2007.12412v1 [cs.CR] 24 Jul 2020

arxXiv

Model Checkers Are Cool:
How to Model Check Voting Protocols in UPPAAL

Wojciech Jamroga!2, Yan Kim!, Damian Kurpiewski?, and Peter Y. A. Ryan!

L SnT, University of Luxembourg
2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract The design and implementation of an e-voting system is a
challenging task. Formal analysis can be of great help here. In partic-
ular, it can lead to a better understanding of how the voting system
works, and what requirements on the system are relevant. In this paper,
we propose that the state-of-art model checker UPPAAL provides a good
environment for modelling and preliminary verification of voting proto-
cols. To illustrate this, we present an UpPPAAL model of Prét a Voter,
together with some natural extensions. We also show how to verify a
variant of receipt-freeness, despite the severe limitations of the property
specification language in the model checker.

1 Introduction

The design and implementation of a good e-voting system is highly challenging.
Real-life systems are notoriously complex and difficult to analyze. Moreover,
elections are social processes: they are run by humans, with humans, and for
humans, which makes them unpredictable and hard to model. Last but not
least, it is not always clear what good means for a voting system. A multitude of
properties have been proposed by the communities of social choice theory (such
as Pareto optimality and nonmanipulability), as well as secure voting (ballot
secrecy, coercion-resistance, voter-verifiability, etc.). The former are typically set
for a very abstract view of the voting procedure, and consequently miss many
real-life concerns. For the latter ones, it is often difficult to translate the informal
intuition to a formal definition that is commonly accepted.

In a word, we deal with processes that are hard to understand and predict,
and evaluate them against criteria that are not exactly clear. Formal analysis
can be of great help here: perhaps not in the sense of providing the ultimate
answers, but rather to strengthen our understanding of both how the voting
system works and how it should work. The main goal of this paper is to propose
that model checkers from distributed and multi-agent systems can be invaluable
tools for such an analysis.

Model checkers and UPPAAL. Much research on model checking focuses
on the design of logical systems for a particular class of properties, establishing
their theoretical characteristics, and development of verification algorithms. This
obscures the fact that a model checking framework is valuable as long as it is

actually used to analyze something. The analysis does not necessarily have to
result in a “correctness certificate”. A readable model of the system, and an
understandable formula capturing the requirement are already of substantial
value.

In this context, two features of a model checker are essential. On the one hand,
it should provide a flexible model specification language that allows for modular
and succinct specification of processes. On the other hand, it must offer a good
graphical user interface. Paradoxically, tools satisfying both criteria are rather
scarce. Here, we suggest that the state of the art model checker UPPAAL can
provide a nice environment for modelling and preliminary verification of voting
protocols and their social context. To this end, we show how to use UPPAAL to
model a voting protocol of choice (in our case, Prét & Voter), and to verify some
requirements written in the temporal logic CTL.

Contribution. The main contribution of this paper is methodological: we demon
strate that specification frameworks and tools from distributed and multi-agent
systems can be useful in analysis and validation of voting procedures. An ad-
ditional, technical contribution consists in a reduction from model checking of
temporal-epistemic specifications to purely temporal ones, in order to verify a
variant of receipt-freeness despite the limitations of UPPAAL.

Structure of the paper. We begin by introducing the main idea behind mod-
elling and model checking of multi-agent systems, including a brief introduction
to UPPAAL (Section. In Section we provide an overview of Prét & Voter, the
voting protocol that we will use for our study. Section [4] presents a multi-agent
model of the protocol; some interesting extensions of the model are proposed in
Section [f] We show how to specify simple requirements on the voting system,
and discuss the output of model checking in Section [5} The section also presents
our main technical contribution, namely the model checking reduction that re-
casts knowledge-related statements as temporal properties. We discuss related
work in Section [7, and conclude in Section [§]

2 Towards Model Checking of Voting Protocols

Model checking is the decision problem that takes a model of the system and a
formula specifying correctness, and determines whether the model satisfies the
formula. This allows for a natural separation of concerns: the model specifies
how the system is, while the formula specifies how it should be. Moreover, most
model checking approaches encourage systematic specification of requirements,
especially for the requirements written in modal and temporal logic. In that
case, the behavior of the system is represented by a transition network, possibly
with additional modal relations to capture e.g. the uncertainty of agents. The
structure of the network is typically given by a higher-level representation, e.g.,
a set of agent templates together with a synchronization mechanism.

We begin with a brief overview of UPPAAL, the model checker that we will
use in later sections. A more detailed introduction can be found in [3].

2.1 Modeling in UPPAAL

The system model in UPPAAL consists of a set of concurrent processes. The
processes are defined by templates, each possibly having a set of parameters.
The parameterized templates are used for defining a large number of almost
identical processes. Every template consists of locations, edges, and optional
local declarations. An example template is shown in Figure [2} we will use it to
model the behavior of a voter.

Locations are graphically represented as circles. Initial locations are marked
by a double circle. Committed locations are marked by the circled letter C. If
any process is in a committed location, then the next transition must involve an
edge from one of the committed locations. Those are used for creating atomic
sequences or encoding synchronization between more than two components.

The edges are annotated by selections (in yellow), guards (green), synchro-
nizations (teal), and updates (blue). The syntax of expressions mostly coincides
with that of C/C++. Selections bind the identifier to a value from the given
range in a nondeterministic way. Guards enable the transition if and only if the
guard condition evaluates to true. Synchronizations allow processes to synchro-
nize over a common channel ch (labeled ch? in the receiver process and ch!
for the sender). Note that a transition on the side of the sender can be fired
only if there exists an enabled transition on the receiving side labeled with the
same channel identifier, and vice versa. Update expressions are evaluated when
the transition is taken. For a synchronizing transition, the update expressions on
the sender side are executed before the receiver ones. Straightforward value pass-
ing over a channel is not allowed; instead, one has to use shared global variables
for the transmission.

For convenience, we will place the selections and guards at the top or left of
an edge, and the synchronizations and updates at the bottom/right.

2.2 Specification of Requirements

To specify requirements, UPPAAL uses a fragment of the temporal logic CTL [I0].
CTL allows for reasoning about the possible execution paths of the system by
means of the path quantifiers E (“there is a path”) and A (“for every path”). A path
isa maxima]EI sequence of states and transitions. To address the temporal pattern
on a path, one can use the temporal operators (O (“in the next moment”), O
(“always from now on”), ¢ (“now or sometime in the future”), and U (“until”). For
example, the formula AQ(has_ballot; — A< (voted;y V - - - V voted;) expresses
that, on all paths, whenever voter ¢ gets her ballot form, she will eventually cast
her vote for one of the candidates 1, ..., k. Another formula, Ad-punished; says
that voter ¢ will never be punished by the coercer.

More advanced properties usually require a combination of temporal modal-
ities with knowledge operators K,, where K,¢ expresses “agent a knows that ¢
holds.” For example, formula E< (results A —voted; j A =K .—voted; j) says that the

1 1., infinite or ending in a state with no outgoing transitions.

Obelix
Idefix X
(a) Asterix (b)
Panoramix
7304944 7304944

Figure 1: (a) Prét a Voter ballot form; (b) Receipt encoding a vote for “Idefix”

coercer ¢ might not know that voter ¢ hasn’t voted for candidate j, even if the
results are already published. Moreover, AO(results — =K —voted; j) expresses
that, when the results are out, the coercer won’t know that the voter refused to
vote for j. Intuitively, both formulas capture different strength of receipt-freeness
for a voter who has been instructed to vote for candidate j.

3 Outline of Prét A Voter

In this paper, we use UPPAAL for modeling and analysis of a voting protocol. The
protocol of choice is Prét a Voter. A short overview of Prét & Voter is presented
here; the full details can be found, for example, in [24].

Most verifiable voting systems follow the pattern: at the time of casting,
an encryption or encoding of the vote is created and posted to a public bulletin
board. The voter can later check that her encrypted ballot appears correctly. The
set of posted, ballots are then processed in some verifiable way to reveal the tally
or outcome. Much of this is effectively a secure distributed computation, and as
such is well-established and understood cryptography. The really challenging bit,
because it involves interactions between the users and the system, is the creation
of the encrypted ballots. This has to be in a way that assures the voter that her
vote is correctly embedded, while avoiding any coercion or vote buying threats.

The key innovation of the Prét & Voter approach is to encode the vote using
a randomised candidate list. This contrasts with earlier verifiable schemes that
involved the voter inputting her selection to a device that then produces an
encryption of the selection. Here what is encrypted is the candidate order which
can be generated and committed in advance, and the voter simply marks her
choice on the ballot in the traditional manner.

Suppose that our voter is called Anne. At the polling station, Anne registers
and chooses at random a ballot form sealed in an envelope and saunters over to
the booth. An example of such a form is shown in Figure[Th. In the booth, Anne
extracts her ballot form from the envelope and makes her selection in the usual
way by placing a cross in the right hand column against the candidate of her
choice (for approval or ranked voting, she marks her selection or ranking against
the candidates). Once her selection has been made, she separates the left and
right hand strips and discards the left hand strip. She is left with the right hand
strip which now constitutes her privacy protected receipt, as shown in Figure [Tp.

Anne now exits the booth clutching her receipt, returns to the registration
desk, and casts her receipt. Her receipt is placed over an optical reader or similar
device that records the random value at the bottom of the strip and records in
which cell her X is marked. Her original, paper receipt is digitally signed and
franked and returned to her to keep and later check that her vote is correctly
recorded on the bulletin board. The randomisation of the candidate list on each
ballot form ensures that the receipt does not reveal the way she voted, so en-
suring the secrecy of her vote. Incidentally, it also removes any bias towards the
candidate at the top of the list that can occur with a fixed ordering.

The value printed on the bottom of the receipt is what enables extraction of
the vote during the tabulation phase: buried cryptographically in this value is the
information needed to reconstruct the candidate order and so extract the vote
encoded on the receipt. This information is encrypted with secret keys shared
across a number of tellers. Thus, only a threshold set of tellers acting together
are able to interpret the vote encoded in the receipt. In practice, the value on
the receipt will be the output of an agreed cryptographic hash of the ciphertext
committed to the bulletin board.

After the election, voters can visit the secure Web Bulletin Board (WBB)
and confirm that their receipts appear correctly. Once any discrepancies are
resolved, the tellers take over and perform anonymising mixes and decryption
of the receipts. At the end, the plaintext votes will be posted in secret shuffled
order, or in the case of homomorphic tabulation, the final result is posted. All
the processing of the votes can be made universally verifiable, i.e., any observer
can check that no votes were manipulated. These are carefully designed so as
not to impinge on ballot privacy.

Prét a Voter brings several advantages in terms of privacy and dispute res-
olution. Firstly, avoidance of side channel leakage of the vote from the encryp-
tion device. Secondly, improved dispute resolution: ballot assurance is based on
random audits of the ballot forms, which can be performed by the voter or in-
dependent observers. A ballot form is either well-formed, i.e. the plaintext order
matches the encrypted order, or not. This is independent of the voter or her
choice, hence there can be no dispute as to what choice the voter provided. Such
disputes can arise in Benaloh challenges and similar cut-and-choose style audits.
Furthermore, auditing ballots does not impinge on ballot privacy, as nothing
about the voter or the vote can be revealed at this point.

4 Modelling Prét a Voter in UPPAAL

In this section, we present how the components and participants of Prét & Voter
can be modelled in UPPAAL. To this end, we give a description of each module
template, its elements, and their interactions. The templates represent the be-
havior of the following types of agents: voters, coercers, mix tellers, decryption
tellers, auditors, and the voting infrastructure. For more than one module of a
given type, an identifier i = 0,1, ... will be associated with each instance.

verify()

v_phase?

idle

has_ballot verification

receipt.o = ballots[v_id].onion,
receipt.i = c_index(X),
chosen = X

p_phase?

coerced
interract[v_id]?
nterraci[v_id] punish[v_id]?

coerced=true

punished

record!
recorded:=receipt

marked choice received_receipt

not_punish[v_id]?
show[v_id]! not_punished
shown=receipt

Figure 2: Voter template for the model of Prét & Voter

The code of the model is available at https://github.com/pretvsuppaal/
model. Here, we present in detail only the Voter template. The details of the
other modules can be found in the extended version of the paper, available at
https://github.com/pretvsuppaal/extended.

To facilitate readability and manageability of the model code, we define some
data structures and type name aliases based on the configuration variables:

— Ciphertext: a pair (y1,y2), representing some cipher-text.

— Ballot: a pair (6,cl) of onion § = Epg(s,*) and candidate list ¢/ = 7 (s),
where s is a seed associated with the ballot, 7 : R — Permc¢ is a function
that associates a seed with a permutation of the candidates. To implement
basic absorption of marked cell index into the onion, we will only use cyclic
shifts of base candidate order and use a Voter’s id as a seed of associated
with her ballot.

— Receipt: a pair (6,r) of onion 6 and an index r of marked cell. It can be
used to verify if a term was recorded and if it was done correctly.

— c__t: an integer with range [0, ¢_total), a candidate;

— v__t: an integer with range [0, v_total), a voter;

- z:t: an integer with range [0, z_total), an element of Z.

4.1 Voter Template

The structure of the Voter template is shown in Figure[2] The idea is that while
the voter waits for the start of election she might be subject to coercion. When
the ballots are ready, the voter selects a candidate, and transmits the receipt
to the system. Then she decides if she wants to check how her vote has been
recorded, and if she wants to show the receipt to the coercer. If coerced, she also
waits for the Coercer’s decision to punish her or refrain from punishment.

The module includes the following private variables:

https://github.com/pretvsuppaal/model
https://github.com/pretvsuppaal/model
https://github.com/pretvsuppaal/extended

Iseen(v_id]

interract[v_id]! show]v_id]?
coercion[v_id]=true seen[v_id]=true

not_punish[v_id]! punish[v_id]!
coercion[v_id]=false coercion[v_id]=false

Figure 3: Coercer template

— receipt: instance of Receipt, obtained after casting a vote;
— coerced[=false]: a Boolean, indicating if coercer has established a contact;
— chosen - integer value of chosen candidate.

Moreover, the following procedures are included:

— c_index(target): returns an index, at which target can be found on the
candidate list of a ballot;

— verify(): returns true if voter’s receipt can be found on the board list,
else returns false.

States:

— idle: waiting for the election, might get contacted by coercer;

— has_ ballot: obtained the ballot form;

— marked_ choice: marked an index of chosen candidate (and destroyed left
hand side with candidate list);

— recetved_receipt: receipt is obtained and might be shown to the coercer;

— werification: decided to verify the receipt;

— passed: has a confirmation that the receipt appears correctly;

— failed: has an evidence that the receipt either does not appear or appears
incorrectly (in case of index absorption both cases are the same);

— end: the end of the voting ceremony;

— punished: has been punished by the Coercer;

— not_punished: has not been punished by the Coercer.

Transitions:

— idle—idle: if was not already coerced, enable transition; if taken, then set
coercion to true;

— idle—~has_ballot: enabled transition; if taken, then voter acquired a ballot
form;

rand_ptr<v_total rand_pirev_total

vec_t{0][rand_ptr++]=rand

vec_f1][rand_ptr++]=rand

rand_ptr==v_total rand_ptr==v_total

mixes==mt_id

wait rand ipt:0 \DC‘:dG perm_i[0]=rand, e\\%ij perm_i[1]=rand,
. do_mixing(true), do_mixingifalse),
rand_ptr=0 mixes++

reveal[mt

id]?

audit_pass?

idle passed_audit

do_rev() revealed

failed_audit

Figure 4: Mteller template

— has_ ballot—marked_ choice: mark a cell with chosen candidate;

— marked_ choice—received_receipt: send receipt to the System over channel
record using shared variable recorded,

— received_ receipt—rreceived_ receipt: if was coerced, enable transition; if taken,
then pass the receipt to Coercer using shared variable shown;

— received_receipt—rverification: enabled transition; if taken, then Voter de-
cided to verify whether receipt appears on board;

— (received_ receipt || passed || failed)—end: end of voting ceremony for voter;

— end—punished: if was coerced, enable transition; if taken, then Voter was
punished by Coercer;

— end—not_ punished: if was coerced, enable transition; if taken, then Voter
was not punished by Coercer.

4.2 Coercer

The coercer can be thought of as a party that can influence voters by forcing
them to obey certain instructions. To enforce this, the Coercer can punish the
voter. The structure of the Coercer is presented in Figure [3} see the extended
version of the paper at https://github.com/pretvsuppaal/extended for the
technical details.

4.3 Mix Teller (Mteller)

Once the mixing phase starts, each mix teller performs two re-encryption mixes.
The order of turns is ascending and determined by their identifiers. The random-
ization factors and permutation of each mix are selected in a nondeterministic
way and stored for a possible audit of re-encryption mixes. When audited, the

https://github.com/pretvsuppaal/extended

dt_curr<dt_min dt_curr==dt_min
£ P
@ d_phase? dt_participates[dt_id]=true, - my_decr(), O

idle wait dt_curr++ cooperating decryptions++ halt

dt_curr==dt_min

refused

Figure 5: Dteller template

mix_i==mt_total
@ m_phase? O
idle mix_i=0 end
-

ch_i=rand1,

auditing_mixes

andz Ir_i=rand2 (check_mix() ? (audit_pass) : (audit_fail))!
mix_i<mixes mix_i++
reveal[mix_i]!
auditing_mix_i ch_j=ch_i, checking
Ir_j=Ir_i

Figure 6: Auditor template

mix teller reveals the requested links and the associated factors, thus allowing
Auditor to verify that the input ciphertext maps to the output. The structure
of the mix teller is shown in Figure [4]

4.4 Decryption Teller (Dteller)

In this module, after the re-encryption mixes are done, a decryption teller non-
deterministically chooses a subset of tellers. Note that it is possible that two or
more of decryption tellers refuse to cooperate, which would lead to a deadlock.
In order to avoid that, only subsets with cardinality of 2 will be considered.

4.5 Auditor

In order to confirm that the mix tellers performed their actions correctly, the
Auditor conducts an audit based on the randomized partial checking technique,
RPC in short [14]. To this end, he requests each mix teller to reveal the factors for
the selected half of an odd-mix batch, and verify whether the input corresponds
to the output. The control flow of the Auditor is presented in Figure [6]

4.6 Voting Infrastructure Module (Sys)

This module represents the behavior of the election authority that prepares
the ballot forms, monitors the current phase, signals the progress of the voting

r_ptr<v_total

r_vec[r_ptr++]=rand
r_ptr==v_total
© r_ptr=0 g

b4 generate_ballots() A" phase!
idle generating_ballots ballots_ready voting

initial_batch[voted] = recorded,
absorb_i(recorded),
voted++

voted == v_total | p_phase!

) mixes==mt_total Y decryptions==dt_min
m_phase! b4 d_phase! A post_results() O
receipts_posted mixing decryption results

Figure 7: Sys Module

procedure to the other components, and posts the results of the election at the
end. In addition, the module plays the role of a server that receives receipts and
transfers them to the database throughout the election.

5 Verification

As we already mentioned, we chose UPPAAL for this study mainly because of
its modeling functionality. The requirement specification capabilities of the tool
were of secondary importance. In fact, they are quite limited. First, UPPAAL
admits only a fragment of CTL: it excludes the “next” and “until” modalities,
and does not allow for nesting of operators (with one exception that we describe
below). Thus, the supported properties fall into the following categories: simple
reachability (EOp), liveness (AOp), and safety (AOp and EOp). The only allowed
nested formulas come in the form of the p leads to q property, written p ~ q,
and being a shorthand for AO(p — A<q).

Still, UPPAAL allows to model-check simple properties of Prét & Voter, as we
show in Section Moreover, by tweaking models and formulas in a clever way,
one can also verify some more sophisticated requirements, see Section [5.2

5.1 Model Checking Temporal Requirements

The model in Section [4] allows us to verify properties of Prét a Voter for dif-
ferent configurations of participants. In particular, we have analyzed variants of
the model, generated by different numbers of instances for the Voter template.
The values should be chosen carefully, to avoid state-space explosion. We have
considered the following properties for verification:

1. EOfailed auditg: the first mix teller might eventually fail an audit.

2. AO-punished;: voter i will never be punished by the coercer.

3. has_ ballot; ~» marked choice;: on all paths, whenever voter i gets a ballot
form, she will eventually mark her choice.

10

start start

reverse

Figure 8: (a) Epistemic bisimulation triangle; (b) turning the triangle into a cycle
by reversing the transition relation

We verified each formula on several configurations differing by the number
of voters ranging from 1 to 5. For the first property, the UPPAAL verifier returns
‘Property is satisfied’ for the configurations with 1,2, 3 and 4 voters. In case of 5
voters, we get ‘Out of memory.” Formula produces the answer ‘Property is not
satisfied” and pastes a counter-example into the simulator (if the diagnostic trace
was set in the option panel) for all the five configurations. Finally, formula
ends with ‘Out of memory’ regardless of the number of voters.

5.2 How to Make Model Checker Do More Than It Is Supposed To

Many important properties of voting refer to the knowledge of its participants.
For example, receipt-freeness expresses that the coercer should never know how
the voter has voted. Or, better still, that the coercer will never know if the voter
voted as instructed. Similarly, voter-verifiability says that the voter will eventu-
ally know whether her vote has been registered and tallied correctly (assuming
that she follows the verification steps).

A clear disadvantage of UPPAAL is that its language for specification of re-
quirements is restricted to purely temporal properties. We show that, with some
care, one can use it to embed the verification of more sophisticated properties. In
particular, we show how to enable verification of some knowledge-related require-
ments by a technical reconstruction of models and formulas. The construction
has been inspired by the reduction of epistemic properties to temporal proper-
ties, proposed in [I2I5]. Consequently, UPPAAL and similar tools can be used to
model check formulas of CTLK (i.e., CTL + Knowledge) that express variants
of receipt-freeness and voter-verifiability.

In order to simulate the knowledge operator K, under the CTL semantics,
the model needs to be modified. The first step is to understand how the for-
mula —K,—voted;j (saying that the coercer doesn’t know that the voter hasn’t
voted for candidate j) is interpreted. Namely, if there is a reachable state in
which voted;; is true, there must also exist another reachable state, which is
indistinguishable from the current one, and in which —wvoted;; holds. The idea is
shown in Figure [Bh. We observe that to simulate the epistemic relation we need

11

Figure 9: Coercer module augmented with the converse transition relation

to create copies of the states in the model (the “real” states). We will refer to
those copies as the reverse states. They are the same as the real states, but with
reversed transition relation. Then, we add transitions from the real states to
their corresponding reverse states, that simulate the epistemic relation between
the states. This is shown in Figure [Bp.

To illustrate how the reconstruction of the model works on a concrete exam-
ple, we depict the augmented Coercer template in Figure [9

The next step is the reconstruction of formulas. Let us take the formula for
the weak variant of receipt-freeness from Section 2.2} i.e., EO(results A —voted;j A
—K.—voted; j). In order to verify the formula in UPPAAL, we need to replace the
knowledge operator according to our model reconstruction method (see Figure
again). This means that the verifier should find a path that closes the cycle:
from the initial state, going through the real states of the voting procedure
to the vote publication phase, and then back to the initial state through the
reversed states. In order to “remember” the relevant facts along the path, we use
persistent Boolean variables voted; ; and negvoted; j: once set to true they always
remain true. We also introduce a new persistent variable epist_voted; ; to refer to
the value of the vote after an epistemic transition. Once we have all that, we can
propose the reconstructed formula: EO(resultsAnegvoted; jAepist _voted; jAinitial).
UPPAAL reports that the formula holds in the model.

A stronger variant of receipt-freeness is expressed by another formula from
Section i.e., AO(results — —K.—voted;;). Again, the formula needs to be
rewritten to a pure CTL formula. As before, the model checker should find a
cycle from the initial state, “scoring” the relevant propositions on the way. More
precisely, it needs to check if, for every real state in which election has ended,

12

rand_ptr<v_total rand_ptr<v_total

vec_t0][rand_ptr++]=rand

vec_r[1][rand_ptr++]=rand

mixes==0 rand_pltr==v_total rand ptr==v_total

wail rand_ptr=0 \Eca/t’i perm_i[0]=rand, t:‘)\ggw perm_i[0]=rand,
o do_mixing_corr(c_j.sig). do_mixingifalse),
rand_ptr=0 rand_ptr=0,

mixes++

m_phase?

audit_pass?

idle passed_audit

revealed

fail?

audit_fail?
failed_audit

Figure 10: Corrupted Mix Teller module

there exist a path going back to the initial state through a reverse state in which
the voter has voted for the selected candidate. This can be captured by the
following formula: ACJ((results A real) — E<O(voted; j A init)). Unfortunately, this
formula cannot be verified in UPPAAL, as UPPAAL does not allow for nested path
quantifiers. In the future, we plan to run the verification of this formula using
another model checker LTSmin [I7] that accepts UPPAAL models as input, but
allows for more expressive requirement specifications.

6 Replicating Pfitzmann’s Attack

A version of Pfitzmann’s attack is known to compromise mix-nets with random-
ized partial checking [I8]. It can be used to break the privacy of a given vote
with probability 1/2 of being undetected during RPC. The leaked information
may differ depending on both the implementation of the attack and the voting
protocol.

The main idea is that the first mix teller, who is corrupted, targets a cipher-
text ¢; from the odd mix input, and replaces some output term c; with cf, where
0 is a properly chosen integer (the criteria depend on the implementation). Af-
ter the decryption results are posted, a pair of decrypted messages m and m’
satisfying equation m’ = m® can be used to deduce sensitive information.

Clearly, the model presented in Section [d]is too basic to allow for detection
of the attack. Still, this can be obtained by a simple extension of the model. For
that, we change the Mteller template as shown in Figure [I0] The only difference
lies in how the first re-encryption mix is done: the corrupted mix teller targets
cp, chooses a random non-zero d, and uses cg instead of some other output term.
In all other respects, the teller behaves honestly.

13

Using the UPPAAL model checking functionality, it can be verified that there
exist executions where the corrupted mix teller has failed the audit, as well as
paths where he has passed. That is, both EOfailed audity and EOpassed auditg
produce ‘Property satisfied’ as the output. We note that, in order to successfully
verify those properties in our model of Prét & Voter, the search order option in
UpPAAL should be changed from the (default) Breadth First to either Depth
First or Random Depth First.

7 Related Work

Over the years, the properties of ballot secrecy, receipt-freeness, coercion resis-
tance, and wvoter-verifiability were recognized as important for an election to
work properly, see [22] for an overview. A number of secure and voter-verifiable
schemes have been proposed, most notably the Prét a Voter protocol for super-
vised elections [24], the Pretty Good Democracy approach to internet voting [26],
and Selene, an enhanced form of tracking number-based scheme [25]. Nowadays,
such schemes are starting to move out of the laboratory and into use in real elec-
tions. For example, Prét & Voter has been successfully used in one of the state
elections in Australia [7] while the Scantegrity II system [§] was used in munic-
ipal elections in the Takoma Park county, Maryland. This strongly emphasizes
the need for extensive analysis and validation of such systems.

Formal analysis of selected voting protocols, based on theorem proving in
first-order logic or linear logic, includes attempts at verification of vote counting
in [I/23]. The Coq theorem prover [4] was used to implement the STV counting
scheme in a provably correct way [I1], and to produce a provably voter-verifiable
variant of the Helios protocol [13]. Moreover, Tamarin [2I] was used to ver-
ify receipt-freeness in Selene [6] and Electryo [27]. Approaches based on model
checking are fewer and include the analysis of risk-limiting audits [2] with the
CBMC model checker [9]. Moreover, [16] proposed and verified a simple multi-
agent model of Selene using MCMAS [20]. Related research includes the use of
multi-agent methodologies to specify and verify properties of authentication and
key-establishment protocols [T95] with MCMAS.

In all the above cases, the focus is on the verification itself. Indeed, all the
tools mentioned above provide only a text-based interface for specification of
the system. As a result, their model specifications closely resemble program-
ming code, and insufficiently protect from the usual pitfalls of programming:
unreadability of the code, lack of modularity, and opaque control structure. In
this paper, we draw attention to tools that promote modular design of the model,
emphasize its control structure, and facilitate inspection and validation.

8 Conclusions
Formal methods are well established in proving (and disproving) the correct-

ness of cryptographic protocols. What makes voting protocols special is that
they prominently feature human and social aspects. In consequence, an accurate

14

specification of the behaviors admitted by the protocol is far from straightfor-
ward. An environment that supports the creation of modular, compact, and —
most of all — readable specifications can be an invaluable help.

In this context, the UPPAAL model checker has a number of advantages. Its
modeling language encourages modular specification of the system behavior. It
provides flexible data structures, and allows for parameterized specification of
states and transitions. Last but not least, it has a user-friendly GUI. Clearly, a
good graphical model helps to understand how the voting procedure works, and
allows for a preliminary validation of the system specification just by looking
at the graphs. Anybody who ever inspected a text-based system specification or
the programming code itself will know what we mean.

In this paper, we try to demonstrate the advantages of UPPAAL through a
case study based on the Prét a Voter protocol. The models that we have obtained
are neat, easy to read, and easy to modify. On the other hand, UPPAAL has not
performed very well with the verification itself. This was largely due to the fact
that its requirement specification language turned out to be very limited — much
more than it seemed at the first glance. We managed to partly overcome the
limitations by a smart reconstruction of models and formulas. In the long run,
however, a more promising path is to extend the implementation of verification
algorithms in UPPAAL so that they handle nested path quantifiers and knowledge
modalities, given explicitly in the formula.

References

1. B. Beckert, R. Goré, and C. Schiirmann. Analysing vote counting algorithms via
logic - and its application to the CADE election scheme. In Proceedings of CADE,
volume 7898 of Lecture Notes in Computer Science, pages 135-144. Springer, 2013.

2. B. Beckert, M. Kirsten, V. Klebanov, and C. Schiirmann. Automatic margin com-
putation for risk-limiting audits. In Proceedings of E-Vote-ID, volume 10141 of
Lecture Notes in Computer Science, pages 18-35. Springer, 2016.

3. G. Behrmann, A. David, and K. Larsen. A tutorial on UPPAAL. In Formal Methods
for the Design of Real-Time Systems: SEM-RT, number 3185 in LNCS, pages 200
236. Springer, 2004.

4. Y. Bertot, P. Casteran, G. Huet, and C. Paulin-Mohring. Interactive Theorem
Proving and Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004.

5. I. Boureanu, P. Kouvaros, and A. Lomuscio. Verifying security properties in un-
bounded multiagent systems. In Proceedings of International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 12091217, 2016.

6. A. Bruni, E. Drewsen, and C. Schiirmann. Towards a mechanized proof of selene
receipt-freeness and vote-privacy. In Proceedings of E-Vote-ID, volume 10615 of
Lecture Notes in Computer Science, pages 110-126. Springer, 2017.

7. C. Burton, C. Culnane, J. Heather, T. Peacock, P. Ryan, S. Schneider, V. Teague,
R. Wen, Z. Xia, and S. Srinivasan. Using Prét a Voter in victoria state elections.
In Proceedings of EVT/WOTE. USENIX, 2012.

8. D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. Rivest, P. Ryan,
E. Shen, A. Sherman, and P. Vora. Scantegrity II: end-to-end verifiability by

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

voters of optical scan elections through confirmation codes. Trans. Info. For. Sec.,
4(4):611-627, 2009.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Proceedings of TACAS, volume 2988 of Lecture Notes in Computer Science, pages
168-176. Springer, 2004.

E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995-1072. Elsevier, 1990.

M. Ghale, R. Goré, D. Pattinson, and M. Tiwari. Modular formalisation and
verification of STV algorithms. In Proceedings of E-Vote-ID, volume 11143 of
Lecture Notes in Computer Science, pages 51-66. Springer, 2018.

V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent sys-
tems. Synthese, 139(2):241-280, 2004.

T. Haines, R. Goré, and M. Tiwari. Verified verifiers for verifying elections. In
Proceedings of CCS, pages 685-702. ACM, 2019.

M. Jakobsson, A. Juels, and R. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In USENIX Security Symposium, pages
339-353, 2002.

W. Jamroga. Knowledge and strategic ability for model checking: A refined ap-
proach. In Proceedings of MATES 08, volume 5244 of Lecture Notes in Computer
Science, pages 99-110, 2008.

W. Jamroga, M. Knapik, and D. Kurpiewski. Model checking the SELENE e-
voting protocol in multi-agent logics. In Proceedings of E-VOTE-ID, volume 11143
of Lecture Notes in Computer Science, pages 100-116. Springer, 2018.

G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk. LTSmin:
High-performance language-independent model checking. In Tools and Algorithms
for the Construction and Analysis of Systems. Proceedings of TACAS, volume 9035
of Lecture Notes in Computer Science, pages 692—707. Springer, 2015.

S. Khazaei and D. Wikstroem. Randomized partial checking revisited. In Topics
in Cryptology — CT-RSA 2013, volume 7779 of Lecture Notes in Computer Science,
pages 115-128. Springer, 2013.

A. Lomuscio and W. Penczek. LDYIS: a framework for model checking security
protocols. Fundamenta Informaticae, 85(1-4):359-375, 2008.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: An open-source model checker
for the verification of multi-agent systems. International Journal on Software Tools
for Technology Transfer, 19(1):9-30, 2017.

S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN prover for the
symbolic analysis of security protocols. In Computer Aided Verification, Proceed-
ings of CAV, volume 8044 of Lecture Notes in Computer Science, pages 696-701.
Springer, 2013.

B. Meng. A critical review of receipt-freeness and coercion-resistance. Information
Technology Journal, 8(7):934-964, 2009.

D. Pattinson and C. Schiirmann. Vote counting as mathematical proof. In Ad-
vances in Artificial Intelligence, Proceedings of Al volume 9457 of Lecture Notes
in Computer Science, pages 464-475. Springer, 2015.

P. Ryan. The computer ate my vote. In Formal Methods: State of the Art and
New Directions, pages 147-184. Springer, 2010.

P. Ryan, P. Rgnne, and V. Iovino. Selene: Voting with transparent verifiability and
coercion-mitigation. In Financial Cryptography and Data Security: Proceedings of
FC 2016. Revised Selected Papers, volume 9604 of Lecture Notes in Computer
Science, pages 176-192. Springer, 2016.

16

26.

27.

P. Ryan and V. Teague. Pretty good democracy. In Security Protocols XVII,
volume 7028 of Lecture Notes in Computer Science, pages 111-130. Springer Berlin
Heidelberg, 2013.

M. Zollinger and P. R. P. Ryan. Mechanized proofs of verifiability and privacy in

a paper-based e-voting scheme. In Proceedings of 5th Workshop on Advances in
Secure Electronic Voting, 2020.

17

	Model Checkers Are Cool:
	1 Introduction
	2 Towards Model Checking of Voting Protocols
	2.1 Modeling in Uppaal
	2.2 Specification of Requirements

	3 Outline of Prêt à Voter
	4 Modelling Prêt à Voter in Uppaal
	4.1 Voter Template
	4.2 Coercer
	4.3 Mix Teller (Mteller)
	4.4 Decryption Teller (Dteller)
	4.5 Auditor
	4.6 Voting Infrastructure Module (Sys)

	5 Verification
	5.1 Model Checking Temporal Requirements
	5.2 How to Make Model Checker Do More Than It Is Supposed To

	6 Replicating Pfitzmann's Attack
	7 Related Work
	8 Conclusions

