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Abstract

This thesis proposes energy-efficient mobile crowdsensing (MCS) solutions
for smart cities. Specifically, it focuses on sensing and communications
processes in distributed computing paradigms and complex urban dynamics
in city-wide scenarios. MCS is a data collection paradigm that has gained
significant attention in recent years and has become appealing for urban
sensing. MCS systems rely on contributions from mobile devices of a large
number of participants or a crowd. Smartphones, tablets, and wearable
devices are deployed widely and already equipped with a rich set of sensors,
making them an excellent source of information. Mobility and intelligence of
humans guarantee higher coverage and better context awareness if compared
to traditional sensor networks. At the same time, individuals may be reluctant
to share data for devices’ battery drain and privacy concerns. For this reason,
MCS frameworks are specifically designed to include incentive mechanisms
and address privacy concerns.

Despite the growing interest in the research community, MCS solutions
still need a more in-depth investigation and categorization on many aspects
that span from sensing and communication to system management and data
storage. This Ph.D. thesis focuses not only on sustainable MCS solutions to
challenging problems in urban environments but also on a comprehensive
study aiming to clarify concepts, aspects, and inconsistencies in existing
literature from a global perspective. Specifically, this manuscript proposes
the following contributions:

• Present the MCS paradigm as a four-layered architecture divided into
application, data, communication, and sensing layers, proposing novel
taxonomies related to each layer. The detailed taxonomy aims to shed
light on the current landscape, covering all MCS aspects and allowing
for a simple and clear classification of applications, methodologies, and
architectures.

• A significant improvement of the previously developed simulation envi-
ronment CrowdSenSim by implementing a set of novel features. The
novelties include easy-to-use city-wide street networks, more realistic
pedestrian mobility models, and real battery drain measurements over
several other features.

3



• An analysis of energy efficiency that poses the basis for sustainable
MCS data collection frameworks (DCFs). It includes both a theoretical
methodology to assess different DCFs and real energy measurements
conducted in a laboratory, simulated in large scale urban environments.

• A study that exploits crowdsensed data for a learning-driven estimation
of local businesses’ attractiveness in cities to show how MCS systems
can support urban planning.

• A novel efficient edge data centers deployment in real urban environ-
ments based on human mobility and traffic generated from mobile
devices. The citizens’ mobility is developed by feeding CrowdSenSim
with crowdsensed data.
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Chapter 1

Introduction

1.1 Context

In recent years, mobile crowdsensing (MCS) has become a promising and ap-
pealing data collection paradigm to monitor urban environment phenomena.
MCS systems rely on contributions from the smart devices of a large number
of citizens. Smartphones, tablets, and wearable devices are deployed widely
and are already equipped with a rich set of sensors, making them an excellent
source of information. Mobility and intelligence of humans guarantee higher
coverage and better context awareness if compared to traditional sensor
networks. The capillary spread of smart devices for our daily activities and
the rich set of built-in sensors are certainly the main key enablers leading to
the success of the MCS paradigm [1], [2]. According to Gartner statistics,
whether the first quarter of 2020 has seen a 20% decrease in the number
of worldwide smartphone sales due to COVID-19 impact, in 2019, it was
1.52 billion units [3]. The number of worldwide shipped wearable devices is
estimated to reach 453.19 million in 2022 [4]. Smart objects (e.g., glasses,
watches, helmets) are continually increasing their market and correspond to
a revenue predicted to reach USD 95.3 billion by 2021 [5]. Also, the crowd
analytics market has a compound annual growth rate of 24.3%, and it is pro-
jected to reach USD 1 142.5 million by 2021, rising from USD 385.1 million
of 2016 [6].

Many popular applications using smartphone sensors have been devel-
oped and are currently in use. To illustrate representative examples, MCS
can support studies for infrastructure management in civil engineering, such
as monitoring structural vibrations of a bridge. A real use case in the Harvard
Bridge (Boston, US) is given in [7], where data gathered from smartphones’
accelerometer used by taxi driver for navigation systems provide information
on the modal frequencies of the bridge. Glutensensor collects data to foster
healthy food by sharing images between celiac people and extracting context
information to map and rate restaurants and places [8]. Safestreet aggregates
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data from smart devices to monitor road surface conditions for safer driving
and less risk of car accidents [9]. GasMobile [10], HazeWatch [11], and
Third-Eye [12] rely on active citizen participation to monitor air pollution.
Creekwatch [13], developed by the IBM Almaden research center, permits
the monitoring of the conditions of the watershed through crowdsensed
collected data about the amount of water in the river bed, the amount of
trash in the river bank, the flow rate, and a picture of the waterway. Garbage
Watch [14] and WasteApp [15] allow monitoring the content of different
bins to improve the recycling program.

Smart devices can contribute an unlimited amount of sensed data, which
needs to be stored. As resources are locally limited, reporting data to a
central collector for processing and analysis represents a win-win solution to
enforce crowd intelligence [16], [17]. Distributed computing systems enable
access to gathered data and shared resources easily. On the one hand, the
cloud computing paradigm represents a central shared infrastructure that
provides a ubiquitous approach for efficient data management [18]. On the
other hand, moving the intelligence closer to the end-users by exploiting
paradigms like fog [19] and multi-access edge computing (MEC) [20] is a
win-win strategy to enhance the performance of MCS applications.

MCS can significantly improve citizens’ everyday life and provide new
perspectives to urban societies, being an essential enabler for building smart
cities of the future by exploiting ICT solutions [21], [22]. Moreover, citizens’
active participation can improve the spatial coverage of deployed sensing sys-
tems with no need for further investments. While urbanization is intensifying,
smart cities face significant deficits in infrastructure services. In this context,
MCS represents a promising approach to involving humans to improve urban
infrastructures’ monitoring and maintenance.

1.2 Motivation

MCS systems rely on users that contribute data gathered from their smart
devices and delivered to a central collector. Smartphones, tablets, and
wearable devices are widely deployed and equipped with a rich set of sensors,
making them an excellent source of information. An MCS campaign requires
citizens’ broad participation to be effective. Still, individuals may be reluctant
to join a campaign or contributing data, and the motivation is mainly due to
costs for sensing and delivery operations. Hence, collecting and reporting
data must not drain devices’ batteries to foster users’ extensive participation.
It is crucial to devise energy-efficient data collection frameworks (DCFs) for
a successful campaign and assess their performance according to different
key performance indicators (KPIs), depending on the campaign organizer.
The trade-off between the amount of gathered data and the sensing process’s
energy consumed is one of the most challenging issues that still require
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investigation. The desired objectives are to obtain a high amount and quality
of contributed data (i.e., to maximize the utility of sensing) with low energy
consumption, aiming to limit the collection of low-quality data. In literature,
only a few works propose sustainable MCS solutions, and none of them
scales to city-wide scenarios with realistic pedestrian mobility. When this
research started, no studies had so far analyzed the amount of collected
data and the associated energy costs of DCFs for large scale MCS campaigns
(e.g., thousands of users that move in city-wide scenarios over multiple
days). This Thesis fills this gap by proposing sustainable MCS solutions that
enable the development of different services in smart cities and presenting
novel taxonomies to bring clarity to the vast world of MCS systems. The
manuscript also illustrates consistent improvements to a previously developed
MCS simulator and discusses real use cases for urban environments.

1.3 List of Contributions

This Ph.D. thesis aims to investigate energy-efficient MCS systems, focus-
ing on how smart cities’ complex urban dynamics impact them. The most
significant contributions can be summarized as follows:

• A comprehensive study of existing literature presents MCS in a nutshell
and outlines the absence of unambiguous terms and definitions of basic
concepts.

• A description of the MCS data collection paradigm as a four-layered ar-
chitecture, divided into application, data, communication, and sensing
layers.

• Novel detailed taxonomies based on the layered architecture, which
shed light on the current landscape and classify applications, method-
ologies, and architectures by covering all MCS aspects.

• Additional features in the previously founded simulation environment
called CrowdSenSim, which outperforms other existing tools in the
MCS scenario. Novel features include real devices’ energy consump-
tions and more easy-to-use realistic pedestrian mobility models for any
real-world city street network.

• A novel energy-efficient MCS system and a methodology to compare dif-
ferent data collection frameworks. This approach includes models, real
measurements performed in a laboratory, and large scale simulations
with CrowdSenSim.

• A learning-based estimation of local businesses’ attractiveness based
on data crowdsensed from users.
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• A study to efficiently deploy edge data centers in urban environments
based on human mobility. It shows how moving the intelligence closer
to end-users with paradigms like multi-access edge computing (MEC)
is a win-win strategy to perform MCS operations quickly.

1.4 Thesis Structure

The manuscript is organized as follows:

• Chapter 2 presents basic notions that are essential to read the dis-
sertation. The preliminaries include a brief overview of smart cities
(Section 2.1) and mobile crowdsensing (MCS) (Section 2.2), basic
concepts on energy efficiency to develop sustainable MCS solutions
in urban environments (Section 2.3), and a discussion on distributed
computing paradigms, such as cloud computing, fog computing, and
multi-access edge computing (MEC) (Section 2.4).

• Chapter 3 presents MCS in a nutshell. It illustrates a primer with a
historical analysis (Section 3.1), discusses the main factors contributing
to the rise of MCS (Section 3.2), and proposes MCS as a layered
architecture (Section 3.3).

• Chapter 4 proposes a novel comprehensive taxonomy on MCS systems.
First, it explains the need for a clear taxonomy that sheds light on
unclear and undefined aspects, then illustrates detailed taxonomies
on the application (Section 4.1), data (Section 4.2), communication
(Section 4.3), and sensing layers (Section 4.4).

• Chapter 5 presents a background on simulators to assess the perfor-
mance of MCS activities in urban environments (Section 5.1), illustrates
the CrowdSenSim structure and modules (Section 5.2), proposes novel
features that consistently improve the previous version of the simulator,
such as city-wide scenarios and realistic pedestrian mobility models
(Section 5.3).

• Chapter 6 analyzes the energy efficiency in MCS data collection frame-
works (DCFs). First, it presents an overview of related works and DCFs
under analysis (Section 6.1). Then, it profiles the energy consumption
of DCFs with real experimental measurements (Section 6.2), proposes a
novel methodology for large scale analysis (Section 6.3), and evaluates
the performance by exploiting CrowdSenSim (Section 6.4).

• Chapter 7 illustrates a crowdsensed data-driven approach to estimate
local businesses’ attractiveness. After discussing background and moti-
vation on urban planning (Section 7.1) and a preliminary data analysis
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(Section 7.2), it proposes an ML-augmented methodology that exploits
pedestrian mobility based on crowdsensed data (Section 7.3). Then, it
discusses a data-driven evaluation (Section 7.4).

• Chapter 8 proposes an approach to deploy edge data centers in urban
environments based on citizens’ mobility. First, it discusses background
and motivation (Section 8.1). Then, it presents models for EDCs and
complex urban dynamics (Section 8.2). Finally, it proposes policies to
deploy EDCs (Section 8.3) evaluating them (Section 8.4).

• Chapter 9 concludes the work by discussing future directions, inter-
connections with other research areas (Section 9.1), and concluding
remarks (Section 9.2).

Fig. 1.1 shows the organization of this dissertation.
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Chapter 2

Background and Basic Notions

This chapter presents the background and discusses basic notions to under-
stand the main topics of the thesis better. First, it introduces the concept of
smart cities, which plays a central role in the sustainable development of
metropolitan areas. Second, it explains how mobile crowdsensing (MCS) rep-
resents a promising data collection paradigm to monitor phenomena in this
context. Then, it presents energy efficiency as one of the most challenging
issues to face. Finally, it discusses the most popular distributed computing
paradigms that support MCS services.

2.1 Smart Cities

Over the past century population living in urban areas has experienced
unprecedented growth. Only 10% of the worldwide population lived in
cities during the 20th century, while today the 50% lives in metropolitan
areas. This percentage is estimated to increase consistently in the next three
decades, up to reaching 68% of the global population by 2050 [23]. Hence,
providing efficient and sustainable solutions plays a fundamental role in
supporting urban growth and the lifestyle of citizens1. While cities occupy
only 2% of the Earth’s surface, urban areas contribute to 60% of water use,
80% of world gas emission, and 75% of energy consumption [24]. In this
context, it is crucial to monitor resources, their usage, and the underlying
infrastructure.

Nowadays, cities face complex challenges to support sustainable and
efficient development while ensuring citizens’ quality of life. To this end,
consistent research efforts are undergoing to provide innovative solutions
for public services. Smart cities exploit Information and Communication
Technology (ICT) solutions to improve citizens’ quality of life by adding
value to existing public infrastructure and services. Although there is no

1In the rest of the thesis, the terms citizens, crowd, participants, and users will be used
interchangeably
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widely accepted and precise definition of the smart city concept, it essentially
consists of taking advantage of ICT developments to benefit citizens. In
other words, a smart city aims to make available services for citizens by
exploiting an ICT platform while reducing efforts and costs required from
institutions, public administrations, and companies. The Internet of Things
(IoT) paradigm represents the candidate solution for deploying sensing infras-
tructures empowering smart cities’ applications in metropolitan areas [25].
The widespread diffusion of IoT devices enables the IoT paradigm’s urban
deployment, making the Internet more pervasive with connected objects
and bringing several benefits to develop sustainable ICT platforms for smart
cities. Public services essential for the community (e.g., public transportation,
street lamps, waste collection) can quickly become smart when equipped
with sensing, computing, storage, and communication capabilities.

Sustainable development requires continually monitoring resources (e.g.,
gas and water), their usage, and different phenomena that directly and
indirectly impact the citizens’ quality of life, such as air pollution, waste
management, and natural disasters. In this context, sensing represents a
crucial role in gathering the massive amount of data required to monitor
phenomena, resources, and infrastructures’ current status. Including citizens
in the loop of sensing represents a win-win solution for smart city applications
because it augments existing infrastructure capabilities and permits gathering
a large amount of data. To this end, mobile crowdsensing is a novel and
promising paradigm that allows collecting data from citizens’ smart devices
by exploiting ICT platforms’ capabilities without deploying new sensing
infrastructures and introducing related additional costs.

2.2 Mobile Crowdsensing (MCS)

This Section briefly introduces mobile crowdsensing (MCS). It provides basic
notions about how it represents a promising data collection paradigm for
smart cities, the most common MCS scenario, and some popular applications.
MCS will be discussed more in detail in Chapter 3.

2.2.1 A Promising Paradigm for Sustainable Data Collection

MCS has recently become a popular and appealing paradigm that can signifi-
cantly improve citizens’ quality of life and provide unexpected urban societies
perspectives. It is an essential solution for building smart cities of the future
that leverages sensing and communication capabilities [21], [22] provided
by common smart devices (e.g., smartphones, tablets, and wearables) used
in everyday life activities, such as communication, entertainment, healthcare,
and business [1], [2].
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Figure 2.1: The MCS cloud-based scenario

Ganti et al. introduced the term mobile crowdsensing in 2011 [26], indi-
cating an evolution and extension to the crowd of the mobile phone sensing
paradigm, which can is the forefather of MCS [27], [28]. Mobile phone
sensing was adopted when phones did not support current smart devices’
computation and communication capabilities. It mainly focused on individual
applications (e.g., personal health care, elderly fall detection). A definition
from Guo et al. clarifies the difference between these two paradigms [29]:
“MCS is a new sensing paradigm that empowers ordinary citizens to contribute
data sensed or generated from their mobile devices, aggregates and fuses the
data in the cloud for crowd intelligence extraction and people-centric service
delivery”. MCS campaigns need broad participation and data contribution
from a crowd of citizens to be effective. An individual may be reluctant to
share collected data for privacy concerns or device battery drain, and it is
crucial to investigate how to foster participation. A great research effort is
undergoing in recent years to investigate incentive mechanisms [30], [31],
[32], [33] and ensure privacy [34], [35].

2.2.2 The MCS Scenario

Fig. 2.1 illustrates the most common scenario of an MCS system and its
fundamental elements. The most relevant feature that characterizes MCS
systems is including humans in the sensing process loop, which has revealed
a win-win strategy [40]. Citizens utilize smartphones, tablets, wearable,
and IoT devices in everyday life, representing a widespread data source
for MCS systems. These smart devices have sensing and communication
capabilities that enable sensing and reporting data to a central collector.
Unlike traditional fixed sensor networks, these factors represent unlimited
possibilities to develop data collection campaigns with different purposes
to improve citizens’ quality of life. First, smart devices represent sensors
and communication nodes recharged continuously and maintained by users
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without any external intervention. Second, human intelligence and mobility
provide higher coverage and a deeper context-awareness than traditional
sensor networks with no need for further investments [41]. Accelerometer,
gyroscope, magnetometer, camera, and GPS are only a few representative
examples of sensors commonly embedded in mobile and IoT devices. Smart
devices sense and deliver data to a central database where information is
stored and made available to campaign organizers and stakeholders (e.g.,
academic and governmental institutions, companies, corporate businesses).
The central collector is usually placed in the cloud and responsible for data
storage, analysis, and processing.

2.2.3 Popular MCS Applications

As previously discussed, urban areas are facing consistent issues while de-
ploying infrastructure services for supporting sustainable development. This
Section discusses specific applications and use cases to illustrate how hu-
man involvement in monitoring and maintenance can represent a win-win
solution. MCS is essential to enable several applications in public trans-
portation, health care, environmental and traffic monitoring, emergency
management, and many other domains [28]. To give some representa-
tive examples, Creekwatch empowers the monitoring of watershed through
crowdsensed data, such as the amount of water in the river bed, trash in
the riverbank, and the flow rate [13]. The National Environment Agency of
Singapore uses HazeWatch to leverage crowd contribution for air monitor-
ing [11]. Waste management is a crucial topic in sustainable smart cities of
the future. Garbage Watch [14] and WasteApp [15] are two applications that
employ citizens to monitor the content of bins aiming to improve recycling.
Accelerometers embedded in smartphones over moving vehicles can help to
detect bridge vibrations [7]. MCS allows traffic management [42], [43] and
free parking spot detection, such as ParkSense that uses WiFi scans [44] or
ParkGauge that permits to share real-time information and detect driving
states with low-consuming sensors [45].

2.3 Energy Efficiency in MCS Systems

Providing solutions for more sustainable and greener development is the
most challenging issue we are facing worldwide. In this context, proposing
efficient and smart ICT systems can significantly reduce energy consumption.
For several reasons, the greener future’s scope attracts companies, private
citizens, public institutions, and governments. First, energy production
consistently affects the environment and requires reducing carbon footprints
and gas emissions. Second, and most important for industries, sustainable
progress has a relevant economic impact on bills. Also, companies care about
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green initiatives to gain more visibility for their brand on the market and more
attractivity to customers. Nowadays, researchers are making a great effort
to investigate energy-efficient approaches in distributed computing systems
and communication networks. In particular, data collection paradigms that
have a low impact on energy consumption represent a great research focus.

In this context, MCS campaigns require a vast amount of information
from smart devices, and battery consumption should be as low as possible not
to limit participants from contributing data. Most of the energy consumed by
mobile devices consists of sensing and reporting operations, which depend on
selected sensors and communication technologies. Usually, the energy spent
on delivery has a more significant impact than delivery. In MCS systems, the
energy efficiency can be seen as a trade-off between devices’ battery drain
and key performance indicators of campaigns, such as quality of information,
space coverage, amount of data [46], [47]. The MCS paradigm also enables
to develop sustainable data collection frameworks to avoid battery waste and
encourage the involvement of private citizens [48].

2.4 Distributed Computing Systems for MCS Services

In MCS campaigns, smart devices contribute a considerable amount of data
that needs to be stored, but local storage presents minimal capabilities.
Delivering data to distributed computing systems for processing and analysis
represents a win-win solution that enforces crowd intelligence [16], [17].
Distributed computing systems refer to paradigms that split computational
problems into small tasks executed by multiple entities, aiming to improve
performance and efficiency. MCS applications nowadays typically exploit
cloud computing, multi-access edge computing (MEC), and fog computing
among several distributed systems [37], [49], [50].

Cloud computing enables the access of shared storage and computational
infrastructure, assuring efficient data management with a ubiquitous ap-
proach [18], [51]. Nonetheless, the widespread diffusion of smart devices
makes it difficult for the cloud computing paradigm to fulfill the consistent
increase of high-performance and low-latency requirements from mobile
applications [52], [53]. To this end, the scope of fog computing and MEC
paradigms is to move the intelligence closer to end-users, representing a
win-win strategy for data collection paradigms like MCS that need to perform
operations quickly [54], [55], [56]. Fog computing was proposed as a cloud
extension by Cisco [19]. A fog platform typically combines many layers made
of a high number of nodes that provide storage, computation, and commu-
nication capabilities (e.g., base stations, access points, and gateways) [57].
Its peculiarity is that some layers are close to end-users. The European
Telecommunications Standards Institute (ETSI) standardized MEC in early
2017, changing the concept of mobile edge computing into multi-access edge
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computing to highlight it as the enabler of multiple access technologies and
cellular radio [58]. It makes available application-oriented capabilities at
a one-hop distance between end-used and core of mobile operators’ net-
works [20]. To illustrate with a few representative examples, EdgeSense is
a MEC-based MCS system that exploits a secured peer-to-peer network for
environmental monitoring [59]. RMCS is a Robust MCS architecture that
integrates MEC resources and deep learning to minimize the transmission
latency [60].
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Chapter 3

Mobile Crowdsensing (MCS) in
a Nutshell

This Chapter discusses MCS in a nutshell, focusing on reasons that made it a
prominent paradigm and motivations giving rise to it. Specifically, Section 3.1
overviews related surveys to guide the reader into past research and shows
the temporal evolution of pillar works in the area. Then, Section 3.2 provides
an overview of the main factors empowering MCS. Finally, Section 3.3
describes MCS as a layered architecture, illustrating each layer in detail.

3.1 A Primer on MCS

This Section presents a primer on MCS by examining and selecting from the
large body of literature the most relevant works that have guided research
in this field. First, it illustrates surveys related directly and indirectly to
MCS. Then, it discusses works that represent milestones by considering their
temporal evolution.

3.1.1 Related Surveys

MCS is a subject that embraces many different aspects, not necessarily related
between them (e.g., sensing and communication equipment). For this reason,
when examining related works and research efforts that contributed to MCS,
it is essential to consider different topics. This Section explores related works
by dividing them into five different main topics: MCS, mobile phone sensing,
wireless sensor networks (WSN), user recruitment, and privacy concerns.

Mobile Crowdsensing. Mobile Crowd Sensing and Computing (MCSC) is
the first name adopted by Guo et al. [61] to investigate how machine and
human intelligence are complementary in sensing and computing operations.
Users are network nodes that exploit their smart devices to gather and deliver
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information to the cloud, which has storage and computing capabilities to
empower crowd intelligence. Phuttharak et al. discuss the fundamental
characteristics of MCS architectures, focusing on task allocation, user recruit-
ment, data collection, and processing [63]. The most crucial challenges of
MCS systems and solutions to effectively use resources are discussed in [64].
Abualsaud et al. present several MCS applications in the context of IoT and
smart cities [65]. Xu at al. investigate interactions between MCS and social
networks (e.g., Twitter), focusing on public security and location-based ser-
vices [66]. To successfully accomplish MCS campaigns, it is crucial to assess
the Quality of Information (QoI), which still requires investigation efforts.
In [67], Restuccia et al. propose a framework to evaluate and improve the
QoI of collected data.

Mobile Phone Sensing. Mobile phone sensing represents the ancestor of
mobile crowdsensing. This paradigm was popular when mobile phones
did not have storage, communication, and computation capabilities as re-
cent advanced smart devices. Unlike MCS, investigation on mobile phone
sensing concentrated on personal sensing applications, such as individual
well-being or elderly fall detection. Existing literature in this field is vast,
including solutions for sensing and methodologies to aggregate data for
context awareness [27], [28].

Sensors & WSN. Sensors represent the most fundamental element in MCS
and the first step of the sensing process to gather data. Typically smart de-
vices embed sensing equipment, but some applications (e.g., environmental
monitoring [10], [68], [69]) requires specific sensors connected wirelessly
(e.g., Bluetooth). Ming et al. examine standard sensors embedded in mobile
devices and related application [70]. Participants in MCS campaigns repre-
sent nodes of mobile and dynamic Wireless Sensor Networks (WSNs). For
this reason, the broad literature on WSNs is crucial to empower MCS systems.
Several surveys investigate how the progress in sensing, communication, and
networking technologies contributed to empowering WSNs significantly [71],
[72], [73].

User Recruitment. The extensive participation of citizens and their data con-
tribution is critical for the success of an MCS campaign. User recruitment and
incentive mechanisms are crucial to enhance users’ willingness for sensing
and delivery operations. In [75], [76], the authors propose taxonomies and
use cases for incentive strategies. Zhang et al. discuss and compare several
research works that present mechanisms to recruit users and stimulate them
to contribute data [31].

Privacy Concerns. Privacy is one of the most challenging issues to address
when collecting data from citizens. Even out of this dissertation’s scope,
investigating privacy concerns in MCS is fundamental not to prevent user
contribution. The literature in this field is vast and includes many different
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Figure 3.1: Historical evolution of MCS milestones works

aspects and threats, such as tracking locations or disclosing private infor-
mation in image, audio, and video files. Several studies analyze privacy
concerns in user recruitment, task allocation, and selection [34]. Christin et
al. provide an overview of MCS applications and related threats to individual
privacy, focusing on how existing solutions address them and proposing other
countermeasures [35].

3.1.2 Historical Evolution of Milestones Works

This section examines the pillar works that significantly contributed to MCS
by presenting their temporal evolution. Fig. 3.1 illustrates the time of publi-
cation and divides the research studies into four groups:

• Mobile phone sensing and crowdsourcing;

• Seminal works;

• Simulators and platforms;

• Privacy and trust.

The following paragraphs discuss the milestones works by year to uncover
the time evolution of MCS.

2006. The term crowdsourcing initially appeared in a study published by
Howe [77] to provide a clear definition of this rising paradigm and discuss
its first applications and use cases. Burke et al. later proposed the concept of
participatory sensing as a promising paradigm to exploit citizens and their
mobile phones for collecting information [78].

2007. DietSense is one of the first widespread applications for health care
monitoring [79]. It aims to exploit mobile phones and their sensors for image
browsing, processing, and clustering, focusing mainly on nutrition.
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2008. CenceMe is the first application to combine mobile phone sensing with
social networks [80]. Gaonkar et al. proposed Micro-blog, the first system
to share and query content through mobile devices, provide various sensor
data, and enable multimedia blogs [81].

2010. The first survey on mobile phone sensing was proposed by Lane et
al. [27]. It presents a comprehensive classification of sensors and applications,
discussing scalability concerns from individual to community sensing and
data aggregation.

2011. The work presented by Ganti et al. is the first relevant survey that
specifically unveils MCS as a novel and promising paradigm, highlighting
the crowd potential to monitor phenomena in urban environments [26].
Christin et al. discussed privacy concerns related to participatory sensing
systems [35].

2013. Fostering citizens’ participation is the focus of one of the first MCS
platforms presented in [82]. Khan et al. provide a broad overview of ex-
isting mobile phone sensing works and the first classification on different
methodologies to involve citizens [28]. Vastardis et al. discuss different archi-
tectures of mobile social networks, their characteristics, and future research
directions [83]. MOSDEN had a significant impact as a collaborative sens-
ing framework to share information between users and several distributed
applications [84].

2014. ParticipAct Living Lab is the first and most relevant large-scale real
experiment involving data collection for one year from smart devices of
200 students of the University of Bologna [85]. Kantarci et al. present
a reputation-based mechanism to guarantee data integrity, where smart
devices can enhance public safety [86]. Guo et. al define the term Mobile
Crowdsensing in [29] by clarifying the necessary peculiarities of a system to
be defined as an MCS system. Pournajaf et al. presented threats to citizens’
privacy when data collection can lead to personal information disclosure,
discussing how privacy mechanisms in existing literature protect users [34].
Tanas et al. used the ns-3 network simulator to evaluate MCS systems’
performance by combining its specific features (e.g., network nodes’ mobility
characteristics with different communication technology interfaces) [88].

2015. Guo et al. highlight the combination between machine and human
intelligence to empower MCS systems and the central role of humans in the
sensing process [61].

2016. Chessa et al. propose a mechanism to enhance MCS systems’ perfor-
mance focusing on socio-technical networking aspects [89].

2017. CrowdSenSim is the first and most popular MCS simulator. It includes
independent modules dedicated to urban mobility, communication technolo-
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Figure 3.2: Factors contributing to the rise of MCS

gies, sensing equipment, and energy-related measurements according to the
needs of different campaigns [90].

3.2 Factors Contributing to the Rise of MCS

Different factors have contributed to the rise of MCS as one of the most
promising paradigms for data collection in urban environments. Fig. 3.2 illus-
trates the most relevant ones, which we discuss in the following paragraphs.

Mobile Phone Sensing. As already discussed, mobile phone sensing is the
ancestor of MCS. Unlike MCS, individual applications are the target of phone
sensing (e.g., fitness and healthcare [91]. Ubifit is a personal mobile app that
stimulates users to monitor their daily activities (e.g., walking, running, or
cycling) [92]. Other typical examples are diet monitoring [79], fall elderly
exposure [93], [94], [95], [96], transportation mode detection [97], [98],
[99], [100], speech recognition [101], and indoor navigation [103], [104],
[105].

Mobile smart devices/Wearables. One of the most empowering factors to
MCS has been the transition from mobile phones to smart devices. While
mobile phones permitted only phone calls and text messages, smart de-
vices embed sensing, communication, and computational capabilities that
empower the user experience. Wearables represent a precious source to
develop applications for improving sport and physical activities, also involv-
ing WSNs [106]. Body sensor networks represent a crucial data source for

28



health care monitoring (e.g., nutrition and medical treatments) [107], [108].
Wearable motion tracking systems and inertial measurement units (IMUs)
are representative examples for cost-effective motion tracking with a high
impact in human-robot interaction [109].

Crowdsourcing. Crowdsourcing is the data collection paradigm that has
driven phone sensing towards crowdsensing by including the crowd in the
sensing process and leveraging massive citizens’ participation. The concept of
crowdsourcing has seen different definitions according to the context [110],
[111], [112]. Howe coined the original term of crowdsourcing as the act
of a company or an institution in outsourcing tasks formerly performed by
employees to an undefined network of people in the form of an open call [77].
This definition opens to tasks accomplished collaboratively, but crowdsourc-
ing is not necessarily only collaborative. Several single citizens joining a
campaign and operating individually still match with the definition. The
novelty of crowdsourcing has also been in proposing incentives mechanisms
since the early days to engage many users [113], [114].

Human factor. The combination of human and machine intelligence enables
including humans in the loop of sensing, computing, and communicating
processes [61]. The human factor has a significant impact on MCS sys-
tems for many different reasons. First, citizens’ intelligence and mobility
guarantee higher coverage and better context awareness than traditional
sensor networks. Second, owners maintain their smart devices by themselves
without external intervention and periodically recharge them. Devising ef-
fective human-in-the-loop systems is challenging. Learning and predictive
approaches represent promising solutions to exploit human behaviors within
MCS systems [115], [116].

Cloud computing. Distributing computing paradigms represent a win-win
solution to analyze and process data, considering the limited resources of
local storage in mobile devices [16], [17]. MCS is one of the most prominent
paradigms in cloud-centric IoT systems, where mobile devices offer resources
through cloud platforms on a pay-as-you-go basis [37], [49], [50]. Mobile
devices contribute to a significant amount of collected data that needs to
be stored for analysis and processing. The cloud allows easy access to
shared infrastructures and resources with a ubiquitous approach for effective
information management [18], [51].

Internet of Things (IoT). The IoT paradigm presents a massive heterogene-
ity of devices, end systems, and link-layer technologies. Nonetheless, MCS
focuses on smart city applications, which narrows down the scope of IoT
applicability. In order to preserve the smart cities vision, urban IoT systems
should focus on improving the quality of citizens’ life while targeting sustain-
able development and providing added value to the community through the
most recent ICT systems [25]. To this end, MCS combines human contribu-
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tion and existing sensing infrastructures with no need to further investments.

Wireless Sensor Networks (WSN). WSNs are sensing infrastructures em-
ployed to monitor phenomena in urban environments. Sensing nodes, which
differ according to the context, in MCS consists of citizens and their smart de-
vices. As WSN nodes continuously increase their sensing, computational, and
communication power, several applications can run over the same WSN infras-
tructure by exploiting virtualization techniques [117]. The most challenging
issue in recent WSNs is to provide extensive scalability while maintain-
ing high performance. The Software-Defined Networking (SDN) approach
can be applied to address these issues and increase sustainability and effi-
ciency [118]. The increase of small sensors generates a considerable amount
of data that cannot be effectively processed and analyzed in WSNs due to
their weak communication capability. In this context, combining WSNs with
cloud computing represents a promising solution [119].

3.3 MCS as a Layered Architecture

This section introduces a four-layered architecture to illustrate the MCS
landscape. A similar proposal is discussed in [62], [63], but the different
rationale presented here is to follow the direction of command and control.
As shown in Fig. 3.3, the highest layer is the Application layer, which concerns
everything related to tasks and users. From top to bottom, the second layer
is the Data layer, which characterizes storage and analytics processes on
gathered information. Then, the third layer is the Communication layer that
comprises delivery techniques and communication technologies. The lowest
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layer is the Sensing layer, which includes sensing processes and modalities.
While this section discusses the architecture, Chapter 4 will exploit it to
present novel taxonomies for each layer.

Application layer. The application layer comprises all high-level characteris-
tics and methodologies of MCS systems. Fig. 3.4 illustrates generic operations
to organize and accomplish MCS campaigns, such as rewarding mechanisms
and user recruitment strategies to maximize the number of participants or
task selection and allocation mechanisms to optimize contributions and costs
users sustain. Sec. 4.1 will discuss taxonomies regarding this layer.

Data layer. The data layer includes the storage, analysis, and processing
of gathered information. Typically, as shown in Fig. 3.5, these operations
are located in the cloud or closer to end-users by exploiting fog and edge
computing. This layer includes not only raw data collected from sensors but
also inferred information. Sec. 4.2 will discuss taxonomies on this layer.

Communication layer. The communication layer indicates both methodolo-
gies and technologies to report to the central collector information gathered
through sensors. As shown in Fig. 3.6, smart devices usually embed different
communication technologies and interfaces (e.g., WiFi, 4G/LTE, Bluetooth),
and different operations can be performed by exploiting these interfaces
(e.g., coding, transmitting, avoid redundant data). Sec. 4.3 will present
taxonomies related to the communication layer.

Sensing layer. The sensing layer is the first and most crucial for MCS,
consisting of sensors, methodologies, and processes to acquire data. As
shown in Fig. 3.7, smart devices exploit embedded or connected sensors to
contribute data. Typical built-in sensors have the main scope to support basic
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device functionalities (e.g., microphone, light sensor to adjust the display
brightness, or accelerometer to orientate the monitor). Many other sensors
that are not necessary for primary usage are embedded because widespread
between users (e.g., GPS, camera, pressure) and fundamental for acquiring
data. Sec. 4.4 will propose taxonomies corresponding to this layer.
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Chapter 4

A Novel Taxonomy for MCS
Systems

This chapter brings the organization of the vast literature on MCS one step
further by proposing novel taxonomies based on the layered architecture
discussed in Section 3.3. The main aim of the taxonomy is to classify previous
works considering their “technological” layer, i.e., sensing, communication,
data processing, and application. While existing literature usually focuses on
specific MCS aspects (e.g., incentive mechanisms, task assignment, privacy
concerns), this novel perspective gives insights into issues and challenges for
each layer and its interconnections. The main focus is to establish consensus
on many concepts employed with different meanings and categorize the
vast amount of literature by following the proposed criteria. The proposed
taxonomies subdivide each architecture layer into two categories, as Fig. 4.1
illustrates. The application layer includes task and user categories, discussed
in Sec. 4.1. The data layer comprises management and processing groups,
explained in Sec. 4.2. The communication layer is divided in technologies
and reporting, presented in Sec. 4.3. Lastly, the sensing layer taxonomies
are divided in sampling process and elements proposed in Sec. 4.4. While
this chapter discusses the novel taxonomy in detail, it omits the detailed
classification of existing works for space reasons. The interested reader can
refer to [120].

4.1 Taxonomies on Application Layer

This Section analyzes the taxonomies of the application layer, mainly com-
posed of task and user categories. These are discussed with two correspond-
ing taxonomies, as shown in Fig. 4.2.
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Figure 4.1: General taxonomies on MCS four-layered architecture

4.1.1 Task

The upper part of Fig. 4.2 illustrates task-related taxonomies, which comprise
scheduling, assignment, and execution categories.

Scheduling. It illustrates task allocation to participants, which depends on
the type of contribution. A pro-active behavior requires users to actively
contribute data without a pre-assigned task. Contributors can autonomously
decide when and where to accomplish the task. Typical examples include
taking pictures for emergency management or public safety (e.g., floodings,
earthquakes, car accidents), and social networks applications [80], [121].
Participants follow a reactive approach when they receive precise tasks and
accomplish them accordingly. This policy requires that tasks are preliminarily
decided. Typical use cases include monitoring phenomena such as noise and
air pollution [69].

Assignment. It describes the process of assigning tasks to participants [34].
When the campaign presents an entity that dispatches tasks among users, the
approach is called central authority assignment. Common use cases include
environmental monitoring, such as measuring pollution [122] or nuclear
radiation [123]. Task distribution can also be decentralized when users
have the authority to forward tasks to other participants. Typical examples
are mobile social networks where users are interested in the same events
or activities, such as sharing public transport delays [124] or comparing
real-time prices of goods [125].

Execution. It refers to the methodology followed in executing tasks. The
category single task indicates that users need to accomplish only a type of task,
such as recording a video or measuring the temperature, or detecting noise
level in decibel [126]. On the other side, multi-tasking refers to campaigns
that require users to perform different types of tasks, typically assigned by
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a central authority. Some representative examples consist of monitoring
temperature and air quality or taking a picture associated with a measured
noise level.

4.1.2 User

An MCS campaign needs the large participation of users to be successful.
To this end, it is crucial to develop recruitment strategies, select contrib-
utors, and differentiate between participants. The lower part of Fig. 4.2
describes user-related taxonomies, which include recruitment, selection, and
type. Typically, the term user recruitment assumes two different meanings in
literature. More popularly, it refers to citizens joining a campaign and being
contributors. Less commonly, it is related to select users for accomplishing
a specific task between all possible participants. The taxonomy proposes to
capture this difference by introducing two different categories, namely user
recruitment and user selection. Fig. 4.3 clarifies how the whole user-related
process is intended in the taxonomy. Recruitment refers only to the approach
of recruiting participants, who can join through incentives or voluntarily.
Then, the campaign organizer allocates and distributes tasks to participants.
Finally, some users are selected to gather and deliver data to the central
collector.

Recruitment. It is voluntary when citizens spontaneously join an MCS cam-
paign for personal willingness and interests without receiving incentives
from organizers. Representative examples where citizens tend to volunteer
are healthcare applications for mapping restaurants with dietary require-
ments [8], noise monitoring [126], and air pollution [69]. To increase
participation, users can also be incentivized [127], [128], [129]. Literature is
vast in proposing many different strategies to empower participation [30],
[34], [130], which can be mainly classified into three groups [31]: money,
service, and entertainment. A monetary incentive consists of rewarding par-
ticipants with money in proportion to the amount and quality of contributed
data. Service incentives stimulate users by offering services provided by the
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system and needed from users (e.g., receiving the same type of collected
information on a broader scale). The entertainment category consists of
assigning tasks as games to accomplish with some competition between users
(e.g., through a leader board or levels to be completed).

Selection. It refers to selecting data contribution between all participants
and depends on better matching campaign requirements (e.g., spatial or
temporal coverage) according to different approaches (e.g., user density in a
particular area of interest or their availability). The selection is user centric
when gathering and delivering data depends only on participant willingness
to sense and report to the central collector, which does not send any requests.
The platform centric approach, instead, indicates that the central authority
decides who collects data according to several parameters. This decision is
taken following the quality of information, which can be related to different
indicators, such as the campaign coverage, the total amount of required data,
or the contribution density in a particular region of interest.

Type. It divides users into two different roles within an MCS system. A
participant is a contributor when collects and delivers data to the central
collector with no interest in receiving information. Typically this category
is guided by rewards (e.g., money) or willingness to help in accomplishing
the campaign target (e.g., helping the scientific community to map noise
pollution in cities [131]). The category consumer includes users that join an
MCS campaign for a personal interest. For instance, celiacs have an interest
in receiving data about dietary advice and restaurants [8]. Several MCS
campaigns have participants assuming both roles, for instance, when taking
pictures to share fuel prices [132].
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4.2 Taxonomies on Data Layer

This section presents the taxonomies on data layer. As shown in Fig. 4.4, it
is mainly divided in management and processing categories, which include
other subcategories.

4.2.1 Management

Data management comprises storage, format, and dimension categories. The
upper part of Fig. 4.4 illustrates subcategories of each group.

Storage. It concerns how to keep and maintain gathered data, and the
location used for storage. The centralized manner is based on storing data
in a single location, typically a database available in the cloud. It is usually
employed when consistent processing or analytics is required, such as for
emergency situation management [133] and urban monitoring [134]. A
distributed approach is usually exploited for delay-tolerant applications, such
as air quality [69] monitoring and urban planning [135]. Recent distributed
computing paradigms, such as fog and multi-access edge computing, em-
power this approach by making available resources closer to end users [136].

Format. It divides data according to its structure. Structured data is orga-
nized and clearly defined to be stored, processed, and analyzed. It is usually
self-explanatory, such as a specific identifier, location coordinates, and a
measured value (e.g., noise or air pollution). Unstructured data does not
present a specific identifier captured by search functions. Typical examples
are video, audio, images, and all other files requiring complex analysis.

Dimension. Dimension indicates the number of collected data types. Data is
single dimension when users gather only one type of data, such as when using
only one sensor (e.g., temperature or pressure). Data is multi-dimensional
when participants contribute more types by using multiple sensors (e.g.,
when uploading files in mobile social networks).
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4.2.2 Processing

After data storage, processing is the most crucial step in MCS systems. Tax-
onomies include pre-processing, analytics, and post-processing, as shown in
Fig. 4.4.

Pre-processing. It includes all the operations on contributed data before
analytics. When no operations are conducted, raw data is stored. It allows
applying inferring techniques at later stages by working on original unpro-
cessed data. Data can be manipulated through several strategies, but the
most common are filtering and denoising. They consist of refining information
by removing redundant and irrelevant data that also permits to reduce the
amount of data to be stored.

Analytics. It is related to the processes required to extract and infer mean-
ingful information from contributed data. The first category is ML and data
mining, which refers to all non-real-time techniques employed to identify
patterns, infer information, or predict future trends. Representative exam-
ples undergoing research efforts are indoor navigation systems and urban
planning. Analytics is real-time when it examines data as soon as delivered
to the central collector. This approach requires high computational resources
to be effective. Typical examples are traffic monitoring, unmanned vehicles,
and emergency management.

Post-processing. It includes all approaches employed after analytics. A
statistical analysis aims to infer information from quantitative inputs and
study the correlation between different factors. The category prediction
comprises all techniques that focus on determining future outcomes given
new inputs. A typical example is to predict arrival time, estimating the traffic
at a particular time of day and day of the week.

4.3 Taxonomies on Communication Layer

This Section proposes the taxonomies on the communication layer by an-
alyzing data reporting from mobile devices and their application domains
according to different sensing campaigns. Fig. 4.5 illustrates the two main
categories of technologies and reporting and their subcategories.

4.3.1 Technologies

This taxonomy include infrastructured and infrastructure-less. The upper part
of Fig. 4.5 shows also their subcategories.

Infrastructured. This category includes all technologies that exploit an in-
frastructure to establish a connection and deliver data, such as base stations
and access points. It comprises cellular data communications and WLAN
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interfaces. A sensing campaign typically employs cellular connectivity when
data collection presents latency bounds that cannot be guaranteed by WiFi
connectivity. For instance, real-time monitoring for parking availability can-
not employ WiFi [45]. Currently, 4G and LTE systems provide latencies
and data rates required from MCS applications, but 5G technology is bring-
ing a relevant contribution to MCS systems by providing network function
virtualization and high rates. When a campaign design does not present
delay constraints, WLAN interfaces allow saving costs without the need for
subscription fees. This approach is mostly used when organizers do not
ask for specific communication technologies, such as mapping air and noise
pollution.

Infrastructure-less. It includes device-to-device (D2D) communications,
which require proximity between devices to exchange data but do not need
any access point. One of the most employed D2D standards is WiFi Direct,
which perfectly fits MCS systems characterized by a group owner and group
members. A system where participants sense and report data after electing a
group owner is presented in [137]. LTE-Direct is another emerging paradigm,
which presents low energy consumption while discovering devices rapidly
in proximity. Another typical solution for MCS systems is Bluetooth [138].
Specifically, Bluetooth Low Energy (BLE) is a low power version.

4.3.2 Reporting

The scope of reporting is to highlight how smart devices deliver gathered
information to the data collector. It is not related with communication
technologies and comprises upload mode, methodology, and timing. Their
subcategories are shown in the lower part of Fig. 4.5.

Upload mode. It considers if data reporting is in real-time or delayed accord-
ing to policies on delay tolerance. Upload is relay when reporting happens
just after sensing in a real-time manner. Whenever real-time delivery is
impossible, samples are discarded to avoid energy waste [139]. Emergency
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management and traffic monitoring applications (e.g., Waze [140]) are repre-
sentative examples of this class. When applications permit delay-tolerant data
delivery, reporting is store and forward. It usually requires to label data with
timestamps [141] and includes applications such as urban mobility [124]
and gluten sensor to share healthy food in restaurants [8].

Methodology. It discusses if smart devices accomplish sensing tasks indi-
vidually or acting as peers. The execution methodology is individual when
participants execute tasks with no interactions with other users. A collabora-
tive methodology is when participants exchange information and cooperate
as peers to accomplish tasks. In this approach, usually, groups are created
by exploiting short-range communication technologies, such as Bluetooth
or WiFi-direct [138]. Hierarchical policies may elect a superuser who is
responsible for delivering data for the whole group. To this end, different
incentives can be assigned within the same group.

Timing. It includes policies that require users to collect data at the same
time or not. Execution timing is synchronous when sensing campaigns aim
to compare phenomena simultaneously, and participants must start and fin-
ish sensing in a specific time window. Typically, users can communicate
between themselves to better synchronize the sensing phase. Representative
examples consist in comparing real-time prices of goods [125], and traffic
conditions [142]. Timing is asynchronous when sensing processes of partic-
ipants do not necessarily need to be within the same time interval. Some
examples are air pollution [10] and noise [131] mapping.

4.4 Taxonomies on Sensing Layer

This Section analyzes the sensing layer and its taxonomies, which include
elements and sampling process. Fig. 4.6 illustrates sensing layer and all its
subcategories. Note that the scope of these taxonomies is not to consider
technical aspects of sensors as they are already very well investigated in the
literature on smartphones [70], [74] and mobile phone sensing [27], [28].
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4.4.1 Elements

Sensing elements comprise deployment, activity, and acquisition. The upper
part of Fig. 4.6 shows all subcategories related to elements.

Deployment. It differentiates between dedicated and non-dedicated sen-
sors [143]. Smart devices embed most sensors for their basic operations
(e.g., the light sensor to adjust screen brightness orthe microphone for phone
calls) or added functionalities (e.g., GPS for navigation). These sensors are
non-dedicated because they cover multiple purposes. Some applications can
require additional dedicated sensors for specific purposes. These sensors are
standalone and typically not embedded but connected to smart devices via
cable or wireless technologies such as Near Field Communications (NFC)
or Bluetooth. Representative examples are the gluten sensor to detect food
allergies [8], and other sensors for environmental monitoring, such as dust
for air quality [144] or nuclear radiation [123].

Activity. It includes always-on and on-demand sensors. Smart devices embed
several basic always-on sensors, which cannot be switched off and furnish
essential functionalities to operate. Typical examples are accelerometer
and gyroscope for monitoring rotation or light sensor to adjust the screen
brightness. They consume a small amount of energy and can be used for many
different applications, like activity recognition [145], [146], [147]. Other
sensors are on-demand because they can be switched on and off according
to many different policies (e.g., manually or automatically through context
awareness). Usually, they consume more energy than the basic ones and, in
normal conditions, are disabled. Camera for taking pictures, microphone to
detect noise, and GPS for navigation are typical examples [132].

Acquisition. It includes homogeneous or heterogeneous data, according to
the scope of the sensing campaign and required sensors. Data acquisition
is homogeneous if it requires only one data type, such as detecting air qual-
ity [122] or noise level in dB [131]. When a sensing campaign aims to
collect different types of data, the acquisition is heterogeneous, and typically
it involves multiple sensors (e.g., monitoring traffic condition [140].

4.4.2 Sampling Process

Sampling process analyzes decision-making policies for sensing and includes
frequency, responsibility, and user involvement. Their subcategories are shown
in the lower part of Fig. 4.6.

Frequency. It investigates how often sampling should take place. Sensing is
continuous when sampling is executed regularly, and tasks are accomplished
independently by context. This process continues until the sensing organizer
or the device owner stops it and can be very energy consuming according
to the sampling rate. Environmental monitoring is a typical example of
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continuous sensing, such as air quality or noise detection [69]. When some
events or a specific context trigger sensing, the sampling frequency is event-
based. This is usually energy-consuming, and representative examples are
taking pictures in emergency management, healthcare applications [8], or
activity recognition [124].

Responsibility. It examines which entity makes sampling decisions. Re-
sponsibility is given to mobile devices when independently from a central
authority, they can sense and deliver data according to different possible
policies. This approach can include both a manual intervention from a user
or an application running in the background for context-awareness. Sharing
real-time costs is a typical example [148]. In the centralized approach, a cen-
tral collector is responsible for making sampling decisions and communicate
them to participants. It is beneficial to reach a certain amount of data or
space coverage because the central collector knows already received data.
Besides, it allows saving a consistent amount of energy.

User involvement. It is a very generic concept in MCS literature, often
ambiguous due to the context [78]. This taxonomy aims to clarify the concept
of user involvement and provide a unique classification of its categories. The
term user involvement is used to specify if the sensing process needs or
not an active user intervention, and it is classified as opportunistic and
participatory. When a direct user action is required to sense data, the
approach is participatory. Participants are responsible for accomplishing
tasks and meeting the campaign requirements by actively deciding where and
when to sense data through their devices. They can accept or decline tasks
before manually performing any operations [29]. Typically, this approach
presents a high data quality due to human intelligence. Representative
examples are taking pictures for different applications [125], and record
audio signals [78], [126]. A direct user intervention often leads to lower user
willingness to contribute, and an application should run in the background
to gather data. Direct user involvement is not required in the opportunistic
approach. In this case, users have only to join a campaign, and an application
running on background and communicating directly with the MCS platform
will be responsible for the whole fully automated sensing process. Unlike
the participatory approach, the platform can dynamically change tasks, and
smart devices are responsible for context awareness. This approach requires
energy-saving policies to preserve devices’ duration [150]. A typical example
is monitoring road conditions [149].
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Chapter 5

Improving CrowdSenSim with
Novel Realistic Features

This chapter presents the novel developed features over the simulation
environment called CrowdSenSim. First, it overviews existing simulators and
provides motivations to develop CrowdSenSim and its additional features.
Then, it presents the current structure of the simulator, discussing each
module. Finally, it explains novel features and discusses them in detail.

5.1 Background and Motivation

This Section provides background on existing MCS simulators and puts the
basis for additional novel features in CrowdSenSim. An MCS campaign needs
large data contributions from citizens to be successfully accomplished [151],
and it looks unfeasible to develop testbeds for large-scale urban environments.
Simulators represent a solution, but they need realistic settings, such as
user mobility, applications, sensing, and communication equipment. Before
CrowdSenSim, previous simulation tools used with MCS purposes focused
on communications or mobility in open spaces, but it was not enough to
evaluate realistic MCS campaigns [152]. Network Simulator 3 (NS-3) was
used considering mobile users as network nodes [88]. While this approach
provides very accurate simulation on communication aspects, it cannot scale
to thousands of citizens and campaign duration. CupCarbon is a wireless
sensor network (WSN) simulator that generates discrete events in the context
of smart cities and IoT environments [154]. It provides the possibility to
simulate WSN on real street networks through OpenStreetMap but does not
scale to realistic numbers of citizens. A simulator for MCS activities in a city
parking scenario is presented in [155]. The authors propose to extend the
simulator in more generic scenarios, but the current implementation does
not consider data collected from devices’ sensors.
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When CrowdSenSim was released, it covered many of the pitfalls pre-
sented by previous simulators [90]. It also provided support to smart city
applications, such as solutions for smart lighting [153]. Based on inde-
pendent modules (e.g., communication, sensing, mobility, MCS inputs), it
enabled researchers to investigate different aspects, such as energy con-
sumption, pedestrian movements, and data contribution. Some years have
passed since the first release of CrowdSenSim, but it has continuously been
improved. This Chapter illustrates the most significant novelties and their
impact on simulating MCS campaigns, such as real-world street networks,
more realistic pedestrian spatial patterns and mobility models, and real
measurements on devices’ energy consumptions.

5.2 The CrowdSenSim Structure

This section illustrates the CrowdSenSim architecture, describing the novel
features and their impact on MCS.

5.2.1 General Architecture

Figure 5.1 exhibits the new CrowdSenSim modular architecture. Most im-
pactful novelties comprise real energy measurements (will be discussed in
details in Chap. 6), real-world street networks, and realistic pedestrian mo-
bility models. CrowdSenSim simulates a certain number of pedestrians (in
the order of thousands) that walk on the chosen real-world street network.
While walking, users contribute data sensed through devices’ sensors and
transmitted via cellular or WiFi interfaces, according to campaign specifi-
cations. The event generator creates events, such as citizens’ arrivals in a
defined street network node at a specific moment of the simulation runtime.
To create these events, the simulator uses pedestrian mobility models, real
urban layouts, positions of antennas, and MCS inputs following campaign
specifications defined in a configuration file. After the list of events is created,
the engine uses it to simulate users’ behaviors according to different events.
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5.2.2 City Layout

This module provides real city street networks given by coordinates (latitude
and longitude), where simulated pedestrians move and contribute data. The
"old" simulator needed a .txt file with all the coordinates, and it represented
a bottleneck to expand the simulator to worldwide users and researchers.
This feature represents a very impactful novelty, as now the simulator auto-
matically downloads the required coordinates from OpenStreetMap (OSM)
by using OSMnx, an open-source Python package [156]. Also, CrowdSenSim
exploits the AOP algorithm (discussed in 5.3) to provide higher precision
to the street network and giving the possibility to decide the granularity of
nodes where MCS participants walk.

5.2.3 User Mobility and Event Generation

This module generates spatial and temporal patterns of participants. Pedes-
trian trajectories have random starting and ending nodes regulated by users’
walking periods over the chosen street network. Different realistic mobility
models can regulate the walking patterns according to campaign require-
ments. Mobility can be based on real traces, or random walking, or depending
on social interactions and citizens’ behaviors that differ city by city, such as
following Google Popular Times1. Pedestrians have specific walking periods
(e.g., 30 mins), and their trajectories are a list of discrete events. Pedestrians
jump from one node to another one, following the network topology with a
fixed speed, usually distributed between [1 - 1.5]m/s.

5.2.4 Simulator Engine

The engine is written in C++. It requires a list of events as input and
generates users’ actions accordingly. Events trigger sensing and communi-
cation activities to contribute data to the central collector. It also generates
movements on the street network according to the mobility models.

5.3 Realistic Pedestrian Mobility

This section illustrates in detail CrowdSenSim novel features. First, it dis-
cusses how real street networks are generated for any selected city. Then, it
discusses various realistic pedestrian mobility models, assessing the perfor-
mance. Note that real energy-related experiments and measures, which is
another significant innovation, will be considered in Chapter 6.

1https://support.google.com/business/answer/2721884
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Figure 5.2: Street network granularity for different cities.

5.3.1 Real Worldwide City Street Networks

One of the most impactful features in the history of CrowdSenSim as a
software product adopted worldwide is the possibility to perform simulations
in any city by automatically downloading street networks without the need
to input coordinates. This feature consists of two phases. First, incorporating
a Python library called OSMnx developed by Geoff Boeing that has provided
a tool to download and simplify OSM coordinates [156]. Then, developing
the AOP algorithm to have uniform street networks with custom granularity.

The AOP algorithm. OSM makes available a set of coordinates to generate
a graph of any street networks, seen as a set of nodes and links. OSMnx,
as previously discussed, enables to download this set of coordinates and
simplifies it. The main shortcoming for MCS purposes is that the resulting
street network does not have a uniform granularity of nodes. If used to
generate pedestrians that walk on the graph, it would unrealistically result
in citizens’ different densities in different areas. The AOP algorithm was
developed to overcome this issue. AOP aims to increase the graph’s precision
by reaching a fixed uniform target distance among any two adjacent nodes.
The target distance can be as low as 1 m. Two different algorithms are
proposed to interpolate the location of the nodes appended to reach the
target distance. V-AOP reflects the precise range between two nodes in the
OSM graph. L-AOP follows a linear approximation of the distance, decreasing
the required computation time. A curious reader can find the implementation
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details of V-AOP and L-AOP in [157].
Fig. 5.2 presents the graphs of street networks from two cities. Brancolino

is a village in northern Italy, while Luxembourg city is a mid-size European
capital. The figure exhibits the different precisions of graphs obtained with
OSM (Fig. 5.2(a)), OSMnx (Fig. 5.2(b) and Fig. 5.2(d)) and AOP (Fig. 5.2(c)
and Fig. 5.2(e)). AOP is generic enough to be applied to any case in which
the precision of OSM is not sufficient.

5.3.2 Pedestrian Mobility Models

Simulations exploit two different pedestrian arrival models. The first ap-
proach is called U-MOB and arrivals are uniformly distributed over simulation
runtime. The second approach is called D-MOB and arrivals depend on traces
taken from the popular MCS dataset ParticipAct [159].

The U-MOB Mobility Model. U-MOB generates arrivals in a uniformly
distributed fashion over simulation runtime. Usually, the period is one hour
long to enable comparisons with D-MOB because ParticipAct traces have that
granularity. Pedestrians who have a walking period at different hours count
as one arrival.

The D-MOB Mobility Model. D-MOB is based on the ParticipAct dataset,
collected from an MCS campaign of 170 students of the University of Bologna
in the Emilia Romagna region (Italy) [159]. As the ParticipAct dataset is not
publicly available, D-MOB is extracted by a profile of the average number of
arrivals over a week. In particular, fixed the simulation period, the time is
divided in hours and it is estimated the minimum number of users to allocate
so that arrivals follow the ParticipAct profile.

The simulator implements two approaches for D-MOB. The Contact-Only-
Distribution (COD) approach allocates hourly pedestrians until reaching the
average number of contacts provided by the dataset. Once the preliminary
phase is finished, it assigns the remaining users proportionally to the hourly
number of contacts. The Contact and User-Distribution (CUD) method is
hybrid. The first phase behaves the same as COD, but then it allocates the
remaining number of users proportionally to the number of hours of the
simulation time.

Fig. 5.3 shows an example of COD and CUD arrivals over a 36 hours
period with 50, 000 users.

5.3.3 Performance Evaluation

Performance evaluation discusses the scalability of the AOP procedure, hu-
man mobility metrics, and the accuracy of D-MOB arrivals methods.

Scalability of AOP. The street network topology and the original accuracy
of OSM influence the scalability of the AOP approach. Experiments have a
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Figure 5.4: Computational time and relative accuracy of V-AOP and L-AOP

target distance of 3 m. Simulations are performed on a Linux Ubuntu 16.04
laptop, with Intel ®Core TM i7-4710HQ 2.50 GHz x8 CPU, and a 7.7 GiB
system memory. AOP requires more computational time for bigger cities.
Considering two cities of comparable sizes, the one with lower original accu-
racy will take less time to be processed. We selected locations with increasing
area and latitude (for the approximation of the Earth axis), utilizing V-AOP
and L-AOP for evaluation purposes. The time needed for computation is
proportional to the number of original nodes and the average edge length.
To give some examples, AOP requires less execution time for municipalities
like Edinburgh (171, 271 initial edges, average length 17.54 m) or Genoa
(166, 479 initial edges, average length 15.31 m) than Novosibirsk (133, 556
initial edges, average length 42.69 m). The time difference between the two
approaches is negligible for small and medium cities, but it consistently in-
creases with the city’s size and the original number of edges. L-AOP requires
less time than V-AOP (e.g., in St Petersburg, the difference of computational
times is approximately 100 s).

Human mobility metrics. The performance of U-MOB and D-MOB is evalu-
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Figure 5.5: Analysis of contact distribution and stability of contacts

ated by introducing two different metrics. Simulations are performed with
50, 000 participants that walk for 2 days. Timeslots are 1 minute long. Two
pedestrians have contact if they are at a distance R closer than 50 m. The
first metric is the per-User Average Contacts (UAC):

UACi �
1
Ti
·

Ti∑
j�1

n j,i , (5.1)

where Ti is the period (number of timeslots) that the pedestrian i walk across
the street network, and n j,i is the number of contacts in timeslot j. The
stability coefficient (SC) is the second metric [161]:

SCi �
1
Ti
·

Ti∑
j�1

|n j+1,i \ n j,i | + |n j,i \ n j+1,i |

|n j,i | + |n j+1,i |
, (5.2)

where n j,i is the set of neighbors of participant i in timeslot j, |n j+1,i \ n j,i |

are the contacts that i loses between timeslots j and j+1 and |n j,i \n j+1,i | are
the contacts that i acquires between timeslots j and j + 1. SC represents how
often a citizen changes contacts. Fig. 5.5 exploits the cumulative distribution
function (CDF) to compare U-MOB and D-MOB for both metrics. Fig. 5.5(a)
exhibits that for the UAC metricU-MOB based on uniform arrivals almost
overlaps D-MOB obtained with ParticipAct. Fig. 5.5(b) illustrates that 50%
of participants stay in contact for two adjacent timeslots. Approximately for
75 % of pedestrians, almost 30 % of neighbors is stable with values of SC
lower than 0.7.

Accuracy of the D-MOB arrivals methods. Two different experiments in
Luxembourg city are conducted to assess the accuracy of D-MOB. The first
experiment presents four scenarios with simulation time set to 12 hours and
an increasing number of participants. Fig. 5.6(a) illustrates the relative error
comparing COD and CUD for D-MOB. As the error is below the 0.25% the
accuracy is high and almost constant for different numbers of participants.
The second experiment focuses on assessing the accuracy by jointly increas-
ing the simulation time and participants’ number. Fig. 5.6(b) exhibits the
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Figure 5.6: Accuracy of mobility models

obtained results for various increasing factors. Note that an increasing factor
of 1× corresponds to a simulation period of 24 hours and 10, 000 pedestrians.
Results are accurate, with the greatest error at almost 0.4 %. As expected,
the lowest number of participants corresponds to the biggest error.
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Chapter 6

Analyzing Energy Efficiency in
MCS Data Collection
Frameworks

As introduced in previous Chapters, devising energy-efficient data collec-
tion frameworks (DCF) is essential to foster users’ participation and make a
campaign effective. Ensuring devices’ duration while sensing and delivering
data is one of the most challenging issues to accomplish MCS campaigns.
Despite literature to build large-scale MCS applications is vast, the design of
efficient DCFs still requires investigation, and only a few works have tried to
analyze the performance of DCFs from an experimental perspective. To fill
this gap, this chapter proposes a novel experimental methodology for com-
paring and assessing the performance of different DCFs. It consists of three
different phases. First, an Android application is developed to implement
different DCFs. Second, a power monitor and Wireshark profile energy- and
network-related performance. Third, the CrowdSenSim simulator is fed with
the obtained traces to assess large urban environments’ performance.

6.1 Background and Motivation

This Section discusses related works and illustrates three popular DCFs under
study.

6.1.1 Related Works

DCFs provide mechanisms to accomplish MCS campaigns aiming to save costs
(e.g., monetary rewards or energy consumption) while maximizing specific
key performance indicators, such as the spatial and temporal coverage or
the quality of data while saving costs [47]. In [46] the authors analyzes
the energy consumption related to the amount of gathered data and present
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both on-line and off-line use cases to allocate tasks efficiently. Scheduling
multiple MCS tasks to maximize the quality of information and minimize
the energy cost is studied in [162]. Zhao et al. present an energy-efficient
mechanism that allocates tasks by minimizing the time required for sensing
through an NP-hard problem. CARDAP is a distributed DCF based on a fog
computing platform that supports efficient data analytics [54]. Another
fog computing architecture is presented in [48], where the authors propose
multiple criteria to recruit users efficiently. Minimize the user arrival time and
sensing duration to save energy is proposed in [163]. In [166] the authors
propose a framework that minimizes energy consumption by dividing users
into different groups according to their costs and selecting them for reporting.
At the time of writing, no studies investigate and compare the performance
of DCFs in large scale campaigns to mimic a real MCS deployment. This
chapter tackles this challenge into two phases. First, by implementing and
assessing the performance of DCFs. Then, by exploiting CrowdSenSim to run
simulations in large-scale urban environments.

6.1.2 DCFs under Analysis

The proposed methodology compares three DCFs, which include different
approaches with specific properties. These DCFs represent three categories
that also include other solutions proposed in the existing literature.

DDF - Deterministic Distributed Framework. DDF is an approach tailored
for opportunistic sensing campaigns to enhance energy-efficient contribu-
tions [158]. Aiming to save energy consumption for end-users’ devices, this
DCF exploits the central collector’s utility in receiving a type of data from a
specific region to decide who should contribute with a distributed approach.
Smart devices periodically receive beacons from the central collector and
locally decide when performing sensing operations according to different
parameters, such as the device’s battery level.

PDA - Probabilistic Distributed Algorithm. PDA is an algorithm for oppor-
tunistic MCS campaigns that exploits a probabilistic mechanism to minimize
data redundancy and reduce mobile devices’ energy consumption [168].
To this end, smart devices locally determine when sensing and delivering
information. Unlike DDF, this probabilistic method considers independent
events and does not include devices’ historical behaviors.

PCS - Piggyback Crowdsensing. PCS focuses on regular device activity to
minimize energy costs related to sensing and delivery (e.g., phone calls or
applications) [169]. This approach significantly reduces the battery drain
because it does not require smart devices to use communications interfaces
or sensors specifically for the MCS campaign. PCS perfectly fits delay-tolerant
applications because it does not consider any priority or feedback from the
collector to receive data.
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Figure 6.1: MCS data collection end-to-end: role of DCF and DRM

6.2 Profiling Energy Consumption of DCFs

This Section illustrates the experimental methodology proposed to compare
and evaluate the DCFs under analysis. First, it describes the development
of an Android application to implement the DCFs. Second, it presents
experiments conducted in a laboratory using Wireshark for network analyses
and a Power Monitor for energy measurements. These experimental results
will be used in the next Section to feed CrowdSenSim for evaluating the
DCFs in realistic city-wide scenarios.

6.2.1 Data Reporting Mechanisms (DRM)

A DCF comprises different elements, as shown in Figure 6.1 . The fundamen-
tal part is the data reporting mechanism (DRM), representing the approach
to deliver information. Other elements can include techniques to send in-
formation to users about the data utility or task allocation strategies. In
the following, the most common DRMs will be presented. Different DCMs
consider different DRMs.

Continuous-DRM (CON). CON is based on delivering data as soon as gath-
ered. It needs communication interfaces always-on and implies an energy-
consuming process for participants. This mechanism is commonly used in
real-time campaigns, such as DDF.

Delayed-DRM (DEL). DEL consists of reporting information when sensing
is completed. It does not require sending data continuously, consuming less
energy. DEL is typically employed for delay-tolerant campaigns, such as PCS.

Probabilistic-DRM (PRO). PRO is a DRM with characteristics in the middle
of CON and DEL. It generates a value for each timeslot and compares it to a
threshold to decide if reporting data. PDA exploits PRO.

6.2.2 The Application Architecture in a Nutshell

To implement the proposed DRMs, a custom Android application has been
developed. It follows the REST guidelines, such as other popular works in
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(a) Architecture of the mobile application (b) Power measurements setup

Figure 6.2: Experimental set-up

the MCS domain [170], [173]. To be REST-complain, the application is based
on self-descriptive resources linked to each other, with a uniform interface
to decouple the architecture using HTTP methods to interact with the cloud.
Fig. 6.2(a) shows the client-server architecture and all its components. The
public WiFi network EDUROAM provides the connection between the smart
device under analysis and the central collector. The programming language
used for the development is Java, and the server-side scripting language
for web-development is PHP. The application is compatible with Android
Oreo 8.0 (API level 26), but Marshmallow 6.0 (API level 23) is the minimum
supported version. The central collector is a laptop used for storage and
processing, exploiting XAMPP (v7.1.8 - 32bit) with a unique distribution
Apache web server and phpMyAdmin to manage the database based on
MariaDB. Each DCF impacts the implementation design of DRMs according
to its characteristic features. For instance, CON and PRO store the collected
information in a buffer, while DEL needs a local database, which guarantees
reliability.

6.2.3 Experimental Set-up

Fig. 6.2(b) illustrates the experimental setup to obtain energy profiles of the
different DRMs. A power monitor enables energy measurements, similarly to
existing literature [174], [175]. The smartphone under analysis is a Wiko
Sunny running Android Marshmallow version 6.0 (API Level 23), equipped
with a quad-core 1.3 GHz Cortex-A7 processor, and powered by a 1 200 mA,
3.7 V battery 1. For experimental purposes, the application exploits the
accelerometer, proximity sensor, and GPS for sensing. The cloud collector
is the laptop, equipped with a dual-core 2.6 GHz Intel i5-4210M, 8 GB of
RAM, a 256 GB Crucial SSD as storage, and a Realtek card for WiFi 802.11
b/g/n connectivity. The hypothesis is consistent as the laptop exceeds the

1Available at http://it.wikomobile.com/m1330-sunny
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Figure 6.3: Screenshot of power monitor measurements
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0 500 1 000 1 500 2 000 2 500

0

100

200

300

400

500

600

700

800

900

Sensing + Probabilistic Reporting

Time (s)

C
ur

re
nt

(m
A

)

(c) Probabilistic DRM (PRO)

Figure 6.4: Real energy measurements performed with Power Monitor for
different data reporting mechanisms (DRMs)

smartphone performance. The power monitor hardware is by Monsoon2.
Unlike existing works [176], [177], the power monitor directly powers the
smartphone to substitute the internal battery in the equivalent circuit and
directly retrieve measures.

6.2.4 Experimental Results

This Section discusses results obtained from energy- and network-related
experiments conducted by implementing the DRMs. Different DRMs have
different times and costs for reporting. For instance, DEL transmits only in
specific timeslots, while CON has always-on interfaces. For this reason, the
implemented campaign considers the same sensing timeslots for each DRM
(e.g., 30 minutes). As a consequence, all DRMs collect the same amount of
information to deliver with different delivery times. For instance, DEL senses
for 30 minutes and delivers collected data in 6 minutes.

Fig. 6.3 shows the profile of DEL as a representative example. In particular,
it highlights different activities at different times (e.g., data reporting after
sensing is finished).

Fig. 6.4 illustrates the instantaneous current drain of CON, DEL, and
PRO when delivering information. In CON, the graph is bursty because the
smartphone transmits readings as soon as taken. As shown in Fig. 6.4(a),

2Available at http://www.msoon.com/LabEquipment/PowerMonitor/
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Figure 6.5: CDF of energy spent for different reporting approaches

the reporting time is short but corresponds to a higher current drain to
maintain the interface active. Unlike CON, the delayed approach (DEL) has
a shorter delivery time because it happens after sensing is finished, allowing
to maintain the interface active for a small time window. As Fig. 6.4(b)
shows, the interface activation creates a peak around the 2150 second, but
the current drain is on average lower than CON. PRO presents a performance
in the middle of the two previous approaches, as shown in Fig. 6.4(c). Even
if the network interface stays active for a more extended period than CON, it
corresponds to a lower current drain on average.

Fig. 6.5 shows the CDF corresponding to the battery consumption. Specif-
ically, Fig. 6.5(a) illustrates the various DRMs and Fig. 6.5(b) highlights
the impact of the threshold δ for data tranmission in PRO. note that each
timeslot has a duration of 40 seconds. The battery drain in CON is lower
than 75 mA for a consistent amount of time. Unlike CON, DEL presents on
average higher instantaneous peak values. While CON achieves peak values
above 150 mA for 50% of the delivery period, DEL exhibits values above 40
mA. Such behavior is expected from the theoretical results on WiFi energy
consumption as one of the substantial components to the total energy budget
depends on the traffic load [178]. On the one side, in DEL the interface is
active for shorter but transmitting higher bursts of packets each time. On
the other side, CON sends a few packets per time for longer. PRO shows
an intermediate behavior between the two previous approaches. In PRO, a
higher value of the threshold δ translates to a higher probability to deliver
data. This corresponds to different distributions of the instantaneous current
peak values, as shown in Fig. 6.5(b). The peak values are below 75 for 75%
of the delivery period when δ � 0.75, becoming 62.5% of the delivery period
when δ � 0.5, and 48% when δ � 0.25.

Fig. 6.6 exhibits the CDF of the packet rate transmission measured with
Wireshark. Fig. 6.6(a) compares the DRMs that highlight different distribu-
tions of packet transmission rates. PRO reaches rates as high as 10 packets/s
for 75% of the delivery period. Both CON and DEL achieve rates as high
as 40 packets/s for 75% of the delivery period. Note that CON has higher
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Figure 6.6: Distribution of transmission rates

variability than PRO and DEL, which converge to a maximum rate. The
technical implementation gives such behavior. While CON delivers smaller
amounts of data requiring the central authority and smart device to interact
often, DEL reports a bigger and unique file. Similarly to the profiles obtained
for the energy in Fig. 6.5(b), Fig. 6.6(b) exhibits that the transmission rate
also changes when δ increases. Note that the variation is consistent only for
low rates. For instance, rates up to 5 packets/s occur for 20%, 40% and 70%
of the delivery period for δ � 0.25, δ � 0.5 and δ � 0.75 respectively.

Fig. 6.7 illustrates the distribution of packet errors considering timeslots
of 40 seconds. Fig. 6.7(a) compares the considered DRMs. On the one
side, DEL packet errors have a concentrated distribution due to the shorter
delivery period. On the other side, CON and PRO present high variability in
the packet error distribution. Such behavior is given by the public network
and the realistic environment. Interestingly, note that PRO exhibits a higher
number of losses due to the well-known inefficiency of the 802.11 protocol
for its scheduling strategy allocating single resources to single nodes [179].
Consequently, it favors CON rather than PRO mechanism. To compare PRO
with CON and DEL, the threshold δ is set to 0.5. However, additional mea-
surements are conducted with different thresholds (δ � [0.25, 0.5, 0.75]), as
shown in Fig. 6.7(b).

6.3 Large-scale Analysis: the Methodology

This Section presents the methodology employed to perform the large-scale
evaluation.

6.3.1 Feeding CrowdSenSim

Energy measurements obtained by experiments are exploited to feed the
CrowdSenSim simulator. During simulation runtime, participants gather
and deliver information following the implemented DCFs. CrowdSenSim
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Figure 6.7: Distribution of packet errors

calculates the amount of contributed data and the energy consumption for
each user [158]. Data generation exploits popular sensors embedded in
smart devices, as already discussed in Subsection 6.2.3. Simulation results
are obtained at the system and individual level, allowing different analyses
on DRMs and DCFs, which are implemented as previously discussed. Citizens’
mobility follows a profile extracted from the ParticipAct dataset [159], which
provides information on the user contact per-hour. To assess the energy
consumption for a realistic MCS campaign, CrowdSenSim exploits the ex-
perimental energy- and network-related measurements. The battery drain
of smart devices is calculated proportionally to the contribution time. The
energy consumption profiles are taken from traces of 30 minutes, as shown
in Fig. 6.5(a).

6.3.2 Performance Metrics

Different performance metrics are considered to compare the proposed DCFs.

Amount of contributed data. The primary purpose of a DCF is to gather
enough data to monitor phenomena or capture events. Consequently, it is
fundamental to assess and quantify data according to space and temporal
coverage. Different key performance indicators can be proposed to evaluate
an MCS campaign, but this study considers only the amount of gathered
information as the main target to analyze the proposed DCFs.
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Energy consumption. It quantifies the costs participants sustain in terms of
battery drain, measured in mAh.

Fairness. MCS campaigns should collect data aiming to ensure the quality
of information and fair treatment to the users. In other words, participants
that contribute more data and sustain higher costs should be rewarded better
than others. To evaluate fairness between participants in different DCFs,
the Jain Fairness Index is exploited [180]. It measures the equity when
distributing a set of limited resources according to specific policies. For
instance, participants that walk for longer periods than others are expected
to gather more information. The data contribution fairness index (FD) is
defined as follows:

FD �

(
N∑

i�1
di

)2

N ·
N∑

i�1
d2

i

, (6.1)

where:
di �

Di

DM
i

. (6.2)

Di is the amount of contributed information from user i and DM
i is the maxi-

mum amount of data a participant could gather in the corresponding time. FD
assumes values equal to 1 when participants contribute data proportionally
to their walking time. However, this index exhibits a significant shortcoming
if not combined with other factors. Indeed, FD does not differentiate between
devices with different initial battery levels. To this end, an additional index is
needed. In particular, a smartphone with a lower battery level is expected to
gather less data than others with a higher battery level. The battery fairness
index (FB) is defined as:

FB �

(
N∑

i�1
bi

)2

N ·
N∑

i�1
b2

i

, (6.3)

where:
bi �

Bi

BT
i

. (6.4)

Bi and BT
i are the i device’s battery levels in mAh. Specifically, Bi is the

battery drain experienced while contributing and BT
i is the total battery level

when the device starts its sensing. The crowdsensing fairness index (FCS)
considers both battery drain and contributed data:

FCS � σ · FD + (1 − σ) · FB , (6.5)

where σ is a coefficient between [0, 1] to balance FD and FB.
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(a) Luxembourg City (b) Turin (c) Washington DC

Figure 6.8: Cities considered for the evaluation and street networks.

6.4 Performance Evaluation

This Section discusses the performance evaluation by presenting the simula-
tion setup and the obtained results.

6.4.1 Simulation Setting

Fig. 6.8 illustrates the selected cities to simulate the MCS campaign: Luxem-
bourg City, Turin (Italy), and Washington DC (USA). The rationale behind
the choice is twofold. The first motivation is about the different sizes. The
center of Luxembourg City occupies a surface of 51.47 km2 with a population
of 114 303 inhabitants as of the end of 2017. The city center of Turin covers
an area of 130.17 km2 and has a population of 883 601 inhabitants as of the
beginning of 2016. The city center of Washington DC occupies approximately
a surface of 158.1 km2 with a resident population of 672 228 inhabitants
as of the end of 2015. Urban morphology is the second motivation, as it
determines the street network topology. Luxembourg City presents the typi-
cal north European pattern with a high density of crossroads. Washington
DC has a street network with large roads and many parallel long streets.
Turin is among the two previous typologies for its roman grid morphology.
As already discussed, the user arrival pattern is based on realistic mobility
traces and the simulation period is 12 consecutive hours in one day. The
PartecipAct dataset provides the user contacts per-hour. Pedestrians walk
with speed uniformly distributed between [1, 1.5] m/s in a uniformly dis-
tributed period between [20, 40] minutes. The number of participants is
10 000 unless differently stated. The full battery capacity is generated by
randomly picking from a list of popular smartphones, including 3300 mAh
(Samsung Galaxy J7), 2800 mAh (LG G5), 2550 mAh (Samsung Galaxy S6),
and 2200 mAh (Huawei P8 Lite). When devices start contributing, the initial
battery percentage is uniformly distributed between [10 − 90]%.

6.4.2 Simulation Results

Performed simulations assess energy consumption, amount of collected data,
and fairness.
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Figure 6.9: CDF average battery drain per user on large scale
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Figure 6.10: CDF of battery drain per user for DCFs in different cities

Energy Consumption. Fig. 6.9 shows the CDF of the battery drain per-user
for the presented DRMs and the DCFs in Luxembourg City. Note that the
difference between DRMs and DCFs is consistent. The motivation is that
DRMs lack crucial features of DCFs, like feedback from the central authority
or criteria to stop data collection. Fig. 6.9(a) exhibits the CDF of battery
drain for the DRMs, which vary by values range and slope. The steps outline
groups of participants that have stopped contribution after reaching a certain
battery drain. As expected, PRO and DEL are less energy consuming than
CON. However, Fig. 6.9(b) highlights that implementing costly DRM like
CON in a DCF with a feature to stop data contribution like DDF is beneficial.
Indeed, all devices consume at most 33 mAh. Unlike DDF, with PCS and
PDA the percentage of users that spend more than 33 mAh is respectively
3% and 16%. Nonetheless, a consistent number of users consume a small
amount of battery with PCS. In PDA most devices spend a higher amount of
energy than PCS due to a higher amount of collected data. This aspect will
be shown inFig. 6.13 and in Fig. 6.14

Fig. 6.10 shows the similarity of battery drain among various cities,
highlighting that the street pattern and the size of the city have a minor
impact on the energy performance of the DCFs. DDF presents a CDF as a
step function, where each step indicates a group of users that contributed a
similar amount of information. Therefore, they stopped because their device
reached a threshold due to the battery drain or the amount of collected data.

Fig. 6.11 shows the amount of contributed data and the related DCF
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Figure 6.11: Amount of collected data and the associated battery drain in
Luxembourg City
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Figure 6.12: User trajectories with the associated data contribution in Lux-
embourg City

energy consumption. Marks describe the battery drain that a group of
users consumed for a specific amount of data. Note that DDF shows a few
marks because the stopping policy indirectly regulates the battery drain.
Hence, devices exhibit similar behaviors. Unlike DDF, PCS and PDA present
much more significant variability due to their DRMs: users have different
battery drains to contribute a certain amount of information. The higher the
contribution, the higher the variability. From a concrete perspective, obtained
results highlight that incentive mechanisms based only on the amount of
contribution lack to fairly compensate participants because of the technical
implementation of delivery methodologies.

Amount of Collected Data. Fig. 6.12 illustrates the trajectories of 5 pedes-
trians in Luxembourg City, aiming to highlight periods of active contributions
and differences between DCFs. DDF enables participants to deliver data until
devices reach the threshold and stop. PDA exhibits periodic delivery due
to the probability and the collector feedback. In PCS, the contribution is
minimal and depends on placing calls or using an application.

Fig. 6.13 illustrates the spatial coverage of collected information after
a simulation runtime in Luxembourg. The heatmap is normalized between
0 and 1, where 1 represents 100 MB of data. PDA exhibits a high spatial
distribution because it gathers data until the collector reaches a specific value
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Figure 6.13: Heatmaps of Luxembourg city with different DCFs
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Figure 6.14: Data contribution for considered DCFs in Luxembourg City

to lower the probability threshold. DDF presents a lower amount of data
in the center due to the stopping mechanism, as shown in Fig. 6.9b. PCS
obtains the lowest amount of data because it only depends on phone usage.

Fig. 6.14 illustrates the contribution in Luxembourg City, comparing
the DCFs for a different number of participants. DDF reaches a significant
amount of data due to continuous reporting even if users stop for saving
energy. PDA accomplishes a comparable amount of information. Differently,
PCS obtains the lowest amount of data and would most likely fail to monitor
the region of interests accurately. Again, the motivation lies in the DRM.

Fairness. Fig. 6.15 shows the different fairness indexes for each proposed
DCF. 100 rounds of simulations are performed to obtain results. Fig. 6.15(a)
illustrates the data contribution fairness index (FD) as boxplots. DDF reaches
the highest values of data contribution fairness for two reasons. First, par-
ticipants that walk for more extended periods fairly contribute more data.
Second, the central authority sends feedback to regulate users’ contributions.
PCS is less fair than DDF because it depends on smart devices’ activities and
is not proportional to the walking time. PDA has the lowest values because
a few users can deliver a consistent amount of information if the collector
needs data, while many participants may not contribute at all if the collector
does not need additional information. Fig. 6.15(b) illustrates the battery
fairness index (FB). DDF has much lower values than in the previous index
due to the stop mechanism. PDA and PCS are similar and below DDF. Even if
they do not include any stop mechanism, the limited walking period provides
a similar effect. Fig. 6.15(c) exhibits the MCS Index (FCS) given by the

64



DDF PDA PCS

DDF PDA PCS
0.00

0.25

0.50

0.75

1.00

σ

F
D

In
de

x

(a) Data Fairness Index

DDF PDA PCS
0.00

0.25

0.50

0.75

1.00

σ

F
B

In
de

x
(b) Battery Fairness Index

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00

0.25

0.50

0.75

1.00

σ

F
C

S
In

de
x

(c) MCS Fairness Index

Figure 6.15: Fairness Indexes

combination of the previous two indexes. It reflects the properties of the
DCFs. DDF shows a linear increase between data and battery fairness, while
PDA presents a linear decrease. PCS does not include any feedback from the
collector and presents the most uniform pattern.
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Chapter 7

Crowdsensed Data-driven
Estimation of Local Businesses
Attractiveness

Public institutions, private companies, and urban planners have relied for
decades on traditional strategies and experience-based methodologies to
investigate cities’ complex dynamics and tackle urbanization issues. Nowa-
days, data-driven approaches unleash unprecedented possibilities to improve
citizens’ quality of life in wide urban environments rajiv-citydatafusion
Smart devices carried by citizens are a massive data source under the MCS
paradigm. This Chapter illustrates how to leverage mobile devices’ data
to enhance the traditional approaches used for urban decisions with novel
techniques. In this context, machine learning (ML) techniques enable to
obtain highly accurate estimations of categories of local businesses (LBs)
(e.g., shops, bars) and their attractiveness during different times of day (e.g.,
working or shopping hours).

7.1 Background and Motivation

Private and public owners of LBs (e.g., institutions, companies, or individ-
uals) make several decisions to offer customers competitive services while
maximizing profit. The most critical choices include an LB location according
to its typology, setting the number of employees required per hour, prices,
and opening hours. Practical solutions to increase the success of LBs need
an understanding of cities’ complex dynamics based on the citizens’ mobility
and spatial distribution [181]. Comprehending real-time urban mobility and
estimating its variability according to special events are typical examples that
could help companies decide required staff and municipalities to regulate
traffic.
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7.1.1 Related Works

Surveys catching travel behaviors or traces collected from mobile devices
are standard methods to understand citizens’ mobility and investigate the
popularity of LBs [183], [186], [187]. Unfortunately, these strategies are
inclined to consistent shortcomings, such as technical constraints (e.g., weak
network accessibility), low location accuracy, user misconduct, and datasets
not publicly available [184]. In this context, data-driven solutions are fun-
damental to improve existing approaches for understanding citizens’ spatial
patterns. In particular, MCS enables citizens to contribute data for different
purposes, e.g., directly, differentiate residents from visitors, and recognize
special events [190]. Feeding ML algorithms with information collected
from MCS campaigns represents a win-win solution in several fields [191],
such as detecting accident risks [192], and predicting traffic [193]. A work
similar to the proposed approach aims to predict the temporal dynamics of
newly established LBs by using a Foursquare dataset [195]. The novelty of
the proposed study consists of considering existing LBs and exploiting novel
Google Popular Times datasets.

7.1.2 Crowdsensed Datasets

The data-driven approach presented in this Chapter overcomes the flaws of
traditional experience-based methodologies and brings one step further the
research in urban computing. Citizens share data every day by using different
MCS applications (e.g., Waze, OpenStreetMap) and location-based social
networks (LBSN) (e.g., Twitter or Foursquare). Large datasets are available
from those contributions, allowing investigation of users’ spatial patterns,
travel behaviors, accessibility of urban areas. In particular, Google aggregates
and anonymize data passively crowdsensed from Google Maps users1. These
datasets enable the analysis of LBs’ popularity by providing a massive amount
of information, such as popular times per hour, waiting time to access the
service, and the average service duration. The proposed approach utilizes
Google Popular Times to obtain highly accurate estimations of LBs category
and attractiveness by exploiting ML algorithms already employed for urban
applications [185]. The objective is twofold. First, it analyzes the importance
of different features that influence the LBs’ popularity. Second, extracted
features feed ML techniques to estimate the category and attractiveness of
LBs. For instance, bars and restaurants are typically close in an area, while
LBs like post offices or pharmacies are distributed over a city. Public transport
is an example of a factor that consistently impact LBs popularity due to the
reachability.

1https://support.google.com/business/answer/2721884
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Figure 7.1: Data aggregated from Luxembourg districts for restaurants

7.2 Preliminary Analysis

This Section highlights the shortcomings of common urban metrics in es-
timating LBs attractiveness accurately and paves the path to data-driven
approaches. The objective focuses on LBs’ popularity, their centrality on a
street network, and similarity in a neighborhood. Fig. 7.1 shows results on
data crowdsensed in Luxembourg City.

Weekly popularity. Google Popular Times describes the LB’s weekly temporal
behavior using an array of hourly values normalized in a week between
[0 : 100]. Specifically, 0 represents closing times, 1 the minimum hourly
number of customers in a week, and 100 the maximum. Using normalized
values allows investigating the temporal profile and the most significant
factors (e.g., pubs have more visits in the evenings).

Fig. 7.1(a) illustrates the behavior of 9 restaurants and their weekly
average (Monday-Saturday) in the city center of Luxembourg (Ville Haute),
which is characterized by offices, banks, shops, and touristic places. The max-
imum values of popularity are around 12, 20, 36, 44, etc., which represent
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lunch (noon) and dinner (8 PM) times every day. It is easy to understand
the district lifestyle by comparing the temporal profiles. The highest values
correspond to lunch and dinner times on weekdays, while only dinner time
on Saturday because offices are closed. The most crowded day is Friday
because both citizens and tourists are around the city.

The use of normalized values permits to analyze the trend of LBs during a
week and its influencing factors (e.g., LBs that have more success at weekends
in touristic areas or at lunchtime in business districts). This hides the degree
of success of a single LB (e.g., having more customers than others), which is
however not the purpose of this work.

Centrality and similarity. LBs’ popularity depends on their closeness and
accessibility to public transport. The centrality indicates the importance of
a single node in a network and can measure the popularity. In particular,
the closeness centrality represents the sum of all shortest paths between a
node and all other nodes within the street network. This works calculates
the global-centrality and the transport-centrality. The global-centrality defines
the proximity of a LB with the other ones:

CB (k) �
NB − 1∑

i,k dki
, (7.1)

where k is the k-th node, NB is the total number of LBs and dki is the distance
between a couple of nodes. The transport-centrality calculates the closeness
of an LB with all transport facilities:

CT (k) �
NT∑

i,k dki
, (7.2)

where NT is the number of transport facilities (e.g., underground stations, bus
stops) and dki is their distance with the LB. The similarity compares the pop-
ularity of a LB with all other LBs in a district. It is measured considering the
symmetric index of Jensen-Shannon divergence (JSD), which presents better
performance than the asymmetric Kullback-Leibler divergence(KLD) [195].
The similarity of two LBs i and j is:

J (Di ,D j) � H
(Di + D j

2

)
−

H(Di) + H(D j)
2

, (7.3)

where H is the Shannon entropy, D is the temporal profile of a LB, and J
represents the divergence of two temporal profiles. The similarity is between
[0 − 1], where 0 is the maximum and 1 is the maximum divergence.

Fig. 7.1(b) associates similarity and centrality metrics in 4 districts of
Luxembourg city. Dots of the same colors have a temporal demand closer
to their district. Red dots indicate LBs with temporal demands closer to
other districts (outliers). Except for the Kirchberg district, which is isolated
from other districts, most of the LBs are marked as outliers. Hence, this

69



study highlights that traditional urban metrics fail to evaluate LBs’ popularity
and districts’ association. The proposed ML-based approach will outperform
traditional metrics.

7.3 ML-augmented Methodology

This section presents the ML-based approach fed with crowdsensed data.
Features are extracted and selected from Google Popular Times, aiming to
augment the output accuracy after the training. This procedure is omitted
for space reasons.

7.3.1 Machine Learning Techniques

Considered ML techniques for multi-classification problems are Support Vec-
tor Machines (SVMs) and MultiLayer Perceptron (MLP) neural network. The
selection fits well the peculiarity of the scenario under study, with an inter-
mediate number of training samples M and few features N. Support Vector
Machines (SVMs) map samples into output categories using kernel methods
to divide a hyperplane with an optimal boundary. It requires a fine-tuning
of the regularization parameter C, which regulates the correct classification
of training points and the smooth decision boundary. High values lead to a
hyperplane with a small margin and a high-accurate classification. Low val-
ues correspond to a higher tolerance to errors and simple decision functions,
smoothing the training samples’ classification. The chosen kernel method is
gaussian and needs to fix the standard deviation γ, representing the influence
of a single training point on other samples, which depends on its distance
from the boundary. Multilayer Perceptron (MLP) is a feedforward artificial
neural network that exploits several hidden layers to map an input vector
to an output one. All layers have different nodes linked layer by layer with
various weights and form a fully combined topology. The sum of all weighted
inputs gives the output of each node.

7.3.2 Estimating LBs Category and Attractiveness

Two multi-classification problems are considered to estimate the LBs category
and attractiveness. This paragraph discusses the extracted features and the
output classes.

Extracted features. Selected features are divided between intrinsic and
extrinsic. Intrinsic features do not vary consistently over time and relate to
geographical properties and owners’ decisions (e.g., service offered, location,
closing hours). In particular, this study considers global-centrality, transport-
centrality, opening hours, and category. Centralities were previously discussed.
Opening hours is a vector of 144 hourly values (Mon-Sat) indicating when the
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place is open. The category indicates the provided service. Extrinsic features
fluctuate continuously with time and depend on customers’ interactions and
behaviors (e.g., waiting and staying time). They are popular times, average
time of visit, and average waiting time. Popular Times were already presented.
Average staying and waiting time represent respectively the duration of
visiting and queueing in minutes.

Output classes. The type of services offered by different LBs define their
categories, classified in public, store, health, restaurant, and bar. Public repre-
sents offices and agencies, such as banks and institutions. Store indicates all
types of shops and sellers (e.g., markets, clothing). Health includes private
and public LBs associated with the healthcare system, such as doctors, den-
tists, hospitals. Restaurant comprises places that serve food where customers
can sit. Bar represents LBs that offer mostly drinks and related services.
The categories of LBs attractiveness are working, nightlife, weekend, business
hours (Bus. H.), and shopping hours (Shop. H.). Working represents places
with crowded hours during working breaks, such as lunchtimes during the
week. It typically includes bars, cafes, shopping centers. Nightlife indicates
rush hours in evenings and nights along all week and can comprise pubs,
restaurants, clubs. Weekend shows high popularity only at weekends (e.g.,
isolated shopping malls or touristic places). Business hours includes peak
hours from early morning to afternoon, typical of public offices and institu-
tions. Shopping hours indicates the high popularity of places where citizens
buy goods, with a uniform distribution during daytime all week.

7.4 Data-driven Evaluation

This Section focuses on evaluation settings, performance metrics, and results.

7.4.1 Evaluation Set-up

This study analyzes LBs Popular Times from Luxemburg city and Munich
(Germany) collected between July 21st and July 30th, 2018. The selection
of these two cities is given by having different properties, such as size,
morphology, street network. Downloaded data consists of 1 084 LBs for
Luxembourg city and 3 784 for Munich, split in 80%, 10%, and 10% for the
phases of training, cross-validation, and test. Evaluation is conducted using
an open-source Python-based library called Scikit-learn. For LBs category
estimation input classes are average opening hours, time spent, global-, and
transport-centrality. For SVMs, the hyperparameters are fixes as γ � 2−12 and
C � 28. Fig. 7.3a illustrates the rationale behind parameters selection. One
hidden layer with 13 nodes characterizes the MLP technique, chosen after an
exhaustive search through a grid-search algorithm. Opening hours, category,
district, popular times, global-, and transport-centrality are the features used
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to predict LBs attractiveness. Hyperparameters chosen for SVM are C � 26

and γ � 2−10, while MLP presents 2 hidden layers with 8 nodes per layer.
The rationale to select parameters is shown in Fig. 7.3b).

7.4.2 Performance Metrics

The metrics considered to evaluate performance are precision, recall, F1
score (per-class), and accuracy (average of all classes). True positive (tp) and
true negative (tn) indicate a correct prediction, while false positive ( f p) and
false negative ( f n) a wrong one. The precision shows the model’s potential
not to predict another true class as the current class and is given by the
ratio between correct positive predictions and the total predicted positive
observations (tp/(tp + f p)) The recall is the model ability to get all the
occurrences of a class and consists of the ratio between correct predictions on
positive events and all the observations in class under study (tp/(tp + f n))
The F1 score reveals when false positives and negatives have different costs,
investigating inaccurate predictions and providing the weighted average of
precision and recall. The accuracy determines the classifier’s performance
and is optimally used for symmetric classes (e.g., when wrong estimations
have equal weights). It is given by the ratio of exact estimations over the
total observations.

7.4.3 Results

Table 7.1 illustrates accurate evaluation results for precision, recall, F1 score,
and accuracy on the chosen classes with MLP and SVM techniques in Lux-
embourg City and Munich. The evaluation of LBs categories shows a higher
accuracy for Luxembourg using both approaches. On the contrary, LBs at-
tractiveness has higher accuracy in Munich. In general, SVMs achieve higher
values of accuracy compared to MLP. Precision is low for bar and public
because they have properties shared with other categories, while it is high
for restaurant, health, and store because they are more peculiar than others.
Interestingly, precision presents distinct values in the two cities because
they have different characteristics, mostly related to visitors’ and citizens’
lifestyles. For instance, the precision is lower in Munich because it is an inter-
national and large city with extensive opening hours (e.g., pubs until late at
night), while Luxembourg has more defined closing times. The attractiveness
presents a higher precision for the class working in Luxembourg because LBs
crowded at job breaks are not popular at different times. Instead, Munich
does not allow to satisfactorily predict the class working because those places
are also popular with other types of customers at different times. Shopping
and business hours exhibit better results in Munich because they tend to be
concentrated for the well-organized urban plan (e.g., shopping malls). For
the same motivations, the proposed approach presents high values of recall
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Figure 7.2: Confusion matrices for LBs category and attractiveness prediction
with SVM technique.

index in both cities for stores and restaurants as categories, as well as shop-
ping and business hours as popularity. Results on the incorrect predictions
given by the F1 scores show similar evidence.

Fig. 7.2 presents confusion matrices with single observations on every
true or predicted class. They allow comparing different behaviors of LBs
and cities. Each value shows how many observations of a predicted class for
true inputs. Colors highlight the recall, which considers the percentage of
correct estimations over the total. Columns exhibit predicted class values and
their sum shows the total observations of each class. The diagonal presents
the number of correct predictions. Differently from Table 7.1, confusion
matrices allow analyzing single wrong occurrences. Restaurant and store
categories exhibit higher recall values in both cities and ML approaches
because they have peculiar features like opening times. Instead, bar and
public have a low recall with wrong occurrences in restaurant and store for
their similar behaviors. This is clearly shown in Fig. 7.2(a) and Fig. 7.2(b),
where 2 bars over 8 are classified as restaurants in Luxembourg city, while
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Figure 7.3: Analysis of F1 score for SVM parameter selection in Munich.

this happens on 14 LBs over 34 in Munich. Interestingly, health presents
divergent results in cities for the different number of places considered in
the datasets. Specifically, a smaller dataset provides a lower precision. For
similar reasons, Fig. 7.2(c) and Fig. 7.2(d) exhibit that nightlife and working
have the highest number of wrong occurrences. Business hours presents the
highest number of correct occurrences because peak hours are uniform along
all week in both cities. Weekend is easier to predict in Luxembourg because it
is not a touristic city and the difference between weekdays and weekends is
consistent.

Fig. 7.3 illustrates the selection of parameters for SVM using the Munich
dataset. It exploits F1 score as it represents a balance of recall and precision.
In particular, the parameters are C � 28 and γ � 2−12 for category, C � 26

and γ � 2−10 for attractiveness.
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Chapter 8

Efficient Edge Data Center
(EDC) Deployment in Smart
Cities

Multi-access Edge Computing (MEC) is a rapidly emerging paradigm that
proposes to ensure high-bandwidth and low-latency performance by deploy-
ing computational and storage resources close to end-users. To this end,
this Chapter brings the research in EDCs placement one step forward by
investigating citizens’ mobility in vast urban environments. The final aim is
to minimize network outages and increase service availability.

8.1 Background and Motivation

The European Telecommunications Standards Institute (ETSI) introduced the
MEC paradigm [196] to deploy computing services and network intelligence
close to end-users, aiming to improve the performance of high-bandwidth
and low-latency applications. MEC offers the possibility to operate with dif-
ferent mobile networks (e.g., LTE, 4G, 5G) as it is independent of the network
evolution. The edge, or MEC host, is a data center deployed close to the base
station (BS) that enables storage and computing resources for applications,
aggregates radio network functionalities [197], and improves the perfor-
mance of applications [198]. The deployment of MEC resources for smart
cities is highly promising and requires investigation efforts. A vision work
proposes to deploy edge resources by exploiting existing infrastructure, such
as cellular BSs, street lamps, and routers [199] but it does not consider the
complex urban dynamics of a city and related traffic workloads. Other works
have analyzed the impact of citizens’ activities on the traffic volume [200]
or how to offload computational workload to MEC host in proximity [201],
[202], [203]. A recent proposal is the human-driven edge computing (HEC)
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Figure 8.1: Traffic generation in Luxembourg City at different hours of a
working day

paradigm, which proposes to combine MEC and MCS [204]. A promising
edge placement driven by user allocation is discussed in [205], but it does
not include mobility within the network and extensive scalability.

This Chapter proposes a novel approach to deploy EDCs in smart cities
efficiently by considering human mobility. Multiple urban dynamics regu-
late spatial patterns of citizens, places they visit, and time spent in each
place [185], [206]. In this context, crowdsensed data can provide informa-
tion to infer and predict citizens’ mobility with the final goal to estimate
traffic workload and propose EDCs deployments that minimize outages. In
particular, Google Popular Times1 empower the reproduction of realistic
spatial patterns of citizens. As assumptions, cellular connectivity ensures
network access, users generate LTE traffic, and EDCs are deployed only
among base stations (BSs) to utilize existing infrastructure. Fig. 8.1 exhibits
heatmaps with the estimated traffic workload of BSs in Luxembourg City.
Spatial patterns of citizens are generated exploiting an average weekday of
Google Popular Times. Interestingly, areas including BSs with high computing
demands are the city center at lunch and dinner times, the railway stations
at commuting times (e.g., early morning and mid-afternoon), and the uni-
versity campus (from H: 8:00 to H: 20:00). Note that traffic workloads and
associated computing demands of BSs have a consistent variability during
the day. Hence, this opens to investigate policies for deploying EDCs in urban
environments.

8.2 Models for EDC Deployment and Urban Mobility

This Section presents the problem formulation to deploy EDCs in cities and
proposes models that consider MEC aspects and complex urban dynamics.

8.2.1 Problem Formulation

Given a set of base stations B � {b1 , ..., bNB } at a certain location and a subset
of EDCs E � {e1 , ..., eNE } to be deployed among the BSs, the final aim is to
choose the NE BSs to host EDCs. Re-using existing infrastructure instead of

1https://support.google.com/business/answer/2721884
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creating new sites is key to save costs [199]. The latency outage probability
O is the considered performance metric to evaluate the system [207]:

O � Pr{L ≥ Dmax }, (8.1)

where Dmax is the maximum admissible delay and L is the end-user latency.
Differently from [207], O indicates a Round-Trip-Time (RTT) latency to catch
at the user-side when an EDC does not accomplish a request. It can happen
when an EDC is overloaded and declines the request or when a user does not
receive a reply within the acceptable delay.

The problem is to choose a subset E of NE BSs among the total NB to
deploy EDCs with the final aim to minimize O:

min
E

O. (8.2)

8.2.2 MEC Model

A considered urban environment is split into a set of regions R � {r1 , ..., rl }.
Each EDC is assigned to different BSs in a specific region and is responsible
for processing, following the cloud-RAN paradigm [208]. EDCs include
Ns servers with service rate µ. A task is declined when the total service
rate cannot perform it in due time. Service migration between EDCs is not
considered. Mobile devices generate traffic workload according to different
applications [205] and always transmit to the closest BS. Poisson processes
with arrival rate λi model tasks sent from each user ui. Processing and
network delays (e.g., application, propagation, queuing, and routing) [202]
contribute to the total latency L:

Li
� D i ,k

p + Dk
c + Dk ,i

p , (8.3)

where D i ,k
p is the network delay from device i to EDC k, Dk

c is the processing

delay at EDC k, and Dk ,i
p is the network delay from EDC k to device i. A

M/M/Ns queue with Ns servers is used to model EDCs. Dk
c describes the

required time for an EDC to accomplish a task and is measured according
to [205]:

Dk
c � fQ

*.
,
φk ·

∑
ui∈U|

λi
+/
-
+ 1/µ. (8.4)

fQ (λ) is the waiting time to access the service in average, and φk represents
the component of workload accepted in an EDC:

φk �




1, if λmax > λ(k);
λmax
λ(k) , otherwise.

(8.5)
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fQ (λ) receives the task arrival rate λ(k) �
∑

ui λi at EDC ek and computes
the average queuing time:

fQ (λ) �
C
(
Ns , λµ

)
Nsµ − λ

. (8.6)

C is calculated by using the Erlang’s formula [209]:

C(Ns , ρ) �

( (Nsρ)Ns

Ns !

) (
1

1−ρ

)
∑Ns−1

k�0
(Nsρ)k

k! +

( (Nsρ)Ns

Ns !

) (
1

1−ρ

) , (8.7)

where ρ � λ/µ.

8.2.3 Citizens Mobility Model

Citizens’ mobility and social interactions impact the traffic workload and
required computing resources. This study generates users’ spatial patterns
and their temporal distribution by considering local businesses’ (LBs) popu-
larity downloaded from Google Popular Times. They provide hourly values
between 0 and 100, which are normalized according to the weekly minimum
and maximum number of customers. The real number of clients in each LB
is not provided.

To overcome the limitation, this study considers a random value N t
L,

which represents the maximum number of customers in a specific local
business L of type t. N t

L is randomly chosen between 0 and N t
max, where

N t
max is the maximum number of clients set for each type of local business.

Popular Times datasets enable then to compute the temporal variability of
customers in each LB as follows:

DL,h � Ph ,L · N t
L . (8.8)

DL,h is the number of customers at local business L within the period h and
Ph ,L is the popularity from datasets. The total demand Ad ,h for each region
d is calculated combining all LBs’ demands within the area:

Ad ,h �

∑
l∈Ld

Dl ,h , (8.9)

where Ld is the subset of LBs in d.

8.3 EDCs Deployment Policies

This work proposes two algorithms to deploy EDCs and assign BSs to them,
called distributed deployment algorithm (DDA) and mobility-aware deployment
algorithm (MDA). DDA places EDCs as centroids of clusters made by BSs at
comparable distances. MDA exploits users’ mobility to compute the expected
workload for each BS, which is used as a weight to place EDCs efficiently.
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8.3.1 Distributed Deployment Algorithm (DDA)

DDA clusters BSs and deploys EDCS following the k-medoids algorithm, a
variant of the more popular k-means. While k-means chooses as centroids
also points not included as inputs, k-medoids select only between inputs. It
allows selecting an EDC among the given BSs. This policy’s main weakness
is to have some EDCs over-utilized with significant delays and outages, while
others result under-utilized. For this reason, this work introduces a novel
approach that distributes EDCs and allocates servers in each EDC according
to the traffic workload and associated computational requests.

8.3.2 Mobility-aware Deployment Algorithm (MDA)

Aiming to increase the system performance in terms of outage probability,
MDA assigns EDCs according to the computational demand. To this end, it
considers complex urban dynamics, such as citizens’ mobility, behaviors, and
social interactions. MDA also uses the k-medoids algorithm, but it allocates
EDCs by calculating a cost associated with the traffic workload and related
computational requests for each BS.

8.3.3 Allocation of Servers among EDCs

Selecting the number of servers in each EDC is another approach to improve
system performance and reduce costs. The problem is: fixed the total number
of servers, how they can be assigned to different EDCs. This work proposes
two different approaches to investigate this aspect. The fixed number of
servers (FNS) policy simply divides all the servers between EDCs. The
proportional number of servers (PNS) approach, instead, distributes servers
according to EDCs computational demand.

8.4 Performance Evaluation

This Section presents simulation set-up and obtained results.

8.4.1 Simulation Set-up

Table 8.1 shows the main parameters set for performing simulations. The
chosen scenario is Luxembourg city and its mobile network infrastructure of
141 BSs2, downloaded as a set of coordinates with latitude and longitude3.
Mobile devices transmit traffic workload for BSs characterized by an arrival
rate λi between [0− 2.99] [205]. Each server has a service rate µ � 100. An

2https://data.public.lu/fr/datasets/cadastre-gsm/
3https://map.geoportail.lu/

80



Table 8.1: Setup Parameters

SYMBOL VALUE DESCRIPTION

Nu 100 000 Number of users
Nb 141 Number of BSs
Ne 8 Number of edge data centers
Nl 1083 Number of total LBs
Nt 13 Number of LBs typologies
Ns 10 Number of servers in each EDC
λi 0 < λi < 2.99 Task arrival rate for user i
µ 100 Server service rate

(a) DDA (b) MDA

Figure 8.2: Distributed (DDA) and Mobility-aware (MDA) Deployments
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Figure 8.3: Total Outage Probability in a working day with a different
number of EDCs (number of servers per EDC fixed to 10)

extended and adapted version of CrowdSenSim generates citizens’ mobility
by considering datasets from Google Popular Times with 1 083 LBs of 13
types (e.g., bars, restaurants, banks). User arrivals across the city street
network depend on spatial patterns weighted with the hourly LBs popularity
for a simulation time of 24 hours fixed as the average of weekdays.

8.4.2 Simulation Results

Fig. 8.2 shows the allocation of 8 EDCs in Luxembourg city with DDA and
MDA policies. Circles denote BSs, stars indicate EDCs, and different clusters
have different colors. The figure exhibits that the approaches present consis-
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Figure 8.4: Total Outage Probability in a working day with a different
number of servers (number of EDCs deployed in city fixed to 8)

8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

Hours

O
ut

ag
e

Pr
ob

ab
ili

ty

FNS PNS

(a) DDA

8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

Hours

O
ut

ag
e

Pr
ob

ab
ili

ty

FNS PNS

(b) MDA

Figure 8.5: Total Outage Probability in a working day with FNS and PNS
approaches

tently distinct deployments. Fig. 8.2(a) illustrates how DDA places EDCs to
have BSs at similar ranges. Fig. 8.2(b) exhibits how EDCs tend to be closer
to the center and in the north-eastern part of the city, which represents the
business district (Kirchberg) and is particularly crowded during the week.

Fig. 8.3 illustrates the hourly outage probability with 10 servers per EDC
and different numbers of EDCs. Comparing Fig. 8.3(a) and Fig. 8.3(b), it is
clear how MDA significantly improves DDA performance. Note that for DDA
the outage probability consistently decreases while increasing the number of
EDCs, while MDA does not show significant improvements between 9 and 10
EDCs.

Fig. 8.4 illustrates the two algorithms with 8 EDCs and changing the num-
ber of servers for each EDC. In DDA, it is interesting to note that increasing
the number of servers produces a minor effect than increasing EDCs. MDA
presents proportionally better results and outperforms again DDA.

Fig. 8.5 shows the influence of server assignment between 8 EDCs. For
FNS, the number of servers is fixed to 10 per EDC. As presumed, PNS presents
better performance than FNS, specifically during peak hours and for DDA
approach. The motivation is to assign more servers where the computational
demand is higher, decreasing the outages. These result highlight how crucial
is to design efficient deployments of edge resources in large-scale urban
environments.
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Chapter 9

Conclusion

9.1 Discussion

Since the first works on the MCS paradigm appeared, a decade has passed
and researchers have investigated many aspects (e.g., task assignment, partic-
ipant recruitment, and incentive mechanisms) for several applications (e.g.,
environmental monitoring, healthcare, public transports). The incredible
evolution of ICT systems has changed the MCS scenario, enabling incredible
opportunities far from imagination until a few years ago. Novel communica-
tion technologies are laying the foundation of future MCS solutions, such as
5G and MEC. A connected society is changing citizens’ behavior and their so-
cial interactions, also under the impact of smart mobility and related services
(e.g., car-sharing, electric scooters, food delivery). All these novelties enable
an incredible pervasiveness and an unlimited set of different approaches for
organizers of MCS campaigns. MCS still has many challenges to face in a
world that aims to be greener and more sustainable, but it has revealed a
win-win strategy to enhance existing infrastructure. In this context, MCS has
demonstrated the capacity to improve context-awareness and coverage, with
citizens being the platform to unify urban environments and infrastructure.
For instance, taxi drivers contribute data from their devices to support civil
engineering in monitoring the Harvard Bridge’s vibrations (Boston, US) [7].
Asfault [211] and Safestreet [9] enable monitoring road conditions for safer
driving. Smart devices can also detect emergency situations [214], such as
earthquakes [212], [213], or floodings [13]. Healthcare is another field in
which MCS is having a great impact, e.g., for detecting allergies and share
information on healthy food [8].

9.2 Concluding Remarks

MCS is currently a well-consolidated data collection paradigm for smart city
services. This dissertation presents an overview of MCS systems and different
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contributions to cover aspects that were not investigated yet when this study
started. First of all, a comprehensive survey consolidates the MCS foundation
and terminology, proposing a four-layered architecture. The architecture
enables classifying all stack levels, from application to sensing layer, pass-
ing through data and communication. For each architecture layer, detailed
taxonomies clarify and characterize the most relevant aspects. The thesis
presents novel features developed over the popular MCS simulator Crowd-
SenSim, which already outperformed other existing tools. These novelties
include real energy measurements that support simulated data contribu-
tions, easy-to-use mobility patterns in real-world city street networks, and
realistic pedestrian mobility models. Preventing energy waste is one of the
first steps to provide efficient and sustainable solutions. This dissertation
proposes a novel methodology to assess energy-efficient MCS data collection
frameworks. It includes models, real experimental measures performed in
a laboratory, and simulations conducted in realistic urban environments.
Urban planning typically relies on traditional methodologies but nowadays is
crucial to provide data-driven solutions. To this end, the thesis proposes a
study on learning-based estimation of local businesses’ attractiveness. Finally,
this manuscript also focuses on deploying edge data centers (EDCs) in cities
efficiently. To empower MCS systems and crowd intelligence, it is funda-
mental to move computing resources closer to end-users by exploiting novel
promising paradigms like multi-access edge (MEC) computing. It requires
to place edge resources according to computational demand. This work
proposes policies to efficiently deploy EDCs by analyzing complex urban
dynamics, such as citizens’ mobility and social interactions.
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