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Figure S1: Results of clustering precision comparison with FlowSOM, on Levine13 and Levine32
datasets.
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Figure S2: Detailed overview of the e�ect of horizontal scaling on the performance of SOM training
in GigaSOM.jl. The color distinguishes di�erent benchmarked levels of CPU occupancy (100 to 300
thousand cells loaded in memory per CPU).
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Figure S3: Detailed overview of the speedups provided by using spatial indexes for accelerating the
nearest neighbor queries in implemented algorithms.
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Figure S4: Larger version of Figure 5 — an embedding of more than 1 billion cells from the IMPC
dataset (FR-FCM-ZYX9). The main lineage markers are highlighted as combinations of RGB colors:
CD8 in red, CD4 in green and CD161 in blue. Annotations are made based on presence of several
markers that are not highlighted in the embedding, mainly the Live/Dead marker, γδTCR, CD25,
GITR, and �uorescence scatter intensities.

http://flowrepository.org/id/FR-FCM-ZYX9


using Distributed , GigaSOM , GigaScatter , ClusterManagers
import Glob , NearestNeighbors , Distributions

# find the file names to process
files = Glob.glob("TC_SPL_ *.fcs")

# read the number of available workers from environment and start the worker processes
n_workers = parse(Int , ENV["SLURM_NTASKS"])
addprocs_slurm(n_workers , topology =: master_worker)

# load the required packages on all workers
@everywhere using GigaSOM
@everywhere using GigaScatter

# load the data to workers
dataset = loadFCSSet (:IMPCdata , files)

# collect the total number of cells from all workers
dataset_size = distributed_mapreduce(dataset , d->size(d,1), +)
@info "Loaded total $dataset_size cells."

# preprocess the distributed data
dselect(dataset , Vector (1:18)) # columns 1-18 contain interesting information
dtransform_asinh(dataset , Vector (7:18) , 500.0) # transform the marker expressions
dscale(dataset , Vector (1:18)) # scale all columns

# train the SOM and run the embedding (this uses all available Slurm workers)
som = initGigaSOM(dataset , 32, 32)
som = trainGigaSOM(som , dataset , epochs =30,

rFinal =0.1, radiusFun=expRadius (-20.0),
knnTreeFun=NearestNeighbors.BallTree)

e = embedGigaSOM(som , dataset , k=16, output =: embeddedIMPC)

# setup constants for rasterization of the embedding
rasterSize = (2048 , 2048)
alpha = 0.003
dist = Distributions.Normal ()

# run the distributed rasterization
compound_raster = mixedRaster(distributed_mapreduce(

[dataset , e],
(d, e) -> begin

# convert the normalized expressions to numbers between 0--1
colors = hcat(

Distributions.cdf.(dist , d[:,10]), # R: CD8 column
Distributions.cdf.(dist , d[:,16]), # G: CD4 column
Distributions.cdf.(dist , d[:,15]), # B: CD161 column
fill(alpha , size(d,1)))

# rasterize the local part of the data
mixableRaster(rasterize(

rasterSize ,
Matrix{Float64 }(e’),
Matrix{Float64 }(colors ’),
xlim=(-2,33), ylim =( -2 ,33)))

end ,
mixRasters ))

# save the result to a PNG
savePNG("impc -embedding.png", compound_raster)

Listing S1: Complete code for Julia work�ow that produces the embedding of the IMPC dataset
(Figures 5 and S4).


