach (non-convex polyhedra particles, particle breakage) (Wilke et al., 2016;

Liu et al., 2020; Govender et al., 2018; Kasai et al., 2009; Chen et al., 2011).

Moving the XDEM code from CPU to GPU will require an enormous amount

of work, as the entire code would have to be rewritten from scratch. Faced

with this constraint, we recommend instead only perform some parts on

GPU. The collision detection process is an excellent candidate, as it has been

demonstrated in the literature (Scott, 2020; Govender, Wilke, and Kok, 2015).

An efficient data and results transfer between CPU and GPU coupled with

the GPU computing, will surely bring performance benefits to the XDEM

software.

203

Part IV

Bibliography

205

BIBLIOGRAPHY

Adams, Brian M et al. (2019). “DAKOTA, a multilevel parallel object-oriented frame-

work for design optimization, parameter estimation, uncertainty quantification,

and sensitivity analysis: version 6.11 user’s manual”. In: Sandia National Laboratories,

Tech. Rep. SAND2010-2183.

Allen, M. P. and D. J. Tildesley (1990). Computer Simulation of Liquids. Claredon Press

Oxford.

Allen, Michael P and Dominic J Tildesley (2017). Computer simulation of liquids. Oxford

university press.

Angeles, Luis and César Celis (2019). “Assessment of neighbor particles searching

methods for discrete element method (DEM) based simulations”. In:

Awile, Omar et al. (2012). “Fast neighbor lists for adaptive-resolution particle simula-

tions”. In: Computer Physics Communications 183.5, pp. 1073–1081.

Baraff, David (1992). Dynamic simulation of non-penetrating rigid bodies. Tech. rep.

Cornell University.

Berger, R et al. (2015). “Hybrid parallelization of the LIGGGHTS open-source DEM

code”. In: Powder Technology 278.

Bergstra, James and Yoshua Bengio (2012). “Random search for hyper-parameter

optimization”. In: Journal of machine learning research 13.Feb, pp. 281–305.

Berry, Mike, George Cybenko, and John Larson (1991). “Scientific benchmark charac-

terizations”. In: Parallel Computing 17.10-11, pp. 1173–1194.

Berryman, Sylvia (2004a). “Democritus”. In:

– (2004b). “Leucippus”. In:

206 Bibliography

Besseron, Xavier et al. (2013). “Unified Design for Parallel Execution of Coupled

Simulations using the Discrete Particle Method”. In: Proceedings of the Third Interna-

tional Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering.

Civil-Comp Press.

Boyd, Eric L et al. (1994). “A hierarchical approach to modeling and improving the

performance of scientific applications on the KSR1”. In: 1994 International Conference

on Parallel Processing Vol. 3. Vol. 3. IEEE, pp. 188–192.

Chandra, Rohit et al. (2001). Parallel programming in OpenMP. Morgan kaufmann.

Checkaraou, Abdoul Wahid Mainassara et al. (2018a). “Hybrid MPI+ openMP Im-

plementation of eXtended Discrete Element Method”. In: 2018 30th International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).

IEEE, pp. 450–457.

Checkaraou, Abdoul Wahid Mainassara et al. (2018b). “Predicting near-optimal skin

distance in Verlet buffer approach for Discrete Element Method”. In: 2018 30th

International Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD). IEEE, pp. 450–457.

Chen, Jin et al. (2011). “Analysis of rice seeds motion on vibrating plate using EDEM.”

In: Nongye Jixie Xuebao= Transactions of the Chinese Society for Agricultural Machinery

42.10, pp. 79–100.

Chialvo, Ariel A and Pablo G Debenedetti (1990). “On the use of the Verlet neighbor

list in molecular dynamics”. In: Computer physics communications 60.2, pp. 215–224.

– (1991). “On the performance of an automated Verlet neighbor list algorithm for

large systems on a vector processor”. In: Computer Physics Communications 64.1,

pp. 15–18.

Clarke, Lyndon, Ian Glendinning, and Rolf Hempel (1994). “The Message Passing

Interface standard”. In: Programming environments for massively parallel distributed

systems. Springer, pp. 213–218.

Cohen, Jonathan D et al. (1995). “I-collide: An interactive and exact collision detection

system for large-scale environments”. In: Proceedings of the 1995 symposium on

Interactive 3D graphics, 189–ff.

Coumans, Erwin (2015). “Bullet Physics Simulation”. In: ACM SIGGRAPH 2015

Courses. SIGGRAPH ’15.

Bibliography 207

Cundall, P. A. and O. D. L. Strack (1979). “A discrete numerical model for granular

assemblies”. In: Geotechnique 29, pp. 47–65.

DEM-Solutions, EDEM. “2.4 Theory Reference Guide, 2011”. In: DEM Solutions:

Edinburgh ().

Devine, Karen et al. (2002). “Zoltan data management service for parallel dynamic

applications”. In: Computing in Science & Engineering 4.2, pp. 90–97.

Di Blasi, Colomba (2000). “Dynamic behaviour of stratified downdraft gasifiers”. In:

Chemical engineering science 55.15, pp. 2931–2944.

Doglio, Fernando (2015). Mastering Python High Performance. Packt Publishing Ltd.

Donoso, Alvaro Antonio Estupinan and Bernhard Peters (2018). “Exploring a Multi-

physics Resolution Approach for Additive Manufacturing”. In: JOM 70.8, pp. 1604–

1610.

Duran, Jacques (2012). Sands, powders, and grains: an introduction to the physics of

granular materials. Springer Science & Business Media.

Ericson, Christer (2004). Real-time collision detection. CRC Press.

Erlangen Regional Computing Center, FAU (2019). ECM Performance Model. https:

//hpc.fau.de/research/ecm/.

Evans, Jason (2006). “A scalable concurrent malloc (3) implementation for FreeBSD”.

In: Proc. of the BSDCan Conference, Ottawa, Canada.

Fabri, Andreas and Sylvain Pion (2009). “CGAL: The computational geometry algo-

rithms library”. In: GIC’09. ACM.

Fan, Wenshan et al. (2011). “A hierarchical grid based framework for fast collision

detection”. In: Computer Graphics Forum. Vol. 30. 5. Wiley Online Library, pp. 1451–

1459.

Fang, X, J Tang, and H Luo (2007). “Granular damping analysis using an improved

discrete element approach”. In: Journal of Sound and Vibration 308.1-2, pp. 112–131.

Furley, David J (1967). “Knowledge of atoms and void in Epicureanism”. In:

Gaede, Volker and Oliver Günther (1998). “Multidimensional access methods”. In:

ACM Computing Surveys (CSUR) 30.2, pp. 170–231.

Gan, JQ, ZY Zhou, and AB Yu (2016). “A GPU-based DEM approach for modelling of

particulate systems”. In: Powder Technology 301, pp. 1172–1182.

https://hpc.fau.de/research/ecm/
https://hpc.fau.de/research/ecm/

208 Bibliography

Gelsinger, P. (2004). In: Intel Developer’s Forum. URL: https://www.intel.com/

pressroom/kits/events/idffall_2004/.

Ghemawat, Sanjay and Paul Menage (2009). Tcmalloc: Thread-caching malloc.

Ghoroghi, Camellia and Tannaz Alinaghi. An introduction to profiling mechanisms and

Linux profilers.

Glass, Kevin (2005). Analysis of broad-phase spatial partitioning optimizations in colli-

sion detection. Tech. rep. Technical Report. Grahamstown, South Africa: Rhodes

University.

Govender, Nicolin, Daniel N Wilke, and Schalk Kok (2015). “Collision detection

of convex polyhedra on the NVIDIA GPU architecture for the discrete element

method”. In: Applied Mathematics and Computation 267, pp. 810–829.

– (2016). “Blaze-DEMGPU: Modular high performance DEM framework for the GPU

architecture”. In: SoftwareX 5, pp. 62–66.

Govender, Nicolin et al. (2018). “A study of shape non-uniformity and poly-dispersity

in hopper discharge of spherical and polyhedral particle systems using the Blaze-

DEM GPU code”. In: Applied Mathematics and Computation 319, pp. 318–336.

Granular Dynamics International, LLC Engineering Simulation and Scientific Soft-

ware (2020). Rocky Discrete Element Method Package. (Visited on 2012).

Grindon, Christina et al. (2004). “Large-scale molecular dynamics simulation of

DNA: implementation and validation of the AMBER98 force field in LAMMPS”.

In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences 362.1820, pp. 1373–1386.

Haftka, Raphael T and Zafer Gürdal (2012). Elements of structural optimization. Vol. 11.

Springer Science & Business Media.

Hockney, Roger W (1996). The science of computer benchmarking. Vol. 2. siam.

Jasak, Hrvoje, Aleksandar Jemcov, Zeljko Tukovic, et al. (2007). “OpenFOAM: A

C++ library for complex physics simulations”. In: International workshop on coupled

methods in numerical dynamics. Vol. 1000. IUC Dubrovnik, Croatia, pp. 1–20.

Jiménez, Pablo, Federico Thomas, and Carme Torras (2001). “3D collision detection: a

survey”. In: Computers & Graphics 25.2, pp. 269–285.

https://www.intel.com/pressroom/kits/events/idffall_2004/
https://www.intel.com/pressroom/kits/events/idffall_2004/

Bibliography 209

Johansson, Robert, Henrik Thunman, and Bo Leckner (2007). “Influence of intra-

particle gradients in modeling of fixed bed combustion”. In: Combustion and Flame

149.1-2, pp. 49–62.

June 2020 top500 poster. https://www.top500.org/lists/top500/2020/06/. Ac-

cessed: 2020-08-30.

Kabore, B et al. (2018). “Multi-scale modelling of snow mechanics”. In: 41st Solid

Mechanics Conference (SOLMECH 2018). Warsaw, Poland.

Kadar, Ali Hussain (2015). “Modelling turbulent non-premixed combustion in indus-

trial furnaces”. PhD thesis.

Kasai, Mio et al. (2009). “LiDAR-derived DEM evaluation of deep-seated landslides

in a steep and rocky region of Japan”. In: Geomorphology 113.1-2, pp. 57–69.

Ketterhagen, William R, Mary T am Ende, and Bruno C Hancock (2009). “Process

modeling in the pharmaceutical industry using the discrete element method”. In:

Journal of pharmaceutical sciences 98.2, pp. 442–470.

Kloss, Christoph et al. (2012). “Models, algorithms and validation for opensource

DEM and CFD–DEM”. In: Progress in Computational Fluid Dynamics, an International

Journal 12.2-3, pp. 140–152.

Kockara, Sinan et al. (2007). “Collision detection: A survey”. In: 2007 IEEE International

Conference on Systems, Man and Cybernetics. IEEE, pp. 4046–4051.

Kozicki, Jan and Frederic V Donze (2009). “Yade-open DEM: an open-source software

using a discrete element method to simulate granular material”. In: Engineering

Computations 26.7, pp. 786–805.

Krijgsman, Dinant, Vitaliy Ogarko, and Stefan Luding (2014). “Optimal parameters

for a hierarchical grid data structure for contact detection in arbitrarily polydisperse

particle systems”. In: Computational particle mechanics 1.3, pp. 357–372.

Kroiss, Ryan Robert (2013). “Collision detection using hierarchical grid spatial parti-

tioning on the GPU”. In: ProQuest Dissertations and Theses, University of Colorado at

Boulder 45.

Kurz, D, U Schnell, and G Scheffknecht (2012). “CFD simulation of wood chip com-

bustion on a grate using an Euler–Euler approach”. In: Combustion Theory and

Modelling 16.2, pp. 251–273.

Lagrange, Joseph Louis de (1853). Mécanique analytique. Vol. 1. Mallet-Bachelier.

https://www.top500.org/lists/top500/2020/06/

210 Bibliography

Li, Wan-Qing et al. (2010). “Comparison research on the neighbor list algorithms:

Verlet table and linked-cell”. In: Computer Physics Communications 181.10, pp. 1682–

1686.

Lilja, David J (2005). Measuring computer performance: a practitioner’s guide. Cambridge

university press.

Lin, Ming C (1997). “Fast and accurate collision detection for virtual environments”.

In: Scientific Visualization Conference, 1997. IEEE, pp. 171–171.

Liu, Chun and NOEL J WALkINGTON (2001). “An Eulerian description of fluids

containing visco-elastic particles”. In: Archive for rational mechanics and analysis 159.3,

pp. 229–252.

Liu, Guang-Yu et al. (2020). “Study on the particle breakage of ballast based on a GPU

accelerated discrete element method”. In: Geoscience Frontiers 11.2, pp. 461–471.

Liyan, Sun et al. (2013). “Simulation of motion of particles in reciprocating grates

using DEM”. In: Powder technology 246, pp. 218–228.

Lubbe, Retief et al. (2020). “Analysis of parallel spatial partitioning algorithms for

GPU based DEM”. In: Computers and Geotechnics 125, p. 103708.

LUPI, ALESSIO (2017a). “Numerical Modelling of Biomass Combustion on a Recipro-

cating Grate: Coupling of Computational Fluid Dynamics and Discrete Element

Method”. In:

– (2017b). “Numerical Modelling of Biomass Combustion on a Reciprocating Grate:

Coupling of Computational Fluid Dynamics and Discrete Element Method”. In:

Mahmoudi, Amir Houshang et al. (2015). “An experimental and numerical study of

wood combustion in a fixed bed using Euler–Lagrange approach (XDEM)”. In: Fuel

150, pp. 573–582.

Mahmoudi, Amir Houshang et al. (2016a). “Modeling of the biomass combustion on a

forward acting grate using XDEM”. In: Chemical Engineering Science 142, pp. 32–41.

– (2016b). “Modeling of the biomass combustion on a forward acting grate using

XDEM”. In: Chemical engineering science 142, pp. 32–41.

Mahmoudi, Amir Houshang et al. (2016c). “Numerical modeling of self-heating

and self-ignition in a packed-bed of biomass using {XDEM}”. In: Combustion

and Flame 163, pp. 358–369. ISSN: 0010-2180. DOI: 10 . 1016 / j . combustflame .

https://doi.org/10.1016/j.combustflame.2015.10.010
https://doi.org/10.1016/j.combustflame.2015.10.010

Bibliography 211

2015.10.010. URL: http://www.sciencedirect.com/science/article/pii/

S0010218015003582.

Mainassara Checkaraou, Abdoul Wahid et al. “Local Verlet buffer approach for broad-

phase interaction detection in Discrete Element Method”. Submitted.

Maknickas, Algirdas et al. (2006). “Parallel DEM software for simulation of granular

media”. In: Informatica 17.2, pp. 207–224.

Mattson, William and Betsy M Rice (1999). “Near-neighbor calculations using a

modified cell-linked list method”. In: Computer Physics Communications 119.2-3,

pp. 135–148.

Michael, M., F. Nicot, and B. Peters (2013). “Discrete Element Modeling of Inter-

Granular Bonds between Snow Grains”. In: Partec2013 Accepted Abstract. Nurem-

berg, Germany.

Michael, M. and B. Peters (2013). “3D DEM – FEM Coupling to Analyse the Tractive

Performance of Different Tire Treads in Soil”. In: Coupled2013 Accepted Abstract.

Ibiza, Spain.

Mirtich, Brian Vincent (1996). Impulse-based dynamic simulation of rigid body systems.

University of California, Berkeley.

Moore, Gordon E et al. (1965). Cramming more components onto integrated circuits.

Munjiza, Antonio, Jens H Walther, and Ivo F Sbalzarini (2009). “Large-scale parallel

discrete element simulations of granular flow”. In: Engineering Computations.

Mytkowicz, Todd et al. (2010). “Evaluating the accuracy of Java profilers”. In: ACM

Sigplan Notices 45.6, pp. 187–197.

Nambu, Yoichiro and Giovanni Jona-Lasinio (1961). “Dynamical model of elementary

particles based on an analogy with superconductivity. I”. In: Physical review 122.1,

p. 345.

Noske, Andrew (2004). “Efficient Algorithms for Molecular Dynamics Simulations

and Other Dynamic Spatial Join Queries”. PhD thesis. Ph. D. Dissertation. http://www.

andrewnoske. com/professional/publications . . .

Pabst, Simon, Artur Koch, and Wolfgang Straßer (2010). “Fast and scalable cpu/gpu

collision detection for rigid and deformable surfaces”. In: Computer Graphics Forum.

Vol. 29. 5. Wiley Online Library, pp. 1605–1612.

https://doi.org/10.1016/j.combustflame.2015.10.010
https://doi.org/10.1016/j.combustflame.2015.10.010
http://www.sciencedirect.com/science/article/pii/S0010218015003582
http://www.sciencedirect.com/science/article/pii/S0010218015003582

212 Bibliography

Páll, Szilárd and Berk Hess (2013). “A flexible algorithm for calculating pair interac-

tions on SIMD architectures”. In: Computer Physics Communications 184.12, pp. 2641–

2650.

Pan, Jia, Sachin Chitta, and Dinesh Manocha (2012). “FCL: A general purpose li-

brary for collision and proximity queries”. In: 2012 IEEE International Conference on

Robotics and Automation. IEEE, pp. 3859–3866.

Patronelli, Stefania et al. (2017). “Experimental and numerical investigation of a small-

scale fixed-bed biomass boiler”. In: Chemical Engineering Transactions 57, pp. 187–

192.

Peters, B. and G. Pozzetti (2017). “Flow characteristics of metallic powder grains

for additive manufacturing”. en. In: EPJ Web of Conferences 13001, p. 140. URL:

http://hdl.handle.net/10993/31734.

Peters, Bernhard (2013). “The extended discrete element method (XDEM) for multi-

physics applications”. In: Scholarly Journal of Engineering Research.

Peters, Bernhard and Algis Džiugys (2002). “Numerical simulation of the motion of

granular material using object-oriented techniques”. In: Computer methods in applied

mechanics and engineering 191.17-18, pp. 1983–2007.

Peters, Bernhard et al. (2005). “An approach to qualify the intensity of mixing on a

forward acting grate”. In: Chemical Engineering Science 60.6, pp. 1649–1659.

Peters, Bernhard et al. (2015). “A discrete/continuous numerical approach to multi-

physics”. In: IFAC-PapersOnLine 48.1, pp. 645–650.

Peters, Bernhard et al. (2019). “XDEM multi-physics and multi-scale simulation

technology: Review of DEM–CFD coupling, methodology and engineering applica-

tions”. In: Particuology 44, pp. 176–193.

Plimpton, Steve, Paul Crozier, and Aidan Thompson (2007). “LAMMPS-large-scale

atomic/molecular massively parallel simulator”. In: Sandia National Laboratories 18,

pp. 43–43.

Pozzetti, Gabriele and Bernhard Peters (2018). “A multiscale DEM-VOF method for

the simulation of three-phase flows”. In: International Journal of Multiphase Flow 99,

pp. 186–204.

Ransing, RS et al. (2000). “Powder compaction modelling via the discrete and finite

element method”. In: Materials & Design 21.4, pp. 263–269.

http://hdl.handle.net/10993/31734

Bibliography 213

Rettenmaier, Daniel et al. (2019). “Load balanced 2D and 3D adaptive mesh refinement

in OpenFOAM”. In: SoftwareX 10, p. 100317.

Richard, Patrick et al. (2005). “Slow relaxation and compaction of granular systems”.

In: Nature materials 4.2, pp. 121–128.

Ritter, Jack (1990). “An efficient bounding sphere”. In: Graphics gems 1, pp. 301–303.

Rousset, Alban, Xavier Besseron, and Bernhard Peters (2017). “PARALLELIZING

XDEM: LOAD-BALANCING POLICIES AND EFFICIENCY, A STUDY”. In:

Rousset, Alban et al. (2017). “Comparing Broad-Phase Interaction Detection Algo-

rithms for Multiphysics DEM Applications”. In: AIP Conference Proceedings IC-

NAAM 2017. American Institute of Physics.

Rousset, Alban et al. (2018). “Comparing broad-phase interaction detection algorithms

for multiphysics DEM applications”. In: AIP Conference Proceedings. Vol. 1978. 1.

AIP Publishing LLC, p. 270007.

S., Godehard and Vladimir S. (2006). “Optimization of neighbor list techniques in

liquid matter simulations”. In: Journal of Molecular Liquids 125.2-3, pp. 197–203.

Samiei, K and B Peters (2010). “The discrete particle method (DPM), an advanced

numerical simulation tool for particulate applications”. In: Proc. ECCM 2010 IV

European Conference on Computational Mechanics, Paris, France.

Samiei, Kasra and Bernhard Peters (2013). “Experimental and numerical investigation

into the residence time distribution of granular particles on forward and reverse

acting grates”. In: Chemical engineering science 87, pp. 234–245.

Schäling, Boris (2011). The Boost C++ libraries. Boris Schäling.

Schaller, Robert R (1997). “Moore’s law: past, present and future”. In: IEEE spectrum

34.6, pp. 52–59.

Schneider, Philip and David H Eberly (2002). Geometric tools for computer graphics.

Elsevier.

Schreiberx (2020). Bounding volume hierarchy — Wikipedia, The Free Encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&

oldid=921578869. [Online; accessed 18-June-2020].

Scott, Le Grand (2020). GPU Gems 3: Chapter 32. Broad-Phase Collision Detection with

CUDA. URL: https://developer.nvidia.com/gpugems/gpugems3/part- v-

http://en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&oldid=921578869
http://en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&oldid=921578869
http://en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&oldid=921578869
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda

214 Bibliography

physics-simulation/chapter-32-broad-phase-collision-detection-cuda

(visited on 10/09/2020).

Simsek, E et al. (2009). “Numerical simulation of grate firing systems using a coupled

CFD/discrete element method (DEM)”. In: Powder technology 193.3, pp. 266–273.

Smith, James E. (1988). “Characterizing computer performance with a single number”.

In: Communications of the ACM 31.10, pp. 1202–1206.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical bayesian op-

timization of machine learning algorithms”. In: Advances in neural information

processing systems, pp. 2951–2959.

Spivey, J Michael (2004). “Fast, accurate call graph profiling”. In: Software: Practice and

Experience 34.3, pp. 249–264.

Stengel, Holger et al. (2015). “Quantifying performance bottlenecks of stencil compu-

tations using the execution-cache-memory model”. In: Proceedings of the 29th ACM

on International Conference on Supercomputing, pp. 207–216.

Stepanov, Alexander and Meng Lee (1995). The standard template library. Vol. 1501.

Hewlett Packard Laboratories 1501 Page Mill Road, Palo Alto, CA 94304.

Stewart, David B (2001). “Measuring execution time and real-time performance”. In:

Embedded Systems Conference (ESC). Vol. 141.

Stewart, Graeme and Walter Lampl (Oct. 2017). “How to review 4 million lines of

ATLAS code”. In: Journal of Physics: Conference Series 898, p. 072013. DOI: 10.1088/

1742-6596/898/7/072013.

Sudbrock, Florian et al. (2011). “Discrete element analysis of experiments on mixing

and stoking of monodisperse spheres on a grate”. In: Powder technology 208.1,

pp. 111–120.

Sun, Liyan et al. (2015). “Prediction of configurational and granular temperatures of

particles using DEM in reciprocating grates”. In: Powder Technology 269, pp. 495–504.

Sun, Xian-He and John L Gustafson (1991). “Toward a better parallel performance

metric”. In: Parallel Computing 17.10-11, pp. 1093–1109.

Sutter, Herb (2005). “The free lunch is over: A fundamental turn toward concurrency

in software”. In: Dr. Dobb’s journal 30.3, pp. 202–210.

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda
https://doi.org/10.1088/1742-6596/898/7/072013
https://doi.org/10.1088/1742-6596/898/7/072013

Bibliography 215

Tikir, Mustafa M et al. (2007). “A genetic algorithms approach to modeling the

performance of memory-bound computations”. In: SC’07: Proceedings of the 2007

ACM/IEEE Conference on Supercomputing. IEEE, pp. 1–12.

Tracy, Daniel J, Samuel R Buss, and Bryan M Woods (2009). “Efficient large-scale

sweep and prune methods with AABB insertion and removal”. In: 2009 IEEE Virtual

Reality Conference. IEEE, pp. 191–198.

Truong, Nghia, Sreekanth Arikatla, and Andinet Enquobahrie (2019). Octree-based

Collision Detection in iMSTK. URL: https://blog.kitware.com/octree-collision-

imstk/ (visited on 06/09/2020).

Ulrich, Thatcher (2000). “Loose octrees”. In: Game programming gems 1, pp. 434–442.

Varrette, S. et al. (2014). “Management of an Academic HPC Cluster: The UL Experi-

ence”. In: Proc. of the 2014 Intl. Conf. on High Performance Computing & Simulation

(HPCS 2014). Bologna, Italy: IEEE, pp. 959–967.

Verlet, Loup (1967). “Computer" experiments" on classical fluids. I. Thermodynamical

properties of Lennard-Jones molecules”. In: Physical review 159.1, p. 98.

Wadleigh, Kevin R and Isom L Crawford (2000). Software optimization for high-performance

computing. Prentice Hall Professional.

Weber, Lukas M et al. (2019). “Essential guidelines for computational method bench-

marking”. In: Genome biology 20.1, p. 125.

Weinhart, Thomas et al. (2016). “Influence of coarse-graining parameters on the

analysis of DEM simulations of silo flow”. In: Powder technology 293, pp. 138–148.

Weinhart, Thomas et al. (2020). “Fast, flexible particle simulations—An introduction

to MercuryDPM”. In: Computer physics communications 249, p. 107129.

Welling, Ulrich and Guido Germano (2011). “Efficiency of linked cell algorithms”. In:

Computer Physics Communications 182.3, pp. 611–615.

Wikipedia contributors (2019). Enel Green Power — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Enel_Green_Power&oldid=

912661233. [Online; accessed 3-September-2019].

Wilke, Daniel N et al. (2016). “Computing with non-convex Polyhedra on the GPU”.

In: International Conference on Discrete Element Methods. Springer, pp. 1371–1377.

https://blog.kitware.com/octree-collision-imstk/
https://blog.kitware.com/octree-collision-imstk/
https://en.wikipedia.org/w/index.php?title=Enel_Green_Power&oldid=912661233
https://en.wikipedia.org/w/index.php?title=Enel_Green_Power&oldid=912661233

216 Bibliography

Williams, John R and Alex P Pentland (1992). “Superquadrics and modal dynamics for

discrete elements in interactive design”. In: Engineering Computations 9.2, pp. 115–

127.

Williams, Samuel (2009). “Roofline: An Insightful Visual Performance Model for

Floating-Point Programs and Multicore”. In:

Wulf, Wm A and Sally A McKee (1995). “Hitting the memory wall: implications of

the obvious”. In: ACM SIGARCH computer architecture news 23.1, pp. 20–24.

Wurzenberger, Johann C et al. (2002). “Thermal conversion of biomass: Comprehen-

sive reactor and particle modeling”. In: AIChE Journal 48.10, pp. 2398–2411.

Yang, YB et al. (2004). “Modelling waste combustion in grate furnaces”. In: Process

Safety and Environmental Protection 82.3, pp. 208–222.

Yin, Chungen et al. (2008). “Mathematical modeling and experimental study of

biomass combustion in a thermal 108 MW grate-fired boiler”. In: Energy & Fuels

22.2, pp. 1380–1390.

Yoo, Andy B, Morris A Jette, and Mark Grondona (2003). “Slurm: Simple linux utility

for resource management”. In: Workshop on Job Scheduling Strategies for Parallel

Processing. Springer, pp. 44–60.

Zames, G et al. (1981). “Genetic algorithms in search, optimization and machine

learning.” In: Information Technology Journal 3.1, pp. 301–302.

Zhou, Kun et al. (2008). “Real-time kd-tree construction on graphics hardware”. In:

ACM Transactions on Graphics (TOG) 27.5, pp. 1–11.

Zomorodian, Afra and Herbert Edelsbrunner (2000). “Fast Software for Box Intersec-

tions”. In: SCG’00. ACM. ISBN: 1-58113-224-7. DOI: 10.1145/336154.336192. URL:

http://doi.acm.org/10.1145/336154.336192.

https://doi.org/10.1145/336154.336192
http://doi.acm.org/10.1145/336154.336192

