UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2020-082
The Faculty of Science, Technology and Medicine

DISSERTATION

Presented on 18/12/2020 in Esch-Sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG
EN INFORMATIQUE

by
Abdoul Wahid MAINASSARA CHEKARAOQOU

Born on 03 June 1991 in Niamey (Niger)

LARGE SCALE PARALLEL SIMULATION
FOR THE EXTENDED DISCRETE ELEMENT
METHOD (XDEM)

Dissertation defense committee:

Chairman: Prof. Dr. Pascal BOUVRY
University of Luxembourg, Luxembourg

Vice-Chairman: Prof. Dr. Miriam MEHL
IPVS, University of Stuttgart, Germany

Jury Member: Dr. Emmanuel JEANNOT
LaBRI, INRIA, France

Jury Member: Dr. Sebastien VARRETTE
University of Luxembourg, Luxembourg

Ph.D. Supervisor: Prof. Dr. Ing. Bernhard PETERS
University of Luxembourg, Luxembourg

Ph.D. Advisor: Dr. Xavier BESSERON
University of Luxembourg, Luxembourg

DECLARATION OF
AUTHORSHIP

I, Abdoul Wahid MAINASSARA CHEKARAOU, declare that this thesis titled, “Large

Scale Parallel Simulation for Extend Discrete Element Method (XDEM)” and the work

presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research

degree at University of Luxembourg.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been

clearly stated.

Where I have consulted the published work of others, this is always clearly

attributed.

Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

“Fifty years ago Kurt Godel... proved that the world of pure mathematics is inexhaustible.
No finite set of axioms and rules of inference can ever encompass the whole of mathematics.
Given any finite set of axioms, we can find meaningful mathematical questions which the
axioms leave unanswered. This discovery... came at first as an unwelcome shock to many
mathematicians. It destroyed... the hope that they could solve the problem of deciding by a
systematic procedure the truth or falsehood of any mathematical statement. ...Godel’s theorem,
in denying ...the possibility of a universal algorithm to settle all questions, gave... instead,
a guarantee that mathematics can never die. ...there will always be, thanks to Godel, fresh

questions to ask and fresh ideas to discover..”

Freeman Dyson, Infinite in All Directions (1988)

ABSTRACT

Abdoul Wahid MAINASSARA CHEKARAOU

Large Scale Parallel Simulation for Extend Discrete Element

Method (XDEM)

Numerical models are commonly used to simulate or model physical processes
such as weather forecasts, fluid action, rocket trajectory, building designs, or biomass
combustion. These simulations are immensely complex and require a hefty amount
of time and computation, making it impossible to run on a standard modern laptop
in a reasonable and fair period. This research work targets large scale and parallel
simulations of DEM and DEM-CFD couplings using high-performance computing
techniques and optimizations. This thesis aims to analyze, contribute, and apply the
DEM approach using the XDEM multi-Physics toolbox to physical processes that
have been reluctant to be used due to their required computational resources and

time.

The first step of this work is to analyze and investigate the performance bottle-
necks of the XDEM software. Therefore, the latter has been profiled, and some critical
parts as the contact detection were identified as the main bottlenecks of the software.
A benchmark has also been set up to assess each bottleneck part’s performance using
a baseline case. This step is crucial as it defines the general guidelines to follow in

optimizing any application in general.

A complete framework has been developed from scratch and aims to test and
compare several contact detection algorithms and implementations. The framework,

which also has a parallel version, has been used to select an appropriate algorithm

and implementation for the XDEM software. The link-cell approach, combined with
a new Verlet list concept, proved to be the best option for significantly reducing the
contact detection part’s computational time. The Verlet buffer concept developed
during this thesis takes the particle flow regime into account when selecting the skin

margin to enhance the algorithm’s efficiency further.

In order to target the high-performance computers for large-scale simulations, a
tull hybrid distributed-shared memory parallelization has been introduced by adding
a fine-grain OpenMP implementation layer to the existing MPI approach. A shared
memory parallelization allows taking full advantage of personal workstations with
modern CPU architecture. On the other hand, a hybrid approach is one of the best
ways to fully exploit the computing nodes capacities of our modern CPU clusters
that mainly have a NUMA architecture. Macro-benchmarking performance analy-
sis showed that we could entirely exploit 80% (speed-up) of 85 computing nodes

representing 2380 cores on the ULHPC supercomputer.

Finally, a life-size biomass combustion furnace is developed and used as an
application test to demonstrate the complex and heavy cases that the XDEM software
can accommodate at this time. The furnace is the combustion chamber of a 16 MW
geothermal steam super-heater, part of the Enel Green Power "Cornia 2." power plant
located in Italy. It proves that DEM, in general, and XDEM in particular, can be used
for real-case applications that discourage users due to their complexity and especially

the time required to deliver the outcome results.

ACKNOWLEDGEMENTS

Foremost, I would like to express my deep gratefulness to my supervisor Prof. Bern-

hard PETERS for his continuous support of my Ph.D study and research.

Besides my supervisor, I would like to thank Dr Xavier BESSERON and Alban
ROUSSET for their motivation, enthusiasm and immense knowledge. Their guidance
helped me in all the time of research and writing of the thesis. I could have not

imagined better advisors and mentors for my Ph.D study.
My sincere thanks goes also to all my colleagues at the LUXDEM team.

Last but not least, I would like to thank my family and specially my parents
for all their support since day one. I could have not achieve all of this without their

unconditional love, support and advise.

CONTENTS

Declaration of Authorship

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

List of Abbreviations

List of Symbols

1 Introduction

1.1

1.2
1.3
1.4
1.5
1.6

Granular materials modeling and particle simulations
1.1.1 Granularmaterials
1.1.2 ModelingMethods

1.1.21 Continuumapproach

1.1.22 Discreteapproach
1.1.3 Particlesimulationso L.
1.1.4 The eXtended Discrete Element Method(XDEM)
High performance computing
DEM software: Astateofart. L.
Motivation and Objectives
Contributions

Structure of thethesis

11

11

17

25

27

29

12

I Methodology

2 Performance assessments

21 Imtroduction
22 Baseline.
221 XDEMversion
222 Metrics of performance oL
2221 Characteristics of performance metrics

2222 Type of performance metrics

223 Realtestcase

23 Profiling
23.1 Tracingprofilers
2.3.2 Statistical profilers Lo oL oo L

24 Benchmarking L
241 Macro and microbenchmarks

242 Evaluationcriteria,

2.5 Performancemodels L L o L.
251 Rooflinemodel
2.5.2 Execution-Cache-Memory
2521 In-coremodel

2522 Datatransfermodel

2.6 Application
2.6.1 Hotspotsanalysis
2.6.2 Memory footprintanalysis
2.6.21 Heapandstack profiling

2.6.22 Memory leaks detection and cache profiling

27 SUMMATIY . . . v v ot e

3 Contact Detection in the eXtended Discrete Method (XDEM)

31 Abstract e
32 Introduction
3.3 Broad-phase collision detection

3.3.1 Axis-Aligned Bounding Boxes (AABBs)

19

21
22
23
24
24
25
25
27
27
28
29
30
30
31
31
31
34
34
35
36
36
39
39
41
43

3.3.2 Oriented Bounding Boxes (OBBs) 51
333 BoundingSpheres 51
3.4 Broad-Phasealgorithms 52
3.4.1 Spatial partitioning Lo o 53
3.42 The Brute Forceapproach 54
343 TheOctreeand k-dtree 54
344 LooseOctree. 56
3.45 Grid-based spatial partitioning algorithms 58
346 Sweepandprune 60
3.4.7 Bounding volume hierarchy (BVH) 60
3.4.8 Framework and C++ library for collision 61
35 Benchmark 62
351 Sequentialruns o oL 62
352 Parallelruns 65
3.5.3 Adaptiveapproach o oL 67
36 Conclusion e 68
Local Verlet buffer approach for broad-phase interaction in DEM 71
41 Abstract e 72
42 Introduction 73
43 Relatedwork. L 75
44 Background o 77
441 XDEMflowchart 78
442 Collision detectionin XDEM 79
45 Local Verlet bufferapproach 82
451 Thelocal skin parameter 85
45.2 Automatic update and validity of the Verletlist 87
4.6 Performance Evaluation 90
461 Methodology 90
462 Test-cases e 91
4.6.3 Experimentalsettings 96

4.64 Results o o e 97

14

47 Conclusion 101

5 Predicting near-optimal skin distance in Verlet buffer for DEM 105
51 Abstract e 106
52 Introduction 107
53 Background L 109
5.3.1 The Extended Discrete Element Method 109

5.3.2 Verlet buffer method for XDEM 110

5.3.3 Dakota Software Package 112

5.4 Skin distance optimisation problem L. 114
54.1 Definition e 114

5.4.2 Evolution optimisation of the skin distance parameter 115

5.5 Near-optimal skin distance characterisation 117
5.5.1 Designofexperiments 117

552 Methodology 118

553 Results L 121

5.6 Parallel Execution of DAKOTA SOFTWARE on HPC cluster 124
57 Conclusion L 127

6 Hybrid MPI+OpenMP Implementation of XDEM 129
6.1 Abstract 130
6.2 Introduction 131

6.3 Challenges and implementation for the OpenMP parallelization of

XDEM . .. e 133
6.3.1 Data structures and concurrent accesses 134
6.32 Memory allocation o L. 138
6.4 ExperimentalResults 140
6.4.1 Case for experimental evaluation 140
6.4.2 Experimentalsettings 140
6.4.3 Impactof datastructures,, 140
6.44 Impact of memory allocator 142
6.45 OpenMP and MPIscalability 142

6.4.6 Hybridexecution, 145

6.5 Conlusion

II Performance analysis and Application

7 Performance analysis

7.1 Introduction e e

7.2 New vs old XDEM versions performance

7.2.1 Biomass furnace combustion

7.2.2 Sequential performance, ..

7.2.3 Parallel performance

7.3 Large scale XDEM-OPENFOAM coupling performance.

7.3.1 Dam
7.3.1.

breaktestcase e

1 Configuration

7312 Parallelset-up

7.3.2 Strong scalability and Speed Up

7.4 Conclusion

8 Numerical Analysis of a Grate Firing Combustion Process

8.1 Abstract .

8.2 Introduction e

8.3 Numerical model and simulation conditions

8.4 Results and performanceanalysis

8.5 Conclusion

IIT Conclusion

9 Conclusion
9.1 Summary .

9.2 Future tasks

IV Bibliography

Bibliography

15

146

149

151
152
152
153
154
157
162
162
162
166
167
174

177
178
179
180
187
192

195

197
197
200

203

205

1.1

1.2
1.3
1.4

1.5
1.6

21
2.2

2.3

24
2.5

3.1

LIST OF FIGURES

Examples of granular materials in industry: Tablets pills medicine, Silo
for storing corn, and Crusher with conveyor
Common approaches in computational mechanics.
Discrete element method loop’sscheme.
Classic MPI domain decomposition layer. Process 0 and 1 exchange
particles from ghostlayers..o o o oL
University of Luxembourg’s Iris cluster Infiniband interconnection. . .
June 2020 Ranking of the Top 5 super computers in the world (June
2020 top500 poster).o e

Moore’'Slaw
The roofline model for the naive brute force algorithm in collision
detection. The roofline was generated using the Intel advisor tool.
Schonauer vector triad (left column = bandwidth of data path, black

arrow = cache line transfer, red arrow = write- allocate cache line

Workflow of an XDEM simulation: the Broad-phase Collision Detection
finds the pairs of particles that may interact with each other by replac-
ing the particles real shape with bounding volume and it returns a list.
The latter is used in the Narrow-phase Collision Detection to perform a

collision detection with particles real shape.

17

33

18

3.2

3.3

34

3.5

3.6
3.7

3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15

Type of bounding volumes used in broad-phase: sphere, axis-aligned
bounding box (AABB), oriented bounding box (OBB), eight-direction
discrete orientation polytope (8-DOP), and convex hull (Ericson, 2004). 49
Check object one against all other objects, then object two against all
other objects (except objectone). 54
Left: Recursive subdivision of a cube into octants. Right: The corre-
sponding octree (Truong, Arikatla, and Enquobahrie, 2019). 55
A quadtree node with the first level of subdivision shown in black
dotted lines, and the following level of subdivision in gray dashed
lines. Dark gray objects overlap the first-level dividing planes and
become stuck at the current level. Medium gray objects propagate
one level down before becoming stuck. Here, only the white objects
descend two levels (Ericson, 2004). 57
Regular domain decomposition as a quadtree. 57
Loose quadtree representation. The nodes have been expanded by half
the node width in the two directions. 57

Representation of a regular quadtree and loose quadtree (Ericson, 2004). 57

Uniform grid approach. (A) Uniform grid subdivision in equal sized
cells. Each particle is assigned to a cell where its center is located. (B)
The dark blue particle is checked with the light blue particle contained

in the same cell. It is also checked against green particles located in the

direct neighboring cells in light green. 58
Hierarchical gridlevel 0., 59
Hierarchical gridlevel 1., 59
Hierarchical grid level 2. 59

Hierarchical grid level 3. 59

3.16

3.17

3.18

3.19

3.20

4.1

4.2

4.3

44
4.5

4.6

19

Two dimensional hierarchical grid example. The level 0 corresponds to
the domain and contains all the particles. The first level is the coarser
grid (in red) and contains the biggest particle in red. The second level
encapsulated the yellow particles without the biggest red particle. The

third and last level contains the blue and green particles, that inserted

inall thethreegrids. 59
An example of a bounding volume hierarchy using rectangles as
bounding volumes (Schreiberx, 2020). 61
Comparison results for Slow Broad-Phase Algorithms from 1k to 100k of
particles. 63
Comparison results for Fast Broad-Phase Algorithms from 1k to 1M of
particles. 64
OpenMP scalable results for Fast Broad-Phase Algorithms from 1 to 24 of

Flow chart of XDEM software detailing the main different steps in an
iterative simulation. Lo Lo o o 80
Collision detection (broad-phase and narrow-phase) process workload
in XDEM. The broad-phase is the main computational time consumer. 81
[lustration of the cell linked method. For the particles in green cell,
a collision is checked with particles in the same cell (green particles),
and also within the immediate neighbour cells (blue). 82
Initial configuration and update of the Verletlist. 84
New flow chart of XDEM software. A construction of the Verlet list
is added. If the conditions are satisfied, the list is kept and the broad-

phase is skipped and the simulation continues directly to the narrow-

The test case used for the performance evaluation simulates the hopper
discharge of 125k, 250k and half a million particles. It shows any

overview of the set-up with the particles coloured according to their size. 92

20

4.7

4.8

49

4.10
4.11

412

4.13

51
52

53

54

55

Granular flows on roughed inclined plane. The rough plane has parti-
cles vibrating at 50Hz frequency with 200mm amplitude. The free flow
particles are coloured according to their velocity 93
Simulation of an avalanche at the top of a habitable valley. The particles
bed represents a cohesive snowmodel.. o 0oL 94
Furnace of the combustion of Biomass. The particle bed is arranged
on four (4) moving grates. The bed is heated up in the combustion
chamber by inlets located below the grates. The particles are colored
according to their surface temperature. 95
Powder levelling for Selective Laser Melting. 96
Dependence of broad-phase, narrow-phase and interactions models
on skin K factor. The vertical blue dashed lines show the optimum K
for each simulations corresponding to the lowest overall simulation
time. The orange horizontal line represents the simulation time for a
constant skin equal to the particles radius. The skin distance is capped
by the cell size in all simulations. 97
Dependence of executed broad-phase in percentage upon the skin K
factor. The percentage correspond to the number of executed broad-
phase over the total number of steps in the simulation. 100
Simulation time overhead compared to the optimum for each K value

foralltestcases. o o i 101

XDEM user specifications. o L. 108
In the Verlet buffer approach, the bounding sphere of the particles is
extended by the skin distance such as Ry, = Re +skin. 111
The loosely-coupled or “black-box” interface between DAKOTA SOFT-
WARE and a user-supplied simulation code (Adams et al., 2019). 113
Dependence of broad-phase, narrow-phase and interactions models
onskin distance factor K.. o L 115
The SOGA solver convergence with the biomass case. Three popula-

tions with different initial sizes have been considered: 10, 20,50. 117

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

6.1
6.2

6.3

6.4

6.5

21

Design of experiment steps. S¢: Solid fraction, Cs: Ratio cell to particle
size, Vel: Velocity, n: Number of particles, T: XDEM computational time.119
Figure of a homogeneous particle system for near-optimal skin distance
determination. L o 120
Response surfaces for the near-optimal skin distance factor K for solid
fraction and ratio cell to particlesize. 123
Response surfaces for the near-optimal skin distance factor K for solid
fractionand velocity. o L 123
Response surfaces for the near-optimal skin distance factor K for solid
fraction and number of particles. 0 0L 123
Response surfaces for the near-optimal skin distance factor K for ratio
cell to particle size and velocity. 123
Response surfaces for the near-optimal skin distance factor K for ratio
cell to particle size and number of particles. 123

Response surfaces for the near-optimal skin distance factor K for veloc-

ity and number of particles. Lo o o oL 123
The DAKOTA SOFTWARE parallelism and scheduling scheme. 126
The different phases of an XDEM iterationloop. 135

The test case used for the performance evaluation simulates the hopper
discharge of 1 million particles. The left part shows an overview of
the setup with the particles colored according to their size. The right
side displays the middle slice allowing us to see the particle velocity
distribution during the discharge process. 139
Impact of data structure in sequential for Hopper test (from 250k left
tolMright). L 141
Impact of different memory allocators on one iteration time with
OpenMP version on one node (from 1 to 28 cores) for Hopper test
case (IM particles). o 143

SpeedUp of MPI and OpenMP versions on one node i.e. up to 28 cores. 144

22

6.6

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

Speedup of hybrid MPI+OpenMP executions for different number
of threads per process on the Hopper Discharge case with 1 million

particles. L

The Enel Green Power "Cornia 2" biomass combustion power plant. .
Sequential simulation time comparison between 03/2017 and 10/2020
XDEMversions. e
XDEM main parts simulation time comparison between 03/2017 and
10/2020 XDEM versions. The y-axis is represented in log time.
Strong scaling of the main loop’s simulation time. The number of MPI
processes is on the x-axis, and the log simulation time on the y-axis.
The execution was made on one node with 28 cores.
Strong scaling of the main loop’s simulation time of three hybrid
MPI/OpenMP parallel configurations. The number of cores is on the
x-axis, and the simulation time on the y-axis. The executions was made
on one node with 28 cores (exclusive reservation).
Speed up comparison between 03/2017 XDEM version in Full MPI
configuration and 10/2020 XDEM version in Full OpenMP configura-
tion. The x-axis represents the number of processes and the speed up
on the y-axis. The executed was made on one node with 28 cores. . .
Improvements comparison between 03/2017 XDEM version in Full
MPI configuration and 10/2020 XDEM version in Full OpenMP con-
figuration. The comparison is made between sequential and parallel
simulations using 28 cores. We compare the improvements of some
critical parts of the XDEM code: the broad-phase, the narrow-phase,
the integration (dynamic and conversion), and the dynamic models.
The x-axis represents the critical parts of the XDEM code and the
improvement in percentage (compared to sequential) on the y-axis. . .
Dam break initial configuration. Light particles (bottom) in yellow and
heavy particles in red (upper) are initially positioned within a column

of water. e

146

. 153

. 156

159

. 160

161

7.9

7.10
7.11

7.12
7.13

7.14

7.15

7.16

8.1
8.2
8.3

8.4
8.5

23

Different length scales in high-Stokes three-phase flows: bulk (coarse)
scale and fluid fine scale (left figure). Schematic of the solution proce-
dure for the bulk and fine length-scale in the simulation. The two boxes
represent the different models adopted, while the arrows show the
communication between the scales schematically. A coarse grid (top) is
used to perform the volume averaging and to solve the fluid-particle in-
teraction. Particle-related fields are mapped to the supporting domain

(bottom) then, a finer grid is used to solve the fluid equations (Pozzetti

and Peters, 2018). 164
Three-phase dam-break multi-scale strategies. 165
XDEM and OPENFOAM parallelization strategies. XDEM uses an

hybrid MPI+OpenMP approach while OPENFOAM is partitioned

usingonly MPL. Lo 166
The Iris cluster computingnodes. 167
Speed up of hybrid MPI/OpenMP runs with different process/thread

configurations. The x-axis represents the number of processes and the
speeduponthey-axis. o L 169
XDEM and OPENFOAM simulation time proportion comparison. The
left figure compares the proportions for a Full MPI configuration for
XDEM. The right figure compares the proportions for a hybrid 2 MPI
processes per node and 14 OpenMP threads per MPI process for XDEM.171

XDEM and OPENFOAM load-imbalances for the dam-break domain
decomposition in the Full MPI parallel configuration. 172
XDEM load-imbalances for the dam-break domain decomposition in
the hybrid MPI/OpenMP parallel configuration. 173
Biomass combustion chamber 2D design. 181
Biomass combustion chamber 3D views. 183

Gas phase temperature distribution at different simulation time: 5s
(upper left), 50s (upper right), 250s (lower left), 600s (lower right). . . . 188
Surface bed temperature distribution. 00000 189

Particle composition in the inlet, outlet and along the grate length. . . 190

24

8.6 Particle average composition in the inlet, outlet and along the grate. . . 191

8.7 Time proportion of XDEM and OpenFoam in the coupling simulation. 192

1.1

2.1
2.2
2.3

3.1

41

51
52
5.3

54

6.1

7.1
7.2

7.3

25

LIST OF TABLES

Table to compare DEM software specifications. 15
Hotspots in XDEM using INTEL VTUNE. 37
Time table memory allocation details. 40
Cache dataaccesssummary. 42

Algorithms that have been implemented and parallelized in the C++
framework. The brute force, the grid and tree algorithms were im-
plemented from scratch. The CGAL and Bullet libraries use spatial
partitioning algorithms while FCL was used with a AABB tree based

algorithm. L 53

Summary of the performance results of the Verlet buffer method over

the different testcases. L L o oL 102
SOGA parameters 116
Simulation designs for near-optimal skin distance. 121

Overview of the Verlet buffer method results with the surrogate model
over the different test-cases. o L. 124

Scheduled job statistics. 00 L. 127

Characteristics of the containers used in XDEM before and after our

optimizations. Only the operations used in XDEM are considered. . . 138

Table to compare XDEM versions simulation times in sequential. . . . 154
Table to compare XDEM versions simulation times in parallel, full MPI
configuration. L L 158

Gas and liquid phases properties. 165

26

8.1 Characteristics and operating conditions of the super-heater. PA =
primary air, SA =secondaryair,

8.2 Biomass analysis. ar = as received, daf =dry ashfree

LIST OF ABBREVIATIONS

DEM
XDEM
LuXDEM
MD
CFD
HPC
BP

NP
AABB
OBB
DOP
CGAL
FCL
BVH
CPU
GPU
NUMA
SMP
EDR
GPFS
DAKOTA
DACE
SOGA
MOGA
PA

SA
FGR
PaSR
FEM
FDM
FVM

Discrete Element Method

eXtended Discrete Element Method
Luxembourg eXtended Discrete Element Method Centre
Molecular Dynamic

Computational Fluid Dynamic

High Performance Computing

Broad Phase

Narrow Phase

Axis Align Bounding Box

Oriented Bounding Box

Discrete Oroented Polytope

Computational Geometry Algorithms Library
Fast Collision Library

Bounding Volume Hierarchy

Central Processing Unit

Graphic Processing Unit

Non Uniform Memory Access

Symmetric Multi Processing

Eighteen Data Rate

General Parallel File System

Design Analysis Kit for Optimisation and Terascale Applications

Dace Analysis Computer Experiments
Single Objective Genetic Algorithm
Multiple Objective Genetic Algorithm
Primary Air

Secondary Air

Flue Gas Recirculation

Partially Stirred Reactor

Finite Element Method

Finite Difference Method

Finite Volume Method

27

29

LIST OF SYMBOLS

=t =R

distance
power

angular frequency
angular frequency

W (s

rad
rad

31

To my dear family...

Chapter 1

Introduction

2 Chapter 1. Introduction

1.1 Granular materials modeling and particle simulations

1.1.1 Granular materials

Granular materials are an aggregation of macroscopic particles and are omnipresent,
and their behavior is of great importance in pharmaceutical, mining, food process-
ing, iron making industries, avalanches, cereal storage, powder mixing, and fric-
tional materials (concrete). They can be classified into two categories: powders and
granulars. Particles above 100 pm are considered granular, and their dynamics are
strongly influenced by their interaction with their neighbors and/or surrounding
fluid through frictional contact. On the other hand, powders are composed of tiny
particles (1 —100 um) that easily float in a gas. The behavior of granular materials can
range from solid-like material (cohesive soil (Peters and Dziugys, 2002)) to fluid-like
due to their variety and usually involves multi-scale phenomena. Medicine tablets,
coffee, coal, wood chips, sand, snow, rocks, planets, or even galaxies are few examples

considered granular materials.

Granulates are distinguished from molecules and fine particles by the size of the
particles that compose them. They must be large enough so that their motion is not

vulnerable to thermal fluctuations.

FIGURE 1.1: Examples of granular materials in industry: Tablets pills
medicine, Silo for storing corn, and Crusher with conveyor

Granulates are the most widely manipulated material on the planet after wa-
ter (Richard et al., 2005). However, despite their far-reaching importance in countless
tields, efforts to understand and predict the specific granular behavior remain under-
researched despite a need for a better understanding. Even today, the design of
simple structures handling granular materials such as static grain silos often fail.

Therefore, there is a need and demand for new predictive tools such as numerical

1.1. Granular materials modeling and particle simulations 3

simulations or analytical procedures to understand granular materials behaviors in

industrial environments.

Simulations have become great tools that have been used to design and optimize
industrial processes. The granular materials are no exceptions, and simulations are
used to deepen the understanding of their behaviors. These simulations use physical
and mathematical modeling as a basis to reproduce, predict, and set-up the physical

process.

1.1.2 Modeling Methods

When it comes to modeling and simulation of physics process in general and particu-
late systems, there are two widely used approaches: continuum or Eulerian (Liu and
WALKINGTON, 2001) and discrete or Lagrangian (Lagrange, 1853). The continuum
approach assumes the materials to be continued in their internal structure represen-
tation. It has been successfully applied to different domains and materials, such as
fluids, metals, and most homogeneous materials. On the other hand, the discrete

approach considers materials as a system of independent and interacting particles.

1.1.2.1 Continuum approach

In the continuum method, granular matter’s constitutive behavior is defined by con-
stitutive laws, commonly expressed in the form of differential equations that relate to
mechanical field variables (e.g., Stress and Strain). The simulation of material with
this approach assumes that it is continuous and fills the space it occupies. As a con-
sequence, the behavior of individual particles is ignored. The resulting constitutive
equations are solved numerically (e.g., Finite Element Method). The crucial issues
involved in using continuum methods for the granular material simulation are the
proper formulation of constitutive behavior. Relevant stress-strain laws for materials
often do not apply or are unnecessarily complicated. Particle system processes are

often strongly dependent on particle level behavior.

The most commonly used continuum methods are the Finite Element Method

(FEM), Finite Difference Method (FDM), and the Finite Volume Method (FVM).

4 Chapter 1. Introduction

* The most straightforward approach to discretizing partial differential equations
is the finite-difference method. You consider a point in space where you take the
equation’s continuum representation and substitute it with a series of discrete
equations called equations of finite-difference. On a regular grid, which can
be used for very effective solution methods, the finite-difference method is
usually defined. Therefore for unconventional geometries, the approach is not

commonly used, but most frequently for rectangular or block-shaped versions.

¢ The finite-element method is a method that subdivides a material into geomet-
rically simple shapes of small but finite-sized elements. The so-called finite

element mesh constitutes the collection of all these simple shapes.

¢ The finite-volume method is similar to the finite-element method in that the
model is first divided into small but finite-sized elements of geometrically
simple shapes. Apart from this, the finite-volume method is very different from
the finite-element method, beginning with the concept of elements, which are

instead referred to as cells.

1.1.2.2 Discrete approach

In comparison to the continuum approach, discrete methods model every particle
as a discrete object and portray granular material as a bulk system of particles. The
overall (macroscopic) system behavior results from individual particle interactions.
It makes the discrete solution very useful for analyzing phenomena at the particle
length scale and gives a better simulation of the particles’ mass behavior. As granular
material micromechanics can be more accurately modeled with discrete methods, they
are best suited for modeling the flow and massive displacements of discontinuous

material (Kabore et al., 2018).

The discrete methods or particle-based models are numerical models that con-
sider materials into individual and independent particle system (Nambu and Jona-
Lasinio, 1961). Therefore, they are perfect at modeling granular materials and can
also be used to model fluids, metals, and most homogeneous materials. The idea

that matter is made of discrete elements dates back over 2000 years, with the Ancient

1.1. Granular materials modeling and particle simulations 5

Greek atomists Leucippus, Democritus, and Epicurus (Berryman, 2004b; Berryman,
2004a; Furley, 1967) arguing that nature was composed of atomos or indivisible indi-
viduals. Numerical modeling of materials behavior considers different scales from
atomic to macro scale. These different scale levels are captured in different methods
such as the Molecular Dynamics (MD), the Particle In Cell (PIC), and the Discrete
Element Method (DEM) (see Fig. ??).

10710 1078 1076 1074 1072 Im
| | | | |
<« | | | | >

Nano/atomic Micro Mesoscopic Macro

I I
< | | >

Discrete

Modecular Dynamics /| Continuum

Particle In Cell Element

Method (DEM)

Mechanics

FIGURE 1.2: Common approaches in computational mechanics.

The computational mechanics’ field can be divided into different scales, as
presented in Fig. 1.2: macro, mesoscopic, microscopic, and nanoscales. Molecular
Dynamics can be used at micro, meso, and nano scales structures. The DEM approach
can be used at micro, meso, and even macro-scales structures, making the DEM a
perfect method to model granular materials in its broad diversity. The continuum
mechanics is commonly used to model the macro-scale structures, where the finite

element method can be used.

1.1.3 Particle simulations

Simulations of particulate matter started with the invention of molecular dynamics
in the late 1950s, which models the physical motion of atoms and molecules in a
multi-body simulation. The atoms’ motion is determined by solving Newton’s second

law of motion for a system of interacting particles, where forces between the particles

6 Chapter 1. Introduction

and potential energy are defined by inter-atomic potentials or molecular mechanics

force fields.

Particle-based methods introduced new simulations that were hardly possible
with the continuum approach but come with additional difficulties, extra computing
time, and programming effort. Indeed, while such Lagrangian approaches can have
substantial advantages over conventional mesh-based methods, their accurate and

effective implementation often poses several challenges.

The Discrete Element Method (DEM) is a family of numerical methods for
computing discrete particles” motions. The global behavior of the system is gauge
from the individual motion and mutual interactions of the particles. Typically, each
DEM particle represents a separate and independent element with a calculated
momentum and energy field. The DEM approach can be schematized as described in
the Fig. 1.3 below. Cundall (Cundall and Strack, 1979) first proposed it in 1971. While
very similar to MD, the DEM method is characterized by the addition of rotational
degrees of freedom and elastic contact, and complicated geometry. These additions

make the method ideally suited for modeling the bulk behavior of granular materials.

It has become possible to simulate millions of particles on a single processor
numerically with developments in computing power and numerical algorithms for
nearest neighbor sorting. DEM simulations, however, are relatively costly, intensive,
and challenging in terms of calculation, reducing either the length of a simulation or
the number of particles. Additional challenges are also faced when coupling DEM

simulations to continuum solvers such as Computational Fluid Dynamics (CFD).

1.1.4 The eXtended Discrete Element Method(XDEM)

The XDEM software is a numerical multi-physics simulation framework (Samiei
and Peters, 2010) based on the dynamics of granular material or particles described
by the classical DEM (Cundall and Strack, 1979; Allen and Tildesley, 1990). It is
extended by additional properties such as the thermodynamic state, stress/strain
or electro-magnetic field for each particle (Peters, 2013; Peters and Pozzetti, 2017;

Mahmoudi et al., 2016a). It is organized as a C++ library composed of a set of

1.1. Granular materials modeling and particle simulations

Particle domain

initialization

\ 4
Contact detection]—\
Update particle's Forces and torques
position interaction

Particle's acceleration
and velocity

G Contact mechanics
D Newton's law

FIGURE 1.3: Discrete element method loop’s scheme.

8 Chapter 1. Introduction

modules: Dynamics for the pure DEM part, Conversion for the chemical conversion
and thermodynamics, CFD coupling for the coupling through an external CFD library
such as OpenFOAM (Jasak, Jemcov, and Tukovic, 2007).

An XDEM simulation is an iterative time loop which contains the following main

phases:

¢ Prediction: initiates and prepares the quantity of particle motion for the upcom-
ing calculation. It is an optional phase used only with some specific integration

models;

* Broad-Phase: uses a fast but approximate collision detection to build a list of
particle pairs that can potentially interact. During this phase, the particles are
represented by bounding spheres with an appropriate radius (to express the

interaction range);

* Narrow-Phase: processes the list of potentially interacting particle pairs and
performs a precise contact detection using the actual shape of the particle (e.g.
sphere, cube, disk, cylinder, triangle, etc.). It calculates the overlap/distance,

the contact point, and the direction between the two particles;

¢ Apply Physics Model: this phase selects the physics models defined in the
particle properties (e.g. for impact, bonding, rolling, conduction, radiation,
chemical reaction) and calculates the contribution of the interaction to each
particle involved (in terms of force, torque, heat flux, chemical specie mass

fraction, Etc.).

¢ Integration: updates the state of the particles after accumulating all the interac-
tions” contributions. Different integration models are available for the different
components of the particles’ state (e.g. position/orientation, temperature, chem-

ical composition).

Each of the simulation modules can be enabled separately and have specific time
settings. The XDEM simulation driver is responsible for executing at each iteration

the required phases for the activated modules.

1.1. Granular materials modeling and particle simulations 9

To benefit from larger-scale As described in previous work (Besseron et al., 2013),
XDEM parallelization is based on a classical domain decomposition approach. It

relies mainly on three concepts:

e the simulation domain containing all the particles, is split in regular sub-division

called cells;

e cells are grouped to form a sub-domain or partition which will be assigned to

processes participating in the simulation;

* a partitioning algorithm is responsible for the creation of these partitions (Rous-

set, Besseron, and Peters, 2017).

MPI communication from 1 to O

Sub-domain on Process 0 _m

u Sub-domain on Process 1

MPI communication from 0 to 1

FIGURE 1.4: Classic MPI domain decomposition layer. Process 0 and 1
exchange particles from ghost layers.

The parallel simulation driver executes the different partitions” evaluation while
computations inside a partition or a sub-domain are performed sequentially. Because
of parallel execution, additional communications are required to exchange particle
data between neighboring cells located on different partitions. A layer of ghost cells (or
ghost layer as shown on Fig. 1.4) is added at the boundaries of each partition for this

purpose. These layers are thus used to represent cells located on the other processes.

10 Chapter 1. Introduction

1.2 High performance computing

High-performance computing (HPC) is a set of techniques for performing billions of
billions of operations on large amounts of data using super-powered computers. It
is also defined as the "use of parallel processing for running advanced application
programs efficiently, reliably, and quickly." The supercomputers are an aggregation
of computing power involving thousands of processors performing billions of com-
putations on a massive amount of data in parallel using fast network infrastructure
(Fig. 1.5). It is today an essential tool for researchers and engineers to solve cutting-

edge problems.

o
\\\\\\
< Ve &S\\

FIGURE 1.5: University of Luxembourg’s Iris cluster Infiniband inter-
connection.

HPC has enabled tremendous applications in weather prediction, nuclear, envi-
ronment, fluid mechanics, aerospace, astrophysics, data science, artificial intelligence,
and hydrology. It is possible to simulate large scale and parallel systems that require
high computing power and are data intensive. There is currently a development

race for the most powerful supercomputer between Western nations (Europe and

1.2. High performance computing 11

the US) and China. TOP500 is a world ranking project of supercomputers that ranks
the first 500 supercomputers in the world based on the number of floating-point
operations per second (FLOPS/s) they can perform. In 2020, the rank is dominated
by the Japanese machine Fugaku (see Fig. 1.6) which is installed at the RIKEN Cen-
ter for Computational Science (R-CCS) in Kobe, Japan and has a theoretical peak

performance of 415.5 petaflops with more than 7 million cores.

L£icL

\(5(GROUP top500.0rg o

INOVATIVE
The List.
SYSTEM SPECS SITE COUNTRY CORES sRiBis "S-
Fugaku Fujitsu AG4FX (48C, 2.2GHz), Tofu Interconnect D RIKEN R-CCS Japan 7268072 4155 283
Summit 1BM POWERS (22C, 3.07GHz), NVIDIA Volta GVI00 (80C), Dual-Rail Mellanox EDR Infiniband DOE/SC/ORNL ~ USA 2414592 1486 101
Sierra 1BM POWERS (22C, 31GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanax EDR Infiniband ~ DOE/NNSA/LLNL USA 1672480 946 74

Sunway TaihuLight Shenwei SW26010 (260C, 1.45 GHz) Custem Interconnect NSCC in Wuxi China 10,649,600 93.0 154

Tianhe-2A (Milkyway-2A) Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000 NSCC Guangzhou China 4981760 614 185

Performance Development

10 enopre
Tenoprs
100 Picprs
10 Prgrs
1progre
100 Thoprs
10 Thoprs

Tineprs

100 atopis
10 atepis
Tatopis
W Bw 15 e 1 mSB w99 A0 01 20z A0 204 205 Z20s AW 08 M9 20 2 22 a0 24 s a6 am 208 28 2w

Architectures Chip Technology
005 SIMD 100%
- I m

Constellations b
MPP
= Clusters =
intel
MIPS
- o
SPARC

3 D

Singla

Proc.

WM W W W oW W W WM MWW WOWEEWWRD W W WE 913 W W W W MW W W WU MWW W BT RW W WU mm

Installation Type

005

Research

oy
o

Industry
P

Government

20

WM W W W W W OB W W W OWOW W W OWW W WULMUWE WY W WM

Accelerators/Co-processors

i

0

Systoms

carspeed CX600
E I T T T R T T T T T

e m

HPLINPACK4 A Portable implementation of the High Performance Linpack Benchmark for Distributed Memory Computers » MORE INFa AT http:/ficluth.sdu/hpl/

FIGURE 1.6: June 2020 Ranking of the Top 5 super computers in the
world (June 2020 top500 poster).

12 Chapter 1. Introduction

The high computational demand is one of the key disadvantages of the DEM
method, despite numerous advantages. Modern computers have provided high-
performance computing with powerful hardware platforms, but many current DEM
codes are usually serially coded, which entirely prevents them from using modern
computing capability. Adapting DEM codes to run on supercomputers enables to run
large scale DEM simulations that will accelerate research outcomes by dramatically
reducing the computational time for these studies while providing high-resolution

representation of physical experiments.

1.3 DEM software: A state of art

A bibliographical search allowed us to establish a list of several existing platforms or
projects of parallel DEM platforms. This list is not exhaustive, but it is intended to be

as complete as possible.

LIGGGHTS (Kloss et al., 2012) is a well known DEM software developed by
DCS Computing GmbH, Linz, in Austria. It is constructed on top of LAMMPS (Plimp-
ton, Crozier, and Thompson, 2007), a classical molecular dynamics simulator. LIGGGHTS
is an open-source software package for DEM simulations, including granular materi-
als and heat transfer. It is inherited from LAMMPS, and it is parallelized through
MPI but with a dynamic domain decomposition (unlike LAMMPS). XDEM and
LIGGGHTS decompose the simulation domain in a very similar manner. However,
unlike LIGGGHTS (in its free version), XDEM does not produce a Cartesian grid of
the subdomain (it also has RCB decomposition in the commercial license). XDEM on
the other hand uses topological, geometric, and Hypergraph partitionners from the
ZOLTAN toolkit (Devine et al., 2002). It gives us an edge over a better load balance
among the MPI processes and more flexibility. LIGGGHTS has, in its commercial
license, a lock-free OpenMP parallelization (Berger et al., 2015) on top of the MPI
decomposition and can therefore perform hybrid simulations. In (Berger et al., 2015),
a speedup of 64 over 128 cores for a Hopper discharge (silo) test case with 1.5 million
particles was shown, as well as a speedup 55 on 128 cores with a mixing process test

case with 770000 particles.

1.3. DEM software: A state of art 13

YADE (Kozicki and Donze, 2009) is an open-source C++ and Python framework
for discrete numerical models, focused on Discrete Element Method. The code has a
generic design to provide extreme flexibility in order to add new features. It can also
be coupled to other software or import data from a third software. YADE also directly
incorporates Lattice Geometrical Models (LGM) and FEM, making it a complete
software. A parallel version using shared memory (OpenMP) of the software was
released in 2013 and consisted of a brute force parallelization of loops in addition to a
parallel collision module. It presents a speedup of 12 on 20 threads for a simulation
of one million particles (DEM8 open-source presentation). In 2018, a distributed
memory (OpenMPI) working alpha version was released with no substantial change
to the existing code. The MPI parallelization of the code is divided between Python
and C++ as follows: 90% of Python parallelization with mpi4py and 10% of C++
using OpenMPI. An ETA "beta" was released in 2019. Unlike XDEM, YADE does not
offer additional thermodynamics properties for particles with a conversion module.
It, therefore, offers less possibility of simulating complex and complete DEM cases

such as a fluidized bed.

MERCURYDPM is a scientific software for discrete particle simulations. It is a
very adaptable, object-oriented C++ and Fortran code working on Linux distributions,
Mac OS, and Windows 10 and released under the BSD 3-clause license (Weinhart et al.,
2020). It was initially designed for granular chute flow but can now be used for more
granular problems, including geophysical modeling of cinder cone creation (Weinhart
et al.,, 2020). MERCURYDPM supports polydiverse particles, curved walls, and
coarse-graining analysis for extracting continuum fields as density, momentum, and
stress. Many contact force models are implemented, including elastic or dissipative
normal forces and tangential friction. Flat or polyhedral walls are modeled, as well
as fixed-particle walls. The code support parallel processing through a distributed
approach using MPI. The domain decomposition is classical and Cartesian, where
the subdomains have equal size and are associated with an MPI process. It does,
therefore, not support complex domain decomposition, unlike XDEM. The code is
claimed to have 40% speedup with hyper-threading and above 60% speedup without

a rotating drum with varying width.

14 Chapter 1. Introduction

RocKY DEM (Granular Dynamics International and Software, 2020) is commer-
cial and industry-oriented software developed by ESSS and is claimed by authors to
be one of the complete DEM software available on the market. It simulates the flow
behavior of bulk and granular materials with complex shapes and size distributions
(polydiverse particles). It supports 3D shapes, 2D shells, and fibers that are flexible or
rigid. The main feature that distinguishes the ROCKY DEM software is its support
of breakage models to mimic the breakage behavior of particle shape. It also fully
integrates the ANSYS package for CFD. The code can be executed mainly on GPU
but also CPU. Since release 4 of Rocky, the software allows execution with multiple

GPUs through MPI. ROcKY DEM can therefore run on many GPU cards.

EDEM (“2.4 Theory Reference Guide, 2011”) is also a commercial software
developed by DEM-Solutions. It is aimed to simulate and analyze the behavior of
bulk materials such as coal, mined ores, soil, tablet, and powders. It supports a large
range of complex shapes and thousands of pre-calibrated material models for rocks
and ores. The EDEM software can be coupled with Finite Element Analysis (FEA),
Multi-body Dynamics (MBD), and Computational Fluid Dynamics (CFD). EDEM
is parallelized for both shared and distributed memory and offers the way to target

CPU and GPU architectures. It also supports multi-GPU capacity through MPL

Finally, BLAZE DEM (Govender, Wilke, and Kok, 2016) is A GPU Based Poly-
hedral DEM particle transport code and specifically targeted for NVIDIA GPU plat-

forms.

In Tab. 1.1, we compare the DEM software mentioned above according to five
criteria: license, target node, parallelization approach, programming language, and coupling

capabilities.

Without going into individual comparisons, all the above software tools were
mainly developed with a particular purpose in mind. As such, all of them are useful
tools that serve very well in their field of applicability. However, there are no universal
tools that could be used for everything. For this reason, each of these platforms is
briefly presented, focusing mainly on three main criteria: the parallelization strategies

used such as distributed or shared memory (MPI, OpenMP), the targeted architecture

1.4. Motivation and Objectives 15
DEM software specifications
Software License Target node | Parallel approach | Language | CFD coupling

LIGGGHTS || Open Source CPU MPI C++ YES
YADE Open source CPU MPI C++ YES
MERCURYDPM|| Open source CPU MP1/OpenMP C++ NO
ROCKYDEM || Commercial | GPU/CPU Cuda/MPI Cuda C++ YES
EDEM Commercial | GPU/CPU Cuda/MPI Cuda C++ YES
BLAZEGPU || Open source GPU Cuda MPI Cuda C++ NO
XDEM Commercial CPU MPI C++ YES

TABLE 1.1: Table to compare DEM software specifications.

(CPU or GPU), and some scalability or speedup information when it is available

(speedups are challenging to interpret because it is very test case dependent).

1.4 Motivation and Objectives

The main objective of this doctoral research is to run large scale systems with the
XDEM software on HPC platforms. The first motivation behind this research is to
understand the behavior, limitations, and bottlenecks (communications overhead,
load balance, scalability limits) of the XDEM software by performing a complete
profile of the code. The second objective is to develop and apply several HPC tech-
niques, algorithms, and parallelization methods to overcome the software limitations.
The final objective is to be able to use XDEM to perform highly scalable simulations
of applications such are Blastfurnace for iron making simulation, Biomass combustion
for green energy production, and particle flow (Avalanche, landslides. To achieve this
goal, it is fundamental to adopt computing and memory-efficient implementation
techniques combined with different parallelization taxonomies with the use of HPC

resources.

1.5 Contributions

The main benefits and contributions of the current thesis are summarized as follows:

¢ A complete review and development of collision detection algorithms and their

implementation in a shared memory approach. A C++ framework has been

16 Chapter 1. Introduction

developed to implement, study and compare most popular collision detection

algorithms. The best approaches were implemented within the XDEM software.

* An original Verlet list implementation for DEM that takes the particle flow
regime into account when selecting the skin margin to further enhance the
efficiency of the algorithm is presented with performance comparison. An
optimization study has been conducted to determine which optimum skin
margin gives the best computing performance depending on particle local flow
regime parameters. Therefore, a polynomial function expressing the optimum

skin margin as a function of the simulation parameters was proposed.

¢ A full OpenMP parallelization layer has been added to the XDEM software.
The implementation enables the possibility of running hybrid MPI/OpenMP

simulations taking advantages of modern supercomputer NUMA architecture.

¢ Development of an entire large scale biomass combustion case. The application
is an XDEM-OpenFOAM (DEM-CFD) coupling approach, with thousands of

particles interacting with the surrounding gas phase.

1.6 Structure of the thesis

The current thesis is partially a collection of published and submitted scientific papers
to peer-reviewed conferences and journals. The different papers give an overview of
the optimization process of a large, complex, and legacy software such as the XDEM

software.

The third chapter’s content is an extended version of an article published in the
2017 Particles conference and is intended to be published in a journal as an extended
version. The fourth chapter is a journal article currently under review and submitted
to the Advances in Engineering Software. The fifth chapter has been presented in the
10" IEEE Workshop Parallel/Distributed Combinatorics and Optimization (PDCO
2020) and published in the IEEE International Parallel and Distributed Processing
Symposium (IPDPS2020). The eighth chapter has been published at the 12th Euro-

pean Conference on Industrial Furnaces and Boilers (INFUB12). The sixth chapter is

1.6. Structure of the thesis 17

an article presented in the 9" Workshop on Applications for Multi-Core Architectures
(WAMCA) and published in the 30" International Symposium on Computer Archi-
tecture and High-Performance Computing (SBAC-PAD). The remaining chapters will

be presented in paper format and are intended for publication.

Chapter 2 describes in-depth the process of profiling a software code to find
bottlenecks. Different approaches are presented with a different tool to perform the
profiling alongside performance metrics. The hotspots and memory footprint of the
XDEM software are analyzed and presented, and the chapter outcomes” are used as

steps to follow throughout the thesis.

The third chapter 3 is a consequence of the second chapter where the contact
detection broad-phase has been identified as a hotspot. Therefore, it presents a general
review of the broad-phase algorithms found in the literature and the implementation
of a few of them in a framework for comparative benchmarking. An OpenMP parallel
version of most of the algorithms is also proposed and their implementation and

integration in the XDEM software.

Chapter 4 introduces a new Verlet list approach called the Local Verlet buffer
approach. The method extends the classical Verlet list by taking into account the
local flow regimes of each particle for the choice of the optimum skin margin. The
method has been tested and compared against the classical Verlet list and different

approaches (skin values) to assess its performance over the classical approach.

The fifth chapter 5 studies the different parameters that influence the optimum
skin margin in the local Verlet buffer method. For this purpose, an optimization

problem that required hundreds of simulations is solved using the DAKOTA software.

In chapter 6, we present the OpenMP implementation of the XDEM software in
order to target the different high-performance computers. The different obstacles and
challenges of parallelizing an existing and legacy code are presented with different
solutions on algorithms and data structures. A performance test on hundreds of cores
has also been conducted, and the results are analyzed through the scalability and

speed up performance.

18 Chapter 1. Introduction

Chapter 7 focus on studying the XDEM parallel performance using two test
cases: dam-break and biomass. We first compared the 03/2017 and 10/2020 XDEM
versions to highlight the gains brought by our optimizations. We then study the
dam-break test case’s performance by running parallel simulations on 85 nodes on the
HPC cluster. The scalability, speed up, and load imbalance are the different methods

used to perform the parallel performance study in this chapter.

The eighth chapter 8 presents an application test case: a full and extensive
scale biomass combustion process. It demonstrates the new capabilities of the XDEM
software to run large scale, parallel, and coupled DEM-CFD simulations with millions

of particles in a very reasonable time and computing resources.

Part I

Methodology

19

21

Chapter 2

PERFORMANCE ASSESSMENTS

“Measurements is the first step that leads to control and eventually to improvement.”

H. James Harrington

“The First Rule of Program Optimization: Don't do it. The Second Rule of Program Opti-

mization (for experts only!): Don’t do it yet.”

Michael A. Jackson

“We should forget about small efficiencies, say about 97% of the time: premature optimization

is the root of all evil. Yet we should not pass up our opportunities in that critical 3% "

Donald Knuth

22 Chapter 2. Performance assessments

2.1 Introduction

Measuring the performance and the efficiency of a computer program during or
after software development is a path that any developer should follow. More often
than not, especially in the research community, numerous software properties such
as correctness, functionality, reliability, robustness, or portability are more valuable
than performance. The latter statement is reinforced by the increase in the power of
modern computing resources. As stated by Moore’s law (Moore, 1965), the number
of transistors inside a single chip has been doubling almost every two years since the
70s though the cost of computers is halved. Moore’s law also resulted in the doubling
of the processor frequency with that of transistors. It means that every two years,
the new generation of CPUs is twice faster than the previous generation and costs
half as much. From this perspective, programmers can only wait two years for new
generation processors to run their programs twice faster than before without doing

anything more (Sutter, 2005).

Nevertheless, Moore’s law is an empirical and observational law that has to
come to an end (Schaller, 1997). Some say it has already been happening, or we are no
longer at the same rate. “It is over. This year that became clear,” says Charles Leiserson
in 2019. Since 2005, although the number of transistors per processor has continued to
increase at the rate predicted by Moore’s law, we have experienced a decrease of the
processor frequency, as shown in Fig. 2.1. Indeed, although single-core CPUs became
more and more complex, that complexity is not translated into more performance, but
rather, it turns into the failure of most programs to take advantage of this complexity.
It also raised another difficulty to processor vendors: the power density (W /cm?)
inside a chip is increased by approximately 25 ~ 30% per year (Gelsinger, 2004)
generating an overheating problem inside chips. Overheating inside processors has
become a serious concern, and the cooling systems are becoming more and more

expensive.

One solution brought by the industry to overcome the issue of power dissipation
is to make processors with many cores: multi-core processors. It has brought in new

programming paradigms, multi-threaded programs, which come at an overhead price

2.2. Baseline 23

Processor Scaling Trends

@ Clock Speed (MHz)
@ Transistors (millions)
@ Power (W)

+ SpecFp2006

FIGURE 2.1: CPU transistor densities, clock speeds power and perfor-
mance from 1970-2015 (Stewart and Lampl, 2017).

cost, and since programmers have to pay attention to the design and behavior of their
code to get the most performance out of the CPUs. Multi-core processors come with
complex memory design and hierarchy shared by the cores, and it has become difficult
to understand how to take full benefit from such structure. It is, in summary, how
performance becomes nowadays a widely used property for software requirements.
However, what is performance, and what makes a program performant? How do we

measure and analyze the performance of a computer program?

Sections 2.3 and 2.4 introduce two common methods for assessing a computer
program performance and applied to our XDEM software. The results are discussed

in section 2.6 and gave the path to follow during this research work.

2.2 Baseline

It is essential to have a starting point for the measure when carrying out a given
program’s performance tests. The starting point is usually the program’s perfor-
mance results at a given state of the period before making modifications or applying

whatever optimization. It is then used as a reference state for upcoming performance

24 Chapter 2. Performance assessments

tests. In this section, we will define our baseline code used later on to compare with
all optimizations we have made during the research. We will also introduce the
metrics we have used to characterize our performance results and what makes them
an excellent metric to measure a specific performance count. Finally, we present
the real-life test case used to assess the progress achieved with all our optimizations

improvements.

2.2.1 XDEM version

XDEM as introduced in section 1.1.4 of chapter 1 is a C++ legacy software that
has been developed inside the LuxDEM team for more than fifteen years. Several
researchers/developers are continuously working and using it in a continuous inte-
gration manner. Therefore, it was necessary to define a baseline version to be used as

a starting point for any optimization and comparison.

As we started the doctoral research on 1st of March 2017, it was then obvious to
take an XDEM version from March 2017 (git hash: 18a22cbfdadf7fe2afd8bbc9ba02744d75b775d0).
It is a straightforward and perfect choice to begin with as a significant update on
the partitioner has been made at the beginning of the year, and no other extensive
updates were expected in the following months. The results presented in section 2.6

has been collected using the baseline XDEM version.

2.2.2 Metrics of performance

Measuring a computer program’s performance involves measuring a metric that can
be a count of occurring events, a period, or an amount of a defined parameter. How-
ever, it is usually convenient and interesting to normalize event counts to a common
time basis to provide a speed metric such as instructions or operations executed per
second. This metric is called a rate metric or throughput and is calculated by dividing
the number of events that occurred in a given interval by the time interval over which
the events occurred (Lilja, 2005). Since a rate metric is normalized to a common time
basis, such as seconds, it is useful for comparing different measurements made over

different time intervals (Lilja, 2005).

2.2. Baseline 25

2.2.2.1 Characteristics of performance metrics

The choice of the metric only depends on the needs and the cost of measuring that
metric. However, metrics need to fulfill some characteristics to be considered good

metrics (Lilja, 2005).

* A good metric is certainly consistent, meaning that its units and definition

remain the same across different systems.

* A metric is reliable when system or configuration A always gives better perfor-
mance metrics than system or configuration B. The comparison outcome should

always give the same result no matter how many times the test is executed.

¢ A performance metric should also be repeatable by having the same value

measured every time the same test is executed.

¢ The last property but not least, that a useful performance metric should have
is the easiness of its measurement. The easiest a metric is to be measured, the
better chance it has to be correctly measured, and there is nothing worse than a
lousy metric that is incorrectly measured. It should be noted that most of the
widely used performance metrics do not satisfy altogether the characteristics

mentioned in this section.

2.2.2.2 Type of performance metrics

Most of the performance metrics we have been using are processor-related metrics.
The MFLOPS performance metric count the number of operations that has been
performed by/in a computer program when being executed (Smith, 1988). It is
a throughput or arithmetic operation rate defined as the millions of floating-point
operations executed per second giving by the formula MFLOPS = ﬁ where f, is
the count of floating-point operations executed in T,, seconds. This metric does have
a good fit with a DEM application that performs a substantial amount of floating-
point operations. However, it does certainly not consider any part of the program

that does not perform floating-point operations but does affect the performance.

The MFLOPS performance metric may differ from different systems (they may not

26 Chapter 2. Performance assessments

perform the same floating-point operations) and is therefore considered as unreliable

and inconsistent.

The MBytes memory bandwith is a memory performance metric that expressed
the rate at which data is read and stored to and from caches and the main memory. It

is a throughput or memory rate defined as the millions of bytes read/stored per second

By

giving by the formula MBytes = T, 106

where B,, is the count of bytes memory read
or stored in T, seconds. It is a handy metric to detect whether a computer program’s
performances are bounded by the memory accesses (it is usually the case rather than

bounded by computation).

The execution time is one of the most commonly used performance metrics
as programmers are mostly interested in how fast a program can be executed on a
system (Stewart, 2001). Version B of a computer program performs better than its
version A if version B execution time is lesser than A’s. It is essential to be aware of
the precision and accuracy of the time measurement method and to distinguish the
difference between wall clock time (including system execution overhead as the time
waiting for memory to be un/loaded) and the CPU time, which does not incorporate
the time the program is context switched out while running other applications. The
execution time can considerably fluctuate between different runs due to random
events such as the operating system tasks and the cache mappings, and it is a non-
deterministic metric. Nonetheless, the execution time is reliable, repeatable, easy to
measure, consistent, natural and fulfill all the characteristics listed in section 2.2.2.1

and can thus be considered as a good metric.

The speedup is a normalized performance metric that can be derived from exe-
cution time. The speedup measures the relative performances between two systems
or different versions of the same computer program. It is usually used to show the
improvement in speed of execution for a parallel program but can be used more gen-
erally to illustrate the performance effect between two systems or program versions
after optimization or update (Sun and Gustafson, 1991). Considering program A
and program B, the speedup of program B with respect to program A is defined as
Sp_wna = %, where T4 and Tp are respectively the global execution time for program

A and program B. Thus, if Sp_4 is greater than 1, then program B is Sp_- 4 faster

2.3. Profiling 27

1
Sp->4

than program A, if not, program B is slower than program A.

2.2.3 Real test case

Three different test cases have been used to assess and conduct our performance study.
They have been chosen to cover many aspects: large scale, application, dynamic,

conversion, coupling, and industry use. The cases are:

1. Biomass furnace. The test case simulates the behavior of a combustion
chamber of a 16 MW geothermal steam super-heater. It is a coupling XDEM-
OPENFOAM case where particles are treated as discrete elements coupled
by heat, mass, and momentum transfer to the surrounding gas continuous
phase. The particles are taken into consideration via XDEM (Dynamic and
conversion modules are active), while the gaseous phase is described by
Computational Fluid Dynamics (CFD) with OPENFOAM. The case is used in
section 7.2 as a baseline case to compare the performance gains between the

03/2017 and 10/2020 XDEM versions.

2. Dam-break. The Dam break is a famous case for two-phase flow simulations.
The entire case comprises 2.35 million particles interacting with the column
water in an XDEM-CFD coupling approach. It uses a multi-scale DEM-VOF
method that adopts a dual-grid multi-scale approach with a coarse grid that
performs the coupling between CFD and DEM code at a bulk scale, while
a finer and non-uniform grid is adopted to discretize the CFD equations.
The case is used in section 7.3 to study the XDEM-OPENFOAM coupling

performance in a large scale simulation.

2.3 Profiling

As discussed in the introduction section 2.1, we need to use an accurate technique and
procedure to measure and quantify the performance of a computer program. Profiling
is a complex software analysis that measures memory utilization, the use of explicit

instructions, and the frequency and length of function calls during program execution.

28 Chapter 2. Performance assessments

It is necessary to identify computational bottlenecks, and it helps developers focus
their optimization efforts on the program’s bottlenecks by spotting the critical sections

of code.

There exist many PROFILERS that can help to identify performance bottlenecks.
We have been using many of them, such as SCALASCA, ARM MAP, INTEL VTUNE,
PERF, VALGRIND, GOOGLE GPERFTOOLS, PAPI, and LIKWID because they sometimes
offer different performance aspects. Performance profilers can be classified into
two main categories: tracing and sampling profilers. Some, as SCALASCA, are
instrumenting profilers that are code or executable intrusive, which require modifying
the source code and the compilation process. The majority of the remaining profilers
are sampling profilers that let applications run without any run-time modifications,
and the order of execution is not affected, and all the profiling work is done outside

the application’s process.

In the end, they all answer the question "How often is any method called in my
code?" and "How much time does each method take?" It is then easier to identify
which methods are on the top of the list in CPU or/and memory usages and then
find a way to improve them. We have constantly used MAP and INTEL VTUNE in the
pursuit of everyday improvement because what makes a difference is a continuous

improvement over time.

2.3.1 Tracing profilers

A tracing or event-based profiler tracks and collects data from a set of predefined
events during the program’s execution. The events can be defined as entering or
leaving a function, process communication, memory allocation for an object, or
throwing an exception (Wadleigh and Crawford, 2000). They are usually trace-based,

meaning that the compiler keeps track of the collected data based on events.

It is recommended to use event-based profilers when it is crucial to track specifics
events. For example, one may want to track all the return statements occurring
in a program. They are, therefore, instrumental in profoundly understanding the

performance issue. However, the set of events to be tracked can be large, and so

2.3. Profiling 29

will be the generated output data (Doglio, 2015). They can also have a considerable

overhead (100 — 1000%) that slows down the program’s execution.

SCALASCA, EXTRAE and VALGRIND in a certain way are tracing profilers. They
provide accurate call stacks, functions call (except inline functions), and the number
of calls but require more time to run. A VALGRIND profiling can be 10 times slower
than the normal simulation time, and EXTRAE can generate hundreds of gigabytes of

trace files.

2.3.2 Statistical profilers

A statistical or sampling profiler tracks and collects data by probing the program’s call
stack at regular intervals using the operating system interrupts. At each interruption,
the profiler determines which function is currently being executed (by using the
program stack) and increases the sample count for that function (An introduction to
profiling mechanisms and Linux profilers). The output generated by the profilers is a
collection of functions and the number of times they were found being executed
during the execution of the program. Each function’s execution time can then be
approximated by multiplying the number of occurrences by the interruption time

period.

The sampling method has the advantage of having very little overhead (5 — 15%)
compared to tracing profilers and produces fewer data to analyze. It allows the
program to be executed at almost the usual execution time. It is recommended to use
sampling profilers at first to get a glimpse overview of the program execution and
detect the hotspots. In return, it gives less accuracy in the output information as it

uses statistical approximation (Mytkowicz et al., 2010).

ARM MAP, INTEL VTUNE, PERF, GPERFTOOLS and LIKWID are sampling profiling
tools that also support the code instrumentation. They have a low memory footprint,
small trace files, and do not change the application time. The call stacks and the
function calls are inaccurate, as not all of them are captured (depend on the sampling

period).

30 Chapter 2. Performance assessments

2.4 Benchmarking

To solve a given problem, we are sometimes faced with different algorithms and
implementations as a solution. For example, there are more than fifty algorithms for
solving collisions” detection in a DEM simulation. We may also use different data
structures to implement those algorithms on different computer systems. Therefore, a
given problem must compare the performances (using performance metrics) of some

of the available methods to make a suitable choice.

Benchmarking the performance of different methods or different computer
systems is the procedure that consists of comparing their performance against a
standard method or computer system using a range of performance metrics and
evaluation criteria. It is defined to be the “systemic measurement of some aspect of a

computer system’s performance” (Berry, Cybenko, and Larson, 1991).

2.4.1 Macro and micro benchmarks

In our current work, we have been conducting two kinds of benchmarking: micro
and macro benchmarks. A micro benchmark aimed to focus on the performance of a
particular and specific computer program section. As it is introduced in chapter 3,
we developed a benchmark on the broad-phase (see Fig. 3.3) of the collision detection
process of the XDEM software. It is a neutral benchmark as it only compares existing
algorithms with enhanced implementations. In a general manner, we benchmark
the hotspots functions detected during profiling and presented in section 2.6.1. The
goal is to assess the following statement: “This particular implementation of this function
benchmark of a given size on this given computing node executes in this particular time using

the compiler with this level of optimization.” (Hockney, 1996).

A macro benchmark, on the other hand, tests the performance of the whole
application or system. In chapter 7, we present a macro benchmark of XDEM applied
to a real test case. We compared the performance of two versions or states of XDEM:
the baseline version (03/2017) presented in section 2.2.1 and the very last version

(10/2020) defined as the version having all the optimizations.

2.5. Performance models 31

2.4.2 Evaluation criteria

Comparing methods in a benchmark is based on at least one performance metric (We-
ber et al., 2019). The latter requires at least one of the characteristics detailed in
section 2.2.2.1 to make it a good performance metrics. Unfortunately, measuring such
metrics leads to uncertainties that are considered as errors or noise. There are many
sources of errors introduced during measurements, such as precision and accuracy, or
errors due to experimental mistakes. They are classified into two categories: systemic
(experimental) and random errors. It is, therefore, important to understand and take
them into account before drawing any conclusion. Even though it is almost impossi-
ble to quantify the systemic errors since it is a function of bias, it is essential to use a
model for random errors (Gaussian) to quantify the precision and the repeatability of

the measurements.

2.5 Performance models

The performance model generates knowledge about software-hardware interaction.
Its main purpose is to come up with a quantitative estimate for expected performance.
Without an expected performance estimate, it is impossible to decide on performance
optimizations as there is no clear knowledge of what aspect of software /hardware
interaction limits the performance and what could be the optimal performance. You
formulate a model to estimate expected performance and compare this to applica-
tion benchmarking. Additionally, performance profiling may be used to validate
model predictions. In case the validation fails, either the profiling or performance
measurement is wrong, the model assumptions are not met, or the model inputs are

wrong.

2.5.1 Roofline model

It is important to consider the computer system architecture when evaluating the
performance of a computer program. As it can perform differently depending on

the architectural characteristics. Therefore, there is a need for programmers to have

32 Chapter 2. Performance assessments

a performance model that helps them understand which performance they can
expect from a given architecture. Statistical and stochastic models are available
models (Tikir et al., 2007; Boyd et al., 1994) that can be used to precisely foresee a
program performance on multi-core architectures. However, these models do not

provide any understanding of the reasons for an underperforming program.

The roofline model is a visual performance model used to provide perceptive
performance evaluations of a given compute kernel (Williams, 2009). It gives an
insightful and visual representation of the program’s intrinsic bounds and possible
optimizations on multi-core CPU or GPU architectures. The roofline model is unique
to each architecture and integrates in-core performance, memory bandwidth, and

locality into a single, easy-to-understand performance figure.

The roofline model uses the operational intensity to measure the traffic between
the caches and the DRAM to include memory optimizations into the model’s bound
and bottleneck. It is defined as the ratio of the Work to the memory traffic Q and

express the number of operations per byte of memory traffic:

=5 2.1)

, where W is the work defined as the number of operations performed by the compute
node and Q, denotes the number of bytes of memory transferred by the compute node
during an execution. The operation defined in the model can be one of the metrics
introduced in section 2.2.2 or any operation, such as the number of integer or floating-
point operations. The roofline model can capture other performance ceilings other
than simple peak bandwidth and performance, such as instruction level parallelism
(ILP), single instruction multiple data (SIMD) and Balance floating-point operation mix

peaks that give hints for the programmer on which optimization to focus on.

The Fig. 2.2 is a roofline graphic representation of the brute force algorithm used
in collision detection. The x-axis shows the arithmetic or operational intensity mea-
sured in the number of floating-point operations (FLOPs) or/and integer operations
(INTOPs) per byte, and y-axis shows performance measured in billions of floating-

point operations per second (GFLOPS) or/and billions of integer operations per

2.5. Performance models 33

second (GINTOPS). The diagonal chart lines indicate memory bandwidth limitations
preventing loops/functions from achieving better performance without some form
of optimization. The L1 diagonal chart line indicates the L1’s bandwidth maximum
amount of work that can get done at a given arithmetic intensity if it always hit the L1
cache. The horizontal chart lines indicate the compute capacity limitations preventing
loops/functions from achieving better performance without optimizing. The Scalar
Add Peak represents the peak number of addition instructions that can be performed
by the scalar loop under these circumstances. The Vector Add Peak represents the peak
number of addition instructions that can be performed by the vectorized loop under

these circumstances.

Sdoeb
m
'
'
1
'
'
'
'
'
il
'
'
'
1

4
o
'
'
'
'
'
'
\
[}
'
'
'
'
'
'
'
'
'
'
'
'
'
'
|
L
'
1
'

100 {2

40

- e e o ?
10 o = - - Integer Scalar Add Peak: 9.05 GINTOPS

o = B
— = -/./ Scalar Add Peak: 3.65 GFLOPS

7 Bound by compute,
Mema and memiory roofs Compt
ensity

T T 2 T T T T
001 0.04 0.07 0.1 0.4 o7 1 4 7 10

FIGURE 2.2: The roofline model for the naive brute force algorithm
in collision detection. The roofline was generated using the Intel
advisor tool.

From Fig. 2.2, we can state that our brute force approach is a memory-bound
algorithm as the red dot is positioned below the DRAM diagonal chart line. It
indicates that our program misses too much often the cache lines when fetching data.
It can be expected as the objects are stored without any particular order, which favors

a lot of memory jump. A possible solution to improve the algorithm’s performance is

34 Chapter 2. Performance assessments

to apply a space-filling curve approach to store the objects based on their position in
the space. Objects spatially close to each other should be stored close to each other in
the memory. The red dot is also positioned below the DP Vector Add Peak but above
the Scalar Add peak horizontal line, indicating that the loops are vectorized but bound

by the DRAM memory accesses.

2.5.2 Execution-Cache-Memory

The ECM (Execution-Cache-Memory) performance model is a resource-based analytic
performance model. It can predict the runtime of serial straight-line code (usually an
innermost loop body) on a specific processor chip. Runtime predictions are based on
maximum throughput assumptions for instruction execution and data transfers, but
refinements can be added. The model, in its simplest form, can be set up with pen

and paper.

The model decomposes the overall runtime into several contributions, which are
then put together according to a machine model. A processor cycle is the only time
unit used. All runtime contributions are provided for several instructions required to
process a certain number of (source) loop iterations; we typically choose one cache
line length (e.g., eight iterations for a double-precision code), which makes sense
because the smallest unit of data that can be transferred between memory hierarchy
levels is a cache line. For simple calculations, bandwidths and performance are
consistently specified in “cycles per cache line.” However, this choice is essentially
arbitrary, and one could just as well use “cycles per iteration.” Unless otherwise

specified, an “iteration” is one iteration in the high-level code.

2.5.2.1 In-core model

The primary resource provided by a CPU core is instruction execution. Since in-
structions can only be executed when their operands are available, the ECM model’s
in-core part assumes that all data resides in the innermost cache. It further assumes

out-of-order scheduling and speculative execution to work correctly so that all the

2.5. Performance models 35

instruction-level parallelism available in the code can be provided by the hardware,

resources permitting (on a given microarchitecture) (Stengel et al., 2015).

In practice, the first step is to ignore all influences preventing maximum instruc-

tion throughput, such as:
¢ Qut-of-order limitations
¢ Instruction fetch issues
¢ Instruction decoding issues

¢ Complex register dependency chains

2.5.2.2 Data transfer model

Data transfers are a secondary resource required by code execution. Modeling data
transfers starts with analyzing the data volume transferred over the various data
paths in the memory hierarchy. Some knowledge about the CPU architecture is
required for this in order to know what path cache lines take to get from their initial
location into L1 cache and back. It is assumed that latencies can be perfectly hidden
by prefetching, so all transfers are bandwidth limited. Additional data transfers from
cache conflicts are neglected (it is still possible to extend the model to account for
additional transfers). With known (or measured) maximum bandwidths, the data
transfer analysis results in additional runtime contributions from every data path 2.3.
How to put together these contributions and with the in-core execution time is part

of the machine model. The two extreme cases are:
 Full overlap: The predicted execution time is the maximum of all contributions.
* No overlap: The predicted execution time is the sum of all contributions

There is a large gray zone in between these extremes. On most modern Intel
Xeon CPUs, data transfer times must be added up, and everything that pertains
to “work” (i.e., arithmetic, loop mechanics, etc.) overlaps with data transfers. It
yields the most accurate predictions on these CPUs, but other architectures behave

differently.

36 Chapter 2. Performance assessments

Processor Core Execution time
6 cy

L1-L2 transfers

2 cy/CL 10 cy

L2-MEM transfers
24 cy

Total runtime
40 cy /CL

4.3 cy/CL

FIGURE 2.3: Schonauer vector triad (left column = bandwidth of data
path, black arrow = cache line transfer, red arrow = write- allocate
cache line transfer) (Erlangen Regional Computing Center, 2019)

2.6 Application

In this section we evaluate the performance of our baseline version (03/2017) defined
in section 2.2 by profiling the reference test case presented in section 2.2.3. Our
preeminent objective is to identify the parts of the code that need to be optimized and
redesigned by improving the algorithms, using the appropriate data structures and

parallelization techniques.

2.6.1 Hotspots analysis

The hotspots analysis provides a deep understanding of an application flow and
identifies the functions where the code is mostly executed: bottlenecks. We used
available profiling tools evoked in section 2.3 to generate a sampling profile as at
this stage, we are only interested in quantifying how fast is the XDEM program.
The results in tab 2.1 presents the seventh most time consuming functions and was

gathered using INTEL VTUNE’s user-mode sampling method on an INTEL XEON CPU

2.6. Application 37

at 3.40GHz. The execution time were collected running with a pure dynamic XDEM

optimized version compiled with debug info —g and the —O3 level optimization in

sequential.
TABLE 2.1: Hotspots in XDEM using INTEL VTUNE.
‘ Index ‘ % Total ‘ Self (s) ‘ Children (s) ‘ Function name Parent index
1 99.66 0.0 835.032 Run_simulation 1
2 91.50 0.0 773.460 Collision_detection 1
3 30.33 2.64 392.671 Interaction_models 2
4 27.36 0.77 168.773 Narrow_phase 2
5 15.44 5.69 186.354 Broad_phase 2
6 14.23 4.75 71.865 Reset_pair_interaction_list 2
7 13.97 0.19 154.509 Save_interactions_history 3

The first column shows the function’s index, and the second column shows the
proportion of the CPU run time of each function to the total CPU run time of the
entire simulation. It is fair to say that most of the time (~ 92%) is spent in the particle
interactions process. It is no surprise as we were running a pure dynamic version

with particle-particle and particle-wall interactions.

The third column shows the running time of the function executing itself, and
we can see that most of the functions spend very little time doing so. Furthermore,
the reason is clarified in CPU Time:Children column, which indicates the time spent
by the function requesting others’ functions. The function Collision_detection does not
perform any computation but rather calls other functions that themselves mostly call

some core functions not displayed in tab 2.1.

The last column Parent index specifies the caller and callee relationships be-
tween functions. Among the callee functions of Collision_detection, three of them
appears to be the most time-consuming and are executed in the code in this order
Broad_phase — Narrow_phase — Interaction_models. They are closely tied as the first
step of detecting collisions in a DEM simulation is the broad-phase, which finds out the
closest pairs of particles that are possibly in contact. The Narrow_phase, on the other
hand, returns the pairs of particles that actually are in contact using the previous
phase results. The Interaction_models applies all the defined models between pair of

particles as the contact, attraction, impact, bond, and rolling models defining how

38 Chapter 2. Performance assessments

the particles behave when in contact with each other or the walls. Actually, this
function may not be the most time-consuming since it is not necessary to have all the
interaction models defined; most of the time, only the impact and contact models are

defined. Those three DEM procedures are explained in more detail in chapter 3.

A dynamic call-graph, as represented in Fig. 2.4, is a profiling graph (tree view)
that visualizes the calling relationships between the functions during the execution of
a computer program. In Fig. 2.4, each node represents a function of XDEM and each
edge between any node A and B indicates a caller and callee relationships. Surely
not all function relationships are shown in the call-graph but only the most important

one that provides hints on where and what to look at.

Collision_detection
91 50%

Narrow_phase
30.33% 27.36%
(0.77%)

Dynamic_Entity _Interaction_History

FIGURE 2.4: Call-graph profile of XDEM. The redder the node is, the
more computational time it consumes

In the Fig. 2.4, the redder the node is, the more computational time it consumes.
We can then identify a hot path connecting the redder nodes going from top to
down the tree. As a result, we can spot what is probably an abusive use of map’s
insert function or even more as an improper usage of C++ map data structure in

Save_interactions_history function. The program also spent 10% of the running time

2.6. Application 39

dynamically allocating memory in the heap with the C++ new operator. It overall
indicates the reason why the Interaction_models function is time-consuming is mostly

an implementation and memory issues.

We are aware of the limits of such a call-graph approach on a complex program
alike XDEM that uses dynamic method binding (Spivey, 2004). In dynamic binding,
the compiler is not able to resolve the call at compile-time, and the binding is known

at run-time such that the profiler is unable to capture the call.

2.6.2 Memory footprint analysis

As we have spotted in the previous section 2.6.1, memory management can be a major
issue in computer program performance. Usually, a hotspots or call-graph are not
suitable for detecting bad memory usage or management and is therefore necessary

to profile the memory itself using a memory profiler.

2.6.2.1 Heap and stack profiling

We have been using valgring and massif tools to measure how much heap memory
the XDEM program uses. It provides information about heap blocks and stack sizes,
which are very useful to track memory usage or leaks (When memory is allocated but

not used).

L I il : '}] H s
L g;;fii-:ziljlz\i:ll1,_ HHEE R
s s ;@

" I|IIII " III||

g .I|||ll||\|\ﬂIIIIﬂIIIIﬂIIIIIIIIIIIlIIII|||||H||||||I|\|\Eﬂ|\|\ﬂl|\|\||I|\|\|ll|\I\I\ﬂﬂl\l\ﬂﬂl\l\l\il\ll B

i i IIIIIIIIIIII IIIII|III [0

uuuuuuuuuuuuuuuuu

FIGURE 2.5: Heap profile of XDEM generated by valgrind’s massif
tool.

40 Chapter 2. Performance assessments

Fig. 2.5 shows the different memory allocations in the heap during an XDEM
simulation using our baseline. Part of the graph’s fluctuations is due to the sampling
period where valgrind collects the data and finds out which functions call the mem-
ory allocator. The other reason is that the XDEM application allocates and releases
memory at each iteration, calling the memory allocator very often. We back-traced
the allocation/deallocation process to the function, which updates the interaction
history list (it is used for some integration model) after every iteration: the previous

interaction history list is freed, and a new one is created.

Fig. 2.5 shows how our baseline case allocates memory in the heap at the peak
of 93MiB after initialization. It is by any means, not an excessive use of the heap.
However, what is surprising in this figure is that the application allocates three
times the same size, 16.5MiB of memory, and it appears from the timeline that the
latter two are copies of the primary allocation. The first allocation was backtraced
to initialization, where a time table that governs the grate motion is loaded from the
input file. The two copies were made in functions using the time table data without

passing it by reference.

The tab. 2.2 presents the memory call-graph at the end of an XDEM simulation
and shows the functions that load the timetable for boundaries motion. The useful-
heap is defined as the memory that is allocated for the time table and, the extra-heap

is defined as the memory allocated for the book-keeping.

Percent (%) time (ms) total (B) useful-heap (B) extra-heap (B) Function
56,32% 424,631 52,385,992 51,304,4932 1,081,499 read_vec3D_tables_from_file

TABLE 2.2: Time table memory allocation details.

The storage of the time table data with the two extra-copies that were made
represents more than 55% of the total memory allocated in the heap. Preventing the

extra-copies decreases the time table memory footprint to almost 20%.

2.6. Application 41

2.6.2.2 Memory leaks detection and cache profiling

One of the most challenging bugs to detect and that can cause serious performance
issues is memory leaks. It happens when a program allocates memory and does not
release it when it is no longer needed or can not access it. It has consequences of
slowing down the running program by reducing the amount of available memory
and eventually leading to the program crash when no more memory is accessible. A
full memory leak check with valgrind tool confirmed as in section 2.6.2.1 that there
no such leaks in XDEM program. We have regular daily and nightly memory leak
tests that detect any leak as soon as they are introduced. All memory allocated in the
heap, mostly with the new operator, are released when not needed anymore by the
delete instruction. Using the C++ smart pointers approach is a good practice that

simplifies memory management.

The cache memory is a small and extremely fast memory that acts as a buffer
between the RAM and the CPU. It should be used to store and access frequently used
data and instructions so that the CPU can access them immediately when required.
The more the CPU can access data from the cache memory, the less time it takes for
data to be accessed. A cache performance can be defined in order to be able to assess

the performance of the cache access by characterizing two quantities:

* A cache hit occurred when the CPU reads the requested data directly from the

cache.

¢ A cache miss occurred when the CPU does not find the requested data in the
cache location and thus copies the data from the main memory to the cache

before processing the data.

The hit ratio defined as the ratio of cache hits to the sum of the number of cache

hits and cache misses is commonly used to measure the cache performance.

In tab 2.3, the first column lists the branch prediction and cache level instruc-
tions, while the second column is the count of missed or mispredicted instructions
during the program execution. The last column is the mispredicted branch and

missed caches rate defined as the instructions count ratio to the missed count. Two

42 Chapter 2. Performance assessments

types of branches prediction and caches are shown in the table as returned by the
valgrind tool. A conditional branch instruction only branches to a new address if a
specific condition is true while an indirect branch instruction branches to a specified
address. Conditional and indirect branch are not mutually exclusive, a branch can
be conditional and indirect. L1 corresponds to the first 1% cache level and LL to the
last cache level, gathering the second 2™ and third 1% cache levels (when L2 and L3

are available).

Summary ‘ Miss|-] ‘ Miss rate[%] ‘
L1 Instructions fetch (I1mr) 10,719,727 0.024
L1 Data read (D1mr) 410,790,558 0.913
L1 Data write (D1mw) 143,380, 535 0.318
L1 Miss Sum (L1m = [1mr + D1mr + D1mw) | 564,890,820 1.255
LL Instructions fetch (ILmr) 550, 563 0.001
LL Data read (D Lmr) 74,892,997 0.166
LL Data write (D Lmw) 66,163,592 0.147
LL Miss Sum (LLm = I[Lmr + DLmr + DLmw) | 141,607,152 0.314
Conditional Branch (Bcm) 316,484,354 0.703
Indirect Branch (Bim) 107,703, 340 0.240
Sum Branch (Bm = Bcm + Bim) 424,187,694 0.942

TABLE 2.3: Cache data access summary.

We can notice from tab 2.3 that there is a significant cache miss sum (~ 1.3%) that
possibly represents a significant overhead. Our XDEM program is cache and memory-
bounded though it is not uncommon for computer programs because the memory
access is costlier than computation in modern CPUs, and designing a cache-friendly
program is a very tedious job. It is also not surprising since the test case was running
in sequential using only one core on one CPU, and sometimes there is nothing more
we can do with serial code due to usual CPU limitations as pipelining and memory

bandwidth. Parallelization is then very useful to overcome those limitations.

The mispredicted branches in tab 2.3 count every time the CPU predicted the
results of conditional branches, and the predictions have proved to be incorrect.
The misprediction has cycles penalty costs because it stalls the CPU (mispredicted
instructions are discarded, and new correct predicted instructions are loaded in the

execution pipeline). Once identified and when possible, making the branches more

2.7. Summary 43

"predictable” or simply avoiding branches will increase performance.

2.7 Summary

In this chapter, we have presented the process of evaluating XDEM software perfor-
mances. This step is crucial as it states the code’s initial conditions and will serve as a

baseline comparison for the upcoming optimizations.

We presented the profiling results in section 2.6 were the main hotspots of
our XDEM program have been identified. In a pure dynamic simulation, these
hotspots are mainly located in the collision detection processes. Section 2.6 also
introduced a call-graph representation of XDEM which describes the caller and
callee relationships among functions. We have spotted particles’ collision detection
as the most consuming computational time segment for the test case we defined in
section 2.2.3. The process, divided into two phases, the broad and narrow-phases,
represents a combined ~ 33% of the total running time. Half of the simulation time is
then spent applying the bond, contact, impact, and rolling models. Those parts are
therefore defined as our main priorities for optimization, redesigning, refactoring,
and remodeling. The next chapters will, therefore, focus on optimizing the collision

detection processes.

In the next chapter 3, we reviewed in detail the collision detection process of a
DEM simulation. We presented and compared the different algorithms commonly
used and propose an optimized algorithm that gives the best results for our XDEM
approach. For this purpose, we have developed a benchmark framework to test and

compare the collision algorithms’ performance most often found in the literature.

45

Chapter 3

CONTACT DETECTION IN THE
EXTENDED DISCRETE METHOD
(XDEM)

46 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

3.1 Abstract

Extended Discrete Element Method (XDEM) is a multi-physics approach that extends
the classic Discrete Element Method (DEM) by attaching chemical and thermody-
namic state to the particles. One of the essential and most computation-intensive
parts of XDEM is the interaction/collision detection phase during which objects
in-contact or in close-range are identified. This work evaluates and compares ten
different Broad-Phase Collision Detection algorithms while considering a large DEM
test case. It appears that the choice of the best algorithm is a trade-off between
many criteria, including the size of the search space, the number of particles, and the

memory usage °.

Highlights

¢ Contact detection in DEM is presented.
¢ Performance of Broad-phase is investigated in contact detection.
* Broad-phase algorithms comparison.

¢ Test on a real test case.

2A short version of this chapter was published in AIP Conference Proceedings (Rousset et al., 2018)

3.2. Introduction 47

3.2 Introduction

The Discrete Element Method (DEM) is a Lagrangian approach that models granu-
lar materials by representing every single particle as an independent and distinct
entity. It is used to numerically determine the displacements of a large but finite
number of particles taking particle interactions into account. The eXtended Discrete
Element Method (DEM) is a multi-physics framework that extends the classic DEM
approach by assigning a chemical and thermodynamic state to the representation
of the particle. It is an iterative computation method that simulates the motion of
particles and their chemical /thermodynamic state. DEM also supports coupling with
Computational Fluid Dynamics (CFD) (Mahmoudi et al., 2016¢) or Finite Element
Method (FEM) (Michael and Peters, 2013; Michael, Nicot, and Peters, 2013).

The entire system behavior in a DEM simulation results from the respective
interactions between particles. It provides the desired results. The contact or collision
detection is a memory and computation expensive process that is therefore funda-
mental to identity all the collisions between the particles so that the model works
and requires to check the distance between all the particles in the system. For the
sake of optimization and readability, the contact detection process is usually, as in
our XDEM software, subdivided into two parts: the broad and narrow phases. As
shown on Fig. 3.1, within each time-step, the Interaction step is typically divided into

two phases:

* The Broad-Phase interaction process identifies the pairs of particles that might
interact with each other within the whole system. It can lead to a hefty amount
of computation. For that reason, the broad-phase algorithms work on approxi-
mate objects such as bounding boxes to quickly generate an approximate list of
colliding particles. This list includes every pair of colliding objects, but it may
also include pairs of objects whose bounding boxes intersect but are still not
close enough to collide. To account for close-range interactions (e.g., radiation),
the bounding boxes are extended by the value of the predefined interaction

range.

48 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

* The Narrow-Phase will work on an approximate list of colliding particles (re-
turned by the broad-phase) and perform precise calculations according to
particle geometry.

During the Integration step, all interaction resultants (forces, torques, heat flux,

species fractions, etc.) coming from the different particles are accumulated and

integrated to calculate the new state the particle for the next time-step.

Timestep from t fo t+At t+At Time

z ,_Time

Particle A at time
t+At

Particle A at time t

Interaction / Collision / Contact

Broad phase Narrow phase
find pairs of ~ Collision
particles in close detection with

range exact shape

Force, Torque, Heat flux,
Species fractions, etc.

| 20% of simulation |(------ .

\N

Particle B at time tl

| 30% of simulation | = -
Particle B at time

t+At

FIGURE 3.1: Workflow of an XDEM simulation: the Broad-phase Colli-

sion Detection finds the pairs of particles that may interact with each

other by replacing the particles real shape with bounding volume and

it returns a list. The latter is used in the Narrow-phase Collision Detection
to perform a collision detection with particles real shape.

As spotted in section 2.6.1 of chapter 2, one of the essential and most computation-
intensive part of XDEM is the Broad-Phase phase (the percentage greatly depends on
the test case) during which objects in-contact or in-close-range are identified. Com-
bined with the Narrow-Phase, it takes about 50% of the entire XDEM computational
work. Therefore it is crucial to take a close look at the collision detection process and

make a clear decision of which algorithm or approach to single out.

The current chapter is structured as follows: We first introduce the commonly
used broad-phase algorithms with their specificities, limitations, and advantages
in section 3.4. Secondly, the design of our benchmark framework is presented in

section 3.5. Finally, the results of sequential and parallel runs are described and

discussed in section 3.5.

3.3. Broad-phase collision detection 49

3.3 Broad-phase collision detection

Collision detection is an ongoing research and optimization source in many fields,
including video games and numerical simulations (Coumans, 2015; Jiménez, Thomas,
and Torras, 2001). Collision detection aims to report geometric contact when it is
about to occur or has occurred. Unfortunately, precise and exact collision detection
for large amounts of objects represents an immense amount of computations, naively
n? operations with 7 being the number of objects (Lin, 1997). To avoid and reduce
these expensive computations, the collision detection is decomposed into two phases

as shown in Fig. 3.1: the Broad and Narrow phases.

The broad-phase’s primary goal is to prune away pairs of particles that are too
far away from each other and thus have no chance to collide. It aims to quickly
report if two particles do not intersect and therefore must scale very well with the
number of particles in the system to make sure the time complexity is under O(n?).
The broad-phase replaces the real particle shape (and usually complex shape such as
polygons) to perform an upper bound for the collision to achieve this low complexity.
The particle shape is encapsulated inside the bounding volume (see Fig. 3.2) such
that if two bounding volumes do not cut across, then their real shapes do also not
intersect. There are many popular bounding volumes used in the literature as the

sphere, bounding boxe or convex shape.

BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

FIGURE 3.2: Type of bounding volumes used in broad-phase: sphere,

axis-aligned bounding box (AABB), oriented bounding box (OBB),

eight-direction discrete orientation polytope (8-DOP), and convex
hull (Ericson, 2004).

50 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

They offer different complexities and accuracy; a sphere bounding volume offers
a bad bound (for non-spherical shapes) as it does not match very well the particle’s
actual shape but provides a fast check and needs little memory to be stored (only the
center coordinates and the radius). On the other hand, bounding volumes such as
superquadrics shapes are more accurate and return a result similar to the real shapes

but have a more elaborate check algorithm and require much more memory storage.

3.3.1 Axis-Aligned Bounding Boxes (AABBs)

The most popular bounding volume found in the literature is probably the axis-aligned
bounding volume. It has a simple parallelepiped shape and has always it faces aligned
with the axes, i.e., the edges of the box are parallel to the (Cartesian) coordinate
axes (Schneider and Eberly, 2002). The assets of an AABB volume are its memory
efficiency, as there is only a need to store min and/or max points and the radius to
represent the volume. It is also computationally efficient as it has a quick overlap
check that simply involves the direct comparison of individual coordinate values.
Two AABBs intersect if and only if they overlap on the three-axis. It is, therefore,
straightforward to discard pairs of particles that do not intersect. If the AABB has a

min-max points representation, the overlap check will look like as follow:

bool OverlapAABBs(AABB box1, AABB box2)
{
//Check intersect on X Axis
if (boxl.max[0] < box2.min[0] || box1l.min[0] > box2.max[0])
return false;
//Check intersect on Y Axis
if (boxl.max[1] < box2.min[1] || boxl.min[1] > box2.max[1])
return false;
//Check intersect on Z Axis
if (boxl.max[2] < box2.min[2] || boxl.min[0] > box2.max[2])
return false;
//Overlap on the three Axis

return true;

LISTING 3.1: C++ snipped code of intersection of two axis-aligned

bounding boxes (Ericson, 2004).

3.3. Broad-phase collision detection 51

3.3.2 Oriented Bounding Boxes (OBBs)

Once more, AABBs do not perfectly match a real particle shape, hence the introduction
of OBBs. Unlike AABBs, OBBs edges are not aligned with the axis coordinates. It
is a parallelepiped volume with an arbitrary orientation. There is much possible
representation of OBBs, the most commonly used representation has a center point, a

matrix orientation, and three half-edge lengths.

class OBB
{
Point c; // The OBB center
Vector u[3]; // Local axis coordinates

Vector e; // Halfwidth along each axis

LISTING 3.2: C++ snipped code of oriented bounding boxes data

structure (Ericson, 2004).

The intersection of OBBs is more complicated than for AABBs, and the algorithm

can be found in the reference book of Christer Ericson (Ericson, 2004).

3.3.3 Bounding Spheres

The sphere is also a ubiquitous bounding volume convenient as it is memory and
computationally efficient. It also has a short overlap check, few branches compared

to AABBs, and only needs to compute the two-sphere centers” distance.

bool OverlapSpheres(Sp spherel, Sp spherel)
{

//Compute distance between the two centers

float distance = (spherel.center — sphere2.center)x(spherel.center — sphere2.
center);
float radiusSquared = (spherel.radius + sphere2.radius)*(spherel.radius +

sphere2.radius);
//Check the intersection

return distance <= radiusSquared;

LISTING 3.3: C++ snipped code of intersection of two

spheres (Ericson, 2004).

52 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

The bounding sphere can be obtained by first calculating the AABB of the object.
The sphere is then deduced by choosing the midpoint of the AABB as the center of the
sphere and the midpoint’s distance to the farthest point as the radius of the sphere.
Many more elaborated algorithms try to bound the object as much as possible in a

very efficient manner (Ritter, 1990).

3.4 Broad-Phase algorithms

For this study, ten different Broad-phase collision detection algorithms have been
considered covering grid, tree, and sorting approaches. Some of those algorithms
were implemented from scratch, and the remaining were taking from open-source
libraries. The Bullet (Coumans, 2015), CGAL (Fabri and Pion, 2009; Zomorodian and
Edelsbrunner, 2000), and the flexible collision library (FCL) (Pan, Chitta, and Manocha,
2012) frameworks have therefore been included in our benchmark framework. When
available, the studied algorithms’ implementation is directly taken from their authors’
book or article. Alternatively, we also proposed our implementations directly from
the description or the algorithm of an enhanced version of their given and available

implementations.

As referenced in tab. 3.1 Different tree based algorithms have been implemented
such as Octree, Loose Octree, and Kd-tree (Ericson, 2004). About grid based algorithms,
Uniform grid and Hierarchical grid (Pabst, Koch, and Strafser, 2010; Ericson, 2004) have
been implemented and finally the Sweep and Prune (Ericson, 2004) algorithm for the
sorting based approach. For comparison, the naive approach by Brute Force has also

been implemented.

As stated in section 3.3, the broad-phase algorithms do not rely on the particles’
real shape to perform a collision check. The main purpose is to avoid the complex
shape of particles that can affect the algorithms’ efficiency. Therefore it is reasonable
to use a bounding volume that encapsulated the particle to primaryorm a fast overlap
check. Bounding sphere and axis-aligned bounding boxes have been used in our

current implementations for all the algorithms described below.

3.4. Broad-Phase algorithms 53

Algorithms Implementation | Parallelization
Brute force Scratch Yes
Octree Scratch No
Loose Octree Scratch No
Kdtree Scratch No
Hierarchical grid Scratch No
Uniform grid Scratch Yes
Sweep and Prune Scratch Yes
Bullet Bullet library No
CGAL CGAL library No
FCL FCL library No

TABLE 3.1: Algorithms that have been implemented and parallelized

in the C++ framework. The brute force, the grid and tree algorithms

were implemented from scratch. The CGAL and Bullet libraries use

spatial partitioning algorithms while FCL was used with a AABB tree
based algorithm.

3.4.1 Spatial partitioning

Apart from the bounding volumes, the broad-phase algorithms rely on the domain
properties like the locality, and partitioning and we can distinguish three types of
the broad-phase algorithm that rely on a partition method: spatial partitioning and

sorting, , grids, and tree structures.

The spatial partitioning techniques operate by dividing space into many regions
that can be quickly tested against each object (Lubbe et al., 2020). Two objects possibly
intersect if only they are contained in the same region of space; there is no need to
check overlap between objects that do not overlap the same region (Glass, 2005). The
number of pairwise is therefore drastically reduced, and the O(n?) operations (or
complexity) is down to something more manageable (O(logn), O(n), or O(nlogn)).

Two main types of spatial partitioning will be considered: grids and trees.

The spatial sorting is a topological method based on the position of particles
relative to the others. The algorithm consists of a sorted spatial ordering of objects.
Axis-Aligned Bounding Boxes (AABBs) are projected onto x, y, and z axes and put
into sorted lists. By sorting projection onto axes, two objects collide if they overlap on
the three axes. This axis sorting reduces the number of pairwise tested by reducing
the number of tests to perform to only pairs, which collide on at least one axis. The

number of operations or complexity is estimated at n log n.

54 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

The grid-based algorithms consist of a spatial partitioning process by dividing
space into regions/cells and testing if objects overlap the same region of space.

Furthermore, this reduces the number of pairwise to test.

The tree-based algorithms use a tree structure where each node spans a partic-
ular space area. It reduces the pairwise checking cost because only tree leaves are

checked. The number of operations or complexity is estimated at log 7.

3.4.2 The Brute Force approach

The brute force algorithm is the very naive and simplest way of proceeding a collision
detection. Every particle is checked for collision with every other particle in the
system (see Fig.3.3). Therefore, it is not an efficient approach and should not be used

for large systems with a substantial number of particles.

FIGURE 3.3: Check object one against all other objects, then object two
against all other objects (except object one).

This algorithm has a complexity of O(n?) and scales quadratically with the

number of particles as it loops twice through all the system particles.

3.4.3 The Octree and k-d tree

The octree is the common tree-based spatial (axis-aligned hierarchical) partitioning
method in 3D, where each node has eight children. The root node is usually the

bounding volume divided into eight equal-size sub-cubes, also called octants, by

3.4. Broad-Phase algorithms 55

dividing equally in half the x, y, and z-axis. These octants form the child node of the
root node. Recursively, each octant is divided in the same manner as the root node
(see Fig. 3.4). It is, by definition, a divide and conquers algorithm. A criterion for
stopping the recursive construction of an octree is the definition of a maximum depth

or a minimum size for the octants.

The analogous structure to the octree in two dimensions is known as a quadtree.

it

FIGURE 3.4: Left: Recursive subdivision of a cube into octants. Right:
The corresponding octree (Truong, Arikatla, and Enquobahrie, 2019).

In practice, most of the octrees do not exceed five levels as a complete octree of
n levels has -1 nodes, that is, to say it can overgrow. An octree node data structure
can be implemented as shown in listing 3.4 containing a center point of the node, an
octree node pointers point to the eight leaves children and a list of particles in the

current node.

class OctreeNode
{
//Node center
Vector3d center;
//Node pointers to the eight children nodes
OctreeNode =child [8];
//Pointer to the particles contained in the current nodes

Particle =#parts;

56 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

LISTING 3.4: C++ snipped code of intersection of an Octree node

data structure (Ericson, 2004).

The octree pointers representation in listing 3.4, although it uses pointers, is
memory intensive as it stores eight nodes per node. linear-octree is an alternative
representation of an octree that stores its locational code that can be used to compute
the children nodes’ locational code. There is, therefore, no longer a need to store

explicit pointers to the children.

The k-d tree is a tree structure that generalizes the octree and quadtree structures
in a k-dimension space (Zhou et al., 2008). The k-d tree dimension does not have to
be the same as the space dimension. In a quadtree and octree, space is respectively
divided into two and three and are therefore considered as 2-d tree and 3-d tree. For a
k-d tree structure, on the other hand, space is usually divided in the cycle following
the axis in a k-d tree structure. It is, therefore, possible to construct a 3-d tree from a

2-d space by first dividing the x-axis, then the y-axis, and finally the x-axis again.

3.4.4 Loose Octree

During the construction of a dynamic octree (or quadtree), some objects become stuck

due to the straddling of the partitioning planes (Ulrich, 2000) as described in Fig. 3.5.

This problem is overcome by expanding the node volumes to some extent to
make them partially overlapping. The resulting relaxed octrees have been dubbed
loose octrees. The loose nodes are commonly extended by half the side width in all
six directions (but may be extended by any amount). It effectively makes its volume

eight times larger.

It is now possible to compute particles” depth level from their size for a constant
O(1) insertion. The particles have a higher level than in a regular octree and therefore
offer more possibility of discarding possible collisions. However, the larger the nodes,
the more they overlap on a level, and this leads to more particles being checked

against each other for contact detection.

3.4. Broad-Phase algorithms

57

@.--

FIGURE 3.5: A quadtree node with the first level of subdivision shown

in black dotted lines, and the following level of subdivision in gray

dashed lines. Dark gray objects overlap the first-level dividing planes

and become stuck at the current level. Medium gray objects propagate

one level down before becoming stuck. Here, only the white objects
descend two levels (Ericson, 2004).

FIGURE 3.6: Regular
domain decomposition
as a quadtree.

FIGURE 3.7: Loose

quadtree representa-

tion. The nodes have

been expanded by half

the node width in the
two directions.

FIGURE 3.8: Representation of a regular quadtree and loose
quadtree (Ericson, 2004).

58 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

3.4.5 Grid-based spatial partitioning algorithms

The uniform grid approach’s basic but efficient idea is to split the domain into
subdomains or cells of equal size (Fig. 3.9). The objects are then associated with the
cells; they overlap by usually using a spatial hashing. The pair of bounding volumes
that do not overlap the same cells or neighbor cells are discarded for the contact list.
An object is checked against objects contained in the same cell but also against all

objects that lay in the direct neighbor cells, as shown in Fig. 3.10.

e

[| | |

FIGURE 3.9: (A) FIGURE 3.10: (B)

FIGURE 3.11: Uniform grid approach. (A) Uniform grid subdivision
in equal sized cells. Each particle is assigned to a cell where its center
is located. (B) The dark blue particle is checked with the light blue
particle contained in the same cell. It is also checked against green
particles located in the direct neighboring cells in light green.

The main concern of the uniform grid approach is the critical choice of the cell
size. A too fine grid or small cell size potentially leads to excessive memory to store a
large number of cells. Many cells have to be updated for large and moving objects
covering a broad space, causing performance degradation. On the other hand, large
cell size could have contained too many objects and lost the approach’s discriminatory
power and a drop in performance. Therefore, it is challenging in a world-size problem

consisting of objects of different sizes to choose an optimal cell size.

One approach to deal with the object of vastly different sizes in a grid subdivision

3.4. Broad-Phase algorithms 59

is to consider a hierarchical grid method. It consists of building multiple overlapping
grids with different cell sizes. Objects are part of the grid level with the smallest cell
size to fit even though objects can overlap multiple cells within multiple grids. The

hierarchical grid approach is, in some ways, similar to the recursive octree method.

@) @)

FIGURE 3.12: Hierar- FIGURE 3.13: Hierar-
chical grid level 0. chical grid level 1.

O O |

(D

K
X

FIGURE 3.14: Hierar- FIGURE 3.15: Hierar-
chical grid level 2. chical grid level 3.

FIGURE 3.16: Two dimensional hierarchical grid example. The level

0 corresponds to the domain and contains all the particles. The first

level is the coarser grid (in red) and contains the biggest particle in

red. The second level encapsulated the yellow particles without the

biggest red particle. The third and last level contains the blue and
green particles, that inserted in all the three grids.

The size of the largest object contained in the current grid is usually different
from that level grid cell size at every level. For efficiency’s sake, the cell size is often

chosen to be a fraction of the biggest contained object. This fraction is the ratio of

60 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

the cell size to the particle size and can be adjusted to control the number of objects
per cell and grid and the number of grids. There exist two common approaches to
check objects overlapping. The Bottom-up or Top-down sorts the objects in ascending
or descending order based on objects size (Mirtich, 1996). For the Bottom-up approach
(respectively Top-down), objects of a given level are only checked against an object of
the same level and higher (respectively lower). The second approach would insert an
object in all overlapping cells from all grid levels. For contact detection, an object is

then checked with objects overlapping the same cells at all levels.

3.4.6 Sweep and prune

The sweep and prune method (Cohen et al., 1995) is also known as sort and sweep (Baraff,
1992) is a spatial sorting broad-phase collision detection method that uses the AABBs
bounding volume and does not have straddling limitations as in a tree or grid
approaches. In sweep and prune approach, the AABBs are sorted based on each
coordinate’s projections (start or lower bound and end or upper bound) on the
axis. Two objects intersect when all X, Y, and Z coordinates axis projections overlap.
The performance of the sweep and prune method greatly depends on the temporal
coherency of the objects. When this is not the case, i.e., objects move significantly
between two time-steps, sorting the complete list will greatly impact the performance.
This approach does not perform well when the particles are especially clustered along

any particular axis.

3.4.7 Bounding volume hierarchy (BVH)

A bounding volume hierarchy (BVH) is a tree structure of bounding volumes that
form the tree’s leaf nodes. Each node corresponds to a partition of the domain or set

of bounding volumes, as shown in Fig. 3.17.

First, each of the bounding volumes forms the leaf nodes of the bounding volume
hierarchy. After that, the nodes are arranged in multiple collections and enclosed
within a larger bounding volume constituting a new set of nodes. The latter nodes

are then enclosed in a larger bounding volume, and the tree is therefore constructed

3.4. Broad-Phase algorithms 61

A A

@B C% B C
4
ko] /50

FIGURE 3.17: An example of a bounding volume hierarchy using
rectangles as bounding volumes (Schreiberx, 2020).

recursively, eventually resulting in a tree structure with a single bounding volume at
the top of the tree (Ericson, 2004). During a collision detection in a BVH approach,
only leaf nodes (children) with the same parent are tested for intersection hence its
discriminating power. The main difference between the BVH approach and the spatial
partitioning approach, such as the uniform grid 3.4.5 lies in the fact that the bounding
volumes in BVH can overlap the same domain regions, whereas the uniform grid

partitions the domain in distinct regions.

3.4.8 Framework and C++ library for collision

We have also included three open-sourced collision detection libraries in our frame-

work test: Bullet, CGAL, and FCL.

* Bullet is a real-time collision detection engine for virtual really(VR), games,
visual effects, robotics, machine learning (Coumans, 2015). It is available on C++
version under ZIib license. The bullet library supports discrete and continuous
collision detection for soft and rigid body dynamics. It provides a dynamic
AABB tree contact detection algorithm and acceleration structures for distance
and penetration points. Sphere, box, cylinder, convex, and non-convex meshes

are the collision shapes supported by bullet.

* CGAL or Computational Geometry Algorithms Library (Fabri and Pion, 2009) is
a software project that provides easy access to efficient and reliable geometric al-

gorithms in the form of a C++ library. It provides collision detection algorithms

62 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

such as loose and k-d trees, Convex hull algorithms, Shape analysis, fitting, and

distances.

* FCL or Flexible Collision Library (Pan, Chitta, and Manocha, 2012) is a library
for performing three types of proximity queries on a pair of geometric models
composed of triangles. It can perform collision detection to find pairs of inter-
acting shapes, distance computation for computing the closest point between
two shapes, and provide continuous collision detection. Also, it is possible
to access the contact information as contact points and normal. We use the
recommended AABB tree algorithm 3.4.7 available in the FCL library as it is the

fastest algorithm.

All three libraries are well-known and used in various domains such as robotics,
virtual reality, computer games, and computational geometry. They all offer a differ-
ent level of flexibility and implementation architecture and can easily be interfaced

with other third-party libraries and software.

3.5 Benchmark

To compare the algorithms presented in sections 3.4, we have developed a C++ frame-
work to test their different algorithms implementations. For this purpose, a set of test
cases have been defined. They consist of a packed bed of up to one million spherical
particles with random radii in a 3D environment. The benchmark experiments were
performed with the google benchmark library that offers easy building with fixtures,
automatic iteration, argument parameters, or CVS outputs. The experiment was
carried out on Intel(R) Xeon(R) E5-2667 @ 2.90GHz processor and the values reported

are the means of at least 150 executions.

3.5.1 Sequential runs

The results presented in this section are from sequential implementations of the
algorithms. We compared the simulation time over different number of particles from

one thousand (1k) to one million (1M) particles. The algorithms have been separated

3.5. Benchmark 63

in two groups: slow and fast as it appears that some algorithms are unable to perform
the collision detection over 100k particles in a reasonable computational time. The
Bruteforce, Hierarchical Grid, Kd-tree, LooseOctree, and Octree are categorized as the Slow

Algorithms and the FCL, Bullet, CGAL, Sweep&Prune, Uniform Grid as Fast Algorithms.

The running time (and the standard error deviation stddev) of the Slow Algorithms
is presented in Fig. 3.18. Surprisingly, overall, the brute force approach is the fastest

algorithm with a O(n?) quadratic complexity.

106 Error plot of the running time against number of particles

=
o
5

P
/
—— ——

T —
//

//

/H BM_Hgrid_Collision_mean

=
o
N

Real time(log scale)[ms]
=
o

=
o
N

- BM LooseOctree_Collision_mean
Lot - BM _BruteForce_Collision_mean
[t—{ BM_Kdtree_Collision_mean
/ -+ BM Octree_Collision_mean
10% 20 40 60 80 100

Number of particles [K]

FIGURE 3.18: Comparison results for Slow Broad-Phase Algorithms from
1k to 100k of particles.

It can be explained by the fact that the tree algorithms(Kd-tree, LooseOctree, and
Octree) require complex data structure that needs to be updated, which is incredibly
costly in our test case where all particles move. They also require more memory for
their structures. On the other hand, the brute force approach does not require any
extra data-structures that involve overhead due to structure creation. The big surprise
comes from the Hierarchical Grid approach, which was not expected to perform as one

of the slowest but can be explained by the fact that the Hierarchical Grid approach does

64 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

not suit our mono-disperse test case. Still, we were expecting it to perform better than
the naive approach. The performance of the Hierarchical Grid depends on the size of
the cell and particle size, the variance of the particle size, and, more importantly, the
hash function. Therefore, it was ruled out, and we did not dig further to integrate
it into our framework, but we did implement it inside our XDEM software as a
non-negligible part of our test cases is poly-diverse. However, tree algorithms were
not considered for implementation within the XDEM software as it implies complex

data structure modifications.

10° Error plot of the running time against number of particles

=
o
IS

=
o
w

BM_UnifLargeGridOpti_mean
BM_UnifMediumGridOpti_mean
BM_UnifSmallGrid_mean
BM_UnifMediumGrid_mean
BM_FCL_mean
BM_UnifSmallGridOpti_mean
BM_CGAL_mean
BM_Swp_mean
BM_Bullet_mean
BM_UnifLargeGrid_mean

10° 10 102 103
Number of particles(log scale)[k]

=
o
-

Real time(log scale)[ms]
=
o

\5;

He AR g R

FIGURE 3.19: Comparison results for Fast Broad-Phase Algorithms from
1k to 1M of particles.

On Fig. 3.19, we compare the Fast Algorithms: FCL, Bullet, CGAL, Sweep&Prune
and Uniform Grid algorithms. We have implemented two versions of the uniform
grid: a classical approach creating and using cell structure and an optimized version
where the cell structure is not constructed, but interpolation is used to compute each
particle’s corresponding cell. The optimized version also uses a data locality approach

by using a Morton space-filling curve, which consists of accessing cell data closely

3.5. Benchmark 65

stored in memory (Gaede and Giinther, 1998). The Uniform Grid algorithm has also
been evaluated in three different variations: Small (S), Medium (M), and Large (L)
grid size corresponding to three different cell sizes. The purpose is to evaluate the

impact of the number of cells in a grid decomposition method performance.

We can see on Fig. 3.19 that the three frameworks (FCL, CGAL and Bullet) and
the Sweep&Prune algorithms are very efficient for small number of particles up to
10k. Above 50k particles, the uniform grid approaches appear to fit a large number
of particles best. As expected, the optimized uniform grid implementation is faster
than the traditional approach, especially with many particles. The grid size impacts
the uniform grid decomposition because the smaller the grid is, the better it suits
a small number of particles. On the other hand, the more particles there are, the
better it is to have a larger grid. Compared to other algorithms, the grid approaches
under-performed for a small number of particles due to the grid creation’s overhead.
However, the grid approach’s running time is constant for the number of particles up
to 50k because the overhead time exceeds the actual collision detection load. Using
a small number of particles and larger cell size increases the grid-browse overhead
because more cells are visited than particles (contained). Using a large number of
particles and a small grid partitioning increases the particles” check overhead. Indeed,
this situation is similar to performing a brute force approach. From the above analysis,
it can be stated that it is better to use FCL, CGAL, Bullet, and Sweep&Prune when
dealing with a small number of particles. However, there is a significant drawback to
using third-party libraries: they use their own data structures to perform collision
detection. Converting or adjusting our own data structures in XDEM to a third-party
library structure to perform the contact detection and converting back the results
to our structure has a non-negligible overhead that makes it not practical to use in
XDEM. For that explicit complexity, even if the third-party libraries are open-sourced,

we did not consider them for further implementation inside our XDEM software.

3.5.2 Parallel runs

Some algorithms and implementations among the ones presented in this chapter have

been parallelized with OpenMP. Among the slow algorithms, only the brute-force has

66 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

been parallelized to serve as a baseline comparator. Among the fast algorithms, sweep
and prune and six variants of the uniform grid algorithms (original and optimized
with small, medium and large grid sizes) have adapted to an OpenMP parallelization.
Fig. 3.20 presents the (strong) scalability results of the parallelized algorithms using
100k random particles in the test case. The number of cores/threads have been varied

from 1 to 24.

10° Running time against number of threads for 100k particles

+= BM_UnifSmallGridOpti_OpenMP_Collision_mean
@@ BM_UnifSmallGrid_OpenMP_Collision_mean
#% BM_UnifMediumGridOpti_OpenMP_Collision_mean
< @@ BM_Swp_OpenMP_Collision_mean
104 w V¥ BM_UnifLargeGridOpti_OpenMP_Collision_mean
A4 BM_UnifMediumGrid_OpenMP_Collision_mean
—_ < << BM_BruteForce_OpenMP_Collision_mean
E < > BM_UnifLargeGrid_OpenMP_Collision_mean
3) .
= 3
5 103}
(9} C
0]
(@)} (¢}
o
€10 e—— —
= ————
f_ﬁ \
)]
o
101 \
\§‘
0
10
0 5 10 15 20 25

Number of cores

FIGURE 3.20: OpenMP scalable results for Fast Broad-Phase Algorithms
from 1 to 24 of cores.

It appears in Fig. 3.20 that the algorithms are divided into three groups:

¢ The first group is composed of only the brute-force approach. We can
observe that the brute-force algorithm remains the slowest approach. How-
ever, it scales very well as the load(particles) is perfectly balanced between

the OpenMP threads.

¢ The second group is composed of the original uniform grid with the dif-
ferent cell sizes and the sweep and prune approaches. In uniform grid, the

large cell method is fastest than the medium and small cell methods.

3.5. Benchmark 67

Medium and small methods appear to be much closer (in simulation
time) with a slight advantage for the medium medium. The three meth-
ods’ performance order agrees with the sequential results for a large
number of particles, as shown in Fig. 3.19. With the scalability, the order
does not change with the increase in the number of cores. The sweep and
prune curve lies in between the uniform grid curves. As in Fig. 3.19 and
section 3.5.1 showing the sequential performance, the sweep and prune
performance is worst than (in sequential) the uniform grid approach. How-
ever, it scales very well (as there are only comparisons and data accesses)
and has a similar performance than the uniform grid approach when the

number of threads increases.

* Finally, the third and fastest group is composed of the optimized uniform
grid with different cell sizes. The large cell method is fastest than the
medium and small cell methods. Medium and small methods appear
to be very close (in simulation time). The three methods” performance
order agrees with the sequential results for a large number of particles, as
shown in Fig. 3.19. With the scalability, the order does not change with the
increase in the number of cores. As stated in section 3.5.1, using a Morton

space-filling curve improves the uniform grid approach performance.

3.5.3 Adaptive approach

Looking at Fig. 3.5.1, we have noticed the algorithms could be classified into three

groups along the x-axis:

¢ From 100 to 5k particles. In this interval, even the slowest algorithms as the
brute-force are very competitive. It is faster than the uniform grid approach.
Therefore, the brute-force, CGAL, Bullet, FCL and sweep, and prune can all be

considered as the preferred approach for this range number of particles;

¢ From 5k to 50k particles. In this interval, the Bullet and FCL libraries are the
most competitive approaches. However, this is not of great interest to us

because they have not been integrated into XDEM. But we can notice that the

68 Chapter 3. Contact Detection in the eXtended Discrete Method (XDEM)

original uniform grid approach is in general faster than the optimized uniform
grid approach using a Morton space-filling curve (it implies sorting overhead).
As a result, the original uniform grid approach is preferred when using a case

number of particles between 5k and 50k;

* And from above 50k particles. In this interval, the optimized uniform grid
method is the best approach to adopted as it gives the best performances and

scalability.

From the above observation and based on the algorithms’ complexities, we
have implemented a naive adaptive method that chooses the best contact detection
approach depending on the number of particles and threads (when performing
parallel simulations) based on our early observations. For a simulation case with
less than 5k particles, the sweep and prune approach is used for the collision detection
process. The original uniform grid approach is used for simulation case with number
of particles between 5k and 50k. Finally, we use the optimized uniform grid for all

simulation case with more than 50k particles.

3.6 Conclusion

This chapter investigates the collision detection process performance in the DEM
method by developing a C++ benchmark for comparing multiple algorithms. An eval-
uation of different Broad-Phase algorithms has been investigated using the Execution

time metric.

Section 3.3 introduces the implementation, advantages, and disadvantages of
the bounding volumes commonly used in the broad-phase: Axis-Align Bounding
Box (AABB), Oriented Bounding Box (OBB), and Sphere. In section 3.4, we have
presented the different broad-phase algorithms implemented in the benchmark: brute-

force, sweep and prune, tree-based, grid-based, and bounding volume hierarchy.

Performance results were proposed within a test case composed of 100 to 1M
million of particles placed in a three-dimensional environment. It appears that some

algorithms perform better with a low number of particles, whereas others are more

3.6. Conclusion 69

efficient with large numbers of particles. Of course, those results are very tied to
the implementation of those algorithms and the test case, which means that the best
algorithms’ choice depends on the application. The number of particles heavily
impacts algorithms” performance. In this regard, an adaptive approach has been
implemented to select the best algorithm depending on the number of particles. The
brute-force and the algorithms and implementations considered as the fastest (sweep
and prune and uniform grid) have been parallelized with the OpenMP approach. The
trend observed in the sequential runs is confirmed in the parallel runs because the

implementations scale very well.

Finally, this work is meant to provide a reference and benchmarks for future
works. The next step is to feature parallel implementations of these Broad-Phase

algorithms using GPU capabilities.

71

Chapter 4

LOCAL VERLET BUFFER
APPROACH FOR BROAD-PHASE
INTERACTION IN DEM

@authors: Abdoul Wahid Mainassara Checkaraou, Xavier Besseron, Al-
ban Rousset, Fenglei Qi,and Bernhard Peters

Under review in journal of Advances in Engineering
Software

72 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

4.1 Abstract

The Extended Discrete Element Method (XDEM) is a novel and innovative numerical
simulation technique that extends the dynamics of granular materials or particles
as described through the classical discrete element method (DEM) by additional
properties such as the thermodynamic state, stress/strain for each particle. Such
DEM simulations used by industries to set up their experimental processes are

complex and heavy in computation time.

Those simulations perform at each time step a collision detection to generate a
list of interacting particles that is one of the most expensive computation part of a
DEM simulation. The Verlet buffer method, which was first introduced in Molecular
Dynamic (MD) (and is also used in DEM), allows to keep the interaction list for many
time step by extending each particle neighborhood by a certain extension range, and
thus broadening the interaction list. The method relies mainly on the stability of the
DEM, which ensures that no particles move erratically or unpredictably from one
time step to the next: this is called temporal coherency. In the classical and current
approach, all the particles have their neighborhood extended by the same value,
which leads to sub-optimal performances in simulations where different flow regimes
coexist. Additionally, and unlike in MD (which remains very different from DEM on
several aspects), there is no comprehensive study analyzing the different parameters

that affect the performance of the Verlet buffer method in DEM.

In this work, we apply a dynamic neighbor list update method that depends on
the particle’s individual displacement and an extension range specific to each particle
and based on their local flow regime for the generation of the neighbor list. The update
of the interaction list is analyzed throughout the simulation based on the particle
displacement allowing a flexible update according to the flow regime conditions.
We evaluate the influence of the Verlet extension range on the performance of the
execution time through different test cases, and we empirically analyze and define

the extension range value giving the minimum global simulation time.

4.2. Introduction 73

4.2 Introduction

Discrete Element Method (DEM)), originally proposed by Cundall (Cundall and Strack,
1979), is a popular simulation approach for studying and diagnosing bulk powder/-
granular dynamic systems, which are ubiquitous in the pharmaceutical industry, food
processing, chemical engineering, mining industry, and energy systems (Ketterha-
gen, Ende, and Hancock, 2009; Ransing et al., 2000). Considering the large scale of
applied systems, one of the key efforts in the DEM development is to enhance the
simulation capability of DEM software, such as by adopting advanced parallelism
schemes (Maknickas et al., 2006), utilizing graphics processing units (GPU) (Gan,
Zhou, and Yu, 2016) and developing coarse-grain models (Weinhart et al., 2016). How-
ever, one unavoidable functionality that DEM codes need to optimize is the collision
detection, which, includes neighbor search, represents a major computational part in

DEM simulations (Rousset et al., 2018; Pall and Hess, 2013).

Collision detection is often split into two phases: a broad-phase, which formu-
lates a potential collision list for each particle (neighbor list), and a narrow-phase
accounting for accurately resolving the collision instance of each pair of particles in
the neighbor list. Different algorithms for constructing neighbor list in the broad-
phase are available, including brute force approach (Kockara et al., 2007) of O(n?)
time complexity, binning approach (Tracy, Buss, and Woods, 2009) and linked-cell
method (Welling and Germano, 2011) of O(n) complexity. However, the broad-phase
computational efficiency is not solely determined by the time complexity of the
adopted algorithm (Rousset et al., 2018), which are also affected, for instance, by the
ratio of cell size to particle size in the commonly used linked-cell approach or by
the frequency of updating the neighbor list in the broad-phase. The latter is usually
related to the Verlet list approach that is firstly proposed in MD simulations by Loup
Verlet (Verlet, 1967) for reducing the unnecessary cost of rebuilding the neighbor list
at every simulation time step. The mechanism for skipping neighbor list rebuild is
achieved by providing an extra margin (often called "skin") on top of the particle
pairwise cut-off interaction distance. The neighbor list built is called a Verlet list.
With this mechanism, the Verlet list remains unchanged until a particle displacement

exceeds a certain threshold distance defined beforehand.

74 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

For MD simulations, the systems are often homogeneous, and a uniform (global)
buffer is satisfactory to achieve a good speed-up. However, for the majority of
powder and granular dynamic systems, the variation of particle flow properties such
as particle velocity and solid fraction in the systems is significant. It becomes less
efficient to adopt a uniform skin margin for particles at regions of different flow
conditions. Intuitively, in such systems, providing a larger skin margin for particles
moving faster leads to a more reasonable neighbor list updating frequency globally.
Many parameter studies on the skin margin determination have been reported in
MD simulation research (Verlet, 1967; Chialvo and Debenedetti, 1990; Chialvo and
Debenedetti, 1991; Mattson and Rice, 1999; S. and S., 2006). For MD, in Lennard Jones
systems, often skin = 0.30, where ¢ is the diameter of a Lennard Jones particle. For
DEM development, Li et al. (Li et al., 2010) compared the performances of Verlet
buffer and linked-cell approaches in gravity-driven granular collapse simulation.
It is reported that appropriate determination of parameters such as search radius
(skin + cut-off distance), cell size, and updating interval time step is critical for
improving simulation efficiency in the Verlet buffer approach. Although the Verlet
buffer mechanism has also been implemented in several DEM codes (Fang, Tang,
and Luo, 2007; Munjiza, Walther, and Sbalzarini, 2009), a uniform skin margin is
often adopted for all the particles. In (Angeles and Celis, 2019), the performance of
neighbor search methods (Verlet table and linked cell) and associated computational
costs are parametrically evaluated, and an evaluation of their suitability for carrying
out the DEM/CFD numerical simulations is made. The main outcome of their
research showed that the Verlet list has a strong dependency on the skin factor, and
the value for this parameter equal to the particle radius does not create problems in
the identification of particle pairs. Unfortunately, one noticeable problem is to set the
update frequency of the Verlet list according to the uniform skin margin and globally
to the maximum velocity leading to stability issues (Li et al., 2010; Fang, Tang, and
Luo, 2007) considering that particles have the possibility of migrating over the skin
distance within updating interval. The performance concern of Verlet buffer arises as
a result of heterogeneous flow conditions commonly found in real particle systems,
which makes the adoption of a uniform skin margin parameter less computationally

efficient. Dynamically determining a local skin margin for each particle according to

4.3. Related work 75

local flow conditions is suggested in lots of researches, but the optimal determination

of the skin margin needs to be thoroughly studied.

In this research, we proposed a local Verlet buffer approach using a new skin
margin formulation, which dynamically expresses the skin margin for each particle
according to the neighborhood flow conditions and based on the particle velocity.
This approach enables the heterogeneity of real particle systems to be taken into
account for better computational time efficiency. In this study, the potential stability
problem of particles moving over the skin distance in a period of update time is fixed
by recording each particle displacement and automatically deciding when the Verlet
list is to be rebuilt. We ensured and demonstrated that there are no missed interactions
in our current approach, and thus our results are identical to using the naive approach.
To assess the efficiency of our proposed formulation, we have implemented the local
Verlet buffer approach in our in-house eXtended Discrete Element Method (XDEM)
software (Peters, 2013). We, therefore, explored how the skin margin value affects
the broad and narrow-phase in particular and the global simulation time in general.
The main goal of this paper is to propose a broad analysis of our skin formulation
implemented in DEM software like our in-house XDEM toolbox. It points out the

advantages of using such formulation and its best-use case but also its drawbacks.

This paper provides a general overview of the XDEM software in the back-
ground section 4.4 and describes the collision detection method before our current
research. The contribution of the article is presented in section 4.5, which describes
the local Verlet buffer approach for building the list of interacting particles and proof
of the method’s validity. In section 4.6, The skin margin parameter is studied by
employing deterministic designs to explore the effect of parametric changes within
simulation models. The results and conclusion are discussed in section 4.6.4. We

finally give a general conclusion of the paper in section 4.7.

4.3 Related work

The Verlet list was first introduced for molecular dynamic simulations by Loup Verlet

in his article (Verlet, 1967) back to 1967. The method is now widely used in DEM

76 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

simulations and considerably decreases the simulation time. The Verlet list allows
to reduce the evaluation of the unnecessary interactions and to keep a neighbor list
for several time-steps until a breach. Loup Verlet himself proposed to extend the

particles interaction range by a certain skin margin given by:

Ryt = Rc + skin, (41)

where Ry is interaction range and R¢ the cut-off radius. It is then possible
to have the exact update interval time step for a given interaction range. Sutmann
et al. (S. and S., 2006), Awile et al .(Awile et al., 2012), Mattson et al. (Mattson and
Rice, 1999), and Chialvo et al. (Chialvo and Debenedetti, 1990) proposed different
procedures to determine the skin value in MD depending on parameters as: density,

temperature, time step, system size, and molecular geometry.

Chialvo et al. (Chialvo and Debenedetti, 1990) investigate the effects of the pa-
rameters cited above upon the optimum neighbor list radius and update frequency.
The theoretical predictions (according to which the optimum neighbor list radius
increases with sample size, temperature, and time step and decreases with density)
validate the simulation results. The study of the paper is in some ways similar to
this paper, unlike their study is based on MD simulations, while this work focuses
on DEM simulations, which are very different from MDs in many aspects. In both
methods, N or K, the update interval time step is not a fixed number but determined
by the particle displacement. The difference comes actually from the displacement
calculation method: we consider a linear displacement since the last neighbor list up-
date and Chialvo et al. considered in their paper the displacement as the accumulated

displacement suffered by the particle since the last neighbor list update.

Sutmann in (S. and S., 2006) investigates the performance of neighbor list tech-
niques in MD simulations depending on a variety of parameters, which may be
adjusted for maximum efficiency. The model presented allows choosing optimal
parameters for the performance of the Verlet list and linked-cell lists. The paper

targets only Lennard—Jones MD systems.

4.4. Background 77

Awile (Awile et al., 2012) presents a novel adaptive-resolution cell list (AR cell
list) algorithm and the associated data structures that provide efficient access to
the interaction partners of a particle, independent of the (potentially continuous)
spectrum of cut-off radii present in a simulation. They characterize the computational
cost of the proposed algorithm for a wide range of resolution spans and particle
numbers. Mattson presents a modified method here, allowing for reductions in the
cell sizes and the number of atoms within the volume encompassing the neighbor
cells. The algorithms determine the volume with the minimum number of neighbor
cells as a function of cell size and the identities of the neighboring cells. It also
evaluates the serial performance as function of cell size and particle density for
comparison with the performance using the conventional cell-linked list method. The
two papers by Awile and Mattson target the cell linked list method rather than the

Verlet list or a combination of the two methods.

LIGGGHTS and LAMMPS (Kloss et al., 2012; Plimpton, Crozier, and Thompson,
2007) software allow setting parameters that affect the building of pairwise neighbor
lists. All-atom pairs within a neighbor cut-off distance equal to their force cut-off
plus the skin distance are stored in the list. The default value for skin depends on the

choice of units for the simulation and the inputs.

The methods presented previously and found in the literature mainly focused on
MD simulations (some on DEM) where neighbor list updates frequency is usually (not
always) fixed beforehand. Our paper, on the other hand, presents an interaction range
(skin) formulation based on the velocity of each individual particle. It also focused
on an automatic update list technique based on particle displacement avoiding a
divergence or crash of the system while reaching optimal performances in DEM

simulations.

4.4 Background

The XDEM software is a numerical multi-physics simulation framework (Peters,
2013; Samiei and Peters, 2010) supporting parallel processing (Besseron et al., 2013;

Checkaraou et al., 2018a), and based on the dynamics of granular material or particles

78 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

described by the classical DEM (Cundall and Strack, 1979; Allen and Tildesley, 1990).
It is extended by additional properties such as the thermodynamic state and stress/s-
train for each particle for more complex simulations in various domains (Peters et al.,
2019; Peters and Pozzetti, 2017; Mahmoudi et al., 2016a). As in any DEM code, the
particle interaction detection is a major part of XDEM, and it uses the linked-cell
method to generate the interacting particles list. Firstly, an overview of the XDEM
work-flow is provided with different key parts. Then the collision detection tech-
niques and the different issues making it a major DEM component are presented.
Finally, an overview of the linked-cell method and its current implementation in

XDEM is given.

441 XDEM flow chart

A flow chart, as shown in Fig. 4.1, illustrates the main components of XDEM software
for particle dynamics simulation. An iterative time loop is composed of five major

phases:

* Broad-phase: uses a fast but approximate contact detection to build a list of
particle pairs that can potentially interact. It should be noted that the pairs of
potentially interacting particles are stored in a unique list. During this phase,
the particles are represented by a bounding volume shape. It builds the list of
interacting particle pairs by dividing the domain into cells with uniform size
using the linked-cell method. The broad-phase could take up to 65% of the total

computational time;

* Narrow-phase performs a rigorous contact detection of each pair of particles in
the broad-phase list using the actual shape of the particle and calculates the pair-
wise collision parameters such as overlap, contact location, and direction. The
XDEM software supports complex shapes by using the sub-shapes techniques
(a shape is composed of many simple shapes as spheres) and super- quadratics.

The narrow-phase represents around 15% of the total computational time;

¢ Apply physical models: based on the collision parameters and collision history

information, calculate all interaction forces by applying corresponding physical

4.4. Background 79

models such as normal and tangential contact models, rolling models, and

cohesive models and so on;

* Integration: updates the particle location, velocity, rotational velocity, and
orientation information by numerically integrating Newton’s second law with

various numerical algorithms such as leapfrog and velocity-Verlet schemes;

4.4.2 Collision detection in XDEM

The contact detection being carried out on a large number of particles, it is split
into two phases in order to reduce the computational complexity: a first, fast and
approximate phase called the broad-phase and an accurate second phase called

narrow-phase as indicated in Fig. 4.1 and already mentioned in Section 4.4.1.

Fig. 4.2 illustrates the collision detection process for two colliding particles of any
shapes in XDEM. A bounding volume enclosing any type of particle entity replacing
the real particle shape is used to achieve a rapid broad-phase detection. In XDEM
software, the broad-phase is carried on using bounding spheres, slightly increasing
the memory usage (BS requires additional data) but greatly improves and reduces
data access from the CPU. With the BSs, the distance computation becomes less

computationally expensive.

Realizing that two particles far away from each other have very little chance to
generate any interaction, the neighbor particle detection is often limited to a certain
distance. The Algorithm 1 describes the linked-cell technique used in XDEM to

spatially limit the contact detection process of a pair of particles.

The linked-cell approach is utilized to perform the neighbor list construction,
which guarantees the time complexity to be linear in the number of particles in the
system. As illustrated in Fig. 4.3, the pairwise interactions for a single particle are
limited with all particles within the same cell (green) and in the immediate or adjacent
neighboring cells (blue). The cell size is uniform and must not be smaller than the

maximum bounding sphere size of all particle entities.

80 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

Broad-Phase: Fast contact detection
Approximate contact list

Narrow-Phase: Rigorous contact detection on broad-phase list
Calculate overlap/distance
Exact contact list

!

[Apply models: Impact, bonding, conduction, radiation]

models

Y

N
Integration: Update particles position, orientation,
temperature

Output

No

Stop?

YES

C] Operates on bounding sphere shape

Operates on particle real shape

FIGURE 4.1: Flow chart of XDEM software detailing the main
different steps in an iterative simulation.

4.4. Background

81

¢ Timestep from t to t+At

tAt Time

Particle A at time t

0

Interaction / Collision / Contact

Y

Broad-phase: find pairs of particles in close range

Bounding Volume + Linked-cell

Narrow-phase
Collision

“| detection with

exact shape

|Computationa| time Bottleneck |

Particle B at time t

Particle B at time
t+At

FIGURE 4.2: Collision detection (broad-phase and narrow-phase)
process workload in XDEM. The broad-phase is the main
computational time consumer.

Algorithm 1: Linked-cell algorithm

1 Uniform decomposition of the domain in cells;

2 forall C, in cell list do
3 for Cy, in the immediate neighbour of C, do

if index(Cp,) < index(C,) then

// Make sure to check each pair of cells only once

for each P, among all particles in cell C, do

6 for each P, amoung all particles in cell C, do
7 if || X, — Xp|| < 7+ 1) then
| List < (Ps, Py);
9 end
10 end
11 end
12 end
13 end

14 end

// Check if the bounding spheres of P; and P, intersect

82 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

)
\J

op |09

0

FIGURE 4.3: Illustration of the cell linked method. For the particles in
green cell, a collision is checked with particles in the same cell (green
particles), and also within the immediate neighbour cells (blue).

The narrow-phase, using the shapes of the real particles, is performed on the
broad list of interacting pairs of particle returned by the broad-phase. The time
complexity for narrow-phase collision detection is largely determined by the particle
shape. For spherical particles, the narrow-phase detection is simply checked following

identity:

(Szri—i-i’]‘—HXj—XjH 4.2)

where, r; represents the radius of particle i, and X; is the center coordinates of particle
i. If the overlap J is positive, the two particles collide and vice versa. For other
particle shapes such as superquadratics, the collision detection becomes complex,
and usually, an optimization problem needs to be solved (Williams and Pentland,

1992).

4.5 Local Verlet buffer approach

The Verlet buffer, unlike the conventional Verlet list, does not build a neighborhood
list for each particle but rather a global list of interacting particle pairs, also called the
Verlet list. In both methods, the particle cutoff radius (bounding sphere in DEM) is
surrounded by a skin margin (Allen and Tildesley, 1990; Allen and Tildesley, 2017),

4.5. Local Verlet buffer approach 83

to give a larger neighborhood. Another difference lies in the ability to work with any

broad-phase algorithm.

In our approach, we extend the bounding spheres used by the broad-phase to
perform an approximate collision detection. The extensive range of the bounding
spheres is called skin, and it will increase the number of potential interactions found
by the broad-phase by considering pairs of particles that are located further away
from each other. On one side, this will make the broad and the narrow phases costlier
to evaluate, but on the other side, the broad-phase does not have to be executed at
every time step anymore. By considering a larger surrounding in the broad-phase
collision detection, the list of potential interactions now includes interactions that

could happen in the next time steps.

In the local buffer method, the skin margin used to extend the bounding volumes
is unique to every particle and is computed according to their local flow conditions.
Additionally, we propose a condition that allows checking that the result of the previ-
ous broad-phase (i.e., the list of potential interactions) is still correct (Noske, 2004).
When this condition is broken, we force the execution of a new broad-phase. In any
case, the narrow-phase is always executed on this approximated list of interactions,
and that guarantees that the results will be strictly identical with the case of having

the broad-phase always executed.

The application of Verlet buffer in particle collision detection process is illustrated
in Fig. 4.4. In the example of Fig. 4.4a, the two particles, with different shapes, have
their bounding spheres extended by a skin margin, often called the Verlet skin.
This phase extends each particle neighborhood and includes the pair of particles
in the Verlet list, which without the extension, would not have been considered as
potentially interacting. Fig. 4.4b shows that after a couple of steps, the Verlet list does
not need to be updated. The particles, or more precisely the bounding sphere of each
particle, did not leave their respective extended bounding spheres that was used to
perform the broad-phase collision detection initially. That shows how an extension
of a skin margin in the neighborhood of the particle includes the pair of particles in
the Verlet list and catches an active collision that happens a few steps later. Finally,

Fig. 4.4c illustrates the case where one of the particles moves out of its skin margin.

84 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

Bounding sphere

| Particle position at ¢;

At time 1;

| Extended Bounding sphere |

(A) Extension of the interaction range by
surrounding the cut-off radius by a skin

Particle position at; + 6,

Attimet; + 5, dx displacement

(B) Collision in extended interaction
range when the two particles are still in
the Verlet list. The narrow-phase is
applied to check the actual collision.

margin.

| Particie outside of Verlet range |
Attimet; + k X &,

(C) New broad-phase required, the green
particle have moved for more than a skin
distance(and could have moved in
another particle’s neighborhood).

FIGURE 4.4: Initial configuration and update of the Verlet list.

4.5. Local Verlet buffer approach 85

This means that the Verlet list is not valid anymore, and the broad-phase must be

executed again to generate a Verlet list.

The overall procedure for constructing the Verlet buffer list in XDEM is shown

in Fig. 4.5

During a broad-phase collision detection, for a particle i, every particle j in its
neighbor cell is checked, as described in the linked-cell method, to determine whether
the pair (i, j) should be included in the Verlet list or not. Particle i and j constitute
a pair in the Verlet list, if they satisfy the condition of two overlapping bounding
spheres. The radius of the bounding volume for particle i, called the neighborhood

list radius, is calculated as:

RnLi = Re,i + skin;, (4.3)

where, R¢; is the interaction cutoff radius determined by applied physical models,
and skin; is the local Verlet skin distance, the value of which depends on the local
flow properties. The construction of the Verlet list process loops over all the pairs of
particles in the linked-cell neighbor list for completion. In the next following steps,
the displacement of each particle starting since the last Verlet list build is examined
against a local threshold. The Verlet list remains unchanged, and the broad-phase
collision detection is skipped until a violation occurs. The following talks about how
to determine the local skin distance and a scheme for automatically updating the

Verlet list in this approach.

4.5.1 The local skin parameter

To choose the skin distance parameter, we extend the equation proposed by Loup

Verlet in 1967 (Verlet, 1967) for MD and we propose to use the formula:

skin, = K x v,.At (4.4)

86 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

- Verlet list No
(7 update?)

lYES

[Broad-Phase: Fast contact detection === Verlet list]

!

Narrow-Phase: Rigorous contact detection on Verlet list
Calculate overlap/distance
Exact contact list

!

Apply models: Impact, bonding, conduction, radiation
models

Y
[Integration: Update particles position, orientation,]

temperature

[Output]

No
\ StOp?

YES

[:] Operates on bounding sphere shape

Operates on particle real shape

FIGURE 4.5: New flow chart of XDEM software. A construction of the

Verlet list is added. If the conditions are satisfied, the list is kept and

the broad-phase is skipped and the simulation continues directly to
the narrow-phase.

4.5. Local Verlet buffer approach 87

where vy, is the particle velocity in the system, At is the time step in the simulation, and
K is the prescribed number of skipped steps in the broad-phase collision detection.
This research started with Eq. 4.4 to determine the local skin parameter for each

particle by replacing bulk velocity v with particle local velocity v,.

4.5.2 Automatic update and validity of the Verlet list

In this section, we detail a condition that allows determining if the Verlet list, com-
puted during a previous time step, is still valid (Grindon et al., 2004).

Definition 1. The Verlet list V|, at time t is correct if

|AB|; <Ra+Rg = {A,BleV;

We use the following condition as a way to determine if the Verlet list at time ¢ is

still valid.

V particle p, Ax, < skin, (4.5)

Where Ax,, is the particle displacement of the particle since the last broad-phase.
If this condition is violated, it means that a new broad-phase must be executed to
update the Verlet list.

Definition 2. We define our automatic Verlet update scheme by:
e re-using the previous Verlet list while condition 4.5 is still valid;
e re-executing a new broad-phase to update the Verlet list otherwise.

We will now prove that our proposed automatic Verlet update scheme always
returns the correct results.
Theorem 1. The automatic Verlet update scheme defined at 2 ensures that all pairs of particles

that can possibly collide are in the Verlet list.

88 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

The claim in theorem 1 avoids the potential simulation accuracy and stability
issues that take place in the fixed update interval scheme, as reported in (Chialvo and

Debenedetti, 1990). The proof of the theorem is provided in the following step:

Proof. We assume that the initial broad-phase executed at time ¢, performed on the
extended bounding spheres, is correct and returned the correct Verlet list, and thus

by definition 1, we have:

|AB||s < Rnra + Rnip = {A,B} € Vi, (4.6)

Where Rnr4 and Ry p are the respective extended interaction ranges of particle

A and particle B.

We want to show that, at any time t = t -+ At, the Verlet list is valid. According
to the definition 1, that means that considering { A, B} a pair of particles, we need to
prove the hypothesis HO, that if A and B collide at time #’, then {A, B} is in the Verlet

list VLZ

|AB||y < Rca +Reg = {A,B} € V1, (HO) 4.7)

Where Rc4 and Rcp are the respective cutoff distance of particles A and B.
It exists two possibilities:

1. The condition 4.5 is no more valid, i.e.:
JA| | AA||p > sking, (4.8)

where A is a particle at a given position at time ¢, A’ the same particle in a new
position at ¢’ time. In that case, a new broad-phase, on the extended bounding
spheres, has to be executed at time ', and a new correct Verlet list is generated.

So if we consider two colliding particles A and B at time #/, then we have

4.5. Local Verlet buffer approach 89

H/f Blly < Rca + Rcp because A and B are interacting
ca +sking + Rep + sking 4.9)

<R
< Rnra + Rnes

and because the newly generated Verlet list is correct, then we have {A, B} € V..

The hypothesis HO is verified.

2. The condition 4.5 is still valid, i.e.:

VA, ||AA!|| < sking (4.10)

where || AA’||y is the distance covered by particle A from time t to ¢'.

So if we consider two colliding particles A and B at time #', then we have

IAB|ls < Rea+ Res
HA_EHy + HA_A’H < Rca + Rep + sking by adding Eq. 4.10 for particle A
||XB||t/ + ||A_AIH + ||B_B’|| < Rca + Rep + sking + sking by adding Eq. 4.10 for particle B

N
—
— || AB|y + | AA’|| + ||BB'| < Rnra + Rnis
—

|ATB|| + || AA’|| + || BB'|| < Rnpa + Ris as || AB|ly = | A7B|

Additionally, from the triangle inequality, we have

IABI| < | AA|| + | ABI| < | A4|| + | A™B'|| + || BB
and which finally gives us

|AB|ly < Rca +Rcs = || AB||ly < Rnpa + Ryis
— {A,B} eV because of Eq. 4.6

The hypothesis HO is verified.

90 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

O]

4.6 Performance Evaluation

We carried out extensive numerical experiments to assess the performance of our

proposed approach.

4.6.1 Methodology

In section 4.5, we presented our first model to establish the skin margin value of a

particle:

skin, = K X vp.At (4.11)

where v, is the particle velocity in the system, At is the time step in the simula-
tion, and K is the prescribed number of skipped steps in the broad-phase collision

detection.

Dynamic determination of the skin margin allows particles from different flow
velocity to adopt distinct skin margins, but with the same K number of time steps
between two consecutive updates of the Verlet list. What is the optimum K value
giving the best computational efficiency? To answer this question, we performed a
parameter study on the skin margin by varying the value of K. It varies from 0 to
5000 in the current study that was conducted on five different real test-cases with

different purposes and flow velocity.

In the following XDEM simulations, we used the Velocity Verlet integration
scheme and the Linear Spring Dashpot III contact model (only the static friction
force is taken into account in the classical Linear Spring Dashpot model). All the
five test-cases have been simulated for at least 5000 time steps. The Verlet buffer
method is coupled with the linked-cell method with the constraint on the neighbor

list range to be smaller than the cell size. This gives an upper-bound to the skin value

4.6. Performance Evaluation 91

RyL <= miny,; Lc. This means that in practice, the skin will be set for each particle

independently to

Ryr,p = min(Rc,p + Skinpllglly‘le Lc) (4.12)

4.6.2 Test-cases

The following real-world example serves as concrete benchmarks for the evaluation

of our implementation.

* Hopper Discharge The Hopper Discharge presented in Fig. 4.6 is a test case
used with 125k, 250k and 500k particles. The simulation works as follows: the
selected number of particles (thus up to half a million) with different diameter
are dropped off in a silo. Then the notch at the bottom is opened, letting all
particles fall down into a chute. In this case study, the workload moves from
the top portion of the domain downwards. Since the lower part of the silo is

narrowed, the workload is focused on the center region of the domain.
¢ Granular flows on vibrating rough inclined planes

The test case in Fig. 4.7 simulate a granular (spherical particles) flowing down
on a roughed and incline plane. The particles are colored according to their
velocity. In this test case, a silo is filled with particles of uniform size that are
dropped off on an inclined plane. The latter has a roughed surface composed of
many bigger particles, literally vibrating. In the free flow of particles, the ones
on the top of the bed present a higher velocity because being the least in contact

with the rough surface and therefore undergoing the least lateral vibrations.
* Avalanche

Fig. 4.8 describes a simulation of an avalanche debut at the top of a habitable
valley. Particles located upstream of the valley descend throughout the valley
with an increased speed due to the inclined surface. The goal is to predict

the path and the rate at which the avalanche will reach the bottom of the

Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

Particle Radius (m)
~0.0012

IRRRRRAN!

0.001

0.0008

Z-AXis

0.0006

0.0004

FIGURE 4.6: The test case used for the performance evaluation

simulates the hopper discharge of 125k, 250k and half a million

particles. It shows any overview of the set-up with the particles
coloured according to their size.

4.6. Performance Evaluation

Incline angle: 25

Size ratio: Drough/Dﬂow: 3
Vibration frequency: =50 Hz
Vibration amplitude: A=200 mm

Roughed plane
surface —

Free flow particles

FIGURE 4.7: Granular flows on roughed inclined plane. The rough
plane has particles vibrating at 50Hz frequency with 200mm
amplitude. The free flow particles are coloured according to their
velocity

94 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

valley at the housing level. The case, a cohesive model, uses the Elastic-plastic

spring-dashpot rolling model.

\ Snow particles bed

FIGURE 4.8: Simulation of an avalanche at the top of a habitable
valley. The particles bed represents a cohesive snow model.

¢ Biomass combustion

Fig. 4.9 shows a simulation of a combustion chamber of a 16 MW geother-
mal steam super-heater, which is part of the Enel Green Power "Cornia 2"
power plant (Wikipedia contributors, 2019). The test case relies on a hybrid
four-way coupling between the Discrete Element Method (DEM) and the Com-
putational Fluid Dynamics (CFD). In this approach, particles are treated as
discrete elements that are coupled by heat, mass, and momentum transfer to the
surrounding gas as a continuous phase. For individual wood particles, besides
the equations of motion, the differential conservation equations for mass, heat,
and momentum are solved, which describe the thermodynamic state during

thermal conversion.
¢ Powder leveling for Selective Laser Melting in Additive Manufacturing

Additive manufacturing and specifically metal selective laser melting (SLM)
processes are rapidly being industrialized (Donoso and Peters, 2018). The case

showed in Fig. 4.10 simulates a Powder leveling for Selective Laser Melting

4.6.

Performance Evaluation

95

5.1e+02
500

Gas phase temperature (K)

Bed surface temperature (K)
3.0e+02 1000 1.7e+03
|

FIGURE 4.9: Furnace of the combustion of Biomass. The particle bed
is arranged on four (4) moving grates. The bed is heated up in the
combustion chamber by inlets located below the grates. The particles
are colored according to their surface temperature.

96 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

(SLM) in Additive Manufacturing (AM) process. In this test case, an advanced
discrete-continuous concept is used to address the physical phenomena in-
volved during laser powder bed fusion. The concept treats the Powder as a set
of particles by XDEM, predicting the thermodynamic state and phase change of
each particle. The fluid surrounding is solved with multiphase CFD techniques

to determine the momentum, heat, gas, and liquid transfer.

FIGURE 4.10: Powder levelling for Selective Laser Melting.

4.6.3 Experimental settings

The experiments were carried out using the Iris cluster of the University of Luxem-
bourg (Varrette et al., 2014) which provides One hundred sixty-eight 168 computing
nodes for a total of 4704 cores. The nodes used in this study feature a total a 128 GB of
memory and have two Intel Xeon E5-2680 v4 processors running at 2.4 GHz, that is to
say, a total of 28 cores per node. The nodes are connected through a fast, low-latency

EDR InfiniBand (100Gb/s) network organized over a fat-tree topology.

We used version 67£029de of XDEM software, compiled with GCC Compiler
6.4.0. The nodes were reserved for exclusive access in order to ensure the stability of
the measurements. Additionally, each performance value reported in this section is
the average of at least a hundred measurements. No major variance in the results was

indicated by the standard deviation and is also not shown in the following graphs.

4.6. Performance Evaluation 97

4.6.4 Results

The different simulations conducted in this study are intended to analyze and inter-
pret the impact of the skin margin upon the performances of the automatic update
algorithm presented in subsection 4.5. In this section, we take a look at how the
skin = KvAt model affects the test cases” computational times. The simulation time
of the broad-phase, narrow-phase and apply models are illustrated in Fig. 4.11 as a
function of K factor. We also compare our model of skin = KvAt (skin is different for
each particle) with the popular approach where the skin is uniform and equal to the
particle radius (Angeles and Celis, 2019) (all cases are monodisperse and therefore
the skin is identical for all the particles).

4000 I |
1 900 Optimum K 1 1500

Optimum K

3000 A
Optimum K 1

600 1000

2000

300 500

1000

1 10

100 1000

1

1000 I optimum K | Optimum K Optimum K |

10 100 1000

1

10 100 1000

750 1 1000 | 1000 |

500

Time [s]

500 500

250

1 10 100 1000

-

10 100 1000 1 10 100 1000

Optimum K ¢

600

400

200

1

10 100 1000
K factor [-] (log scale)

B Apply_Models [Narrowphase ¥ skin=Radius
I Broadphase [ll| Other_computation Total

FIGURE 4.11: Dependence of broad-phase, narrow-phase and
interactions models on skin K factor. The vertical blue dashed lines
show the optimum K for each simulations corresponding to the
lowest overall simulation time. The orange horizontal line represents
the simulation time for a constant skin equal to the particles radius.
The skin distance is capped by the cell size in all simulations.

It follows from Fig. 4.11 that:

* The broad-phase simulation time decreases with the K value and therefore

98

Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

with the skin. For the Avalanche case, BP? = 3172.758s without the Verlet
buffer method and BP = 42.418s for K = 400, representing a 98.66% of time

improvement.

Increasing the K factor decreases the overall broad-phase time but does increase
a single broad-phase time due to the extend of the neighborhood (more pair of
particles in the Verlet list). But this goes hand in hand with a decrease in the

number of performed broad-phase, which decreases the overall time.

The narrow-phase simulation time increase with the K value and thus with skin.
For the Biomass case, NP? = 288.155s without the Verlet buffer method and
NP = 323.626s for K = 1000. It is a 10.96% increase in the narrow-phase time.

The rise is due to the enlargement of the Verlet list during an increase of K, on

which the narrow-phase performs an exact collision detection.

When K increases, the simulation time decreases to a low peak before starting
to increase for almost all the cases, especially for the Biomass case. Without
using the Verlet buffer method, simulation time equals to 962.901s and equals
to 594.899s for K = 200 that is an increase of 61.86% of speed up overall. But at
K = 5000, the overall simulation increases to 1100.208s, an increase of 12.48%

compare to no Verlet buffer method.

The most improvement is achieved with the AVALANCHE test case with a 70%
of simulation time improvement. The least gain is obtained with the BIOMASS
test case with a 38% of time improvement. The latter can be explained by the
fact that it includes a CFD coupling with OPENFOAM, adding, therefore, more
computations. The percentage gain relative to broad-phase is similar to in the

AVALANCHE test.

The behavior confirms the existence of an optimum K value for the Verlet
buffer method. The decrease in the simulation time observed at the beginning
is a result of the two preceding bullet points. Undoubtedly, the values of K

after zero offer a larger gain in broad-phase time than the increase noticed in

3Broad-phase simulation time
PNarrow- phase simulation time

4.6. Performance Evaluation 99

the narrow-phase. But after a value referenced as the optimum K value, the
increase in the narrow-phase time is more significant than the decrease in the

broad-phase time resulting in an increase of the overall simulation time.

* At a fixed state condition, the optimum K increases with the system size due to
the density and cell size change. For the hopper discharge case, Kopimum = 100
for N = 125k particles and K, ptimum = 200 for N = 500k particles.

¢ The simulation time does not increase at any point but stabilizes rather at a
minimum after a clear decrease as the interaction radius reaches the minimum

cell size for the powder laser melting case.

¢ We can notice that our current approach of a dynamic skin gives a better
performance when reaching the optimum skin. The difference is observable

even for a case(biomass furnace) with a relatively homogeneous flow regime.

¢ The optimum skin distance and K value depend on the test case and, therefore,
on several parameters as the solid fraction, the cell size, the ratio of particle to
cell size, and the number of particles. A study on how to compute the optimum
skin distance depending on the aforementioned parameters is presented in our

paper (Checkaraou et al., 2018b)

In summary, the bigger K is, the wider the interaction range is, and the wider the
neighborhood is, involving a reduction in broad-phase and simulation overall time,
although the narrow-phase is increasing. Then, after K reaches an optimum value,
the decrease time in the broad-phase does no longer compensate the increased time
in the narrow-phase leading to an increase of the overall simulation. This behavior is
observed when interaction never reaches the cell size. When it reaches the cell size,
the simulation time remains unchanged since the skin margin is down to the value
of the minimum cell size. The number of executed broad-phase as a function of K
value is shown in Fig. 4.12. There is a clear decrease in the number of performed
broad-phase when increasing the K (increase in the number of skipped broad-phase),
but an equilibrium is reach around K = 200. It means that after this value, there

should be no more significant gain in skipping the broad-phase. It appears from all

100 Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

Percentage of executed broadphase against k factor

Executed percentage [%]

10 100 1000
K factor [-]

= Avalanche = Granular_flows == Hopper250k == Powder_leveling
= Biomass = Hopperl25k Hopper500k

FIGURE 4.12: Dependence of executed broad-phase in percentage
upon the skin K factor. The percentage correspond to the number of
executed broad-phase over the total number of steps in the simulation.

our simulations that the biggest drop in the simulation time is made around K = 10

and K = 50, although there is a clear gain by increasing the skin after those values.

Fig. 4.13 enables us to put our previous observations (not significant gain after
K = 200) into perspective. It shows the time overhead for several K values compared
to the optimum time value. It confirms that the biggest time drop is made around
K = [10 — 50] for all the test cases. It also helps to notice that K = 200 is a value close
to the optimum for all the test cases and can thus be chosen as a common and default

value.

The table 4.1 presents a performance comparison between the optimum case,
considered as the K value given the lower simulation time, which is specific to each
test case and a default case. The latter is defined as the K value given an excellent
performance compromise for any case. In table 4.1, the improvement in percentage is
defined by the gain made compared to a simulation without using the Verlet buffer

method. It is given by the following formula:

Timey /o Verlet buffer — Timecase

Improvement = x 100 (4.13)

Timew/o Verlet buf fer

4.7. Conclusion 101

Time overhead compared to optimum time for severals K factor

N @
o =}

Overhead compared to optimum case [%)]
N
o

»

.
O = -
2 5 10 20 50 100 200 300 500 1000 2000 5000
K factor [-]
= Avalanche == Granular_flows == Hopper_250k == Powder_leveling
= Biomass = Hopper_125k Hopper_500k

FIGURE 4.13: Simulation time overhead compared to the optimum for
each K value for all test cases.

where Timecqs, is the simulation time depending on which value of K is used for the

Verlet buffer method.

The OVERHEAD column corresponds to the time difference (percentage) between
the case where the optimum K value is used and the default case with the acceptable K
value. We can notice from table 4.1 that a default K = 200 is an excellent compromise
to the optimum K value that can be used for all the test cases. Actually, it has a
maximum overhead of 2% when used for all the test cases. We then recommend
choosing K = 200 when using the Verlet buffer method as a good arrangement to the

optimum value.

4.7 Conclusion

In this article, we proposed a local Verlet buffer solution with a new skin formulation
that expresses each particle’s skin margin according to the neighborhood flow con-
ditions and based on the particle velocity. The method has also been implemented
in our home software with an automatic update scheme for DEM simulations of
granular material. It is an improvement and a generalization of the conventional

Verlet list method for DEM simulations. The method allows to keep several time

Chapter 4. Local Verlet buffer approach for broad-phase interaction in DEM

102

TABLE 4.1: Summary of the performance results of the Verlet buffer method over the different testcases.

Without Verlet Optimum Value for K Selected Default Value K = 200
buffer

Testcase Simulation time K[-] Simulation Improvement Simulation Improvement Overhead to

[s] time [s] [%] time [s] [%] optimum [%)]
Avalanche 5595.77 500 1673.18 70.12 1687.24 69.84 0.83
Biomass 962.90 200 594.89 38.21 594.89 38.21 0.00
Granular flows 2084.74 1000 1191.64 42.83 1206.19 4214 1.20
Hopper 125k 1164.40 100 694.14 40.38 701.52 39.75 1.05
Hopper 250k 1564.46 50 943.14 39.71 945.67 39.55 0.26
Hopper 500k 1614.37 200 975.27 39.58 975.27 39.58 0.00
Powder leveling 733.98 1000 367.22 49.96 375.25 48.87 2.14

4.7. Conclusion 103

steps the potentially interacting pairs of particles list by surrounding the particle
cut-off radius by a skin margin, in case the contact detection is divided into two steps:
the broad and narrow phases. It has the advantage of giving the possibility to use any
contact detection algorithm to generate the approximate interacting pairs of particles

list during the broad-phase process.

We presented a new skin margin formulation based on individual-particle dis-
placements for easy implementation and better consider the different flow velocity
regimes that often coexist in granular flow DEM simulations. A parameter study on
the skin margin was conducted to assess its effects on the method performances. It
appears as expected, a decrease in the broad-phase overall time and an increase in the
narrow-phase time while increasing the skin margin, resulting in a global decrease
in simulation time. Beyond specific skin margin values, we found an opposite effect
where the increase in the narrow-phase time is too high, resulting in a global simu-
lation time increase. The study showed that most computational time gain is made
around K = 20, and there is often after that value some gains to make, but not as

significant.

105

Chapter 5

Predicting near-optimal skin

distance in Verlet buffer for DEM

106 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

5.1 Abstract

The Verlet list method is a well-known bookkeeping technique of the interaction list
used both in Molecular Dynamic (MD) and the Discrete Element Method (DEM).
The Verlet buffer technique enhances the Verlet list that consists of extending each
particle’s interaction radius by an extra margin to take into account more particles in
the interaction list. The extra margin is based on the local flow regime of each particle
to account for the different flow regimes that can coexist in the domain. However, the
choice of the near-optimal extra margin (which ensures the best performance) for each

particle and the related parameters remains unexplored in DEM, unlike in MD.

In this study, we demonstrate that the near-optimal extra margin can fairly be
characterized by four parameters that describe each particle local flow regime: the
particle velocity, the ratio of the containing cell size to particle size, the containing
cell solid fraction, and the total number of particles in the system. For this purpose,
we model the near-optimal extra margin as a function of these parameters using a
quadratic polynomial function. We use the DAKOTA SOFTWARE to carry out the
Design and Analysis of Computer Experiments (DACE) and the sampling of the
simulations” parameters. For a given instance of the set of parameters, a global
optimization method is considered to find the near-optimal extra margin. The latter
is required for the construction of the quadratic polynomial model. The numer-
ous simulations generated by the sampling of the parameter were performed on a
High- Performance Computing (HPC) environment granting parallel and concurrent

executions.

This work provides a better understanding of the Verlet buffer method in DEM
simulations by analyzing its performances and behavior in various configurations.
The near-optimal extra margin can reasonably be predicted by two out of the four
chosen parameters using the quadratic polynomial model. This model has been
integrated into XDEM to choose the extra margin automatically without any input
from the user. Evaluations on real industrial-level test cases show up to 26% of

reduction of the execution time 2.

4This chapter was published as an article in IPDPS2020 (“Local Verlet buffer approach for broad-
phase interaction detection in Discrete Element Method”)

5.2. Introduction 107

Keyword

Verlet, DEM, HPC, Optimization, Dakota

5.2 Introduction

The Extended Discrete Element Method (XDEM) is an advanced numerical process
that enhances the granular material properties in classical Discrete Element Method
(DEM) (Cundall and Strack, 1979) by supplementary states such as thermodynamic,
stress, and strain (Peters, 2013). As part of the ongoing XDEM software development,
we have implemented an optimized variant of the Verlet list (Verlet, 1967) using the
local flow regime of each particle (“Local Verlet buffer approach for broad-phase in-
teraction detection in Discrete Element Method”, submitted to Advances in Engineering
Software). This method, called Verlet buffer, is applied to the broad-phase and takes

advantage of the temporal coherency of a DEM simulation.

Multiple works in the literature have studied the behavior of the Verlet-list for
Molecular Dynamics (MD) (Verlet, 1967; Chialvo and Debenedetti, 1990; Chialvo and
Debenedetti, 1991; Mattson and Rice, 1999; S. and S., 2006), in particular how far
the list can be expanded and what are the primary influence parameters. However,
no such complete study exists for DEM simulations. (Li et al., 2010) compared
in DEM the performances of the Verlet list and linked-cell methods in a gravity-
driven granular collapse simulation. It showed that special care must be carried
when choosing the interaction range (skin + cut-off distance), cell size, and updating
interval time as they are crucial to obtain the best performance out of the Verlet list
method. The latter interaction range is controlled and adjusted by the user through

the skin distance.

In XDEM, this skin distance parameter does not change the result of the sim-
ulation, but it can significantly influence the performance of the execution (“Local
Verlet buffer approach for broad-phase interaction detection in Discrete Element
Method”). The best value for the skin distance factor typically depends on each input

case and the local conditions on each part of the case. As described in the upper

108 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

Input

. a N\
@ XDEM run
_ (Input, Skin))

Y

Y

Input _ XDEM run
7| (Input, Sking)

1 Results in T’ < T execution time.

Surrogate
kLS’kinop,=f(Inpul)

FIGURE 5.1: XDEM user specifications.

diagram of Fig. 5.1, the user can specify the skin distance along with the input case
when running its XDEM simulation. However, finding the best value for the skin
distance factor can be difficult and time-consuming. Thus, the work presented in this
article focuses on finding an intuitive approach to optimize this hyper-parameter. As
shown in the bottom part of Fig. 5.1, our goal is to construct a surrogate function that
determines, at low-cost, a near-optimal value for the skin distance to speed-up the

XDEM simulation.

The literature is replete with numerous hyper-parameter optimization algo-
rithms (e.g., Grid Search Bergstra and Bengio, 2012, Bayesian Optimisation Snoek,
Larochelle, and Adams, 2012, etc ...). Nevertheless, this meta-optimization approach
should be performed for different simulation contexts. Therefore, the near-optimal
skin distance value is a function of the simulation inputs and can be approximated
using a surrogate/predictor function. Our contribution relies on this surrogate func-
tion’s definition using a training data set obtained by optimizing the skin distance on

a pre-established number of simulation cases.

5.3. Background 109

The remainder of this article is organized as follows. Section 5.3 introduces
the XDEM simulation toolbox and the problem around the Verlet buffer method.
Section 5.4 formalizes the skin distance optimization problem and then explicit the
methodology to tackle it. Section 5.5 describes the design and the implementation
of a surrogate function to characterize the near-optimal skin distance for different
inputs. Experiments using the DAKOTA SOFTWARE are highlighted in section 5.6.

Finally, the last section 5.7 concludes this work and proposes future investigations.

5.3 Background

5.3.1 The Extended Discrete Element Method

The XDEM software is a multiphysics toolbox (Samiei and Peters, 2010) based on
the dynamics of granular material described by the classical DEM (Cundall and
Strack, 1979; Allen and Tildesley, 1990). It extends the usual particle properties
with thermodynamic state, stress/strain or electromagnetic field (Peters, 2013; Peters
and Pozzetti, 2017, Mahmoudi et al., 2016a). The software is written in C++ and
is composed of a set of modules: Dynamics governing the motion of the particles,
Conversion for the chemical conversion and thermodynamics, CFD Coupling for the
coupling through an external CFD library such as OpenFOAM (Jasak, Jemcov, and
Tukovic, 2007). Each of the simulation modules can be enabled separately and have
specific time settings. The XDEM simulation driver is responsible for executing at

each iteration the necessary phases for the activated modules.

An XDEM simulation is an iterative time loop which contains the following main

phases:

¢ The Broad-Phase uses a fast but approximate collision detection to build a list
of particle pairs that can potentially interact. During this phase, the particles
are represented by bounding spheres with an appropriate radius (express the

interaction range).

110 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

* The Narrow-Phase processes the list of potentially interacting particle pairs
and performs a precise contact detection using the actual shape of a parti-
cle (e.g. sphere, cube, disk, cylinder, triangle-based shape). It calculates the

overlap/distance, the contact point, and the direction between the two particles.

¢ Apply Physics Model: this phase selects the physics models defined in the
particle properties (e.g. for impact, bonding, rolling, conduction, radiation,
chemical reaction) and calculates the contribution to each particle involved (in

term of force, torque, heat flux, chemical species mass fraction).

¢ The Integration updates the state of the particles after accumulating the contri-
butions of all the interactions. Different integration schemes are available for
the different components of the state of the particles (e.g. position/orientation,

temperature, chemical composition).

To leverage large-scale HPC platforms, XDEM supports parallel distributed and
shared-memory executions based on MPI and OpenMP (Checkaraou et al., 2018a;

Besseron et al., 2013).

5.3.2 Verlet buffer method for XDEM

The Verlet buffer method is an enhancement of the broad-phase, which is detailed
in (“Local Verlet buffer approach for broad-phase interaction detection in Discrete
Element Method”). Instead of calculating the list of potential interactions for the
direct neighboring particles, it considers particles that are further away from each
other by increasing their bounding spheres. As a result, the interaction list also
contains potential future interactions, and then the broad-phase does not need to be
re-executed at every iteration. As shown on Fig. 5.2, the interaction range of each
particle, or cut-off radius R, is extended by a skin distance, skin, that offers a broader

neighbourhood, or neighbour list radius Ry:

RNL = RC -+ skin (51)

5.3. Background 111

S . .7 1"'

FIGURE 5.2: In the Verlet buffer approach, the bounding sphere of the
particles is extended by the skin distance such as Ryy, = R¢ + skin.

112 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

In contrast to the conventional Verlet list (Allen and Tildesley, 1990; Allen
and Tildesley, 2017), the Verlet buffer does not create a neighborhood list for every
particle, but rather a global list of interacting particle pairs referred to as the Verlet
list. Additionally, because it merely applies to each particle’s bounding sphere, our
approach applies to any broad-phase algorithm (“Local Verlet buffer approach for
broad-phase interaction detection in Discrete Element Method”; Rousset et al., 2018).
We also propose a condition that enables the previous broad-phase results (i.e., the
list of potential interactions) to be ascertained. It will compel the execution of a new
broad-phase if this condition is broken. In any case, the narrow-phase is always
performed on this approximate interaction list and ensures that the results are the

same as our approach.

In practice, the skin distance of every single particle is unique in the local buffer
procedure and is calculated according to local flow conditions, e.g. the particle
velocity. The skin distance is initially determined according to a borrowed algorithm

to Molecular Dynamics (Chialvo and Debenedetti, 1990):

skin = K x V, x At, (5.2)

where K is called the skin distance factor, V), is the particle velocity in the system, and

At the DEM time step interval.

5.3.3 Dakota Software Package

The DAKOTA (Design Analysis Kit for Optimisation and Terascale Applications)
toolkit provides a flexible and extensible interface between simulation codes and
iterative analysis methods. DAKOTA SOFTWARE contains algorithms for optimization
with gradient and non-gradient-based methods; uncertainty quantification with
sampling, reliability, and stochastic expansion methods; parameter estimation with
non-linear least squares methods; and sensitivity /variance analysis with design of
experiments and parameter study methods. By employing object-oriented design

to implement abstractions of the critical components required for iterative systems

5.3. Background 113

analyses, the DAKOTA SOFTWARE toolkit provides a flexible and extensible problem-
solving environment for design and performance analysis of computational models

on high-performance computers.

Pot)
B> DAKOTA

Optimization e

Uncertainty Quantification
Parameter Estimation

4 Sensitivity Analysis P E.
Input Parameters Response Qols
design » uncertain » state objectives « constraints
continuous * discrete residuals

-

/ Model \

simulation » surrogate * multi-fidelity
nested recursions
formulation recasting

A 4

i pre- i | Simulation " post-
\.b rocess ;| Interface |: pro ces\sj/

FIGURE 5.3: The loosely-coupled or “black-box” interface between
DAKOTA SOFTWARE and a user-supplied simulation code (Adams
etal., 2019).

The DAKOTA SOFTWARE supports multiple optimization capabilities, includ-
ing gradient-based, derivative-free methods local, and global methods (as Genetic
Algorithm used in this study) for use in science and engineering design applica-
tions (Adams et al., 2019). The toolkit also supports multi-objective and surrogate-
based optimization. The methods and algorithms in DAKOTA SOFTWARE are designed
to exploit parallel computing resources such as those found in a desktop multipro-
cessor workstation, a network of workstations, or a massively parallel distributed
computing platform. For more details, one should refer to DAKOTA SOFTWARE Users

Manual (Adams et al., 2019).

In this research, the optimization and surrogate capabilities have been combined
in a nested model. High-performance capabilities have also been used through coarse

and fine-grained parallelism on a cluster node.

114 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

5.4 Skin distance optimisation problem

This section discusses the optimization process and methods used to find the near-

optimal skin distance for a given input case.

5.4.1 Definition

In the Verlet buffer approach, the skin distance parameter can be tuned to provide
better performances. Each particle’s neighborhood depends on the skin distance,
which once enlarges, increases the size of the interaction list in the broad-phase. A
broad list means that the broad-phase execution can be skipped more often, and the
list could be kept for longer (time-steps). That is where the gain in time is achieved.
Nevertheless, the narrow-phase executed at each time-step has now to be performed
on a more extensive list, which has a negative impact on the performance, i.e., an
increase in computing time. The computing time gained in the broad-phase may not
compensate for the time lost in the narrow-phase leading to an increase in overall
computational time. The simulation time is, therefore, a non-linear function of the
skin distance parameter. To find the best trade-off between the two phases, one
needs to find the near-optimal skin distance according to the overall computing time.
As an example to motivate the search of this optimum, Fig. 5.4 depicts a real-case
related to biomass simulation. This example illustrates the existence of such near-
optimal skin distance and shows the simulation of a combustion chamber of a 16
MW geothermal steam super-heater, which is part of the Enel Green Power" Cornia
2" power plant (Wikipedia contributors, 2019). It relies on a hybrid 4-way coupling
method between the XDEM and the OpenFOAM toolboxes (XDEM+OpenFOAM).

Fig. 5.4 shows the simulation time of the broad-phase, narrow-phase, and appli-
cation models as a function of the skin distance factor (K). The skin distance factor K
varies from 0 to 2000 in current experiments. The vertical blue dashed line shows the
best skin distance factor K, corresponding to the lowest overall simulation time. It
confirms the existence of a near-optimal skin distance factor K and, therefore, of a

near-optimal skin distance.

5.4. Skin distance optimisation problem 115

900

Optimum K

300

1 10 100 1000
K factor [-] (log scale)

I Apply_Models [l Broadphase [l Narrowphase [l Other_computation [Total

FIGURE 5.4: Dependence of broad-phase, narrow-phase and interac-
tions models on skin distance factor K.

5.4.2 Evolution optimisation of the skin distance parameter

Due to the non-linear property of the skin distance optimization problem, Evolu-
tionary Optimisation (EO) has been considered. EOs are bio-inspired optimization
algorithms that belong to the class of meta-heuristics. They have been widely used
in single-level optimization cases to tackle NP-hard problems. Among the EOs
algorithms, Genetic Algorithms (GAs) have been retained to determine the near-
optimal skin distances. Since the execution time of the simulations is subject to noise,
gradient-based approaches are prohibited. XDEM simulations have been carried
out on exclusive nodes with pinned threads to reduce those fluctuations as much as
possible. Thus, a global and derivative-free approach such as GA seems to be more
robust, reliable, and inherently parallel for solving the skin distance optimization

parameter.

The choice has been made to use the SOGA solver, a Single Optimisation Genetic
Algorithm to solve the skin distance optimization problem since it supports parallel
and concurrent execution on HPC systems. SOGA is a generational and population-

based algorithm relying on Darwin’s theory of evolution. In a nutshell, an initial

116 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

population of solutions (i.e., skin distance) is randomly generated. This population
is then evolved using natural selection principles. From generation to generation,
promising genetic material is transmitted to offspring solutions and tends to conver-
gence towards an optima which are not necessarily realized. To escape local optimal,
punctual mutation of the solutions can modify solutions sensibly to keep enough

diversification among the population (Haftka and Giirdal, 2012; Zames et al., 1981).

Table. 5.1 summaries the SOGA parameters considered in this work for solving
the optimisation problem with the biomass case. DAKOTA SOFTWARE starts multiple
evaluations on the Iris HPC cluster (Varrette et al., 2014). During initial population
generation, crossover and mutation, the XDEM evaluations are made concurrently to

speed up considerably the workflow of SOGA.

TABLE 5.1: SOGA parameters

Parameters SOGA
Iterations 500
population size 10/20/50
Selection Roulette Wheel
Crossover operator SBX
Crossover probability 0.8
Mutation operator Polynomial / Uniform
Mutation probability 0.2

A study has been conducted to observe the convergence rate for 10,20 and 50
individuals to determine the best population size. Fig. 5.5 illustrates the SOGA solver

convergence rate for these different population sizes.

One can notice that the population size selection has a non-negligible effect
on the number of simulations to perform. The benefit of using a population of 50
solutions is, in this case, minimal compared to the overhead cost. On the contrary, a
population of 10 solutions converges too rapidly due to a lack of diversity. Finally,
this approach uses a population of 20 solutions that show the best trade-off between
the solution quality and the number of simulations executed. Last but not least, the
population size also depends on computing power. In some cases, the simulation

cost becomes too high and requires a small population for some practical results.

5.5. Near-optimal skin distance characterisation

Soga solver generations evolution

z N

(0]

£

c R

ie]

= Y= Y v o

=) \

£ 8- * ok —k—k
-a ‘K
=

> A-A- A -A-A-A- N\
E .

£ 87

=

10 pop, 950 simulations
20 pop, 2300 simulations
50 pop, 3760 simulations

10 15 20 25

Generations]-]

FIGURE 5.5: The SOGA solver convergence with the biomass case.
Three populations with different initial sizes have been considered: 10,

20, 50.

5.5 Near-optimal skin distance characterisation

In the Verlet buffer approach, the near-optimal skin distance is case-dependent and

can be characterized by a few parameters that define the particles” local flow regime.

Indeed, it is not uncommon in particulate flow systems that both slow and rapid

motion coexist. Dynamic determination of the skin distance grants particles from

different flow regimes to adopt distinct skin distances. Local flow conditions decide

the optimum. Therefore, when adopting a skin distance value for a DEM case, some

physics parameters should be taken into account.

5.5.1 Design of experiments

In this study, four parameters describing particle local flow have been chosen to

characterize the near-optimal skin distance:

* Solid or void fraction (S¢) of the cells, which defines the quantity particles or

vacuum present in the cells;

* Ratio of (containing) cell size to particle size (Cs);

e Particle velocity (V,);

118 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

* Number of particles in the system (n).
The characterization can be summaries in five steps, as described in Fig. 5.6.

1. First, a sample covering the four parameters space is generated. It is used to

construct XDEM box cases for the next step.

2. For each box, the optimisation problem describes in subsection 5.4.2 is solved

and the skin distance factor K, Kopt, s returned.
3. Those K, are used as training data for the construction of a predictor model.

The boxes’ training case is a homogeneous particle system, as shown in Fig. 5.7,
in which parameters such as particle velocity, solid fraction, the ratio of cell size to the
particle size and system size, can be easily varied. The mean particle size is 5mm with
10% variation of the size to prevent crystallization. The solid fraction varies from 0.1
to 0.6, and velocity magnitude is in the range of [0.1,20] with random direction at the
beginning, and the ratio of cell size to the particle size is varied from 1.11 to 3.0 in the

design of the experiment.

In the DEM simulation, the Hertz-Mindlin contact model is adopted with a
reduced Young’s module Y = 5 x 10° to account for the stiffness of particles and cube
walls. To arrive at a steady-state, energy dissipation due to friction and damping
is ignored, which is achieved by setting friction coefficient = 0 and coefficient of
restitution e = 1. Initially, the particle is organized in a lattice structure and allowed
to evolve until a steady state is reached, which usually requires a time duration of
10(7t/6¢)1/3d, / V,. Thereafter, the computational performance of each numerical
experiment is evaluated for a time duration of 2(7t/6¢)!/ 3d,/V,. In the simulation,
the DEM time step interval remains a constant value of 1 x 107 s. The gravitational

acceleration is set to 0 in all simulations.

5.5.2 Methodology

To evaluate the relationship between the near-optimal skin distance (corresponding
to the best computational efficiency) and the flow conditions, the particle system

presented in the design of experiment section 5.5.1 is used to generate multiple boxes

5.5. Near-optimal skin distance characterisation 119

[Input ~ (Sf, Cs, Vo, n) parameters]

!

Sampling N inputs data
covering parameters space

y

Generate N boxes

BOX, BOX y

Solve BO X ; optimization
Kopi, = arg mI}n T(XDEMpox,(K))

\ 4
\ 4
\ I
\ 14
1 S — 4
\ 4
\ 4
1 !

1 4

< v
N training data:
{KOpt1 s oees Koptys +es KOptN}

!

Predictor construction
f: (Sfa CSa I/ela n) - KOpt

FIGURE 5.6: Design of experiment steps. Sy: Solid fraction, Cs: Ratio
cell to particle size, Vel: Velocity, n: Number of particles, T: XDEM
computational time.

120 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

Velocity magnitude
2.0e-02 05 1 15 2 2.5e+00

FIGURE 5.7: Figure of a homogeneous particle system for near-optimal
skin distance determination.

of different solid fraction, cell size, particles average velocity and number of particles.
For each of these boxes, the optimization problem in Eq. 5.3 is solved with the SOGA

solver as described in Section 5.4.2.
minimize f(skin) (5.3)
skin

With the different near-optimal skin distances obtained from the boxes, a quadratic
polynomial model is constructed to express the near-optimal skin distance factor K

as a function of the flow conditions. The latter are presented in Tab. 5.2.

All the methodology steps are done in one process with the DAKOTA SOFTWARE

as detailed below:

1. First, a Latin Hypercube Sampling (LHS) is used to generate the different points

of the flow regime conditions;
2. For each point, the related optimisation problem is solved by:

¢ generating the corresponding box;

5.5. Near-optimal skin distance characterisation 121

TABLE 5.2: Simulation designs for near-optimal skin distance.

System Solid Velocity V,, Ratio cell to skin

particles fraction ¢ [m/s] particle size distance
L/d, AL/d, factor K
5—-80 [0.1,0.6] [0.1,20.0] [1.11,3.0] 0-2000

At is the DEM time step interval.
L is the box length, d,, and V), are the particles’ mean size and velocity.
AL is the cell size and K the skin distance factor from Eq. 5.2.

¢ perform all XDEM evaluations of the box queried by the SOGA solver;
e returned the near-optimal skin distance factor K;

3. Construct the quadratic polynomial (with zero-order additive correction) model

by using the surrogate model capabilities of DAKOTA SOFTWARE;
(a) the first construction of the models;
(b) use root_mean_squared cross-validation (CV) to refine the models;
(c) generate new points using LHS again;
(d) refine the models by using the previous and new points;
(e) back to 3b until CV convergence;

4. Export the models.

5.5.3 Results

In this section, we present the surrogate model expressing the near-optimal skin
distance factor K as a function of the flow conditions (Tab. 5.2). The polynomial

function is given by the following equation:

n

j)
Kopi = Y (ce x TT(x"*), (5.4)
i=1

k=1

where n = 15 and j = 4. x; and ¢ are respectively the polynomial variables and

coefficients, and p(k, i) the variables degrees.

122 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

The variables degrees and coefficients of the polynomial function are presented

below:

Kopt(Sf, Cs, Vi,) = 4257
— 5189 x S
+3190 x S
+1031 x §¢ x Cs

+12.34 % Sf X Vi
(5.5)

— 2309 x C;
+377.3 x C?
—14.00 x Cs x V
—21.27 X Vy

+1.580 x V3

The polynomial model has been used to generate response surfaces of the flow
conditions. The results are shown in six figures, each presenting two (of the four)

parameters at the average value of the other two parameters.

The near-optimal skin distance factor K shows in Fig. 5.8 both solid fraction
and ratio cell to particle size as a large effect in the response surface. Lower values
of the solid fraction and ratio cell to particle size drive up to higher values of the
near-optimal skin distance factor K. One can notice in Fig. 5.10, 5.12, 5.13 that the
number of particles has little impact on the near-optimal skin distance factor K. On
the other hand, the solid fraction and the ratio cell to particle size are confirmed to

have the highest impact.

Tab 5.3 presents a performance comparison between the near-optimal case,
considered as the K value returned by the polynomial model, which is specific to each
test case, and a default case. The latter is defined as the K value given an excellent
performance compromise for any case. The default K value has been established in
previous work (“Local Verlet buffer approach for broad-phase interaction detection

in Discrete Element Method”). In Tab 5.3, the improvement in percentage is defined

5.5. Near-optimal skin distance characterisation 123

Near-optimal skin distance factor K

1400 A

1200
1000
800
600
400
200

0

1353
1202
1052
902
752
601
451
301
150

Ratiol'oﬁeAss 0.14 %00
Cefy 1913 028
to 0 2365 o056 042 ar\C“o“
artj ~gold f

FIGURE 5.8: Response
surfaces for the near-
optimal skin distance
factor K for solid frac-
tion and ratio cell to
particle size.

Near-optimal skin distance factor K

1000

0.00
0 02601 o
160000 128 iy
Nu'”ber 320000 0.42 (a““"\o
Of gy 480000 0.6 \'\d‘
Iticle S0

FIGURE 5.10: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
solid fraction and
number of particles.

Near-optimal skin distance factor K

1353
1202
1052
902
752
601
451
301
150

FIGURE 5.12: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
ratio cell to particle
size and number of
particles.

Near-optimal skin distance factor K

1353
1202
1052
902
752
601
451
301
150

0 00

0.14 0.

0.28 .
crion

4
Ve B 12
e/oC/[y 16 ,, 0_5%00\2\45 fran

FIGURE 5.9: Response
surfaces for the near-
optimal skin distance
factor K for solid frac-
tion and velocity.

Near-optimal skin distance factor K

1353
1202
1052
902
752
601
451
301
150

FIGURE 5.11: Re-
sponse surfaces for
the near-optimal skin
distance factor K for
ratio cell to particle
size and velocity.

Near-optimal skin distance factor K

1353
1202
1052
902
752
601
451
301
150

160000 g 4 0
e 320000 12 8,
Ofpar?_gaoooo 20 16 \,e\OC\W
Tcla

FIGURE 5.13: Re-

sponse surfaces for

the near-optimal skin

distance factor K for

velocity and number
of particles.

124 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

TABLE 5.3: Overview of the Verlet buffer method results with the
surrogate model over the different test-cases.

. j ki

Without Verlet Selected Default Value K = 200 || Optimum Value for Ko,y = 37_; (¢x X]'E:1 (xf(')))
Testcase Simulation time [s] Simulation Improvement Kopt[-] Simulation Improvement
time [s] (%] time [s] compared to default
case (%]
Avalanche 3201 581 81.8 392 459 32
Biomass 492 267 45 481 245 5.00
Granular flows 1167 648 445 444 342 26.2
Hopper 125k 415 295 29 170 284 257
Hopper 250k 580 432 25.51 210 427 0.8
Hopper 500k 954 774 18.87 602 750 251
Powder leveling 374 187 50 286 164 6.15

by the gain made compared to a simulation without using the Verlet buffer method.

It is given by the following formula:

Timey o — Timecgse

Improvement = -
P Timey/,

x 100 (5.6)

where Timecg, is the simulation time depending on which value of K is used for the
Verlet buffer method. Time,,,, is the simulation time without using the Verlet buffer

technique.

The OVERHEAD column corresponds to the time difference (percentage) between
the case where the near-optimal Ko, = Y (cx X H{Zl (xf (k’i))) value is used and
the default case with the acceptable K value. We can notice from table 5.3 that a
default K = 200, although being an excellent compromise to the near-optimal Ko
value, presents some important overhead in some cases. It has a minimum overhead
of 2.51%, which may appear limited but can be very substantial when running
simulations for days. The near-optimal Ko given by the polynomial model provides
more than 25% of performance gain in the granular flows. Given the above results,
the polynomial model can be used to figure out the near-optimal K value in the Verlet

buffer technique.

5.6 Parallel Execution of DAKOTA SOFTWARE on HPC cluster

5.6. Parallel Execution of DAKOTA SOFTWARE on HPC cluster 125

The University of Luxembourg has a High-Performance Computing infrastructure for
research and development. It is used by all the University of Luxembourg researcher
community and some partners. The DAKOTA SOFTWARE toolbox has a different level
of parallelism in order to take advantage of workstations or HPC resources and are

categorized four levels (Adams et al., 2019).

In this study, although DAKOTA SOFTWARE supports MPI parallelization, it
has been run in sequential with a master process. The latter managed the coarse-
grained parallelism (Adams et al., 2019) by starting multiple jobs concurrently using
asynchronous job launching techniques. Each of every job launched by DAKOTA
SOFTWARE’s master runs in parallel, taking advantage of the fine-grained paral-
lelism (Adams et al., 2019) of the function evaluation. The data are then collected
in a blocking synchronization manner. All jobs in the queue are completed before
exiting the scheduler and returning the results to the algorithm. The job queue fills
and then empties, which provides a synchronization point for the algorithm (GAs do

not support asynchronous). Fig. 5.14 syntheses and explains the process.

The Iris cluster uses the SLURM scheduler for managing the workload of the
job (Yoo, Jette, and Grondona, 2003). It is configured with a set of partitions and QOS
that enable advanced workflows and accounting. The quality of service (QOS) is
related to the partitions as follows: qos-batch, bigmem, GPU, interactive, long with
one additional QOS called qos-besteffort. It is preemptible by all other QoS but has
the advantage of not having the limitations imposed on the other QOS, such as the
maximum number of nodes, wall-time. Best-effort jobs can be set to be automatically

re-queued if pre-empted by regular jobs.

To disturb users as little as possible, we configured DAKOTA SOFTWARE iterators
to start concurrent jobs using the best-effort QoS. In this way, we only use available
resources not used by the other users. When a DAKOTA SOFTWARE evaluation job is
running on a resource requested afterward by another user, the concerned resource
is freed for the user, and the evaluation is re-queued. For our study that required
almost 15000 evaluations, the latter situation happened only 18 times (see Tab 5.4). It

means that the other users were hardly affected by our study.

126 Chapter 5. Predicting near-optimal skin distance in Verlet buffer for DEM

Dakota master process

Optimizer iterator

A 4

XDEM XDEM XDEM e - - XDEM
job 1 job 2 job 3 job n

e |evl| el v (e
ey |evly| o3l (e ey

Multi-cores Multi-cores Multi-cores Multi-cores
simulation simulation simulation simulation

FIGURE 5.14: The DAKOTA SOFTWARE parallelism and scheduling
scheme.

5.7. Conclusion 127

Jobs Total | Percentage
Completed | 146387 | 99.9877%
Canceled 18 0.0122%

TABLE 5.4: Scheduled job statistics.

5.7 Conclusion

The Verlet buffer technique relies on particles’ local flow regime and can be tuned
to achieve better efficiency. The latter can be reached by predicting the near-optimal
skin distance. In this article, we revealed the existence of such near-optimal skin
distance on a life-size case of a biomass furnace. The paper portrays the highlighting
of the near-optimal using the Genetic Evolutionary algorithm. The near-optimal skin
distance has also been characterized by the solid fraction, the ratio cell to particle
size, the velocity, and the number of particles. Those parameters have been used to
construct a quadratic polynomial model in order to predict the near-optimal skin

distance for any DEM case.

From the polynomial model, we have been able to characterize the near-optimal
skin distance. Indeed, the latter is mostly biased by the solid fraction and the cell’s
ratio to particle size. Lower solid fraction and small cell size lead to a high near-
optimal skin distance. Conversely, velocity, especially the number of particles, has a
minor impact on the near-optimal skin distance. Density in cells is all(most) what

matters.

This model has been implemented in XDEM in order to predict a suitable skin
distance for any given input simulation case. The performance evaluation on various

real industrial-level test cases shows a reduction of the execution time up to 26%.

129

Chapter 6

Hybrid MPI+OpenMP
Implementation of XDEM

130 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

6.1 Abstract

The Extended Discrete Element Method (XDEM) is a novel and innovative numerical
simulation technique that extends classical Discrete Element Method (DEM) (which
simulates the motion of granular material), by additional properties such as the
chemical composition, thermodynamic state, stress/strain for each particle. It has
successfully been applied to numerous industries for the processing of granular
materials such as sand, rock, wood, or coke (Peters and Pozzetti, 2017; Mahmoudi

etal., 2016a).

In this context, computational simulation with (X)DEM has become a more and
more essential tool for researchers and scientists to set up and explore their experi-
mental processes. However, increasing the size or the accuracy of a model requires
the use of High-Performance Computing (HPC) platforms over a parallelized imple-
mentation to accommodate the growing needs in terms of memory and computation
time. In practice, such a parallelization is traditionally obtained using either MPI
(distributed memory computing), OpenMP (shared memory computing), or hybrid

approaches combining both of them.

In this paper, we present the results of our effort to implement an OpenMP
version of XDEM allowing hybrid MPI+OpenMP simulations (XDEM being already
parallelized with MPI). Far from the basic OpenMP paradigm and recommendations
(which consists of decorating the main computation loops with a set of OpenMP
pragma), the OpenMP parallelization of XDEM required a fundamental code re-
factoring and careful tuning to attain acceptable performance. There are two main
reasons for those difficulties. Firstly, XDEM is a legacy code developed for more
than ten years, initially focused on accuracy rather than performance. Secondly, the
particles in a DEM simulation are highly dynamic: they can be added, deleted, and
interaction relations can change at any time-step of the simulation. Thus this article
details the multiple layers of optimization applied, such as a deep data structure
profiling and reorganization, the usage of fast multi-threaded memory allocators
and of advanced process/thread-to-core pinning techniques. Experimental results

evaluate each optimization’s benefit individually and validate the implementation

6.2. Introduction 131

using a real-world application executed on the HPC platform of the University of
Luxembourg. Finally, we present our Hybrid MPI+OpenMP results with a 15%-20%
performance gain and how it overcomes scalability limits (by increasing the number
of computing cores without dropping of performances) of XDEM-based pure MPI

simulations °.

Keyword

DEM, OpenMP, MPI, High Performance Computing(HPC)

6.2 Introduction

Granular materials are widely used in industry and are an active field of research (Du-
ran, 2012). The eXtended DEM is a novel approach that proposes to extend the
classical DEM technique by simulating, besides the motion of granular particles, ad-
ditional properties like thermodynamics state, chemical conversion, magnetic fields
or stress/strain (Peters, 2013). A computational simulation like eXtended DEM is

becoming increasingly important in numerous research fields.

Recently, thanks to the availability of large scale High-Performance Computing
(HPC) platforms, the interest for parallel DEM simulations has grown as it allows us
to obtain more accurate and meaningful results previously intractable. The detailed
physics models, together with many particles required for realistic DEM simula-
tions, increase the amount of computation and memory consumption automatically.
However, nowadays, throughput towards memory is not increasing as quickly as
processor computing power, which increases the gap between the memory speed and
the cores’ theoretical performance, hence the time lost by the processors waiting for
the memory (Wulf and McKee, 1995). It brings the question to mind: how do we take

advantage of modern and massively parallel machines’ increasing power?

aThis chapter is an article published in the TEEE 30™ International Symposium on Computer
Architecture and High-Performance Computing

132 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

Two major programming models allow to exploit efficiently large scale HPC
platforms: Firstly, the distributed memory approach, e.g., Message Passing Interface
(MPI) (Clarke, Glendinning, and Hempel, 1994), exploits distributed nodes connected
via a high-performance network but requires extra communication even within the
same computing node. Secondly, the shared memory approach using OpenMP (Chan-
dra et al., 2001) takes advantage of multi-core nodes and avoid costly communication

using a multi-threaded process but is limited to a single node.

The combination of both, specifically hybrid MPI+OpenMDP, allows us to over-
come these bounds. The hybrid MPI+OpenMP approach brings the following advan-
tages compared to a pure MPI implementation by reducing the number of processes
in favor of many threads per process: Memory savings for implementations having
many replicated data or data structures depending on the number of MPI processes.
Furthermore, the number of ghost layers between distributed processes can be re-
duced. Better load balance because the number of partitions to be generated (one
per process) is reduced. Improved scalability by reducing the number of messages
exchanged between processes. Fit more modern NUMA architectures that are also
hybrid with a distributed memory across nodes and shared within a node (but unique

addressing for all NUMA nodes).

In this paper, we present the results of our effort to implement an OpenMP
version of XDEM allowing hybrid MPI+OpenMP simulations (XDEM being already
parallelized with MPI (Besseron et al., 2013)). Our work goes beyond the basic
OpenMP paradigm and recommendations (which summarizes by decorating the
main computation loops with a set of OpenMP pragma). Our OpenMP parallelization
of XDEM required a fundamental code refactoring and careful tuning to reach
acceptable performance. There are two main reasons for those difficulties. Firstly,
XDEM is a framework code developed through many years by abounding developers,
preferring accuracy over performances. Secondly, the particles in a DEM simulation
are highly dynamic: they can be added, deleted, and interaction relations can change
at any time-step of the simulation. As a consequence, the contributions of this work

are three-fold:

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 133

1. the main optimizations applied in order to parallelize our XDEM code effi-
ciently with OpenMP are detailed. Beyond the classic DEM, our approach could
be applied to other highly dynamic code;

2. the impact on the performance of each of the proposed optimizations are evalu-

ated independently;

3. finally, the scalability of the proposed new hybrid MPI+OpenMP implementa-

tion of XDEM application is assessed.

The remainder of this paper is organized as follows. In the next section, we
introduce general background notions on XDEM software and its MPI parallelization.
Section 6.3 presents the challenges solved for the OpenMP parallelization of XDEM.
Experimental results and performance evaluation are detailed in Section 6.4. Finally,

we draw our conclusions in Section 6.5.

6.3 Challenges and implementation for the OpenMP paral-
lelization of XDEM

The OpenMP parallelization layer over an MPI parallelization of XDEM proved to
be challenging and required various optimizations and customizations to be efficient.
Indeed, the basic OpenMP paradigm which consists of decorating the main computa-
tion loops with dedicated pragmas, was not applicable within the XDEM software.
There are two main reasons for those difficulties. Firstly, XDEM is a code developed
within the dynamic LUXDEM group for years, used to make very accurate simula-
tions at the expense of performance. Secondly, the particles in a DEM simulation are
highly dynamic: they can move from one process to another, which means that they
are deleted on one process and created on the other. Also, interaction relations can
change at any timestep of the simulation. It follows that to achieve the significant
performance improvements reported in this article, a fundamental code re-factoring
has been necessary. The steps taken to reach an effective OpenMP parallelization are

now detailed.

134 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

6.3.1 Data structures and concurrent accesses

One of the biggest challenges that affect the performance of a program is the choice
of data structures. For a C++ application like XDEM, the Standard Template Library
(STL) (Stepanov and Lee, 1995) offers a wide range of efficient data structures. For
an OpenMP program, the best performance is traditionally reached using containers
offering random access and contiguous memory, like C arrays or C++ std: :vector
or std::array. However, because XDEM code is dynamic (the number of particles
can change at every timestep, the number of collisions are hard to predict) fixed-
size structure are not well-suited”. A careful analysis of the used structures within
XDEM is, therefore, necessary to select the most appropriate approach, depending
on the potential for parallelization. For this reason, Fig. 6.1 lists the main phases that
constitute the XDEM time loop, where the colors indicate on which element a given

phase operates.

Prediction and Integration phases loop through the particles. In the sequential
implementation, the particles were initially stored in a std: :map using the particle ID
as the key. It allowed operations like fast search (necessary when receiving particle
state update from remote processes), deletion (when particles leave the domain), and
insertion (when new particles are created or move from another process). However,
the biggest drawback of the map is that it does not provide any random access iterators,
which prevents any efficient OpenMP parallelization. Additionally, the map elements
are not stored contiguously in memory (but in a tree instead), which significantly

slow down the memory accesses.

As a replacement, we decided to use the flat_map data structure provided
by the Boost library (Schéaling, 2011). Indeed, boost : : flat_map presents the same
functionality as the STL map but relies on a vector to store its elements and sorts
them according to the key. A direct benefit of such an approach is the availability
of a random access iterator as well as a contiguous memory storage. However
the insertion of new elements can be costly as it may require a re-allocation of the

array and a copy of its content. This drawback can be circumvented by reserving

PFor example, adding a new element in a vector requires to re-allocate memory and copy the whole
content of the vector to the newly allocated space.

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 135

4

Beginning of step

-

Prediction

B|road Phase

Narrow Phase a

|9ljeled

Apply models

ntegration

J L

Communication

X
|[enuanbag

Output

J

End of step
I

Particles Sequential

Pairs of particles Parallel

Interactions

FIGURE 6.1: The different phases of an XDEM iteration loop.

136 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

additional space to amortize the overhead induced by insertion operations upon their

occurrence.

As regards to the Broad-Phase, this stage operates on pairs of particles® and
generates a list of particle pairs that can potentially interact. While the Broad-Phase
would also benefits from flat_map when iterating on the particles, such a data
structure would not be adapted. Indeed, the result of the Broad-Phase is a list of
particle pairs whose size is not known in advance — the number of contacts can
vary significantly from zero to many times the number of particles depending on
the packing level of the particles. Additionally, in an OpenMP parallelization, the
elements added to this list will be generated from multiple threads. The sequential
implementation of XDEM was naturally using the std: :1ist data structure in which
new element can be added in constant time. And for the OpenMP implementation of
XDEM, we decided to use an STL deque structure to accumulate the list of particle
pairs. A deque can be considered as a list of vectors of constant size. Insertion at the
end is done in constant time (even when a new block is allocated because there is no

need to copy data from the previous blocks).

There is still the problem of concurrent accesses from the different threads to
add new pairs to this list. OpenMP proposes different mechanisms, like atomic or
critical regions and Reduction clause (since OpenMP 3.0) to handle safely this type of
concurrent operations. However, they represent a major performance bottleneck. As
detailed in the Listing 6.1, our solution to this problem is to accumulate the results of
each OpenMP thread in their private deque. In a second step, each thread’s results
are copied into a single result std: : vector. The access range of the result vector is
calculated for each thread using the simple prefix calculation on the deque size of
each thread. In practice, this approach appeared to be much more efficient than a
critical region (in particular with large number of threads) or a Reduction clause that

does a merge operation for each element of the loop rather than for each thread.

The Narrow-Phase and Apply Physics Model phase operate on the list of in-

teractions (or pair of particles) generated during the Broad-Phase. Thanks to the

€Of course, efficient broad-phase algorithms do not consider all pairs (Rousset et al., 2017).

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 137

std :: vector<Particle_Pair> interactions;
std :: vector<int> sizes;

#pragma omp parallel

{

std :: deque<Particle_Pair> private_deque;

int i_thread = omp_get_thread_num/();
int nb_threads = omp_get_max_threads() ;

#pragma L)IT\P Siﬂg]t‘

{

sizes.resize(nb_threads + 1);
sizes[0] = 0;

}

#pragma omp for
// Parallel broad-phase algorithm:
// - Check particle pairs for interaction
// - If interacting, add in the private deque
for (...)
{
if (interacting (pl,p2))
{
private_deque.push_back(Particle_Pair (pl,p2));
}
}

sizes[i_thread+1] = private_deque.size();

#pragma omp barrier

#pragma omp single

{
std :: partial_sum (sizes.begin(), sizes.end());
interactions.resize(sizes[nb_threads]);

}

std :: copy(private_deque.begin (), private_deque.end(), interactions.begin() +
sizes[i_thread]);

LISTING 6.1: Algorithm to accumulate the list of interactions from
different OpenMP threads

optimizations applied to the Broad-Phase, the list of interactions is now stored in an

STL vector, which naturally provides random access to its elements.

As a summary, the main optimizations of XDEM data structures are: (1) the
STL map of particles have been changed to a Boost flat_map; (2) the STL 1ist of the
interactions generated during the Broad-Phase is now performed using a private STL
deque for each thread, a prefix calculation on the sizes and then a copy in an STL

vector.

Those changes allow to benefit from random data access for the OpenMP par-
allelization and to avoid concurrent accesses to shared containers. Finally, Tab. 6.1

summarizes the characteristics of the different data structures used in XDEM before

CInsertion and removal in a flat_map have a logarithmic search time, plus linear with the number
of elements bigger than key.

138 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

and after our optimizations (applied for the OpenMP parallelization). We only con-
sider the operations that are used in the XDEM. The complexity values are taken

directly from the official STL and Boost documentation.

6.3.2 Memory allocation

As detailed before, XDEM is a highly dynamic C++ code. It implies the creation and
deletion of objects all along of a simulation. This results in an intensive call of the
memory allocator (e.g. malloc() and free()), many of them happening within the
OpenMP parallel regions. Standard system memory allocator like GNU C library, or
glibc, use mutexes to prevent concurrent access to allocator structures and preserve
their consistency. In multi-threaded applications such as XDEM, different threads
concurrently invoke memory allocator, and as a result, we have a large number of lock
conflicts. So most of the time is spent in locking /unlocking mutexes even if threads
are working autonomously (thread is accessing objects created only by itself). This
result in some critical contentions which limited the scalability of our implementation.
The obvious solution is to avoid the creation of objects in dynamic memory and
allocate objects on the stack instead, but it is not always possible or convenient. To
workaround this issue, we have used alternative memory allocators: jemalloc (Evans,
2006) and TCMalloc (Ghemawat and Menage, 2009) which are designed to support
highly multi-threaded workflow. Those optimized memory allocators use multiple
independent arenas (for jemalloc) or thread caches (for TCMalloc) to reduce contention
in a multithread application. They can be used by explicitly linking the executable to

the memory library or by merely setting the LD_PRELOAD environment variable.

TABLE 6.1: Characteristics of the containers used in XDEM before
and after our optimizations. Only the operations used in XDEM are

considered.
c] Random Memory
Container Insert Erase Find Access Contiguity
map O(logn) O(logn) O(logn) No No
flat_map O(n)° O(n)° O(logn) Yes Yes
Container Push Back Random Mer.nor.y
Access Contiguity
list 0o(1) No No
deque 0(1) Yes Partially
vector Not used Yes Yes

6.3. Challenges and implementation for the OpenMP parallelization of XDEM 139

0.1 0.0 V.05 v.00 0.5 -0.1

TTT T T[T T T T T T T T[T T T T T T T T[T T T T T T T T [T T T T T T T T TTT T 77T

0.20

Particle Velocity (m/s)
1.950

0.10

o

N

|
0.00

o
[e)

o
~
Z-Axis

-0.10

mlm\Hm\\mum\mmmm

0.000

-020

aY X

]

-0.30

EETE S N N T T e R

0.16 0.10 0.05 0.00 -0.05 -0.10 -0.15
Y-Axis

FIGURE 6.2: The test case used for the performance evaluation simu-
lates the hopper discharge of 1 million particles. The left part shows
an overview of the setup with the particles colored according to their
size. The right side displays the middle slice allowing us to see the
particle velocity distribution during the discharge process.

140 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

6.4 Experimental Results

In order to assess the validity of our approach and evaluate the scalability of the
proposed strategies, we have set up and executed the Hopper Discharge test case

described in the section 6.4.1 below and illustrated in Fig. 6.2.

6.4.1 Case for experimental evaluation

To investigate the performance and the behavior of the OpenMP and Hybrid imple-
mentation, the Hopper Discharge test case is used with 250K and 1M particles. The

test case has been introduced in section 2.2.3.

6.4.2 Experimental settings

The experiments were carried out using the Iris cluster of the University of Lux-
embourg (Varrette et al., 2014) which provides 168 computing nodes for a total of
4704 cores. The nodes used in this study feature a total a 128 GB of memory and
have two Intel Xeon E5-2680 v4 processors running at 2.4 GHz, that is to say, a total
of 28 cores per node. The nodes are connected through a fast, low-latency EDR
InfiniBand (100Gb/s) network organized over a fat-tree topology. We used XDEM
version b6e12a86, compiled with GCC Compiler. Parallel executions were performed
using OpenMPI over the InfiniBand network. The nodes were reserved for exclusive
access to ensure the stability of the measurement. Additionally, each performance
value reported in this section is the average of at least a hundred measurements. The

standard deviation showed no significant variation in the results.

6.4.3 Impact of data structures

In this section, we highlight the impact of the data structure optimizations applied
to the XDEM code. We made a comparison between our original code and the new

OpenMP version on sequential execution.

6.4. Experimental Results 141

Legend . Original . Optimized

Hopper 250k Hopper 500k Hopper 750k Hopper 1M
Number of particle

N (o))
o o
L L

Sequential one iteration time [s]
N
o

FIGURE 6.3: Impact of data structure in sequential for Hopper test
(from 250k left to 1M right).

142 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

Within this context, Fig. 6.3 compares the iteration time with the two versions of
XDEM for the hopper discharge test case with a different number of particles. We can
see the clear benefit of those optimizations, even in sequential execution, reducing

the execution time by 16% to 26% depending on the size of the case.

6.4.4 Impact of memory allocator

In this section, we quickly investigate the impact of the memory allocator on the
code’s performances. We compare the default memory allocator glibc to TCMalloc

and jemalloc.

Fig. 6.4 is a plot comparing the main loop time with glibc, TCMalloc and
jemalloc memory allocators previously introduce in Section 6.4.1 for the hopper
discharge test case with 250k particles. As expected, jemalloc and TCMalloc offer
better performances in multi-threaded programs, and the glibc performances drop as
the number of thread increases. Nevertheless, we see that jemalloc is slightly more
efficient than TCMalloc. In multi-threaded programs, the heap is a bottleneck that
makes the program not scalable. When multiple threads simultaneously allocate
or deallocate memory from the allocator, the operation is "serialized" by the glibc
allocator. jemalloc and TCMalloc allow to reduce the contention for memory operations
by using independent arenas (Evans, 2006) or thread caches (Ghemawat and Menage,
2009). XDEM code makes intensive use of the allocator (manual allocations and calls
to the C++ STL) that slow down the program as the number of threads increases.
jemalloc and TCMalloc eliminate this bottleneck by emphasizing fragmentation

avoidance and scalable concurrency.

6.4.5 OpenMP and MPI scalability

We have measured the execution time of the main loop of XDEM for the Hopper
Discharge case with 250K particles for our pure MPI and pure OpenMP versions
on one node, varying the number of cores from 1 to 28. Fig. 6.5 shows the speedup
comparison of the two approaches with the number of cores on the x-axis and the

speedup on the y-axis.

6.4. Experimental Results

143

? Memory allocator
glibc

& tcmalloc

60 < jemalloc

N
o

One iteration time[s]

20

Number of threads

FIGURE 6.4: Impact of different memory allocators on one iteration
time with OpenMP version on one node (from 1 to 28 cores) for Hopper
test case (1M particles).

144 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

Legend —— Ideal = MPI —— OpenMP

20

Speedup

10

10
Number of Cores

20

FIGURE 6.5: SpeedUp of MPI and OpenMP versions on one node i.e.
up to 28 cores.

6.4. Experimental Results 145

The pure MPI version with a speedup of 23 (82% efficiency on 28 cores) scales
better than the OpenMP version with a speedup of 18 (64% efficiency on 28 cores).
We would expect the pure OpenMP version to perform better than the pure MPI
due to the overhead of the MPI communication but it is not the case. One possible
explanation is that, as shown on Fig. 6.1, the XDEM workflow is composed of differ-
ent phases which corresponds to different parallel OpenMP sections and therefore
represents implicit barriers. On the other end, the MPI version only uses barriers

during the communication phase.

6.4.6 Hybrid execution

To analyze the hybrid performance, we measured the main loop’s average time
per process with different schemes within our SMP nodes. The goal is to compare
different hybrid configurations with the same number of cores. Our cluster nodes
are composed of two processors, one per socket, and each socket has fourteen cores.
Taking into account this configuration, we have tested various hybrid MPI+OpenMP

strategies per node:

28 OpenMP threads per node, full OpenMP threads;

1 MPI processes per socket and 14 threads per MPI;

2 MPI processes per socket and 7 OpenMP per MPI;

7 MPI processes per socket and 2 OpenMP per MPL;

14 MPI processes per socket, full MPI processes;

The speedup tests were performed on 18 nodes i.e. 504 cores with the Hopper
Discharge one million case. The first remark is the OpenMP version under-performing
compared to the hybrid and full MPI version. The main reason comes from insufficient
workload as the number of cores increases. From 1 to 12 nodes, the full MPI speedup
better than the different hybrid strategies but from 12 (336 cores) to 18 nodes (504
cores) the hybrid "7 MPI processes per socket and 2 OpenMP per MPI" speedup better

than the full MPL. It is mainly due to the MPI communications overhead when the

146 Chapter 6. Hybrid MPI+OpenMP Implementation of XDEM

500

Nb threads
Per process
1
400
2
—7
14
§ 300
S 28
[J]
Q
%)
200
100
-

100 200 300 400 500
Number of Cores

FIGURE 6.6: Speedup of hybrid MPI+OpenMP executions for different
number of threads per process on the Hopper Discharge case with 1
million particles.

number of processes is increasing. The primordial advantage over a hybrid code is to

overcome full MPI bottleneck at an equal number of computing cores.

6.5 Conlusion

The Extended DEM is a C++ legacy code parallelized with MPI and developed for
more than ten years by many researchers contributing to several distinct feature of the
code. In this paper, we present the results of our effort to implement a complementary
OpenMP version of XDEM allowing for hybrid MPI+OpenMP simulations. In
particular, from the deep data structure profiling, a non-trivial code reorganization has
been performed, which includes several drastic changes in the used data structures,
as well as the selection of optimized fast multi-threaded memory allocators. Our
design choices are performance-oriented, and the experimental results obtained on a
real-world application validate the implementation changes and permitted to comfort
the proposed approach. More precisely, when comparing the performances of our
full MPI, full OpenMP, and different hybrid strategies in a HPC context, i.e. up to

504 computing cores (18 nodes) of the HPC facility of the University of Luxembourg,

6.5. Conlusion 147

we demonstrate the relevance of the hybrid version when increasing the computing
cores with a 15% — 20% performance gain. These open novel perspectives for the
efficient parallelization of the XDEM software. In particular, the future work induced
by this study includes the addition of a GPU layer within XDEM, and a detailed

cache optimization analysis to mainly improve sequential runs for bulky cases.

149

Part 11

Performance analysis and

Application

151

Chapter 7

PERFORMANCE ANALYSIS

152 Chapter 7. Performance analysis

7.1 Introduction

In chapter 2, we introduced some standard methods to evaluate a computer program
performance. We have detected several hot-spots that have been addressed and
other aspects as the memory footprint that we ensured stay reasonable during our
developments. From chapters 3 to 6, we presented the major optimizations intro-
duced in our XDEM software to improve it. This chapter will therefore analyze
the global impacts of all those optimizations by setting-up a macro benchmarking
(using the Dam break test case) approach and comparing the latest version (10/2020,
git hash: 11ee77d0093b8409f1c6c8ec/dec749775c0da34) to the old version (03/2017,
git hash: 18a22cbfdadf7fe2atd8bbc9ba02744d75b775d0) of XDEM using the Biomass
baseline test case. The goal of the current chapter is therefore to firstly compare the
performance of the old and latest versions of XDEM by highlighting where the gains
have been made in sequential and parallel runs. The behavior of our XDEM software
in a coupled simulation with OPENFOAM is also studied at a large and parallel scale

environment.

Strong scaling and speed up have been performed using the execution time as a

performance metric.

7.2 New vs old XDEM versions performance

In this section, we compare the performance of the 03/2017 and 10/2020 XDEM
versions using the baseline biomass test case defined in section 7.2.1. The main
purpose is to assess and highlight the performances brought by all the efforts made
during this doctoral research. As for our previous performance assessments, the
simulation time has been chosen as a performance metric as it is the main performance
criteria for XDEM users. Only the simulation time of the dynamic and conversion parts

of XDEM are presented and studied in this comparison.

7.2. New vs old XDEM versions performance 153

7.2.1 Biomass furnace combustion

The DEM test case presented in the section is an application case used throughout
the research to assess our optimization developments” performance. The test case
simulates a combustion chamber’s behavior of a 16 MW geothermal steam super-
heater, which is part of the Enel Green Power "Cornia 2" power plant and includes
both the moving wooden bed and the combustion chamber above it. In this test case,
the XDEM simulation platform is based on a hybrid four-way coupling between
the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD).
In this approach, particles are treated as discrete elements coupled by heat, mass,
and momentum transfer to the surrounding gas as a continuous phase. Besides
the equations of motion for individual wood particles, the differential conservation
equations for mass, heat, and momentum, which describe the thermodynamic state
during thermal conversion, are solved. This test case aims to propose a numerical
approach that can combine computationally low-cost simulations and practical use

of the design for industrial applications with sufficient accuracy of the results.

1.2e+03
[1100
1000

— %00
— 800
— 700

600
[500
34e+02

Gas phase temperature (K)

Bed surface temperature (K)
3.1e+02 400 800 1000 1200 1400 1600 19e+03
|

!

FIGURE 7.1: The Enel Green Power "Cornia 2" biomass combustion
power plant.

The case has 2224 particles arranged on moving and fixed grates. The grate has

154 Chapter 7. Performance analysis

three different moving sections to ensure adequate mixing of the biomass parts and
an appropriate residence time. The primary air (PA) enters from below the grate in
the combustion chamber. Those grates are split into four different zones (sections).
Furthermore, a secondary air (SA) is injected at high velocity straight over the fuel
bed through two circular nozzles. A Flue Gas Re-circulation (FGR) is partly injected
through two jets along the vertical channel and partly from below the grate (see
Fig. 7.1). The biomass furnace’s geometric data and operating conditions can be

found in the Master thesis (LUPI, 2017a) and chapter 8.

7.2.2 Sequential performance

Fig. 7.2 compares the sequential simulation time of the 03/2017 and 10/2020 versions
of XDEM using the baseline biomass test case with Dynamic and Conversion modules.
The performance evaluation does not include OPENFOAM as it was disabled. The
plot is a stacked barplot of the different XDEM main parts for the old and new
versions. We can notice a clear gain in the performance as the actual 10/2020 version
is 13x times faster than the 03/2017 version, and they respectively have 1567s and

120.53s simulation times.

The speed up from the old to new version of the code is perceptible in all the

main parts of the simulation, as shown in Tab. 7.1.

XDEM Parts 03/2017 [s] | 10/2020 [s] | Speed up (between the two versions)
Broad phase 235 6 40
Narrow phase 438 30 14.60
Dynamic models 470 36 13
Integration 235 18 13.05
Conversion 16 1.20 13.33
Others 31.34 18 1.72

TABLE 7.1: Table to compare XDEM versions simulation times in

sequential.

The gains shown in Fig. 7.2 and Tab. 7.1 demonstrated that the multiple opti-

mizations and improvements also benefit the sequential runs. The significant changes
introduced in data structures, algorithms and many small improvements have proved

their benefits in the sequential runs. It is an essential performance gain for XDEM

7.2. New vs old XDEM versions performance 155

XDEM versions sequential time comparison

1000

XDEM_part

[l BroadPhase
[NarrowPhase
Dynamic_Models

||
I Integration
||
[]

Time [s]

Conversion
Others
500

03/2017 10/2020
Version [-]

FIGURE 7.2: Sequential simulation time comparison between 03 /2017
and 10/2020 XDEM versions.

156 Chapter 7. Performance analysis

users as the sequential runs are often used to set-up a case before production runs,

which are usually performed in parallel.

XDEM main parts time comparison

256

32 .
Version
[03/2017
B 10/2020
| l

BroadPhase Conversion Dynamid_ModeIs Integfation NarrowPhase Others
Sections

Time (log) [s]

FIGURE 7.3: XDEM main parts simulation time comparison between
03/2017 and 10/2020 XDEM versions. The y-axis is represented in
log time.

In Fig. 7.3, we present the simulation times of the main parts of the XDEM
software: broad and narrow-phases, dynamic integration and contact models, and
conversion (chemical reactions). It compares the 03/2017 and 10/2020 versions. It
comes out that we have made a big step forward in the collision detection processes
as the most gains were made in the broad /narrow phases and dynamic models (see
also Tab. 7.1). The broad-phase simulation time is reduced from 235 to 6 seconds,
illustrating a huge speed up of 40 between the old and new versions. On the other
hand, the narrow-phase and dynamic models” simulation times are down from 438
to 30 seconds and from 235 to 18, respectively, showing speed ups of 15 and 13.
This comes as a non surprise as the chapters 3, 4, and 5 focused on the collision
detection processes optimization. Indeed, the sequential runs’ significant gains come

from optimizing the algorithms, implementations, and data structures. Important

7.2. New vs old XDEM versions performance 157

performance gains were also made in the Integration and Conversion parts (speed up

of 13 for both).

7.2.3 Parallel performance

This section compares the parallel runs simulation time of the 03/2017 and 10/2020
XDEM versions with Dynamic and Conversion modules. The performance evaluation
does not include OPENFOAM as it was disabled. Fig. 7.4 shows the primary loop
simulation time over the number of cores of the old and new XDEM versions. We
can observe that the 10/2020 version is much faster (11 times on 28 cores) than the
03/2017 version in parallel as it was in sequential runs. There is a speed up of 13 in

sequential and 11 in parallel using 28 cores between the two versions.

Full MPI simulation time

2048
L. 256
)
o
GE’ A Version
= N 03/2017
5 \x - 10/2020
© .
=1 A
A3
: '
32 s
~
~
N, .~ N
~ -~
~ -~ - o
.h - -
"~ i
- - -
0 10 20

Number of cores [-]

FIGURE 7.4: Strong scaling of the main loop’s simulation time. The
number of MPI processes is on the x-axis, and the log simulation time
on the y-axis. The execution was made on one node with 28 cores.

Tab. 7.2 compares the main loop simulation times of the two XDEM versions

in Full parallel MPI. The number of cores is also the number of MPI processes. On

158

Chapter 7. Performance analysis

average, in parallel, the 10/2020 version is 11 times faster than the 03/2017 version

(13 times in sequential).

Number of cores | 03/2017 [s] | 10/2020 [s] | Speed up [-] (between the two versions)
1 1567 120.53 13
2 800.10 68.40 11.70
4 458.10 40.40 11.34
8 232.20 23 10.10
16 118.60 12.50 9.50
24 93.40 8.30 11.25
28 76.90 6.80 11.30

TABLE 7.2: Table to compare XDEM versions simulation times in
parallel, full MPI configuration.

In full MPI configuration, the 10/2020 version’s strong scalability is better than
the 10/2020’s version highlighting the performance gains that have also been made
through MPI optimizations. However, the 10/2020 XDEM version has OpenMP
parallel capabilities and offers different hybrid MPI/OpenMP configurations. In
Fig. 7.5, we compare the strong scalability of three different hybrids MPI/OpenMP
parallel configurations: full OpenMP, 2 MPI processes per node and 14 OpenMP threads
per MPI process, and 14 MPI processes per node and 2 OpenMP threads per MPI process.

We can notice that the three strategies are very close in simulation time, but the
full OpenMP emerges as the fastest strategy. All hybrid configurations are better than
the full MPI configuration. Hybrid configurations have less MPI process, thus less

communication overhead, and therefore less simulation time and better speed up.

Fig. 7.6 shows the speed up comparison between the 03/2017 and 10/2020
XDEM versions using the baseline test case. The 03/2017 version was performed
using a full MPI configuration, as it was the only parallel configuration available.
The latter version used the fastest parallel configuration, in full OpenMP to take
advantage of the OpenMP implementation introduced during this doctoral research

(chapter 6). The simulations were performed on one node (28 cores).

We observe in Fig. 7.6 that XDEM most recent version 10/2020 outperforms the
03/2017 version as it has a better speed up. Indeed, the recent version, with all the
latest optimizations, has a speed up of 24 over 28 cores (~ 86% of parallel efficiency

compared to sequential run) while the 03/2017 version has got only 12 speed up

7.2. New vs old XDEM versions performance 159

Hybrid MP1/OpenMP simulation time

125

100

75

Simulation time [s]

25

Number of cores[-]

Version = 14_MPI/2Threads = 2_MPl/14Threads * 28_Threads

FIGURE 7.5: Strong scaling of the main loop’s simulation time of three

hybrid MPI/OpenMP parallel configurations. The number of cores is

on the x-axis, and the simulation time on the y-axis. The executions
was made on one node with 28 cores (exclusive reservation).

160 Chapter 7. Performance analysis

20

Speedup

10

Number of Cores

Configuration 03/2017_FullMPl —— 10/2020_FullOpenMP

FIGURE 7.6: Speed up comparison between 03/2017 XDEM version in

Full MPI configuration and 10/2020 XDEM version in Full OpenMP

configuration. The x-axis represents the number of processes and the

speed up on the y-axis. The executed was made on one node with 28
cores.

over 28 cores (~ 43% of parallel efficiency). Therefore, it is evident that a shared
memory approach over one node is the best strategy to follow. Thus, it justifies the
OpenMP implementation for simulations on workstations, personal computers, and

large supercomputers (where the hybrid configuration is the best strategy).

In Fig. 7.7, we compare the improvement percentage (between sequential and
parallel (on 28 cores) simulation times) of some essential parts of the XDEM code:
the broad-phase, the narrow-phase, the integration (dynamic and conversion), and

the dynamic models. The improvement is defined as follow:

Tseq - Tpum
—_— 7.1
T (7.1)

Improvement =
where Tsey and Tpar, are respectively the sequential and parallel (28 cores) simulation
times.

The main gain was made in the broad and narrow-phases whose improvements

went from 55% to 91% and 47% to 78% respectively. That is a significant gain as it

plays a massive part in the overall gains. A critical gain was also made in the dynamic

7.2. New vs old XDEM versions performance 161
XDEM main parts speed up comparison
75
)
g 50 Version
£ I 03/2017
) W 10/2020
Q.
E
25

Apply_Dynamic_Models BroadPhase Integration NarrowPhase

XDEM part [-]

FIGURE 7.7: Improvements comparison between 03/2017 XDEM ver-
sion in Full MPI configuration and 10/2020 XDEM version in Full
OpenMP configuration. The comparison is made between sequential
and parallel simulations using 28 cores. We compare the improve-
ments of some critical parts of the XDEM code: the broad-phase, the
narrow-phase, the integration (dynamic and conversion), and the dy-
namic models. The x-axis represents the critical parts of the XDEM
code and the improvement in percentage (compared to sequential) on
the y-axis.

162 Chapter 7. Performance analysis

models” module as the speed up went from 29% to 63%. The lesser gain that was

accomplished is the Integration module with speed up going from 58% to 69%.

7.3 Large scale XDEM-OPENFOAM coupling performance

In this section, we want to study the behavior of a coupled XDEM+OPENFOAM
simulation at a large scale. The goal is to evaluate the performance of XDEM in
this particular coupling use case. For this purpose, we selected a test case which is
big enough (in domain size and number of particles) to be executed with thousand
of cores. Therefore, we measured the main loop’s simulation time using different
parallelization schemes within our SMP nodes to analyze the performance of the

dam-break (see the case in section 7.3.1 below) XDEM-OPENFOAM test case.

7.3.1 Dam break test case

The Dam break is a very common benchmark for two-phase flow simulations. The
case domain is a box of dimensions. 0.2m x 0.1m x 0.3m in which a column of water
of extension 0.05m x 0.1m x 0.1m is located in the left corner and where two layers
of spherical particles are disposed (see Fig.7.8). The first and bottom layers are
composed of light particles of a 7.5mm radius, and the upper and layer are composed

of heavy particles of a 10mm radius.

It should be noted, as shown in Fig. 7.8 that our configuration does not contain

any intermediate obstacle.

7.3.1.1 Configuration

The entire case comprises 2.35 million particles interacting with the column water in
an XDEM-CFD coupling approach. The benchmark was originally chosen to highlight
the benefit of using a multi-scale DEM-VOF method over the classical DEM-VOF

method (Pozzetti and Peters, 2018).

7.3. Large scale XDEM-OPENFOAM coupling performance 163

FIGURE 7.8: Dam break initial configuration. Light particles (bottom)
in yellow and heavy particles in red (upper) are initially positioned
within a column of water.

164 Chapter 7. Performance analysis

Our multi-scale DEM-VOF method uses a dual-grid multi-scale approach with a
coarse grid that performs the coupling between CFD and DEM code at a bulk scale,
while a finer and non-uniform grid is adopted to discretize the CFD equations. An
interpolation strategy between the grids ensures the correct exchange of information
between the bulk scale at which the inter-physics coupling is performed and the fine
fluid scale at which the fluid equations are solved. It has been shown in (Pozzetti
and Peters, 2018) that the approach produces grid-convergent results and provides a

higher accuracy if compared to a standard DEM-VOF method.

Bulk coupling scale

Averagin
Coarse . g _g
Fluid-Particle
U Mesh : .
interaction
Particle Fluid
Fields Solution
. Solving fluid
Fine Mesh . g
— fine-scale
Fluid fine scale |

FIGURE 7.9: Different length scales in high-Stokes three-phase flows:
bulk (coarse) scale and fluid fine scale (left figure). Schematic of the
solution procedure for the bulk and fine length-scale in the simula-
tion. The two boxes represent the different models adopted, while
the arrows show the communication between the scales schematically.
A coarse grid (top) is used to perform the volume averaging and to
solve the fluid-particle interaction. Particle-related fields are mapped
to the supporting domain (bottom) then, a finer grid is used to solve
the fluid equations (Pozzetti and Peters, 2018).

We discretized the fine grid into 10M CFD cubic cells (identical) while the coarse
grid is discretized into 500k cubic cells (see Fig. 7.10). The gas (light) phase has a
density of 1kg/m? and a viscosity of 107> Pas. The density and viscosity of the liquid

(heavy) phase are respectively 1000kg/m® and 10~3Pas (see Tab.7.3).

A linear dashpot impact model with a spring constant of 1200N /m is used for
particle-particle and particle-wall collisions. We also used a restitution coefficient of

0.9 and a friction coefficient of 0.3.

7.3. Large scale XDEM-OPENFOAM coupling performance 165

Propert
pery Density ~ Viscosity
Phase
Gas lkg/m® 107°Pas
Liquid 1000kg/m3 10~3Pas

TABLE 7.3: Gas and liquid phases properties.

FIGURE 7.10: Three-phase dam-break multi-scale strategies.

166 Chapter 7. Performance analysis

7.3.1.2 Parallel set-up

The multi-scale DEM-VOF method is accomplished by coupling the XDEM and the
OPENFOAM software, both of them having parallelization capabilities. As detailed in
chapter 5, we now can perform hybrid MPI+OpenMP simulations within the XDEM
framework. OPENFOAM, on the other hand, has only MPI parallelization approach
allowing to discretize the fluid mesh (fine grid). Parallelization makes it possible to

amortize the additional cost induced by choosing a fine grid for the fluid phase.

XDEM

MPI1+OpenMP
Parallelization

OpenFOAM

MPI
Parallelization

FIGURE 7.11: XDEM and OPENFOAM parallelization strategies.
XDEM uses an hybrid MPI+OpenMP approach while OPENFOAM is
partitioned using only MPL.

Fig. 7.11 describes the parallelization strategies of XDEM and OPENFOAM
software. OPENFOAM is always used in full MPI parallel configuration as it is the
only parallel strategy available. On the other hand, XDEM is used with both full MPI
and hybrid MPI+OpenMP parallel strategies. We also use different configurations
in the hybrid strategy by varying the number of MPI processes per node and the
number of OpenMP threads per MPI process.

The experiments were carried out using the Iris cluster of the university of

7.3. Large scale XDEM-OPENFOAM coupling performance 167

Luxembourg (Varrette et al., 2014). The Iris cluster is the most powerful computing
platform available within the University of Luxembourg (since 2017) running on
CentOS Linux operating system (see Fig. 7.12). It's composed of 196 nodes, to say
5824 cores (28 cores/node) for a theoretical peak performance (RPeak) of 1.095PFlops.
The nodes are distributed between CPU Skylake and Broadwell processors nodes (168)
and GPU NVIDIA Tesla V100 SXM2 nodes (28). The nodes are connected through an
Infiniband EDR (100Gb/s) network and use three different parallel file systems for
data storage: GPFS (10GiB/s read and write), Lustre (10GiB/s read and write) and

Isilon OneFS.

FIGURE 7.12: The Iris cluster computing nodes.

7.3.2 Strong scalability and Speed Up

This section presents the speed up results performed on 85 nodes to say 2380 cores.

The goal is to compare different hybrid configurations with the same number of

168 Chapter 7. Performance analysis

cores to get the best strategy for running a dam-break case. Three different parallel

configurations have been tested:

e Full MPI run. All 2380 cores are used for MPI processes to decompose the
XDEM and CFD domains.

¢ Hybrid MPI/OpenMP run. This configuration uses 2 MPI processes per node,
each process on a different socket, and 14 OpenMP threads per MPI process.

The XDEM and CFD domains are, therefore, decomposed using 170 processes.

¢ Hybrid MPI/OpenMP run. This configuration uses 14 MPI processes per node,
7 processes on a socket, and 2 OpenMP threads per MPI process. The XDEM

and CFD domains are, therefore, decomposed using 1190 processes.

In Fig. 7.13, we compute the speed ups relative to the simulation time on one
node (for each configuration) rather than with the simulation time on one core (takes
much time). We can see that the two different hybrid configurations (2MPI/14Threads
and 14MP1/2Threads) have overall higher speed up than the full MPI configurations
(on 2380 cores). Indeed, the latter configurations have respectively 1690 and 1380 of
speed up over 2380 cores while the full MPI has only a speed up of 1142 (on 2380
cores). That is a gain of 32% of speed up between the best hybrid and the full MPI

configurations.

We can also observe that below 1000 cores, the full MPI configuration outper-
formed the hybrid configuration with a better speed up. The configurations with
more MPI processes performed better than the ones with more OpenMP threads. At
a first look, it is surprising as we would expect the hybrid configurations always to
perform better than the full MPI because they have fewer MPI processes and, thus,
less communication. However, looking at the simulation times, it turns out that
the full MPI is the slowest strategy and the hybrid configurations are faster. The
full MPT has a better speed up only because it is the slowest strategy on one node,
which simulation time is used to compute the speed up. From 1000 cores, the full
MPI configuration speed up falls compared to the hybrid configurations. It can be
explained by the fact that we have reached a performance wall. The communication

between the MPI processes has an overhead that has a significant impact on the

7.3. Large scale XDEM-OPENFOAM coupling performance 169

2000
1500

1000

500 ’/_/

0 _

0 500 1000 1500 2000
Number of Cores

Speedup

Configuration 14_MPI/2_Threads —— 2_MPI/14_Threads Full_MPI

FIGURE 7.13: Speed up of hybrid MPI/OpenMP runs with different
process/thread configurations. The x-axis represents the number of
processes and the speed up on the y-axis.

overall performance. On the other side, having a hybrid configuration allows us to
minimize the MPI processes. Thus, we minimize the MPI inter-processes communi-
cations while using the same amount of resources and having a better performance

rate.

As the dam-break test case uses a coupling CFD-DEM model with XDEM
and OPENFOA, it is imperative to understand and highlight the contribution
of each software. Fig. 7.14 shows the simulation time proportion of XDEM and
OPENFOAM for different number of cores. Fig. 7.14a shows the proportions in the
full MPI parallel configuration of XDEM and OPENFOAM, and we can notice that
XDEM'’s contribution (proportion in the simulation time) increases as the number of
cores increases. With 56 cores, the contributions are even as we have 56% and 44%
proportions for XDEM and OPENFOAM respectively. But the proportion of XDEM
increases and reaches 81% with 2380 cores while the OPENFOAM proportion is down
to 19%. XDEM is, therefore, a performance bottleneck in the coupling approach with
OPENFOAM when using the full MPI parallel configuration. Fig. 7.14b shows the

simulation time proportions in the hybrid (2 MPI processes per node and 14 OpenMP

170 Chapter 7. Performance analysis

threads per MPI process) parallel configuration for XDEM and full MPI configuration
for OPENFOAM, and in this configuration, we can notice that the two contributions
do not evolve much as the number of cores increases. XDEM’s contribution goes
from 52% to 63% for 56 and 2380 cores, respectively, and those contributions are
better (lower) than in the full MPI configuration highlighting the benefits of the
hybrid configuration. The justification lies in the communication and computation
load-imbalances defined as the uneven distribution of communication/computation
works, respectively, across the MPI processes. Therefore, it is evident that our XDEM
presents load imbalance issues as the number of MPI processes increases. That is
why the hybrid configuration performs better as it has fewer MPI processes and less

computational and communication load-imbalances.

In Fig.7.15, we compare XDEM and OPENFOAM load-imbalances for the dam-

break for different numbers of cores in the full MPI configuration.

We observe in Fig. 7.15, as it can be suspected, the more processes there are, the
more computation imbalances there are. The OPENFOAM imbalance goes from 3%
with 56 cores to almost 100% with 2380 cores. It also presents a steady and continuous
increase. Typically, for OPENFOAM, with 2830 cores, there is a computation load
difference of 100%, meaning there is 100% computation load difference between the
MPI process with the lowest computation load and the MPI process with the highest
computation load. On the other hand, the XDEM computation load-imbalance goes
from 3% with 56 cores to almost 160% with 2380 cores. We observe a big load-
imbalance jump between 840 and 1260 (from 25% to 90%) cores. It is in accordance
with the scalability and speed up results presented in Fig. 7.13, where we noticed
a fall down of the speed up around 1000 cores. With 2830 cores, for XDEM, there
is a computation load difference of 160%, meaning there is 160% computation load
difference between the MPI process with the lowest computation load and the MPI

process with the highest computation load.

Fig.7.16 presents the computation load imbalance for the two hybrid MPI/OpenMP
strategies. Without any surprise, the hybrid strategy with 2 MPI processes per node
and 14 OpenMP threads per MPI process has the lowest communication load im-

balance as it has the least number of MPI processes. It imbalance goes from 0.15%

7.3. Large scale XDEM-OPENFOAM coupling performance 171
XDEM and OpenFOAM proportion comparison for Full MPI configuration

100

75
S
Q
£ Software
§ %0 I OpenFOAM
= [xDEM
S
=
n

25

0

504 840 1260 1512 2380
Number of cores[-]

(A) Simulation time percentage for Full MPI configuration for XDEM and OPENFOAM.

XDEM and OpenFOAM proportion comparison for hybrid configuration

Simulation time [%]

100

7

[&)]

5

o

2

[&)]

504 840 1260 1512 2380
Number of cores[-]

(B) Simulation time percentage for Hybrid MPI/OpenMP.

Software
I OpenFOAM

B XDEM

FIGURE 7.14: XDEM and OPENFOAM simulation time proportion

comparison. The left figure compares the proportions for a Full MPI

configuration for XDEM. The right figure compares the proportions

for a hybrid 2 MPI processes per node and 14 OpenMP threads per
MPI process for XDEM.

172 Chapter 7. Performance analysis

Full MPI configuration domain decomposition imbalances

150-

'o\—o' 100

3 Software

S I OpenFOAM
3 I XDEM

£

50

840 1260 1512 2380
Number of coresl[-]

56

0,—_-
168 504

FIGURE 7.15: XDEM and OPENFOAM load-imbalances for the dam-
break domain decomposition in the Full MPI parallel configuration.

7.3. Large scale XDEM-OPENFOAM coupling performance 173

with 56 cores to only 17% with 2380 cores (170 MPI processes). It is nine (9) times
lower than the imbalance of the full MPI strategy on 2380 cores. The difference is as
expected because this hybrid approach has fourteen (14) times less MPI processes
than the full MPI approach. On the other hand, the hybrid strategy with 14 MPI
processes per node and 2 OpenMP threads per MPI process imbalance goes from 1.2%
with 56 cores to 94% with 2380 cores (1190 MPI processes). It is 1.7 times lower than
the imbalance of the full MPI strategy on 2380 cores. The difference is as expected
again because this hybrid approach has two (2) times less MPI processes than the full
MPI approach. So with the hybrid parallelization, the XDEM domain decomposition
presents even less load communication imbalance than OPENFOAM, which clearly

benefit the coupling simulations.

Hybrid configurations domain decomposition imbalances

75

a
o

Parallel_Strategie

[14MP1/2_Threads
B 2MPI/14_Threads

Imbalance [%]

25

0 LLLL
56 168

504 840 1260 1512 2380
Number of cores][-]

FIGURE 7.16: XDEM load-imbalances for the dam-break domain
decomposition in the hybrid MPI/OpenMP parallel configuration.

We can conclude that the OPENFOAM software scales better than our XDEM
(in full MPI parallel configurations) for this dam-break test case mainly because

it presents a better load balance. However, the imbalance loads of XDEM in the

174 Chapter 7. Performance analysis

hybrid strategies are better (than full MPI) as they use less MPI process and thus
have less load imbalance. As shown in Fig. 7.10, the particles are located in the
tirst half of the domain in the initial configuration of the dam-break, leaving the
rest of the domain empty. As a result, despite our efficient partitioning algorithms
(Zoltan), it generates load and communication imbalance among MPI processes that
strongly impact the performance as it generates overhead and imbalance. It should
be noted that only hundreds of steps were performed without dynamic load balance
for the performance analysis. Therefore, the dam-break remains more or less in its
initial configuration. The latter results state once again the benefit of using hybrid

MPI/OpenMP simulation at a large scale, specially for coupling cases with OpenMP.

7.4 Conclusion

In this chapter, we presented the scalability results of the different implementation
made to the XDEM code. The goal was to assess the gains brought by all the contri-
butions conducted during the doctoral research. For this purpose, we introduced the
dam-break test case with more than two million particles (2.35M) with two different
piles of particles (light and heavy). We also presented our multi-scale DEM-VOF
method that uses a dual-grid multi-scale approach with a coarse grid that performs
the coupling between CFD and DEM code at a bulk-scale; a finer non-uniform grid is

adopted to discretize the CFD equations.

The parallelization set up was to use a hybrid MPI/OpenMP approach to execute
XDEM while using a pure MPI configuration for the CFD domain with OpenFOAM.
The scalability tests were performed on the Iris cluster of the University of Lux-
embourg on 85 nodes, as to say 2380 cores. We then compare different parallel
configurations: pure MPI approach and hybrid 2 MPI processes per node and 14
OpenMP threads per MPI process and 14 MPI processes per node, and 2 OpenMP
threads per MPI process. We showed that our approach allows reaching a speed up
of 1690 and a parallel efficiency of more than 70% on 2380 cores with the hybrid con-
figuration of 2 MPI processes per node and 14 OpenMP threads, which is better than

the pure MPI approach. We compared the communication load imbalance of three

7.4. Conclusion 175

parallel strategies with OPENFOAM'’s and we noticed that the full MPI presented
the lowest speed up because it also has the most communication imbalance. Our
hybrid configurations has also lower communication imbalance than OPENFOAM
highlighting the benefit of using hybrid strategies in XDEM+OPENFOAM coupling
simulations. We also noticed that the best strategy in the dam-break case is different
from the hopper case described in chapter 6. The main difference between these
two cases is the load imbalances in the MPI processes. Therefore, when the MPI
domain decomposition presents a high load (communication and computation) im-
balance, we recommend using the maximum OpenMP threads possible in the hybrid

MPI/OpenMP strategies.

We also compared the scalability and speed up of the early 03/2017 and later
10/2020 XDEM versions. The results compared the scalability and speed up of the
main loop simulation time on one computing node. It appears that the full OpenMP
parallel configuration is the best strategy to chose on one node. We then compared
the main parts of the XDEM simulation loop: the broad and narrow-phases, the
integration (dynamic and conversion), and the dynamic models. The results indicated
a massive gain in the collision detection part due to the algorithm implementation

introduced in chapter 3 and the new Verlet buffer developed in chapter 4.

Finally, we have presented the benefit of using the OpenMP new capability to
perform hybrid MPI/OpenMP configurations. Apart from the OpenMP’s perfor-
mance gains, it also allows us to use more and more computing resources while

bringing more performance.

177

Chapter 8

NUMERICAL ANALYSIS OF A
GRATE FIRING COMBUSTION
PROCESS

178 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

8.1 Abstract

Biomass as a renewable energy source continues to grow in popularity to reduce
fossil fuel consumption for environmental and economic benefits. In the present
contribution, the combustion chamber of a 16 MW geothermal steam super-heater,
which is part of the Enel Green Power "Cornia 2" power plant, is being investigated
with high-performance computing methods. For this purpose, the extended discrete
element method (XDEM) developed at the University of Luxembourg is used to
simulate the moving wooden bed and the combustion chamber above it in a high-
performance computing environment. The XDEM simulation platform is based on a
hybrid four-way coupling between the Discrete Element Method (DEM) and Com-
putational Fluid Dynamics (CFD). In this approach, particles are treated as discrete
elements coupled with heat, mass, and momentum transfer to the surrounding gas
as a continuous phase. Besides the equations of motion for individual wood particles,
the differential conservation equations for mass, heat, and momentum are solved,
which describe the thermodynamic state during thermal conversion. The consistency
of the numerical results with the actual system performance is discussed in this paper

to determine the potentials and limitations of the approach “.

Keyword

Biomass Combustion XDEM CFD ENEL GREEN POWER SpA

2This chapter was published as an article in Infub12 conference

8.2. Introduction 179

8.2 Introduction

Grate firing is one of the fundamental techniques used for heat and power generation
by combustion of biomass, as it allows the burning with little or no planning of a
wide range of fuels, including waste. Grate systems can be classified into different
categories depending on the manner the fuel transport is achieved, i.e., through
just gravity (stationary sloping grates), conveyor belts (traveling grates), moving
bars (forward-acting, reverse-acting, and reciprocating grates) or shaking movement
(vibrating grates) (Yin et al., 2008; Liyan et al., 2013). The grate system helps the
motion, mixing, and conversion of the fuel, thus improving the combustion rate and
minimizing the presence of unburnt carbon and pollutant emissions. The numeri-
cal investigation by (Peters et al., 2005) was carried out using the Discrete Element
Method (DEM) for the mix and segregation of biomass particles in a forward-acting
grate. (Sudbrock et al., 2011) studied whether DEM simulations can quantitatively
predict solid material mixing behavior on grates by analyzing the influence of opera-
tional parameters such as bar velocity, bar stroke, and moving patterns. (Simsek et al.,
2009) studied the motion (2D /3D DEM) and chemical conversion (heating, drying,
pyrolysis, and char combustion) of solid fuels in a packed bed composed of polydis-
perse spherical particles moving on a forward-acting grate and coupled to the reacting
flow above the combustion chamber. (Samiei and Peters, 2013) used a DEM model to
outline the particle residence time on forwarding and backward-acting grates. (Sun
et al., 2015) analyzed the effects of amplitudes and frequencies of moveable grates in
reciprocating grates. The works cited above justify DEM’s use in the study of particle
motion and mix in reciprocating grate firing. The biomass combustion process on a
moving grate involves multi-scale, multi-phase, and multi-species phenomena, which
increase the difficulties of predicting the biomass conversion, ultimately altering the
performances. There exist two main different numerical approaches categorizing
a biomass simulation to tackle all these interacting phenomena: single-phase and
multi-phase models. The single-phase directly solves the gas phase in the freeboard
through Computational Fluid Dynamics (CFD) (Yin et al., 2008). The effect of the
particle bed is taken into account by assigning the correct boundary conditions to the

freeboard CFD model (Patronelli et al., 2017). In multi-phase, both solid and gaseous

180 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

phases are taken into account by using an Eulerian-Eulerian (Yang et al., 2004; Kurz,
Schnell, and Scheffknecht, 2012) or Eulerian-Lagrangian approaches. In the latter, the
particle bed is treated by the DEM method for the motion and drying, devolatilization,
and char oxidation for the conversion process. The particles are treated as discrete
elements coupled with heat, mass, and momentum transfer to the surrounding gas
as a continuous phase. Besides the equations of motion, the differential conservation
equations for mass, heat, and momentum are solved for individual particles, which
describe the thermodynamic state during thermal conversion. In the present work,
we simulate the behavior of a large-scale, i.e. 15.7MWj,, reciprocating grate system,
which is part of a hybrid plant, integrating biomass and geothermal energy, by ap-
plying a CFD-XDEM approach. The aim is to propose a numerical approach that
can combine a low computational cost by the use of high performance computing,
allowing the realistic use of the design with a sufficient accuracy of the results for

industrial applications.

8.3 Numerical model and simulation conditions

The grate has three different moving sections to ensure good mixing of the biomass
parts and an appropriate residence time. The primary air (PA) enters from below the
grate and is split into four different zones (sections). Furthermore, a secondary air
(SA) is injected at high velocity straight over the fuel bed through two circular nozzles.
A Flue Gas Re-circulation (FGR) is present and partly injected through two jets along
the vertical channel and partly from below the grate (see Fig. 8.1). Fig. 8.2a is a top
view of the 3D representation of the grates and particle motion. Fig 8.2b shows the
gas phase circulation through the combustion chamber with velocity arrows. The
surface bed temperature is displayed, and the particles are colored according to their

surface temperature distribution.

The geometric data and operating conditions of the biomass furnace are summa-

rized in Tab. 8.1 and can be found in the master thesis (LUPI, 2017b).

In this model, the biomass fuel bed is composed of 80% wood-chips and 20%

of agricultural residues corresponding to the biomass plant’s real conditions. The

8.3. Numerical model and simulation conditions

181

Zone 4

Combustion chamber

Zone 3 Zone 2

\

Zone 1

FIGURE 8.1: Biomass combustion chamber 2D design.

TABLE 8.1: Characteristics and operating conditions of the super-
heater. PA = primary air, SA = secondary air

Input Thermal Power [MW]
Fuel Mass Flow Rate [kg/h]
PA Mass Flow Rate [kg/h]
SA Mass Flow Rate [kg/h]
FGR Mass Flow Rate [kg/h]
PA Temperature [°]

15.7
5433
20745
8890
30000
200

Independent Groups of Mobile Steps

Lower SA jet arrays
Upper FGR jet arrays

Grate Tilt [°]

Specific Heat Load [kW /m?]
Number of Inlet Sections

2x7

2X6
15

715
4
3

182 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

proximate and ultimate analysis of the biomass is provided in Tab. 8.2.

TABLE 8.2: Biomass analysis. ar = as received, daf = dry ash free

Properties Woodchips Residues Mixture
Mix Fraction [Y%wt,ar] 80 20 100
Granulometry range [mm] - - 5--400
Average particle size [mm] - - 30
Moisture [Y%owt,ar] 34.0 51.0 37.4
Volatiles [Y%wt,ar] 53.7 35.6 50.1
Fixed Carbon [Y%wt,ar] 11.3 8.3 10.7
Ashes [Y%wt,ar] 1.0 5.1 1.8
Carbon [%wt,daf] 49.60 51.15 49.82
Hydrogen [%wt,daf] 5.95 6.23 5.99
Oxygen [%wt,daf] 4423 41.67 43.86
Nitrogen [%wt,daf] 0.22 0.95 0.33

The numerical model presented in this paper is based on a multi-phase approach.
The biomass particles are taken into consideration via the XDEM (Peters, 2013), while

the gaseous phase is described by CFD with OpenFoam.

XDEM is a novel and innovative numerical simulation technique that extends the
dynamics of granular materials or particles as described through the classical discrete
element method (DEM) by additional properties such as the thermodynamic state,
stress/strain for each particle (Peters et al., 2015). Thus, the particles’ combustion
on the moving beds in the furnace is processed by XDEM through conduction,
radiation, and conversion (Mahmoudi et al., 2016b) along with the interaction with
the surrounding gas phase, accounted for by CFD. The coupling of CFD-XDEM as
an Euler-Lagrange model is used in this paper, the fluid phase is a continuous phase
handled with an Eulerian approach, and each particle is tracked with a Lagrangian
approach. Energy, mass, and momentum conservation are applied for each particle.
The interaction of particles with each other in the bed and the surrounding gas phase
is considered. Hence, the sum of all particle processes represents the entire process,
like a fixed bed. The full 2D /3D multi-phase CFD-XDEM model simulations of the
biomass with the particle dynamics and conversion are performed using the XDEM
code, while the gaseous phase with the primary air (PA), the secondary air (SA), and
the flux gas recycled (FGR) is computed with CFD using the extend-OpenFOAM

software. The current CFD-XDEM coupling is a complete model that especially

8.3. Numerical model and simulation conditions 183

(A) Top view of the wood inlet and forward moving grates. The particles are colored
according their composition: wood chips (red particles) and residues (yellow particles).

47e+02
460 .
240 :

— 420
— 400
— 380

— 360

[340
3.1e+02

Gas phase temperature

Bed surface temperature (K)
3.6e402 600 800 1000 1200 1400 1600 1.8e+03
|

! ‘ ‘

Brci

(B) Velocity arrows, surface bed temperature and gaseous phase temperature in 3D
combustion chamber.

FIGURE 8.2: Biomass combustion chamber 3D views.

184 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

suits a biomass furnace, taking into account both particle motion and conversion,
including the interaction with the surrounding gas. An individual particle can have
solid, liquid, gas, or inert material phases (immobile species) at the same time. The
different phases can undergo a series of conversion through various reactions that can
be homogeneous, heterogeneous, or intrinsic. In the porous particles system, Darcy’s
law is applied for the chemical species transport (the gas captures in the porous
structure is considered ideal) under boundary conditions specified by the interaction
with the surrounding gas phase. The equilibrium model is used for the drying process,
assuming that the water vapor within the particle’s pores is in equilibrium with the
liquid and the bound water in the biomass combustion process. The shrinking phase
of the particle radius is taken into account in the current simulation. Further details
about the model can be found in (Mahmoudi et al., 2015). Pyrolysis is described with
three independent reactions expressing decomposition of wood to its main products

(char, tar, and gas), as given:

wood — char (8.1)

wood — tar (8.2)

wood — vCO +vCO, + vH,O + vHy + vCHy (8.3)

wood — vcoCO +vcp,COz + vi,0H20 + v, Hy + vepy, CHy (8.4)

Tar may also be subjected to a secondary crack reaction and form light gases:

tar = Yiarypp t%inert + vcoCO + vc0,CO2 + vH, H2 + vcH,CHy (8.5)

Where in the above reactions, v and -y are the mass fractions (Di Blasi, 2000; Wurzen-

berger et al., 2002).

In the whole process and the composition of gas products, homogeneous re-
actions during the gas phase play an essential role. During pyrolysis, the volatiles
released can react with oxygen, generating heat. In this analysis, we are using the

following four gas-phase reactions:

8.3. Numerical model and simulation conditions 185

CO +0.50, — O, (8.6)
CHj + 20, — CO, + 2H,0 (8.7)

2H, + O, — H,O (8.8)
tar +2.90, — 6CO + 3.1H, (8.9)

The heterogeneous reactions, gasification, and combustion can occur to the
remaining char from the wood’s pyrolysis. These heterogeneous reactions are detailed

in the following reactions:

YC(s)+ 02 = 2(y—1)CO+ (2 —7) CO, (8.10)
C(s) + H,O — CO + H, (8.11)
C(s) + CO, — 2CO (8.12)

where the partition coefficient -y is evaluated as (Johansson, Thunman, and

Leckner, 2007):

_ 3390
2 [1 + 43¢ T]
y = o (8.13)
2+43e¢ T

The rate expression and the kinetic data of these reactions can be found in (Mah-
moudi et al., 2016b). The char combustion and gasification reaction rates are based
on the particle’s oxidizing/gasifying agent’s partial pressure. Particles are assumed
to be isotropic in their scaling model and their properties to change along the radius.
The distribution of temperature and chemical species within the particles is assessed
through a solution of one-dimensional transient conservation equations describing
particle heat-up, drying, pyrolysis, and char oxidation/gasification with boundary
conditions at the particle surface deriving from the gas phase CFD solution (Mah-
moudi et al., 2015). The gas flow through the bed’s void space is modeled by applying

the governing equations for a flow passing through a porous medium, which is solved

186 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

using the finite volume method with OpenFOAM as a CFD tool. The Favre-averaged
formulation is used by closing Reynolds stresses with the Boussinesq hypothesis
and employing the standard k — € model to determine the turbulent viscosity .
The interaction of chemistry with turbulence in the gas phase is treated through the
Partially Stirred Reactor (PaSR) model. Each computational cell is divided into a
reacting part and a non-reacting part. The former is represented as a perfectly stirred
reactor where all chemical species are assumed to be homogeneously mixed and
reacted. After the reactions have taken place, the species are mixed due to turbulence
for a mixing time 7 mix and the resulting concentration represents the final one for
the entire, partially stirred reactor (Kadar, 2015). The mixing time-scale depends on

the local turbulence as:

Tnix = Crnix et (8.14)
€

where Cyjy is a constant, p, ¢y is the effective dynamic viscosity (i.e., perr = p + pit)
and ¢ is the turbulent dissipation rate.

The radiative flux coming from the walls ensures the particle ignition. The coupling
model enables applying a different flux to various bed surfaces, heat propagating
from top to bottom of the particle bed through conduction, taking the different visual
factors into account with the combustion chamber walls. Heat then propagates
through conduction from the upper to the lower layers of the particle bed. The

incident radiative flux is then estimated as:

s = 00 (Tho — T3 (815)

where w = 0.75, ¢ = 5.67 - 108 W/ m? K* is the Boltzmann constant. The average wall
temperature was set as Ty, = 1200 K as available from thermocouples positioned
near the combustion chamber wall, while the average biomass temperature was that
of the first two biomass layer (and thus changes with iterations).

As previously noted, in addition to PA, the SA and RFG injection nozzles were
considered in the 2D /3D coupling model. The two types of biomass, wood-chips and

agricultural residues, have been used to compose the furnace’s particle bed. Such

8.4. Results and performance analysis 187

piles join the domain via a specific source that matches the volumetric system of the
drawer. The grate has alternated longitudinal movement in the three mobile units,
with roughly 80% being the advance and the remaining 20% being moved to the

initial position. The movement of each series is changed by the next 30s.

8.4 Results and performance analysis

The Fig. 8.3 illustrates the biomass bed temperature evolution in time and the heat-up
of the combustion chamber. The lower side colors bar represents the bed surface
temperature while the left middle color bar represents the gas phase temperatures.
After 5s simulation, both bed particles and gases are still cold and do not show any
heat-up phase (Fig. 8.3a). However, at 50s of simulation time, the firsts layers of the
bed start to warm up slightly even if the gas phase temperature appears relatively
the same as previous (Fig. 8.3b). From then on, around 250s, the ignition takes place
in the combustion chamber of the furnace with some high-temperature gas streaks
(around 1500K) that are due to the oxidation of volatile gases coming from the fuel
bed (Fig. 8.3c). After 600s, the gas streak temperature substantially increases, and the
combustion chamber appears to be characterized by those streaks with temperatures
locally exceeding 2000K (Fig. 8.3d). The same gas streaks scheme occurs when
simulating until 1200s suggesting that we reached a stable state after 600 ~ 700s.
During the pseudo steady-state, the position of the gas streaks can oscillate due to

the grate movement.

The figures above show a change in shape as well as temperature when looking
at the fuel surface. The pseudo-steady conditions state, achieved around a time
simulation of 600 ~ 700s, is confirmed in Fig. 8.4, which shows the average surface
bed temperature as a function of time. The high-temperature gas-streaks that seem
to govern the furnace’s thermal are unlikely to be predicted by a freeboard-only
approach (without fuel bed) but can be highlighted with a CFD-XDEM approach.
Additionally, we can note that the more prominent streak with higher temperature is

located in the grate area (4) close to the ash pit, suggesting that the significant release

188 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

&% Gas phase femperature (K)
Gas phase temperature (K)

AR £ 77771 L

] Bed surface temperature (K) SO 4§46 /11 gl Bed surface temperature (K)

' i 300402 600 800 1000 1200 1400 1600 19e+03 b § Gt 30e+02 600 800 1000 1200 1400 1600 19e+03
L e s il Y i T A

(A) Combustion chamber bed temperature (B) Combustion chamber bed temperature at
at time t = 5s. time t = 50s.

Eg A 220403

| e 2000
Azt

1500

— 1500

— 1000

l o
3.1e+02

— 1000

l o
3.1e+02

W, Gas phase femperature (K)
\._Gasphase temperature (K)

Bed surface temperature (K)
= 30e+02 600 800 1000 1200 1400 1600 19e+03 =
I I I I

Bed surface temperature (K)
600 800 1000 1200 1400 1600 19e+03
I | ! I

(c) Combustion chamber bed temperature at (D) Combustion chamber bed temperature
time t = 250s. at time t = 600s.

FIGURE 8.3: Gas phase temperature distribution at different
simulation time: 5s (upper left), 50s (upper right), 250s (lower left),
600s (lower right).

of volatile happens at the end of the biomass path, particularly close to the ash pit.

Before that, the streaks are less pronounced and more consistent.

The average composition of all bed particles was calculated and reported in
Fig. 8.5 to analyze the different phenomena occurring in the combustion chamber
throughout the grating length. It can be noticed that devolatilization can complete
only near the outlet (length 7.5 in the Fig. 8.5); a very negligible amount of organic
matter is still present in this zone. At the outlet, the particles contain, on average, 8%
of char and 92% of ashes by wt., meaning that there remain some unburnt carbon
resulting from incomplete combustion. The 92% of ash at the outlet corresponds to
the initial residual ash present in the dry biomass within the feeding (it represents 5%

of the drying mass).

These results are consistent with actual data obtained from the residual solid’s
sampling in the industrial plant. From Fig. 8.5, we can notice the presence of little
moisture in the particles up to length 6.0, signaling that the drying process is still not

complete for many particles in these lengths. It can be explained that some particles

8.4. Results and performance analysis 189

Average bed surface temperature temperature over time
1100 T T T T T

1000

900

800

700

600

500

400

300

Average bed surface temperature [K]

200

| | | | |
0 200 400 600 800 1000 1200
Time [s]

FIGURE 8.4: Surface bed temperature distribution.

190 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

the

T T

Average particle composition over

bed |

ength

T

100 -

40

) o

2 60l -l

c I Organic matter
HCE) [water

3 Em Ash

g. Il Char

o

@)

20

£ un
—

e
~N

n < e 1 Q9 n Qo uwn
N m N 1"V © N N © ©

4.5

n o
m o
Grat

(0]
Out

zone [m]

FIGURE 8.5: Particle composition in the inlet, outlet and along the
grate length.

8.4. Results and performance analysis 191

located at the bottom of the bed are being pushed upwards later on the grate, thus

not able to complete their drying process.

Fig. 8.6 shows the average composition (wood, water, ash, and char) of particles

alongside the grates.

Average particle composition over the bed length

0.008 T T T T T

= O\ i b = (Organic matter
0007f N Water |

-\ |7 Ash
0.006 | i i\ | == Char]
';'mooosk ,,
C
kel
B 0004 N N
%]
o
o
§
G 0.003 |t R NG e
0,002 N
R S W A N
0000 L L L ' | 1 | 1 | Il | L .

g n © n 9 N o N 9O 1 9o N O 1 o un Y
— o (] oM m <t < n n [(e} (] ~ ~ 0] [e0] @)
Grate length [m]

FIGURE 8.6: Particle average composition in the inlet, outlet and along
the grate.

We can also notice how the moisture evaporates within the particles to a complete
drying process in the length of 6.0. The amount of ash remains constant throughout
the grating length and corresponds to the initial 5% ash introduced since the feeding.
The whole simulation of the complete 2D case has been run for around 1200s in
approximately five (5) hours thanks to advanced optimization techniques and the
parallelization of XDEM using the OpenMP approach (Checkaraou et al., 2018a). The
experiments were carried out using the Iris cluster of the University of Luxembourg,
which provides 168 computing nodes for 4704 cores. The nodes used in this study
feature a 128 GB of memory and have two Intel Xeon E5 — 268004 processors running

at 2.4GHz; that is to say, a total of 28 cores per node. The nodes are connected through

192 Chapter 8. Numerical Analysis of a Grate Firing Combustion Process

a fast, low-latency EDR InfiniBand (100GB/s) the network is organized over a fat-tree
topology. Fig. 8.7 compares the simulation times of OpenFoam and XDEM in a
sequential and parallel coupling simulation. The proportion of XDEM in the coupling
simulation time goes from 80% in sequential to 55% in parallel using 28 OpenMP

threads, showing a speedup of 26 over 28 threads (93% compared to sequential).

100

Simulation

. OpenFoam
B xoem

Simulation [%]
E

Sequential Parallel
Parallelization

FIGURE 8.7: Time proportion of XDEM and OpenFoam in the coupling
simulation.

8.5 Conclusion

In this paper, we presented a full 2D/3D CFD-XDEM model (given the plant’s
industrial size) to investigate biomass combustion in a large-scale reciprocating grate.
In our coupling model, the XDEM software is used to simulate the granular flow
along with the grates (with dynamic and conversion), and OpenFoam dealt with
the surrounding gases. We showed that there exists a pseudo-steady state after

600 ~ 700s allowing a deeper analysis of the composition of the particles through

8.5. Conclusion 193

the grate lengths. Importantly, we were able to spot the level of unburnt carbon,
i.e., approximately 8%, which was inconsistent with the evidence in the real plant.
Therefore, the expected thermal field complied with the few provided experimental
data, acknowledging a proper consideration of the interaction between chemical
kinetics and turbulence. In particular, the model allows us to understand the effect
of flue gas recirculation on the combustion process injection. First and foremost, the
computational cost was relatively low due to the 2D /3D feature of the multi-phase
CFD-XDEM model, the XDEM code’s parallelization, and the high-performance
computers. It was a fundamental aspect to suggest using the present numerical

model for a real biomass plant’s practical operation.

195

Part 111

Conclusion

197

Chapter 9

Conclusion

9.1 Summary

In this thesis, an optimization process of the XDEM software to perform large scales
and parallel simulations was discussed. The different contributions presented in this
work were developed during the whole length of the Ph.D., and this thesis is just a
collection of some of the most significant contributions presented and published in
different international conferences and journals. The optimization process consists
of evaluating XDEM software performances by conducting a series of profile using
benchmarks. This step is crucial as it spots the code’s weaknesses, the hotspots,
and the part to be addressed and optimized. As a result, we have spotted particle
collision detection as the most consuming computational time segment. We, therefore,
developed a complete C++ framework for collision detection algorithms that were
included within the XDEM software. Besides, we also proposed a new approach
of the Verlet list technique that takes the particles’ local flow regime conditions and
enhances the algorithm’s performance. We have developed a full OpenMP layer
within the XDEM platform that unlocks new parallel simulation strategies targeting

HPC systems.

The first contribution was introduced in chapter 3 with the development of a
C++ framework for testing the broad-phase algorithms. We evaluate and compare ten
different Broad-Phase Collision Detection algorithms (spatial partitioning and sorting,
grids, and trees) while considering a large DEM test case. It appears that the choice

of the best algorithm is a trade-off between many criteria, including the size of the

198 Chapter 9. Conclusion

search space, the number of particles, and memory usage. The new algorithms were
validated through a series of tests on different cases. They were afterward integrated
within the XDEM platform with the possibility to select a different type of algorithms

depending on the running case.

The second and third contributions are the development of an original Verlet
list implementation for DEM that takes the particle flow regime into account when
selecting the skin margin to enhance the algorithm'’s efficiency further. The approach
is presented with a performance comparison with the standard and usual Verlet
approach. We also conducted an optimization study to determine which optimum
skin margin gives the best computing performance depending on particle local flow
regime parameters (velocity, solid fraction, number of particles, the ratio of particle
size to cell size). Hundreds of simulations were performed using the DAKOTA
software to solve the optimization problem (using genetic algorithms). Therefore, we
proposed a polynomial function expressing the optimum skin margin as a function
of the simulation parameters. The two contributions were introduced in chapters 4

and 5.

The fourth contribution is a complete implementation of an OpenMP strategy
within the XDEM software. It was presented in chapter 6 and was aimed to target the
High-Performance Computers (HPC) and systems by offering more parallel strate-
gies. Adding an OpenMP layer needed a consequent code implementation and data
reorganization, which required a vast code change effort as XDEM is legacy. It un-
doubtedly brings performance for parallel executions but also sequential executions.
This contribution is a significant accomplishment of the doctoral candidate during
his Ph.D. as it unlocks new possibilities and considerably speeds up the simulations
(as shown in chapter 7). It allows new complexes and bulky cases to be simulated.
3D Blast-furnace and Biomass simulations (chapter 8) were therefore performed in a

very reasonable time, accelerating the different research projects.

Finally, chapter 8 presents a biomass combustion test case. It a large scale applica-
tion coupling XDEM-OPENFOAM with thousands of particles. The case investigates
biomass combustion in a large-scale reciprocating grate. In the adopted coupling

approach, the XDEM software is used to simulate the granular flow (particles) along

9.1. Summary 199

with the grates (with dynamic and conversion), and OPENFOAM dealt with the
surrounding gases. We were able to spot the level of unburnt carbon, i.e., approx-
imately 5% that was in consistency with evidence in the real plant. This test case
acknowledged a proper consideration of the interaction between chemical kinetics
and turbulence in our coupling model as the expected thermal field complied with the
few provided experimental data. In particular, the model allows for understanding
the effect of flue gas recirculation on the combustion process injection. The proposed
approach is thus strongly recommended as it also presents a relatively low computa-
tional cost, thanks to the 2D /3D feature of the multi-phase CFD-XDEM model, the

XDEM code’s parallelization, and the high-performance computer systems.

Overall, this thesis’s different contributions developed during the doctoral re-
search and not introduced in this thesis allow large scale and parallel simulations that
were out of reach. Our contributions considerably speed up the XDEM simulation
platform and enable new research to be conducted and the exploration of new fields,

such as 3D models of biomass combustion chambers and complete Blast furnaces.

200 Chapter 9. Conclusion

9.2 Future tasks

The research presented in this thesis was intended to optimize the XDEM software to
run large scale and parallel DEM simulations using HPC capabilities and resources.
For this purpose, the entire collision detection process was reviewed with the im-
plementation of different algorithms. The Verlet was also enhanced with a newly
developed approach that further consider the particle flow regime. A full OpenMP
implementation of XDEM was designed to take full advantage of the shared memory
resources and the NUMA configuration of the supercomputers computing nodes.
Given these points already developed in this thesis, we propose to deepen and expand

the following topics:

1. The Hierarchical grid is among the algorithm implemented in the C++ bench-
mark and presented a relatively good performance. Nevertheless, it presents
an auspicious performance in the literature (Krijgsman, Ogarko, and Luding,
2014; Kroiss, 2013; Fan et al., 2011; Weinhart et al., 2020) for polydiverse
simulation case. Therefore we recommend implementing a hierarchical grid
algorithm within the XDEM framework. The new feature will add new
capabilities as it will be possible to efficiently simulate polydiverse cases
as the rotating drum (or mill charge) and granular flow for calibration and

validation.

2. Using machine learning techniques to further predict the optimal skin dis-
tance in the Verlet buffer method is another essential task that future work
should focus on. At the moment, we use a simple polynomial function to
predict the optimal skin distance. With more simulation data, better tech-
niques such as the random forest, logistic regression, or the gaussian process exist

to predict the optimal skin distance accurately.

3. A major challenge when using a distributed memory parallelization strategy
is to efficiently balance the load among the resources while maintaining the
numerical solution’s high accuracy throughout the computation. In DEM
simulations, we often deal with particles dynamically moving through the

entire domain going from to another region. There is, therefore, a demand

9.2. Future tasks 201

for a finer mesh in the regions where the particles go through. Thus, we
recommend to implement the Adaptative Mesh Rrefinement (ARM) for
DEM within the XDEM software. ARM is a method that adaptively refines
the mesh in certain regions of the domain to increase the solution accuracy.
An ARM can refine the mesh and the particle flow displacement for better
collision detection and flow prediction. Such a high-performance computing
technique is essential for computational efficiency in moving regions of inter-
est for distributed-memory parallel computer architectures where domain
decomposition is applied, especially with MPI. Moving regions of interest
are dynamically deforming and migrating through the domain during simu-
lations and require high spatial resolution of solution features (Rettenmaier
et al., 2019). ARM coupled with Dynamic Load Balancing (DLB) offer the
benefit to effectively reduced computational effort on large scale and parallel

simulations.

4. As presented in chapter 1, there is much existing software (open-sources and
commercials) available in the literature (Granular Dynamics International
and Software, 2020; “2.4 Theory Reference Guide, 2011”; Govender, Wilke,
and Kok, 2016) using GPU and multi-GPU capabilities. They have been
applied to many different applications with excellent performances. With the
additional computing resources available with a GPU, such implementations
make a massive simulation with complex shapes possible that were out of
reach (non-convex polyhedra particles, particle breakage) (Wilke et al., 2016;
Liu et al., 2020; Govender et al., 2018; Kasai et al., 2009; Chen et al., 2011).
Moving the XDEM code from CPU to GPU will require an enormous amount
of work, as the entire code would have to be rewritten from scratch. Faced
with this constraint, we recommend instead only perform some parts on
GPU. The collision detection process is an excellent candidate, as it has been
demonstrated in the literature (Scott, 2020; Govender, Wilke, and Kok, 2015).
An efficient data and results transfer between CPU and GPU coupled with
the GPU computing, will surely bring performance benefits to the XDEM

software.

203

Part IV

Bibliography

205

BIBLIOGRAPHY

Adams, Brian M et al. (2019). “DAKOTA, a multilevel parallel object-oriented frame-
work for design optimization, parameter estimation, uncertainty quantification,
and sensitivity analysis: version 6.11 user’s manual”. In: Sandia National Laboratories,
Tech. Rep. SAND2010-2183.

Allen, M. P. and D. J. Tildesley (1990). Computer Simulation of Liquids. Claredon Press
Oxford.

Allen, Michael P and Dominic J Tildesley (2017). Computer simulation of liquids. Oxford
university press.

Angeles, Luis and César Celis (2019). “Assessment of neighbor particles searching
methods for discrete element method (DEM) based simulations”. In:

Awile, Omar et al. (2012). “Fast neighbor lists for adaptive-resolution particle simula-
tions”. In: Computer Physics Communications 183.5, pp. 1073-1081.

Baraff, David (1992). Dynamic simulation of non-penetrating rigid bodies. Tech. rep.
Cornell University.

Berger, R et al. (2015). “Hybrid parallelization of the LIGGGHTS open-source DEM
code”. In: Powder Technology 278.

Bergstra, James and Yoshua Bengio (2012). “Random search for hyper-parameter
optimization”. In: Journal of machine learning research 13.Feb, pp. 281-305.

Berry, Mike, George Cybenko, and John Larson (1991). “Scientific benchmark charac-
terizations”. In: Parallel Computing 17.10-11, pp. 1173-1194.

Berryman, Sylvia (2004a). “Democritus”. In:

— (2004b). “Leucippus”. In:

206 Bibliography

Besseron, Xavier et al. (2013). “Unified Design for Parallel Execution of Coupled
Simulations using the Discrete Particle Method”. In: Proceedings of the Third Interna-
tional Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering.
Civil-Comp Press.

Boyd, Eric L et al. (1994). “A hierarchical approach to modeling and improving the
performance of scientific applications on the KSR1”. In: 1994 International Conference
on Parallel Processing Vol. 3. Vol. 3. IEEE, pp. 188-192.

Chandra, Rohit et al. (2001). Parallel programming in OpenMP. Morgan kaufmann.

Checkaraou, Abdoul Wahid Mainassara et al. (2018a). “Hybrid MPI+ openMP Im-
plementation of eXtended Discrete Element Method”. In: 2018 30th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).
IEEE, pp. 450—457.

Checkaraou, Abdoul Wahid Mainassara et al. (2018b). “Predicting near-optimal skin
distance in Verlet buffer approach for Discrete Element Method”. In: 2018 30th
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, pp. 450-457.

Chen, Jin et al. (2011). “Analysis of rice seeds motion on vibrating plate using EDEM.”
In: Nongye Jixie Xuebao= Transactions of the Chinese Society for Agricultural Machinery
42.10, pp. 79-100.

Chialvo, Ariel A and Pablo G Debenedetti (1990). “On the use of the Verlet neighbor
list in molecular dynamics”. In: Computer physics communications 60.2, pp. 215-224.

- (1991). “On the performance of an automated Verlet neighbor list algorithm for
large systems on a vector processor”. In: Computer Physics Communications 64.1,
pp- 15-18.

Clarke, Lyndon, Ian Glendinning, and Rolf Hempel (1994). “The Message Passing
Interface standard”. In: Programming environments for massively parallel distributed
systems. Springer, pp. 213-218.

Cohen, Jonathan D et al. (1995). “I-collide: An interactive and exact collision detection
system for large-scale environments”. In: Proceedings of the 1995 symposium on
Interactive 3D graphics, 189—f.

Coumans, Erwin (2015). “Bullet Physics Simulation”. In: ACM SIGGRAPH 2015
Courses. SIGGRAPH "15.

Bibliography 207

Cundall, P. A. and O. D. L. Strack (1979). “A discrete numerical model for granular
assemblies”. In: Geotechnique 29, pp. 47-65.

DEM-Solutions, EDEM. “2.4 Theory Reference Guide, 2011”. In: DEM Solutions:
Edinburgh ().

Devine, Karen et al. (2002). “Zoltan data management service for parallel dynamic
applications”. In: Computing in Science & Engineering 4.2, pp. 90-97.

Di Blasi, Colomba (2000). “Dynamic behaviour of stratified downdraft gasifiers”. In:
Chemical engineering science 55.15, pp. 2931-2944.

Doglio, Fernando (2015). Mastering Python High Performance. Packt Publishing Ltd.

Donoso, Alvaro Antonio Estupinan and Bernhard Peters (2018). “Exploring a Multi-
physics Resolution Approach for Additive Manufacturing”. In: JOM 70.8, pp. 1604—
1610.

Duran, Jacques (2012). Sands, powders, and grains: an introduction to the physics of
granular materials. Springer Science & Business Media.

Ericson, Christer (2004). Real-time collision detection. CRC Press.

Erlangen Regional Computing Center, FAU (2019). ECM Performance Model. https:
//hpc.fau.de/research/ecm/.

Evans, Jason (2006). “A scalable concurrent malloc (3) implementation for FreeBSD”.
In: Proc. of the BSDCan Conference, Ottawa, Canada.

Fabri, Andreas and Sylvain Pion (2009). “CGAL: The computational geometry algo-
rithms library”. In: GIC'09. ACM.

Fan, Wenshan et al. (2011). “A hierarchical grid based framework for fast collision
detection”. In: Computer Graphics Forum. Vol. 30. 5. Wiley Online Library, pp. 1451-
1459.

Fang, X,] Tang, and H Luo (2007). “Granular damping analysis using an improved
discrete element approach”. In: Journal of Sound and Vibration 308.1-2, pp. 112-131.

Furley, David J (1967). “Knowledge of atoms and void in Epicureanism”. In:

Gaede, Volker and Oliver Giinther (1998). “Multidimensional access methods”. In:
ACM Computing Surveys (CSUR) 30.2, pp. 170-231.

Gan, JQ, ZY Zhou, and AB Yu (2016). “A GPU-based DEM approach for modelling of

particulate systems”. In: Powder Technology 301, pp. 1172-1182.

https://hpc.fau.de/research/ecm/
https://hpc.fau.de/research/ecm/

208 Bibliography

Gelsinger, P. (2004). In: Intel Developer’s Forum. URL: https : / /www . intel . com/
pressroom/kits/events/idffall_2004/.

Ghemawat, Sanjay and Paul Menage (2009). Tcmalloc: Thread-caching malloc.

Ghoroghi, Camellia and Tannaz Alinaghi. An introduction to profiling mechanisms and
Linux profilers.

Glass, Kevin (2005). Analysis of broad-phase spatial partitioning optimizations in colli-
sion detection. Tech. rep. Technical Report. Grahamstown, South Africa: Rhodes
University.

Govender, Nicolin, Daniel N Wilke, and Schalk Kok (2015). “Collision detection
of convex polyhedra on the NVIDIA GPU architecture for the discrete element
method”. In: Applied Mathematics and Computation 267, pp. 810-829.

— (2016). “Blaze-DEMGPU: Modular high performance DEM framework for the GPU
architecture”. In: SoftwareX 5, pp. 62-66.

Govender, Nicolin et al. (2018). “A study of shape non-uniformity and poly-dispersity
in hopper discharge of spherical and polyhedral particle systems using the Blaze-
DEM GPU code”. In: Applied Mathematics and Computation 319, pp. 318-336.

Granular Dynamics International, LLC Engineering Simulation and Scientific Soft-
ware (2020). Rocky Discrete Element Method Package. (Visited on 2012).

Grindon, Christina et al. (2004). “Large-scale molecular dynamics simulation of
DNA: implementation and validation of the AMBER9S force field in LAMMPS”.
In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 362.1820, pp. 1373-1386.

Haftka, Raphael T and Zafer Giirdal (2012). Elements of structural optimization. Vol. 11.
Springer Science & Business Media.

Hockney, Roger W (1996). The science of computer benchmarking. Vol. 2. siam.

Jasak, Hrvoje, Aleksandar Jemcov, Zeljko Tukovic, et al. (2007). “OpenFOAM: A
C++ library for complex physics simulations”. In: International workshop on coupled
methods in numerical dynamics. Vol. 1000. IUC Dubrovnik, Croatia, pp. 1-20.

Jiménez, Pablo, Federico Thomas, and Carme Torras (2001). “3D collision detection: a

survey”. In: Computers & Graphics 25.2, pp. 269-285.

https://www.intel.com/pressroom/kits/events/idffall_2004/
https://www.intel.com/pressroom/kits/events/idffall_2004/

Bibliography 209

Johansson, Robert, Henrik Thunman, and Bo Leckner (2007). “Influence of intra-
particle gradients in modeling of fixed bed combustion”. In: Combustion and Flame
149.1-2, pp. 49-62.

June 2020 top500 poster. https://www .top500.org/lists/top500/2020/06/. Ac-
cessed: 2020-08-30.

Kabore, B et al. (2018). “Multi-scale modelling of snow mechanics”. In: 41st Solid
Mechanics Conference (SOLMECH 2018). Warsaw, Poland.

Kadar, Ali Hussain (2015). “Modelling turbulent non-premixed combustion in indus-
trial furnaces”. PhD thesis.

Kasai, Mio et al. (2009). “LiDAR-derived DEM evaluation of deep-seated landslides
in a steep and rocky region of Japan”. In: Geomorphology 113.1-2, pp. 57-69.

Ketterhagen, William R, Mary T am Ende, and Bruno C Hancock (2009). “Process
modeling in the pharmaceutical industry using the discrete element method”. In:
Journal of pharmaceutical sciences 98.2, pp. 442—470.

Kloss, Christoph et al. (2012). “Models, algorithms and validation for opensource
DEM and CFD-DEM”. In: Progress in Computational Fluid Dynamics, an International
Journal 12.2-3, pp. 140-152.

Kockara, Sinan et al. (2007). “Collision detection: A survey”. In: 2007 IEEE International
Conference on Systems, Man and Cybernetics. IEEE, pp. 4046—4051.

Kozicki, Jan and Frederic V Donze (2009). “Yade-open DEM: an open-source software
using a discrete element method to simulate granular material”. In: Engineering
Computations 26.7, pp. 786-805.

Krijgsman, Dinant, Vitaliy Ogarko, and Stefan Luding (2014). “Optimal parameters
for a hierarchical grid data structure for contact detection in arbitrarily polydisperse
particle systems”. In: Computational particle mechanics 1.3, pp. 357-372.

Kroiss, Ryan Robert (2013). “Collision detection using hierarchical grid spatial parti-
tioning on the GPU”. In: ProQuest Dissertations and Theses, University of Colorado at
Boulder 45.

Kurz, D, U Schnell, and G Scheffknecht (2012). “CFD simulation of wood chip com-
bustion on a grate using an Euler-Euler approach”. In: Combustion Theory and
Modelling 16.2, pp. 251-273.

Lagrange, Joseph Louis de (1853). Mécanique analytique. Vol. 1. Mallet-Bachelier.

https://www.top500.org/lists/top500/2020/06/

210 Bibliography

Li, Wan-Qing et al. (2010). “Comparison research on the neighbor list algorithms:
Verlet table and linked-cell”. In: Computer Physics Communications 181.10, pp. 1682—
1686.

Lilja, David J (2005). Measuring computer performance: a practitioner’s guide. Cambridge
university press.

Lin, Ming C (1997). “Fast and accurate collision detection for virtual environments”.
In: Scientific Visualization Conference, 1997. IEEE, pp. 171-171.

Liu, Chun and NOEL] WALKINGTON (2001). “An Eulerian description of fluids
containing visco-elastic particles”. In: Archive for rational mechanics and analysis 159.3,
pp. 229-252.

Liu, Guang-Yu et al. (2020). “Study on the particle breakage of ballast based on a GPU
accelerated discrete element method”. In: Geoscience Frontiers 11.2, pp. 461-471.
Liyan, Sun et al. (2013). “Simulation of motion of particles in reciprocating grates

using DEM”. In: Powder technology 246, pp. 218-228.

Lubbe, Retief et al. (2020). “Analysis of parallel spatial partitioning algorithms for
GPU based DEM”. In: Computers and Geotechnics 125, p. 103708.

LUPI, ALESSIO (2017a). “Numerical Modelling of Biomass Combustion on a Recipro-
cating Grate: Coupling of Computational Fluid Dynamics and Discrete Element
Method”. In:

— (2017b). “Numerical Modelling of Biomass Combustion on a Reciprocating Grate:
Coupling of Computational Fluid Dynamics and Discrete Element Method”. In:
Mahmoudi, Amir Houshang et al. (2015). “An experimental and numerical study of
wood combustion in a fixed bed using Euler-Lagrange approach (XDEM)”. In: Fuel

150, pp. 573-582.

Mahmoudi, Amir Houshang et al. (2016a). “Modeling of the biomass combustion on a
forward acting grate using XDEM”. In: Chemical Engineering Science 142, pp. 32-41.

— (2016b). “Modeling of the biomass combustion on a forward acting grate using
XDEM”. In: Chemical engineering science 142, pp. 32—41.

Mahmoudi, Amir Houshang et al. (2016¢). “Numerical modeling of self-heating
and self-ignition in a packed-bed of biomass using {XDEM]}”. In: Combustion
and Flame 163, pp. 358-369. 1SSN: 0010-2180. DOI: 10 . 1016/ j . combustflame .

https://doi.org/10.1016/j.combustflame.2015.10.010
https://doi.org/10.1016/j.combustflame.2015.10.010

Bibliography 211

2015.10.010. URL: http://www.sciencedirect . com/science/article/pii/
50010218015003582.

Mainassara Checkaraou, Abdoul Wahid et al. “Local Verlet buffer approach for broad-
phase interaction detection in Discrete Element Method”. Submitted.

Maknickas, Algirdas et al. (2006). “Parallel DEM software for simulation of granular
media”. In: Informatica 17.2, pp. 207-224.

Mattson, William and Betsy M Rice (1999). “Near-neighbor calculations using a
modified cell-linked list method”. In: Computer Physics Communications 119.2-3,
pp- 135-148.

Michael, M., F. Nicot, and B. Peters (2013). “Discrete Element Modeling of Inter-
Granular Bonds between Snow Grains”. In: Partec2013 Accepted Abstract. Nurem-
berg, Germany.

Michael, M. and B. Peters (2013). “3D DEM - FEM Coupling to Analyse the Tractive
Performance of Different Tire Treads in Soil”. In: Coupled2013 Accepted Abstract.
Ibiza, Spain.

Mirtich, Brian Vincent (1996). Impulse-based dynamic simulation of rigid body systems.
University of California, Berkeley.

Moore, Gordon E et al. (1965). Cramming more components onto integrated circuits.

Munjiza, Antonio, Jens H Walther, and Ivo F Sbalzarini (2009). “Large-scale parallel
discrete element simulations of granular flow”. In: Engineering Computations.

Mytkowicz, Todd et al. (2010). “Evaluating the accuracy of Java profilers”. In: ACM
Sigplan Notices 45.6, pp. 187-197.

Nambu, Yoichiro and Giovanni Jona-Lasinio (1961). “Dynamical model of elementary
particles based on an analogy with superconductivity. I”. In: Physical review 122.1,
p. 345.

Noske, Andrew (2004). “Efficient Algorithms for Molecular Dynamics Simulations
and Other Dynamic Spatial Join Queries”. PhD thesis. Ph. D. Dissertation. http:/ /www.
andrewnoske. com/professional /publications ...

Pabst, Simon, Artur Koch, and Wolfgang Strafser (2010). “Fast and scalable cpu/gpu
collision detection for rigid and deformable surfaces”. In: Computer Graphics Forum.

Vol. 29. 5. Wiley Online Library, pp. 1605-1612.

https://doi.org/10.1016/j.combustflame.2015.10.010
https://doi.org/10.1016/j.combustflame.2015.10.010
http://www.sciencedirect.com/science/article/pii/S0010218015003582
http://www.sciencedirect.com/science/article/pii/S0010218015003582

212 Bibliography

Pall, Szilard and Berk Hess (2013). “A flexible algorithm for calculating pair interac-
tions on SIMD architectures”. In: Computer Physics Communications 184.12, pp. 2641-
2650.

Pan, Jia, Sachin Chitta, and Dinesh Manocha (2012). “FCL: A general purpose li-
brary for collision and proximity queries”. In: 2012 IEEE International Conference on
Robotics and Automation. IEEE, pp. 3859-3866.

Patronelli, Stefania et al. (2017). “Experimental and numerical investigation of a small-
scale fixed-bed biomass boiler”. In: Chemical Engineering Transactions 57, pp. 187-
192.

Peters, B. and G. Pozzetti (2017). “Flow characteristics of metallic powder grains
for additive manufacturing”. en. In: EP] Web of Conferences 13001, p. 140. URL:
http://hdl.handle.net/10993/31734.

Peters, Bernhard (2013). “The extended discrete element method (XDEM) for multi-
physics applications”. In: Scholarly Journal of Engineering Research.

Peters, Bernhard and Algis DzZiugys (2002). “Numerical simulation of the motion of
granular material using object-oriented techniques”. In: Computer methods in applied
mechanics and engineering 191.17-18, pp. 1983-2007.

Peters, Bernhard et al. (2005). “An approach to qualify the intensity of mixing on a
forward acting grate”. In: Chemical Engineering Science 60.6, pp. 1649-1659.

Peters, Bernhard et al. (2015). “A discrete/continuous numerical approach to multi-
physics”. In: IFAC-PapersOnLine 48.1, pp. 645-650.

Peters, Bernhard et al. (2019). “XDEM multi-physics and multi-scale simulation
technology: Review of DEM—-CFD coupling, methodology and engineering applica-
tions”. In: Particuology 44, pp. 176-193.

Plimpton, Steve, Paul Crozier, and Aidan Thompson (2007). “LAMMPS-large-scale
atomic/molecular massively parallel simulator”. In: Sandia National Laboratories 18,
pp. 43-43.

Pozzetti, Gabriele and Bernhard Peters (2018). “A multiscale DEM-VOF method for
the simulation of three-phase flows”. In: International Journal of Multiphase Flow 99,
pp- 186-204.

Ransing, RS et al. (2000). “Powder compaction modelling via the discrete and finite

element method”. In: Materials & Design 21.4, pp. 263-269.

http://hdl.handle.net/10993/31734

Bibliography 213

Rettenmaier, Daniel et al. (2019). “Load balanced 2D and 3D adaptive mesh refinement
in OpenFOAM”. In: SoftwareX 10, p. 100317.

Richard, Patrick et al. (2005). “Slow relaxation and compaction of granular systems”.
In: Nature materials 4.2, pp. 121-128.

Ritter, Jack (1990). “An efficient bounding sphere”. In: Graphics gems 1, pp. 301-303.

Rousset, Alban, Xavier Besseron, and Bernhard Peters (2017). “PARALLELIZING
XDEM: LOAD-BALANCING POLICIES AND EFFICIENCY, A STUDY”. In:

Rousset, Alban et al. (2017). “Comparing Broad-Phase Interaction Detection Algo-
rithms for Multiphysics DEM Applications”. In: AIP Conference Proceedings IC-
NAAM 2017. American Institute of Physics.

Rousset, Alban et al. (2018). “Comparing broad-phase interaction detection algorithms
for multiphysics DEM applications”. In: AIP Conference Proceedings. Vol. 1978. 1.
AIP Publishing LLC, p. 270007.

S., Godehard and Vladimir S. (2006). “Optimization of neighbor list techniques in
liquid matter simulations”. In: Journal of Molecular Liquids 125.2-3, pp. 197-203.

Samiei, K and B Peters (2010). “The discrete particle method (DPM), an advanced
numerical simulation tool for particulate applications”. In: Proc. ECCM 2010 IV
European Conference on Computational Mechanics, Paris, France.

Samiei, Kasra and Bernhard Peters (2013). “Experimental and numerical investigation
into the residence time distribution of granular particles on forward and reverse
acting grates”. In: Chemical engineering science 87, pp. 234-245.

Schéling, Boris (2011). The Boost C++ libraries. Boris Schéling.

Schaller, Robert R (1997). “Moore’s law: past, present and future”. In: IEEE spectrum
34.6, pp. 52-59.

Schneider, Philip and David H Eberly (2002). Geometric tools for computer graphics.
Elsevier.

Schreiberx (2020). Bounding volume hierarchy — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Bounding?20volume?20hierarchy&
01did=921578869. [Online; accessed 18-June-2020].

Scott, Le Grand (2020). GPU Gems 3: Chapter 32. Broad-Phase Collision Detection with

CUDA. URL: https : //developer . nvidia . com/ gpugems / gpugems3 / part - v -

http://en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&oldid=921578869
http://en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&oldid=921578869
http://en.wikipedia.org/w/index.php?title=Bounding%20volume%20hierarchy&oldid=921578869
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda

214 Bibliography

physics-simulation/chapter-32-broad-phase-collision-detection- cuda
(visited on 10/09/2020).

Simsek, E et al. (2009). “Numerical simulation of grate firing systems using a coupled
CFD/discrete element method (DEM)”. In: Powder technology 193.3, pp. 266-273.
Smith, James E. (1988). “Characterizing computer performance with a single number”.

In: Communications of the ACM 31.10, pp. 1202-1206.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical bayesian op-
timization of machine learning algorithms”. In: Advances in neural information
processing systems, pp. 2951-2959.

Spivey,] Michael (2004). “Fast, accurate call graph profiling”. In: Software: Practice and
Experience 34.3, pp. 249-264.

Stengel, Holger et al. (2015). “Quantifying performance bottlenecks of stencil compu-
tations using the execution-cache-memory model”. In: Proceedings of the 29th ACM
on International Conference on Supercomputing, pp. 207-216.

Stepanov, Alexander and Meng Lee (1995). The standard template library. Vol. 1501.
Hewlett Packard Laboratories 1501 Page Mill Road, Palo Alto, CA 94304.

Stewart, David B (2001). “Measuring execution time and real-time performance”. In:
Embedded Systems Conference (ESC). Vol. 141.

Stewart, Graeme and Walter Lampl (Oct. 2017). “How to review 4 million lines of
ATLAS code”. In: Journal of Physics: Conference Series 898, p. 072013. DOI: 10.1088/
1742-6596/898/7/072013.

Sudbrock, Florian et al. (2011). “Discrete element analysis of experiments on mixing
and stoking of monodisperse spheres on a grate”. In: Powder technology 208.1,
pp. 111-120.

Sun, Liyan et al. (2015). “Prediction of configurational and granular temperatures of
particles using DEM in reciprocating grates”. In: Powder Technology 269, pp. 495-504.

Sun, Xian-He and John L Gustafson (1991). “Toward a better parallel performance
metric”. In: Parallel Computing 17.10-11, pp. 1093-1109.

Sutter, Herb (2005). “The free lunch is over: A fundamental turn toward concurrency

in software”. In: Dr. Dobb’s journal 30.3, pp. 202-210.

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-32-broad-phase-collision-detection-cuda
https://doi.org/10.1088/1742-6596/898/7/072013
https://doi.org/10.1088/1742-6596/898/7/072013

Bibliography 215

Tikir, Mustafa M et al. (2007). “A genetic algorithms approach to modeling the
performance of memory-bound computations”. In: SC’07: Proceedings of the 2007
ACMY/IEEE Conference on Supercomputing. IEEE, pp. 1-12.

Tracy, Daniel J, Samuel R Buss, and Bryan M Woods (2009). “Efficient large-scale
sweep and prune methods with AABB insertion and removal”. In: 2009 IEEE Virtual
Reality Conference. IEEE, pp. 191-198.

Truong, Nghia, Sreekanth Arikatla, and Andinet Enquobahrie (2019). Octree-based
Collision Detection in iMSTK. URL: https://blog.kitware.com/octree-collision-
imstk/ (visited on 06/09/2020).

Ulrich, Thatcher (2000). “Loose octrees”. In: Game programming gems 1, pp. 434—442.

Varrette, S. et al. (2014). “Management of an Academic HPC Cluster: The UL Experi-
ence”. In: Proc. of the 2014 Intl. Conf. on High Performance Computing & Simulation
(HPCS 2014). Bologna, Italy: IEEE, pp. 959-967.

Verlet, Loup (1967). “Computer" experiments" on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules”. In: Physical review 159.1, p. 98.

Wadleigh, Kevin R and Isom L Crawford (2000). Software optimization for high-performance
computing. Prentice Hall Professional.

Weber, Lukas M et al. (2019). “Essential guidelines for computational method bench-
marking”. In: Genome biology 20.1, p. 125.

Weinhart, Thomas et al. (2016). “Influence of coarse-graining parameters on the
analysis of DEM simulations of silo flow”. In: Powder technology 293, pp. 138-148.

Weinhart, Thomas et al. (2020). “Fast, flexible particle simulations—An introduction
to MercuryDPM”. In: Computer physics communications 249, p. 107129.

Welling, Ulrich and Guido Germano (2011). “Efficiency of linked cell algorithms”. In:
Computer Physics Communications 182.3, pp. 611-615.

Wikipedia contributors (2019). Enel Green Power — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Enel _Green_Power&oldid=
912661233. [Online; accessed 3-September-2019].

Wilke, Daniel N et al. (2016). “Computing with non-convex Polyhedra on the GPU”.

In: International Conference on Discrete Element Methods. Springer, pp. 1371-1377.

https://blog.kitware.com/octree-collision-imstk/
https://blog.kitware.com/octree-collision-imstk/
https://en.wikipedia.org/w/index.php?title=Enel_Green_Power&oldid=912661233
https://en.wikipedia.org/w/index.php?title=Enel_Green_Power&oldid=912661233

216 Bibliography

Williams, John R and Alex P Pentland (1992). “Superquadrics and modal dynamics for
discrete elements in interactive design”. In: Engineering Computations 9.2, pp. 115-
127.

Williams, Samuel (2009). “Roofline: An Insightful Visual Performance Model for
Floating-Point Programs and Multicore”. In:

Wulf, Wm A and Sally A McKee (1995). “Hitting the memory wall: implications of
the obvious”. In: ACM SIGARCH computer architecture news 23.1, pp. 20-24.

Wurzenberger, Johann C et al. (2002). “Thermal conversion of biomass: Comprehen-
sive reactor and particle modeling”. In: AIChE Journal 48.10, pp. 2398-2411.

Yang, YB et al. (2004). “Modelling waste combustion in grate furnaces”. In: Process
Safety and Environmental Protection 82.3, pp. 208-222.

Yin, Chungen et al. (2008). “Mathematical modeling and experimental study of
biomass combustion in a thermal 108 MW grate-fired boiler”. In: Energy & Fuels
22.2, pp. 1380-1390.

Yoo, Andy B, Morris A Jette, and Mark Grondona (2003). “Slurm: Simple linux utility
for resource management”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, pp. 44—60.

Zames, G et al. (1981). “Genetic algorithms in search, optimization and machine
learning.” In: Information Technology Journal 3.1, pp. 301-302.

Zhou, Kun et al. (2008). “Real-time kd-tree construction on graphics hardware”. In:
ACM Transactions on Graphics (TOG) 27.5, pp. 1-11.

Zomorodian, Afra and Herbert Edelsbrunner (2000). “Fast Software for Box Intersec-
tions”. In: SCG’00. ACM. 1SBN: 1-58113-224-7. DOI: 10.1145/336154.336192. URL:

http://doi.acm.org/10.1145/336154.336192.

https://doi.org/10.1145/336154.336192
http://doi.acm.org/10.1145/336154.336192

