
Supplementary material for
GigaSOM.jl: High-performance clustering and
visualization of huge cytometry datasets

Miroslav Kratochvíl Oliver Hunewald Laurent Heirendt

Vasco Verissimo Jiří Vondrášek Venkata P. Satagopam

Reinhard Schneider Christophe Trefois Markus Ollert



FlowSOM  mean(F1)=0.6686 GigaSOM  mean(F1)=0.6825

CD11b− Monocyte
CD11bhi Monocyte

CD11bmid Monocyte
CMP

Erythroblast
GMP
HSC

Immature B
Mature CD38lo B

Mature CD38mid B
Mature CD4+ T
Mature CD8+ T
Megakaryocyte

MEP
MPP

Myelocyte
Naive CD4+ T
Naive CD8+ T

NK
Plasma cell

Plasmacytoid DC
Platelet
Pre−B I

Pre−B II

Assigned clusters

M
an

ua
lly

 g
at

ed
 c

el
l t

yp
e

Clustering comparison on Levine13 dataset

FlowSOM  mean(F1)=0.8242 GigaSOM  mean(F1)=0.8347

Basophils

CD16− NK

CD16+ NK

CD34+CD38+CD123− HSPCs

CD34+CD38+CD123+ HSPCs

CD34+CD38lo HSCs

CD4 T

CD8 T

Mature B

Monocytes

pDCs

Plasma B

Pre B

Pro B

Assigned clusters

M
an

ua
lly

 g
at

ed
 c

el
l t

yp
e

Clustering comparison on Levine32 dataset

FlowSOM  mean(F1)=0.6686 GigaSOM  mean(F1)=0.6825

CD11b− Monocyte
CD11bhi Monocyte

CD11bmid Monocyte
CMP

Erythroblast
GMP
HSC

Immature B
Mature CD38lo B

Mature CD38mid B
Mature CD4+ T
Mature CD8+ T
Megakaryocyte

MEP
MPP

Myelocyte
Naive CD4+ T
Naive CD8+ T

NK
Plasma cell

Plasmacytoid DC
Platelet
Pre−B I

Pre−B II

Assigned clusters

M
an

ua
lly

 g
at

ed
 c

el
l t

yp
e

Clustering comparison on Levine13 dataset

FlowSOM  mean(F1)=0.8242 GigaSOM  mean(F1)=0.8347

Basophils

CD16− NK

CD16+ NK

CD34+CD38+CD123− HSPCs

CD34+CD38+CD123+ HSPCs

CD34+CD38lo HSCs

CD4 T

CD8 T

Mature B

Monocytes

pDCs

Plasma B

Pre B

Pro B

Assigned clusters

M
an

ua
lly

 g
at

ed
 c

el
l t

yp
e

Clustering comparison on Levine32 dataset

Figure S1: Results of clustering precision comparison with FlowSOM, on Levine13 and Levine32
datasets.



●●●

●●●

●●●

●

●●
● ●

●
●●●

●

●
●

●●●

●

●
●

●●
●

●●●●●●

●
●●

●
●●

●●●●
●

●

●

●
●

●
●●

● ●●

●●●

●●●

●●●

●●
●

●●●
●●●

●●●
●

●●

● ●●●● ●
●●●

●●
● ●
● ●

●●
●

●●●
●●

●●
●

●●●●
● ●●●●●

●
●●

●●●

●●●
●

●

●
●
●
●

●● ●●● ●

●●●

●●●

●● ●

●●●

●
●●

●●●
●●●●●

●

● ●●●●● ●●●

●●●
●● ●

●
●

●
●● ●● ●●
●●●

● ●●
●●●●●●

●

●●

●

●

●

●●●

●
●●

●
●

●

●● ●
●●●

●
●

●

●● ●

●
●●

●

●
●

●● ●

●●●●
●

●
●●●

●●●

●●●●
●●

● ●●●
●●

●
●●

●●●

●●●

●

●

●
●●●

●●●
●●●

●

●
●

●● ●
● ●●

●
●

●

●
●
●

● ●●

●●
●

●●●
●●●

● ●
●

●
●●

●●
●

●●●

●●●

●●●

●●●●●●●●●

● ●
●

●●●●●

●

●
●● ●● ●

●●●

●● ●●●●●●●

●
●●

●●●
●

●●

●

●

●

●●
●

●●●
● ●●● ●●●● ●

●
●

●

●
●
●

●

●

●

●●● ●●●

● ●●

●●●●●●●●●

●

●
●

●
●●

●●

●

●
●●
●●●
●●
●●

●●
●●●●●●

●
●●
●
●●

●

●
●

●

●●

●●
●

●●●

●●●
●●●● ●●

●

●
●
●
●●

●
●

●

●
●●
●● ●

●● ●

●●
●

● ●●

●
●●

●●●

●●●

●●●

●●●

●
●●

●● ●

●● ●

● ●●

●●●

● ●
●● ●●

●
●●

●●
●

●
●●

●●●

●●●

●●●●●●

●●●

●
●
●

●●
●

●● ●

● ●● ●●●

● ●●

●●
● ●●●

●● ●●● ●

●●●

●
●

●
●●●

●● ●●● ●

● ●●

●●●

●●●●●●

●
●●

●
●
●

●●●

●●●●●●●●●
●●●

●●
●

●
●●●●●

●
●

●
●●●● ●●

●
● ●

●●●●●
●

●● ●●●●

●●●

●

●

●
●

●

●

● ●●●●●

●●●

●●●

●
●
●
●
●●

●●●

●
●

●
●

●
●

●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●●●

●●
●

●
● ●●
●

●

●●●

●●●●●● ●●

●
●

●●

●●

●

●
●

●

●●●

●●●

●●●●●●
●

●
●

●●
●

●

●

●

●
●

●●●●
●●●

●●●

●●●

●

●

●

● ●●

●●
●

●
●●

●● ●

●
●●

●●●

●
●

●

●●●●● ●●●●

●
●●

● ●●

●

●

●

●●●
● ●●

●●●

●●
●●

●●
●●●

●●●

●●
●

●● ●●●●
●●●●●●

●
●●

●
●●

●

●

●

● ●●

●
●
●

●●
●

●
●

●

●●●

●

●●

● ●● ●●● ●●●

●● ●●●●

●
●
●

●●●
●●●

●●●

●
●●●

●●

●

●
●

●● ●●
●
●
●
●

●●●●● ●●●●●

●

●
●

●
●●

●●●

●●●●
●

●

● ●●

● ●●

●●●●●●

●●●
●●●

●●●

●
●●

●

●
●

● ●●
●●

●

●●●●●
●

●●●

●●
●●●●

●
●
●

●●● ●

●●

●● ●

●●●● ●●

●● ●
●●●

●

●
●

●●●

●●●
●●●

● ●●

●●
●

●●

●

●●●●●●● ●●
●●●

●
● ●

● ●●

●●●

●● ●● ●●

●
●●

●●●

●●●

●●

●

●●
●

●●
●

●●●
●● ●●●●

●
●●

●
●
●

● ●
●

● ●●● ●●●● ●

●
● ●

●
●

●

●●●

●●●●●● ●●●
●●●

●●●

●
● ●

●●●

●●●●
●

●

●●
●

●●
●

●
●●

●●●

● ●●

●●●
●●●● ●●●●●

●

●● ●

●
●

●
●

●

● ●●●●●●●●

10 dimensions 20 dimensions 30 dimensions 40 dimensions 50 dimensions

10x10 S
O

M
20x20 S

O
M

40x40 S
O

M

1 10 10
0 1 10 10
0 1 10 10
0 1 10 10
0 1 10 10
0

30 us

50 us

100 us

100 us

200 us

300 us

300 us

500 us

1 ms

# allocated CPUs

To
ta

l s
in

gl
e−

C
P

U
 ti

m
e 

sp
en

t p
er

 c
el

l p
ro

ce
ss

ed

Cells per process ● ● ●100Ki 200Ki 300Ki

CPU time consumption of distributed SOM training

Figure S2: Detailed overview of the e�ect of horizontal scaling on the performance of SOM training
in GigaSOM.jl. The color distinguishes di�erent benchmarked levels of CPU occupancy (100 to 300
thousand cells loaded in memory per CPU).



10 dimensions 20 dimensions 30 dimensions 40 dimensions 50 dimensions

10×
10 S

O
M

20×
20 S

O
M

40×
40 S

O
M

0.7× 1× 2× 0.7× 1× 2× 0.6×0.7× 1× 0.5× 0.7× 1× 0.5× 0.7× 1×

0.5×

0.7×

1×

0.5×

0.7×

1×

0.5×

1×

3×

Speedup with kd−trees

S
pe

ed
up

 w
ith

 b
al

l−
tr

ee
s

● ● ●SOM training SOM classification EmbedSOM

Speedups from spatial indexing structures

Figure S3: Detailed overview of the speedups provided by using spatial indexes for accelerating the
nearest neighbor queries in implemented algorithms.



CD8 memory

CD8 naive

CD4 resting Thelper

CD4 e�ector Thelper

CD4 resting TregCD4 e�ector Treg

NK

NKT

γδTCR

auto�uorescent cells

dead cells

unmarked leukocytes

debris

Figure S4: Larger version of Figure 5 — an embedding of more than 1 billion cells from the IMPC
dataset (FR-FCM-ZYX9). The main lineage markers are highlighted as combinations of RGB colors:
CD8 in red, CD4 in green and CD161 in blue. Annotations are made based on presence of several
markers that are not highlighted in the embedding, mainly the Live/Dead marker, γδTCR, CD25,
GITR, and �uorescence scatter intensities.

http://flowrepository.org/id/FR-FCM-ZYX9


using Distributed , GigaSOM , GigaScatter , ClusterManagers
import Glob , NearestNeighbors , Distributions

# find the file names to process
files = Glob.glob("TC_SPL_ *.fcs")

# read the number of available workers from environment and start the worker processes
n_workers = parse(Int , ENV["SLURM_NTASKS"])
addprocs_slurm(n_workers , topology =: master_worker)

# load the required packages on all workers
@everywhere using GigaSOM
@everywhere using GigaScatter

# load the data to workers
dataset = loadFCSSet (:IMPCdata , files)

# collect the total number of cells from all workers
dataset_size = distributed_mapreduce(dataset , d->size(d,1), +)
@info "Loaded total $dataset_size cells."

# preprocess the distributed data
dselect(dataset , Vector (1:18)) # columns 1-18 contain interesting information
dtransform_asinh(dataset , Vector (7:18) , 500.0) # transform the marker expressions
dscale(dataset , Vector (1:18)) # scale all columns

# train the SOM and run the embedding (this uses all available Slurm workers)
som = initGigaSOM(dataset , 32, 32)
som = trainGigaSOM(som , dataset , epochs =30,

rFinal =0.1, radiusFun=expRadius (-20.0),
knnTreeFun=NearestNeighbors.BallTree)

e = embedGigaSOM(som , dataset , k=16, output =: embeddedIMPC)

# setup constants for rasterization of the embedding
rasterSize = (2048 , 2048)
alpha = 0.003
dist = Distributions.Normal ()

# run the distributed rasterization
compound_raster = mixedRaster(distributed_mapreduce(

[dataset , e],
(d, e) -> begin

# convert the normalized expressions to numbers between 0--1
colors = hcat(

Distributions.cdf.(dist , d[:,10]), # R: CD8 column
Distributions.cdf.(dist , d[:,16]), # G: CD4 column
Distributions.cdf.(dist , d[:,15]), # B: CD161 column
fill(alpha , size(d,1)))

# rasterize the local part of the data
mixableRaster(rasterize(

rasterSize ,
Matrix{Float64 }(e’),
Matrix{Float64 }(colors ’),
xlim=(-2,33), ylim =( -2 ,33)))

end ,
mixRasters ))

# save the result to a PNG
savePNG("impc -embedding.png", compound_raster)

Listing S1: Complete code for Julia work�ow that produces the embedding of the IMPC dataset
(Figures 5 and S4).


