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Abstract

Multiuser precoding techniques are critical to handle the co-channel interference, also
known as multiuser interference (MUI), in the downlink of multiuser multi-antenna wire-
less systems. The convention in designing multiuser precoding schemes has been to treat
the MUI as an undesired received signal component. Consequently, the design attempts
to suppress the MUI by exploiting the channel state information (CSI), regardless of
the instantaneous users’ data symbols. In contrast, it has been shown that the MUI
may not always be undesired or destructive as it is possible to exploit the constructive
part of the interference or even converting the interfering components into constructive
interference (CI) by instantaneously exploiting the users’ intended data symbols. As a
result, the MUI can be transformed into a useful source of power that constructively
contributes to the users’ received signals. This observation has turned the viewpoint on
multiuser precoding from conventional approaches towards more sophisticated designs
that further exploit the data information (DI) in addition to the CSI, referred to as
symbol-level precoding (SLP). The SLP schemes can improve the multiuser system’s
overall performance in terms of various metrics, such as power efficiency, symbol error
rate, and received signal power. However, such improvement comes with several prac-
tical challenges, for example, the need for setting the modulation scheme in advance,
increased computational complexity at the transmitter, and sensitivity to CSI and other
system uncertainties. The main goal of this thesis is to address these challenges in the
design of an SLP scheme.

The existing design formulations for the CI-based SLP problem consider a specific
signal constellation; therefore, the design needs to set the modulation scheme in advance.
In this thesis, we first elaborate on optimal and relaxed approaches to exploit the CI in
a novel systematic way. This study enables us to develop a generic framework for the
SLP design problem, which can be used for modulation schemes with constellations of
any given shape and order. Depending on the design criterion, the proposed framework
can offer significant gains in the power consumption at the transmitter side or the re-
ceived signal power and the symbol error rate at the receiver side without increasing the
complexity, compared to the state-of-the-art schemes. Next, to address the high com-
putational complexity issue, we simplify the design process and propose approximate
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yet computationally-efficient solutions performing relatively close to the optimal design.
We further propose an optimized accelerated FPGA design that allows the real-time
implementation of our SLP technique in high-throughput communications systems. Re-
markably, the accelerated design enjoys the same per-symbol complexity order as that
of the zero-forcing (ZF) precoding scheme. Next, we address the problem of robust
SLP design under system uncertainties. In particular, we focus on two sources of un-
certainty, namely, the channel and the design process. The related problems are tackled
by adopting worst-case and stochastic design approaches and appropriately redefining
the precoding optimization problem. The resulting robust schemes can effectively deal
with system uncertainties while preserving reliability and power efficiency in the mul-
tiuser communications system, at the cost of a slightly increased complexity. Finally,
we broaden our scope to new technologies such as millimeter wave (mmWave) com-
munications and massive multiple-input multiple-output (MIMO) systems and revisit
the SLP problem for low-cost energy-efficient transmitter architectures. The precoding
design problem is more challenging particularly in such scenarios as the related hard-
ware restrictions impose additional (often intractable) constraints on the problem. The
restrictions are typically due to the use of finite-resolution analog-to-digital converters
(DAC) or analog components such as switches and/or phase shifters. Two well-known
design strategies are considered in this thesis, namely, quantized (finite-alphabet) pre-
coding and hybrid analog-digital precoding. We tackle the related problems through
adopting efficient design mechanisms and optimization algorithms, which are novel for
the SLP schemes. The proposed techniques are shown to improve the system’s energy
efficiency compared to the state-of-the-art.

8



Acknowledgements

The days of my Ph.D. at the Interdisciplinary Centre for Security, Reliability and Trust
(SnT), University of Luxembourg, have been a wonderful experience armed me with
new skills both in my professional and personal life. I would like to express my sincere
gratitude to many people, without whom I would not have completed this Ph.D. Thesis.

First of all, I would like to thank my supervisors Prof. Björn Ottersten and Dr. Far-
bod Kayhan for accepting me as a Ph.D. student, and further, for their consistent
support, encouragement and guidance throughout the past four years. I also had the
great pleasure of working with Prof. Shahram ShahbazPanahi (firstly as a visiting Pro-
fessor at SnT and later as a professor with the University of Ontario Institute of Tech-
nology, Canada), whose ingenious advice and invaluable contributions facilitated the
completion of this thesis. I am also grateful to my CET committee member Dr. Bha-
vani Shankar Mysore, for his valuable suggestions. The constructive discussions during
the ESSTIMS meetings and insightful suggestions by Dr. Nader Alagha, from the Eu-
ropean Space Agency (ESA), and Dr. Joel Grotz, from the Société Européenne des
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fano Andrenacci for thoughtfully sharing their knowledge and facilitating the beginning
steps of this thesis. I would also like to thank my collaborators Dr. Jevgenij Krivochiza,
Dr. Sumit Gautam, Dr. Juan Merlano Duncan, and Prof. Symeon Chatzinotas. I also
wish to thank all my colleagues at SnT for providing such an amazing work environ-
ment. Many thanks to Dr. Alberto Mengali, Dr. Vahid Joroughi, and Dr. Saeid Sedighi
for helpful time-to-time discussions.

I am deeply grateful and indebted to my family, who set me off on the road to this
Ph.D. a long time ago and never wavered in their support and understanding. And
special thanks to Saharnaz, whose support and patience never let me down.

Finally, I would like to gratefully acknowledge the generous funding of my Ph.D. by
the Fonds National de la Recherche (FNR, Luxembourg National Research Fund) via
the University of Luxembourg.

9



10



List of Abbreviations

ACM adaptive coding and modulation

ADC analog-to-digital converter

ADMM Alternating direction method of multipliers

AM-AM amplitude-to-amplitude

AM-PM amplitude-to-phase

APGD accelerated projected gradient descent

AWGN additive white Gaussian noise

BCD block coordinate descent

BER bit error rate

BLP block-level precoding

BS base station

CE constant-envelope

CSCG circularly symmetric complex Gaussian

CDL clock-driven logic

CF-SLP closed-form symbol-level precoding

CI constructive interference

CIR constructive interference region

CRN cognitive radio network

CSI channel state information

11



DAC digital-to-analog converter

DAS distributed antenna system

DI data information

DPCIR distance-preserving constructive interference region

EPM exact penalty method

FLOP floating-point operation

FPGA field-programmable gate array

FSK frequency-shift keying

HDL hardware description language

HLS high-level synthesis

ICF-SLP improved closed-form symbol-level precoding

IP intellectual property

KKT Karush-Kuhn-Tucker

LCQP linearly-constrained quadratic programming

LLR log-likelihood ratio

LMI linear matrix inequality

LP linear programming

MDPCIR minimum distance-preserving constructive interference region

MF matched filter

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum likelihood

MMSE minimum mean square error

mmWave Millimeter wave

MODCOD modulation and coding

MRT maximum ratio transmission

MUI multiuser interference

12



MU-MIMO multiuser multiple-input multiple-output

NNLS non-negative least squares

NR noise-robust

NSPC non-strict phase constraints

PA power amplifier

PAM pulse-amplitude modulation

PAPR peak-to-average power ratio

PHY physical-layer

PMF probability mass function

PSK phase-shift keying

PSS phase shifter selection

QAM quadrature-amplitude modulation

QoS quality-of-service

QP quadratic programming

QPSK quadrature phase-shift keying

RF radio frequency

RTL register-transfer level

RZF regularized zero-forcing

SDP semi-definite programming

SEP symbol error probability

SER symbol error rate

SINR signal-to-interference-plus-noise ratio

SLP symbol-level precoding

SNR signal-to-noise ratio

SOC second-order cone

SOCP second-order cone programming

SPC strict phase constraints

13



SS symbol-scaling

SWIPT simultaneous wireless information and power transfer

TDD time-division duplex

UBCIR union bound constructive interference region

UE user equipment

WF Wiener filter

ZF zero-forcing

14



Notations

j Imaginary unit j =
√
−1

π Pi number equals ≈ 3.1416

ln(x) Natural logarithm of x

ex Exponential function of x

E{·} Statistical expectation

Pr{·} Probability function

Re(·) Real part of a complex input

Im(·) Imaginary part of a complex input

a,a,A,A A scalar, a vector, a matrix, a set

|A| Cardinality of set A

A\B The set of all the elements in A excluding those in common with B

|a| Modulus of scalar a

a∗ Conjugate of complex scalar a

aT,AT Transpose of vector a, transpose of matrix A

aH,AH Conjugate transpose of vector a, conjugate transpose of matrix A

A−1 Inverse of square matrix A

A† Moore-Penrose Inverse of matrix A

A � 0 Matrix A is positive semidefinite

A � B Matrix A−B is positive semidefinite

15



A ◦B Hadamard (element-wise) product of matrices A and B

A⊗B Kronecker product of matrices A and B

Tr(A) Trace of matrix A

|A| Determinant of square matrix A

rank(A) Rank of matrix A

R(A) Range space of matrix A

vec(A) The column vector obtained by stacking the columns of matrix A

a � b Element-wise inequality between vectors a and b

diag(a) Diagonal matrix with the elements of vector a on the main diagonal

‖a‖ `2-norm (Euclidean norm) of vector a

‖a‖1 `1-norm of vector a

‖a‖∞ `∞-norm of vector a

‖A‖F Frobenius norm of matrix A

‖A‖2 Spectral norm of matrix A

R The set of real numbers

R+ The set of non-negative real numbers

C The set of complex numbers

Rn×m The set of n×m matrices with real-valued entries

Cn×m The set of n×m matrices with complex-valued entries

In Identity matrix of dimension n

1n×m All-ones matrix of dimension n×m

0n×m All-zeros matrix of dimension n×m

I,1,0 Identity, all-ones or all-zeros matrix of appropriate dimension

max Maximize

min Minimize

argmax Maximizing argument

argmin Minimizing argument

s.t. Subject to

16



List of Tables

1.1 Summary of the CI-based SLP techniques in the literature. . . . . . . . . 48

3.1 Normal vectors corresponding to QPSK symbols. . . . . . . . . . . . . . . 67
3.2 Different design formulations for the DPCIR-based SLP power minimiza-

tion problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Number of constraints and solution time for different SLP schemes. . . . . 87
3.4 Complexities of the proposed methods for the SLP max-min SINR design. 92

4.1 Actual complexity in FLOPs for different SLP designs. . . . . . . . . . . . 103
4.2 Dominating complexity order for different SLP designs. . . . . . . . . . . 103
4.3 Execution time of different precoding schemes. . . . . . . . . . . . . . . . 108

5.1 Actual arithmetic complexity of Algorithm 3. . . . . . . . . . . . . . . . . 115
5.2 Interface specifications of the IP core. . . . . . . . . . . . . . . . . . . . . 116
5.3 Structure of the RTL data ports. . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Performance estimates of the non-optimized HDL design. . . . . . . . . . 119
5.5 Performance estimates of the optimized HDL design. . . . . . . . . . . . . 120
5.6 Resource utilization of the non-optimized HDL design on the Xilinx Kintex-

7 xc7k410tffv900-2 FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 Resource utilization of the optimized HDL design on the Xilinx Kintex-7

xc7k410tffv900-2 FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 Proposed worst-case/stochastic robust CI constraints. . . . . . . . . . . . 144
6.2 Complexity comparison of the non-robust and the proposed robust SLP

designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.1 Average percentage of inactive binary constraints in the RQSLP solution
for different values of Nt with Nu = 4 and b = 1. . . . . . . . . . . . . . . 189

8.2 Average number of iterations with computations of dimension 2Nt till
convergence of the QSLP algorithm. . . . . . . . . . . . . . . . . . . . . . 196

17



List of Tables

9.1 Complexity comparison of different hybrid SLP schemes. . . . . . . . . . . 212

18



List of Figures

2.1 Downlink MU-MIMO system with multiuser precoding. . . . . . . . . . . 50
2.2 Typical CIRs for the QPSK constellation. . . . . . . . . . . . . . . . . . . 56

3.1 A simplified block diagram for the downlink MU-MIMO channel with SLP. 63
3.2 An illustration of CIRs for an AWGN-optimized 8-ary constellation. . . . 68
3.3 Geometry of DPCIRs for a boundary constellation point. . . . . . . . . . 72
3.4 Feasibility probability of the SLP design as a function of the power budget

for different target SINRs with (Nt, Nu) = (4, 4). . . . . . . . . . . . . . . 86
3.5 Transmit power versus target SINR with (Nt, Nu) = (8, 8) for (a) 8-PSK

constellation; (b) the optimized 8-ary constellation. . . . . . . . . . . . . . 87
3.6 Performance comparison for a system with (Nt, Nu) = (8, 8): (a) Average

per-user achievable throughput as a function of target rate; (b) Average
symbol error probability versus target SINR. . . . . . . . . . . . . . . . . 88

3.7 Scatter plot of the noise-free received signals taken form 8-PSK constel-
lation in a system with (Nt, Nu) = (8, 8) and p = 15 dBW. . . . . . . . . . 89

3.8 The worst-user received SINR among Nu = 4 users as a function of the
power budget for (a) 8-PSK constellation; (b) the optimized 8-ary con-
stellation; (c) 16-QAM constellation. . . . . . . . . . . . . . . . . . . . . . 90

3.9 Worst-user received SINR as a function of system dimension and power
budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.10 Number of iterations until convergence of the BCD algorithm as a function
of (a) system dimension; (b) power budget for three constellations with
different orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Accuracy of the CF-SLP solution for different system dimensions. . . . . . 104
4.2 Comparison of the total transmit power resulted from different precoding

schemes versus target SINR with (a) Nt = Nu = 4; (b) Nt = Nu = 8; (c)
Nt = Nu = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Transmit power versus target SINR with Nt = Nu = 8. . . . . . . . . . . . 106
4.4 Transmit power and time complexity versus number of users with β = 6/5.107

19



List of Figures

5.1 Experimental probability mass function of L. . . . . . . . . . . . . . . . . 113
5.2 IP block design of the low-complexity SLP technique. . . . . . . . . . . . 117
5.3 Data flow of the IP core sampled in the LabVIEW environment. . . . . . 118
5.4 Intended symbols and noise-free received signals obtained by simulating

the HDL design of Algorithm 3. . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Block diagram of the simulated communication system. . . . . . . . . . . 123
5.6 Scatter plot of the users’ received signals at SINR = 0 dB. . . . . . . . . . 124
5.7 Performance comparison of different precoding designs as a function of

target SINR for a system with QPSK modulation and Nt = Nu = 4: (a)
Average per-user symbol error rate; (b) Average total transmit power. . . 125

5.8 Power efficiency as a function of target SINR with QPSK modulation and
Nt = Nu = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Plot of ρ(υ), α(υ) and ψ(υ) as a function of the violation probability. . . . 146
6.2 Average transmission power of the non-robust and the worst-case robust

SLP schemes versus SINR target for a system with Nt = 6. . . . . . . . . 149
6.3 Scatter plot of the noise-free received signals at γ = 10 dB with a fixed

channel, ξ2 = 0.005 and υ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Average per-user received SINR versus target SINR with ξ2 = 0.005 and

υ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5 Average received SINR at γ = 15 dB with ξ2 = 0.005 and υ = 0.05. . . . . 152
6.6 Probability of outage versus target SINR under two different settings with

ξ2 = 0.005, υ = 0.05 and ξ2 = 0.01, υ = 0.2. . . . . . . . . . . . . . . . . . 152
6.7 Average transmission power versus target SINR with ξ2 = 0.005 and υ =

0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.8 Energy efficiency comparison of different SLP schemes versus target SINR

with ξ2 = 0.005 and υ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.9 Average symbol error rate per user versus target SINR for two different

scenarios with ξ2 = 0.005, υ = 0.05 and ξ2 = 0.01, υ = 0.2. . . . . . . . . . 155
6.10 Average transmission power as a function of uncertainty variance with

γ = 10 dB and υ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.11 Per-user energy efficiency as a function of uncertainty variance with γ =

10 dB and υ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.12 Feasibility rate as a function of violation probability at γ = 10 dB with

ξ2 = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.13 Scatter plot of the noise-free received signals at γ = 5 dB with a fixed

channel, υ = 0.1 and ξ2 = 0.001. . . . . . . . . . . . . . . . . . . . . . . . 158
6.14 Energy efficiency comparison of BLP and SLP schemes versus target SINR

with υ = 0.1 and ξ2 = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.15 Per-user energy efficiency as a function of violation probability with γ = 5

dB and ξ2 = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

20



List of Figures

6.16 Feasibility rate of different robust precoding schemes as a function of
uncertainty variance under two settings with γ = 5 dB, υ = 0.1 and
γ = 10 dB, υ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1 The considered system model where the output of the symbol-level pre-
coder is subject to linear distortion before being transmitted to the users. 165

7.2 Energy efficiency comparison of different SLP schemes under linear dis-
tortions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.1 The considered transmission scheme with symbol-level precoding where
each I/Q channel undergoes quantization via finite-resolution DACs. . . . 178

8.2 The DPCIRs are depicted in green color for the optimized 8-ary constel-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.3 The loss in optimality due to the penalized formulation with soft CI con-
straints for Nu = 4: (a) Deviation form the CI constraints versus the
number of transmit antennas Nt; (b) Comparison of γ∗ obtained from the
original and the reformulated problem versus Nt. . . . . . . . . . . . . . . 189

8.4 The users’ noise-free received signal with (Nt, Nu) = (16, 4) at a transmit
SNR of 0 dB, i.e., p/σ2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.5 Average per-user BER versus transmit SNR for an MU-MIMO system
with (a) (Nt, Nu) = (16, 4); (b) (Nt, Nu) = (64, 8). . . . . . . . . . . . . . . 192

8.6 Average users’ BER versus the number of transmit antennas Nt for a fixed
number of users Nu = 8 at a transmit SNR of 5 dB. . . . . . . . . . . . . 192

8.7 Power efficiency as a function of Nt for a fixed number of users Nu = 8
at SNR = 5 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.8 Average number of outer iterations of the QSLP method to reach a squared
error of 10−4 as a function of transmit SNR with (Nt, Nu) = (16, 4). . . . 195

8.9 Average number of outer and inner iterations for the QSLP method to
reach a squared error of 10−4 as a function of transmit SNR in linear scale.195

9.1 Schematic diagram of the considered hybrid transmitter architecture with
fully-connected switching and phase-shifting networks. . . . . . . . . . . . 203

9.2 Convergence behavior of Algorithm 6 versus iteration number for µ =
10−4 and ϑ = 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.3 Power consumption of different hybrid SLP schemes as a function of Nl
at SNR = −5 dB with Nt = 64 and Nu = 4. . . . . . . . . . . . . . . . . . 216

9.4 Average percentage of deactivated phase shifters as a function of Nl at
SNR = −5 dB with Nt = 64 and Nu = 4. . . . . . . . . . . . . . . . . . . 217

9.5 Average per-user symbol error rate versus transmit SNR with (Nt, Nl, Nu) =
(64, 8, 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

9.6 Per-user spectral efficiency versus transmit SNR with (Nt, Nl, Nu) = (64, 8, 8).218
9.7 Energy efficiency versus transmit SNR with (Nt, Nl, Nu) = (64, 8, 8). . . . 220
9.8 Energy efficiency at SNR = −5 dB as a function of Nl with Nt = 64 and

Nu = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

21



List of Figures

9.9 Average number of iterations till convergence of the proposed hybrid SLP
algorithm as a function of Nl with Nt = 64. . . . . . . . . . . . . . . . . . 222

22



Contents

Acknowledgements 6

Acknowledgements 8

List of Abbreviations 11

Notations 15

List of Tables 17

List of Figures 19

Preface 27
Support of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Journal papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Publications not Included in the Thesis . . . . . . . . . . . . . . . . . . . 29
Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1 Introduction 31
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2 Motivation, Problem Definition and Methodology . . . . . . . . . . . . . . 35
1.3 Literature on Symbol-Level Precoding . . . . . . . . . . . . . . . . . . . . 37
1.4 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . 41

2 Multiuser Precoding in Unicast MU-MIMO Downlink Systems 49
2.1 Preliminaries on MU-MIMO Interference Channels . . . . . . . . . . . . . 49
2.2 Linear Block-Level Precoding . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Spatial Matched Filter (MF) . . . . . . . . . . . . . . . . . . . . . 52

23



Contents

2.2.2 Zero-Forcing (ZF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Regularized Zero-Forcing (RZF) . . . . . . . . . . . . . . . . . . . 53
2.2.4 Wiener Filter (WF) . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 General Families of Objective-Oriented Precoding . . . . . . . . . . . . . . 54
2.3.1 SINR-Constrained Power Minimization Problem . . . . . . . . . . 54
2.3.2 Power-Constrained Precoding Design . . . . . . . . . . . . . . . . . 55

2.4 Symbol-Level Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 A Generic Design Framework for Constructive Interference Based Symbol-
Level Precoding 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 System Model and Problem Definition . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Interpretation of Symbol-Level SINR Constraints . . . . . . . . . . 63
3.2.2 Definition of the SLP Design Problem with CI Constraints . . . . 64

3.3 Constructive Interference Regions . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.1 Distance Preserving Constructive Interference Regions . . . . . . . 67
3.3.2 Union Bound Constructive Interference Regions . . . . . . . . . . . 68

3.4 Characterization of DPCIRs . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Design Formulations for the SLP Problem . . . . . . . . . . . . . . . . . . 74

3.5.1 DPCIR-based SLP Power Minimization . . . . . . . . . . . . . . . 75
3.5.2 UBCIR-based SLP Power Minimization . . . . . . . . . . . . . . . 78
3.5.3 DPCIR-based SLP SINR Balancing . . . . . . . . . . . . . . . . . 79

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Computationally-Efficient Symbol-Level Precoding–Part I: Derivation 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Optimal Solution Structure of the SINR-Constrained Power Minimization

SLP Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 Optimality Conditions for the SLP Power Minimization Problem . 97

4.4 Low-Complexity SLP Design . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Closed-Form Approximate Solution . . . . . . . . . . . . . . . . . . 99
4.4.2 Improved Closed-Form Approximate Solution . . . . . . . . . . . . 100

4.5 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 102
4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Computationally-Efficient Symbol-Level Precoding–Part II: Implemen-
tation 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Overview of the CF-SLP design . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Low-Complexity Implementation of CF-SLP . . . . . . . . . . . . . . . . . 113
5.4 FPGA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

24



Contents

5.4.1 RTL I/O Ports Description . . . . . . . . . . . . . . . . . . . . . . 117
5.4.2 Resource Utilization and Timing Estimates . . . . . . . . . . . . . 118
5.4.3 Design Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Robust Symbol-Level Precoding under System Uncertainties – Part I:
Channel Uncertainty 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 System and Uncertainty Model . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Bounded Uncertainty Region . . . . . . . . . . . . . . . . . . . . . 133
6.2.2 Stochastic Uncertainty Region . . . . . . . . . . . . . . . . . . . . 134

6.3 Robust CI Formulation with Imperfect CSI . . . . . . . . . . . . . . . . . 135
6.3.1 Worst-Case Robust Formulation . . . . . . . . . . . . . . . . . . . 135
6.3.2 Stochastic Robust Formulation . . . . . . . . . . . . . . . . . . . . 137
6.3.3 Relative Tightness Comparison . . . . . . . . . . . . . . . . . . . . 144

6.4 Robust SLP Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 146
6.4.1 Computational Complexity Analysis . . . . . . . . . . . . . . . . . 147

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Robust Symbol-Level Precoding under System Uncertainties – Part II:
Design Uncertainty 163
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2 System Model and Problem Definition . . . . . . . . . . . . . . . . . . . . 164
7.3 Worst-Case Design Formulation . . . . . . . . . . . . . . . . . . . . . . . . 166
7.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 Quantized Symbol-Level Precoding for Massive MU-MIMO Systems 173
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.2.2 Quantization Model . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.4 Quantized Symbol-Level Precoding Design . . . . . . . . . . . . . . . . . . 181

8.4.1 Computational Complexity Analysis . . . . . . . . . . . . . . . . . 185
8.5 Special Case: One-Bit Quantized Precoding . . . . . . . . . . . . . . . . . 187
8.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

25



Contents

9 Hybrid Symbol-Level Precoding for mmWave MU-MIMO Systems 197
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.2 System, Signal and Channel Model . . . . . . . . . . . . . . . . . . . . . . 201

9.2.1 System and Signal Model . . . . . . . . . . . . . . . . . . . . . . . 201
9.2.2 Multiuser mmWave Channel Model . . . . . . . . . . . . . . . . . . 203

9.3 Hybrid Symbol-Level Precoding Design . . . . . . . . . . . . . . . . . . . 204
9.3.1 Hybrid Precoder with Phase Shifter Selection . . . . . . . . . . . . 205
9.3.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.3.3 Analysis of Computational Complexity . . . . . . . . . . . . . . . . 210

9.4 Energy Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10 Concluding Remarks and Future Work 225
10.1 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Appendix A Appendices for Chapter 3 231
A.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.4 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
A.5 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Appendix B Appendices for Chapter 4 235
B.1 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Appendix C Appendices for Chapter 6 237
C.1 Proof of equality (b) in (6.26) . . . . . . . . . . . . . . . . . . . . . . . . . 237
C.2 Derivation of an equivalent SOC formulation for safe approximation II . . 238

Appendix D Appendices for Chapter 7 241
D.1 Proof of Lemma 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
D.2 Proof of Theorem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
D.3 Proof of Lemma 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Appendix E Appendices for Chapter 8 247
E.1 Proof of Lemma 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
E.2 Proof of Lemma 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
E.3 Derivation of an approximate upper bound on L . . . . . . . . . . . . . . 249

Appendix F Appendices for Chapter 9 251
F.1 Proof of Lemma 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Bibliography 253

26



Preface

This Ph.D. Thesis has been carried out from July, 2017 to January, 2021, at the Inter-
disciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,
Luxembourg, under the supervision of Prof. Björn Ottersten and Dr. Farbod Kayhan.
The time-to-time evaluations of the Ph.D. Thesis were duly performed by the CET
members Prof. Björn Ottersten, Dr. Farbod Kayhan, and Dr. Bhavani Shankar Mysore.

Support of the Thesis

This Ph.D. Thesis has been fully supported by the Luxembourg National Research Fund
under CORE Junior project: C16/IS/11332341 Enhanced Signal Space opTImization for
satellite comMunication Systems (ESSTIMS). The partial support from SIGCOM is also
gratefully acknowledged.

Publications

The original publications that have been produced during the period of Ph.D. candidacy
is listed below. These publications are referred to in the text by J ≡ Journal, L ≡ Letter,
C ≡ Conference, and P ≡ Patent.

Journal Papers

[J1] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Symbol-Level Pre-
coding Design Based on Distance Preserving Constructive Interference Regions,”
IEEE Transactions on Signal Processing, vol. 66, no. 22,pp. 5817-5832, Nov.
2018.

[J2] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Robust SINR-Constrained
Symbol-Level Multiuser Precoding with Imperfect Channel Knowledge,” IEEE
Transactions on Signal Processing, vol. 68, no.1, pp. 1837-1852, Mar. 2020.

27



Contents

[J3] Alireza Haqiqatnejad, Farbod Kayhan, Shahram ShahbazPanahi, and Björn Otter-
sten, “Finite-Alphabet Symbol-Level Multiuser Precoding for Massive MU-MIMO
Downlink,” Submitted to IEEE Transactions on Signal Processing in August 2020.

[J4] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Energy-Efficient Hy-
brid Symbol-Level Precoding for Large-Scale mmWave Multiuser MIMO Systems,”
IEEE Transactions on Communications, doi: 10.1109/TCOMM.2021.3058967.

[J5] Alireza Haqiqatnejad, Jevgenij Krivochiza, Juan Merlano Duncan, Symeon Chatzino-
tas, and Björn Ottersten, “Design Optimization for Low-Complexity FPGA Im-
plementation of Symbol-Level Multiuser Precoding,” Accepted for Publication in
IEEE ACCESS, Feb. 2021.

Letters

[L1] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Constructive Inter-
ference for Generic Constellations,” IEEE Signal Processing Letters, vol. 25, no.
4, pp. 586-590, Apr. 2018.

[L2] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Power Minimizer
Symbol-Level Precoding: A Closed-Form Sub-Optimal Solution,” IEEE Signal
Processing Letters, vol. 25, no. 11, pp. 1730-1734, Sep. Nov. 2018.

Conference Papers

[C1] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Symbol-Level Pre-
coding Design for Max-Min SINR in Multiuser MISO Broadcast Channels,” in
Proc. 19th IEEE International Workshop on Signal Processing Advances in Wire-
less Communications (SPAWC), Kalamata, Greece, Jun. 2018.

[C2] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Robust Design of
Power Minimizing Symbol-Level Precoder under Channel Uncertainty,” in Proc.
IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United
Arab Emirates, Dec. 2018.

[C3] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “An Approximate
Solution for Symbol-Level Multiuser Precoding Using Support Recovery,” in Proc.
20th IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Cannes, France, Jul. 2019.

[C4] Alireza Haqiqatnejad, Shahram ShahbazPanahi, and Björn Ottersten, “A Worst-
Case Performance Optimization Based Design Approach to Robust Symbol-Level
Precoding for Downlink MU-MIMO,” in Proc. 7th IEEE Global Conference on
Signal and Information Processing (GlobalSIP), Ottawa, Canada, Nov. 2019.

28



Contents

[C5] Alireza Haqiqatnejad, Farbod Kayhan, Shahram ShahbazPanahi, and Björn Otter-
sten, “One-Bit Quantized Constructive Interference Based Precoding for Massive
Multiuser MIMO Downlink,” in Proc. IEEE International Conference on Commu-
nications (ICC), Virtual Conference, Jun. 2020.

[C6] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Energy-Efficient Hy-
brid Symbol-Level Precoding via Phase Shifter Selection in mmWave MU-MIMO
Systems,” in Proc. IEEE Global Communications Conference (GLOBECOM),
Taipei, Taiwan, Dec. 2020.

Publications not Included in the Thesis

[C7] Sumit Gautam, Jevgenij Krivochiza, Alireza Haqiqatnejad, Symeon Chatzinotas,
and Björn Ottersten, “Boosting SWIPT via Symbol-Level Precoding,” in Proc.
21st IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Virtual Conference, May 2020.

[C8] Farbod Kayhan, Alireza Haqiqatnejad, Joel Grotz, Nader Alagha, “Symbol vs
Block Level Precoding in Multibeam Satellite Systems,” in Proc. 36th Inter-
national Communications Satellite Systems Conference (ICSSC), Niagara Falls,
Canada, 2018.

[C9] Alireza Haqiqatnejad and Farbod Kayhan, “Unified Satellite and Terrestrial ACM
Design,” in Proc. 35th International Communications Satellite Systems Conference
(ICSSC), Trieste, Italy, 2017.

Patents

[P1] Farbod Kayhan, Alireza Haqiqatnejad, Bhavani Shankar, and Björn Ottersten,
”Method and Device for Adaptive Coding and Modulation”, Filed on Oct. 2018
in Luxembourg, Publication Number: WO/2019/073029

29



Contents

30



Chapter 1
Introduction

This chapter introduces the problem of interest in this thesis. The motivation, contri-
bution and organization of the thesis are presented in the subsequent sections. A brief
review of the relevant literature in the last section closes this chapter.

1.1 Background

Multiuser interference (MUI) is one of the major performance-limiting factors in si-
multaneously serving multiple users in the same time-frequency resource block over a
wireless multiple-input multiple-output (MIMO) downlink channel. The MUI, which
is also known as co-channel interference, may adversely affect the downlink transmis-
sion’s achievable rate. One approach to mitigate the MUI at the transmit side is to
pre-compensate for its undesired effect on the received signal, which is commonly known
as multiuser transmit beamforming, or precoding [1]. Multiuser precoding techniques
address this issue by handling the co-channel interference via processing and spatially
multiplexing the users’ intended data streams prior to transmission. In principle, the
interference mitigation capabilities of multiuser precoding schemes are enabled by em-
ploying multiple antennas at the transmitter, providing sufficient degrees of freedom to
manage the MUI.

When perfect transmit-side channel state information (CSI) is non-causally available,
it is well known that dirty paper coding (DPC) can achieve the sum-rate capacity of
the MU-MIMO broadcast channel at an impractically high computational complexity.
In addition to simple linear precoding schemes such as matched filter (MF), also known
as maximum ratio transmission (MRT) [2], zero-forcing (ZF) or regularized zero-forcing
(RZF) [3,4], and Wiener filter (WF), also known as minimum mean square error (MMSE)
[5], extensive research focusing on practical yet efficient multiuser precoding techniques
have been reported in the literature; see, e.g., [1,6–10] and the references therein. Most
of the proposed techniques in this line of research fall within the category of objective-
oriented precoding approaches where closed-form solutions do not exist.
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In general, an objective-oriented multiuser precoding design can be expressed as
a constrained optimization problem [6, 7]. The design problem aims to balance some
system-centric and user-centric objectives/requirements, depending on the network’s op-
erator strategy. Power and sum-rate are often regarded as system-centric criteria [9].
Transmit power is considered, for example, to control the inter-cell interference in mul-
ticell wireless networks, and sum-rate is a measure of the overall system performance.
On the other hand, a frequently-used user-centric criterion is signal-to-interference-plus-
noise ratio (SINR), which is an effective measure of quality-of-service (QoS) in multiuser
interference channels [11]. In particular, both bit error rate (BER) and capacity, which
are two relevant criteria from a practical point of view, are closely related to maximiz-
ing SINR [10]. Considering different types of optimization criteria, some well-known
formulations for the multiuser precoding problem are QoS-constrained power minimiza-
tion [12,13], SINR balancing [8,10,14], and (weighted) sum-rate maximization [9,15,16].
In the sequel, we primarily focus on the power minimization problem with SINR con-
straints and the power-constrained SINR balancing problem based on a max-min fairness
criterion.

The existing multiuser precoding schemes can be broadly classified into two groups,
namely, block-level and symbol-level techniques. In designing a block-level precoder, the
convention is to exploit the transmit-side CSI in order to suppress the MUI, regardless
of the users’ data symbols. A crucial assumption is therefore the availability of instan-
taneous or stochastic CSI at the transmitter [17], based on which a block-level precoder
has to be recalculated depending on the channel coherence time. On the contrary, it has
been shown that the MUI might not always be harmful or destructive as it is possible to
exploit the constructive part of the interference [18], or even converting the interfering
components into constructive interference (CI) by instantaneously exploiting the users’
data symbols [19]. By doing do, the MUI can be turned into an additional source of
power that constructively contributes to the users’ received signals and improves the
overall performance of a multiuser system. As a result, the conventional viewpoint on
multiuser precoding can turn from block-level approaches towards a more sophisticated
design that further exploits the data information (DI), which is readily available at the
transmitter, in addition to the CSI. Such a design approach is commonly referred to as
symbol-level precoding (SLP) [20–22] and has been shown to be a promising alternative
for multiuser precoding schemes.

In principle, the CI is identified based on the philosophy that a noise-free received
signal can be decoded correctly not necessarily when it is close enough to the intended
symbol, rather, as long as it lies within the correct decision region even far away from
the target symbol. This has been the underlying rule of thumb in defining various CI
regions (CIR); see, e.g., [20, 21, 23]. The CIRs are typically defined with the aim of
enhancing or guaranteeing a certain level of detection accuracy for the users.

To benefit from the potential advantages of the CI, one needs to process the transmit
signal specifically for every set of users’ intended symbols, i.e., on a symbol-by-symbol
basis. The idea of designing the multiuser precoder on a symbol-level basis and convert-
ing the MUI into CI was first introduced in [24], and then elaborated in [20] and [21],
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where the definition of CI was formalized. Earlier research in this direction decom-
poses the MUI into constructive and destructive parts and attempts to exploit the CI
by canceling the destructive interference via linear precoding techniques such as ZF and
RZF [18]. This design strategy was further improved in [19], where the destructive in-
terference is not canceled but converted to the CI such that it is aligned with the desired
symbols through a symbol-specific rotation matrix. This alignment led to one of the
first definitions of CIRs, referred to as CIRs with strict phase constraints. The strict
phase constraints were later adopted in [21] for an elaborated design of the SLP scheme,
and then improved in [25] by defining relaxed CIRs where the phase of the received sig-
nal is allowed to have a limited angular deviation as long as it stays within the correct
detection region.

The SLP design problem is usually expressed as a constrained optimization prob-
lem. Accordingly, the symbol-level design of a multiuser precoder involves solving an
optimization problem for instantaneous realizations of the users’ data symbols. The
optimization constraints are defined so that the noise-free received signal of each user
is pushed into the predefined CIR. Therefore, formulation of the optimization problem,
and particularly the constraints, depend on the adopted modulation scheme (i.e., the
signal constellation). The objective function, on the other hand, depends on the design
criterion.

Compared to conventional block-level precoding techniques, it has been shown that
an SLP scheme can achieve significant gains at the cost of higher transmitter complexity
[19, 20, 26], but without re-designing the receiver. While the precoder’s linear structure
can be preserved under an SLP scheme, one may also adopt a non-linear structure
by forming a virtual multicast formulation to directly design the precoded transmit
signal [21], instead of calculating the precoding matrix. Some other advantages offered
by an SLP technique are described below:

- The symbol-level design of a multiuser precoder can significantly improve the sys-
tem performance in terms of power efficiency, symbol error rate (SER), and users’
received SINR, depending on the design criterion. These potential improvements
originate from two sources. Firstly, due to the CIRs, the precoding optimization
problem enjoys a larger search space (feasible region) to find the optimal precoded
signal compared to the conventional block-level precoding schemes. Secondly, the
symbol-by-symbol precoding design approach provides additional degrees of free-
dom to handle the MUI particularly for each set of symbols.

- A linear block-level precoding scheme can only satisfy the design constraints when
averaged over a block of symbols; however, the constraints might be violated instan-
taneously. This issue becomes problematic, e.g., in systems with strict hardware-
related restrictions such as peak per-antenna power constraints or unit-modulus
signal constraints. On the contrary, the SLP techniques can instantaneously guar-
antee the design constraints at a symbol-level scale as the precoder is specifically
designed for each symbol period.

- Unlike traditional small-scale transmitter architectures that employ highly linear
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and power-inefficient amplifiers, the MIMO system deployments with large-scale
antenna arrays require power-efficient amplifiers due to practical considerations
regarding the associated cost and power consumption. However, power-efficient
amplifiers typically show poor linearity characteristics, and therefore, require the
input signals to have a low peak-to-average power ratio (PAPR). As a result, the
per-antenna transmit power needs to have adequate dynamic properties in order to
limit the associated non-linearity effects. The SLP schemes are capable of compen-
sating for such non-linearity/imperfections on a symbol-level basis. For example,
constant-envelope (CE) SLP is an effective design approach to achieve a favorable
unit PAPR. Furthermore, the SLP design may target optimizing the power dy-
namics, such as the dynamic range and PAPR, by minimizing the instantaneous
peak transmit power, both in temporal (i.e., per-symbol) and spatial (i.e., per-
antenna) dimensions. By doing so, one can limit the performance degradation
caused by a non-linear amplifier due to the amplitude-to-amplitude (AM-AM) and
the amplitude-to-phase (AM-PM) distortion.

- The structure of each user’s receiver is independent of the SLP design strategy.
For example, in the case of downlink transmission with equiprobable signaling in a
multiuser system, each user can detect its intended symbol by applying an optimal
single-user detection rule, e.g., the maximum-likelihood (ML) detector. Moreover,
an SLP scheme can reduce the receiver’s complexity as no further post-processing
or compensation is needed on the users’ received signals, which is a considerable
advantage in the likely case where the users have limited computational capabili-
ties. This is mainly due to the fact that the noise-free signal received by each user
is accommodated onto the intended CIR.

- The number of transmit antennas fundamentally limits the number of simultane-
ously served users (i.e., multiplexed data streams) by a linear block-level precoding
scheme. In contrast, the SLP techniques support multiplexing more data streams
than the number of transmit antennas [27, 28], while the system performance can
be preserved or even improved.

To have a complete introduction to the SLP design paradigm, we close this section
by pointing out some of the disadvantages and practical challenges in implementing a
symbol-level precoder. These challenges include the need for setting the modulation
scheme in advance, a substantially increased computational burden at the transmitter,
sensitivity to system uncertainties (e.g., CSI errors) and sub-optimality of SINR pilots
and log-likelihood ratio (LLR) calculation algorithms; see [29, 30]. In the next section,
we elaborate more on the first three challenges and define the problems of interest in
this thesis.
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1.2 Motivation, Problem Definition and Methodology

The main motivations behind the work carried out in this thesis are explained in four
parts, and the related problems are defined accordingly. As mentioned earlier, the poten-
tial performance improvements offered by an SLP technique comes with some practical
challenges that need to be properly addressed. Among the subsequent motivations, the
first three ones have been raised to address the existing design challenges, while the
last one aims to propose power-efficient design approaches according to new precoding
architectures.

Firstly, none of the existing research has attempted to define the CI constraints in
the optimization problem independently of the signal constellation from which the users’
intended symbols are taken. As a consequence, an essential concern in designing the SLP
techniques is that the modulation scheme needs to be set in advance as it recasts the
design problem. This particularly becomes an issue in systems with an adaptive coding
and modulation (ACM) technique where the modulation scheme is not fixed. Motivated
by such an issue, in this thesis, we aim to obtain a universal design formulation that
applies to modulation schemes with any given constellation shape and order. To do so,
we primarily assume a generic geometry for the constellation set and attempt to describe
the CIRs systematically such that the resulting description is invariant in form to the
constellation type. Meanwhile, an important design consideration is to describe the CIRs
in an easy-to-handle convex form. We further aim to utilize these systematic descriptions
to formulate the CI restrictions as convex constraints, and ultimately, provide a convex
design formulation for the SLP problem.

Secondly, one of the main challenges in optimally designing a symbol-level precoder
is its high computation cost. The SLP design, in its original form, is accomplished by
solving an optimization problem for every instantaneous set of users’ symbols. As a
result, the downlink transmission in each symbol period requires a specific precoding
design that imposes a relatively high computational complexity on the transmitter. To
address this issue, in this thesis, we aim to find more computationally-efficient solutions
for the SLP problem based on our generic design framework. For this purpose, we
attempt to simplify the design problem and exploit the optimal solution structure. The
crucial consideration in deriving such solutions is the required computational complexity,
which may be achieved by sacrificing the design optimality and lead us to an approximate
solution.

Thirdly, it is known that the multiuser precoding schemes are quite sensitive to the
system uncertainties. In the particular case with SLP techniques, achieving CI at the
receiver side relies highly on the accuracy of the system parameters, e.g., the transmit-
side CSI knowledge. In this regard, the problem of robust SLP design under imperfect
CSI becomes of importance in order to guarantee the reliable performance of the down-
link system. However, this problem has not been well investigated in the literature.
More specifically, while some worst-case design approaches have been proposed under
bounded CSI errors, there were no published results (at the time of performing this
work) studying the robust design of SLP by adopting a stochastic model for the CSI
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uncertainty. Considering that a stochastic uncertainty model adequately captures an
imperfect channel estimation process, a stochastic robust SLP design is of high practical
interest; however, the literature lacks such a design approach. This thesis aims to ad-
dress this gap by redefining the CI restrictions as probabilistic constraints, meaning that
the CI is guaranteed with a certain probability. The probabilistic form of CI restric-
tions may lead us to computationally intractable constraints that have to be handled via
stochastic optimization approaches. Moreover, we also address the problem in scenarios
where the design process is subject to uncertainty, e.g., due to finite precision of the
underlying design and implementation technology. The results of this part can point
the research community to address new practical challenges in robust design when the
design parameters are subject to uncertainty.

Finally, to respond to the consistently growing traffic and data rate demand of wire-
less users, the communications systems have shifted towards new technologies such as
employing large-scale antenna arrays, known as massive MIMO, and operating at mil-
limeter (mmWave) frequencies. However, deployment of these new technologies requires
a large number of analog, digital, or mixed signal components, possibly operating in
the 30-300 GHz frequency band. Consequently, power efficiency has become a serious
practical concern in implementing such systems, which has pointed the research com-
munity to focus on low-cost and power-efficient transceiver architectures. In the context
of (multiuser) precoding, quantized and hybrid analog-digital precoding schemes have
been introduced to improve the system’s cost and power efficiency by, respectively, em-
ploying low-resolution digital-to-analog converters (DAC) and analog components such
as phase shifters or switches. The literature on SLP schemes also includes some pub-
lished work to date addressing the design problem of quantized or hybrid precoding on a
symbol-level basis. Nonetheless, there is still room to develop more power-efficient SLP
techniques by investigating different precoding architectures or more efficient algorithms.
Motivated by this, we aim to address both quantized and hybrid CI-based SLP design
problems in this thesis. The quantized SLP problem comes with several difficulties,
such as discrete-domain optimization variables due to finite-resolution DACs. To tackle
this difficulty, we attempt to find an equivalent binary problem and solve it via efficient
binary optimization algorithms. On the other hand, to design the hybrid scheme, we
investigate the architecture with a combination of switches and phase shifters in the
analog precoder. Such an architecture has not been investigated in the literature for a
symbol-level hybrid precoder. We aim to design the digital precoder and the switching
network on a symbol-level basis while adopting a block-level design for the phase-shifting
network. Similarly, the hybrid design problem of interest can be formulated and solved
via efficient binary optimization tools. The use of the switching network along with the
CI-based design allows us to further improve the system’s power efficiency compared to
the state-of-the-art.
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1.3 Literature on Symbol-Level Precoding

The literature on CI-based SLP has become very rich within the recent past years and
contains both fundamental research, e.g., on the design problem and CI definition, and
application-based studies in different wireless communications scenarios. This section
covers both these research areas and provides an extensive review of the existing work.

Earlier research on the CI-based precoding decomposes the MUI into constructive and
destructive parts and attempts to exploit the CI by canceling the destructive interference
via simple linear precoding techniques such as ZF and RZF [18, 31]. In [31] and [18],
the authors propose a selective precoding scheme that preserves the CI but eliminates
the destructive component via ZF. This design strategy was further improved in [19],
where the destructive interference is not canceled but converted to the CI such that it
is aligned with the desired symbols through a symbol-specific rotation matrix, called
correlation-rotation precoding. This alignment led to one of the first definitions of CIRs,
referred to as CIRs with strict phase constraints (SPC), which has later been shown to
be sub-optimal. In contrast to the selective precoding in [31] and [18] that exploits the
MUI only when it is constructive, the correlation-rotation precoding controls the MUI
so that the entire interference becomes constructive for each user. The SPCs has later
been adopted in [21] for an elaborated design of the SLP scheme, and then improved
in [25] by defining relaxed CIRs where the phase of the received signal is allowed to have
a limited angular deviation as long as it stays within the correct detection region.

The CI-enhanced design approach has further been applied to the non-linear Tomlinson-
Harashima precoding (THP) in [32,33] and vector-perturbation (VP) precoding in [34].
The work in [32] introduces a complex scaling factor for the first user in a way that
the interfering signals are more properly aligned with the intended symbols, where the
scaling factor can be optimized to reduce the transmit signal power. This scheme has
further been improved in [33] where complex scaling factors are considered for several
users, and not only the first user. Moreover, in [34], the authors apply the CI con-
cept into VP precoding by substituting a linear symbol-scaling (SS) precoder for the
perturbation vector search.

Beyond the above schemes that are mostly based on simple linear precoding methods,
a broader group of CI-based SLP techniques fall into the category of objective-oriented
precoding. These SLP techniques aim to further improve the multiuser downlink system
performance via optimization tools [20,21,25,35–38]. The CI-based SLP schemes in [21]
and [36] are essentially based on the idea of correlation-rotation and adopt CIRs with
SPCs, but aim to improve the performance by avoiding the underlying ZF operation.
In [21], two design formulations, namely, power minimization and SINR balancing, are
studied and solved using iterative optimization algorithms. The SPCs are evolved in
[20] and [37], where CIRs with not necessarily strict phase alignments are defined and
characterized for PSK constellations. Due to introducing a larger search space (i.e.,
feasible region) for the precoding optimization problem, the CIRs with non-strict phase
constraints (NSPC) lead to higher performance gains compared to the previous schemes.
This type of CIRs has been widely adopted in designing various precoding schemes; see,
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e.g., [27, 28, 39–42]. In addition to the CIRs with NSPC, a sort of sub-optimal relaxed
CIRs is introduced in [25, 38], where the so-called phase margin allows for an angular
deviation from the intended symbol’s phase.

Most of the above research considers phase-shift keying (PSK) constellations in for-
mulating the SLP design problem and utilizes the CIRs with strict or non-strict phase
constraints. However, the same CIR types cannot be applied to quadrature amplitude
modulations (QAM) due to the different geometry of the associated constellation set. In
particular, QAM constellations may have some inner symbols, i.e., symbols with bounded
decision regions, which limits the applicability of CI. Furthermore, they may not be fully
compliant with the phase-constrained definition of CIRs due to their non-circular shape.
Extended definitions of CIRs, being applicable to multi-level modulations such as QAM,
have been studied in [26–28, 41–44]. Based on the philosophy behind the definition of
CIRs, only the outer constellation symbols can benefit from exploiting CI. Accordingly,
one might not expect the CI-based SLP schemes to perform promisingly for high-order
QAM modulations. In contrast, the work in [28] shows that substantial gains can still
be achieved, even for a 64-QAM constellation. This is due to the fact that the CI-based
precoding further alleviates the noise enhancement issue, which is known to be more
prominent for high-order QAM modulations.

It is also worth mentioning that while most of the existing CI-based SLP designs
focus on the noise-free received signals, there has been some work taking the effect of
noise into account in designing the precoder, leading to noise-robust (NR) definitions for
CIRs [39,45,46]. Among the other previous work addressing the SLP problem, we refer
to peak per-antenna power minimization SLP [47], MMSE approach to SLP [48], and
CI-based multi-group multicast beamforming [49].

As previously mentioned, CIRs are constellation-dependent regions. In light of this,
all the above SLP schemes consider a specific signal constellation, e.g., PSK or QAM,
to formulate the CI-based precoding problem; therefore, the design needs to set the
modulation scheme in advance. This issue becomes of particular importance in systems
employing adaptive coding and modulation (ACM) techniques, where different combi-
nations of modulation and coding (MODCOD) schemes are used to achieve different
target spectral efficiencies with a certain granularity. However, the literature lacks a
generic CIR definition, and accordingly, an SLP design framework that supports any
given modulation scheme. Moreover, most of the above objective-oriented SLP tech-
niques are based on solving an optimization problem via an iterative algorithm. An
important concern entangled with these SLP designs is the required high computational
complexity. This becomes even more challenging when one takes into account that such
an optimization problem has to be solved specifically for every set of users’ data sym-
bols. With the intention of addressing this issue, there has been a particular research
focus on deriving more computationally-efficient SLP designs, e.g., [28,40,50]. Although
these solutions drive the SLP techniques one step further towards being implemented
in practical scenarios, each of them has been tailored for a specific constellation, and
therefore, they still have the problem of non-seamless operation in ACM systems.
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The concept of CI exploitation via SLP techniques has also been introduced into var-
ious wireless communication scenarios and applications, e.g., cognitive radio networks
(CRN) [51–55], cooperative multi-hop MIMO relaying [56], simultaneous wireless infor-
mation and power transfer (SWIPT) [57–60], directional modulation [46,61,62], physical-
layer (PHY) security [58,61–64], full-duplex communications [65–67], distributed antenna
systems (DAS) [68], faster-than-Nyquist signaling based on spatio-temporal CI [69–71],
CE precoding [72–75], antenna selection schemes [76–79], hybrid analog-digital precod-
ing [75, 80–83], quantized precoding with low-resolution DACs [84–90], and non-linear
systems [91–93].

The literature mentioned above on the CI-based SLP design problem is categorized
and summarized in Table 1.1. This table also includes the addressed problems in the
subsequent chapters of this thesis and the references to the corresponding publications
(shown in blue), indicating the relevance and positioning of our work within the relevant
literature.

Related Work

As mentioned earlier, the problem of SLP design for MU-MIMO downlink systems has
been widely studied in several contexts within the literature. Below, we classify and
refer to the existing research publications that are directly related to the work carried
out in this thesis.

Symbol-Level Precoding for MU-MIMO Downlink Systems

Most of the existing research in the literature formulates and solves the SLP problem
specifically for a given modulation scheme with either a single-level or multi-level con-
stellation set. In this regard, the majority of work studies the SLP design problem
for the phase-shift keying (PSK) modulations, e.g., in [20, 21, 36–38, 61, 94, 108–110].
The problem has also been extended to multi-level modulations, e.g., quadrature ampli-
tude modulations (QAM), in [26–28, 41–43, 105], and amplitude and phase-shift keying
(APSK), in [70]. The design formulation in the above techniques depends on the con-
stellation shape and order of the adopted modulation scheme.

From a different perspective, the objective-oriented precoding problems can be clas-
sified based on their design objective and constraints. Among different types of de-
sign criteria, we refer to two well-known formulations, namely, the power minimization
problem with SINR constraints and the power-constrained SINR balancing problem via
max-min fair criterion. The SLP problem minimizing the total transmit power has been
studied in [20, 21, 36–38, 61], and the minimization of peak per-antenna transmit power
is addressed in [94]. On the other hand, the SINR balancing problem for SLP schemes
has been addressed in [20,21,28,41]. For example, in [21], the non-convex SLP max-min
SINR is solved using its relation to the power minimization via a bisection search. This
problem is also studied in [20] and a second-order cone programming (SOCP) formula-
tion is proposed.
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Low-Complexity Symbol-Level Precoding Design and Implementation

In this line of research, some efforts have been made towards deriving low-complexity
solutions to the SLP design problem, e.g., [28,34,40,50,111,112], and accordingly, some
other studies have addressed efficient hardware demonstrations of these low-complexity
SLP techniques, e.g., [113,114]. In [40], the authors propose an iterative algorithm with
a closed-form update equation for the SLP problem with a max-min fair design criterion,
where the algorithm is shown to converge to the optimal solution in a few iterations.
The authors in [111] show that, given a perturbation of the target users’ symbols, the
SLP power minimization design is equivalent to the ZF precoding. In another work [50],
the power minimization SLP problem is addressed with strict phase constraints on the
received signals, and a computationally-efficient approximate solution is suggested for
this particular case with a phase-shift keying (PSK) modulation scheme. The authors
demonstrate an FPGA-accelerated design of this solution in [115], indicating that it is
capable of providing a high symbol throughput in a real-time operation mode.

Robust Symbol-Level Precoding under System Uncertainties

Robust SLP design under channel uncertainty (i.e., imperfect CSI knowledge) has been
addressed in some recent work. Worst-case robust SLP approaches are proposed in [20]
and [58,63] for unsecured and secured wireless systems, respectively, aiming to design the
symbol-level precoder under norm-bounded CSI errors based on the power minimization
and max-min fair criteria. In [64], the authors develop an SLP design to enhance both
PHY security against eavesdropping and the quality of legitimate transmissions in MU-
MIMO wiretap systems, where the design is studied under different assumptions on the
availability of CSI at the legitimate and eavesdropping channels, including a bounded
CSI uncertainty model. However, it is important to note that as far as the SLP power
minimization problem is concerned, the bounded uncertainty model may not yield an
efficient solution. This modeling ultimately leads to a worst-case conservatism, which
inherently increases the transmission power, though enhancing the users’ received SINR
and symbol error probability. To address stochastic channel uncertainties in the SLP de-
sign, in [116], a sphere bounding scheme is proposed for robust SLP power minimization
with probabilistic CI constraints, where the probabilistic constraints are transformed
into a tractable second-order cone (SOC) form and are tightened to achieve a lower SER
but at the cost of a higher transmitted power. In another work published in [117], the
problem of robust SLP design is addressed by considering quantized transmit-side CSI.
The problem is solved by decomposing the inter-user interference into predictable and
unpredictable (due to the quantization error) parts, where an upper bound is derived
for the latter part. Targeting CI at the receiver side, the design aligns the predictable
interference to achieve much higher received power over the derived upper bound, and
ultimately, lower symbol error rates (SER) for the users. It is also worth mentioning
that a precoding optimization problem with outage probability constraints based on a
symbol-level approach is presented in [45], therein the goal is to achieve robustness to
the receiver noise, but not to channel uncertainties.
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On the other hand, to the best of our knowledge, the robust SLP optimization
problem under design uncertainty (or more specifically, under linear distortion of the
precoded signal) has not been addressed in the literature.

Symbol-Level Precoding for Low-Cost Transmitter Architectures

The problem of quantized SLP design for massive MU-MIMO downlink systems equipped
with low-resolution DACs has been addressed in some recent work. In particular, the
case with one-bit DACs has become an attractive research direction due to its simplicity
and efficiency in terms of power consumption and hardware cost. In this line of work,
in [84] and [85, 86], the authors propose SLP schemes under unit-modulus constraints
dictated by the one-bit DACs, for PSK and QAM signaling. Another one-bit quantized
SLP scheme is proposed in [87], where the design objective is to minimize the users’
SER by minimizing the maximum (among the users) distance between a received signal
and its corresponding target symbol up to a scaling factor. This scaling factor can be
classified as a special case of CI regions with strict phase constraints. Moreover, the
SLP problem with low-resolution DACs is addressed in [88], where the design objective
is defined based on a mean square error (MSE) criterion rather than the CI constraints.

On the other hand, symbol-level design approaches to hybrid precoding are not
well studied for large-scale mmWave MU-MIMO systems. Hybrid SLP design under
mmWave hardware limitations has been addressed in some recent work [80, 81, 83]. In
[80], the authors adopt a disjoint sub-optimal approach to optimize the digital and
analog precoders with a focus on the analog precoder design, where different techniques
are studied and compared. Power-efficient transmitter architectures, including antenna
selection and analog-only, are studied for symbol-level precoding in [75], where it has been
shown that the analog-only design can outperform the other schemes especially when the
transmit array size is much larger than the number of UEs. An even more cost-effective
hybrid structure is considered in [81] where the baseband digitally precoded signal is
subject to one-bit quantization due to the use of low-cost one-bit DACs for each RF
chain. The joint optimization of digital and analog symbol-level precoders is addressed
in [83], where the authors exploit the symbol-based design of the phase-shifting network
to achieve the performance of the fully-digital precoder. In practice, the design needs to
switch between the phase states of the variable phase shifters at the symbol rate.

1.4 Thesis Outline and Contributions

The contributions of this thesis can be categorized into four main parts, which are or-
ganized into seven chapters. Briefly speaking, in this thesis, we address four different
challenges in designing the multiuser precoder on a symbol-level basis, namely, design
generality, computational complexity, system uncertainties, and hardware limitations.
First, in Chapter 3, we elaborate a general framework for the SLP design problem based
on different CI region types. This framework has been used frequently within the sub-
sequent chapters in formulating the precoding design problems. Chapter 4 and Chapter
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5 address the computationally-efficient design of SLP, respectively, from theoretical and
implementation points of view. We study robust design of SLP under system uncertain-
ties, including channel and design imperfections, respectively in Chapter 6 and Chapter
7. Finally, in Chapter 8 and Chapter 9, we revisit the SLP problem in low-cost trans-
mitter architectures, where practical limitations on the number of RF chains or the
resolution of DACs are imposed on the design problem.

Chapter 2: Multiuser Precoding in Unicast MU-MIMO Downlink Systems

This chapter describes the problem of multiuser precoding in multi-antenna downlink
systems and provides an overview of different design approaches to this problem.

Chapter 3: A Generic Design Framework for Constructive Interference Based
Symbol-Level Precoding

This chapter provides a general framework to formulate and solve the SLP problem
over an MU-MIMO downlink channel. First, we consider generic modulation schemes
with constellation sets of any shape and size and elaborate on optimal and relaxed
CIRs. We characterize two types of CIRs, namely, distance-preserving CIR (DPCIR)
and union bound CIR (UBCIR) and provide a systematic way to describe these regions
as convex sets. We then confine ourselves to DPCIRs and perform a comprehensive study
which allows us to derive several properties for these regions. Using these properties,
we first show that any signal in a given DPCIR has a norm greater than or equal to
the norm of the corresponding constellation point if and only if the convex hull of the
constellation contains the origin. It is followed by proving that the power of the noise-free
received signal in a DPCIR is a monotonic strictly increasing function of two parameters
relating to the infinite Voronoi edges. Using the convex representations of DPCIRs
and UBCIRs, we formulate two design problems, namely, the SLP power minimization
with SINR constraints, and the SLP SINR balancing problem under max-min fairness
criterion. We show that the SLP power minimization problem, minimizing either sum
or peak (per-antenna) transmit power, can always be formulated as a convex QP. We
further derive a simplified reformulation of this problem which is more computationally-
efficient. Our simulation results indicate that the DPCIRs and UBCIRs allow further
reduction of the transmit power compared to the state-of-the-art without increasing
the computational complexity at the transmitter or receiver. The SLP max-min SINR
problem, on the other hand, is non-convex in its original form, and hence is difficult
to tackle. We propose alternative optimization approaches, including SDP formulation
and BCD optimization. We finally discuss and evaluate the loss due to the proposed
alternative methods through extensive simulation results. The material presented in this
chapter has been partially published by the author in the following references:

[23] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Constructive Inter-
ference for Generic Constellations,” IEEE Signal Processing Letters, vol. 25, no.
4, pp. 586-590, Apr. 2018.
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[95] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Symbol-Level Pre-
coding Design Based on Distance Preserving Constructive Interference Regions,”
IEEE Transactions on Signal Processing, vol. 66, no. 22,pp. 5817-5832, Nov.
2018.

[96] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Symbol-Level Pre-
coding Design for Max-Min SINR in Multiuser MISO Broadcast Channels,” in
Proc. 19th IEEE International Workshop on Signal Processing Advances in Wire-
less Communications (SPAWC), Kalamata, Greece, Jun. 2018.

Chapter 4: Computationally-Efficient Symbol-Level Precoding – Part I: Deriva-
tion

This chapter proposes two approximate yet computationally-efficient solutions for the
SLP design problem. First, we study the optimal solution to the multiuser SLP design
for minimization of the total transmit power under given SINR requirements. We adopt
the DPCIRs and derive a simplified reformulation of the problem in the form of a stan-
dard NNLS design. Then, we analyze the optimal solution structure using the KKT
optimality conditions. This leads us to obtain a computationally-efficient closed-form
approximate SLP solution (CF-SLP). Meanwhile, we obtain a necessary and sufficient
condition under which the power minimizer SLP is equivalent to the conventional ZF
precoding. Our simulation results show that the CF-SLP technique provides significant
gains over the ZF scheme and performs quite close to the optimal SLP in scenarios with
a relatively small number of users; however, it shows poor performance for large num-
bers of transmit antennas and users. To address this drawback, we build on the CF-SLP
technique to derive an improved approximate closed-form solution, named ICF-SLP, us-
ing the conditions for nearly perfect recovery of the optimal solution support. Through
simulation results, we show that in comparison with the CF-SLP technique, the ICF-
SLP method significantly enhances the system’s performance with a slight increase in
complexity. In particular, the ICF-SLP method successfully resolves the drawback of
the CF-SLP technique by performing relatively close to the optimal SLP in systems with
large numbers of transmit antennas and users. We also compare our computationally-
efficient solutions with a fast-converging iterative NNLS algorithm, where the ICF-SLP
method shows competitive performance in terms of both accuracy and complexity of
the design compared to the iterative algorithm’s solution. Analytical and numerical
discussions on the complexities of different SLP schemes verify the computational effi-
ciency of the proposed solutions. We show that the CF-SLP and ICF-SLP techniques
enjoy a substantial reduction in the computation time compared to the optimal solu-
tion. The material presented in this chapter has been partially published in the following
references:

[97] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Power Minimizer
Symbol-Level Precoding: A Closed-Form Sub-Optimal Solution,” IEEE Signal
Processing Letters, vol. 25, no. 11, pp. 1730-1734, Sep. Nov. 2018.
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[98] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “An Approximate
Solution for Symbol-Level Multiuser Precoding Using Support Recovery,” in Proc.
20th IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Cannes, France, Jul. 2019.

Chapter 5: Computationally-Efficient Symbol-Level Precoding – Part II: Im-
plementation

To address the high computation cost of solving the SLP problem, this chapter develops
and validates a low-complexity FPGA design of SLP, targeted for real-time implementa-
tions in high-throughput communication systems. The work of this chapter builds on the
CF-SLP method presented in Chapter 4, and thus, the resulting design is constellation-
independent which makes it appropriate for seamless handling of ACM schemes. We
enable the FPGA design by expressing the proposed approximate solution in a closed-
form algorithmic way and translating it to hardware description language (HDL). We
then optimize the HDL code for accelerated performance and generate the HDL core
to be deployed on FPGA. We provide the synthesis report for the generated HDL core,
including performance, resource utilization, and interface descriptions. In order to vali-
date our design, we simulate an uncoded transmission scheme over a downlink multiuser
channel using the LabVIEW software, where the SLP HDL core is implemented as a
clock-driven logic (CDL) unit. Our simulation results show that a throughput of 100
Mega symbols per second per user can be achieved for a 4 × 4 system with QPSK
signaling via the HDL design of the proposed approximate SLP solution. We further
use the MATLAB software to produce numerical results for the conventional ZF and
the optimal SLP techniques as benchmarks for comparison; thereby, it is shown that
the proposed low-complexity FPGA implementation offers an improvement of up to 50
percent in power efficiency compared to the ZF precoding, while it enjoys the same
per-symbol complexity order as that of the ZF technique. We also evaluate the loss of
the HDL implementation due to the approximation-induced and arithmetic inaccuracies
with respect to the optimal SLP solution. The material presented in this chapter has
been submitted for review in the following reference:

[99] Alireza Haqiqatnejad, Jevgenij Krivochiza, Juan Merlano Duncan, Symeon Chatzino-
tas, and Björn Ottersten, “Design Optimization for Low-Complexity FPGA Im-
plementation of Symbol-Level Multiuser Precoding,” Accepted for Publication in
IEEE ACCESS, Feb. 2021.

Chapter 6: Robust Symbol-Level Precoding under System Uncertainties –
Part I: Channel Uncertainty

This chapter addresses robust design of SLP for the MU-MIMO downlink wireless chan-
nels when imperfect CSI is available at the transmitter. We consider two well-known
models for the CSI imperfection, namely, bounded and stochastic uncertainty. Our de-
sign objective is to minimize the total (per-symbol) transmission power subject to CI
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constraints as well as the users’ QoS requirements in terms of SINR. Assuming bounded
channel uncertainties, we obtain a convex CI constraint based on the worst-case ro-
bust analysis, whereas in the case of stochastic uncertainties, we define probabilistic CI
constraints in order to achieve robustness to statistically-known CSI errors. Since these
probabilistic constraints are difficult to handle, we resort to their convex approximations
given in the form of tractable deterministic robust constraints. Three convex approxima-
tions are derived based on different conservatism levels, among which one is introduced
as a benchmark for comparison. We show that each of our proposed approximations is
tighter than the other under specific robustness settings, while both always outperform
the benchmark. Using the proposed CI constraints, we formulate a robust SLP design
problem as an SOCP. Extensive simulation results are provided to validate our ana-
lytical results and to make comparisons with conventional block-level robust precoding
schemes. We show that the robust design of symbol-level precoder leads to improved
performance in terms of energy efficiency at the cost of increasing the computational
complexity by an order equal to the number of users in the large system limit, compared
to the non-robust design. The material presented in this chapter has been partially
published in the following references:

[100] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Robust SINR-
Constrained Symbol-Level Multiuser Precoding with Imperfect Channel Knowl-
edge,” IEEE Transactions on Signal Processing, vol. 68, no.1, pp. 1837-1852, Mar.
2020.

[101] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Robust Design of
Power Minimizing Symbol-Level Precoder under Channel Uncertainty,” in Proc.
IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United
Arab Emirates, Dec. 2018.

Chapter 7: Robust Symbol-Level Precoding under System Uncertainties –
Part II: Design Uncertainty

This chapter addresses the optimization problem of SLP in MU-MIMO downlink wireless
systems where the precoder’s output is subject to partially-known distortions, e.g., due
to finite precision of the underlying design and implementation technology. We assume
a linear distortion model with bounded additive noise. The original SINR-constrained
SLP problem minimizing the total transmit power is first reformulated as a penalized
unconstrained problem, referred to as the relaxed robust formulation. We then adopt
a worst-case design approach to protect the users’ intended symbols and the targeted
constructive interference with a desired level of confidence. Due to the non-convexity
of the relaxed robust formulation, we propose an iterative algorithm based on the block
coordinate ascent-descent method. We show through simulation results that the pro-
posed robust design is flexible in the sense that the CI constraints can be relaxed to keep
a desirable balance between achievable rate and power consumption. Remarkably, the
robust formulation yields more energy-efficient solutions for appropriate choices of the

45



Introduction

penalty parameter, compared to the original SLP problem. The material presented in
this chapter has been partially published in the following reference:

[102] Alireza Haqiqatnejad, Shahram ShahbazPanahi, and Björn Ottersten, “A Worst-
Case Performance Optimization Based Design Approach to Robust Symbol-Level
Precoding for Downlink MU-MIMO,” in Proc. 7th IEEE Global Conference on
Signal and Information Processing (GlobalSIP), Ottawa, Canada, Nov. 2019.

Chapter 8: Quantized Symbol-Level Precoding for Massive MU-MIMO Sys-
tems

This chapter proposes a finite-alphabet SLP technique for massive MU-MIMO downlink
systems equipped with finite-resolution DACs of any precision. We adopt a CI-based
max-min fair design criterion which aims to maximize the minimum instantaneous re-
ceived SINR among the users while ensuring a CI constraint for each user under the
restriction that the output of the precoder is a vector with finite-alphabet discrete ele-
ments. Due to the latter restriction, the design problem is an NP-hard QP with discrete
variables, and hence, is difficult to solve. We tackle this difficulty by reformulating the
problem in several steps into an equivalent continuous-domain biconvex form, includ-
ing equivalent representations for discrete and binary constraints. Our final biconvex
reformulation is obtained via an exact penalty approach and can efficiently be solved
using a standard cyclic BCD algorithm. We evaluate the performance of the proposed
finite-alphabet precoding for DACs with different resolutions and show that employing
low-resolution DACs can lead to higher power efficiencies. In particular, we focus on
a setup with one-bit DACs and show through simulation results that compared to the
existing schemes, the proposed design can achieve significant SINR gains. We further
provide analytical and numerical analyses of complexity and show that our proposed
algorithm is computationally-efficient as it typically needs only a few tens of iterations
to converge. The material presented in this chapter has been partially published or
submitted for review in the following references:

[103] Alireza Haqiqatnejad, Farbod Kayhan, Shahram ShahbazPanahi, and Björn Ot-
tersten, “Finite-Alphabet Symbol-Level Multiuser Precoding for Massive MU-MIMO
Downlink,” Submitted to IEEE Transactions on Signal Processing in August 2020.

[104] Alireza Haqiqatnejad, Farbod Kayhan, Shahram ShahbazPanahi, and Björn Ot-
tersten, “One-Bit Quantized Constructive Interference Based Precoding for Mas-
sive Multiuser MIMO Downlink,” in Proc. IEEE International Conference on
Communications (ICC), Virtual Conference, Jun. 2020.

Chapter 9: Hybrid Symbol-Level Precoding for mmWave MU-MIMO Sys-
tems

This chapter addresses the SLP design problem for a mmWave downlink MU-MIMO
wireless system where the transmitter is equipped with a large-scale antenna array.
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1.4 Thesis Outline and Contributions

The high cost and power consumption associated with the massive use of RF chains
prohibit fully-digital implementation of the precoder. Therefore, we consider a hybrid
analog-digital architecture where a small-sized baseband precoder is followed by two
successive networks of analog on-off switches and variable phase shifters according to
a fully-connected structure. The use of the switching network allows us to implement
a phase shifter selection mechanism. We jointly optimize the baseband precoder and
the states of the switching network on a symbol-level basis, i.e., by exploiting both
the CSI and the instantaneous data symbols. In contrast, the phase-shifting network
is designed only based on the CSI due to practical considerations. Our approach to
this joint optimization is to minimize the Euclidean distance between the optimal fully-
digital and the hybrid SLP schemes. The phase shifter selection mechanism allows for
significant power-savings in the analog precoder by switching some of the phase shifters
off according to the switches’ instantaneously optimized states. Our numerical results
indicate that up to half of the phase shifters can be switched off, on average, in systems
where the number of transmit antennas is much larger that the number of RF chains
and users. We provide an analysis of energy efficiency by adopting appropriate power
consumption models for the analog precoder and show that the energy efficiency of
precoding can substantially be improved thanks to the phase shifter selection approach,
compared to the fully-digital and state-of-the-art hybrid symbol-level schemes. The
material presented in this chapter has been partially published or submitted for review
in the following references:

[106] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Energy-Efficient
Hybrid Symbol-Level Precoding for Large-Scale mmWave Multiuser MIMO Sys-
tems,” IEEE Transactions on Communications, doi: 10.1109/TCOMM.2021.3058967.

[107] Alireza Haqiqatnejad, Farbod Kayhan, and Björn Ottersten, “Energy-Efficient
Hybrid Symbol-Level Precoding via Phase Shifter Selection in mmWave MU-MIMO
Systems,” in Proc. IEEE Global Communications Conference (GLOBECOM),
Taipei, Taiwan, Dec. 2020.

Chapter 10: Concluding Remarks and Future Work

This chapter concludes the thesis and suggests some possible extensions to the current
work.
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Table 1.1: Summary of the CI-based SLP techniques in the literature.

Reference Scenario Closed-form CIR Modulation CSI Design

[18,19] MU-MIMO No SPC PSK Perfect Perfect
[34] " " SS " (Im)perfect "

[20, 37] " " NSPC " " "
[21, 36,94] " " SPC " Perfect "

[40, 41] " Yes NSPC " " "
[48] " No " " " "

[39, 45] " " NSPC+NR " " "
[26, 43] " " SS QAM " "

[27, 28,41] " Yes NSPC+SS " " "
[46] " No NSPC+NR " " "
[91] " " SPC APSK " "
[35] " " NSPC PSK+QAM " "

Ch. 3: [23, 95,96] " " DP+UB Any " "
Ch. 4,5: [97–99] " Yes DP Any " "
Ch. 6: [100,101] " No DP PSK Imperfect "

Ch. 7: [102] " " DP Any Perfect Imperfect

[51–53] CRN No SPC PSK Perfect Perfect
[54,55] " " NSPC " " "

[57, 59,60] SWIPT No NSPC PSK Perfect Perfect

[58] SWIPT + No NSPC+SS PSK+QAM (Im)perfect Perfect
PHY Security

[61,62] PHY Security No SPC+NSPC PSK Perfect Perfect
[63,64] " " NSPC " (Im)perfect "

[65, 67] Full-Duplex No NSPC PSK Perfect Perfect
[65,67] " " " " Imperfect "

[66] " " NSPC+SS PSK+QAM (Im)perfect "

[68] DAS + No NSPC PSK Imperfect Perfect
PHY Security

[70] Spatio-Temporal CI No NSPC PSK Perfect Perfect
[69,71] " " SS QAM " "

[72–74] CE No NSPC PSK Perfect Perfect

[91–93] Non-linear No SPC APSK Perfect Perfect

[76–78] Antenna Selection No SPC PSK Perfect Perfect
[79] " " NSPC " (Im)perfect "

[86] Quantized No NSPC PSK Perfect Perfect
[84,89] " " NSPC+SS " " "

[90] " " SS PSK+QAM " "
[85] " " NSPC+SS " " "

Ch. 8: [103,104] " " DP Any " "

[80, 82,83] Hybrid No NSPC PSK Perfect Perfect
[105] " " NSPC+SS PSK+QAM " "

Ch. 9: [106,107] " " DP Any " "

[81] Quantized + No SS PSK Perfect Perfect
Hybrid
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Chapter 2
Multiuser Precoding in Unicast
MU-MIMO Downlink Systems

In this chapter, we explain the problem of multiuser precoding in multi-antenna downlink
systems and provide an overview of different design approaches to this problem.

2.1 Preliminaries on MU-MIMO Interference Channels

Consider the downlink of a unicast MU-MIMO system, where independent data streams
are intended for multiple users and have to be simultaneously transmitted in the same
time-frequency resource block. A well-known technique to perform the downlink trans-
mission in such a system is to exploit the transmitter’s multi-antenna structure and
spatially multiplex the users’ data stream, known as multiuser precoding. Let us confine
ourselves to a setup where the transmitter is equipped with an array of Nt antennas
and communicates with Nu single-antenna users, each supporting single-stream trans-
mission. The main functionality of a multiuser precoder is to map Nu data symbols onto
Nt transmit antennas; however, it comes with some other considerations and objectives
in order to improve the downlink system’s performance, as we will see later.

Let si[n] denote the discrete-time data symbol intended for the ith user at symbol
period n, where i ∈ {1, 2, ..., Nu} and E{si[n]si[n]∗} = 1. A multiuser precoder may
have either a linear or non-linear structure, i.e., the precoder may be a linear function
of the users’ symbols {si[n]}Nu

i=1 or not. Assuming a linear structure, we can express the
precoder as an Nt × Nu matrix, denoted by W, mapping a linear combination of the
symbols {si[n]}Nu

i=1 onto each transmit antenna. Let the precoding matrix be constructed
as W , [w1,w2, ...,wNu ]T, with wi ∈ CNt×1 denoting the precoding vector for the ith
user. In fact, the precoding vector wi contains the complex weights of the symbol si[n]
on each of Nt antennas, and therefore, can be viewed as the intended precoded signal for
the ith user. Note that each complex weight modifies both the amplitude and the phase
of si[n]. The overall precoded vector, describing the complex baseband symbol-sampled
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Figure 2.1: Downlink MU-MIMO system with multiuser precoding.

signal for each transmit antenna at symbol period n, is denoted by u[n] and can be
expressed as

u[n] = Ws[n] =
Nu∑
i=1

wisi[n], (2.1)

where s[n] , [s1[n], s2[n], ..., sNu [n]]T collects the data symbols for all Nu users. Assume
that the precoded signal u is passed through frequency-flat fading channels towards the
users. Let the 1×Nt vector hi denote the complex coefficients describing the gains and
the phases of the propagation channels between Nt transmit antennas and the ith user.
Accordingly, the received signal by each user i is given by

ri[n] = hiWs[n] + zi[n] = hi
Nu∑
i=1

wisi[n] + zi[n], i = 1, 2, ..., Nu, (2.2)

where zi[n] ∼ CN (0, σ2
i ) represents the additive circularly symmetric complex Gaussian

noise at the ith user’s receiver. The received signal model (2.2) can be written in a
compact form as

r[n] = HWs[n] + z[n], (2.3)

where z[n], [z1[n], z2[n], ..., zNu [n]]T, r[n], [r1[n], r2[n], ..., rNu [n]]T, and H, [hT
1 ,hT

2 , ...,hT
Nu ]T

denotes the channel matrix. The considered multiuser system is depicted in Fig. 2.1. Re-
call that the transmit signal intended for the ith user is wisi[n]. After down-conversion,
matched filtering, and symbol sampling, by decomposing the received signal ri into dif-
ferent components, we can write

ri[n] = hiwisi[n]︸ ︷︷ ︸
desired

+ hi
∑
j 6=i

wjsj [n]

︸ ︷︷ ︸
MUI

+zi[n], i = 1, 2, ..., Nu, (2.4)

in which the MUI term refers to the multiuser interference caused by simultaneous
transmission to all the other users than i. From (2.4), it follows that the jth user
contributes to the received signal of the user i via the term hiwjsj [n], which is in
general an undesired contribution. Therefore, the average SINR of the ith user, denoted
by SINRi, can be defined as the ratio between the desired and undesired signal power

50



2.2 Linear Block-Level Precoding

received by the user i averaged over the symbol time, i.e.,

SINRi ,
PS,i

PI,i + PN,i
, i = 1, 2, ..., Nu, (2.5)

where PN,i = σ2
i denotes the noise power, and PS,i and PI,i respectively denote the

average desired received signal power and the interference power for the ith user, which
are obtained as

PS,i , E
{
hiwisi[n]s∗i [n]wH

i hH
i

}
= hiwiE {si[n]s∗i [n]} wH

i hH
i = hiwiwH

i hH
i (2.6)

and

PI,i , E

{∥∥∥∥hi(∑j 6=i
wjsj [n]

)∥∥∥∥2}
=hi

(∑
j 6=i

wjE
{
sj [n]s∗j [n]

}
wH
j

)
hH
i =

∑
j 6=i

hiwjwH
j hH

i ,

(2.7)
where in deriving (2.7), it is assumed that the symbols {si[n]}Nu

i=1 are mutually uncorre-
lated, i.e., E{si[n]s∗j [n]} = 0 for all i, j ∈ {1, 2, ..., Nu}, i 6= j. Accordingly, we have

SINRi = hiwiwH
i hH

i∑
j 6=i hiwjwH

j hH
i + σ2

i

, i = 1, 2, ..., Nu, (2.8)

It can be inferred from (2.8) that at low transmit SNRs, the undesired signal power
is dominated by the receiver noise, whereas the MUI becomes dominant in the high
SNR regime. In any case, the MUI may degrade the multiuser system’s performance if
not managed properly. Therefore, another critical functionality of multiuser precoding
techniques is interference management. One may attempt to manage the MUI in dif-
ferent ways, e.g., by partially mitigating, eliminating, or converting it to a useful signal
component. Some of these approaches are reviewed in the sequel.

2.2 Linear Block-Level Precoding

We begin by reviewing some simple linear block-level precoding schemes. Note that by
block-level precoding, we mean the cases in which the design problem considers some
statistical performance metrics averaged over a block of symbols, leading to precoding
solutions that make use of the channel matrix H but not the users’ data symbols. There-
fore, a common assumption in derivation of the following multiuser precoders is that the
transmitter perfectly knows the instantaneous channel matrix H. For notational sim-
plicity, we drop the symbol time index n from the formulations presented in the rest of
this chapter.
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2.2.1 Spatial Matched Filter (MF)

The matched filter (MF) precoding [5], also known as maximum ratio transmission
(MRT) [2], aims to maximize the received SNR while being subject to an average transmit
power constraint. The corresponding optimization problem can be expressed as

max
W

∣∣∣E{sHr
}∣∣∣2

E {‖z‖2} s.t. E
{
‖Ws‖2

}
= p, (2.9)

where p is a fixed average transmit power. The solution to this optimization problem
can simply be obtained as

WMF = ηMF HH, (2.10)

where the power normalization factor ηMF is given by

ηMF =
√

p

Tr(HHH) . (2.11)

Note that the noise variance does not appear in (2.11), and therefore, the MF precoder
does not take the noise characteristics into account.

2.2.2 Zero-Forcing (ZF)

As the name might suggest, the zero-forcing (ZF) precoder aims to completely cancel
the MUI such that HW = I [4]. Accordingly, the precoding matrix is derived by solving
the following optimization problem:

min
W

E
{
‖Ws‖2

}
s.t. HW = I. (2.12)

The solution to (2.12) is given by

W = HH
(
HHH

)−1
. (2.13)

Given W in (2.13), the resulting transmit power depends only on the channel matrix
H, and hence, cannot be controlled. To eliminate such dependence and enforce a fixed
transmit power, one usually considers the solution (2.13) up to a scaling factor, i.e.,

WZF = ηZF HH
(
HHH

)−1
, (2.14)

where
ηZF =

√
p

Tr ((HHH)−1) . (2.15)

Using the ZF precoder in (2.14), the received signal vector is equal to

r = ηZF HWZFs + z = ηZF s + z, (2.16)
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from which we can see that the ZF precoding scheme leads to an interference-free received
signal at the receiver of each user. In case the channel matrix H is ill-conditioned, i.e.,
the ratio between its maximum and minimum singular value is rather large, the matrix
inversion in (2.14) results in a relatively small value for the scaling factor ηZF compared
to the noise power; a disadvantage which is referred to as noise enhancement. In general,
the ZF precoding scheme is known to be power inefficient. In addition, it is outperformed
by the MF precoder at low transmit SNRs.

2.2.3 Regularized Zero-Forcing (RZF)

To resolve the power efficiency issue with the ZF precoder, the regularized inversion
method can be applied in deriving the precoding matrix [118]. The resulting precoding
scheme is called regularized zero-forcing (RZF) and the corresponding precoding matrix
is given by

WRZF = ηRZF HH
(
HHH + αI

)−1
, (2.17)

where α is referred to as the regularizing factor, and the scaling factor ηRZF can be
obtained to enforce a fixed average transmit power of p as

ηRZF =
√

p

Tr ((HHH + αI)−1) . (2.18)

Finding the optimal value of α depends on the design objective and, in general, is
not straightforward. One may choose α to maximize an approximation of the received
SINR in the limiting case where Nu → ∞, as in [3], leading to α = σ2Nu/p (assuming
σ1 = σ2 = ... = σNu , σ). Note that using WRZF to precode the users’ data symbols,
the signal received by the ith user is no longer a scaled version of si as with the ZF
precoding; rather, it may include some non-zero MUI components from the other users.

2.2.4 Wiener Filter (WF)

It is known that the MF and ZF precoding schemes are two extreme designs with one
outperforming the other at very low or high transmit SNRs. On the contrary, the Wiener
filter (WF) precoding technique [5], also known as the minimum mean square error
(MMSE), balances the system performance by taking the noise statistics into account.
The WF design problem aims to minimize the variance of the difference between the
intended and received symbols of the users, while the transmit power is limited by p,
i.e.,

min
W,η

E
{
‖s− η−1r‖2

}
s.t. E

{
‖Ws‖2

}
= p, (2.19)

where η is a weighting design variable. The optimization problem (2.19) admits a closed-
form solution given by

WWF = ηWFG−1HH, (2.20)
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where G , HHH +
(
σ2Nu/p

)
I, and the scaling factor ηWF is obtained as

ηWF =
√

p

Tr (HG−2HH) , (2.21)

It follows from (2.20) that at extremely low and high transmit SNRs, i.e., in the limiting
cases where p/σ2 → 0 and p/σ2 → ∞, the WF precoder respectively converges to the
MF and the ZF precoding schemes. These observations can be verified by applying
the matrix inversion lemma; see [119]. Note, however, that in order to design the WF
precoder, the transmitter must be aware of the noise properties at the receiver of each
user such as the variance σ2. It is also worth noting that the WF precoder in (2.20)
appears to be very similar in structure to the RZF scheme in (2.17). In fact, one may
consider the former as a special case of the latter scheme. Recall that the optimal α for
the RZF scheme is obtained only for large Nu. In this particular case, the WF and RZF
schemes become identical; however, it is not the case in general.

2.3 General Families of Objective-Oriented Precoding

When some specific system objective or constraint are given in a multiuser wireless sys-
tem, more sophisticated objective-oriented precoding schemes become of interest. In
such scenarios, the precoder can be designed to optimize the given performance objec-
tive, while being constrained to some other system-specific or user-centric restrictions.
Starting from the block-level schemes, in this section, we overview some general formu-
lations for such precoding problems.

2.3.1 SINR-Constrained Power Minimization Problem

If the multiuser system requirements can be met via the available resources, one may
further attempt to reduce the transmitted power through solving the power minimiza-
tion problem. This problem is typically constrained by some SINR requirements that
are intended to be achieved for the users. Consequently, the problem aims to find a pre-
coding solution that meets the given SINR constraints by consuming as little transmit
power as possible. The power minimization design is known to be a relatively straight-
forward problem with a simple optimal solution structure [7, 120]. The corresponding
optimization problem is given by

min
w1,...,wNu

Nu∑
i=1
‖wi‖2 s.t. SINRi ≥ γi, i = 1, 2, ..., Nu, (2.22)

where γi denotes the target SINR for the ith user. The SINR constraints in (2.22) are
not convex in the presented form; however, they can be recast as convex constraints as
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follows. Using (2.8), we can express the constraint SINRi ≥ γi as

hiwiwH
i hH

i∑
j 6=i hiwjwH

j hH
i + σ2

i

≥ γi. (2.23)

After some straightforward algebraic steps, one can rewrite (2.23) as

hi

∑
j 6=i

wjwH
j −

1
γi

wiwH
i

hH
i + σ2

i ≤ 0, (2.24)

which is a convex second-order cone (SOC) constraint. Having a quadratic objective
function, the optimization problem (2.22) can then be expressed in a convex form and
solved using off-the-shelf convex optimization algorithms [121].

2.3.2 Power-Constrained Precoding Design

The power-constrained precoding design problem becomes relevant in the case where the
transmit power is a strict restriction in the system. The design problem aims to maximize
some performance metric that is, typically, a function of the users’ target SINRs, while
the total transmit power is constrained by p. In general, the corresponding optimization
problem can be expressed as

max
w1,...,wNu

f
(
SINR1, SINR2, ...,SINRNu

)
s.t.

Nu∑
i=1
‖wi‖2 ≤ p, (2.25)

where f(·) is strictly increasing in SINRi for any i ∈ {1, 2, ..., Nu}. Unlike the power
minimization problem, the power-constrained design problems in the form of (2.25) are
known to be difficult to solve, or even NP-hard for some common choices of the objective
function f(·), e.g., the sum-rate function given as

f
(
SINR1,SINR2, ...,SINRNu

)
=

Nu∑
i=1

log2(1 + SINRi).

Another common objective function is based on the max-min fair criterion and is ex-
pressed as

f
(
SINR1,SINR2, ...,SINRNu

)
= min

i
{SINRi}Nu

i=1,

which aims to maximize the minimum achievable SINR among all the users. The result-
ing design formulation is often called the SINR balancing problem. It is worth noting
that, for a given fixed transmit power, at low transmit SNRs where the noise dominates
the system, the solution to the SINR balancing problem approaches the MF precoding
scheme to maximize the desired received signal power at the users. On the other hand,
in the high transmit SNR regime where the system is interference-limited, the solution
tends to that of the ZF precoding to cancel the MUI. At an arbitrary SNR value, the
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Figure 2.2: Typical CIRs for the QPSK constellation.

optimal max-min SINR precoding finds a balance between these two extreme solutions.

2.4 Symbol-Level Precoding

The block-level precoding schemes treat the MUI as an undesired received signal com-
ponent and aim to suppress it in an efficient way. In contrast, in designing the precoder,
one may attempt to manipulate the MUI such that it constructively contributes to the
desired signal of each user, i.e., by exploiting the constructive interference (CI). Such a
design approach falls within another category of precoding design strategies, known as
symbol-level precoding (SLP), which is the main focus of this thesis. The term “symbol-
level” refers to the fact that in order to exploit the CI, one needs to design the precoder
particularly for every set of the users’ symbols, i.e., each realization of the symbol vector
s. The CI is defined based on the philosophy that a noise-free received signal can be
decoded correctly not necessarily when it is close enough to the intended symbol, rather,
as long as it lies within the correct decision region even far away from the target symbol.
Accordingly, the CI regions (CIR) are typically defined as those regions that satisfy this
philosophy. An example illustration of CIRs is shown in Fig. 2.2.

The block-level schemes use statistical objectives and constraints in the design prob-
lem of the precoder. In practical systems, these statistical measures can be realized over
sufficiently many symbol periods, e.g., a large enough block of symbols, which is usually
the case in practice. For instance, the assumption E{sis∗i } = 1 is often used in simplify-
ing the optimization problems, e.g., in defining the total transmit power as ∑Nu

i=1 ‖wi‖2.
As a result, the precoding matrix turns out to be only a function of the channel ma-
trix H and not the symbol vector s. In contrast, the objectives and constraints in the
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optimization problem of an SLP scheme are of an instantaneous per-symbol type. For
example, one may consider the instantaneous transmit power or received SINR in defin-
ing the design problem. Moreover, the statistical assumptions on the users’ symbols are
no loner useful, e.g., E{sis∗i } = 1 or the assumption of having uncorrelated symbols.
As a result, one may expect the symbol vector s to appear in the precoding solution.
Therefore, due to the dependence of the precoder’s output on the instantaneous users’
symbols, a symbol-level precoder is a function of both H and s.

As a consequence of exploiting the CI at the receiver of each user, the users’ received
signals can be decomposed as

ri =

desired︷ ︸︸ ︷
hiwisi + hi

∑
j 6=i

wjsj︸ ︷︷ ︸
MUI

+zi, i = 1, 2, ..., Nu. (2.26)

The decomposition in (2.26) holds if an essential constraint is included in the SLP design
problem, namely, the CI constraint. Accordingly, the precoding vectors {wi}Nu

i=1 has to
be designed so that the desired signal component in (2.26) lies within the CIR that
corresponds to the symbol si, for all i = 1, 2, ..., Nu, e.g., the blue regions in Fig. 2.2 for
the QPSK symbols. In this case, the instantaneous received SINRs of the users can be
redefined as

SINRi = hiWssHWHhH
i

σ2
i

, i = 1, 2, ..., Nu, (2.27)

In symbol-level precoded downlink transmission, none of the users will experience de-
structive interference from the other users. As a result, the term SINR translates to
signal-plus-interference-to-noise ratio, and thus, may be considered equivalent to the
conventional SNR in an interference-free system.

Broadly speaking, the criteria used to design a block-level precoding scheme can also
be used to formulate an SLP design problem. Accordingly, the optimization problem for
an SINR-constrained power minimization SLP design can be written as

min
W

‖Ws‖2 s.t. CI constraints, (2.28)

where the CI constraints are typically given as η hiWs ∈ Di with Di denoting a particular
CIR, and the scaling factor η is in general a function of the noise variance σ2

i and the
target SINR γi. Moreover, the power-constrained SLP optimization problem can be
expressed as

min
W

f
(
SINR1,SINR2, ...,SINRNu

)
s.t. ‖Ws‖2 ≤ p, CI constraints. (2.29)

One may also cast the SLP problem by forming a virtual multicast formulation to directly
design the precoded transmit signal u instead of calculating the precoding matrix W,
leading to a non-linear structure for the precoder. In this case, for example, the power
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minimization SLP problem can be rewritten as

min
u

‖u‖2 s.t. CI constraints, (2.30)

The precoded signal u obtained by solving the problem (2.30) can not be uniquely
decomposed as a linear combination of the precoding vectors. However, using the relation
u = Ws, one can obtain a rank-one (not necessarily unique) precoding matrix as

W =
(
sT ⊗ INt

)
u, (2.31)

In general, it can be shown that the two design formulations in (2.28) and (2.30) lead
to identical solutions for the symbol-level precoder [20,21]. In this thesis, we mainly use
the virtual multicast formulation to design the precoder, i.e., we directly optimize the
precoded vector u as a function of the channel matrix H, the users’ symbols s, and the
other system parameters.
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Chapter 3
A Generic Design Framework for
Constructive Interference Based
Symbol-Level Precoding

In this chapter, we study the problem of SLP design in the downlink of an MU-MIMO
channel. We first consider generic modulation schemes with constellation sets of any
shape and size and elaborate on optimal and relaxed CIRs. We define two types of CIRs,
namely, distance-preserving CIR (DPCIR) and union bound CIR (UBCIR) and provide
a systematic way to describe these regions as convex sets. We then confine ourselves to
DPCIRs and perform a comprehensive study which allows us to derive several properties
for these regions. Using these properties, we first show that any signal in a given DPCIR
has a norm greater than or equal to the norm of the corresponding constellation point
if and only if the convex hull of the constellation contains the origin. It is followed
by proving that the power of the noise-free received signal in a DPCIR is a monotonic
strictly increasing function of two parameters relating to the infinite Voronoi edges.
Using the convex representations of DPCIRs and UBCIRs, we formulate two design
problems, namely, the SLP power minimization with SINR constraints, and the SLP
SINR balancing problem under max-min fairness criterion. We show that the SLP power
minimization problem, minimizing either sum or peak (per-antenna) transmit power,
can always be formulated as a convex quadratic programming (QP). We further derive
a simplified reformulation of this problem which is more computationally efficient. Our
simulation results indicate that the DPCIRs and UBCIRs allow further reduction of the
transmit power compared to the state-of-the-art without increasing the computational
complexity at the transmitter or receiver. The SLP max-min SINR problem, on the
other hand, is non-convex in its original form, and hence is difficult to tackle. We
propose alternative optimization approaches, including semidefinite programming (SDP)
formulation and block coordinate descent (BCD) optimization. We finally discuss and
evaluate the loss due to the proposed alternative methods through extensive simulation
results.
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3.1 Introduction

The symbol-level design of a multiuser precoder generally involves an optimization
problem for each possible combination of the users’ data symbols. The optimization
constraints are so defined to push each user’s (noise-free) received signal into the corre-
sponding predefined CIR, enhancing (or guaranteeing a certain level of) the users’ symbol
detection accuracy. Therefore, formulation of the optimization problem, and particularly
the constraints, depend on the adopted modulation scheme (i.e. signal constellation).
The objective function, on the other hand, depends on the design criterion.

In general, objective-oriented multiuser precoding design aims at keeping a balance
between some system-centric and user-centric objectives/requirements, depending on
the network’s operator strategy [6,7]. Power and sum-rate are often regarded as system-
centric quantities [9]. Transmit power is considered, for example, to control the inter-
cell interference in multi-cell wireless networks, and sum-rate is a measure of the overall
system performance. On the other hand, as a user-centric criterion, SINR is an effec-
tive QoS measure in multiuser interference channels [11]. In particular, both BER and
capacity, which are two relevant criteria from a practical point of view, are closely re-
lated with maximizing SINR [10]. Considering different types of optimization criteria,
some well-known formulations for the multiuser precoding problem are QoS-constrained
power minimization [12, 13], SINR balancing [8, 10, 14], and (weighted) sum-rate maxi-
mization [9,15,16]. In this work, we primarily focus on the power minimization problem
with SINR constraints and the SINR balancing problem using max-min fair criterion.

The SLP problem minimizing the total transmit power has been studied for various
constellations, including PSK [20, 21, 36–38, 61, 94, 108–110], QAM [26–28, 41–43, 105],
and APSK [70]. For PSK constellations, the minimization of peak per-antenna transmit
power is addressed in [94].

SINR balancing in MU-MIMO systems is generally more challenging and has been
widely investigated for conventional precoding schemes; see, e.g., [8, 10, 11, 122, 123].
This problem has been addressed in both multicast (single data stream) and unicast
(multiple independent data streams) downlink scenarios. The problem is not convex in
general and is known to be NP-hard [11]. To address this difficulty, several alternative
optimization approaches have been proposed in the literature. In particular, for downlink
unicast channels, it is shown in [10] that the power minimization and the max-min SINR
are inverse problems. We kindly refer the readers to [96] for a short review on SINR
balancing in conventional multiuser precoding.

The SINR balancing problem for SLP schemes has not been addressed extensively in
the literature. In [21], the non-convex SLP max-min SINR is solved using its relation to
the power minimization via a bisection search. The method is only applicable to PSK
constellations (more precisely, to constant envelope modulations) and suffers from high
computational complexity. This problem is also addressed in [20] and a second-order cone
programming (SOCP) formulation is proposed for PSK constellations. Nevertheless,
there is no general solution method or convex formulation for the SLP max-min SINR
problem being valid for all generic (two-dimensional) constellation sets.
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In this work, we first study optimal and relaxed CIRs for a generic constellation
which leads us to introducing several types of CIRs, such as distance-preserving CIR
(DPCIR) and union bound CIR (UBCIR). We specifically focus on DPCIRs and fully
characterize their geometry based on the Voronoi regions of the constellation set. We
also prove several properties for these regions which will subsequently be used to ad-
dress the SLP design problems. The main property states that the norm of any signal
in a given unbounded DPCIR is a monotonically increasing function of two parameters
related to the corresponding infinite Voronoi edges, under the necessary and sufficient
condition that the convex hull of the constellation contains the origin. We address both
the power minimization and the SINR balancing problems in SLP. We show that the
power minimization SLP problem can always be formulated as a convex optimization
problem defined on the DPCIRs and UBCIRs. We provide explicit convex formulations
for the SLP power minimization problem and compare their performances and computa-
tional complexities with the state-of-the-art techniques, where it will be shown that the
proposed formulations can provide performance gains in terms of transmit power com-
pared to the existing schemes, with relatively reduced complexities. We then study the
SLP design criterion from a system-level point of view and discuss the feasibility of QoS
provisioning in a resource-constrained multiuser downlink channel through deriving a
sufficient feasibility condition. Moreover, using the properties of DPCIRs, we show that
by fixing a subset of variables in the optimization problem, the SLP max-min SINR can
be treated as a convex problem. Accordingly, we propose more tractable alternative op-
timization approaches, which result in competitive sub-optimal solutions for the original
problem. Two methods are proposed and evaluated, namely, semidefinite programming
(SDP) formulation and block coordinate descent (BCD) optimization. In summary, the
main contributions of this chapter are as follows:

1. Considering generic modulation schemes with constellation sets of any shape and
size, we define DPCIRs and UBCIRs as, respectively, optimal and relaxed CIRs.

2. We provide a systematic way to describe the DPCIRs and UBCIRs as convex
sets and show that the SLP power minimization problem, minimizing either sum
or peak (per-antenna) transmit power, can always be formulated as a quadratic
programming (QP) defined on these regions.

3. We derive several properties for DPCIRs in order to further improve the SLP
techniques and simplify the involved optimization problems.

4. We obtain a simple feasibility condition for the SLP power minimization problem,
which is of practical importance in a realistic scenario as it determines whether
the power minimization problem is applicable or not.

5. By rearranging the DPCIR-based SLP power minimization, we obtain an equiva-
lent formulation with a reduced problem size.

6. We propose alternative sub-optimal solutions for the SLP max-min SINR problem
enhancing the performance of the multiuser system in terms of the worst-user SINR
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compared to the existing schemes, while being less computationally complex.

7. All the definitions and optimization problems are provided in a general form for
constellation sets which are indifferent to both the shape and the order of constel-
lation.

The rest of this chapter is organized as follows. In Section 3.2, we describe the system
model and define the design problems of interest. In Section 3.3, optimal and relaxed
CIRs are introduced and characterized for a generic constellation set. This is followed
by proving various properties for these regions in Section 3.4. We address the SLP
design problems in Section 3.5. Discussions on the power minimization problem and the
proposed alternatives for the SINR balancing design are also included in this section.
In Section 3.6, we present the simulation results. Finally, we conclude the chapter in
Section 3.7.

3.2 System Model and Problem Definition

We consider the downlink of an MU-MIMO unicast channel, where a single base station
(BS) sends independent data streams to Nu users in the same time-frequency resource
block. The BS is equipped with Nt transmit antennas while each user has a single receive
antenna. The number of simultaneously served users Nu is limited by the number of BS’s
antennas, i.e., Nu ≤ Nt. A frequency-flat block-fading channel is assumed between the
BS’s transmit antennas and the ith user, where the complex channel vector is denoted
by hi ∈ C1×Nt . It is further assumed that perfect channel knowledge is available at
the BS, and that E{hH

i hj} = 0 for all i, j = 1, ..., Nu and i 6= j. At a given symbol
period, independent data symbols {si}Nu

i=1 are intended to be transmitted to Nu users
(throughout this chapter, we drop the symbol’s period index to simplify the notations),
where si denotes the discrete-time target symbol for the ith user. Each symbol si is drawn
from a finite equiprobable two-dimensional constellation set. Without loss of generality,
for all the users, we assume an M -ary constellation set X = {xm|xm ∈ C}Mm=1 with unit
average power, i.e., (1/M)∑M

m=1 |xm|2 = 1. The user’s symbol vector s is mapped to
Nt transmit antennas. This is done by a symbol-level precoder, yielding the transmit
vector u = [u1, . . . , uNt ]T ∈ CNt×1, which implicitly contains the data symbols {si}Nu

i=1,
as depicted in Fig. 3.1. Considering a complex baseband symbol-sampled model, under
the above assumptions, the ith user’s received signal is given by

ri = hiu + zi, i = 1, 2, ..., Nu, (3.1)

where zi ∼ CN (0, σ2
i ) denotes the complex additive white Gaussian noise (AWGN) at

the ith receiver. From the received scalar ri, the user i may detect its own symbol si
by applying the single-user maximum-likelihood (ML) decision rule. Notice that the
structure of the users’ receivers is not affected by employing the symbol-level precoder
at the transmitter.
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Figure 3.1: A simplified block diagram for the downlink MU-MIMO channel with SLP.

3.2.1 Interpretation of Symbol-Level SINR Constraints

The functionality of symbol-level precoder is to instantaneously design the transmit
signal for each symbol period based on a CI-constrained optimization problem. The
solution of this problem, i.e., the precoded vector u, is in general a function of instan-
taneous data information (DI) and channel state information (CSI) as well as a set of
given system constraints or user-specific requirements.

In a downlink MU-MIMO system, the convention is to define the SINR of each
user as the ratio between the desired received signal power and the power of interfering
components (due to multiplexing the users’ data streams) plus noise power. On the
other hand, the SLP design generally aims at forcing all the received signal components
to constructively interfere at the receiver of each user. This can be interpreted as having
no destructive interference at none of the receivers, i.e., SINR turns into signal-to-noise
ratio (SNR) with CI contributing to the desired signal power. Therefore, in the context of
SLP, SINR translates to signal-plus-interference-to-noise ratio, and hence, is equivalent
to the conventional SNR. Nevertheless, in the rest of this chapter, we continue to use
“SINR”, as it has been commonly used in this context. In a formal way, it follows from
(3.1) that the instantaneous received SINR of the ith user at a given symbol period is
equal to

SINRi = uHhH
i hiu
σ2
i

. (3.2)

The user-specific requirements in a multiuser system are individual target SINRs that
guarantee the reliable communication for all the users. It should, however, be noted that
the given target SINRs typically refer to long-term (e.g., block-level) SINRs, i.e., the
average received SINR over a block of symbols. Therefore, based on the instantaneous
SINRs in (3.2), the following average SINR constraints has to be imposed on the design
problem:

E{SINRi} ≥ γi, i = 1, 2, ..., Nu, (3.3)

where γi is the required SINR for the ith user, and the expectation is taken with respect
to the symbol time over the entire block. Note that while the time index is dropped
for simplicity of notation, the precoded vector u is a function of the symbol time. By
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substituting (3.2) for the instantaneous SINRs, the inequality (3.3) is equivalent to

E{uHhH
i hiu} ≥ σ2

i γi, i = 1, 2, ..., Nu. (3.4)

For sufficiently large blocks (which is often the case in practice), we have E{sis∗i } → 1
for all i = 1, ..., Nu. Hence, it is sufficient for the block-level SINR constraints in (3.4)
to be met if

uHhH
i hiu ≥ σ2

i γi sis
∗
i , i = 1, 2, ..., Nu, (3.5)

which are referred to as symbol-level SINR constraints. One may think of these symbol-
level constraints in (3.5) as a conservative way to meet the block-level SINR requirements
in (3.3).

3.2.2 Definition of the SLP Design Problem with CI Constraints

In SLP design, the DI is exploited by optimizing the precoded transmit vector such that
the noise-free received signal of each user is located in a predefined CIR that corresponds
to the user’s intended symbol. The CIRs are typically defined so that they preserve or
even enhance the users’ symbol detection accuracy compared to the original constellation
set; see, e.g., [22] and [23].

For each user i, the noise-free received signal, i.e., hiu, is pushed by the precoder
into the corresponding CIR up to a scaling factor that depends on the given SINR
requirement. Accordingly, for a generic constellation, the CI-constrained SLP power
minimization problem with individual user-specific SINR constraints can be formulated
as

min
u

f(u)

s.t. hiu ∈ σi
√
γi Di, i = 1, 2, ..., Nu,

(3.6)

where Di denotes the CIR associated with symbol si which is typically defined in a way
that it pushes hiu away from the corresponding decision boundaries (i.e., pushes hiu
deeper into the decision region of si). An explicit definition for Di, in general, depends
on the type of CIR and will be provided in the next section. The objective function
f(u) in (3.6) can be either uHu or ‖u‖2∞, depending on whether the total or the peak
(per-antenna) transmit power is minimized. It is important to note that a sufficient
(but not necessary) condition under which the optimal solution of (3.6) satisfies the
SINR constraints in (3.5) is that the amplitude of any point in Di is at least equal to
|si| =

√
sis∗i , for all i = 1, ..., Nu, i.e.,

σ2
i γi xx

∗ ≥ σ2
i γi sis

∗
i , ∀x ∈ Di. (3.7)

The SLP SINR balancing problem, on the other hand, aims to serve all the users in a
fair manner under a given system-centric restriction, which is usually the total transmit
power. In particular, with the max-min fair criterion, the goal is to maximize the worst
SINR among all the users subject to a total power constraint. This leads to the following
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formulation:

max
u

min
i

{
uHhH

i hiu
σ2
i

}Nu

i=1
s.t. hiu ∈ σiDi, i = 1, 2, ..., Nu,

uHu ≤ p,

(3.8)

where p denotes the power budget. It should be noted that, in practice, the value
of p may be given as the average (over a block of symbols) available power for the
downlink transmission, while the power constraint in (3.8) controls the instantaneous
total transmit power in each symbol period. This is a sufficient constraint to meet the
average power budget, but clearly it is not necessary and has been considered in order
to simplify the problem.

We will reformulate and discuss both problems (3.6) and (3.8) in Section 3.5, using
explicit mathematical representations for the CI constraints. To this end, in the next
section, we present a detailed study of the CIRs to obtain such mathematical represen-
tations, and further, to exploit their properties in order to properly form the constraints
of the SLP problems.

3.3 Constructive Interference Regions

In this section, we define several types of CIRs and describe them in a systematic way
based on the ML decision regions of the constellation X . Hereafter, we denote each
complex-valued constellation point by its equivalent real-valued vector form, and thus
the set of symbols in X is denoted by {xm|xm ∈ R2}Mm=1 where xm = [Re(xm), Im(xm)]T
for all m = 1, 2, ...,M .

For the assumed equiprobable constellation set X , the ML decision rule for the
constellation set X has a geometric interpretation; it corresponds to the Voronoi regions
of X which are bounded by hyperplanes. Assuming a given constellation point xm and
one of its neighboring points xk (the neighboring points are referred to those points
that share an ML decision boundary with xm), the hyperplane separating the Voronoi
region of xm from that of xk is given by {x | x ∈ R2,aT

m,kx = b(ML)
m,k }, where am,k ∈ R2,

am,k 6= 0, and b(ML)
m,k ∈ R. This hyperplane represents the ML decision boundary (Voronoi

edge) between xm and xk, which splits R2 into two halfspaces (note that hyperplanes
are infinite lines in R2). The halfspace that extends towards xm, and thus, contains the
decision region of xm is represented as

H(ML)
m,k = {x | x ∈ R2,aT

m,kx ≥ b
(ML)
m,k }, (3.9)

where am,k is the inward normal and b(ML)
m,k determines the offset from the origin. The

ML decision region (Voronoi region) of xm is then given by intersecting the all halfspaces
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in the form of (3.9) over the neighboring points of xm, i.e.,

D(ML)
m =

⋂
k∈Jm

H(ML)
m,k =

{
x | x ∈ R2,aT

m,kx ≥ b
(ML)
m,k , i ∈ Jm

}
, (3.10)

where Jm = {k|xk ∈ Sm} and Sm denotes the set of neighboring points of xm, i.e., the
set of points having a common decision boundary with xm, with |Sm| = |Jm| = Mm.
Depending on the relative geometry of xm in X , the Voronoi region (3.10) can be either an
unbounded polyhedron, if xm is an outer constellation point, or a bounded polyhedron,
if xm is an inner point. We will elaborate on this aspect in more detail in the next
sections. In any case, it can be easily shown that a Voronoi region is always a convex
set [121]. The Voronoi region (3.10) can be expressed in a more compact form as

D(ML)
m =

{
x | x ∈ R2,Amx � b(ML)

m

}
, (3.11)

where � denotes elementwise inequality, and Am and bm respectively contain aT
m,k and

b(ML)
m,k for all k ∈ Jm, i.e.,

Am =


aT
m,1
...

aT
m,Mm

 ∈ RMm×2, b(ML)
m =


b(ML)
m,1
...

b(ML)
m,Mm

 ∈ RMm . (3.12)

Each normal vector am,k in (3.12) is orthogonal to the Voronoi edge shared by xm and xk,
and thus, it can be obtained as am,k = xm − xk (or any non-zero scalar multiplication
of xm − xk). Furthermore, this Voronoi edge passes through the point (xm + xk)/2,
and therefore according to [121, p. 27], the corresponding offset b(ML)

m,k in (3.10) can be
obtained by simple vector algebra as

b(ML)
m,k = 1

2aT
m,k(xm + xk). (3.13)

Note that b(ML)
m,k is found such that the orthogonal distance between xm and the corre-

sponding Voronoi edge is equal to half of the distance between xm and xk. By changing
bm,k to b(ML)

m,k + δ, where δ ≥ 0, we get a new hyperplane displaced by

∆ = δ

‖am,k‖
, (3.14)

in the direction of am,k such that it is parallel to the original hyperplane. As an example,
in Table 3.1, we show the normal vector corresponding to a symbol xm taken from a
QPSK constellation. Note that the normal vectors given in Table 3.1 are normalized
such that they have a unit Euclidean norm.

According to the definition of CI [20,21], the CIR of xm should be a subset of Dm,ML.
In this work, we propose a construction method such that each CIR is obtained by
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Table 3.1: Normal vectors corresponding to QPSK symbols.

xm aT
m,1 aT

m,2

0.7071 + j0.7071 [+1, 0] [0,+1]
−0.7071 + j0.7071 [−1, 0] [0,+1]
−0.7071− j0.7071 [−1, 0] [0,−1]

0.7071− j0.7071 [+1, 0] [0,−1]

displacement of the hyperplanes contributing to Dm,ML. The displacement value δ must
be chosen carefully as it determines the margins from the Voronoi decision boundaries
and thus affect the symbol error probability (SEP). It is clear that for a fixed signal-
to-noise ratio (SNR), reducing the margins would result in a higher SEP. On the other
hand, from (3.6) it is inferred that for a given target SNR, having narrower margins
provides a larger feasible region for u and possibly results in a lower transmit power.

3.3.1 Distance Preserving Constructive Interference Regions

We call a CIR distance-preserving (DPCIR) if it does not decrease the original distances
between the constellation points. As a consequence, the achievable SEP will be always
lower than that of the original constellation. Let dm,k = ‖xm−xk‖ denote the Euclidean
distance between the points xm and xk from which the distance-preserving margin is
equal to dm,k/2. Then, the value of δ can simply be obtained from (3.14) by substituting
∆ = dm,k/2. Accordingly, the distance-preserving halfspaces corresponding to xm can
be expressed as

H(DP)
m,k =

{
x | x ∈ R2,aT

m,kx ≥ b
(ML)
m,k + b(DP)

m,k

}
, k ∈ Jm, (3.15)

where b(DP)
m,k = dm,k‖am,k‖/2. Intersecting (3.15) over all the neighboring points of xm

yields

D(DP)
m =

⋂
k∈Jm

H(DP)
m,k =

{
x | x ∈ R2,aT

m,kx ≥ b
(ML)
m,k + b(DP)

m,k , i ∈ Jm
}
. (3.16)

Therefore, the compact representation for the DPCIR associated with xm is obtained as

D(DP)
m ,

{
x | x ∈ R2,Amx � b(ML)

m + b(DP)
m

}
, (3.17)

where b(DP)
m ∈ RMm is the vector containing dm,k‖am,k‖/2 for all k ∈ Jm. From (3.17),

it follows that if xm is an inner constellation point, D(DP)
m is only composed of xm itself,

and thus, the noise-free received signal should exactly locate at xm. In case where xm
is an outer point, D(DP)

m will be a convex cone with a vertex at xm, and the noise-free
received signal can lie anywhere on this cone. Figure 3.2 illustrates the DPCIRs (regions
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Figure 3.2: An illustration of CIRs for an AWGN-optimized 8-ary constellation.

in blue) for an 8-ary constellation set which is optimized over an AWGN channel using
the method presented in [124]. Note that if SEP is not allowed to increase, then DPCIRs
are optimal and correspond to the CIRs introduced for PSK and QAM constellations
in [20] and [105], respectively.

3.3.2 Union Bound Constructive Interference Regions

In practice, the users may have some flexibility in terms of SEP. In such cases, one can
relax the DPCIRs as long as a given target SEP is guaranteed. By doing so, we may have
larger solution spaces for the SLP problem (3.6), and possibly lower transmit powers are
achievable. The relaxation can be done by bringing the CIR hyperplanes closer to the
Voronoi decision boundaries.

In what follows, we use the union bound on SEP to determine how close the CIR
hyperplanes can get to the Voronoi boundaries. A tractable form of the union bound,
known as the nearest neighbor union bound (NNUB), is given in [125] by

Pe ≤
(

1
M

∑
m

Mm

)
Q

(
dmin
2σ

)
, (3.18)

where Q(v) , (1/
√

2π)
∫∞
v e−y

2/2dy is the standard Q-function, σ and Pe respectively
denote the noise standard deviation and SEP, and dmin is the minimum distance of the

68



3.3 Constructive Interference Regions

constellation defined as

dmin , min {dm,k|xm,xk ∈ X ,m, k = 1, 2, ...,M,m 6= k} . (3.19)

The NNUB provides a tight theoretical bound on SEP which is quite close to the exact
SEP at high SNRs. Note that in our model, the received signal ri can be treated as
the output of an AWGN channel, and therefore, the NNUB (3.18) is applicable. Using
(3.18), for a given Pe, we define the distance threshold dmin,UB as

d(UB)
min = 2σQ−1

(
M Pe∑
mMm

)
. (3.20)

where Q−1(·) is the inverse Q-function. The value of d(UB)
min determines how far the noise-

free received signal is allowed to be distanced from the desired symbol without violating
the target SEP. In other words, d(UB)

min as defined in (3.20) is the smallest minimum dis-
tance by which the worst SEP performance is guaranteed to be Pe. This further provides
us with the intervals [d(UB)

min , dm,k] from which we can choose the relaxed distances; note,
however, that the most power-efficient choice is d(UB)

min . We refer to these regions as union
bound CIRs (UBCIR). It is worth also noting that in the general case of having unequal
user-specific target SEPs, UBCIRs can be defined separately for each user.

In the case of UBCIRs, the displacement value δ can be obtained from (3.14) by
substituting δ = d(UB)

min /2. Accordingly, the union bound halfspaces corresponding to xm
are given by

H(UB)
m,k =

{
x | x ∈ R2,aT

m,kx ≥ b
(ML)
m,k + b(UB)

m,k

}
, k ∈ Jm, (3.21)

where b(UB)
m,k = d(UB)

min ‖am,k‖/2. We then intersect (3.21) over all the neighboring points of
xm to obtain

D(UB)
m =

⋂
k∈Jm

H(UB)
m,k =

{
x | x ∈ R2,aT

m,kx ≥ b
(ML)
m,k + b(UB)

m,k , i ∈ Jm
}
. (3.22)

Equivalently, the UBCIR associated with xm can be represented in a compact form as

D(UB)
m ,

{
x | x ∈ R2,Amx � b(ML)

m + b(UB)
m

}
, (3.23)

with b(UB)
m ∈ RMm containing d(UB)

min ‖am,k‖/2 for all k ∈ Jm. Note that, in general, the
shapes of UBCIRs for a given constellation depend on the Voronoi regions, as illustrated
in Fig. 3.2 (regions in green).

The region D(UB)
m as defined in (3.23) may not fulfill the amplitude condition implied

by (3.7). Therefore, we should consider an additional constraint for each constellation
point xm. In fact, this amplitude condition is satisfied if the relaxed CIR corresponding
to xm is a subset of the complementary region of the disc centered at the origin passing
through xm. However, intersecting such a region with D(UB)

m yields a non-convex set. An
approximate alternative is to consider the outward halfspace generated by the hyperplane
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tangent to the disc at xm. This halfspace can be identified by a normal vector am,0
parallel to xm and the offset constant b(ML)

m,0 = aT
m,0xm. Subsequently, Am, b(ML)

m and b(UB)
m

in (3.23) are replaced with Ãm = [Am; am,0], b̃(ML)
m = [b(ML)

m ; b(ML)
m,0 ], b̃(UB)

m = [b(UB)
m ; 0],

respectively, where [ · ; · ] denotes concatenation by rows. Loosely speaking, we also refer
to these modified regions as UBCIRs in the rest of this chapter, which are shown in
Fig. 3.2 in red color.

The definitions of DPCIR and UBCIR are valid for all generic constellations as they
depend only on the Voronoi regions. We further point out that one may relax the DPCIRs
such that the distance between each CIR boundary and the corresponding Voronoi edge
is dmin. In this case, the upper bound on SEP provided by the NNUB (3.18) remains
unchanged with respect to the original constellation as the constellation’s minimum
distance is preserved. Such relaxed regions can be referred to as minimum distance-
preserving CIRs (MDPCIR). For a constellation point xm, if there exists at least one
neighboring point xk with dm,k > dmin, the corresponding MDPCIR will be larger than
D(DP)
m , but not larger than D(UB)

m . Therefore, in the rest of this chapter, we only focus on
DPCIRs and UBCIRs.

3.4 Characterization of DPCIRs

In this section, we provide a comprehensive study of DPCIRs and fully characterize these
regions by deriving some of their properties. The main results of this section are stated
in Lemma 2, Lemma 3 and Theorem 4.

As mentioned earlier, DPCIRs are defined so that they preserve the Euclidean dis-
tances between the constellation points, i.e., they do not increase the SEPs of the users.
By definition, any point belonging to the DPCIR of a particular constellation point has
an increased distance to all the other constellation points in X . In the following, a sys-
tematic representation of DPCIRs based on the ML decision regions of the constellation
set X is provided, which will help us to further study their characteristics.

We start by expanding the compact representation of DPCIRs in (3.17). The vector
b(DP)
m , which uniquely describes D(DP)

m , is constructed as

b(DP)
m = 1

2


dm,1‖am,1‖

...
dm,Mm‖am,Mm‖

 = 1
2


‖xm − xm,1‖2

...
‖xm − xm,Mm‖2

 , (3.24)

where xm,k, for k ∈ Jm, denotes a neighboring constellation point of xm distanced
by dm,k. Furthermore, matrix Am collecting the normal vectors of the ML decision
boundaries and vector b(ML)

m containing the offsets from the origin are given by

Am =


aT
m,1
...

aT
m,Mm

 =


(xm − xm,1)T

...
(xm − xm,Mm)T

 , b(ML)
m = 1

2


aT
m,1(xm + xm,1)

...
aT
m,Mm

(xm + xm,Mm)

 , (3.25)
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After some straightforward algebraic steps on (3.25) and (3.24), we obtain

b(ML)
m + b(DP)

m =


(xm − xm,1)Txm

...
(xm − xm,Mm)Txm

 . (3.26)

Using (3.25) and (3.26), we can simplify the representation in (3.17) and describe the
DPCIR of xm as

D(DP)
m =

{
x | x ∈ R2,Am(x− xm) � 0

}
, (3.27)

The simplified representation in (3.27) describes D(DP)
m as a vector space originated at

xm and (non-negatively) spanned by the row vectors of Am. It is straightforward to
show that the following properties hold for DPCIRs:

Property 1. For all xm ∈ X and any x ∈ D(DP)
m , we have

i. D(DP)
m ⊆ D(ML)

m .

ii. ‖x− y‖2 ≥ ‖xm − xk‖2 = dm,k, ∀xk ∈ X ,∀y ∈ D(DP)
k .

As a special case of Property 1-ii for y = xk, we have

‖x− xk‖2 ≥ ‖xm − xk‖2, ∀xk ∈ X , (3.28)

where (3.28) holds with equality only when x = xm.
The convex hull of X , denoted by convX , refers to the smallest convex set containing

X and can be simply derived from the constellation set X . The set of points belonging
to the boundary of convX is denoted by bdX , and the set of interior points of convX ,
i.e., convX\bdX , is denoted by intX . An illustrative example of the these sets for the
optimized 8-ary constellation in [124] is shown in Fig. 3.3. It follows from (3.16) that
if D(ML)

m is bounded, then D(DP)
m = xm, which means that all the inequalities in (3.16)

are satisfied with equality. On the other hand, for an unbounded D(ML)
m , the associated

D(DP)
m is an unbounded polyhedron, or more specifically, a polyhedral angle as depicted

in Fig. 3.3, which can be explicitly characterized using the two following lemmas.

Lemma 1. A point xm ∈ X lies on the boundary of (or is a vertex of) convX if and
only if its Voronoi region D(ML)

m is unbounded [126, Lemma 2.2].

Lemma 2. For every xm ∈ X with unbounded D(ML)
m , D(DP)

m is a polyhedral angle with a
vertex at xm and two infinite edges starting from xm, where each of its edges is perpen-
dicular to one of the two line segments connecting xm to its two neighboring points on
bdX .

Proof. See Appendix A.1.

For any xm ∈ bdX , Lemma 2 implicitly states that D(DP)
m is not affected by changing

the geometry of any point xk ∈ intX , as well as by adding a new constellation point
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Figure 3.3: Geometry of DPCIRs for a boundary constellation point.

on either bdX or intX . This is because the direction of am,k remains unchanged for all
xk ∈ {Sm ∩ bdX} under the above operations. Next, we prove that the norm of any
point in a DPCIR is always greater than or equal to the norm of the corresponding vertex
if and only if the convex hull of the constellation includes the origin. It should be noted
that this is a rather light condition, as all well-known constellations in the literature
with M ≥ 4 have at least one point in each quadrant and therefore their convex hull
contains the origin.

Lemma 3. For any constellation point xm ∈ X , we have ‖x‖ ≥ ‖xm‖, ∀x ∈ D(DP)
m if

and only if convX contains the origin. Equality is achieved only when x = xm.

Proof. See Appendix A.2.

To proceed, it is more convenient to rewrite the linear inequalities in (3.17) as an
equivalent set of linear equations. To do so, we introduce a non-negative vector tm and
describe the region D(DP)

m as

D(DP)
m =

{
x | x ∈ R2,Amx = b(ML)

m + b(DP)
m + tm, tm ∈ RMm

+

}
, (3.29)
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The linear equations in (3.29) indicate that any x ∈ D(DP)
m can be represented as the

intersection point of Mm displaced hyperplanes, each of which being parallel to one of
Mm boundaries of D(DP)

m but has a different offset due to the vector tm. Accordingly,
for an inner constellation point xm ∈ intX , we always have D(DP)

m = xm, which is the
unique solution to Amx = b(ML)

m + b(DP)
m , i.e.,

D(DP)
m =

{
x | x ∈ R2,Amx = b(ML)

m + b(DP)
m

}
. (3.30)

It then follows from (3.29) that

tm = 0, ∀xm ∈ intX . (3.31)

It can be easily verified that for any xm ∈ intX , the region D(DP)
m is bounded by Mm ≥ 3

hyperplanes of which at least two are not parallel. This allows us to represent D(DP)
m

as the intersection point of these two non-parallel hyperplanes by considering tm = 0.
Consequently, Am can be written as a 2× 2 matrix with two linearly independent rows,
and thus, is invertible.

On the other hand, it is shown that a hyperplane in a set of hyperplanes describing
the boundaries of a polyhedron is redundant if the corresponding polyhedron remains
unchanged by removing that hyperplane [127, p. 9]. Therefore, in the rest, we consider
the minimal set of hyperplanes that are sufficient to describe D(DP)

m by removing from
(3.29) the equalities that come from a redundant hyperplane. As a result, and based
on Lemma 2, for any xm ∈ bdX , the associated region D(DP)

m is spanned by two normal
vectors corresponding to the (infinite) boundaries of D(DP)

m , i.e.,

D(DP)
m =

{
x | x ∈ R2,Amx = b(ML)

m + b(DP)
m + tm, tm ∈ R2

+

}
, (3.32)

from which any point x ∈ D(DP)
m can be specified by two non-negative coefficients as

tm = [tm,1, tm,2]T ∈ R2
+, ∀xm ∈ bdX , (3.33)

In case the two infinite hyperplanes corresponding to D(DP)
m are not parallel, matrix Am

can simply be formed as a 2 × 2 invertible matrix with two linearly independent rows.
It should be further noted that this representation also covers the special case where
the two infinite boundary hyperplanes are parallel to each other, e.g., in quadrature
amplitude modulation (QAM) constellations. In such a case, both tm,1 and tm,2 are
constrained to be always zero. However, the region D(DP)

m , which is a half-line starting
from the constellation point xm, can be spanned by a non-negative scalar indicating the
offset of a virtual hyperplane orthogonal to the two existing infinite boundaries (which
preserves the non-singularity of Am). Thereby, any point x ∈ D(DP)

m can be specified
as tm = [tm,1, 0]T, tm,1 ∈ R+. It is also important to note that while our derivations
have been presented for two-dimensional constellation sets, the same concepts can be
generalized for both one-dimensional, e.g., pulse amplitude modulation (PAM), and
multi-dimensional, e.g., frequency shift keying (FSK), modulation schemes. In general,
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one may define

D(DP)
m =

{
x | x ∈ Rn,Amx = b(ML)

m + b(DP)
m + tm, tm ∈ Rn+

}
, (3.34)

with n denoting the dimensionality of the constellation set. In this general case, a
number of n normal vectors (each corresponding to a bounding hyperplane) is sufficient
to span the entire region, i.e., any x ∈ D(DP)

m can be specified by an n-dimensional vector
tm as

tm = [tm,1, tm,2, ..., tm,n]T ∈ Rn+. (3.35)

Accordingly, Am, b(ML)
m and b(DP)

m in (3.34) are constructed with appropriate dimensions.
In the special case of PAM constellation with one-dimensional DPCIRs, we have tm =
tm ∈ R+. Finally, we state the following theorem which will be of essential use in
formulating the SLP design problems in the next section.

Theorem 4. For any constellation point xm ∈ bdX with D(DP)
m as represented in (3.29),

function f(x) = ‖x‖ over its domain D(DP)
m is a monotonic strictly increasing function

of each element of tm if and only if convX contains the origin.

Proof. See Appendix A.3

It is worth noting that Theorem 4 can also be generalized for more generic CIRs,
namely, UBCIRs and MDPCIRs as defined in Section 3.3. In both cases, the Euclidean
norm of any point belonging to these regions is strictly increasing in exactly two coeffi-
cients related to the two infinite bounding hyperplanes.

3.5 Design Formulations for the SLP Problem

In this section, using the convex descriptions and properties of DPCIRs and UBCIRs
provided in Section 3.3 and Section 3.4, we formulate the multiuser precoding optimiza-
tion problems on a symbol-level basis. In particular, we are interested in formulating
two well-known design problems, namely, power minimization and SINR balancing. As
discussed in Section 3.3, the DPCIRs can be explicitly obtained for all generic constella-
tions as they depend only on the Voronoi regions. This enables us to arrange the design
problems in a general form which is indifferent to the constellation’s shape and order.

We start by noting that for any user i = 1, ..., Nu, the intended data symbol si cor-
responds to one of the points {xm}Mm=1 in X , and thus, we denote si = [Re(si), Im(si)]T.
For the brevity of notations, we denote by i the index of matrix A and vectors b(ML) and
b(DP) that correspond to si. Furthermore, we define the index set I = {i | si ∈ bdX}
referring to those users with a symbol on the boundary of X . In the rest of this chapter,
we use the following equivalent real-valued notations:

ū =
[
Re(u)
Im(u)

]
∈ R2Nt×1, Hi =

[
Re(hi) −Im(hi)
Im(hi) Re(hi)

]
∈ R2×2Nt , i = 1, ..., Nu, (3.36)
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Note that with the equivalent notations in (3.36), vector Hiū denotes the real-valued
noise-free received signal at the ith user’s receiver. Moreover, it is easy to check that
uHu = ūTū. We also denote by

G =


A1H1

...
ANuHNu

 ∈ R2Nu×2Nt , b(ML) = [b(ML)
1 , ...,b(ML)

Nu
]T ∈ R2Nu ,

b(DP) = [b(DP)
1 , ...,b(DP)

Nu
]T ∈ R2Nu , t = [t1, ..., tNu ]T ∈ R2Nu ,

the vectors and matrices collecting the channel and CI parameters for all Nu users.
It should be noted that, in general, the number of rows in matrix G, as well as the
number of entries in vectors b(ML) and b(DP), are equal to the summation of the number
of neighboring constellation points of si over all i = 1, ..., Nu, i.e., ∑Nu

i=1Mi. However,
as a consequence of (3.30)-(3.33), only two hyperplanes (linear equations) are sufficient
to entirely span D(DP)

i for all i = 1, ..., Nu. This allows us to reduce the problem’s
dimensionality to 2Nu, including the constraints ti = 0 for any i /∈ I.

3.5.1 DPCIR-based SLP Power Minimization

In a realistic multiuser scenario, the power minimization problem might be relevant if
the required QoS (e.g. SINR) of all the users can be guaranteed through the available
transmission resources in the system. For a detailed discussion on the rationale behind
the power minimization problem, we kindly refer the readers to [8]. Accordingly, in this
section we first study the relevance of the SLP power minimization problem. For this
purpose, we consider a power-restricted scenario in which the downlink transmission is
supposed to provide each user with a given target SINRs, while the BS is subject to a
total power constraint. This can be interpreted as a feasibility problem based on the
given power constraint and the users’ SINR requirements. Through this problem, one
may examine whether the given SINR requirements are achievable or not, i.e., whether
the spatial multiplexing to serve multiple users is meaningful. Otherwise, the system
operator decides to relax the other constraints, e.g., decrease the number of users or
increase the total power budget. In the sequel, we first express a feasibility problem for
the considered scenario and then formulate the power minimization problem.

Let us first focus on DPCIRs. By substituting Hiū for x in (3.29) and scaling the
ML and distance-preserving offsets b(ML)

i and b(DP)
i to satisfy the SINR requirements in

(3.5), we can write the CI constraint for the ith user as

AiHiū = σi
√
γi
(
b(ML)
i + b(DP)

i

)
+ ti,

ti � 0 i ∈ I,

ti = 0 i /∈ I.
(3.37)

Taking all Nu users into account, the compact CI constraint (3.37) imposes a total
number of 2Nu constraints on the problem. Therefore, the corresponding feasibility
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problem can be expressed as

find ū

s.t. AiHiū = σi
√
γi
(
b(ML)
i + b(DP)

i

)
+ ti, i = 1, ..., Nu,

ti = 0, i /∈ I,
ti � 0, i ∈ I,
ūTū ≤ p,

(3.38)

where the forth constraint imposes the power restriction on the transmit signal. By defin-
ing the 2Nu×2Nu diagonal matrices Σ = diag(σ1, ..., σNu)⊗I2 and Γ = diag(√γ1, ...,

√
γNu)⊗

I2, we can rewrite problem (3.38) in a more compact form as

find ū
s.t. Gū = ΣΓ

(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti � 0, i ∈ I,
ūTū ≤ p.

(3.39)

A sufficient condition under which there exists at least a feasible point for (3.39) can be
obtained according to the following proposition.

Proposition 5. The feasibility problem (3.39) has at least one solution for Nu ≤ Nt if∥∥∥G†ΣΓ
(
b(ML) + b(DP))∥∥∥2

≤ p, (3.40)

where G† = GT(GGT)−1 is the Moore-Penrose inverse of G.

Proof. See Appendix A.5.

If a solution to (3.39) exists, then the relevant problem is to further reduce the
transmit power, which is known as power minimization. The precoder is designed to
minimize either the total or the peak (per-antenna) transmit power. The latter objective
is more realistic as, in practice, many systems are subject to individual per-antenna
power constraints [4, 94]. Accordingly, the DPCIR-based SLP problem minimizing the
total transmit power can be formulated as a linearly-constrained quadratic programming
(LCQP), i.e.,

min
ū,t

ūTū

s.t. Gū = ΣΓ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti � 0, i ∈ I,

(3.41)

which has 2Nt+2Nu real-valued variables stacked in vectors ū and t and 4Nu constraints.
Many algorithms are known to efficiently solve an LCQP, e.g., interior-point, active-set,
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and gradient methods [121, 128]. Denoting the optimal solution of (3.41) by ū∗, the
feasibility problem (3.39) guarantees that ū∗Tū∗ ≤ p. On the other hand, by replacing
ūTū with ‖ū‖2∞,C, the design objective aims to minimize the peak per-antenna transmit
power, where by ‖ · ‖∞,C we mean the infinity norm over equivalent complex-valued
elements. This variant of the SLP power optimization problem has also convex objective
function and constraints. Hence, it is a convex problem and can be efficiently solved using
off-the-shelf algorithms [121]. The feasibility problem (3.39) can further be extended to
the case with peak per-antenna power constraints if one substitutes ‖ū‖2∞,C for ūTū,
and p/Nt for p. In such a case, the feasibility condition is given by

‖G†ΣΓ
(
b(ML) + b(DP)) ‖2∞,C ≤ p/Nt. (3.42)

It is worth noting that if the condition in (3.42) holds true, then the feasibility condition
in Proposition 5 is also met given the norm inequality

‖G†ΣΓ
(
b(ML) + b(DP)) ‖ ≤ √Nt ‖G†ΣΓ

(
b(ML) + b(DP)) ‖∞,C.

It is possible to further simplify the power minimization problem (in terms of problem
size) by reducing the number of optimization variables and constraints as follows.

Lemma 6. The LCQP in (3.41) can be reduced to

min
t�0

∥∥∥G†(ΣΓ
(
b(ML) + b(DP))+ Wt

)∥∥∥2
, (3.43)

for Nu ≤ Nt, where W is a 2Nu × 2Nu diagonal matrix with a diagonal element being
one if it corresponds to a symbol in I, and zero otherwise, i.e.,

W , diag(w1, ..., wNu)⊗ I2, wi =

1, si ∈ bdX ,

0, si ∈ intX .
, i = 1, 2, ..., Nu. (3.44)

The optimal precoded vector ū∗ is then obtained as

ū∗ = G†
(
ΣΓ

(
b(ML) + b(DP))+ Wt∗

)
, (3.45)

where t∗ is the solution to (3.43).

Proof. See Appendix A.4.

The reduced LCQP in (3.43) involves 2Nu variables and 2Nu constraints, and there-
fore, its solution is more computationally efficient than that of the original LCQP in
(3.41). Moreover, problem (3.43) can be classified as a non-negative least squares (NNLS)
optimization, which can be solved using several efficient methods, e.g., fast NNLS algo-
rithm [129]. We will elaborate more on this formulation in Chapter 4 and derive two
low-complexity approximate solutions for the SLP power minimization problem.
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Before proceeding to the next section, we provide some equivalent design formulations
for the SLP power minimization problem. These equivalent formulations will be of
frequent use in later chapters. Using the convex representation of DPCIRs in (3.27), by
substituting Hiū for x and replacing xm with the scaled symbol σi

√
γi si, we can write

the CI constraint for the ith user as

C1 : Ai (Hiū− σi
√
γi si) � 0, (3.46)

or equivalently,
Ai (Hiū− σi

√
γi si) = ti, ti � 0, (3.47)

where ti = 0 is imposed for inner constellation symbols, i.e., si ∈ intX . Collecting the
CI constraints (3.47) for all i ∈ {1, 2, ..., Nu} into a matrix form, we obtain

C2 : A(Hū−ΣΓs) = Wt, t � 0, (3.48)

where we have used the following notations:

A ,


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · ANu

 ∈ R
2Nu×2Nu , H ,


H1

H2
...

HNu

 ∈ R2Nu×2Nt , t ,


t1

t2
...

tNu

 ∈ R2Nu×1,

and Σ , diag(σ1, σ2, ..., σNu)⊗I2, Γ , diag(√γ1,
√
γ2, ...,

√
γNu)⊗I2, and s , [s1, s2, ..., sNu ]T.

As we have shown earlier in Section 3.4, a sub-matrix Ai can always be formed as an
invertible matrix, so does A. Hence, the compact CI constraint (3.48) can be rewritten
as

C3 : Hū = ΣΓs + A−1Wt, t � 0. (3.49)

where

A−1 =


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

... . . . ...
0 0 · · · A−1

Nu

 .

The CI constraints C1 to C3 are all equivalent and can be used interchangeably in
formulating the SLP design problem. For the sake of convenience, we have summarized
the corresponding design formulations in Table 3.2.

3.5.2 UBCIR-based SLP Power Minimization

In an analogous way, we can utilize the UBCIRs to formulate the SLP design problem.
Since the derivation steps are similar to those taken in the previous section, in the
following, we only present the final design formulation for the SLP problem.
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Table 3.2: Different design formulations for the DPCIR-based SLP power minimization
problem.

Name Formulation

P1 min
ū

ūTū s.t. Ai
(
Hiū− σi

√
γi si

)
� 0, i = 1, 2, ..., Nu

P2 min
ū,t

ūTū s.t. A(Hū−ΣΓs) = Wt, t � 0

P3 min
ū,t

ūTū s.t. Hū = ΣΓs + A−1Wt, t � 0

Using the modified convex representation for UBCIRs (3.23) described in Section
3.3.2, we can cast the UBCIR-based power minimization SLP problem as

min
ū

ūTū

s.t. AHū � ΣΓ
(
b(ML) + b(UB)) , (3.50)

Due to the convex quadratic objective function and linear inequality constraints, the
optimization problem (3.50) is a convex LCQP, and therefore, can efficiently be solved
via standard algorithms [121]. In general, the number of constraints in (3.50) varies from
3Nu to Nu +∑

iMi, depending on the adopted modulation scheme.

3.5.3 DPCIR-based SLP SINR Balancing

In a downlink scenario where power is a strict transmit limitation, fairness might be a
relevant design criterion [10]. In this section, we are interested in a max-min fair criterion
under which the SLP design problem aims at maximizing the worst SINR among the
users constrained by a total transmit power p. Assuming the CIRs to be distance-
preserving, the problem is not convex in its original form. Therefore, we first provide an
overview and discuss the methods presented in the literature to solve the SLP max-min
SINR problem. Then, we derive several alternate convex formulations for this problem.
All the proposed methods are simulated in Section 3.6 with a detailed discussion on the
complexity and performance.

One may tackle the SLP max-min SINR by exploiting its connection to the power
minimization problem, as proposed in [21]. By considering the DPCIR-based design as
a generalization of [21], this method iteratively solves the following problem:

ūPM(Γ∗) = argmin
ū,t

ūTū

s.t. Gū = ΣΓ∗
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti � 0, i ∈ I,

(3.51)
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where Γ∗ = diag
(√

γ∗1 , ...,
√
γ∗Nu

)
⊗ I2 is the input vector of target SINRs given by the

optimal solution to the problem:

ūSB(p)=argmax
ū,Γ,t

min
i
{γi}Nu

i=1

s.t. Gū = ΣΓ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti � 0, i ∈ I,
ūTū ≤ p,

(3.52)

until the solution to (3.51) converges to p. It can be inferred that the power optimization
problem (3.51) and the max-min SINR (3.52) are related as

ūPM(Γ∗) = ūSB

(
ūPM(Γ∗)TūPM(Γ∗)

)
. (3.53)

In fact, to guarantee the SINR requirement ūTHT
i Hiū ≥ σ2

i γi through the first con-
straint of (3.52), the variables γi in (3.52) manipulate the instantaneous average power of
the constellations from which D(DP)

i are constructed for all i = 1, 2, ..., Nu. This is a con-
servative way to guarantee that the instantaneous achieved SINRs satisfy E{ūTHT

i Hiū}/σ2
i ≥

γi for all i = 1, 2, ..., Nu, which is typically desired in conventional multiuser precoding [9].
The optimal solution γ∗i , however, pushes Hiū into

√
γ∗i D

(DP)
i rather than D(DP)

i . Since
γ∗i is a function of the user’s symbol si, it varies over symbol time, which limits the
applicability of this method to constant envelope modulations. For modulation schemes
with generic constellations, possibly having inner points with bounded decision regions,
the ith receiver needs to be aware of the value of γ∗i in each symbol period in order to
correctly detect si, which might be quite impractical as this value has to be updated at
the symbol rate. It is important to note that we are not allowed to reformulate (3.52)
by excluding the constraints related to the symbols i /∈ I, as the power optimization
problem (3.51) needs to take all the users’ symbols into account in order to guarantee
the given SINR requirements for all the users.

Assuming identical noise variances across the receivers, i.e., σ2
i = σ2 for all i =

1, 2, ..., Nu, the symbol-level SINR for the ith user is proportional to the instantaneous
received power at the ith receiver within each symbol period. As a result, the DPCIR-
based SLP max-min SINR problem can be expressed as

max
ū,t

min
i

{
ūTHT

i Hiū
}
i∈I

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti � 0, i ∈ I,
ūTū ≤ p.

(3.54)
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By introducing a slack variable λ, we can rewrite (3.54) as

max
ū,t,λ≥0

λ

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ūTHT
i Hiū ≥ λ, i ∈ I,

ti = 0, i /∈ I,
ti � 0, i ∈ I,
ūTū ≤ p,

(3.55)

which is not convex due to the second set of constraints. To tackle this problem, we use
the properties of DPCIRs derived in Section 3.3. Accordingly, any point in D(DP)

i can
be uniquely specified by ti = [ti,1, ti,2]T ∈ R2

+ for all si ∈ bdX . It further follows from
Theorem 4 that ūTHT

i Hiū = ‖Hiū‖2 is strictly increasing in each element of ti for all
i ∈ I, i.e., letting either ti,1 or ti,2 be fixed, ūTHT

i Hiū is a monotonically increasing
function of the other variable. Therefore, given the optimal value of one of the elements,
e.g., ti,1, for all i ∈ I, maximizing ūTHT

i Hiū is equivalent to maximizing ti,2. As a
result, by fixing one of the variables ti,1 or ti,2 for all i ∈ I, the optimization problem
(3.55) can be expressed in a convex form. Let assume ti,1 are fixed for all i ∈ I. Thus,
the convex reformulation of (3.55) can be written as

max
ū,t\tI,1,λ≥0

λ

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti,2 ≥ λ, i ∈ I,
ūTū ≤ p,

(3.56)

where ti,2 is substituted for ūTHT
i Hiū in (3.55), and tI,1 ∈ R|I|+ denotes the vector

collecting ti,1 for all i ∈ I. In theory, achieving the optimum of (3.55) through (3.56)
requires an exhaustive search over all possible non-negative values of ti,1 for i ∈ I and
picking the value that maximizes the objective function of (3.56). Alternatively, due to
the power restriction induced by p, one may bound and discretize the search interval
to do a grid search. This reduces the solution to choose ti,1 only from a finite set, but
of course, leads us to a sub-optimal solution. Considering an identical search interval
for all the users’ symbols, let L be the number of discrete values of ti,1 for all i ∈ I,
which results in a total number of L|I| combinations over all |I| symbols. This means
that the number of convex problems to be solved in every symbol period is of order
L|I|. In general, the gap to the optimal solution depends on L as well as the accuracy
of bounding (i.e., whether the search interval includes the optimal value or not). The
output of this grid search approaches the optimum of (3.55) as L → ∞; however, the
computational complexity grows exponentially with L. Motivated by the very high and
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impractical complexity of the grid search method, in the following, we propose two more
computationally efficient approaches to solve the SLP max-min SINR problem. The
proposed alternative solutions are not equivalent to solving the original problem (3.55),
but extensively reduce the computational complexity of the solution compared to the
grid search. In Section 3.6, the loss of the proposed approaches with respect to the
optimal solution will be evaluated through simulation results.

Semidefinite Programming Formulation

Inspired by the strictly increasing behavior of ūTHT
i Hiū with respect to the elements of

ti for all i ∈ I, we propose an alternative way to convert (3.55) into a convex problem
by replacing the non-convex quadratic constraints on ūTHT

i Hiū with affine constraints
on ti, i.e.,

max
ū,t,λ≥0

λ

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,
ti � λ 1, i ∈ I,
ūTū ≤ p,

(3.57)

which can be viewed as jointly maximizing ti,1 and ti,2 over all i ∈ I. By Schur comple-
ment, problem (3.57) can be written as

max
ū,t,λ≥0

λ

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,[
diag(tI) I2|I|

I2|I| λ I2|I|

]
� 0,[

1 ūT

ū pI2Nt

]
� 0,

(3.58)

where tI ∈ R2|I|
+ is the vector collecting ti for all i ∈ I, and � 0 denotes positive

semidefinite. Problem (3.58) is a semidefinite programming (SDP) and can be solved
using standard algorithms [121]. This convex formulation, however, is not expected to
achieve the same solution as compared to the original problem (3.55) since it has a
reduced degrees of freedom to maximize the minimum SINR. More precisely, the SDP in
(3.58) optimizes min{ti,1, ti,2} instead of optimizing both ti,1 and ti,2. Nonetheless, the
optimal solution of problem (3.58) can be considered as a lower bound on the optimum of
the SLP max-min SINR. It is also important to note that the SDP (3.58) is equivalent to
the SOCP formulation of SLP SINR balancing proposed for PSK constellations in [20].
However, the SOCP formulation in [20] is not equivalent to the original SLP max-min
SINR problem.

82



3.5 Design Formulations for the SLP Problem

Block Coordinate Descent Optimization

To improve the solution of the SDP formulation (3.58), we propose an iterative method
based on the block coordinate descent (BCD) algorithm [130]. The BCD algorithm
belongs to the family of successive lower-bound maximization methods in which certain
approximate version of the objective function is optimized with respect to one block
variable at a time, while fixing the rest of the block variables. We denote by tI,1 ∈ R|I|+
and tI,2 ∈ R|I|+ the vectors (blocks) collecting ti,1 and ti,2 for all i ∈ I, respectively.
Then, the idea behind the BCD algorithm is to successively maximize the worst-user
SINR along coordinates tI,1 and tI,2 until convergence of the solution. In more detail,
by defining the elementwise monotonically increasing function fi : R2

+ 7→ R as

fi(ti,1, ti,2) = ūTHT
i Hiū, i ∈ I, (3.59)

the objective function of the SLP max-min SINR can be expressed as

g(tI,1, tI,2) = min
i

{
fi(ti,1, ti,2)

}
i∈I

. (3.60)

In the nth iteration, each block of variables is updated using the following objective
functions (the constraints are as before):

t∗I,1|n = argmax
tI,1

g(tI,1, t∗I,2|n−1), (3.61)

t∗I,2|n = argmax
tI,2

g(t∗I,1|n−1, tI,2), (3.62)

where t∗I,1|n and t∗I,2|n respectively denote the optimal solutions of (3.61) and (3.62)
obtained from the nth iteration, and g(tI,1, t∗I,2|n−1) and g(t∗I,1|n−1, tI,2) are approximate
lower bounds on g(tI,1, tI,2). We adopt a cyclic update rule, i.e., the BCD algorithm
cyclically solves the following two SDPs:

max
ū,tI,1,λ≥0

λ

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,[
diag(tI,1) I

I λI

]
� 0,[

1 ūT

ū pI

]
� 0,

(3.63)
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and
max

ū,tI,2,λ≥0
λ

s.t. Gū = Σ
(
b(ML) + b(DP))+ t,

ti = 0, i /∈ I,[
diag(tI,2) I

I λI

]
� 0,[

1 ūT

ū pI

]
� 0,

(3.64)

where the dimensions of identity matrices in (3.63) and (3.64) are the same as in (3.58).
Each SDP is solved with respect to one of the blocks tI,1 or tI,2 while the other block
is fixed and is given by the solution from the previous iteration. The pseudocode of the
proposed method is presented in Algorithm 1, where we have arbitrarily initialized t∗I,2.
For all the iterations n = 1, 2, 3, ..., we have

t∗I,1|n−1 � t∗I,1|n, t∗I,2|n−1 � t∗I,2|n, (3.65)

and hence
λ∗|n−1 ≤ λ

∗
|n, (3.66)

where by λ∗|n we denote the optimal solution from the nth iteration. The sequence
{λ∗|n}n=1,2,... is therefore guaranteed to converge to a stationary point (i.e., at least a
local extremum) of the SLP max-min SINR. As we will see in Section 3.6, the BCD
algorithm usually converges within a few iterations.

3.6 Simulation Results

Finally, in this section, we provide some simulation results to validate the analytical
discussions in earlier sections and evaluate the performance of the proposed SLP design
approaches. We also compare our results with those obtained from the state-of-the-art
schemes. In our simulations, we consider a downlink multiuser unicast system with an
equal number of transmit and receive antennas, i.e., Nt = Nu. The intended symbols
for all the users are taken from an identical constellation set. We evaluate the results
for three constellations, namely, 8-PSK, optimized 8-ary, and 16-QAM; however, we
are particularly interested in the optimized 8-ary constellation since it has a generic
shape with unequal distances as well as both bounded and unbounded Voronoi regions.
We assume the additive noise component’s variance at the receiver of each user to be
σ2
i = σ2 = 1 for all i = 1, ..., Nu. Furthermore, we assume equal target SINRs γi = γ

for all i = 1, ..., Nu, when the power minimization is of interest. A quasi-static Rayleigh
fading channel is assumed where the complex channel vectors hi for i = 1, ..., Nu are
generated following an i.i.d. complex Gaussian distribution with zero mean and unit
variance, with assumption E{hihH

j } = 0, ∀j = 1, ..., Nu, j 6= i. As for the BCD algorithm,
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Algorithm 1 Block Coordinate Descent Algorithm to solve the SLP max-min SINR
1: input: {si}Nu

i=1, {hi}
Nu
i=1,Σ, p, ε

2: initialize: n← 0, t∗I,2|0 ← 0|I|
3: repeat
4: n← n+ 1
5: if n is odd then
6: t∗I,2|n ← t∗I,2|n−1
7: solve (3.63)
8: return λ∗|n, t

∗
I,1|n

9: else
10: t∗I,1|n ← t∗I,1|n−1
11: solve (3.64)
12: return λ∗|n, t

∗
I,2|n

13: end if
14: until |λ∗|n − λ

∗
|n−1| ≤ ε

15: output: ū

we set the terminating condition as ε = 10−3 with a maximum number of iterations of
100.

For a power-limited downlink scenario with Nt = Nu = 4, the feasibility probability
of the DPCIR-based SLP scheme is obtained (based on Proposition 5) and shown in
Fig. 3.4. The adopted constellation is the optimized 8-ary, and the probabilities are
calculated by averaging over all 84 possible combinations of the users’ symbol vector
s, and further averaging over 103 randomly generated channel realizations. It can be
noticed that for smaller values of γ, the probability of feasibility grows faster as a function
of the total transmit power budget. A case-specific example could be wireless systems
with adaptive coding and modulation (ACM) capability, such as DVB-S2X broadcasting
standard [131]. In DVB-S2X, the target range of SNR for an 8-ary constellation is
typically around 5-7 dB over a linear channel (recall that in SLP, SINR translates to the
received SNR). In such a system with a total power budget of at least 130 dBW, one
can infer from Fig. 3.4 that providing all the users with an SINR (SNR) level of γ = 5
dB is guaranteed by 90%, and further reduction of transmit power might be possible via
the SLP power minimization.

In Fig. 3.5, we plot the average per-antenna transmit power (total power divided
by Nt) and the peak per-antenna transmit power obtained from various SLP power
minimization techniques for 8-PSK and the optimized 8-ary constellations, respectively.
The results are compared to the CI zero-forcing (CIZF), the CI total power minimization
(CIPM) [21], and the CI peak power minimization (CIPPM) [94] schemes. Note that the
DPCIR-based and UBCIR-based SLP designs minimizing the total transmit power are
respectively referred to as “DPCIR-SLP” and “UBCIR-SLP”, whereas the SLP designs
minimizing the peak per-antenna transmit power are referred to as “DPCIR-SLP-PP”
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Figure 3.4: Feasibility probability of the SLP design as a function of the power budget for
different target SINRs with (Nt, Nu) = (4, 4).

and “UBCIR-SLP-PP”, respectively. In UBCIR-SLP and UBCIR-SLP-PP, a fixed target
SEP of Pe = 10−3 is assumed at all target SINRs.

For the 8-PSK constellation in Fig. 3.5 (a), the transmit powers with DPCIR-SLP
and DPCIR-SLP-PP are around 2 dBW less than those obtained by the CIPM and
CIPPM schemes, respectively. It should be also noted that the DPCIR-SLP design
and the SLP power minimization problem proposed for PSK constellations in [20] are
equivalent due to having the same CIRs (as mentioned in Section 3.4). As expected,
the UBCIR-SLP and UBCIR-SLP-PP designs with relaxed CIRs are the most power-
efficient SLP schemes, both with 1 dBW less transmit power at γ = 23 dB, compared
to the DPCIR-SLP and DPCIR-SLP-PP schemes. This power reduction is achieved in
exchange for possibly higher, but upper bounded by 10−3 SEPs. To have an estimate of
the variance of minimum transmit power due to the random channel matrix H, we have
also simulated 700 frames of 100 symbols for the 8-PSK constellation at γ = 21 dB. The
results show a maximum of 4% relative variance compared to those shown in Fig. 3.5
(a). Similar results can be observed in Fig. 3.5 (b) for the optimal transmit powers
obtained from different SLP problems with the optimized 8-ary constellation. Note that
the CIPM and CIPPM schemes, as formulated in [21] and [94], are not applicable to this
constellation.

We also compare the complexities of the SLP power minimization schemes of interest
in terms of the average solution time computed by the CVX disciplined convex program-
ming tool (SDPT3 solver) [132]. The relative solution times (normalized by the smallest
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(a) (b)

Figure 3.5: Transmit power versus target SINR with (Nt, Nu) = (8, 8) for (a) 8-PSK con-
stellation; (b) the optimized 8-ary constellation.

value) and the number of constraints are reported in Table 3.3. As it can be seen, the
CIZF scheme offers the lowest time complexity, but it is the least power-efficient SLP de-
sign. The DPCIR-SLP and UBCIR-SLP designs, on the other hand, both require a lower
solution time than that of the CIPM method, and indeed, they are more power-efficient.

Table 3.3: Number of constraints and solution time for different SLP schemes.

CIZF CIPM DPCIR-SLP UBCIR-SLP
Number of constraints 2Nu 3Nu 2Nu 3Nu

Solution time 1.000 1.330 1.192 1.318

In Fig. 3.6 (a), we plot the average achievable throughput of Nu = 8 users under
the SLP power minimization scheme as a function of a given target rate R, where the
target rate is related to the SINR requirement as R = log2 (1 + γ). The number of BS’s
transmit antennas is Nt = 8 and an 8-PSK modulation scheme is employed. We define
the average achievable throughput for the ith user as

(1− SEPi) log2

(
1 + E

{
‖hiu‖22

})
, (3.67)

where SEPi is the symbol error probability of the ith user and the expectation has to
be taken over an entire block of symbols. In addition to the DPCIR-based SLP design,
the results are obtained for two other SLP approaches, namely, constructive interference
zero-forcing (CIZF) and constructive interference power minimization (CIPM) [21]. The
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(a) (b)

Figure 3.6: Performance comparison for a system with (Nt, Nu) = (8, 8): (a) Average per-
user achievable throughput as a function of target rate; (b) Average symbol error probability
versus target SINR.

proposed DPCIR-based scheme outperforms both CIZF and CIPM. It can also be ob-
served that both the DPCIR-based and the CIPM symbol-level precoders provide higher
achievable throughputs than the given target rate. Moreover, under the same scenario,
the average symbol error probability over all Nu users is depicted versus the target SINR
in Fig. 3.6 (b). As it can be seen, assuming the CI constraints of the SLP power op-
timization to be distance-preserving causes a very slight difference in the average SEP
compared to the CIPM approach (in which the phase of the noise-free received signal is
constrained to be aligned with that of the original constellation point). Overall, consid-
ering Fig. 3.6 (a), the DPCIR-based SLP shows a better performance than the CIPM in
terms of the achievable throughput given by (3.67), where both the shape of the CIRs
and the resulting SEP are taken into account.

Figure 3.7 shows the scatter plot of Nu× 103 noise-free received signals in a scenario
with Nt = Nu = 8 and γ = 15 dBW, where all the transmitted symbols are drawn
from 8-PSK constellation and mapped to Nt transmit antennas via a DPCIR-based
SLP max-min SINR precoder. In this figure, the black points and the dashed lines
represent the constellation points and their corresponding Voronoi regions, respectively.
This figure supports the discussion in Section 3.5 regarding the relative geometry of the
noise-free received signal in a DPCIR. It can be seen from Fig. 3.7 that the density of
signals resulted from the BCD algorithm is higher in areas closer to the boundaries of
DPCIRs, while those signals from the SDP formulation being distributed around the
bisector (with the majority being located exactly on the bisector). This is a consequence
of maximizing the minimum of ti,1 and ti,2 in (3.58) which, loosely speaking, disregards
half of the design degrees of freedoms. On the other hand, as it can be seen from Fig. 3.7,
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Figure 3.7: Scatter plot of the noise-free received signals taken form 8-PSK constellation in
a system with (Nt, Nu) = (8, 8) and p = 15 dBW.

the results obtained from the BCD algorithm are biased towards one of the boundaries in
each DPCIR, depending on the initialization step (i.e., whether to initialize tI,1 or tI,2).
The exact same plot as in Fig. 3.7 is obtained for the output of the SOCP formulation
of SLP max-min SINR in [20].

Figure 3.8 shows the optimized worst-user SINR obtained via different SLP SINR
balancing approaches for three constellations 8-PSK, optimized 8-ary and 16-QAM. We
further compare the results with those of the maximal fairness zero-forcing precoder
in [4], and the bisection algorithm in [21]. The method based on gird search described
in Section 3.5 has been used here as a benchmark for comparison. We choose L = 5 and
L = 7 points to search over the interval [0, 2.5]. The SDP formulation, while being always
superior to the maximal fairness ZF precoding by at least 1 dB, is a lower bound on the
optimal solution to the SLP max-min SINR. The BCD algorithm, on the other hand,
provides gains of up to 2 dB with respect to the SDP formulation using the optimized
8-ary constellation. The results in Fig. 3.8 (b) further indicate that this iterative method
is able to achieve even better solutions compared to the grid search with L = 7, but with
an extremely lower computational complexity.

We plot, in Fig. 3.9, the worst-user received SINR for a fully-loaded system (Nt = Nu)
as a function of system dimension, where the users’ symbols are taken from the optimized
8-ary constellation. As expected, a lower worst SINR is achieved with increasing the
system dimension; however, the received SINR drops more slowly with respect to the
system dimension for larger power budgets.
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Figure 3.8: The worst-user received SINR among Nu = 4 users as a function of the power
budget for (a) 8-PSK constellation; (b) the optimized 8-ary constellation; (c) 16-QAM constel-
lation.

In Fig. 3.10 (a), we compare the convergence behavior of the BCD algorithm versus
system dimension for different power budgets with 8-PSK and the optimized 8-ary con-
stellation. Here, the convergence behavior is shown in terms of the average number of
iterations until convergence, i.e., until the terminating condition is met. It can be seen
that the BCD algorithm solving the SLP max-min SINR for Nt = Nu = 4 converges
within a few iterations with an average of up to 6 iterations for p = 30 dBW, where each
iteration consists of a single SDP. Figure 3.10 (a) also demonstrates a slightly slower
convergence behavior for higher values of p which is due to a larger feasible region.
Furthermore, in order to evaluate the dependence of the convergence behavior on the
constellation size, in Fig. 3.10 (b), we plot the number of iterations for three modulation
schemes with different orders. It can be seen from Fig. 3.10 (b) that for a constellation
set with narrower unbounded DPCIRs, the BCD algorithm needs fewer iterations to
converge. This observation can be justified as a smaller angle between the two distance-
preserving boundaries means more alignment between the two block coordinates tI,1 and
tI,2. As a result, the BCD algorithm performs fewer recursions among the coordinates.
Note that the DPCIR angles for QPSK and 8-PSK constellations are equal to π/2 and
π/4, respectively.

Complexity comparison between SDP and BCD

In the SDP formulation, a single convex problem has to be solved per symbol period. On
the other hand, according to Fig. 3.10 (a), the BCD algorithm converges after 4 iterations
(optimized 8-ary) and 6-8 iterations (8-PSK), on average, where each iteration involves
solving one SDP. The BCD algorithm, despite having a higher complexity than the
SDP formulation, offers gains of 1.5-2.0 dB (optimized 8-ary) and 0.2-0.4 dB (8-PSK) in
the worst-user received SINR (see Fig. 3.8). Therefore, the BCD algorithm provides a
reasonable complexity-performance tradeoff compared to the SDP formulation. In order
to summarize and compare the complexities of the two methods, in Table 3.4, we present
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Figure 3.9: Worst-user received SINR as a function of system dimension and power budget.
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Figure 3.10: Number of iterations until convergence of the BCD algorithm as a function of
(a) system dimension; (b) power budget for three constellations with different orders.
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the problem size (in terms of the number of optimization variables) and the number of
iterations per symbol period for each method.

Table 3.4: Complexities of the proposed methods for the SLP max-min SINR design.

Method Problem size Iteration/symbol period

SDP formulation 2Nt + 2Nu + 1 1
BCD algorithm 2Nt + 2Nu − |I|+ 1 Fig. 3.10

3.7 Conclusions

CIRs are the key to formulate the SLP design problem as they define the constraints
to achieve CI at each user’s receiver. In this chapter, we first defined the DPCIRs and
showed that these regions are optimal when the target SEP is not allowed to increase.
In a more flexible setting, we considered relaxed CIRs and guaranteed the target SEP
using the union bound, which led us to introduce the UBCIRs. We mainly focused on
the DPCIRs and fully characterized these regions for a generic constellation and derived
some of their properties. We then addressed two well-known precoding design problems
in a downlink multiuser unicast channel, namely, power optimization and SINR balanc-
ing, with a symbol-level design approach. Using a systematic description for DPCIRs
and UBCIRs, we formulated and discussed the SLP optimization problems. The SINR-
constrained SLP power minimization was formulated as a convex problem and studied
in a realistic scenario, where a simple feasibility condition was derived. Furthermore, we
expressed this optimization in an equivalent form with reduced problem size. Our simula-
tion results indicated that the DPCIR-based and UBCIR-based SLP design formulations
can reduce the transmit power consumption without imposing additional complexity on
the transmitter compared to the state-of-the-art schemes. For the more challenging and
generally non-convex problem of SLP SINR balancing with a max-min fair criterion, the
properties of DPCIRs helped us to reformulate the problem in a convex form, which can
be solved for a sub-optimal solution. To tackle this problem, we proposed two different
approaches, namely, SDP formulation and BCD optimization. We provided a detailed
comparison of performance and complexity for the proposed methods.
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Chapter 4
Computationally-Efficient Symbol-Level
Precoding–Part I: Derivation

While the SLP schemes offer favorable performance gains, e.g., in power-efficiency, they
impose a rather high computational complexity on the transmitter. This high com-
plexity comes from the fact that a symbol-level precoder calculates the precoded vector
specifically for every set of users’ symbols, where this calculation requires solving an op-
timization problem. In this chapter, we first study the optimal solution to the multiuser
SLP design for minimization of the total transmit power under given SINR requirements.
We adopt the DPCIRs, as introduced in the previous chapter, and derive a simplified re-
formulation of the problem in the form of a standard non-negative least squares (NNLS)
design. Then, we analyze the structure of the optimal solution using the Karush-Kuhn-
Tucker (KKT) optimality conditions. This leads us to obtain a computationally-efficient
approximate closed-form SLP solution (CF-SLP). Meanwhile, we obtain a necessary and
sufficient condition under which the power minimizer SLP is equivalent to the conven-
tional ZF precoding. Our simulation results show that the CF-SLP technique provides
significant gains over the ZF scheme and performs quite close to the optimal SLP in
scenarios with a relatively small number of users; however, it shows poor performance
for large numbers of transmit antennas and users. To address this drawback, we build on
the CF-SLP technique to derive an improved approximate closed-form solution, named
ICF-SLP, using the conditions for nearly perfect recovery of the optimal solution support.
Through simulation results, we show that in comparison with the CF-SLP technique, the
ICF-SLP method significantly enhances the system’s performance with a slight increase
in complexity. In particular, the ICF-SLP method successfully resolves the drawback of
the CF-SLP technique by performing relatively close to the optimal SLP in systems with
large numbers of transmit antennas and users. We also compare our computationally-
efficient solutions with a fast-converging iterative NNLS algorithm, where the ICF-SLP
method shows competitive performance in terms of both accuracy and complexity of the
design compared to the iterative algorithm’s solution. Analytical and numerical discus-
sions on the complexities of different SLP schemes verify the computational efficiency
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of the proposed solutions. We show that the CF-SLP and ICF-SLP techniques enjoy a
reduction of order 103 in the computation time compared to the optimal solution.

4.1 Introduction

The symbol-level design of a multiuser precoder can considerably improve the system’s
power efficiency. However, it comes with some practical challenges that need to be ad-
dressed properly, e.g., a substantially increased computational burden at the transmitter,
the need for setting the modulation scheme in advance, and sub-optimality of SINR pilots
and log-likelihood ratio (LLR) calculation algorithms; see [29,30]. Among the challenges
mentioned above, the increased complexity at the transmitter is one of the main factors
that may prohibit the use of SLP schemes in practice; see [19] and [21] for analytical
discussions on the computational complexity of the SLP design and [29] for a possible
implementation of SLP and the resulting complexity. The high computation cost of SLP
is primarily due to the fact that the design needs to be optimized specifically for every
set of users’ symbols. In high-throughput wireless communication systems, online com-
putation of precoding may suffer from the high complexity of the symbol-level design.
On the contrary, an offline (codebook design) computation may lead to an unfavorable
computation cost for high-order modulation schemes, even with a moderate number of
users [26, 95]. In either case, a relatively large number of optimization problems have
to be solved for every realization of the users’ symbols. Nonetheless, the considerable
performance gain offered by a symbol-level precoder has been motivating to find a more
computationally-efficient solution.

In this line of research, some efforts have been made towards deriving low-complexity
solutions to the SLP design problem, e.g., [28, 34, 40, 50, 111, 112]. In [40], the authors
propose an iterative algorithm with a closed-form update equation for the SLP problem
with a max-min fair design criterion, where the algorithm is shown to converge to the
optimal solution in a few iterations. The authors in [111] show that, given a perturbation
of the target users’ symbols, the SLP power minimization design is equivalent to the ZF
precoding. In another work [50], the power minimization SLP is addressed with strict
phase constraints on the received signals, and a computationally-efficient approximate
solution is suggested for this particular case with the PSK modulation schemes. However,
the major drawback of the existing methods is the poor performance of the approximate
solution for large system dimensions, i.e., large numbers of transmit antennas and users.

In this work, we address the high computational complexity of the SLP problem.
We are particularly interested in a power minimization design with SINR constraints,
where in formulating the problem, we use the DPCIRs introduced in Chapter 3. The
contributions of this work are presented in two chapters. This chapter mainly focuses on
the theoretical aspects of the computationally-efficient SLP design problem and proposes
two low-complexity algorithms. In Chapter 5, we elaborate on the FPGA design for real-
time implementation of the proposed low-complexity SLP algorithms. Accordingly, the
main contributions of this chapter are as follows:
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4.2 System Model

1. We transform the SLP problem into an equivalent non-negative least squares
(NNLS) design and discuss the optimal solution structure via the Karush-Kuhn-
Tucker (KKT) conditions. This leads us to obtain a necessary and sufficient con-
dition under which the SLP design is equivalent to the conventional zero-forcing
(ZF) precoding.

2. The KKT conditions for the NNLS design help us to derive a computationally-
efficient approximate solution, referred to as CF-SLP, which is given in a closed-
form. Through simulation results, we show that the CF-SLP solution performs well
close to the optimal SLP scheme for a relatively small number of users, but with a
significantly reduced time complexity of order 103. However, the main drawback
of this approximate solution is its poor performance for large system dimensions.

3. To resolve the performance disadvantage of the CF-SLP method, we improve this
solution by applying an additional validation step before calculating the final so-
lution, at the cost of slightly increasing the computational complexity. The new
method, named ICF-SLP, significantly improves the system’s performance in terms
of transmit power. In particular, the gap to the optimal SLP solution remains rel-
atively small, even with increasing the system dimension.

4. We analyze the computational complexities of the CF-SLP and ICF-SLP tech-
niques and compare them with a fast-converging NNLS algorithm solving the SLP
problem. Our analyses indicate that the proposed SLP techniques can offer com-
petitive performance compared to the NNLS algorithm while enjoying a lower
complexity order.

5. The proposed low-complexity SLP designs are more computationally demanding
than simple block-level precoding schemes such as ZF. However, we show that our
proposed designs provide substantial gains over the ZF precoding and outperform
the classic optimal block-level precoding at high target SINRs. Our results may
indeed encourage the use of the proposed SLP designs in practical applications.

The remainder of this chapter is organized as follows. We overview the considered
system model in Section 4.2. In Section 4.3, we formulate the SLP optimization problem
and discuss the optimal solution structure, which is followed by deriving the optimality
conditions. Using these analyses, in Section 4.4, we propose two low-complexity SLP
designs and evaluate their computational complexity in Section 4.5. The numerical and
simulation results are presented in Section 4.6. Finally, we conclude the chapter in
Section 4.7.

4.2 System Model

We mainly consider the same system model as in Chapter 3. As a brief overview,
let consider an MU-MIMO downlink system where a BS, equipped with an array of
Nt antennas, sends independent data streams to Nu single-antenna users in the same
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time-frequency resource block, where Nu ≤ Nt. The BS employs an SLP scheme to
map independent data symbols {si}Nu

i=1 onto Nt transmit antennas, with si denoting the
intended symbol for the ith user drawn from a finite equiprobable constellation set. The
precoded vector is denoted by u = [u1, . . . , uNt ]T ∈ CNt×1. We assume a frequency-flat
block-fading channel and denote by row vectors hi ∈ C1×Nt the instantaneous channel
coefficients between the BS’s antennas and the ith user, for all i = 1, ..., Nu. Accordingly,
the received signal at the ith user’s receiver can be expressed as

ri = hiu + zi, i = 1, ..., Nu, (4.1)

where zi ∼ CN (0, σ2
i ) represents the additive complex Gaussian noise at the ith receiver.

We define the equivalent real-valued notations as follows:

ū =
[
Re(u)
Im(u)

]
, Hi =

[
Re(hi) − Im(hi)
Im(hi) Re(hi)

]
, si =

[
Re(si)
Im(si)

]
, i = 1, 2, ..., Nu,

Hence, the ith user’s noise-free received signal is represented by Hiū = [Re(hiu), Im(hiu)]T
for all i = 1, ..., Nu.

4.3 Optimal Solution Structure of the SINR-Constrained
Power Minimization SLP Design

We are interested in the SLP power minimization problem constrained by CIRs and the
users’ SINR requirements. By assuming DPCIRs, we focus on the design formulation
P3, which is provided in Section 3.5 as

min
ū,t�0

ūTū s.t. Hū = ΣΓs + A−1Wt. (4.2)

We further assume that H is a full row rank matrix with high probability. This results
in a bijection between ū and t in (4.2), i.e., for any given t, the least-norm vector ū is
given by

argmin
ū

ūTū = H†ΣΓs︸ ︷︷ ︸
ūZF

+ H†A−1Wt︸ ︷︷ ︸
ūSLP

, (4.3)

where H† = HT(HHT)−1 denotes the Moore-Penrose inverse of H. Equation (4.3)
reveals the structure of the minimal-power precoded vector, i.e., the optimal solution to
(4.2). Intuitively, it consists of two parts: ūZF, which is the ZF solution, and ūSLP, which
is the CI-dependent part and accounts for the potential gain of SLP compared with the
ZF scheme. We can also look at (4.3) from a different point of view by rewriting it as

argmin
ū

ūTū = H†ΣΓ
(
s + Σ−1Γ−1A−1Wt

)
, sp(t). (4.4)

The structure of the least-norm vector ū in (4.4) has an interesting interpretation: the
SLP design (4.2) is equivalent to implementing the ZF precoding for the perturbed
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target symbols sp(t), where the perturbation depends on t and has to be optimized on
a symbol-by-symbol basis. The perturbed symbols sp(t) are designed such that they
locate within the DPCIRs corresponding to the original target symbols in s. This is
accomplished through solving the SLP design in (4.2) which, according to Lemma 6, is
equivalent to solving the NNLS problem

t∗ = argmin
t�0

∥∥∥H†ΣΓs + H†A−1Wt
∥∥∥2
, (4.5)

and then plugging t∗ into the following closed-form expression to obtain the optimal
precoded vector:

ū∗ = H†ΣΓs + H†A−1Wt∗, (4.6)

The NNLS problem, unlike its unconstrained counterpart, is not amenable to a closed-
form solution in general due to the non-negativity constraints. Many efficient algorithms
solving an NNLS problem can be found in the literature, such as the well-known active set
based method proposed by Lawson and Hanson [133], the fast NNLS algorithm (FNNLS)
[134], and those based on projected/proximal gradient method [135–137]. However,
an NNLS algorithm, in the best known case, requires tens of iterations to converge.
For instance, the accelerated gradient method offers a superlinear convergence rate of
O(1/n2), where n is the number of iterations. With a convex objective function, this
translates to a worst-case complexity bound of O(1/

√
ε) to reach an ε-optimal solution.

As an illustrative example, using an accelerated projected gradient descent algorithm, it
takes nearly 100 iterations to have a residual error of 10−3 with respect to the optimum.
In a practical SLP application, this process has to be done either for every symbol period
or every possible symbol set corresponding to Nu users. This motivates us to derive more
computationally-efficient, though possibly approximate, solutions for the SLP design
problem. In the next section, we take a closer look at the optimization problem (4.2) in
order to obtain the optimality conditions for the SLP power minimization design. The
results of the next section will help us in deriving a low-complexity approximate solution
in Section 4.4.1.

4.3.1 Optimality Conditions for the SLP Power Minimization Problem

Let us denote B , −H†A−1W and y , H†ΣΓs. Therefore, the NNLS problem (4.5)
can be written in the standard form as

min
t�0

‖y−Bt‖2, (4.7)

To obtain the optimality conditions for problem (4.2), we use the method of Lagrange
multipliers. Accordingly, the Lagrangian of (4.7) is given by

L(t,λ) = yTy + 2yTBt + tTBTBt + λTt, (4.8)
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where λ = [λ1, ..., λ2Nu ]T is the vector of the Lagrange multipliers. From (4.8), the
Lagrange dual problem can be written as

max
λ�0

inf
t�0
L(t,λ), (4.9)

Denoting the primal and dual optimal by t∗ and λ∗, respectively, the Karush-Kuhn-
Tucker (KKT) optimality conditions are given as

∇t L(t∗,λ∗) = 0, (stationarity) (4.10a)
t∗ � 0, (primal feasibility) (4.10b)
λ∗ � 0, (dual feasibility) (4.10c)

λ∗Tt∗ = 0, (complementary slackness) (4.10d)

Note that since the primal problem (4.7) is convex, strong duality holds and the KKT
conditions (4.10a)-(4.10d) are necessary and sufficient [121]. As a consequence, a can-
didate solution satisfying all the KKT conditions is globally optimal. Let Q = QT ,
BTB = [q1, ...,q2Nu ]T and p , BTy = [p1, ..., p2Nu ]T. Using these new notations, the
stationarity condition (4.10a) can be written as 2Qt∗ + 2p + λ∗ = 0, and therefore,

λ∗ = −2(Qt∗ + p). (4.11)

It then follows from (4.10c) and (4.11) that

Qt∗ + p � 0. (4.12)

Furthermore, plugging λ∗ from (4.11) into (4.10d) yields

(Qt∗ + p)Tt∗ = 0, (4.13)

from which by denoting v , Qt∗ + p = [v1, ..., v2Nu ]T and t∗ = [t∗1, ..., t∗2Nu ]T, it follows
that

2Nu∑
l=1

vl t
∗
l = 0. (4.14)

Considering (4.10b) and (4.12), we have vl ≥ 0 for all l = 1, ..., 2Nu. As a consequence,
the optimality condition (4.14) is satisfied if and only if

vl t
∗
l = 0, ∀l ∈ {1, ..., 2Nu}. (4.15)

In other words, vl and t∗l cannot be both non-zero for any specific l ∈ {1, ..., 2Nu}.
Based on this observation, the following lemma relates the SLP solution to that of the
ZF precoder.

Lemma 7. The optimal solution to the SLP power minimization (4.2) is equal to the
solution of ZF if and only if p � 0.
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Proof. See Appendix B.1

Lemma 7 provides a necessary and sufficient condition under which the DPCIR-based
SLP design has the same solution as that of the ZF scheme. This condition depends
on the instantaneous realization of the users’ symbols as p � 0 is equivalently met by
BTy � 0. It can be further inferred from (4.15) and Lemma 7 that as the number of
non-zero (i.e., positive) elements of v decreases, the SLP solution may diverge from that
of the ZF. In the extreme case where vl = 0 for all l = 1, ..., 2Nu, there exists at least
one t∗l 6= 0, which can be verified as follows. The linear system v = Qt∗ + p = 0 has a
unique solution equal to t∗ = −Q−1p = AΣΓs. Since A is full rank, it has an empty
null space, thus AΣΓs 6= 0. This means that t∗ 6= 0 and it has at least one non-zero
element. In such cases, the SLP design would be able to provide higher precoding gains
compared to the ZF scheme. This case, however, is feasible only if the unique solution
to the system of linear equations Qt∗ + p = 0 is non-negative, i.e., −Q−1p � 0, or
equivalently AΣΓs � 0.

4.4 Low-Complexity SLP Design

The main goal of this section is to derive low-complexity solutions for the NNLS design
formulation of the SLP problem in (4.5). We first start off by reviewing some basic
mathematical analysis on the NNLS problem. Let t∗ = [t∗1, ..., t∗2Nu ]T denote the mini-
mizer of (4.7). We refer to the set of indices l for which t∗l > 0 as the support of t∗, or
the optimal support, i.e.,

Λ∗ = {l | l = 1, 2, ..., 2Nu, t
∗
l > 0}. (4.16)

Given the optimal support Λ∗, the minimizer of (4.7) can be simply computed by
(BΛ∗)†y with appropriate zero-padding, where BΛ∗ denotes the matrix composed of
those columns of B associated with the indices in Λ∗. In other words, finding Λ∗ is as
complex as solving (4.7) for the optimal solution. Therefore, one may attempt to solve
(4.7) equivalently by perfectly identifying Λ∗. This is in fact the underlying idea behind
the active set methods, where at each iteration some constraints are set to be active (i.e.,
zero-valued in our context), while the other constraints are used in the update equation.
However, here we are interested in having an approximation of Λ∗, say Λ̂, obtained in a
non-iterative manner. This enables us to derive an approximate solution t̂ in an explicit
form. Thereby, using (4.6), we can obtain an approximate precoded vector ū. In the
next two subsections, we aim to obtain such approximate solutions.

4.4.1 Closed-Form Approximate Solution

Using the KKT optimality conditions, a computationally-efficient solution for the SLP
design (4.2) can be derived with a simple idea behind. Based on the optimal support
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Λ∗, from (4.15), we have

vl = qT
l t∗ + pl = 0, ∀ l ∈ Λ∗. (4.17)

which gives a reduced system of linear equations to obtain t∗. To approximate Λ∗, using
(4.13) along with the fact that Q is positive definite, we obtain

pTt∗ =
2Nu∑
l=1

vl t
∗
l ≤ 0, (4.18)

where equality holds only when t∗ = 0. An approximation of Λ∗ can be derived based
on the sign of the elements in p, i.e., Λ̂ = {l|vl < 0} with |Λ̂| = L. Here, it is assumed
that t∗l = 0 (i.e., the lth constraint is active at the optimum) for those l with vl ≥ 0.
This results in the desired reduced system of linear equations, given by

QΛ̂t∗Λ̂ + p = 0, (4.19)

where QΛ̂ ∈ R2Nt×L and t∗ ∈ RL×1 are obtained by excluding those columns and
elements, respectively, in Q and t∗, that are not indexed in the approximate set Λ̂.
This new system has 2Nt linear equations but L variables, where L ≤ 2Nu. Hence, the
reduced linear system possibly has a smaller size than the original problem. By noticing
that the non-singularity of Q is preserved by excluding some of its columns, the unique
solution to (4.19) is readily given by the following closed-form expression:

t∗Λ̂ = max
{
−Q†

Λ̂
p,0

}
, (4.20)

where max{·} denotes elementwise maximum, and is applied in order to guarantee the
primal feasibility condition (4.10b). The entire vector t∗ can be obtained by inserting
the zero-valued elements t∗l for l /∈ Λ̂ into t∗Λ̂ as an approximate solution to (4.5). In
what follows, we refer to this closed-form SLP solution as CF-SLP.

4.4.2 Improved Closed-Form Approximate Solution

Based on our experiments, the loss of the approximate solution obtained in Section 4.4.1
with respect to the optimal SLP design is unfavorably high for large values of Nt and Nu.
Thus, we aim to further improve this solution by performing some intermediate steps.
Our proposed method is essentially based on the following lemma from [138] which gives
the sufficient conditions for nearly perfect recovery of the optimal support Λ∗. Note that
here we state a modified version of this lemma according to our notations.

Lemma 8. Let Λ be a subset of column indices of the matrix B with |Λ| ≤ 2Nu, and
the columns associated with the indices in Λ are linearly independent. Let t∗ � 0 be the
minimizer of ‖y−Bt‖2. Then, Λ coincides with the support of t∗ if

C1 : BΛ
†y � 0, and C2 : yTP⊥Λbl < 0, ∀l ∈ Λc,
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where P⊥Λ is the projector onto the orthogonal complement of the column space of BΛ,
denoted by R(BΛ), bl denotes the lth column of BΛ, and Λc = {1, ..., 2Nu} − Λ.

Based on Lemma 8, both the conditions C1 and C2 together are sufficient for a
candidate support Λ to be optimal. In fact, C1 measures if the resultant solution satisfies
the positivity constraint (notice that the constraint cannot be satisfied with equality due
to the definition of support), while the projection in C2 can be viewed as the deviation of
y from the column space of BΛ. In other words, C1 is required to validate the columns
already indexed in Λ, whereas C2 assesses the possibility of including any of the columns
belonging to Λc. Armed with these two conditions, we are ready to approximately solve
the NNLS problem in (4.7), as will be explained in the sequel.

First, we exploit the condition C2 to produce an initial approximation of Λ∗. Let

dl , yTP⊥Λbl, l = 1, ..., 2Nu,

where
P⊥Λ = I−BΛ

(
BΛ

TBΛ
)−1

BΛ
T.

Treating the entire columns of B as candidate columns to be indexed in Λ, we assume
Λc = {1, 2, ..., 2Nu}. This yields P⊥Λ = I, and hence,

dl = yTbl, l = 1, ..., 2Nu. (4.21)

Note that the conditions in (4.21) are similarly implied from the KKT optimality con-
ditions, as discussed in Section 4.4.1. Using the inner products (4.21), we define Λ̂ ,
{l : dl > 0} with |Λ̂| = L1, which serves as our initial approximation of Λ∗. We validate
this approximation by excluding those columns in Λ̂ that result in negative elements for
t, i.e.,

ˆ̂Λ ,
{
l|l ∈ Λ̂,

[
(BΛ̂)†y

]
l
> 0

}
, (4.22)

where [ · ]l denotes the lth element of an input vector. It immediately follows from (4.22)
that | ˆ̂Λ| , L2 ≤ L1, which reduces the possibility of having negative elements in the final
solution as a result of the additional validation step in (4.22). Our simulations indicate
that in the majority of cases, ˆ̂Λ gives a more accurate approximation of the optimal
support Λ∗, compared to that given by Λ̂, as we will see in Section 4.6. Note, however,
that the non-negative constraints may still be violated even after the validation step
in (4.22) since the remaining set of columns in ˆ̂Λ does not necessarily guarantee that
(B ˆ̂̂Λ)†y � 0. Therefore, one still needs to ignore all the negative elements in the final
solution, if any. More precisely, due to the fact that R(B ˆ̂̂Λ) ⊆ R(BΛ̂), perfect recovery
of the optimal support is possible only if Λ∗ ⊆ Λ̂. In such a case, we obtain (B ˆ̂Λ)†y � 0
and ˆ̂Λ is the optimal support. Consequently, the approximate solution t̂ = [t̂1, ..., t̂2Nu ]T
can be obtained as a zero-padded version of the vector (B ˆ̂̂Λ)†y, i.e.,

t̂l = max
{[

(B ˆ̂̂Λ)†y
]
l
, 0
}
, l ∈ ˆ̂Λ, (4.23)
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Algorithm 2 APGD algorithm solving the NNLS problem (4.7)
1: input : B,y, nmax

2: output : ū
3: initialize : t(0) = ϑ(0) ∈ R2Nu×1

+ , Θ = I− BTB
‖BTB‖F

, z = BTy
‖BTB‖F

, n = 0
4: set : ψ = 1−

√
κ

1+
√
κ
, κ = σmax(B)

σmin(B) , where σmax(·) and σmin(·) denote the maximum and
minimum singular values of an input matrix, respectively.

5: while n < nmax do
6: n← n+ 1
7: t(n) ← max

{
Θϑ(n−1) + z,0

}
8: ϑ(n) ← t(n) + ψ

(
t(n) − t(n−1)

)
9: end while

10: ū← y−Bt

and t̂l = 0 otherwise. Having the approximate solution t̂, the corresponding precoded
vector can simply be computed by replacing t̂ in (4.6). In what follows, this improved
closed-form SLP solution is referred to as ICF-SLP.

4.5 Computational Complexity Analysis

In this section, we evaluate the computational complexities of the proposed CF-SLP and
ICF-SLP designs and compare them with a benchmark iterative NNLS algorithm. As
our benchmark for comparison, we consider the accelerated projected gradient descent
(APGD) algorithm [135]. The pseudocode of the APGD algorithm solving the NNLS
problem (4.5) within a limited number of iterations is given in Algorithm 2. We express
the worst-case complexities of the SLP algorithms in terms of the number of floating
point operations (FLOPs). For an iterative algorithm, the number of FLOPs translates
to the required number of arithmetic operations until the terminating condition is met.

The main loop of the APGD algorithm is preceded by an initialization step per-
forming two matrix multiplications and one singular value decomposition (SVD) with
complexity orders of N2

uNt, NuNt and N3
u , respectively. Within the main loop, the per-

iteration complexity is dominated by a matrix multiplication of order N2
u . To be more

accurate, the complexity of the APGD algorithm depends also on the convergence spec-
ifications, e.g., the condition number of B; however, we consider only those complexity
terms directly relating to the problem size. On the other hand, for the ICF-SLP design,
the dominant computation costs in (4.21), (4.22) and (4.23) come from 2Nu vector mul-
tiplications and two matrix pseudo-inversions, resulting in computational complexities
of order NuNt and Nt(L2

1 +L2
2), respectively. Note that the CF-SLP design can also be

implemented in an equivalent way using (4.21) and (4.23), and therefore, we assess the
complexity of this method based on the ICF-SLP design.
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4.6 Simulation Results

Table 4.1: Actual complexity in FLOPs for different SLP designs.

Design Actual Complexity (FLOPs)
APGD 24NtN

2
u + 16N3

u + 12NtNu − 2N2
u − 3Nu + (8N2

u + 6Nu)(1/
√
ε)

CF-SLP 16NtNu + 10(Nt +Nu) + (8Nt + 1)L2
1 + 22L3

1 + 2NtL1

ICF-SLP 16NtNu + 10(Nt +Nu) + (8Nt + 1)(L2
1 + L2

2) + 22(L3
1 + L3

2) + 2Nt(L1 + L2)

Table 4.2: Dominating complexity order for different SLP designs.

Design Dominating Complexity Order
APGD N2

u .O (Nu +Nt) +O
(
N2

u
)

(1/
√
ε)

CF-SLP Nt.O
(
Nu + L2

1
)

+O(L3
1)

ICF-SLP Nt.O
(
Nu + L2

1 + L2
2
)

+O(L3
1 + L3

2)

In Table 4.1 and 4.2, we summarize the actual complexities (in terms of the number
of FLOPs) and the dominating complexity orders of different SLP designs, where by
dominating complexity order, we mean the limiting order of complexity as Nt, Nu →
∞. The number of FLOPs in Table 4.1 are calculated based on the complexities of
basic matrix/vector operations provided in [139–141]. Note, further, that the reported
complexity for the APGD-based design corresponds to an ε-optimal solution. Due to
the sparsity-promoting nature of the NNLS problem [142], in practice, we usually have
L2 ≤ L1 � 2Nu. Based on this observation and the results of Table 4.1 and 4.2, we
can conclude that both CF-SLP and ICF-SLP techniques can reduce the computation
cost of the SLP design compared to the case where the design problem is solved for
optimality. Interestingly, even the complexity of the initialization step in the APGD
algorithm without performing any iterations is higher than those of the proposed CF-
SLP and ICF-SLP solutions.

4.6 Simulation Results

In this section, we provide some simulation results to evaluate and compare the perfor-
mances of various approaches (with different complexities) to the SINR-constrained SLP
power minimization design. We also compare the results with those of the ZF and the
optimal block-level power minimization precoding schemes [1]. Our simulation setup is
as follows. We consider an MU-MIMO downlink system, where all the users have equal
target SINRs, i.e., γi , γ for i = 1, 2, ..., Nu. We define Nt/Nu , β and assume a unit
noise variance σ2

i = 1 at the receiver of any user i ∈ {1, 2, ..., Nu}. The channel vectors
{hi}Nu

i=1 are independently generated following a standard circularly symmetric complex
Gaussian distribution as hi ∼ CN (0, I). The maximum number of iterations for the
APGD algorithm is set to be nmax = 25. The results are all averaged over 103 channel

103



Computationally-Efficient Symbol-Level Precoding–Part I: Derivation

A
cc

u
ra

cy
 (

%
)

Figure 4.1: Accuracy of the CF-SLP solution for different system dimensions.

realizations, each consisting of 103 symbols. Throughout this section, we refer to the
precoding schemes of interest as:

- ZF-SLP: symbol-level ZF, assuming t = 0 in (4.6)

- OPT-BLP: optimal block-level precoding [1]

- OPT-SLP: optimal solution to (4.2)

- NNLS-SLP: solving (4.5) via APGD algorithm

- CF-SLP: closed-form SLP design in Section 4.4.1

- ICF-SLP: Improved closed-form SLP design in Section 4.4.2

The accuracy of the CF-SLP solution is plotted in Fig. 4.1 for two modulation
schemes, namely, QPSK and 8-PSK, where the measure of accuracy is the number of
correctly approximated elements in Λ̂ as compared to the optimal solution. It can be
seen that for a 2×2 system, the CF-SLP design can achieve an accuracy of at least 95%.
This accuracy drops to 87−91% and 70−80%, respectively, for a 4×4 and 8×8 system.
However, notice that the CF-SLP design always guarantees that the DPCIR constraints
are met, and therefore, it does not degrade the symbol error rate performance. The
results also show that the CF-SLP technique performs more accurately for higher-order
PSK modulation schemes.
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(a) (b) (c)

Figure 4.2: Comparison of the total transmit power resulted from different precoding schemes
versus target SINR with (a) Nt = Nu = 4; (b) Nt = Nu = 8; (c) Nt = Nu = 16.

We plot the total transmission power as a function of the target SINR for three
system dimensions with Nt = Nu = 4, 8 and 16 in Fig. 4.2. In the depicted range of
SINR, three different modulation schemes, namely, QPSK, optimized 8-ary [124], and
16-QAM, are respectively employed in the intervals 0-5, 5-10 and 10-15 dB. As it can be
seen, in a 4× 4 system, the CF-SLP design consumes almost the same amount of power
as that of the OPT-SLP scheme. The loss due to the CF-SLP design’s sub-optimality is
not significant, with a maximum loss of 0.8 dBW for QPSK. This loss is larger for 8× 8
and 16×16 systems, as demonstrated in Fig. 4.2. This can be justified as the possibility
of having more incorrect approximations in Λ̂ with respect to Λ grows with enlarging the
problem size. Note, however, that the SLP scheme shows higher performance gains for
larger system dimensions, e.g., the CF-SLP design offers gains up to 5 dBW compared
to the ZF precoder for a 16× 16 system. At low target SINRs, the OPT-BLP technique
has the lowest transmit power among all the other precoding schemes, but in fact, this
reduction in the transmit power is obtained at the cost of a degraded symbol error rate.
On the other hand, for high target SINR values, the OPT-BLP scheme is equivalent to
the ZF precoding.

In Fig. 4.3, we plot the total transmission power versus the target SINR for the
precoding schemes of interest, where three different modulations, namely QPSK, 8-PSK
and 16-QAM, are used in the SINR intervals 0−6, 6−12 and 12−18 dB, respectively. The
results correspond to a fully-loaded system with Nt = Nu. It can be seen that the ICF-
SLP design improves the accuracy of the approximate solution by up to 3 dB, compared
to its simpler counterpart, i.e., CF-SLP. Furthermore, the ICF-SLP design outperforms
the NNLS-SLP method via the APGD algorithm with nmax = 25. Our observations
show that both the methods have nearly the same complexity in the considered range of
Nu. Another promising observation from Fig. 4.3 is that the ICF-SLP design performs
well close to the OPT-SLP scheme, but with far less computational complexity, as we
will see next.

In another set of simulations for an under-loaded system with β = 6/5, we evaluate

105



Computationally-Efficient Symbol-Level Precoding–Part I: Derivation

Figure 4.3: Transmit power versus target SINR with Nt = Nu = 8.

the performance and complexity of different approaches to the SLP optimization in
(4.2). The results are shown in Fig. 4.4 with two vertical axes as a function of the
number of users Nu, where the same line types and markers as those in the legend refer
to the right axis but with a different color. The optimal SLP solution is obtained by
solving the NNLS problem (4.5) via the “lsqnonneg” function of the MATLAB software,
which is based on the Lawson and Hanson active set method. As it can be seen, the
CF-SLP design’s performance noticeably degrades with increasing Nu, whereas the ICF-
SLP design shows a competitive performance in transmit power as compared to the
OPT-SLP, even for large system dimensions. Remarkably, the optimality gap of the
approximate ICF-SLP design with Nu = 100 is just 0.15 dBW. This improvement looks
more promising when we also take the design complexities into account; see Table 4.1
and 4.2. It can be verified that the time complexity results in Fig. 4.4 are in accordance
with the analytical discussion in Section 4.5. Comparing the ICF-SLP and the NNLS-
SLP methods, we see that the latter method’s complexity grows at a higher rate, which
is shown to be proportional to O(NtN

2
u) in the limiting case. This may suggest a

performance-complexity tradeoff; however, notice that with ηmax = 25, the dominating
complexity order of the APGD algorithm in the large system limit comes from the
initialization step, which is higher than the whole computation cost of the ICF-SLP
design.

In Table 4.3, we compare the precoding complexity in terms of the average execution
time per symbol period (the time values are computed via the relevant functions of
MATLAB). As for the ZF and OPT-BLP schemes, the precoding matrix is multiplied
by the users’ symbol vector at every symbol period. The precoding matrix computation,
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Figure 4.4: Transmit power and time complexity versus number of users with β = 6/5.

which is typically updated once per channel coherence block, also accounts for the per-
symbol execution times (assuming 100 symbols within each coherence block). The CF-
SLP method consists of computing Q and p and then solving (4.20). On the other hand,
solving the convex problem (4.2) accounts for the OPT-SLP scheme’s execution time.
The numerical results show that the CF-SLP and ICF-SLP methods can reduce the
SLP design complexity by orders of 103. The ICF-SLP design has a slightly increased
computation time compared to the CF-SLP method, while it significantly improves the
performance. Moreover, as expected, the CF-SLP and ICF-SLP execution times are
larger (by orders of 10) compared to the ZF precoding but are comparable to those
of the OPT-BLP scheme. These results indicate a performance-complexity tradeoff,
particularly for large system dimensions.

4.7 Conclusions

Due to the high per-symbol computation cost, solving the SLP design problem for the
exact solution may lead to an impractical transmitter complexity. To address this chal-
lenge, in this chapter, we proposed two computationally-efficient methods to approxi-
mately solve the SLP power minimization problem with CI and SINR constraints. This
is done by first simplifying the original formulation and reformulating it as an NNLS
design, and then discussing the simplified problem’s optimality via the KKT conditions.
The analyses helped us to derive a closed-form approximate SLP design, namely, CF-
SLP. The CF-SLP design performs quite close to the optimal SLP scheme in systems
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Table 4.3: Execution time of different precoding schemes.

Modulation Dimension Execution time (ms/symbol)
ZF OPT-BLP OPT-SLP CF-SLP ICF-SLP

QPSK (Nt, Nu) = (4, 4) 0.0064 0.0249 573.8417 0.0671 0.0699
(Nt, Nu) = (8, 8) 0.0076 0.0779 537.4583 0.1222 0.1321
(Nt, Nu) = (16, 16) 0.0113 0.3098 595.9375 0.2388 0.2482

Optimized 8-ary (Nt, Nu) = (4, 4) 0.0060 0.0215 588.1708 0.0633 0.0777
(Nt, Nu) = (8, 8) 0.0080 0.0771 532.4833 0.1217 0.1360
(Nt, Nu) = (16, 16) 0.0114 0.3627 584.1917 0.2223 0.2472

16-QAM (Nt, Nu) = (4, 4) 0.0058 0.0194 554.3417 0.0582 0.0856
(Nt, Nu) = (8, 8) 0.0080 0.0641 533.9958 0.1139 0.1370
(Nt, Nu) = (16, 16) 0.0097 0.2586 518.7500 0.1760 0.2784

with a relatively small number of users. We further improved this approximate solution
by applying an extra validation step to the design process and named the improved
design ICF-SLP. Our numerical and simulation results indicated that this improved so-
lution substantially reduces the loss with respect to the optimal solution, particularly in
the large system regime. Furthermore, the ICF-SLP design showed competitive perfor-
mance compared to the SLP solution obtained from the iterative APGD algorithm, but
with reduced time complexity. In comparison with conventional block-level precoding
schemes, our results show that both the CF-SLP and ICF-SLP methods outperform the
ZF precoder in all scenarios and the optimal power minimizer block-level precoder at
high target SINRs. According to the results, we conclude that the CF-SLP and ICF-SLP
designs can successfully relieve the prohibitive computation cost of the SLP design. Fur-
ther, they are promising alternatives (with a comparable complexity) for the block-level
precoding schemes, especially in the high SINR regime.
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Chapter 5
Computationally-Efficient Symbol-Level
Precoding–Part II: Implementation

In this chapter, we develop and validate a low-complexity FPGA design for the SLP
scheme in the downlink of MU-MIMO communication systems. The considered SLP
design, in its original form, aims to minimize the total transmit power while satisfying
the CI constraint as well as a given target SINR for each user. Such a design crite-
rion leads us to an NNLS problem. Considering the fact that a symbol-level precoder
redesigns the transmit signal specifically for any given set of users’ intended symbols,
solving this NNLS problem imposes a relatively high computational complexity on the
system in every symbol period. To alleviate this high computation cost, we aim to
reduce the per-symbol complexity of the SLP scheme by developing an approximate
yet computationally-efficient closed-form solution. The proposed solution allows us to
achieve a high symbol throughput in real-time implementations. The work of this chap-
ter builds on the CF-SLP method presented in Chapter 4, and thus, the resulting design
is constellation-independent which makes it appropriate for seamless handling of adap-
tive coding and modulation (ACM) schemes. To develop the FPGA design, we express
the proposed solution in an algorithmic way and translate it to hardware description
language (HDL). We then optimize the processing to accelerate the performance and
generate the corresponding intellectual property (IP) core. We provide the synthesis re-
port for the generated IP core, including performance and resource utilization estimates
and interface descriptions. To validate our design, we simulate an uncoded transmis-
sion scheme over a downlink multiuser channel using the LabVIEW software, where the
SLP IP core is implemented as a clock-driven logic (CDL) unit. Our simulation results
show that a throughput of 100 Mega symbols per second per user can be achieved for a
fully-loaded 4 × 4 system with QPSK modulation via the HDL design of the proposed
approximate SLP solution. We further use the MATLAB software to produce numerical
results for the conventional ZF precoding and the optimal SLP technique as benchmarks
for comparison. Thereby, it is shown that the proposed low-complexity FPGA imple-
mentation offers an improvement of up to 50 percent in power efficiency compared to the
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ZF precoding. Remarkably, it enjoys the same per-symbol complexity order as that of
the ZF technique. We also evaluate the loss of the real-time SLP design, introduced by
the algebraic approximations and arithmetic inaccuracies, with respect to the optimal
scheme.
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5.1 Introduction

Following our analytical discussions and derivations on low-complexity SLP design in
Chapter 4, we are further interested in evaluating the possibility of using the proposed
techniques in real-time applications. In the relevant literature, some studies have ad-
dressed efficient hardware demonstrations of the existing low-complexity SLP techniques,
e.g., [113, 114]. Furthermore, in [50], the authors propose a computationally-efficient
approximate solution to the power minimization SLP problem with strict phase con-
straints on the received signals and demonstrate an FPGA-accelerated design of this
solution in [115], indicating that it is capable of providing a high symbol throughput in
a real-time operation mode.

In this chapter, we specifically focus on the closed-form approximate solution pro-
posed in Chapter 4, namely, CF-SLP, which is obtained for the power minimization SLP
problem. Accordingly, the main contributions of this chapter are as follows:

• We further simplify this solution using some intermediate approximation steps and
derive a new solution which has lower computational complexity. The approxima-
tions are mainly introduced to reduce the computation cost of the SLP design. This
simplification further facilitates the design of a low-complexity algorithm operating
in a real-time mode.

• We show through analytical evaluation of the computational complexity that the
proposed approximate SLP solution has the same per-symbol complexity order as
that of the conventional ZF precoding.

• To validate our design, we target FPGA implementation of the proposed SLP al-
gorithm. First, we express the algorithm in C++ language and then convert it
to hardware description language (HDL). The HDL implementation enables us to
generate the intellectual property (IP) core targeted for a specific FPGA device.
We analyze and compare two different cases: the original non-optimized HDL de-
sign and the case where the processing is optimized through function pipelining,
loop unrolling and array partitioning. This indicates how optimizing the HDL
design can accelerate the performance. We also provide the synthesis results for
the generated IP core. In particular, the timing and latency estimates, the FPGA
resource utilization ratios, and the register-transfer level (RTL) I/O ports specifi-
cations are reported.

• The synthesis and implementation results show that the proposed FPGA design
is able to provide a high throughput of 100 Mega symbols per second per user for
a 4× 4 system with QPSK signaling. Furthermore, numerical results are obtained
by simulating a multiuser downlink system in the LabVIEW and MATLAB envi-
ronments and applying different precoding techniques. Our results show that the
proposed low-complexity HDL implementation of the SLP algorithm substantially
outperforms the ZF technique in terms of power efficiency.
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The remainder of this chapter is organized as follows. In Section 5.2, we revisit the
proposed closed-form solution for the power minimization SLP problem with distance-
preserving CI constraints and develop another simplified SLP design algorithm. In Sec-
tion 5.4, we explain the HDL design and optimization steps for the proposed algorithm
and report some performance estimates for the real-time FPGA implementation. In
Section 5.5, we evaluate our HDL design by presenting the results of simulation tests.
Finally, we conclude the chapter in Section 5.6.

5.2 Overview of the CF-SLP design

In Chapter 4, we have shown that the DPCIR-based SLP power minimization design
can be expressed in a standard NNLS form as

min
t�0

‖Bt− y‖2. (5.1)

where B , H†A−1W and y , −H†ΣΓs, and the same definitions as in Section 3.5 are
used. Having the solution to (5.1), the optimal precoded vector is immediately given by
u∗ = Bt∗ − y. To solve the NNLS problem (5.1), in Section 4.4.1, we introduced the
CF-SLP technique providing an approximate yet computationally-efficient solution. Let
us describe the CF-SLP design in a more algorithmic way. This technique is composed
of two steps as follows:

i. Obtain an estimate of the support as

Λ̂ =
{
l | l = 1, 2, ..., 2Nu, yTbl ≥ 0

}
, (5.2)

where bl denotes the lth column of B.

ii. Let L , |Λ̂| denote the length of the estimate support set. Build a 2Nu×L matrix
BΛ̂ consisting of those columns in B that are indexed in Λ̂ and let the columns
of BΛ̂ be indexed as bl where l ∈ Λ̂. Then, calculate an approximate solution by
solving a reduced system of linear equations as

t̂l =
{[

B†
Λ̂
y
]
l

}
+
, (5.3)

and t̂l = 0 otherwise, where [·]l denotes the element that corresponds to the lth
variable in t, and operation {·}+ stands for max{·, 0}.

This approximate closed-form solution involves a matrix pseudo-inverse operation
as in (5.3), which is computationally costly in practice. In the sequel, we propose an
approximate alternative operation to eliminate the need for computation of this matrix
pseudo-inverse.
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Figure 5.1: Experimental probability mass function of L.

5.3 Low-Complexity Implementation of CF-SLP

Our experiments show that, on average, only a few number of inner products yTbl out
of a total number of 2Nu are non-negative, and therefore, we usually have L � 2Nu.
Consequently, the matrix BΛ̂ has more rows than columns. In Fig. 5.1, we support this
observation by plotting the empirical probability mass function of L which is obtained
by averaging the realizations of L from 106 trials (103 symbol periods over 103 channel
realizations) in a scenario with Nt =Nu =16. It can be seen from Fig. 5.1 that Pr{L ≤
3Nu/4} ≈ 0.99, i.e., the length of the estimated support is, with high probability, smaller
than 3/4 of the total number of elements. Based on this observation, we assume that
the columns {bl | l ∈ Λ̂} are mutually orthogonal. Such an assumption leads us to the
following approximation:(

BΛ̂BT
Λ̂

)−1
≈ diag

({ 1
‖bl‖2

| l ∈ Λ̂
})

. (5.4)

As a result, the pseudo-inverse of matrix BΛ̂ can be approximated as

B†
Λ̂

= BT
Λ̂

(
BΛ̂BT

Λ̂

)−1
≈ BT

Λ̂ diag
({ 1
‖bl‖2

| l ∈ Λ̂
})

. (5.5)
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Therefore, by plugging (5.5) into B†
Λ̂
y, we obtain

t̂l =

yTbl/‖bl‖2 l ∈ Λ̂,
0 l /∈ Λ̂.

(5.6)

Given the approximate solution t̂ = [t̂1, t̂1, ..., t̂2Nu ]T, the vector of precoded transmit
signal can be calculated as mentioned earlier. The pseudo-code of this low-complexity
approximate solution is summarized in Algorithm 3. It is important to note that the
non-negative constraints t � 0 are all satisfied by the SLP design in Algorithm 3. This
implies that the approximation (5.5) does not lead to violation of the SNR constraints
and the users’ SNR requirements are guaranteed under the proposed approximate SLP
solution.

Recall from Section 3.5 that the matrices A−1 and W have the following structures:

A−1 =


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

... . . . ...
0 0 · · · A−1

Nu

 , W =


w1 0 · · · 0
0 w2 · · · 0
...

... . . . ...
0 0 · · · wNu

⊗ I2.

To facilitate the design process, in Algorithm 3, we incorporate the diagonal elements
of the matrix W into A−1. To do so, for any i ∈ {1, 2, ..., Nu}, the matrix A−1

i is
constructed using the following criteria:

- If si is an outer constellation symbol, we obtain ai,1 and ai,2 (as defined in Section
3.3) to build Ai, and compute the matrix A−1

i .

- If si is an inner constellation symbol, we set A−1
i = 0.

We further note that in Algorithm 3, a simple lookup method is used to avoid calculation
of matrix A−1 at each symbol period. More precisely, given the modulation scheme, we
extract all the possible realizations for a sub-matrix Ai, calculate their inverses and store
them in a lookup table, where the total number of possible realizations is equal to the
modulation order. At the time of implementation, each sub-matrix A−1

i can be read
from the lookup table with respect to the given symbol si, and the entire matrix A can
be constructed accordingly. Moreover, for ease of implementation, the matrices Σ and
Γ are incorporated into the symbol vector s, as we will see in Section 5.4.

The proposed solution in Algorithm 3 consists of a number of loops with known
and constant number of iterations, each of which includes some basic arithmetic oper-
ations, e.g., addition and multiplication. We report in Table 5.1 the actual arithmetic
complexity of Algorithm 3, including the separate complexity of each computation step
as well as the overall complexity, in terms of the number of floating-point operations
(FLOPs). It follows from Table 5.1 that Algorithm 3 has a dominating complexity order
of O(NtNu), in the limiting case where Nt, Nu → ∞, and therefore, it enjoys the exact
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Algorithm 3 Approximate low-complexity SLP solution
1: input : H†,Σ,Γ, s
2: output : u
3: A−1 ← lookup(s) . Build matrix A−1

4: B← H†A−1 . Build matrix B
5: y← −H†ΣΓs . Build vector y
6: for l = 1 to 2Nu do . Collect column-wise norms
7: cl ← bT

l bl
8: end for
9: for l = 1 to 2Nu do

10: dl ← yTbl
11: if dl ≥ 0 then . Estimate support
12: tl ← yTbl/cl . Compute vector t
13: else
14: tl ← 0
15: end if
16: end for
17: u∗ ← Bt− y . Compute vector u

same per-symbol complexity order as that of the ZF precoding technique. Based on this
comparison, we state that the proposed SLP solution has low computational complexity,
and hence, is suitable for real-time implementation.

Table 5.1: Actual arithmetic complexity of Algorithm 3.

Computation Number of iterations FLOPs

H†A−1 1 12NtNu

H†ΣΓs 1 8NtNu + 4Nu − 2Nt

bT
nbn 2Nu 8NtNu − 2Nu

yTbn/cn 2Nu 8NtNu

Bt− y 1 8NtNu

Overall 44NtNu + 2Nu − 2Nt

5.4 FPGA Design

To enable implementation of the proposed low-complexity SLP solution, we design the
IP core using the Xilinx Vivado HLS tool. The Vivado HLS tool transforms a C specifi-
cation, such as C, C++, or SystemC, into a register-transfer level (RTL) implementation
that can be synthesized into Xilinx programmable devices. In this work, we have used
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version 2017.3 of the Xilinx Vivado HLS software and designed the IP core for Xilinx
Kintex-7 xc7k410tffv900-2 FPGA part.

Table 5.2: Interface specifications of the IP core.

RTL port Direction Bit width Protocol Description

ap clk in 1 ap ctrl hs Primary design clock

ap rst n in 1 ap ctrl hs Interface reset (active-low)

ap start in 1 ap ctrl hs Block execution control (active-high)

ap done out 1 ap ctrl hs Complete-transaction indicator (active-high)

ap idle out 1 ap ctrl hs Operating/idle indicator (active-high)

ap ready out 1 ap ctrl hs Ready-for-new-inputs indicator (active-high)

pinvH V in 4BNtNu ap none Real-valued pseudo-inverse of the channel matrix

s V TDATA in 2BNu axis Real-valued vector of the users’ symbols

s V TVALID in 1 axis Data input valid

s V TREADY out 1 axis Data input ready

u V TDATA out 2BNt axis Real-valued vector of precoded transmit signal

u V TVALID out 1 axis Data output valid

u V TREADY in 1 axis Data output ready

To generate the IP core, we have translated the algorithmic description of Algorithm
3 into C++ language. To achieve an accelerated performance and higher throughputs,
we have optimized the code through many techniques, such as pipelining the functions,
unrolling the loops, and partitioning the arrays. Pipelining and unrolling both improve
the hardware function’s performance by exploiting the parallelism between function and
loop iterations. In particular, pipelining allows the operations in a function/loop to be
implemented in a concurrent manner and unrolling creates multiple copies of the loop
body and adjusts the loop iteration counter accordingly. These techniques have been
applied to the design by adding the so-called “directives” into the C++ code. In the
following, we refer to the design used in this work by applying the above techniques as
the optimized HDL design. On the other hand, the original design without applying any
of the above optimization techniques is referred to as the non-optimized design. Later in
this section, we present the resource utilization and performance estimates for both non-
optimized and optimized HDL implementations to emphasize how the design benefits
from such code optimizations. We have further utilized the Vivado HLS matrix algebra
library for efficient calculation of matrix multiplications. The C++ code has then been
synthesized using the Vivado HLS tool, and the RTL implementation has been extracted
as an IP catalog. The schematic block design of the IP core generated for a system with
(Nt, Nu) = (4, 4) is depicted in Fig. 5.2. The design takes matrix H† and vector s as
data inputs to execute Algorithm 3. These two inputs are shown as ports pinvH V and
s V TDATA in Fig. 5.2. Note that we do not consider dedicated inputs for matrices Σ
and Γ, and instead, we absorb the corresponding noise variances and target SINRs into
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Figure 5.2: IP block design of the low-complexity SLP technique.

the input vector s. The only output of the HDL design is the precoded vector u which
is placed on port u V TDATA of the IP core.

Table 5.3: Structure of the RTL data ports.

Data port Format

s V TDATA Re(s1) | Im(s1) | Re(s2) | Im(s2) | · · · | Re(sNu) | Im(sNu)
u V TDATA Re(u1) | Re(u2) | · · · | Re(uNt) | Im(u1) | Im(u2) | · · · | Im(uNt)

5.4.1 RTL I/O Ports Description

The designed IP core has a number of dedicated data I/O ports. In addition, a block-level
I/O control handshake protocol has been added to control the RTL design independently
of the data ports. We summarize the specifications and behavior of all the HDL I/O
ports in Table 5.2. Note that the bit width of a data port is determined by the bit width
of the fixed-point format, which is denoted by B. In this work, we adopt a 6.10 signed
fixed-point format for the RTL design such that it represents the integer and fraction
parts, respectively, by 5 and 10 bits, and the sign is specified by one bit. Therefore, the
real and imaginary parts are allocated 16 signed bits each, resulting in a total number
of 32 bits for a single complex value.

To have an efficient data transfer towards and from the IP core, we adopt an AXIS
handshake protocol for the I/O data ports. The precomputed pseudo-inverse of the real-
valued channel matrix feeds the input data port pinvH V, and therefore, this port does
not need a handshake signaling. The data on this port must be ready before signaling
to the port s V TREADY. The real and imaginary parts of each element of matrix H†
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u_V_TDATAs_V_TDATA

pinvH_V_TDATA

Figure 5.3: Data flow of the IP core sampled in the LabVIEW environment.

are reshaped row by row into an array of length 4BNtNu bits. The first element of the
first row starts at the the most significant bit, while the last element of the last row ends
at bit 0. We further illustrate in Table 5.3 the formats of the data ports s V TDATA
and u V TDATA. The s V TDATA port contains the elements of the symbol vector s
in the order shown in Table 5.3, which are mapped to an array of length 2BNu bits.
The real part of the first element starts at the most significant bit and the imaginary
part of the last element ends at bit 0. The u V TDATA port, on the other hand, has
a different format from that of the s V TDATA port. The imaginary parts of all the
elements of the precoded vector u are concatenated and appended to the real parts of
all the elements. The first element’s real part starts with the most significant bit and
the the last element’s imaginary part ends at bit 0.

5.4.2 Resource Utilization and Timing Estimates

To design the IP core for the Kintex-7 xc7k410tffv900-2 FPGA device, we have set
a target clock period (CP) of 10 nanosecond (ns), or equally, a 100 MHz clock rate.
The estimate performance numbers, including timing and latency, produced by the C
synthesis and implementation via the Vivado HLS tool are presented in Table 5.4 and
Table 5.5 for both non-optimized and optimized designs, indicating that the required
timing is perfectly met in both cases. In particular, the estimated timing performance
after post-implementation of the IP core is shown to be 8.83 ns, which is well smaller
than the target CP of the HDL design.

We further report, in Table 5.4 and Table 5.5, the latency and the initiation interval
(II) estimates for the non-optimized and optimized HDL functions, where latency refers
to the number of clock cycles required for the design to complete the current transaction
and compute all the output values (i.e., the number of clock cycles between the input and
the corresponding output), and the II is the number of clock cycles before the design can
accept new input data. Comparing these two tables, we see that the non-optimized HDL
design has a latency of 1493 clock cycles, whereas the optimized design can achieve a far
smaller latency of 9 cycles. This significant improvement in throughput is brought by
optimizing the code through, e.g., exploiting the parallelism between function and loop
iterations. More precisely, the IP core has been optimized to complete a transaction in
9 cycles, which means that, upon receiving data on the s V TDATA port, the precoded
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vector is valid on the u V TDATA output port after 9 clock cycles. In the meantime,
the IP core can accept a new input data per cycle and performs the next transactions in
parallel to compute the corresponding output values. Hence, the design can produce an
output every clock cycle, allowing the IP core to operate at a rate of 100 Mega symbols
per second per user, as we will see in Section 5.5.

In Table 5.6 and Table 5.7, we present the estimated resource utilization on the
Kintex-7 xc7k410tffv900-2 FPGA device, where the IP core is generated for two systems
with (Nt, Nu) = (2, 2) and (Nt, Nu) = (4, 4). When comparing the non-optimized and
optimized HDL designs, it can be seen that the latter design occupies more resources
on the FPGA device. This originates from the well-known trade-off between area and
performance in digital logic circuit design. More specifically, parallelization of functions
and loops leads to higher throughputs, but it requires more resources to perform many
concurrent operations. Nonetheless, the resource utilization estimates in Table 5.7 shows
that the optimized design’s total resource occupation is well below the available resource
on this particular FPGA part for 2× 2 and 4× 4 systems. For larger system sizes, i.e.,
larger numbers of transmit antennas and users, one should either make a compromise
between area and performance or use a more expensive FPGA with more available
resources.

Table 5.4: Performance estimates of the non-optimized HDL design.

Timing/Clock period (ns)

Target 10.00
C synthesis 8.63

Post-synthesis 5.18
Post-implementation 7.01

Latency (clock cycles)

Latency 1493
Interval 1494

On the other hand, according to the utilization estimates in Table 5.7, for the 2× 2
system, the design utilizes around 4% of the DSP blocks, 1% of the FFs, and 1% of the
total LUTs that are available at this specific FPGA part, while for the 4 × 4 system,
around 17% of the DSP blocks, 2% of the FFs, and 22% of the total LUTs are utilized
by the design. This implies that, in general, the resource utilization ratios may not be
linearly related to the system size. Roughly speaking, based on the estimates, it might be
possible to support a larger system than the current design with this particular FPGA
part or even use a cheaper FPGA with less available resources. For example, in the
former case, the design might be able to treat several independent carriers or handle
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Table 5.5: Performance estimates of the optimized HDL design.

Timing/Clock period (ns)

Target 10.00
C synthesis 8.72

Post-synthesis 5.52
Post-implementation 8.83

Latency (clock cycles)

Latency 9
Interval 1

larger systems on the same FPGA. Note, further, that the design’s resource utilization
does not depend on the constellation size (i.e., the modulation order). More precisely,
having a larger constellation does not affect the design complexity but increases the size
of the lookup table to form the matrix A, as described in Section 5.2. Therefore, the
same resource occupation estimates are valid also for larger signal constellations.

Table 5.6: Resource utilization of the non-optimized HDL design on the Xilinx Kintex-7
xc7k410tffv900-2 FPGA.

2× 2 system 4× 4 system

Resource DSP48E FF LUT DSP48E FF LUT

DSP 2 0 0 2 0 0
Expression 0 0 6038 0 0 11747
Instance 3 414 1522 3 6081 2248
Memory 0 26 4 0 410 37

Multiplexer 0 0 363 0 0 954
Register 0 1935 0 0 3670 0

Total 5 2375 7927 5 10161 14986
Available 1540 508400 254200 1540 508400 254200

Utilization (%) 0.3 0.5 3 0.3 1 5
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Table 5.7: Resource utilization of the optimized HDL design on the Xilinx Kintex-7
xc7k410tffv900-2 FPGA.

2× 2 system 4× 4 system

Resource DSP48E FF LUT DSP48E FF LUT

DSP 68 0 0 72 0 0
Expression 0 0 1904 0 0 888
Instance 0 0 0 192 4224 54456
Memory 0 0 0 0 0 0

Multiplexer 0 0 62 0 0 62
Register 0 3590 768 0 8338 2560

Total 68 3590 2734 264 12562 57966
Available 1540 508400 254200 1540 508400 254200

Utilization (%) 4 0.7 1 17 2 22

5.4.3 Design Validation

In this subsection, we assess the performance accuracy of the designed IP core. For this
purpose, we validate our design using the LabVIEW software. The generated IP core is
transformed to a design block and then imported to the LabVIEW environment. The
validation steps, which are performed for a (Nt, Nu) = (4, 4) system, are described in
the sequel.

The input port pinvH V is fed with the pseudo-inverse of the channel matrix given
as

H† =


0.2880 + j0.1221 0.1559 + j0.5371 −0.8774− j0.3437 0.1097 + j0.3331
0.3085 + j0.6187 −0.7176 + j0.0683 0.8212− j1.4356 −0.6341 + j0.4036
0.1790− j0.8406 0.6989 + j0.8182 −2.2538 + j0.3444 0.4639 + j0.6017
0.0961− j0.3560 0.3669 + j0.3207 −1.0475 + j0.8989 0.6282 + j0.0833

 ,
(5.7)

and the symbol vector s, taken from a normalized QPSK constellation set, is placed in
order on the s V TDATA input port. We assume a unit noise variance and an equal
target SINR of 0 dB for all the users. In the LabVIEW environment, we implement and
run the imported IP core as a clock-driven logic (CDL) unit. The resulting flow of the
data I/O ports is depicted in Fig. 5.3. According to the figure, it takes one iteration
(clock cycle) for the IP core to read the data on input ports pinvH V and s V TDATA.
On the other hand, the IP core completes the current transaction after 9 cycles, and
therefore, it generates the output data on the u V TDATA port every 10 cycles.

121



Computationally-Efficient Symbol-Level Precoding–Part II: Implementation

Figure 5.4: Intended symbols and noise-free received signals obtained by simulating the HDL
design of Algorithm 3.

We particularly focus on the first transaction where the following symbol vector is
placed on the data input port:

s V TDATA =


−0.70703125− j0.70703125

0.70703125− j0.70703125
0.70703125 + j0.70703125
0.70703125 + j0.70703125

 . (5.8)

The corresponding precoded vector generated on the output port u V TDATA of the IP
core is

u V TDATA =


0.1601562500 + j0.6035156250
−1.0039062500− j1.6718750000
−1.3212890625 + j3.1640625000

0.5185546875 + j1.0224609375

 . (5.9)

This precoded vector is then passed through the multiuser channel H, and eventually,
the noise-free signals received by the users are plotted in Fig. 5.4. It can be seen that
the received signal of each user is properly accommodated in the desired CI region.
This verifies the accuracy of the designed IP core for implementation of the proposed
low-complexity precoding solution.
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Figure 5.5: Block diagram of the simulated communication system.

5.5 Numerical and Simulation Results

In this section, we provide some simulation results to assess the performance of the
proposed low-complexity approximate SLP solution implemented as an IP core. We
further compare the results with those obtained from the optimal SLP solution, the
closed-form SLP solution in Section 5.3, and the ZF precoding technique. Note that the
optimal SLP solution refers to the solution of problem (5.1). The precoding techniques
of interest in this section are referred to as:

- ZF: zero-forcing precoding

- OPT-SLP: the optimal SLP solution of problem (5.1)

- CF-SLP: closed-form SLP solution in Section 5.3

- HDL-CF-SLP: HDL implementation of Algorithm 3

The ZF, OPT-SLP and CF-SLP techniques are simulated using the MATLAB soft-
ware, where a floating-point precision mode is considered by default. On the other hand,
the HDL-CF-SLP technique is simulated in the LabVIEW environment, where the im-
plementation uses fixed-point arithmetic as described in Subsection 5.4.1. As mentioned
earlier in Section 5.4, to enable implementation of the HDL design in the LabVIEW envi-
ronment, we have transformed the generated IP core into a design block using the Xilinx
Vivado Design Suite tool, and then imported it as a CDL function into our LabVIEW
simulation framework. The block diagram of the communication system, simulated in
both MATLAB and LabVIEW environments, is shown in Fig. 5.5.

Our simulation setup is as follows. We consider a fully-loaded downlink MU-MIMO
system with equal numbers of transmit antennas and users, i.e., Nt = Nu = 4. The
BS uses QPSK signaling and an uncoded transmission scheme to communicate with the
users. We assume a unit noise variance and equal target SINRs for all the users, i.e.,
σ2
i = 1 for all i = 1, 2, ..., Nu and γ1 = γ2 = · · · = γNu . The presented plots in the

following are obtained by averaging the results over 100 realizations of the Rayleigh
block-fading channel matrix H, where each realization consists of 100 symbols periods.

We show, in Fig. 5.6, the scatter plot of the users’ noise-free and noisy received signals
obtained from the HDL-CF-SLP technique for a target SINR of 0 dB. It can be seen
that the users’ noise-free received signals are properly located within the correct distance
preserving CI region. As a result, the HDL implementation of our proposed approximate
algorithm succeeded to satisfy the CI constraints of the SLP design problem. In the
sequel, we evaluate the performance of our FPFA design in terms of average transmit
power and symbol error rate (SER).
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Figure 5.6: Scatter plot of the users’ received signals at SINR = 0 dB.

In Fig. 5.7 (a), we plot the average SER of each user versus the target SINR for
different precoding techniques of interest. It can be seen that all the techniques achieve
almost the same SER performance, while the SLP techniques show slightly lower SER
values compared to those of the ZF scheme. The reason for this lower SER is that the
SLP techniques exploit the users’ symbols to design the precoded vector such that it
accommodates the noise-free received signal of each user in the distance-preserving CI
region that corresponds to the user’s intended symbol. Such a received signal has at least
an equal or perhaps even an increased distance from the ML decision boundaries, which
results in a higher accuracy for symbol detection at the user’s receiver. It can further
be seen from Fig. 5.7 (a) that the FPGA simulation of the HDL-CF-SLP technique
succeeds to achieve the same SER as that of the OPT-SLP. Therefore, the loss due to
the approximate solution and the HDL implementation inaccuracies is not noticeable in
terms of SER performance.

The average transmit power of each precoding technique corresponding to the SER
performances in Fig. 5.7 (a) is shown in Fig. 5.7 (b) versus target SINR. All the SLP tech-
niques, including the HDL-CF-SLP implementation, consume a lower power for precoded
downlink transmission, compared to the ZF scheme. In particular, the HDL-CF-SLP
implementation achieves 1.9 dBW gain in transmit power against the ZF technique. On
the other hand, the FPGA simulation for the HDL-CF-SLP technique shows losses of
0.5 dBW and 0.85 dBW compared to the numerical results obtained for, respectively,
the CF-SLP and the OPT-SLP techniques in the MATLAB environment. The loss
compared to the CF-SLP technique originates from two facts. First, the HDL-CF-SLP
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(a) (b)

Figure 5.7: Performance comparison of different precoding designs as a function of target
SINR for a system with QPSK modulation and Nt = Nu = 4: (a) Average per-user symbol error
rate; (b) Average total transmit power.

implementation, which is based on Algorithm 3, uses the approximation (5.5) to avoid
the pseudo-inverse calculation in the CF-SLP solution. Second, to design the HDL for
Algorithm 3, we have used a fixed-point precision due to FPGA resource limitations
which could be a source of inaccuracy in the values produced by the IP core, whereas
simulating the CF-SLP method via MATLAB uses floating-point arithmetic. However,
one should notice that the HDL-CF-SLP implementation is designed for real-time appli-
cations on an FPGA and can provide a high throughput in practice, while the CF-SLP
and the OPT-SLP techniques are not designed so. It should be further noted that the
loss of the CF-SLP method compared to the OPT-SLP solution comes from the fact that
the CF-SLP provides an approximate precoding solution in a two-step non-iterative way,
while the OPT-SLP solution is obtained via an iterative optimization algorithm with a
higher computational complexity.

Although all the precoding techniques of interest have shown comparable SER per-
formances, they do not offer the same performance when it comes to the transmitted
power. In order to incorporate these two performance measures into a single figure of
merit, we define power efficiency η as the ratio between the goodput and the transmit
power, i.e.,

η ,
log2(M)(1− BER)

‖u‖2 , (5.10)

where M is the modulation order, ‖u‖2 denotes the transmit power, and BER denotes
the bit error rate which is simply obtained via dividing the SER by log2(M).

We compare the power efficiencies of different precoding techniques in Fig. 5.8 as a
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Figure 5.8: Power efficiency as a function of target SINR with QPSK modulation and Nt =
Nu = 4.

function of target SINR. The HDL-CF-SLP implementation shows gains of up to 2 dB in
power efficiency compared to the ZF scheme. When compared to the MATLAB imple-
mentation of SLP techniques, the OPT-SLP and the CF-SLP solutions outperform the
HDL-CF-SLP implementation, but these techniques are not able to provide a high sym-
bol throughput. In particular, the HDL implementation of Algorithm 3 shows at most 1
dB loss in the depicted range of target SINR, compared to the OPT-SLP technique. As
mentioned earlier, this loss is due to the approximations used in deriving Algorithm 3
and also due to the adopted fixed-point precision. The latter drawback can be alleviated
by increasing the bit width of the fixed-point format, but it comes with an excessive
FPGA resource utilization. Furthermore, this performance loss is resulted in exchange
for simplifying the design of the precoder. The simplified design enables implementation
of the SLP algorithm on an actual FPGA. Our simulations in the LabVIEW environ-
ment indicate that the HDL design for Algorithm 3 allows data transmission with a high
symbol throughput of 100 Mega symbols per second per user. In the considered system
with Nu = 4 users and QPSK signaling, it translates to a sum-throughput of 800 Mbps
which makes the proposed FPGA design suitable for realistic wireless communication
applications.

5.6 Conclusions

We developed an optimized FPGA design to enable low-complexity yet efficient imple-
mentation of SLP in a high-throughput downlink MU-MIMO system. The design is
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essentially based on the CF-SLP solution derived in Chapter 4. In this work, we further
simplified this solution by assuming mutually orthogonal channel vectors and proposed
an approximate low-complexity design algorithm that can operate in a real-time mode.
We analyzed the computational complexity of the proposed design and showed that it
has the same complexity order as that of the ZF precoding. We then used the Xilinx
Vivado HLS tool to translate the design algorithm into an HDL code and also to opti-
mize the design in order to achieve a low latency, and therefore, a higher throughput.
The synthesis results, including performance, timing and resource utilization estimates
verified the efficiency of our HDL design. The generated IP core was evaluated in a sim-
ulation environment within the LabVIEW software. The simulations for a 4× 4 system
with QPSK signaling showed that the HDL design of our proposed algorithm is able to
operate at a symbol rate of 100 Mega symbols per second per user when deployed on
a specific Xilinx FPGA part, which makes it attractive for real-time implementations.
Using the MATLAB software, we further evaluated the loss of our design algorithm with
respect to the optimal SLP solution, where the loss is shown to be less than 1 dB accord-
ing to our numerical results. This loss is mainly due to the approximation introduced
when deriving the algorithm and also due to the adopted fixed-point arithmetic for the
FPGA design. Furthermore, the simulation results indicated that the proposed HDL
implementation of SLP outperforms the ZF scheme in terms of power efficiency, where
an improvement of up to 50 percent can be achieved.
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Chapter 6
Robust Symbol-Level Precoding under
System Uncertainties – Part I: Channel
Uncertainty

In this chapter, we address robust design of SLP for the downlink of MU-MIMO wireless
channels when imperfect CSI is available at the transmitter. In particular, we con-
sider two well-known models for the CSI imperfection, namely, bounded uncertainty
and stochastic Gaussian-distributed uncertainty. Our design objective is to minimize
the total (per-symbol) transmission power subject to CI constraints as well as the users’
quality-of-service requirements in terms of received SINR. Assuming bounded channel
uncertainties, we obtain a convex CI constraint based on the worst-case robust analysis,
whereas in the case of stochastic uncertainties, we define probabilistic CI constraints in
order to achieve robustness to statistically-known CSI errors. Since these probabilistic
constraints are difficult to handle, we resort to their convex approximations given in
the form of tractable deterministic robust constraints. Three convex approximations
are derived based on different conservatism levels, among which one is introduced as
a benchmark for comparison. We show that each of our proposed approximations is
tighter than the other under specific robustness settings, while both always outperform
the benchmark. Using the proposed CI constraints, we formulate a robust SLP design
problem as a second-order cone programming (SOCP). Extensive simulation results are
provided to validate our analytical results and to make comparisons with conventional
block-level robust precoding schemes. We show that the robust design of symbol-level
precoder leads to improved performance in terms of energy efficiency at the cost of in-
creasing the computational complexity by an order equal to the number of users in the
large system limit, compared to the non-robust design.
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6.1 Introduction

Multiuser precoding techniques typically exploit the transmit-side CSI in order to sup-
press/mitigate the inter-user interference, and therefore, the precoding performance re-
lies on the accuracy of the available CSI at the transmitter. In reality, assuming per-
fect CSI, either statistically or instantaneously, is somewhat impractical due to various
inevitable channel impairments such as imperfect channel estimation, limited (or quan-
tized) feedback, and latency-related errors [143–145]. If accurate CSI is not available,
the potential precoding gains may no longer be guaranteed as precoding techniques are
generally sensitive to channel uncertainties [144]. One may expect an even more ad-
verse effect of imperfect channel knowledge on the symbol-level precoder’s performance
since the promised efficiency crucially depends on the satisfaction of CI constraints to
successfully accommodate each noise-free received signal in the correct CI region. To ad-
dress this issue, the problem of designing a multiuser precoder that is robust to channel
uncertainties becomes of practical importance.

In robust precoding design, a typical consideration is to presume the channel uncer-
tainty exhibits some known geometric or statistical properties. The set of all possible
realizations of the channel satisfying a given property is called the uncertainty region,
which can be analytically modeled depending on the error source. In practical wireless
systems, the transmitter typically acquires the CSI estimated by the receiver through a
feedback channel or directly estimates the CSI via the uplink channel’s reciprocity. In
the former case, the CSI uncertainty usually originates from the induced latency, or the
limited capacity of the feedback channel [146]. In contrast, in the latter case, it may be
caused by the imperfections in the estimation process or by the outdated estimates due
to the short coherence time of fast-varying wireless environments [147].

The channel uncertainty region is commonly considered either ellipsoidal or stochas-
tic, or even a combination of both, e.g., see [148]. Under the ellipsoidal uncertainty
model, usually, no assumption is made on the CSI error distribution; rather, the error
is assumed to always lie within a bounded region. Therefore, it is sometimes referred to
as bounded uncertainty. This sort of modeling, which ultimately leads to a worst-case
design, is known to appropriately capture the bounded uncertainties resulted from quan-
tization errors [149]. Further, it is adequate to deal with slow fading channels where no
sufficient statistics for averaging are available. On the other hand, the stochastic un-
certainty model assumes that the statistical properties of the CSI error are known. In
systems performing channel estimation at either the transmitter or receiver side, such
modeling is particularly suitable since the error in the estimation process can often be
treated as a Gaussian random process [150].

With a particular focus on MU-MIMO downlink systems, a wide variety of robust
schemes can be found in the literature on conventional multiuser precoding, address-
ing both bounded and stochastic uncertainty models. In this line of work, most of the
existing research considers either a QoS-constrained power minimization problem or a
max-min fair design with power constraints. Under norm-bounded CSI uncertainty, the
QoS problem is typically constrained by the worst SINR among the users, resulting in
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a highly conservative design approach; see, e.g., [151–153] as some notable research in
this direction. These worst-case SINR requirements can also be translated to worst-
case minimum mean-square error (MMSE) constraints [154, 155]. Assuming stochastic
Gaussian-distributed CSI errors, the QoS requirements are usually implied by proba-
bilistic SINR constraints [156–159], or in terms of equivalent rate-outage probability
constraints [160–162]. Implying the QoS requirements in either form, the stochasti-
cally robust schemes mostly apply the robust chance-constrained optimization techniques
of [163] and [164] in order to tackle the design problem.

On the other hand, robust SLP design has been investigated in some recent work.
Worst-case robust SLP approaches are proposed in [20] and [58, 63] for unsecured and
secured wireless systems, respectively, aiming to design the symbol-level precoder under
norm-bounded CSI errors based on the power minimization and max-min fair crite-
ria. In [64], the authors develop an SLP design to enhance both physical-layer security
against eavesdropping and the quality of legitimate transmissions in MU-MIMO wiretap
systems, where the design is studied under different assumptions on the availability of
CSI at the legitimate and eavesdropping channels, including a bounded CSI uncertainty
model. However, it is important to note that as far as the SLP power minimization
problem is concerned, the bounded uncertainty model may not yield an efficient solu-
tion. This modeling ultimately leads to a worst-case conservatism, which inherently
increases the transmission power, though enhancing the users’ received SINR and sym-
bol error probability. To address stochastic channel uncertainties in the SLP design,
in [116], a sphere bounding scheme is proposed for robust SLP power minimization with
probabilistic CI constraints, where the probabilistic constraints are transformed into a
tractable second-order cone (SOC) form and are tightened to achieve a lower SER but
at the cost of a higher transmitted power. In another work published in [117], the
robust SLP design problem is addressed by considering quantized transmit-side CSI.
The problem is solved by decomposing the inter-user interference into predictable and
unpredictable (due to the quantization error) parts, where an upper bound is derived
for the latter part. Targeting CI at the receiver side, the design aligns the predictable
interference to achieve much higher received power over the derived upper bound, and
ultimately, lower SERs for the users. It is also worth mentioning that a precoding opti-
mization problem with outage probability constraints based on a symbol-level approach
is presented in [45], therein the goal is to achieve robustness to the receiver noise, but
not to channel uncertainties.

In this work, we address the problem of robust SLP design with imperfect CSI
knowledge under both bounded and stochastic uncertainty models. In the optimization
problems, we aim to minimize the total transmission power under joint CI and SINR
constraints, where the CI constraints are assumed to be distance-preserving. To obtain
a robust formulation for the originally non-robust CI constraints, we essentially need
to characterize the uncertain component in the CI inequality caused by the CSI imper-
fection. Our primary challenge is, however, to obtain a tractable deterministic convex
approximation for the resulting robust formulation, ensuring that the desired constraint
is met (with a certain probability, in the case of stochastic model) for any realization of
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the CSI error within the uncertainty set. In such a conservative approach, the relative
tightness of the derived approximations, which (roughly speaking) measures the cost
of tractability, will be of particular importance. Having robust convex constraints, the
subsequent modification of the precoding design problem is straightforward due to the
fact that the only uncertain part of the problem is the set of CI constraints. Accordingly,
the main contributions of this chapter are listed below:

1. We propose some modifications to the CI constraints according to both bounded
and stochastic uncertainty models. In the case with bounded CSI uncertainty, we
derive a robust second-order cone (SOC) constraint based on a worst-case robust
analysis. Under stochastic CSI errors, we redefine the CI constraints as chance-
constrained inequalities, for which we derive two robust deterministic alternatives
based on the notion of safe convex approximation. Both approximations are for-
mulated as SOC constraints, and therefore, can efficiently be handled. We further
obtain a third robust CI restriction as our benchmark for comparison, based on
the well-known idea of sphere bounding.

2. We compare the relative tightness of the robust approximations analytically and
validate our discussion through simulation results. The results indicate that the
proposed robust designs provide tighter approximations than the sphere bounding
method.

3. Using the proposed safe approximations for CI constraints, we case robust formu-
lations in the form of convex second-order cone programming (SOCP) for design
of the QoS-constrained symbol-level power minimization precoding. We then an-
alyze and compare the computational complexities of the robust and non-robust
precoding schemes, thereby indicating that the proposed robust approaches have
higher computational cost by a limiting order of the number of users, compared to
the original non-robust problem.

The rest of this chapter is organized as follows. We describe the system and uncer-
tainty models in Section 6.2. In Section 6.3, we briefly explain the original SLP problem
with non-robust CI constraints. We then define worst-case and stochastic robust formu-
lations for the CI constraints and derive computationally tractable formulations in the
form of approximate convex restrictions. We also provide analytical discussions on the
approximation tightness in this section. In Section 6.4, we cast the robust SLP opti-
mization problem and analyze the required computational complexity. Our simulation
results are provided in Section 6.5. Finally, we conclude the chapter in Section 6.6.

6.2 System and Uncertainty Model

We consider an MU-MIMO wireless downlink channel where a BS, equipped with an ar-
ray of Nt antennas, serves Nu single-antenna users by sending independent data streams
in the same time-frequency resource block, where Nu ≤ Nt. We principally consider
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the same transmission scheme as described in Chapter 3 under which the discrete-time
baseband representation of the received signal at the receiver of the ith user is given by

ri = hiu + zi, i = 1, 2, ..., Nu, (6.1)

where the row vectors hi ∈ C1×Nt , for i = 1, ..., Nu, denote the instantaneous frequency-
flat fading channel of the ith transmit-receive antenna pair, s = [s1, . . . , sNu ]T collects
the intended symbols for all Nu users, u = [u1, . . . , uNt ]T is the precoded transmit vector,
and zi denotes the zero-mean unit variance additive circularly symmetric complex Gaus-
sian noise. In this chapter, we confine ourselves to constellation sets with unbounded
(Voronoi) decision regions, including single-level modulation schemes, e.g., PSK. We fur-
ther assume, without loss of generality, that identical modulation schemes are used for
all the users.

While it is often assumed that all the users have perfect knowledge of their own
channels (via, e.g., pilots or training sequences), the BS normally has inaccurate CSI
due to several practical impairments such as imperfect channel estimation, limited (or
delayed) feedback and quantization errors. Adopting a perturbation-based uncertainty
model, we can model the actual channel of the ith user as

hi = ĥi + ei, i = 1, 2, ..., Nu, (6.2)

where ĥi ∈ C1×Nt and ei ∈ C1×Nt denote the erroneous channel and the CSI error,
respectively, while only ĥi is assumed to be known to the BS. The actual channel hi,
the estimate channel ĥi, and the CSI error ei are assumed to be mutually uncorrelated
for all i = 1, 2, ..., Nu. To characterize the channel error vectors {ei}Nu

i=1, we consider two
different models as follows.

6.2.1 Bounded Uncertainty Region

The Bounded uncertainty model assumes the actual channel hi to always lie inside a
sphere (in general, ellipsoid) centered at the erroneous channel ĥi, with some known
(deterministic) radius εi. In a formal way, it is assumed that hi belongs to a spherical
uncertainty set defined as

Hi ,
{
hi | ‖hi − ĥi‖ ≤ εi

}
, i = 1, 2, ..., Nu, (6.3)

from which the ith actual channel is equally described by

hi = ĥi + ei, ‖ei‖ ≤ εi. (6.4)

It immediately follows that the uncertain component of the CSI in the spherical model
(6.4) has a bounded Euclidean norm. This model is particularly suitable for wireless
systems with finite-rate feedback in which the CSI is acquired and quantized at the
receiver and fed back to the BS [149, 165]. Note that, in this model, no assumption is
made on the distribution of ei.
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6.2.2 Stochastic Uncertainty Region

In wireless systems with imperfect channel estimation, it is commonly assumed that
the BS has only knowledge of an estimate channel ĥi, while the vector ei captures the
Gaussian estimation error. In this case, the ith actual channel is modeled as

hi = ĥi + ei, ei ∼ CN (0, ξ2
i I), (6.5)

where ξ2
i denotes the error variance, which is known to the transmitter, and generally

depends on the quality of the estimate channel as well as the imperfections in the es-
timation process. The stochastic error model corresponds to the time-division duplex
(TDD) systems, where the BS exploits the estimated uplink channel for the downlink
precoding [157]. It is worth noting that the uncertainty model (6.5) may also appear
in a different scenario with statistical CSI where the channel statistics are assumed to
be partially known at the transmitter, e.g., the channel’s mean and/or covariance is/are
available; see, e.g., [156,166,167]. In such a scenario, one may model the statistical CSI
as hi ∼ CN (ĥi, ξ2

i I), which ultimately leads to the exact same results as presented in
the sequel.

From now on, it is more convenient to use the following equivalent real-valued nota-
tions:

ū =
[
Re(u)
Im(u)

]
, si =

[
Re(si)
Im(si)

]
, i = 1, 2, ..., Nu.

Besides, by defining the operator

Ω(y) ,
[
Re(y) −Im(y)
Im(y) Re(y)

]
,

for any given complex vector y, we denote

Hi = Ω(hi), Ĥi = Ω(ĥi), Ei = Ω(ei), i = 1, 2, ..., Nu.

From the real-valued notations, it is immediately apparent that

Hi = Ĥi + Ei, i = 1, 2, ..., Nu, (6.6)

and
Hiū =

[
Re(hiu)
Im(hiu)

]
. (6.7)

Note further that Ei(j, :) ∼ N (0, 1
2ξ

2
i I) for i = 1, ..., Nu and j = 1, 2, where Ei(j, :)

refers to the jth row of Ei. In the rest of this chapter, we unify the norm notations
such that ‖ · ‖ denotes either the Frobenius norm of a matrix or the Euclidean norm of
a vector, depending on the input argument. In addition, for a user i ∈ {1, 2, ..., Nu}, by
“received signal” we mean the noise-free received signal, i.e., Hiū.
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6.3 Robust CI Formulation with Imperfect CSI

To design the symbol-level precoder, we are particularly interested in an SINR-constrained
power minimization problem. We showed in Section 3.5 that the design problem of inter-
est can be expressed as a convex LCQP. Using the design formulation P1, by assuming
imperfect CSI knowledge, we can rewrite the corresponding optimization problem as

P1 : min
ū

ūTū

s.t. AiĤiū � σi
√
γi Aisi, i = 1, 2, ..., Nu,

(6.8)

where the entry-wise inequality AiĤiū � σi
√
γi Aisi implies the CI constraint for the ith

user. The SLP design in (6.8) aims to minimize the total (per-symbol) transmit power
while satisfying CI constraints and given target SINRs γi for all Nu users. However,
with imperfect CSI, the design constraints are no longer guaranteed by the solution to
P1. To be more specific, in case Ĥi 6= Hi, the region described by AiĤiū � σi

√
γi Aisi

is a distorted version of the accurate CI region. Consequently, a received signal Hiū
is no longer guaranteed to lie within the desired CI region, which may cause severe
performance degradation. Further to this error-induced distortion of the CI regions, the
users may not be provided with the minimum required SINRs given by the target values
{γi}Nu

i=1. Therefore, having a robust formulation for the symbol-level precoding design
problem is crucial to ensure the CI constraints as well as the minimum SINR requirements
of the users for any possible CSI realization. To this end, we first reformulate the CI
constraints under each uncertainty model.

We start off by restating the actual CI constraint to be met for user i, i.e.,

AiHiū � σi
√
γiAisi, i = 1, 2, ..., Nu,

By substituting (6.6) for Hi, we have

AiĤiū � σi
√
γiAisi −AiEiū, i = 1, 2, ..., Nu. (6.9)

In the sequel, we separately consider each uncertainty model and derive robust formu-
lations for the CI constraints. For the brevity of notation, we hereafter denote by

wi(ū) , σi
√
γiAisi −AiĤiū, (6.10)

the certain part of the CI inequality (6.9) which is affine in ū, where wi(ū) = [wi,1, wi,2]T.

6.3.1 Worst-Case Robust Formulation

The bounded uncertainty region Hi can be interpreted as having all the possible er-
ror vectors inside a 2Nt-dimensional sphere with radius

√
2 εi. Therefore, the robust

formulation of (6.9) for the ith user can be written as

AiEiū � wi(ū), ∀Ei : ‖Ei‖ ≤
√

2 εi, (6.11)

135



Robust Symbol-Level Precoding under System Uncertainties – Part I: Channel Uncertainty

which implies that (6.9) must be satisfied for all Ei belonging to the CSI uncertainty set.
Even though the feasibility region of (6.11) is convex, this semi-infinite constraint con-
sists of an infinite number of linear inequalities to be satisfied which is computationally
intractable. In order to achieve robustness over a bounded uncertainty set as in (6.11),
a common approach is to consider the design constraint in its worst case. Accordingly,
letting Ai = [ai,1,ai,2]T, the worst-case formulation of (6.11) can be written as[

inf{aT
i,1Eiū : ‖Ei‖ ≤

√
2 εi}

inf{aT
i,2Eiū : ‖Ei‖ ≤

√
2 εi}

]
≥ wi(ū). (6.12)

In our model, the worst-case uncertainty is realized through the maximal CSI error norm,
i.e., the radius of the CSI error sphere. From the definition of the spherical uncertainty
set in (6.3), it can be easily shown that the entries of AiEiū are bounded too. We also
note that

AiEiū = (ūT ⊗Ai) vec(Ei), (6.13)

which can be simply verified using the well-known property vec(XYW) = (WT ⊗
X) vec(Y), for any given matrices X,Y,W with appropriate dimensions, and also the
fact that AiEiū = vec(AiEiū). It then follows that

AiEiū =
[
(ūT ⊗ aT

i,1) vec(Ei)
(ūT ⊗ aT

i,2) vec(Ei)

]
. (6.14)

Now, let us focus on the rows of the right-hand side vector in (6.14). By the Cauchy-
Schwarz inequality, we have

(ūT ⊗ aT
i,j)vec(Ei) ≥ −‖ūT ⊗ aT

i,j‖ ‖vec(Ei)‖, j = 1, 2. (6.15)

Using the uncertainty radius ‖vec(Ei)‖ = ‖Ei‖ ≤
√

2 εi, an immediate consequence of
(6.15) is that (ūT⊗aT

i,j)vec(Ei) is bounded from below by −
√

2 εi ‖ūT⊗aT
i,j‖ for j = 1, 2.

However, by exploiting the structure of vec(Ei), it is possible to further obtain a tighter
bound which is given by

inf
{

(ūT ⊗ aT
i,j) vec(Ei) : ‖Ei‖ ≤

√
2 εi
}

= −εi ‖ūT ⊗ aT
i,j‖

= −εi ‖ū‖ ‖ai,j‖, j = 1, 2,
(6.16)

where the last equality of (6.16) is derived considering the fact that ‖x⊗ y‖ = ‖x‖ ‖y‖,
for any two vectors x and y. Finally, substituting (6.16) for the infimum in (6.12), the
worst-case CI constraint for the ith user is obtained by

−εi ‖ū‖
[
‖ai,1‖
‖ai,2‖

]
� wi(ū), (6.17)
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The CI constraint (6.17) can be equivalently expressed by two second-order cone (SOC)
constraints, given in a compact form by

W : ‖ū‖111 � −1
εi

(AiAT
i ◦ I)−1/2wi(ū). (6.18)

In fact, the worst-case constraint W guarantees that the CI requirement for the ith
user will be met in the presence of any unknown, but norm-bounded CSI error. The
robust formulation (6.18) is convex and thus can efficiently be handled via off-the-shelf
convex optimization algorithms [121]. It is worth mentioning that a similar worst-case
robust approach has also been studied in [20] for symbol-level downlink precoding in
which the CI regions coincide with the DPCIRs in the special case of PSK signaling, but
characterization of the CI constraints are not identical. Nevertheless, the final robust
formulations, despite being different in presentation, are based on the same idea and are
basically equivalent.

6.3.2 Stochastic Robust Formulation

A stochastic robust CI constraint must satisfy (6.9) with a certain probability for any pos-
sible realization of the CSI error Ei within the uncertainty region. Assuming statistically-
known CSI errors, the CI constraint in (6.9) turns into an uncertain inequality with the
uncertainty arising from the stochastic CSI error Ei. Although the feasible set of this
uncertain inequality is always convex, the main difficulty is to efficiently check whether
this convex constraint is satisfied at a given point, which is highly computationally de-
manding. In such a case, the deterministic constraint in (6.9) can be reformulated as a
probabilistic constraint (also known as chance constraint). The chance constraint then
implies that the ith user will see its received signal outside of the correct CI region only
with a constrained small probability, i.e.,

Pr
{
AiĤiū � σi

√
γiAisi −AiEiū

}
< υ, (6.19)

which can be equally expressed as

Pr
{
AiĤiū � σi

√
γiAisi −AiEiū

}
≥ 1− υ, (6.20)

where υ ∈ (0, 1/2] denotes the violation probability threshold which is a system de-
sign parameter controlling the desired level of conservatism. Remark that the SINR
requirement γi translates to an achievable target rate of Ri = log2(1+γi), under ergodic
conditions on the channel [168]. Thus, the constraint (6.20) can also be viewed as a
rate-outage probability constraint, ensuring that the transmission rate Ri is achievable
for the ith user with a probability of at least 1−υ. For the sake of notational simplicity,
we denote the stochastic uncertain component of the CI constraint by

qi , AiEiū = (ūT ⊗Ai) vec(Ei), (6.21)
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which can be simply verified using the well-known property vec(XYW) = (WT ⊗
X) vec(Y), for any given matrices X,Y,W with appropriate dimensions, along with
the fact that AiEiū = vec(AiEiū). Let Ai = [ai,1,ai,2]T, then using (6.21), we can
write

qi =
[
(ūT ⊗ aT

i,1) vec(Ei)
(ūT ⊗ aT

i,2) vec(Ei)

]
,

[
qi,1

qi,2

]
, (6.22)

from which it is straightforward to show that qi is a possibly correlated bivariate Gaus-
sian random variable. The chance constraint (6.20) can then be written, in a simpler
form, as

Pr {qi � wi(ū)} ≥ 1− υ, i = 1, 2, ..., Nu. (6.23)

The constraints in (6.23) belong to chance-constrained vector inequalities, which are
generally known to be computationally intractable [163], as we will also see later. In
what follows, the goal is to derive equivalent deterministic expressions for (6.23). For
this purpose, we first study the statistical properties of the uncertain vector qi.

We begin with the Gaussian error vector vec(Ei) for which the mean and the covari-
ance matrix are respectively given by E{vec(Ei)} = 0 and

E
{

vec(Ei)vec(Ei)T
}

= 1
2 ξ

2
i

[
I2Nt J
JT I2Nt

]
, (6.24)

where
J = IN ⊗ J2, J2 ,

[
0 1
−1 0

]
.

Accordingly, the mean of qi can be obtained as

E{qi} =
(
ūT ⊗Ai

)
E {vec(Ei)} = 0, (6.25)

and its covariance matrix is given by

Ci = E{qiqT
i }

(a)= (ūT ⊗Ai) E
{

vec(Ei)vec(Ei)T
}

(ū⊗AT
i )

(b)= 1
2 ξ

2
i

(
ūTū⊗AiAT

i

)
= 1

2 ξ
2
i ‖ū‖2 AiAT

i ,

(6.26)

where the equality (a) can be verified using the property (X ⊗Y)T = (XT ⊗YT), for
any given matrices X,Y,W,Z, and the equality (b) has been verified in Appendix C.1.
Remark 1. Using the fact that qi has a symmetric distribution around zero, it is
straightforward to verify that the chance constraint (6.23) is feasible for every υ ∈ (0, 1/2]
if and only if (iff) we have E{qi} � wi(ū). Therefore, under the assumption υ ∈ (0, 1/2],
a necessary and sufficient condition for (6.23) to have a nonempty feasible region is
wi(ū) � 0. This condition must be considered as an additional constraint for every
i ∈ {1, ..., Nu} in the formulation of the robust SLP optimization problem.
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Using the first two moments of qi, the probability in (6.23) can be precisely evaluated
as the integral of the joint Gaussian probability distribution of qi,1 and qi,2, i.e.,

Pr{qi � wi(ū)} = Pr {qi,1 ≥ wi,1, qi,2 ≥ wi,2}

=
∞∫

wi,2

∞∫
wi,1

1
2π
√
|Ci|

exp
{
−1

2qT
i C−1

i qi
}

dqi,1dqi,2.
(6.27)

However, no explicit closed-form expression is known for the integral in (6.27). It be-
comes even more challenging to imply the constraint (6.27) in the precoding optimization
problem. In order to resolve the difficulty of finding a tractable (convex) expression for
(6.27), a straightforward approach is to eliminate the (possible) correlation between the
entries of qi through applying a decorrelating transform. In this regard, the optimal
decorrelation matrix (in the sense of minimum mean-square error) is shown in [169] to
be

C−1/2
i =

√
2

ξi ‖ū‖
(AiAT

i )−1/2, (6.28)

where (·)−1/2 denotes inverse square root. We recall from Section 3.3 that the 2 × 2
matrix Ai can always be formed as a non-singular matrix, which results in non-singular
AiAT

i . Thus, Ci is positive definite and has a unique (invertible) square root. As a
result, the probability expression in (6.27) can be equivalently written as

Pr {qi ≥ wi(ū)} = Pr
{
C1/2
i C−1/2

i qi � wi(ū)
}

= Pr
{
q̄i � C−1/2

i wi(ū)
}

= Pr {q̄i � w̄i(ū)} ,

(6.29)

where q̄i , C−1/2
i qi and w̄i(ū) , C−1/2

i wi(ū). It can be verified that q̄i is an uncor-
related zero-mean Gaussian random vector with unit diagonal covariance matrix, given
as

C̄i , E
{
q̄iq̄T

i

}
= E

{
C−1/2
i qiqT

i C−1/2
i

}
= C−1/2

i E
{
qiqT

i

}
C−1/2
i

= C−1/2
i CiC−1/2

i = I.

(6.30)

Consequently, the chance constraint (6.23) is equivalent to

Pr {q̄i ≥ w̄i(ū)} ≥ 1− υ, (6.31)

with q̄i ∼ N (0, I). This probability may appear to be easily handled as it can be ex-
pressed by the product of two (complementary) error functions. In the context of convex
optimization, however, we essentially need to reach a convex representation for (6.31).
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This could be, in general, an intricate task since the joint probability in (6.31) does not
admit a tractable convex expression. An alternative approach to tackle this intractabil-
ity is to replace (6.31) with its safe tractable approximation, resulting in an efficiently
computable convex constraint. Such an approximation lies within the literature of robust
optimization techniques [163, 170]. Here, the term “safe” means that any feasible point
for the safe approximation must be necessarily feasible also for (6.31). Therefore, in what
follows, the goal is to propose computationally tractable (but possibly not equivalent)
convex approximations implying the CI chance constraint (6.31).
Remark 2. Similar to Remark 1, since q̄i is symmetrically distributed around zero,
the chance constraint (6.31) is feasible for υ ∈ (0, 1/2] iff E{q̄i} � w̄i(ū), or equally iff
w̄i(ū) � 0. However, for practical modulation schemes, using the definition of w̄i(ū),
one can verify that the condition wi(ū) � 0 is also sufficient to have w̄i(ū) � 0.

Proposed Safe Approximation I

One may simply exploit the fact that the two random variable in q̄i are uncorrelated,
hence independent. Consequently, denoting q̄i = [q̄i,1, q̄i,2]T and w̄i(ū) = [w̄i,1, w̄i,2]T,
using the Gaussian cumulative distribution function, we can separate the joint probabil-
ity in (6.31) as

Pr {q̄i ≥ w̄i(ū)} = Pr {q̄i,1 ≥ w̄i,1} Pr {q̄i,2 ≥ w̄i,2}

= 1
2erfc

(
w̄i,1√

2

)
× 1

2erfc
(
w̄i,2√

2

)
,

(6.32)

where erfc(·) is the complementary error function defined as erfc(y) , 2√
π

∫∞
y e−v

2dv.
Due to the decreasing monotonicity of the complementary error function, the desired
probability is always bounded from below by

Pr {q̄i ≥ w̄i(ū)} ≥ 1
4 erfc2

(max{w̄i,1, w̄i,2}√
2

)
. (6.33)

Using (6.33), in order to imply the chance constraint (6.31), it is sufficient to consider
the deterministic constraint

1
4 erfc2

(max{w̄i,1, w̄i,2}√
2

)
≥ 1− υ, (6.34)

which can be written as
−max [w̄i(ū)] ≤ ρ(υ), (6.35)

where ρ(υ) , −
√

2 erfc−1 (2√1− υ
)

with erfc−1(·) denoting the inverse complementary
error function, and max[·] denotes elementwise maximum. It can be verified that the
elementwise maximum of affine functions in (6.35) is convex; see [121, p. 80]. Therefore,
replacing w̄i(ū), the conservative robust approximation (6.35) can be rewritten in the
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form of a convex SOC constraint as

A1 : ‖ū‖ ≤ −
√

2
ρ(υ) ξi

max
[
(AiAT

i )−1/2wi(ū)
]
, (6.36)

Note that, in general, the feasible region of A1 is a convex subset of that of (6.31).
Therefore, the convex approximation A1 may not exactly imply the desired chance con-
straint (6.31), but any feasible solution to (6.36) is guaranteed to be feasible also for
(6.31).

Proposed Safe Approximation II

Our subsequent derivation of a second safe tractable approximation for (6.31) is essen-
tially based on the well-known Schur complement lemma and the following theorem [163,
Th. 4.1].

Lemma 9. (Schur complement) Let W be a symmetric matrix given by

W =
[

X Y
YT Z

]
. (6.37)

Then, W � 0 iff X � 0 and ∆X � 0, where ∆X = Z − YTX−1Y is the Schur
complement of X in W.

Theorem 10. Let D0,D1, ...,DL be diagonal n×n matrices with D0 � 0, and ζ1, ..., ζL
be mutually independent random variables where ζl ∼ N (0, 1) for all l ∈ {1, ..., L}. Then,
the semidefinite constraint

Arw (D0,D1, ...,DL) � 0,

implies, for every υ ∈ (0, 1/2], that

Pr
{
−ψ(υ)D0 �

L∑
l=1

ζlDl � ψ(υ)D0

}
≥ 1− υ,

with ψ(υ) = erfc−1
(

υ
2Nt

)
, where

Arw (D0,D1, ...,DL) ,



D0 D1 D2 · · · DL

D1 D0 0 · · · 0
D2 0 D0 · · · 0
...

...
... . . . ...

DL 0 0 · · · D0


.

We recall that our goal here is to find a tractable sufficient convex condition for the
CI inequality in (6.31) to be satisfied with probability at least 1− υ. The inequality of
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interest, i.e., q̄i ≥ w̄i(ū), can be equivalently expressed by a linear matrix inequality
(LMI) as

ψ(υ)D0,i + q̄i,1D1 + q̄i,2D2 � 0, (6.38)

D0,i ,
1

ψ(υ)

[
−w̄i,1 0

0 −w̄i,2

]
, D1 ,

[
1 0
0 0

]
, D2 ,

[
0 0
0 1

]
,

Since q̄i,1 and q̄i,2 are both symmetric in distribution and the violation probability υ is
typically small, a sufficient condition for

Pr {ψ(υ)D0,i + q̄i,1D1 + q̄i,2D2 � 0} ≥ 1− υ, (6.39)

is also sufficient for

Pr {−ψ(υ)D0,i � q̄i,1D1 + q̄i,2D2 � ψ(υ)D0,i} ≥ 1− υ. (6.40)

A direct application of Theorem 10 with n = 2 and L = 2 implies that the chance
constraint (6.40) is met if

Arw(D0,i,D1,D2) � 0, (6.41)

holds true with ψ(υ) = erfc−1(υ/4). Notice that a necessary condition for Theorem 10
to be valid is D0,i � 0. The matrix Arw(D0,i,D1,D2) is symmetric, and further, can
be partitioned as required in (6.37). As a result, using Lemma 9 with X = D0,i and
W = Arw(D0,i,D1,D2), it can be verified that the following implication holds:

Arw(D0,i,D1,D2) � 0 =⇒ D0,i � 0. (6.42)

Therefore, the safe convex constraint (6.41) sufficiently implies our desired chance con-
straint in (6.40). Finally, by replacing D0,i, D1 and D2 in (6.41), the safe convex
approximation is obtained as the semidefinite constraint

− w̄i,1
ψ(υ) 0 1 0 0 0
0 − w̄i,2

ψ(υ) 0 0 0 1
1 0 − w̄i,1

ψ(υ) 0 0 0
0 0 0 − w̄i,2

ψ(υ) 0 0
0 0 0 0 − w̄i,1

ψ(υ) 0
0 1 0 0 0 − w̄i,2

ψ(υ)


� 0. (6.43)

It is easy to check that the LMI in (6.43) is not convex in the given form with respect to
ū. Nevertheless, it has been shown in Appendix C.2 that, using the implication wi � 0
provided in Remark 1, it is possible to recast the semidefinite constraint (6.43) as an
equivalent SOC constraint given by

A2 : ‖ū‖1 ≤ −
√

2
ψ(υ) ξi

(AiAT
i )−1/2wi(ū), (6.44)
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which is indeed convex in ū, and can efficiently be handled by standard convex opti-
mization tools [121].

Sphere Bounding Method (Benchmark)

In order to gain some insight into the proposed safe convex approximation A2, and
further for comparison purposes, we also formulate a benchmark approximation based
on the so-called sphere bounding method. The idea (in some sense) is borrowed from
the worst-case robust design approach. More specifically, the goal is basically to find
a bounded uncertainty set to which the stochastically uncertain component in (6.31)
belongs with a certain probability; subsequently, the worst-case approach can be applied.
The following lemma from [162] helps us to proceed with the formulation.

Lemma 11. Let K ⊂ Rn be an arbitrary set with the property f(x) ≥ 0 for all x ∈
K, where f(·) is in general a vector-valued function. Then, for a given y ∈ Rn, the
restriction

Pr {f(y) � 0} ≥ 1− υ,

is implied sufficiently by satisfying Pr {y ∈ K} ≥ 1− υ.

In order to imply the chance constraint (6.31), one may use the implication provided
by Lemma 11 to obtain a (preferably) tight convex restriction, as long as the resulting
constraint is efficiently computable. This requires to properly choose the set K ⊆ R2 in
a way that the condition

f(q̄i) ≥ 0, f(q̄i) , q̄i − w̄i(ū), (6.45)

is met for all q̄i ∈ K, while satisfying Pr {q̄i ∈ K} ≥ 1− υ. We recall that q̄i ∼ N (0, I),
and that q̄i has a symmetric distribution. Thus, the condition (6.45) can be equally
expressed as

f(q̄i) ≤ 0, f(q̄i) , q̄i + w̄i(ū). (6.46)

A common convex choice for the set K to reach a computationally tractable formulation
is the ball represented by

K ,
{
x ∈ R2 : ‖x‖ ≤ α(υ)

}
, (6.47)

with a radius of
α(υ) =

√
Φ−1

2 (1− υ) ,

where Φ−1
n (·) is the inverse cumulative distribution function of the central Chi-square

random variable with n degrees of freedom. It is then straightforward to verify that

Pr {q̄i ∈ K} = 1− υ, (6.48)

from which it can be presumed that the Euclidean norm of q̄i is bounded by α(υ) with
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Table 6.1: Proposed worst-case/stochastic robust CI constraints.

Method Robust CI constraint (for i = 1, 2, ..., Nu)

Worst-case W : ‖ū‖1 � −1
εi

(AiAT
i ◦ I)−1/2wi(ū), wi(ū) = σi

√
γiAisi −AiĤiū

Safe Approx. I A1 : ‖ū‖ ≤ −
√

2
ρ(υ) ξi

max
[
(AiAT

i )−1/2wi(ū)
]
, ρ(υ) = −

√
2 erfc−1(2√1− υ

)
Safe Approx. II A2 : ‖ū‖1 � −

√
2

ψ(υ) ξi
(AiAT

i )−1/2wi(ū), ψ(υ) = erfc−1(υ/4)

Sphere Bounding B : ‖ū‖1 � −
√

2
α(υ) ξi

(AiAT
i )−1/2wi(ū), α(υ) =

√
Φ−1

2 (1− υ)

a probability of 1− υ. As a result, the restriction

α(υ)1 + w̄i(ū) � 0, (6.49)

implies that (6.46) holds true for all q̄i ∈ K. Finally, the worst-case robust approximation
(6.49) can be expressed by an SOC constraint as

B : ‖ū‖1 ≤ −
√

2
α(υ) ξi

(AiAT
i )−1/2wi(ū). (6.50)

In particular, the convex approximation B is able to control the radius α(υ) according
to the tolerable violation probability. It can be seen by comparing (6.44) and (6.50)
that A2 resembles the sphere bounding based approximation B in form. Based on this
observation, the safe approximation method for υ ∈ (0, 1/2] can be considered as defining
the convex set K as a ball with a radius different from α(υ), and therefore, with a different
level of conservatism. In the next subsection, we compare the tightness of the proposed
approximations with respect to the sphere bounding approach.

6.3.3 Relative Tightness Comparison

Up until this point, we have derived deterministic tractable convex approximations that,
though not exactly, sufficiently ensure the satisfaction of the robust CI constraint of
interest. This tractability led us to sacrifice tightness with respect to the originally
intractable chance constraint (6.31). It is therefore desirable to find the formulation
provides the tightest approximation among all the other ones.

Having rather similar conic representations for the three stochastic robust CI con-
straints, which are summarized in Table 6.1, enables us to compare the relative tightness
of the derived convex approximations. Here, we specifically define the relative tightness
from the transmit power point of view according to which a convex approximation is a
tighter one if it admits lower optimal transmit powers ‖ū‖2. We use the following two
lemmas in the sequel, where the proofs are straightforward.
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Lemma 12. Let ū∗ be feasible to

‖ū‖1 � −
√

2
β ξi

(AiAT
i )−1/2wi(ū), (6.51)

with β > 0, and satisfy w̄i(ū∗) ≤ 0 as a necessary condition. Then, it is implied that

‖ū∗‖ ≤ −
√

2
β ξi

max
[
(AiAT

i )−1/2wi(ū∗)
]

(6.52)

where max[ · ] denotes the elementwise maximum of an input vector.

Lemma 13. Consider the constraint

‖ū‖ ≤ −
√

2
β ξi

max
[
(AiAT

i )−1/2wi(ū)
]
. (6.53)

where β > 0. Let ū∗ be feasible to (6.53) with β = β1 > 0, then for any β1 ≥ β2 > 0, the
following chain of inequalities holds:

‖ū∗‖ ≤ −
√

2
β1 ξi

max
[
(AiAT

i )−1/2wi(ū∗)
]

≤ −
√

2
β2 ξi

max
[
(AiAT

i )−1/2wi(ū∗)
]
,

(6.54)

which implies that ū∗ is feasible to (6.53) with β = β2.

It follows immediately from Lemma 12 and Lemma 13 that a relative comparison of
the convex approximations A1, A2 and B boils down to comparing ρ(υ), ψ(υ) and α(υ).
These three functions, however, depend on the violation probability υ, as depicted in
Fig. 6.1 for υ ∈ (0, 1/2]. It can be observed from Fig. 6.1 that for small values of υ below
∼ 0.12, which is of high practical interest, we have ψ(υ) ≤ ρ(υ) ≤ α(υ). This means that
a feasible solution to B is also feasible for A1 and A2, i.e., the optimal transmit power
‖ū∗‖2 obtained from A1 and A2 is no larger than that obtained from B. Therefore, the
robust convex approximations A1 and A2 are tighter (hence, less conservative) than our
benchmark B. In a more precise order,

FB ⊆ FA1 ⊆ FA2, (6.55)

where F(·) denotes the feasible region. It also follows from (6.55) that A2 is tighter than
A1 in this range of υ, i.e., under strict robustness settings. On the other hand, for higher
values of υ up to 1/2, which can be regarded as relaxed robustness conditions (but of
course might be of less importance in a real system), we have ρ(υ) ≤ ψ(υ) ≤ α(υ). This
implies that A1 provides a tighter convex approximation than A2 in the high violation
probability regime, but still A2 is tighter than the benchmark approximation.
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Figure 6.1: Plot of ρ(υ), α(υ) and ψ(υ) as a function of the violation probability.

Table 6.2: Complexity comparison of the non-robust and the proposed robust SLP designs.

Design Complexity order
[
× ln( 1

ε
)
]

Dominating order [as Nt, Nu→∞]

P1 2
√

2Nu+2 .O
(
(2Nt+1)3+2Nu(Nt+1)(2Nt+1)

) √
Nu .O

(
N3

t
)

ln( 1
ε
)

RP1 2
√

6Nu+2 .O
(
(Nu+1)(2Nt+1)3+2Nu(2Nt+1)(Nt+1)

)
Nu
√
Nu .O

(
N3

t
)

ln( 1
ε
)

6.4 Robust SLP Optimization Problem

We formulate robust optimization problems for the power minimizing symbol-level pre-
coder using the proposed robust implications of the CI constraints obtained in the previ-
ous section. First, recall the original (non-robust) formulation of the SLP design problem
in (6.8). By introducing a slack variable p ≥ 0, it is possible to recast (6.8) as

P1 : min
ū,p≥0

p

s.t. AiHiū ≥ σi
√
γi Aisi, i = 1, 2, ..., Nu,

ūTū ≤ p,

(6.56)

which is a more convenient form for the subsequent computational complexity discussion
in this section. On the other hand, the robust counterpart of P1 can simply be expressed
by replacing the actual CI constraints with any of the robust constraints W, A1, A2,
or B for all the users, i.e., all Nu CI constraints must be implied through same type of
convex restrictions. For example, adopting safe approximations of type A2, we can write
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the corresponding stochastic robust design formulation as

RP1 : min
ū,p≥0

p

s.t. ‖ū‖1 ≤ −
√

2
ψ(υ) ξi

(AiAT
i )−1/2wi(ū), i = 1, 2, ..., Nu,

wi(ū) ≤ 0, i = 1, 2, ..., Nu,

ūTū ≤ p,

(6.57)

The robust constraints W, A1, A2 and B, as summarized in Table 6.1, can all be repre-
sented as SOC constraints. Therefore, the robust optimization problem RP1 belongs to
the class of second-order cone programming (SOCP). However, it is important to note
that while the non-robust formulation P1 is always feasible, its robust counterpart RP1
may not share this property. To be more specific, there would be situations (e.g., with
relatively small υ or large εi or ξ2

i ) in which the robust CI constraints cannot all be
satisfied with a finite transmit power p, leading to a practically infeasible robust SLP
design. In such cases, the intersection of all Nu robust CI constraints is an empty set.

6.4.1 Computational Complexity Analysis

We evaluate the computational complexity of the proposed robust design formulations
based on the worst-case complexity analysis provided in [171], and compare the results
with those of the original non-robust formulation. All the stochastic robust formulations
are presented as SOCPs, which can efficiently be solved via interior-point methods. In
general, the arithmetic complexity of a generic interior-point method entails the Newton
complexity as well as per-iteration computation cost. The Newton complexity basically
refers to the number of steps required to reduce the duality gap by a constant factor,
while the per-iteration complexity involves finding a new search direction at each step,
and is subsequently dominated by the computation cost to assemble and solve a linear
system of equations.

In what follows, we briefly overview the complexity bound for an SOCP given in a
generic form containing linear and (conic) quadratic constraints, to reach an ε-solution
(i.e., an ε-optimal feasible solution) via a generic interior-point method. Given the SOCP

minimize
x

cT
0 x

s.t. ‖Fkx + bk‖ ≤ fT
k x + gk, k = 1, 2, ...,m,

cT
j x ≤ dj , j = 1, 2, ..., l,

(6.58)

where Fk ∈ Rnk×n,bk ∈ Rnk , fk ∈ Rn, gk ∈ R for all k = 1, 2, ...,m, and cj ∈ Rn, dj ∈ R
for j = 1, ..., l, the complexity bound of an ε-solution is of order

C(ε) = n
√
l + 2m

(
n2 + l(n+ 1) +

m∑
k=1

n2
k

)
.O(1). ln

(1
ε

)
. (6.59)
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In the SOCP (6.58), n can be treated as the total number of optimization variables,
and nk determines the size of the kth cone constraint, which is related to the dimension
of the kth second-order cone, for all k = 1, 2, ...,m. Note that this generic form of SOCP
covers also the non-robust design formulation in (6.56). Based on the above analysis, we
are able to evaluate the complexity of the robust SOCP design formulation (6.57), and
compare it to that of its non-robust counterpart in (6.56). We also remark that

i. There are two real-valued second-order cone constraints associated with each user.

ii. The slack variables p in (6.57) can be merged into the vector ū, increasing the ith
cone’s dimension by one for all k = 1, 2, ...,m.

Accordingly, for all the design formulations with either of the robust constraints W, A1,
A2, or B, the number of variables is equal to 2Nt +1. The non-robust formulation (6.56)
has 2Nu + 1 linear inequalities plus one cone constraint of size 2Nt + 1, while the robust
design (6.57) involves 2Nu conic constraints of size 2Nt and one conic constraint of size
2Nt + 1 which corresponds to the power constraint. In Table 6.2, we report the final
computational complexity evaluations, where the dominating orders represent the largest
complexity growth rate as Nt, Nu →∞ under the assumption Nu ≤ Nt. It follows from
Table 6.2 that the proposed robust formulations increase the computational complexity
of SLP design by an order of O(Nu), compared to their non-robust counterpart in (6.56).
Nonetheless, the increase in complexity is negligible for practical values of Nu.

6.5 Simulation Results

In this section, we present our simulation results to evaluate the performance of the pro-
posed robust SLP techniques, and further, to validate the analytical discussions provided
in earlier sections. The optimization problems have been solved using MATLAB software
and SeDuMi solver [172]. The following setup is adopted in all the simulation scenarios.
We consider a downlink MU-MIMO system with Nt = 6 and Nu = 4, employing an
8-PSK modulation scheme with uncoded transmission. For all the users i = 1, 2, ..., Nu,
we assume a unit noise variance σ2

i = σ2 = 1 and equal SINR requirements γi = γ. The
erroneous channel vectors {ĥi}Nu

i=1 are randomly generated according to a zero-mean unit
variance circularly symmetric complex Gaussian distribution, where the channels of any
two distinct users are uncorrelated, i.e., E{ĥH

i ĥj} = 0 for all i, j = 1, 2, ..., Nu, i 6= j. We
consider identical uncertainty regions for all the channels, i.e., ξ2

i = ξ2 for i = 1, 2, ..., Nu.
All the presented simulation results have been averaged over 500 fading block realiza-
tions, each consisting of 500 symbols. We evaluate the performance of the symbol-level
precoded downlink transmission under bounded and stochastically-known CSI errors
through various measures. The SLP designs with robust CI constraints “worst-case”,
“safe approximation I”, “safe approximation II”, and “sphere bounding” are referred to
as WC-SLP, SA1-SLP, SA2-SLP and SB-SLP, respectively.

In Fig. 6.2, the transmit power performance of the proposed WC-SLP design is
depicted versus target SINR γ under the bounded uncertainty model with three different
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Figure 6.2: Average transmission power of the non-robust and the worst-case robust SLP
schemes versus SINR target for a system with Nt = 6.

radii 0.01, 0.05 and 0.1. As it might be expected, for larger uncertainty regions, higher
transmission powers are needed in order to guarantee the system/users’ requirements in
case of any possible realization of the bounded CSI error. Furthermore, the performance
results are depicted for two system dimensions with Nt = Nu = 6, and Nt = 6 and
Nu = 5. It follows from Fig. 6.2 that the system requires less additional power to provide
robustness to bounded CSI uncertainty for a fewer number of users. For instance, in the
case with ε = 0.01, decreasing the number of users by one results in a reduction of around
6 dBW in the average transmit power of the worst-case robust SLP. We highlight that,
for PSK modulations, the WC-SLP design shows the exact same performance as that
of the worst-case robust SLP scheme in [20]. However, as mentioned earlier, the SLP
scheme in [20] is formulated only for constant envelope modulation schemes, whereas our
proposed worst-case method does not have such a restriction and applies to a broader
group of modulations.

In Fig. 6.3, a scatter plot of the noise-free received signals is illustrated for the non-
robust and robust SLP schemes. The average transmission powers for the non-robust
SLP scheme with erroneous CSI and the robust SA2-SLP approach are, respectively,
13.22 dBW and 15.08 dBW. It can be seen from the figure that this ∼ 2 dBW extra
power is consumed to satisfy the CI constraints with the given violation probability,
thereby providing more safety to the subsequent additive Gaussian noise. The cloud of
received signals corresponding to the non-robust SLP scheme, however, shows deviations
from the intended symbols towards the corresponding ML decision boundaries, which
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Figure 6.3: Scatter plot of the noise-free received signals at γ = 10 dB with a fixed channel,
ξ2 = 0.005 and υ = 0.05.

may result in a higher symbol error probability (as we will see later in this section).
Furthermore, the non-robust scheme may fail to satisfy the users’ SINR requirements.
This issue is depicted in Fig. 6.4 and 6.5, where we respectively plot the average per-
user received SINR versus target SINR and the average received SINR for each user at
a target value of γ = 15 dB. Given Hi, we define the received SINR of the ith user
for the SLP scheme with perfect CSI, the non-robust SLP with imperfect CSI and the
stochastic robust SLP, respectively, as

SINRi ,
Eū
{
ūTHT

i Hiū
}

σ2
i

, (6.60)

SINRi ,
Eū
{
ūTHT

i Hiū
}

σ2
i + Eū,Ei

{
ūTET

i Eiū
} , (6.61)

and

SINRi , (1− υ)

Eū
{
ūTHT

i Hiū
}

σ2
i

+ υ

 Eū
{
ūTHT

i Hiū
}

σ2
i + Eū,Ei

{
ūTET

i Eiū
}
 , (6.62)

where the expectations over ū and Ei are computed numerically. The SINR quantities
in (6.60), (6.61) and (6.62) have been averaged over 1000 realizations of Hi to obtain
the values depicted in Fig. 6.4 and Fig. 6.5. We can see from Fig. 6.4 that the given
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Figure 6.4: Average per-user received SINR versus target SINR with ξ2 = 0.005 and υ = 0.05.

target SINR is likely not to be met by all the users, particularly at high SINR values,
when using the non-robust scheme. The separate bar plot of the received SINR for each
user in Fig. 6.5 shows that at γ = 15 dB, the SINR requirement has not been satisfied
for any of the users by employing the non-robust SLP method. On the other hand,
when employing either of the robust approaches, each user’s received SINR is well above
the target value. This, however, means that the users are provided with higher SINRs
than the required value γ, which may not be efficient in general. In a practical system
design, one needs to reach a compromise based on a specific power-performance tradeoff,
according to which the most efficient robust transmission scheme is preferred. We will
introduce such a tradeoff and investigate the efficiencies of different approaches later in
this section.

In addition to the average received SINR, we are interested in evaluating the proba-
bility with which the given target SINR of each user is met. For this purpose, we define
“outage event” as a situation in which the minimum required SINR of a user can not be
guaranteed. Accordingly, we define the probability of outage for user i as

Pout,i , Pr{SINRi < γ}. (6.63)

The probability of SINR outage can be equally translated to a rate-outage probability,
i.e., the probability that a given target rate log2(1 + γ) is not achievable. This quantity
is calculated over many transmissions with different channel realizations and plotted in
Fig. 6.6 as a function of the target SINR γ for the non-robust/robust SLP schemes under
two different scenarios with υ = 0.05, ξ2 = 0.005 and υ = 0.2, ξ2 = 0.01. Note that
Fig. 6.6 shows the average probability over all the users, i.e., P̄out , (1/Nu)∑Nu

i=1 Pout,i.
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Figure 6.5: Average received SINR at γ = 15 dB with ξ2 = 0.005 and υ = 0.05.

Figure 6.6: Probability of outage versus target SINR under two different settings with ξ2 =
0.005, υ = 0.05 and ξ2 = 0.01, υ = 0.2.
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Figure 6.7: Average transmission power versus target SINR with ξ2 = 0.005 and υ = 0.05.

As it can be observed, the outage probability increases with γ and ξ2. The increasing
behavior of Pout with respect to γ can be justified from the definitions of SINRi in (6.61)
and (6.62). A larger γ results in higher transmission power, and subsequently, a greater
deal of uncertainty at the receiver side (note that Eiū is the uncertain component at
the receiver of user i). It can be seen that the conservative approach to satisfying the
CI constraints taken by the robust methods can lead to significant improvement in the
probability of outage compared to the non-robust scheme, i.e., the given target SINR
is more probably achievable when employing a robust SLP scheme. Moreover, Fig. 6.6
shows that each of the SA1-SLP and SA2-SLP methods provides a lower probability of
outage than the other under different uncertainty settings, while the benchmark SB-SLP
approach achieves the lowest outage probability among all in both scenarios.

The higher received SINR and the lower outage probability provided by the ro-
bust SLP approaches are, however, achieved by consuming larger amounts of power for
downlink transmission, which is inevitable to achieve the desired level of robustness. In
Fig. 6.7, the average total transmit power is depicted versus target SINR, where it is
shown that the robust SLP approaches require higher transmission powers than that of
the non-robust scheme. A common observation from Fig. 6.5-6.7 is that among the ro-
bust SLP approaches, the more conservative method with larger transmit power results
in higher average received SINR and a lower outage probability for each user.

To have a fair and meaningful comparison between the non-robust and robust SLP
schemes, we need a measure that incorporates both received SINR and transmit power in
evaluating the downlink performance. Similar to [173], we define “energy efficiency” as
the ratio between the expected throughput and the average transmit power. Accordingly,
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Figure 6.8: Energy efficiency comparison of different SLP schemes versus target SINR with
ξ2 = 0.005 and υ = 0.05.

the energy efficiency for the ith user, denoted by ηi, is obtained as

ηi ,
(1− Pout,i)R(γ)

‖ū‖2 , (6.64)

where R(γ) = log2(1 + γ) refers to the achievable transmission rate corresponding to
the target SINR γ. This quantity can be interpreted as the number of information bits
per unit of energy that can be reliably transmitted to each user in one channel use.
The average per-user energy efficiency, obtained as η̄ , (1/Nu)∑Nu

i=1 ηi, is compared for
different SLP schemes in Fig. 6.8. The results show that the proposed robust SLP designs
SA1-SLP and SA2-SLP are more energy-efficient than the SLP scheme with imperfect
CSI as well as the benchmark SB-SLP method. Furthermore, the SA2-SLP design is
slightly more energy efficient than SA1-SLP for this particular choice of υ, as suggested
by our tightness analysis in Section 6.3.3. However, we should note that this superiority
is obtained in exchange for higher transmitter complexity, as discussed in Section 6.4.1.

We also plot in Fig. 6.9 the average per-user symbol error probability obtained by
different SLP schemes as a function of SINR requirement γ. Having imperfect CSI, it can
be seen that the non-robust and robust methods both show an error floor at high target
SINRs. However, in the whole depicted range of SINR, the robust SLP approaches have
lower symbol error rates compared to the non-robust scheme. Furthermore, as it might
be expected, increasing ξ2 and υ results in a degraded symbol error rate for the users.
In fact, the lower symbol error rate achieved by the robust SLP methods is an advantage
of introducing the (robust) CI constraints into the precoder optimization problem.
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Figure 6.9: Average symbol error rate per user versus target SINR for two different scenarios
with ξ2 = 0.005, υ = 0.05 and ξ2 = 0.01, υ = 0.2.
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Figure 6.10: Average transmission power as a function of uncertainty variance with γ = 10
dB and υ = 0.05.
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Figure 6.11: Per-user energy efficiency as a function of uncertainty variance with γ = 10 dB
and υ = 0.05.

In order to evaluate the effect of the environment parameter ξ2 on the performance of
the symbol-level precoded downlink transmission, in Fig. 6.10 and Fig. 6.11, we respec-
tively plot the average transmit power and the energy efficiency versus ξ2 in an inverse
logarithmic scale. From Fig. 6.10, it can be inferred that for large noise variances, i.e.,
more severe uncertainty conditions, the robust SLP approaches consume relatively high
powers for transmission to ensure a certain level of robustness, while the required trans-
mit power tends to that of the case with perfect CSI as ξ2 decreases. Fig. 6.11, on
the other hand, shows that the energy efficiency under imperfect CSI has an inverse
relation to ξ2, i.e., the smaller the noise variance is, the more efficient the SLP scheme
will be. This statement is true for both non-robust and robust designs. Although the
non-robust scheme shows a superior energy efficiency for large values of ξ2, the SA2-SLP
design outperforms the non-robust scheme for ξ2 < 0.025, i.e., 10 log10(1/ξ2) > 16 dB in
logarithmic scale. Indeed, all the robust approaches are more energy-efficient than the
non-robust case for relatively small values of the uncertainty variance, i.e., ξ2 < 0.005
corresponding to 10 log10(1/ξ2) > 23 dB.

We mentioned earlier in Section 6.4 that the robust design RP1 might be infeasible
for some values of the violation probability υ and the noise variance ξ2. In particular,
having υ → 0 and/or a relatively large value for ξ2 (compared to the spectral norm of
the overall channel matrix, i.e., ‖H‖2) increases the probability of RP1 being infeasible.
In a practical system, a higher rate of feasibility may be reflected in higher service
availability to the users. We evaluate this issue through approximating the feasibility rate
of the robust SLP approaches over several channel/error/symbol realizations, as shown
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Figure 6.12: Feasibility rate as a function of violation probability at γ = 10 dB with ξ2 =
0.01.

in Fig. 6.12 as a function of υ. We can see from the figure that both proposed robust SLP
designs are feasible, on average, above %99 of the time even for relatively small values of
υ (i.e., higher levels of conservatism). Apart from the robust design approach, this high
feasibility rate is one of the advantages of the symbol-level precoder over conventional
block-level techniques, mainly due to higher available degrees of freedom in designing
the precoder.

Finally, we compare our results with those obtained from the robust block-level
precoding scheme proposed in [159], referred to as “robust BLP”, which solves a convex
semidefinite programming (SDP) to minimize the average transmit power for a given
target SINR γ. It is important to note that the robust BLP approach is barely feasible
for large γ and ξ2 as well as small values of υ (as we will show in Fig. 6.16). Therefore,
in what follows, we present the results for some limited scenarios with sufficiently small
γ and ξ2 and large enough υ. Furthermore, we average the results obtained from the
robust BLP scheme only over those realizations for which the SDP optimization problem
in [159] is feasible.

The scatter plot of the noise-free received signals resulted from the block-level, and
symbol-level precoding approaches of interest is shown in Fig. 6.13 for a given target
SINR of γ = 5 dB. In this figure, the average transmit powers of the robust BLP,
non-robust SLP and robust SA2-SLP schemes are equal to 8.16 dBW, 8.85 dBW, and
11.14 dBW, respectively. The centroids of the received signal clouds corresponding to the
robust BLP approach are farther away from the original constellation points, which is an
expected result of conservative precoding design. This, in turn, increases the consumed
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Figure 6.13: Scatter plot of the noise-free received signals at γ = 5 dB with a fixed channel,
υ = 0.1 and ξ2 = 0.001.

transmit power and reduces the energy efficiency for high target SINR values, as we will
see later.

In Fig. 6.14, we compare the energy efficiency of different non-robust/robust precod-
ing schemes as a function of the target SINR γ. Using the robust BLP method, for given
hi, the received SINR of the ith user is given by

SINRi ,
pH
i hH

i hipi
σ2
i +∑

j 6=i pH
j hH

i hipj
, (6.65)

where pi is the precoding vector that corresponds to the user i. It can be seen from
Fig. 6.14 that the robust BLP scheme is more energy-efficient than all the robust SLP
approaches at low target SINRs up to around 3 dB. Recall that the results are averaged
only over those realizations for which the robust BLP is feasible, i.e., we do not take
the infeasibility rate into account in our performance comparisons. On the contrary, for
moderate-to-high SINR values, the proposed SLP approaches outperform the robust BLP
scheme. Notice also that the robust BLP scheme’s optimization problem was infeasible
in all our trials with γ ≥ 14 dB. This is mainly due to the fact that the robust BLP
scheme requires an infinite transmit power (i.e., the optimization problem is practically
infeasible) for target SINRs larger than a specific value. However, the feasibility of
the proposed robust SLP approaches does not depend on γ. Furthermore, the energy
efficiency of the precoding schemes of interest as a function of the violation probability
is plotted in Fig. 6.15, where it is shown that the proposed robust SLP approaches
outperform the robust BLP method for all values of υ ∈ (0, 1/2] in the considered
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Figure 6.14: Energy efficiency comparison of BLP and SLP schemes versus target SINR with
υ = 0.1 and ξ2 = 0.001.

setting. It further follows from Fig. 6.15 that the proposed robust SLP approaches’
energy efficiency tend to that of the SLP scheme with perfect CSI as υ increases.

The feasibility rates of the robust block-level and symbol-level precoders are com-
pared in Fig. 6.16 as a function of the uncertainty variance ξ2 in an inverse logarithmic
scale. As it can be seen, both SA1-SLP and SA2-SLP methods are feasible more than
%93 of the time in the whole evaluated range of ξ2. In particular, both our proposed
robust approaches are %100 feasible for ξ2 < 0.015, or 10 log10(1/ξ2) > 18 dB. The ro-
bust BLP scheme, on the other hand, is %50 or higher feasible only for ξ2 < 0.003, i.e.,
10 log10(1/ξ2) > 25 dB, while it appears to be barely feasible for uncertainty variances
larger than 0.01.

It should be noted that the improved feasibility rate and energy efficiency of an SLP
design compared to a block-level scheme is obtained at the cost of per-symbol opti-
mization of the precoded signal, which may lead to higher transmitter complexity. To
have an illustrative comparison of complexity, consider the robust BLP method in [159].
This method needs to solve an optimization problem with SDP and SOC constraints of
dimension 2(2Nt +1)(Nu +1) and 4NtNu +1, respectively. Roughly speaking, the worst-
case complexity of finding an ε-optimal solution via a standard interior-point method
is of order O(N6

uN
6
t ) ln(1/ε), where such a solution has to be obtained once the CSI is

updated. On the other hand, the arithmetic complexity of the proposed robust SLP
approaches have been shown to be O(Nu

√
NuN

3
t ) ln(1/ε); see Table 6.2. We recall that

the symbol-level precoded transmit signal needs to be redesigned for every instantaneous
set of users’ symbols or the total number of possible symbol realizations for Nu users,
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Figure 6.15: Per-user energy efficiency as a function of violation probability with γ = 5 dB
and ξ2 = 0.001.

Figure 6.16: Feasibility rate of different robust precoding schemes as a function of uncertainty
variance under two settings with γ = 5 dB, υ = 0.1 and γ = 10 dB, υ = 0.05.
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i.e., MNu where M is the modulation order. Denoting by S the number of information
symbols per a single transmitted frame, the overall (per CSI update) complexity of an
SLP scheme can be approximated as min{S,MNu}.O(Nu

√
KN3

t ) ln(1/ε). Hence, a rel-
ative computation cost between the robust SLP and BLP methods, in the limiting case,
is given by the ratio min{S,MNu}/N4

u
√
NuN

3
t . In particular, for a moderate number

of users and low-order modulation schemes, the computational cost of a symbol-level
precoder can be alleviated by an offline optimization of the precoded signals and using
a lookup table for downlink transmission [21]. Further, it might be possible to derive
a low-complexity (semi closed-form) solution for the robust SLP approaches, similar to
those obtained in [40,98,112] for the original SINR-constrained SLP power minimization
problem, which can be the topic of future work.

6.6 Conclusions

We addressed the design problem of robust symbol-level precoded transmission in a
downlink MU-MIMO system under imperfect bounded or stochastic CSI error at the
BS. We considered a QoS-constrained design criterion aimed at minimizing the total
(per-symbol) transmit power subject to CI constraints as well as given target SINRs.
We developed robust CI constraints for each channel uncertainty model and provided
the corresponding robust formulations for the SLP design problem. With bounded CSI
errors, we derived a worst-case robust formulation to guarantee the users’ requirements
for every possible realization of the CSI error within the uncertainty region. Under the
stochastic uncertainty model, we adopted a probabilistic approach to imply the opti-
mization constraints, which led us to intractable expressions. We tackled this difficulty
by deriving two computationally tractable approximate convex constraints with differ-
ent levels of conservatism. A benchmark approximation was also derived based on the
sphere bounding conservative method. Our analytical and simulation results showed
that both the proposed robust convex approximations outperform the benchmark, while
each of them is superior to the other under different robustness settings. Compared with
a conventional block-level robust scheme, the proposed robust methods were shown to
be more efficient at moderate-to-high target SINR values. However, a more considerable
advantage of the proposed robust SLP approaches is their higher feasibility rate for wide
ranges of violation probability and uncertainty variance, which is indifferent to the target
SINR. We also highlight from our complexity analysis that the improved performances
of the proposed robust SLP designs come with an increased computational complexity
by an order of the number of users in the limiting case.
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Chapter 7
Robust Symbol-Level Precoding under
System Uncertainties – Part II: Design
Uncertainty

This chapter addresses the optimization problem of SLP in an MU-MIMO downlink
wireless system where the precoder’s output is subject to partially-known distortions.
In particular, we assume a linear distortion model with bounded additive noise. The
original SINR-constrained SLP problem minimizing the total transmit power is first
reformulated as a penalized unconstrained problem, referred to as the relaxed robust
formulation. We then adopt a worst-case design approach to protect the users’ intended
symbols and the targeted CI with a desired level of confidence. Due to the non-convexity
of the relaxed robust formulation, we propose an iterative algorithm based on the block
coordinate ascent-descent method. We show through simulation results that the pro-
posed robust design is flexible in the sense that the CI constraints can be relaxed to keep
a desirable balance between achievable rate and power consumption. Remarkably, the
robust formulation yields more energy-efficient solutions for appropriate choices of the
penalty parameter, compared to the original SLP problem.
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7.1 Introduction

As mentioned in earlier chapters, a key consideration in designing the symbol-level pre-
coder is to properly define the CIRs based on the received signal constellation, typically
with the aim of preserving (or enhancing) the detection accuracy. This type of design,
however, is highly sensitive to inaccuracies in several parameters, such as the available
CSI at the transmitter, the receive noise power, and any succeeding operation on the
transmit signal, which is not perfectly known to the precoder. In particular, considering
(non)linear distortions of the precoded signal, which falls within the third category, is
the main focus of this chapter. The distorted transmit signal may reflect the effects
of non-ideal elements either in the digital domain, e.g., low-resolution digital-to-analog
converters (DAC), or in the RF chain, e.g., power amplifiers [174]. Furthermore, it could
be an adequate model for the source-relay link over a relay channel, e.g., non-ideal feeder
link in a satellite communication system [175].

There has been some effort in addressing the SLP design problem in the presence of
system uncertainties. Robust symbol-level precoders under imperfect CSI are presented
in [20, 58, 64, 116, 117]. Furthermore, in [45], the authors propose an SLP design with
outage probability constraints to achieve robustness against the receiver noise. To the
best of our knowledge, the SLP design problem under linear distortion of the precoded
signal has not been addressed in the literature. In this work, by assuming a linearly dis-
torted signal model with bounded additive distortion, we aim to design an SLP scheme
such that the performance gain offered by the CI-based design is preserved. In particu-
lar, we reformulate a version of the original problem with penalized objective function
and use this reformulation in a worst-case design approach. The penalty coefficient in
the new formulation allows us to keep a balance between the desired level of spectral
efficiency/users’ symbol error probability and the consumed power.

It is worth mentioning that the problem of robust design has been widely studied
in the literature for scenarios where our knowledge about the environment is subject
to uncertainty [176–183]. In this chapter, we assume that our design process is subject
to uncertainty, e.g., due to finite precision of the underlying design and implementa-
tion technology. This work can point the research community to address new practical
challenges in robust design when the design parameters are subject to uncertainty.

The rest of this chapter is organized as follows. In Section 7.2, we describe the
system and signal distortion models. After a brief overview of the original SLP problem
formulation, in Section 7.3, we reformulate and discuss the worst-case design problem
and present our proposed algorithm. We present the simulation results in Section 7.4.
Finally, we conclude the chapter in Section 7.5.

7.2 System Model and Problem Definition

We consider an MU-MIMO downlink system with the same transmission scheme as de-
scribed in Chapter 3, where an Nt-antenna BS communicates with Nu single-antenna

164



7.2 System Model and Problem Definition

⋮ ⋮

Mapping
Symbol-Level

Precoder

𝑠1

𝑠𝑁u

Bit stream 1

Bit stream 𝑁u 𝑢𝑁t

⋮

CSI

⋮⋮

Mapping

𝐆

𝚫

𝑢1 𝑣1

𝑣𝑁t⋮

Figure 7.1: The considered system model where the output of the symbol-level precoder is
subject to linear distortion before being transmitted to the users.

users (Nu ≤ Nt) via sending independent data symbols {si}Nu
i=1 in the same time-

frequency resource block. The BS employs a symbol-level (non-linear) precoding scheme
to spatially multiplex the users’ data streams in the downlink transmission, in which the
Nt×1 precoded signal u = [u1, u2, ..., uNt ]T is redesigned every symbol period by solving
an optimization problem. It is further assumed that the precoded signal is subject to
linear distortion before transmission, i.e., the actual Nt× 1 transmitted signal v is given
by

v = Gu + ∆, (7.1)

where G ∈ CNt×Nt denotes a known distortion matrix and ∆ ∈ CNt×1 represents an
additive white noise which is uncorrelated with the precoder’s output u. Such a model
is particularly suitable for a relayed transmission scheme. For example, interference
mitigation techniques in the forward link of a satellite communication system may take
the form of on-ground precoding, i.e., the users’ data streams are pre-processed at the
gateway and then sent to the satellite through the feeder link [184, 185]. The received
signal by the satellite (to be transmitted towards the users) can be modeled as (7.1),
where G represents signal attenuation generated by either the atmospheric fading and/or
the feed antenna radiation, and ∆ models the additive noise at the satellite’s array-
fed reflector. Another possible application of (7.1) could be in a massive MU-MIMO
scenario where the continuous-valued precoding coefficients {uj}Nt

j=1 are passed through
low-resolution digital-to-analog converters (DAC) to be quantized in the digital domain
before up-conversion via the RF chains. The non-linear quantization operation can
be approximated by the additive quantization noise (AQN) model, [186, 187], which
coincides with the linear distortion model in (7.1). Under the above assumptions, the
baseband representation of the signal received by the ith user is given as

ri = hiv + zi = hi(Gu + ∆) + zi, i = 1, 2, ..., Nu, (7.2)

where hi ∈ CNt×1 contains the instantaneous fading coefficients of the quasi-static chan-
nel between the transmit antennas and the ith user, and zi ∼ CN (0, σ2

i ) models the
additive thermal noise at the ith receive front-end.

To proceed, we define equivalent real-valued notations: ū , [Re(u)T, Im(u)T]T,
v̄ , [Re(v)T, Im(v)T]T, ∆̄ , [Re(∆)T, Im(∆)T]T, and for all i = 1, 2, ..., Nu, we denote
si , [Re(si), Im(si)]T, Hi , Ω(hi), and Ḡ , [GT

1 , ...,GT
Nt ]

T with Gj , Ω(gj) and gj
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denoting the jth row of G for j = 1, 2, ..., Nt, where

Ω(y) ,
[
Re(y) − Im(y)
Im(y) Re(y)

]
,

for any complex input vector y. Using these real-valued notations, it is straightforward to
verify that v̄ = Ḡū+∆̄ holds true, and thus, the ith real-valued noise-free received signal
can be represented as a 2×1 vector given by Hiv̄ = Hi(Ḡū+∆̄). It is worth mentioning
that the additive distortion vector ∆̄, without any restriction on its distribution, is
assumed to be norm-bounded, i.e., ‖∆̄‖ ≤ ε.

Given the set of target SINRs {γi}Nu
i=1 to be achieved for all the users, our design

criterion is to minimize the per-symbol total transmit power while satisfying the CI
constraint and the given target SINR for each user. In our design formulation, we also
need to take into account the linear distortion of the precoded vector before transmission.
Therefore, by assuming the DPCIRs and using the design formulation P3, as presented
in Section 3.5, we express the corresponding optimization problem as

min
v,t�0

v̄Tv̄ s.t. Hv̄ = ΣΓs + A−1Wt, (7.3)

where in formulating (7.3), we have used the same definitions as in Section 3.5.

7.3 Worst-Case Design Formulation

We start off by casting a new optimization problem other than (7.3) by introducing the
linear equality CI constraints as an `2-norm penalty into the objective function, i.e.,

min
v̄,t�0

‖v̄‖2 + β ‖Hv̄−ΣΓs−A−1t‖2, (7.4)

where β denotes the penalty coefficient. It is worth noting that unlike (7.3), this new
formulation does not strictly impose the CI constraints. Instead, the `2-norm term in the
objective function penalizes any feasible solution for which the received symbols will not
exactly be located within the intended CI regions. For this reason, we refer to problem
(7.4) as the relaxed SLP design. Intuitively speaking, setting larger values for β puts
more emphasis on the satisfaction of CI constraints (i.e., more severely penalizes any
deviation of the received symbols from the correct CI regions), but may lead to higher
transmission powers. This introduces a tradeoff in choosing the penalty parameter β,
where its effect on the performance will be investigated via simulation results in Section
7.4. It is also worth noting that problem (7.4) becomes equivalent to (7.3) as β →∞.

Replacing v̄ with Ḡū + ∆̄ in (7.4), we define the worst-case SLP design formulation
as

min
ū,t�0

max
‖∆̄‖≤ε

‖Ḡū + ∆̄‖2 + β ‖H(Ḡū + ∆̄)−Φ(t)‖2, (7.5)

where Φ(t) , ΣΓs + A−1t. The optimization problem (7.5) is non-convex, and thus,

166



7.3 Worst-Case Design Formulation

may not be amenable to a computationally efficient solution. To tackle this optimization
problem, we propose a three-step iterative block coordinate ascent-descent algorithm: in
the first step, the inner maximization is solved for given ū and t � 0, thereby obtaining
a new value for ∆̄ in a semi-closed form in terms of ū and t. In the second step, the
value of t is updated by solving a non-negative least squares (NNLS) problem, for fixed
∆̄ and u. In the third step, the value of ū is updated by solving a non-constrained QP,
thereby obtaining the new value of ū in a closed form in terms of ∆̄ and t. In the sequel,
we present the details of these three steps.

First step – updating ∆̄: We focus on the inner maximization in (7.5), i.e.,

max
‖∆̄‖≤ε

‖Ḡū + ∆̄‖2 + β ‖H(Ḡū + ∆̄)−Φ(t)‖2 . (7.6)

Denoting the maximizer of (7.6) by ∆̄∗, it is straightforward to check, by contradiction,
that the norm constraint on ∆̄ is active at the optimum, i.e., ‖∆̄∗‖ = ε. Thus, the
maximization problem (7.6) is equivalent to

max
‖∆̄‖=ε

‖Ḡū + ∆̄‖2 + β ‖H(Ḡū + ∆̄)−Φ(t)‖2. (7.7)

In case rank(H)>1, no closed-form solution is known for (7.7). To tackle this problem,
we start from its Lagrangian which is given by

L(∆̄, τ) = ūTḠTḠū + ∆̄T∆̄ + 2∆̄TḠū
+ β (Ḡū + ∆̄)THTH(Ḡū + ∆̄) + βΦT(t)Φ(t)

− 2βΦT(t)H(Ḡū + ∆̄)− τ
(
∆̄T∆̄− ε2

)
,

(7.8)

where τ is the Lagrange multiplier associated with the norm constraint ‖∆̄‖ = ε. Note
that since the maximization (7.7) is a non-convex problem, the method of Lagrange
multipliers yields only necessary conditions for optimality which may not be sufficient.
Differentiating L(∆̄, τ) with respect to ∆̄ and equating it to zero yield

∆̄∗ + Ḡū + βHTH∆̄∗ + βHTHḠū− βHTΦ(t)− µ∗∆̄∗ = 0, (7.9)

and therefore,
∆̄∗ = − (P− µ∗I)−1 HT

(
ḠHū−Φ(t)

)
, (7.10)

where P , HTH + (1/β)I and µ∗ , τ∗/β. The maximizer given in (7.10) must satisfy
the norm constraint ‖∆̄∗‖2 = ε2, i.e.,(

PḠū−HTΦ(t)
)T (

HTH− µ∗I
)−2 (

PḠū−HTΦ(t)
)

= ε2, (7.11)

from which one can obtain µ∗. Let us denote

f(µ),
(
PḠū−HTΦ(t)

)T(
HTH− µI

)−2(
PḠū−HTΦ(t)

)
− ε2, (7.12)
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then µ∗ is a root of f(µ). Note that no closed-form solution is known in general for
f(µ) = 0. Nonetheless, it can be shown that function f(µ) has a finite number of roots
according to the following lemma.

Lemma 14. Let R denote the number of roots of f(µ), then R is always an even number
bounded as

2 ≤ R ≤ 2 rank(H).

Proof. See Appendix D.1.

Among all the roots of f(µ), the one that maximizes the objective function of (7.7)
corresponds to the worst-case ∆̄, for given ū and t. The next theorem specifies the
interval within which there exists a unique µ∗ yielding the maximizer of (7.7).

Theorem 15. The value of µ∗ is equal the largest positive root of f(µ) and is bounded
as

λ̄max < µ∗ ≤ 1
ε

∥∥∥PḠū−HTΦ(t)
∥∥∥+ λ̄max, (7.13)

with λ̄max,‖H‖2 + 1
β .

Proof. See Appendix D.2.

The above theorem facilitates the possibility of searching for the intended root of
f(µ) in the interval specified by (7.13) via numerical methods, e.g., a simple bisection
search. Using such a numeric solution for µ∗ in (7.10) yields the optimal value of ∆̄, for
given u and t � 0, in a semi-closed form

For relatively small values of ε, one can also use quite an accurate approximation for
µ∗ with a closed-form expression given below.

Lemma 16. For small ε, the value of µ∗ can be well approximated by

µ∗ ≈ 2


∥∥∥P (PḠū−HTΦ(t)

)∥∥∥
ε


2
3

. (7.14)

Proof. See Appendix D.3.

The approximation provided by Lemma 16 is very accurate for ε ≤ 0.1 based on our
numerical observations.

Second step – updating t: For given ∆̄ and u, the value of t is updated as the
solution to the following optimization problem:

min
t�0

∥∥∥H (
Ḡū + ∆̄

)
−Φ(t)

∥∥∥2
, (7.15)

which is a standard NNLS problem. Note, however, that using the exact solution to
(7.15) in order to update t may result in a slow convergence rate for the iterative method
[188]. One can instead update t by using the accelerated projected gradient descent
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(APGD) algorithm [189], which provides the update by taking only one step in the
steepest descent direction at the current point.

Third step – updating u: For given ∆̄ and t � 0, the minimization over u is an
unconstrained QP, and hence, is amenable to the following closed-form solution:

ū = Ḡ−1P−1HTΦ(t)− Ḡ−1∆̄. (7.16)

The pseudo-code of the explained block coordinate ascent-descent algorithm, including
the APGD-based updating step of t, is provided in Algorithm 4.

Algorithm 4 Block coordinate ascent-descent algorithm solving (7.5)
1: input: A,H,Σ,Γ, s, ε, ε
2: output: ū
3: initialize: t(0) = ϑ(0) ∈ R2Nu×1

+ , ū(0) ∈ R2Nt×1, n = 0
4: set: ψ = 1−

√
κ

1+
√
κ
, κ = σmax

σmin
, Θ = I − σ2

min(AAT)−1, where σmax and σmin denote the
maximum and the minimum singular value of matrix A, respectively

5: while ‖ū(n) − ū(n−1)‖ ≤ ε do
6: n← n+ 1
7: compute µ(n) by solving f(µ) = 0
8: ∆̄(n) ← −

(
P− µ(n)I

)−1 (
PḠū(n−1) −ΣΓs−A−1t(n−1)

)
9: t(n) ← max

{
Θϑ(n−1) + σ2

minA−T
(
H
(
Ḡū(n−1) + ∆̄(n)

)
−ΣΓs

)
,0
}

10: ϑ(n) ← t(n) + ψ
(
t(n) − t(n−1)

)
11: ū(n) ← Ḡ−1P−1HT

(
ΣΓs + A−1t(n)

)
− Ḡ−1∆̄(n)

12: end while

To provide an intuition of the structure of the optimal transmit signal, let (∆̄∗, ū∗, t∗)
denote the solution to (7.5). It then follows from (7.16) that

Ḡū∗ + ∆̄∗ =
(

HTH + 1
β

I
)−1

HT
(
ΣΓs + A−1t∗

)
, (7.17)

i.e., the optimal worst-case robust transmit signal can simply be viewed as applying a
(regularized) channel inversion to the constructively-interfered symbols, with the inter-
ference components being aligned such that the received symbols are pushed (as deep
as possible) into the CI regions. Furthermore, considering the limiting case β → ∞,
in which P−1HT = H†, implies that for extremely large values of β, the received sym-
bol of each UE is guaranteed to be observed within the correct CI region, even for the
worst possible error realization. Note, however, that this limiting case β may cause an
unaffordable transmission power.
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Figure 7.2: Energy efficiency comparison of different SLP schemes under linear distortions.

Computational Complexity

We compare the computational complexity of Algorithm 4 with the required complexity
for solving the QP (7.3). Here, by complexity we mean to the number of arithmetic
operations needed to reach a desired accuracy, i.e., an ε-optimal solution. The per-
iteration complexity of the Algorithm 4 is dominated by matrix multiplications with
dimension 2Nt × 2Nt as well as matrix inversions of dimension Nt × Nt, where both
computations have a limiting order of O(N3

t ). On the other hand, based on the worst-
case complexity analysis provided in [171], the per-iteration complexity of solving the QP
(7.3) via a generic interior-point method is of order

√
NuO(N3

t ). Taking into account
the convergence rates to reach an ε-optimal solution, the computation cost of the QP
(7.3) is of order

√
NuO(N3

t ) ln(1/ε), whereas Algorithm 4 has a lower complexity order
O(N3

t ) (1/
√
ε) and converges at a higher rate.

7.4 Simulation Results

The simulation setup is as follows. We consider a downlink MU-MIMO system with
uncoded transmission, QPSK signaling, and Nt = Nu = 8. Unit noise variances σ2

i = 1
and equal target SINRs γi , γ are assumed for all i = 1, 2, ..., Nu. Assuming a Rayleigh
block fading channel, the channel vectors {hi}Nu

i=1 are independently generated for each
coherence block following a standard circularly symmetric complex Gaussian (CSCG)
distribution, i.e., hi∼CN (0, I). All our simulation results are averaged over 500 channel
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coherence blocks each with 500 symbols. We refer to our proposed worst-case SLP design
as WC-SLP.

The additive distortion vector ∆̄ is randomly generated as an uncorrelated CSCG
vector with standard deviation 0.1. The distortion ball radius is set to be ε = 0.56,
which corresponds to a confidence level of 0.99, i.e., Pr{‖∆̄‖ > ε} = 0.01. We further
assume G = I. In our simulations, we have defined energy efficiency as the ratio of the
product of the average users’ bit error rate (BER) and mutual information divided by
the total consumed power, i.e., ūTū. The mutual information I(si; ri) for the ith user
can be obtained as

I(si; ri) = Esi,ri,H

{
log2

Pri|si,H(ri|si,H)
Pri|H(ri|H)

}
. (7.18)

The conditional probability mass functions in (7.18) are not amenable to closed-form
expressions. To tackle this difficulty, inspired by [190], we resort to empirical probability
distributions obtained by generating sufficiently many channel and symbol realizations
and then computing an approximation (in fact, a lower bound) for the mutual informa-
tion in (7.18).

The energy efficiency performance of the WC-SLP scheme is plotted in Fig. 7.2 as
a function of the users’ target SINR, for different values of β. To have a benchmark
for comparison, we also present the results for the SLP problem (7.3) under linear dis-
tortions, referred to as “distorted SLP”. Among all the values of β shown in Fig. 7.2,
choosing β = 1 results in higher energy efficiency, even compared to the distorted SLP
scheme. This is a consequence of relaxing the CI constraints in the SLP design, leading
to a lower transmit power in exchange for a slightly higher BER. Increasing β, on the
other hand, reduces the energy efficiency of the proposed WC-SLP scheme. This can be
justified by considering the limiting case β →∞, in which the design formulation (7.4)
aims to strictly impose the CI constraints, regardless of the required transmit power. In
general, a proper choice of β is application-dependent and relies on the corresponding
system/user requirements. For instance, in wireless systems with strict target BERs, a
larger β is preferred. On the other hand, in scenarios where transmit power is strictly
limited, one may choose smaller values for β. Moreover, the value of β can be adjusted
in a more sophisticated way, e.g., letting β vary as a function of the target SINR γ,
which is an interesting topic for future work.

7.5 Conclusions

In this chapter, we proposed a worst-case design formulation for the QoS-constrained
SLP problem minimizing the total transmit power in a scenario where the precoder’s
output undergoes linear distortion with bounded additive noise. First, a new problem
formulation was proposed, which led us to cast the worst-case design of the distorted
SLP as a min-max problem by introducing relaxed CI constraints. We then solved this
problem using an iterative block coordinate ascent-descent algorithm to obtain the robust

171



Robust Symbol-Level Precoding under System Uncertainties – Part II: Design Uncertainty

precoded signal. This algorithm iterates between finding the optimal precoded signal and
the worst-case additive distortion vector. Finding the precoded signal involves solving an
NNLS problem, while obtaining the worst-case distortion vector leads to a semi-closed
form solution with only one scalar parameter which has to be calculated numerically.
Our simulation results showed that the proposed worst-case approach can improve the
SLP scheme’s performance under linear distortions in terms of energy efficiency.
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Chapter 8
Quantized Symbol-Level Precoding for
Massive MU-MIMO Systems

In this chapter, we propose a finite-alphabet symbol-level precoding technique for mas-
sive MU-MIMO downlink systems that are equipped with finite-resolution digital-to-
analog converters (DACs) of any precision. Using the idea of CI, we adopt a max-min
fair design criterion which aims to maximize the minimum instantaneous received signal-
to-interference-plus-noise ratio (SINR) among the users while ensuring a CI constraint
for each user under the restriction that the output of the precoder is a vector with
finite-alphabet discrete elements. Due to this latter restriction, the design problem is an
NP-hard quadratic program with discrete variables, and hence, is difficult to solve. In
this chapter, we tackle this difficulty by reformulating the problem in several steps into
an equivalent continuous-domain biconvex form, including equivalent representations
for discrete and binary constraints. Our final biconvex reformulation is obtained via an
exact penalty approach and can efficiently be solved using a standard cyclic block coor-
dinate descent algorithm. We evaluate the performance of the proposed finite-alphabet
precoding design for DACs with different resolutions, where it is shown that employing
low-resolution DACs can lead to higher power efficiencies. In particular, we focus on
a setup with one-bit DACs and show through simulation results that compared to the
existing schemes, the proposed design can achieve SNR gains of up to 2 dB. We further
provide analytic and numerical analyses of complexity and show that our proposed al-
gorithm is computationally-efficient as it typically needs only a few tens of iterations to
converge.
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8.1 Introduction

Massive MIMO is an enabling, or perhaps even indispensable, technology to deliver
highly power-efficient and reliable services in future generation wireless communication
networks [191, 192]. In a typical massive MU-MIMO system, the base station employs
a large-scale antenna array (e.g., with hundreds of antennas) to serve a much smaller
number of user equipments (UEs) via spatial multiplexing. This multitude of transmit
antennas offers a large number of spatial degrees of freedom to each UE, leading to high
beamforming gains and high interference management capabilities [191,193].

When perfect transmit-side channel state information (CSIT) is non-causally avail-
able, it is well known that dirty paper coding (DPC) can achieve the sum-rate capacity
of the MU-MIMO broadcast channel at an impractically high computational complexity.
Alternatively, simpler practical linear precoding schemes such as matched filter (MF) or
maximum ratio transmission (MRT) [2,5], and (regularized) ZF [3,4], have been shown
to be asymptotically optimal in the large system limit [194]. Unfortunately, the benefits
of such easy-to-implement precoding techniques come with a prohibitively high hardware
complexity and cost as well as an extensively increased power consumption under a mas-
sive MIMO configuration. This is primarily due to the need for an ideal radio frequency
(RF) chain, including highly linear power amplifiers and high-resolution digital-to-analog
converter (DAC), dedicated to each antenna element. Therefore, a more limited use of
RF and mixed-signal components is of practical importance to enable cost-effective im-
plementations of large-scale MIMO systems with reasonable hardware complexity and
low power consumption. Accordingly, precoding schemes need to be properly designed
by taking into consideration the hardware-induced constraints.

The hardware-constrained design of multiuser precoding in a massive MU-MIMO sys-
tem has been addressed in the literature via a variety of approaches, which can be broadly
categorized in two groups, namely, hybrid precoding and finite-alphabet precoding. The
first group includes hybrid analog-digital architectures, where a small-sized digital pre-
coder is followed by a high-dimensional analog precoder. Such an architecture enables
the possibility of using fewer RF chains, which scale with the number of multiplexed data
streams rather than with the number of transmit antennas; see, e.g., [195–198]. Despite
being capable of achieving the performance of fully-digital ZF precoder [199], hybrid
techniques do not scale well with the number of subcarriers in wide-band systems [200].
In addition, there is still need for employing high-resolution DACs. Bearing in mind
that the power consumption of a finite-resolution DAC grows exponentially with the
number of resolution bits and linearly with the bandwidth [201,202], the hybrid schemes
still suffer from high power consumption as well as high complexity, losses and non-
linearity of analog components. The need for high-resolution DACs may further limit
the implementation of hybrid architectures. The reason is that increasing the number
of RF chains beyond a certain limit (depending on the architecture) results in a lower
energy-efficient implementation, as compared to its fully-digital counterpart [203].

On the other hand, the use of low-resolution DACs for each antenna element sub-
stantially reduces the amount of power consumption, simplifies the hardware design,
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and reduces the associated cost. This has been the motive behind introducing another
family of massive MU-MIMO precoding approaches, namely, finite-precision quantized
precoders. Within this line of work, there have been some efforts towards revisiting con-
ventional linear precoding strategies, leading to what is commonly referred to as linear-
quantized precoding, where the effect of quantization distortion has been taken into
account for low-to-moderate resolution (up to 5 bits) DACs [200,204–206]. These linear
precoders, however, mostly suffer from an unfavorably high error floor in the moderate-
to-high SNR regime [200], and perform reasonably only in systems with extremely large
transmit array sizes, e.g., in the order of hundreds or more antennas. Recently, the
case with one-bit DACs has become an attractive research direction due to its simplicity
and the dramatic reduction it can provide in circuit power consumption and hardware
cost; see, e.g., [87, 207–210]. A one-bit precoded signal further exhibits the constant
modulus property, eliminating the need for highly linear power amplifiers. The enabling
fact behind one-bit precoding approaches is that the severe distortion caused by one-bit
DACs can be mitigated by means of proper signal processing at the transmitter, though
its undesired impact is insignificant in the low-to-moderate SNR regime where massive
MIMO systems will likely operate [200]. Most of the work in this direction consider
non-linear precoding design based on a symbol-by-symbol approach. The superiority of
these nonlinear (finite-alphabet) precoding approaches over linear-quantized precoding
is demonstrated in [207].

The idea of designing the precoder in a per-symbol manner, while exploiting the
inter-user interference at the UE side in a useful way, has been studied in [24], and
then elaborated in [20] and [21], where the concept of CI is introduced. Referred to as
symbol-level precoding (SLP), this type of precoding is based on the fact that a noise-
free received signal can be decoded correctly, not necessarily when it is close enough to
the intended symbol, rather, as long as it lies within the correct decision region even
far away from the target symbol. This has been the underlying motivation in defining
a variety of CI regions; see, e.g., [20, 21, 23, 61]. In designing a quantized precoder for
massive MU-MIMO downlink, one can utilize the CI concept to achieve lower BER values
for the UEs. This approach has been used in [84] and [85, 86] in order to design SLP
schemes with one-bit DACs for PSK and QAM signaling. On the other hand, symbol-
level precoding with low-resolution DACs is addressed in [88], where the design objective
is defined based on a mean square error (MSE) criterion rather than the CI constraints.

In this paper, we propose a novel finite-alphabet CI precoding method for massive
MU-MIMO downlink, where the precoded transmit signal is constrained to be chosen
from a predefined codebook dictated by finite-resolution DACs. Unlike [84] and [85],
our work is not restricted to PSK or QAM signaling, but considers a generic modulation
scheme. Furthermore, in our design, we aim to exploit CI at the UEs’ receiver side
according to the distance-preserving definition of CI regions [23]. The adopted precoding
design approach aims to maximize the minimum (instantaneous) SNR among all the
UEs, while ensuring the UEs’ symbols are received within the correct CI region. Due
to the finite-alphabet domain of the design variables, the original formulation is an
NP-hard problem, and thus, is difficult to solve. We deal with this difficulty through
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reformulating the problem in several steps. First, we reduce the problem to a binary
quadratic programming through an alternative equivalent binary representation of the
discrete design variable. Next, we provide an equivalent continuous-domain biconvex
implication for the binary constraints. We cast our final design formulation by applying
the exact penalty method, which can efficiently be solved via a standard cyclic block
coordinate descent (BCD) algorithm under certain conditions which, as we prove, will
be met in our design. This is different from [84] and [85], where the binary constraints
are dealt with via simple convex relaxations. Note also that in [87], a similar technique is
used to treat the binary constraints; however, our design objective and constraints differ
from those in [87]. More precisely, the precoding design in [87] attempts to minimize the
maximum (among the UEs) distance between a received signal and its corresponding
target symbol up to a scaling factor, while our design aims to maximize the distance
of the UE’s received signals from the boundaries of the corresponding decision region
via exploiting CI. In fact, the scaling factor in [87] can be viewed as a special case
of CI regions with strict phase constraints. The proposed finite-alphabet symbol-level
precoding approach supports DACs of any resolution. Evaluating and comparing the
performance for DACs with different resolutions, we show that while using low-resolution
DACs may cause a degraded bit error rate performance, it leads to a higher power
efficiency. Moreover, we will show that increasing the number of resolution bits by one
results in a gain of at least 0.5 dB in different scenarios. With a particular focus on the
case with one-bit DACs, our simulation results further indicate an improved uncoded
bit error rate performance for the proposed method, compared to the existing one-bit
precoding schemes. To be more precise, depending on the system setup, SNR gains
of up to 2 dB can be achieved. To assess the practicability of the proposed design, we
provide an analytical analysis of computational complexity. Remarkably, for moderately-
sized systems, the BCD algorithm, used to solve the proposed design problem, usually
converges (with a reasonable accuracy) in a few tens of iterations, making the proposed
method attractive for practical use.

The rest of this chapter is organized as follows. In Section 8.2, we describe the
considered system model, including the signal model and the quantization model. In
Section 8.3, we formulate the CI-based finite-alphabet symbol-level precoding problem
as a discrete quadratic programming. In Section 8.4, we propose our solution to the
design problem of interest, followed by an analysis of computational complexity. The
spacial case of using one-bit quantized precoding is addressed in Section 8.5. We present
simulation and numerical results in Section 8.6. Section 8.7 concludes the paper.

8.2 System Model

In this section, we describe the signal and quantization model considered in this chapter.
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8.2.1 Signal Model

We consider a single-cell single-carrier downlink MU-MIMO wireless system where a
BS, equipped with an array of Nt antennas, communicates with Nu � Nt single-antenna
users through multiplexing Nu independent data streams within the same time-frequency
resource block. Note that the latter assumption rationalizes the use of low-resolution
DACs at the BS; however, it is not strictly necessary for the subsequent derivations
in this chapter. As illustrated in Fig. 8.1, we assume that the users’ data symbols
are spatially multiplexed at the BS via a (non-linear) symbol-level multiuser precoder
so that the Nt × 1 complex-valued precoded signal u , [u1, u2, ..., uNt ]T is specifically
designed every symbol period. It is further assumed that each BS’s antenna is driven
by one dedicated RF chain preceded by a pair of finite-resolution DACs, operating
independently on the in-phase and quadrature components of a complex element of the
precoded signal u. Modeling a finite-resolution DAC as a scalar quantizer, we describe
the complex-valued quantization operation as

uq,j = Q
(
Re{uj}

)
+ jQ

(
Im{uj}

)
, j = 1, 2, ..., Nt, (8.1)

where uq , [uq,1, uq,2, ..., uq,Nt ]T denotes the precoded signal after quantization, Q(·) :
R 7→ L stands for the scalar quantization operation with L denoting the set of quantiza-
tion levels, and j ,

√
−1. Assuming element-wise vector quantization as represented in

(8.1), we require a total number of 2Nt DACs, thereby operating independently on the
real and imaginary parts of uj for all j ∈ {1, 2, ..., Nt}. The quantized baseband signal
uq is then passed through Nt RF chains, which up-convert this signal to the carrier fre-
quency. The up-converted signal is transmitted over the BS’s antennas and undergoes
uncorrelated quasi-static flat fading before arriving the users. Under the above described
assumptions, the signal ri received at the ith user can be modeled as

ri = √phiuq + zi, i = 1, 2, ..., Nu, (8.2)

where hi denotes the complex-valued 1×Nt vector of the ith user’s channel coefficients
and zi represents the additive noise at the ith user’s receiver front-end and is modeled as
a zero-mean complex Gaussian random variable with variance σ2

i /2 per real dimension,
i.e., zi ∼ CN (0, σ2

i ). Furthermore, in our design, we constrain the quantized precoded
signal so as to satisfy ‖uq‖2 ≤ 1. Hence, √p in (8.2) denotes a fixed gain ensuring a
total transmission power of smaller than p. At the receiver side, it is assumed that each
user employs an infinite-precision analog-to-digital converter (ADC) and is capable of
detecting its target symbol via optimal single-user maximum-likelihood criterion.

For the sake of convenience, we define the following equivalent real-valued vectors:

ū ,

[
Re(u)
Im(u)

]
, [ū1, ū2, ..., ū2Nt ]T,

ūq ,

[
Re(uq)
Im(uq)

]
, [ūq,1, ūq,2, ..., ūq,2Nt ]T,
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Figure 8.1: The considered transmission scheme with symbol-level precoding where each I/Q
channel undergoes quantization via finite-resolution DACs.

Moreover, for all i = 1, 2, ..., Nu, we denote si , [Re(si), Im(si)]T and

Hi ,

[
Re(hi) − Im(hi)
Im(hi) Re(hi)

]
.

Using the above notations, we express the relation between the real-valued elements of
the quantized and the unquantized precoded signal as

uq,j , Q(uj), j = 1, 2, ..., 2Nt. (8.3)

It is also worth noting that under the new real-valued notations, the power constraint
to be met in our design is ‖ūq‖2 ≤ 1.

8.2.2 Quantization Model

A finite-resolution DAC can be modeled as a scalar quantizer mapping a continuous-
valued input signal onto a finite discrete-valued set of possible outputs, namely, quan-
tization levels (or reconstruction levels). Let b denote the number of resolution bits
representing the quantized signal, then the total number of reconstruction levels is equal
to B , |L| = 2b, where L , {l0, l1, ..., lB−1} is the set of quantization levels. Let us
further denote by T , {ϑ0, ϑ1, ..., ϑB−1, ϑB} the set of quantization thresholds such that
−∞ = ϑ0 < ϑB = +∞. In this work, for simplicity, we consider symmetric uniform
scalar quantizers, where the quantization levels {l0, l1, ..., lB−1} are equally and symmet-
rically spaced around zero, i.e.,

lk = ∆
(
k − B − 1

2

)
, k = 0, 1, ..., B − 1, (8.4)

ϑk = ∆
(
k − B

2

)
, k = 1, 2, ..., B − 1, (8.5)

with ∆ denoting the quantization step, i.e., the spacing between two consecutive re-
construction levels. Depending on the precision, the symmetric scalar quantizer uses a
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subset of the two sequences of quantization levels and thresholds produced by (8.4) and
(8.5), i.e.,

L ⊆
{
...,−3

2∆,−1
2∆,+1

2∆,+3
2∆, ...

}
, (8.6)

T ⊆ {...,−2∆,−∆, 0,+∆,+2∆, ...} , (8.7)

respectively. Given the power constraint on ūq, we need to properly choose the quan-
tization step ∆. Recall that the entries of ūq are taken from the set L of quantization
levels. As a consequence, the following inequality always holds true:

‖ūq‖2 =
2Nt∑
j=1

u2
q,j ≤ 2Nt l

2
B−1. (8.8)

To guarantee the power constraint ‖ūq‖2 ≤ 1, it suffices to set 2Ntl
2
B−1 = 1. Hence, by

replacing lB−1 = (∆/2)(B − 1) from (8.4), we obtain

∆ = 2
(B − 1)

√
2Nt

. (8.9)

In our design, we consider the value of ∆ as obtained in (8.9) to implicitly enforce the
desired power constraint.

8.3 Problem Formulation

The aim of this section is to formulate the SLP design problem with finite-resolution
DACs. To avoid quantization distortion, the precoded signal ū is taken from the set
L2Nt dictated by the set of finite-resolution DACs so that

ūj = ūq,j = Q(qj), j = 1, 2, ..., 2Nt. (8.10)

Accordingly, we aim to design a CI-based precoder which maximizes the minimum in-
stantaneous (per-symbol) quality-of-service (QoS) level among the users, while satisfying
the CI constraint for each user. As for the QoS measure, we consider the users’ received
SINRs. Assuming DPCIRs, we use the convex representation of CI constraint C3 as
introduced in Section 3.4. Thereby, we can obtain the optimal finite-alphabet precoded
signal as the solution to the following optimization problem:

max
ū,t�0

min
i
‖Hiū‖2/σ2

i

s.t. √pHū = Σs + A−1Wt,
uj ∈ L, j = 1, 2, ..., 2Nt.

(8.11)

Note that in formulating (8.11), we implicitly assumed that the user’s channel coefficients
Hi are perfectly and instantaneously known to the BS for all i ∈ {1, 2, ..., Nu}. An
illustration of the DPCIRs and their characterizing parameters and variables is shown
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Figure 8.2: The DPCIRs are depicted in green color for the optimized 8-ary constellation.

in Fig. 8.2 for the optimized 8-ary constellation [124]. We have shown in Section 3.5
that maximizing the minimum SNR across the users is equivalent to maximizing min(t)
subject to the given power constraint, where min(·) denotes element-wise minimum.
Note that the total power constraint has been taken into account in (8.11) and in the
subsequent reformulations through the definition of the set of quantization levels L.
Introducing a slack variable γ and using the above definitions, we rewrite problem (8.11)
as

max
ū,t,γ

γ

s.t. √pHū = Σs + A−1Wt,
uj ∈ L, j = 1, 2, ..., 2Nt,

t � γ1, γ ≥ 0.

(8.12)

Two difficulties arise with problem (8.12) as described below:

i. The optimization problem (8.12) may have an empty feasible region, since ū has
to be chosen from the finite set L2Nt . In fact, there could be situations where one
(or more) CI constraint(s) cannot be satisfied for any ū ∈ L2Nt .

ii. Due to the finite-alphabet variable ū, problem (8.12) belongs to the class of com-
binatorial optimization, which is known to be difficult (in some cases, NP-hard)
to solve for global optimality. To be more specific, finding the exact solution to
(8.12), in the worst case, requires solving a linear programming (LP) for every
single vector ū ∈ L2Nt and then picking the best solution for u which results in
the largest value of γ. The finite set L2Nt has a cardinality of B2Nt . Keeping in
mind that Nt refers to the size of a large-scale antenna array, such an approach
requires solving an exponentially-growing number of LPs, which might be quite
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impractical.

To address the above challenges, we will take a few more steps to modify the original
problem, as explained in the next section.

8.4 Quantized Symbol-Level Precoding Design

We start off by addressing the first challenge highlighted in the previous section. To
avoid infeasibility, we consider a new (not necessarily equivalent) design formulation by
adding soft CI constraints as a penalty term to the objective function. Doing so leads
to the following problem:

max
ū,t,γ

γ −
∥∥∥√pHū−Σs−A−1Wt

∥∥∥2

s.t. uj ∈ L, j = 1, 2, ..., 2Nt,

t � γ1, γ ≥ 0.

(8.13)

We will show via simulation results in Section 8.6 that the loss due to this new formula-
tion compared to the original problem in (8.12) is very negligible, especially in the large
system limit. It is straightforward to verify that problem (8.12) is equivalent to

max
ū,t,γ

γ −
∥∥∥√pHū−Σs−A−1W(t + γ1)

∥∥∥2

s.t. uj ∈ L, j = 1, 2, ..., 2Nt,

t � 0, γ ≥ 0.

(8.14)

Given ū and t, the maximization problem in (8.14) can be expressed as a function of γ
as

max
γ

γ −
∥∥∥√pHū−Σs−A−1W(t + γ1)

∥∥∥2
s.t. γ ≥ 0. (8.15)

Differentiating the objective function of (8.15) with respect to γ and equating it to zero,
we can obtain a provably positive closed-form solution for γ as

γ∗ = 1
2η +

(√
pHū−Σs−A−1Wt

)T A−1W1
η

, (8.16)

where η , 1TWA−TA−1W1. As a result, plugging the closed-form expression for
γ∗ into (8.14), we can eliminate the variable γ from our design formulation. After
some straightforward algebraic steps, the optimization problem (8.14) can be recast as
a discrete LCQP as

max
ū,t�0

qT
(√

pHū−A−1Wt
)
−
∥∥∥Q (√

pHū−A−1Wt
)
− g

∥∥∥2

s.t. uj ∈ L, j = 1, 2, ..., 2Nt,
(8.17)
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where q,(1/η)A−1W1, Q,I− η qqT and g,QΣs + (1/2)q are all non-variables. To
tackle the second difficulty, arose from the discrete domain of the optimization variable
ū, we first reduce (8.17) to a binary optimization problem through an equivalent binary
representation of ū and then propose two approaches to tackle the resulting problem, as
explained in the following.

The finite-alphabet constraint on ū implies that, for any j ∈ {1, 2, ..., 2Nt}, each
element uj must take its value from the set of quantization levels L, as specified in (8.6).
Given b, the set of levels L can explicitly be represented as

L =
{

∆
2

b∑
n=1

2n−1vn | vn ∈ {−1,+1}
}
, (8.18)

where the summation ∑b
n=1 2n−1vn generates the sequence {...,−3,−1,+1,+3, ...} for

different realizations of {v1, ..., vb}. In fact, each level in L corresponds to a binary
realization of {v1, ..., vb}. For example, with b = 3, the quantization level −∆/2 can be
represented by {v1, v2, v3} = {+1,+1,−1}. As a result, each element uj can be expressed
as

uj = ∆
2

b∑
n=1

2n−1vj,n, j = 1, 2, ..., 2Nt, (8.19)

where vj,n ∈ {−1,+1} for all n = 1, ..., b and j = 1, 2, ..., 2Nt are binary decision vari-
ables. Let b , (∆/2)[1, ..., 2b−1]T and vj = [vj,1, ..., vj,b]T denote, respectively, the vector
of binary decision variables and the vector of constants. Hence, one can rewrite (8.19)
as uj = vT

j b. Collecting all uj together, for j = 1, 2, ..., 2Nt, vector ū can be represented
as

ū = Vb, (8.20)

where V , [v1,v2, ...,v2Nt ]T. Using the binary representation of ū in (8.20), the opti-
mization problem (8.17) can be equivalently written as

max
V,t�0

qT
(√

pHVb−A−1Wt
)
−
∥∥∥Q (√

pHVb−A−1Wt
)
− g

∥∥∥2

s.t. vj,n ∈ {−1,+1}, n = 1, ..., b, j = 1, 2, ..., 2Nt.
(8.21)

Using the fact that HVb = (bT⊗H)vec(V), and denoting x , vec(V) and Hb , bT⊗H,
where Hb ∈ R2Nu×2bNt , we can further rewrite problem (8.21) as

min
x,t�0

qT
(
A−1Wt−√pHbx

)
+
∥∥∥Q (√

pHbx−A−1Wt
)
− g

∥∥∥2

s.t. xm ∈ {−1,+1}, m = 1, 2, ..., 2bNt,
(8.22)

where x , [x1, x2, ..., x2bNt ]T is the 2bNt × 1 vector of binary decision variables. The
optimization problem (8.22) belongs to the family of quadratic form minimization over
binary vectors, that are known to be NP-hard in general [211]. In the sequel, we introduce
two polynomial-time alternative solutions to tackle this binary optimization problem.
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Solution 1: Convex Relaxation

To deal with the binary constraints on x, one simple approach is to solve a convex
relaxation of (8.22) obtained by replacing the binary constraints on the elements of x
with appropriate box constraints. This relaxed problem can be expressed as the following
standard LCQP:

min
x,t�0

qT
(
A−1Wt−√pHbx

)
+
∥∥∥Q (√

pHbx−A−1Wt
)
− g

∥∥∥2

s.t. − 1 ≤ xm ≤ 1, m = 1, 2, ..., 2bNt.
(8.23)

It is worth mentioning that solving (8.23) results in a lower bound for the objective
function of the original binary problem (8.22). However, as will be shown in Section 8.6,
our numerical experiments reveal that a relatively noticeable number of the element-wise
box constraints are not active at the optimum of (8.23), particularly when the transmit
array size Nt is comparable to the number of UEs, Nu. This implies that the optimal
solution to (8.23) might not be even a feasible solution to the original problem (8.22).
Consequently, the desired objective in (8.10) may not be achieved, i.e., the quantization
distortion may not be fully avoided. Such an observation suggests the possibility of
further improvement of the relaxation method, while considering the solution to (8.23)
as our performance benchmark in Section 8.6.

Solution 2: Equivalent Biconvex Formulation

In what follows, we aim to achieve a more accurate solution with reasonable complexity
via treating the binary constraints in a more sophisticated way. We use an equivalent
biconvex implication of the binary constraints, given in the following lemma, which was
proven in [211].
Lemma 17. Let x and y be two real-valued vectors of equal length 2bNt. Then, provided
that −1 � x � 1 and yTy ≤ 2bNt, the condition xTy = 2bNt implies that x = y and
xm ∈ {−1,+1} for all m = 1, 2, ..., 2bNt.
Proof. See Appendix E.1 for a shorter proof.

As a direct consequence of Lemma 17, we further state the following corollary, which
has a straightforward proof.
Corollary 18. The binary optimization problem

min
x

f(x) s.t. xm ∈ {−1,+1}, m = 1, 2, ..., 2bNt, x ∈ Θ, (8.24)

where f(·) is a (not necessarily smooth) convex function on some convex set Θ, is equiv-
alent to

min
x,y

f(x)

s.t. − 1 ≤ xm ≤ 1, m = 1, 2, ..., 2bNt,

xTy = 2bNt, yTy ≤ 2bNt, x ∈ Θ.

(8.25)
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Using Corollary 18, we are able to rewrite the binary optimization problem (8.22) in
an equivalent continuous-domain form as

min
x,y,t

qT
(
A−1Wt−√pHbx

)
+
∥∥∥Q (√

pHbx−A−1Wt
)
− g

∥∥∥2

s.t. − 1 ≤ xm ≤ 1, m = 1, 2, ..., 2bNt,

xTy = 2bNt, yTy ≤ 2bNt, t � 0,

(8.26)

where xTy = 2bNt is referred to as the equilibrium constraint. Reformulation (8.26) is
still a non-convex problem due to the biconvex equilibrium constraint; however, efficient
approaches exist to solve a biconvex problem, such as the exact penalty method or the
alternating direction method of multipliers (ADMM). In this work, we adopt the exact
penalty method due to its simplicity. The accuracy and convergence characteristics of
the exact penalty method are studied in, e.g., [211] and [212].

According to the exact penalty method, the biconvex equilibrium constraint xTy =
2bNt can alternatively be implied by adding a penalty function to the objective function.
The considered penalty function consists of the difference 2bNt−xTy, as a measure of de-
viation from the equilibrium constraint, multiplied by a non-negative penalty parameter
µ. Accordingly, denoting the objective function of (8.26) by f(x, t), we can write

min
x,y,t

f(x, t) + µ
(
2bNt − xTy

)
,

s.t. − 1 ≤ xm ≤ 1, m = 1, 2, ..., 2bNt,

yTy ≤ 2bNt, t � 0,

(8.27)

It should be noted that, in general, problems (8.26) and (8.27) are not equivalent. How-
ever, by monotonically increasing the penalty parameter µ in each iteration up to a
certain threshold, successive solutions of the penalized problem (8.27) eventually con-
verge to the solution of the original biconvex problem. On the other hand, given t, it
can be shown that if f(x, t) is a Lipschitz continuous convex function on −1 � x � 1,
problem (8.27) has the same local and global minima as those of (8.26) for µ≥2L with
L denoting the Lipschitz constant of f(x, t) with respect to x; see [211, Th. 1]. As a
result, finding at least a locally optimal solution to problem (8.26) is equivalent to ob-
taining a local optimum of (8.27) at least. The following lemma states that the Lipschitz
continuity condition holds for the convex function f(x, t) on the domain −1 � x � 1.

Lemma 19. Given t, function f(x, t) is L-Lipschitz continuous on −1�x�1 and its
Lipschitz constant is given by

L , 2p
√

2bNt ‖QHb‖2 + 2√p
∥∥∥∥HT

b

(
QA−1Wt + QΣs + 1

2q
)∥∥∥∥ . (8.28)

Proof. See Appendix E.2.

Finally, we note that the objective function of problem (8.27), i.e., f(x, t)+µ(xTy−
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2bNt) is a biconvex quadratic function in x and y, i.e., fixing either x or y gives a convex
function in the other variable. Therefore, one can use a standard block coordinate descent
(BCD) algorithm in order to solve (8.27). Here, a coordinate block refers to either of the
vectors x, y or t. To be more specific, the objective function f(x, t)+µ(xTy−2bNt) can
be minimized over one of these vectors while the other two are fixed, and then, repeating
the same procedure for the other two blocks. The penalty parameter µ can be increased
monotonically, where the Lipschitz constant L provided in Lemma 19 determines the
increment limit of µ as a function of the other variables. Based on this approach, the
BCD algorithm solving (8.27) performs the following steps in the kth cycle:
i. sub-problem on t: Given x, maximizing f(x, t) over t is equivalent to a standard
LCQP. Hence, the value of t is updated as the solution to the following minimization
problem:

t(k) = argmax
t�0

qTA−1Wt +
∥∥∥Q (√

pHbx(k−1) −A−1Wt
)
− g

∥∥∥2
. (8.29)

ii. sub-problem on x: Given t and y, the value of x in the kth cycle can be updated
by solving the following box-constrained quadratic program:

x(k) = argmin
−1�x�1

f
(
x, t(k)

)
+ µ

(
2bNt − xTy(k−1)

)
. (8.30)

iii. sub-problem on y: The kth update of y can be obtained as the optimal solution
to the following problem:

y(k) = argmin
y

yTx(k) s.t. yTy ≤ 2bNt, (8.31)

which is a norm-constrained inner product minimization, simply admitting a closed-form
solution given by

y(k) =
√

2bNt
x(k)

‖x(k)‖
. (8.32)

iv. Updating µ: The penalty parameter µ is updated in every K cycles as

µ← min{2L, θµ}, (8.33)

where θ > 1 is a constant design parameter and L is the update of the Lipschitz constant
L which is computed by substituting x and t in (8.28) with their respective updated
values. The proposed algorithm is summarized in Algorithm 5. Eventually, the solution
x obtained from Algorithm 5 can be reshaped into matrix form using the relation x =
vec(V), and then substituted in (8.20) in order to achieve the precoded signal ū.

8.4.1 Computational Complexity Analysis

The overall computation cost of solving the finite-alphabet precoding design problem
(8.27) in terms of the required number of arithmetic operations, using the four-step
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Algorithm 5 BCD algorithm solving (8.27)
1: input: A,H,W,Σ, s, b
2: output: x
3: initialize: x(0) = y(0) ∈ R2bNt×1, t(0) ∈ R2Nu×1, µ(0), k = 0
4: set: θ > 1, K ≥ 1, εo > 0
5: while

∣∣∣2bNt − xTy
∣∣∣ > εo do

6: k ← k + 1
7: compute t(k) and x(k) by solving (8.29) and (8.30)
8: y(k) ←

√
2bNt x(k)/‖x(k)‖

9: update L via (8.28)
10: µ← min{2L, θµ}
11: end while

BCD approach summarized in Algorithm 5, is composed of two parts: inner iterations
to solve the sub-problems (8.29) and (8.30) on t and x, respectively, and updating y
using (8.32), and the outer iterations (cycles) over coordinate blocks.

The computation cost of the first part is dominated by the arithmetic complexity of
solving the two sub-problems corresponding to t and x. To efficiently solve (8.29) and
(8.30), one may use the off-the-shelf algorithms such as (accelerated) projected/proximal
gradient methods [135], or quasi-Newton approaches, e.g., L-BFGS-B [213]. In partic-
ular, for a Lipschitz smooth (not necessarily strongly) convex objective function as in
(8.29) and (8.30), all the aforementioned algorithms converge at a superlinear rate of
O(1/√εi) to reach an εi-optimal solution. For example, using the accelerated projected
gradient descent algorithm, the per-iteration complexity associated with sub-problems
(8.29) and (8.30) is dominated by matrix multiplications of limiting (i.e., as Nt, Nu →∞)
orders N2

u and b2N2
t , respective. Therefore, in the limiting case, the computational com-

plexity of solving both inner sub-problems with an accuracy of εi is of order

Ci = O
(
b2N2

t +N2
u

)
. (1/√εi), (8.34)

which accounts for the dominating complexity order of one cycle of the BCD algorithm.
On the other hand, given the Lipschitz continuity property of f(x, t), the BCD

algorithm based on the exact penalty method is guaranteed to converge to a first-
order KKT point with an accuracy of at least 2bNt − xTy ≤ εo in no more than⌈(

ln
(
2L
√
bNt

)
− ln (µεo)

)
/ ln(θ)

⌉
iterations [211], where µ is the initial value of the

penalty parameter µ and d·e denotes the ceiling operation. Thus, to have a complete
analysis of the complexity, we further need to evaluate the Lipschitz constant L. In Ap-
pendix E.3, we obtain an approximate upper bound on L, which is valid in the limiting
case where Nt, Nu →∞, as

L . O
(
p
√
bNt

)
. (8.35)
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Using (8.35), the maximum number of outer iterations (cycles) required to be performed
by the BCD algorithm in order to achieve an accuracy of εo can be obtained as

Co = O (d(ln (2p bNt)− ln (µεo)) / ln(θ)e) . (8.36)

Note that, in practice, we may treat µ and θ as constants and say that convergence is
achieved in O (ln(p bNt/εo)) outer iterations. Therefore, the worst-case complexity of the
BCD algorithm with accelerated inner gradient steps solving the optimization problem
(8.27) is of the following limiting order:

C = Ci . Co = O
((
b2N2

t +N2
u

)
ln (pbNt/εo)

)
.(1/√εi), (8.37)

from which it follows that the arithmetic complexity of solving the proposed finite-
alphabet design scales by O(b2 ln(b)) with the number of resolution bits b. In our simu-
lations, however, both inner and outer optimizations converge in a few (in the order of
tens of) iterations, as we will see in Section 8.6.

8.5 Special Case: One-Bit Quantized Precoding

The special case of employing one-bit DACs at the BS is of high practical importance,
since it is capable of significantly reducing the power consumption at the transmitter
side. In such a setup, where b = 1, each I/Q channel is quantized via a one-bit DAC
before passing through the RF chain and deriving the antenna elements. As a result, the
scalar quantization operation Q(·) simplifies to a sign operation, thereby the quantized
signal can be represented as

uq,j = sgn
(
Re{uj}

)
+ j sgn

(
Im{uj}

)
, j = 1, 2, ..., Nt, (8.38)

where sgn(·) denotes the sign function. Similarly, the real-valued representation of the
quantized signal becomes ūq,j = sgn(ūj) for all j = 1, 2, ..., 2Nt. Having B = 2b = 2 bins
to represent the quantizer’s output, we have the following set of quantization levels:

L =
{
−∆

2 ,+
∆
2

}
, (8.39)

located around zero, which is the only quantization threshold in this particular case, i.e.,
T = {0}. From (8.9), by substituting B = 2, we obtain the quantization step for the
considered symmetric uniform as

∆ =
√

2
Nt
. (8.40)

Accordingly, the design goal in the case with one-bit DACs is to have the precoded
transmit signal ū optimized such that

ūj = sgn(ūj) = ūq,j , j = 1, 2, ..., 2Nt, (8.41)
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along with the other design constraints as in problem (8.11). All the theoretical discus-
sions and derivations in Section 8.3 and 8.4 remain valid also for the one-bit case. To
obtain the precoded signal ū, one can use Algorithm 5 by considering b = 1. It is worth
mentioning that in this case, we have b = [20] = 1 while V is a 2Nt × 1 vector, and
thus ū = V = vec(V) = x, i.e., ū is a binary vector by itself and no further binary
representation is needed. Therefore, one can directly obtain ū through replacing x with
ū in Algorithm 5.

8.6 Simulation Results

The simulation setup is as follows. We consider a downlink MU-MIMO system with mul-
tiuser precoding and finite-precision quantization at the BS, where independent QPSK
symbols are intended for the users. At the users’ receiver sides, identical noise distri-
butions zi ∼ CN (0, σ2) with σ2 = 1 are assumed, for all i = 1, 2, ..., Nu. We assume a
Rayleigh block fading channel, where uncorrelated vectors {hi}Nu

i=1 are randomly gener-
ated for each fading block following the standard circularly symmetric complex Gaussian
distribution, i.e., hi∼CN (0, I). For the BCD algorithm, we set θ = 1.1 to avoid over-
shooting and initialize the penalty parameter with a small value as µ(0) = 0.01 to obtain
a reasonable starting point. We obtain the solutions to the inner sub-problems (8.29) and
(8.30) within each cycle of the BCD algorithm using an accelerated projected gradient
descent (APGD) algorithm [135]. Throughout this section, the finite-precision quantized
precoding techniques of interest are referred to as:

- MSM: Maximum safety margin method of [85]

- SQUID: Squared-infinity norm Douglas-Rachford splitting technique of [207]

- RQSLP: Quantized SLP via convex relaxation as in (8.23)

- QSLP: Quantized SLP via biconvex formulation as in (8.27)

We compare the results with those obtained from the conventional matched filter (MF),
ZF, and Wiener filter (WF) precoding techniques [5] with finite-precision quantized
outputs. We also consider the infinite-precision WF precoding and the infinite-precision
SLP, as our benchmarks. The presented results have been averaged over 100 fading block
realizations, each of 100 symbols.

In Fig. 8.3, we assess the loss in optimality due to the penalized reformulation with
soft CI constraints introduced in (8.13) with respect to the original problem in (8.12).
Recall that the CI constraint, in its exact form, is enforced by the equality √pHū =
Σs + A−1Wt, as in problem (8.12). On the other hand, the soft CI constraints in
the reformulated problem (8.13) are enforced via the penalty function ‖√pHū −Σs −
A−1Wt‖2. Hence, as a measure of deviation from the CI constraints, we consider the
expression ‖√pHū−Σs−A−1Wt‖2, which equates to zero when the CI constraints are
all satisfied with equality. Note that the results shown in Fig. 8.3 have been obtained
by excluding the binary constraints from problems (8.13) and (8.12). In Fig. 8.3 (a), we
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(a) (b)

Figure 8.3: The loss in optimality due to the penalized formulation with soft CI constraints
for Nu = 4: (a) Deviation form the CI constraints versus the number of transmit antennas Nt;
(b) Comparison of γ∗ obtained from the original and the reformulated problem versus Nt.

Table 8.1: Average percentage of inactive binary constraints in the RQSLP solution for
different values of Nt with Nu = 4 and b = 1.

SNR Transmit array size (Nt)

8 12 16 24 32 64

0 dB 35% 26% 21% 15% 12% 7%

10 dB 40% 30% 24% 18% 15% 9%

plot this deviation as a function of Nt, for a fixed Nu = 4 and for two different transmit
SNRs. As can be seen, the deviation from CI constraints is smaller than 0.1 in the entire
range of Nt, and further, it dramatically decreases with increasing Nt. Moreover, it is
shown that at higher SNRs, the soft CI constraints are satisfied with more accuracy. We
also plot in Fig. 8.3 (b) the optimal value of variable γ, denoted by γ∗, obtained from
problems (8.13) and (8.12). This figure shows that both problems result in almost the
same value for γ∗. Overall, it follows from Fig. 8.3 that the loss in optimality due to the
penalized reformulation (8.13) is quite insignificant, particularly for large values of Nt.

As mentioned in Section 8.4, by simply treating the binary constraints through convex
relaxation, as in problem (8.23), we may not be able to satisfy some of the binary
constraints at the optimum point. In order to evaluate this issue, we report, in Table 8.1,
the average percentage of inactive constraints at the optimum of problem (8.23) as a
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Figure 8.4: The users’ noise-free received signal with (Nt, Nu) = (16, 4) at a transmit SNR
of 0 dB, i.e., p/σ2 = 1.

function of the transmit array size Nt. By inactive constraints, we refer to those binary
constraints that are not satisfied with equality. It can be seen that for a larger transmit
array, more constraints become active at the optimum point. However, for smaller values
of Nt, a noticeable percentage of the binary constraints remain inactive. For example,
with Nt = 16, around 8 constraints out of a total number of 2Nt = 32 constraints are
not satisfied. This may lead to a significant performance loss, as we will see later in this
section. Furthermore, it is shown in Table 8.1 that the percentage of inactive constraints
becomes larger at higher SNRs. As such, one expects the bit error rate curve to show
an error floor in the high SNR regime, as will be verified by the subsequent results.

For CI-based symbol-level precoded downlink transmission, the scatter plot of the
noise-free signals received at the UEs is depicted in Fig. 8.4 with different DAC reso-
lutions, where the dashed and the dotted lines respectively represent the ML decision
regions and the CI regions. The received signals, in all cases, are pushed away from
the decision boundaries. This leads to an improved detection performance as we will
see later in this section. Using the SLP technique with infinite-precision outputs, i.e.
problem (8.22) excluding the binary constraints, the received signals are desirably lo-
cated within the corresponding distance-preserving CI region. However, as it might be
expected, the received signals resulted from the QSLP approach with finite-resolution
DACs are more spread over the CI region. In particular, it can be seen from the figure
that increasing the DACs’ resolution from b = 1 to b = 3 reduces the variance of the
received signal cloud, and at the same time, pushes the signals farther from the decision
boundaries which can enhance the symbol error probability.

In Figs. 8.5 (a) and 8.5 (b), we compare the BER performances achieved by the
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precoding schemes of interest, with different DAC resolutions, versus transmit SNR,
i.e., p/σ2 for two practical systems with (Nt, Nu) = (16, 4) and (Nt, Nu) = (64, 8).
The results obtained from the QSLP approach indicates that employing DACs with
higher resolutions at the BS results in a noticeably improved BER performance at the
UEs. In particular, increasing b by one bit leads to at least 0.5 dB gain at BER =
10−3. Remarkably, the proposed QSLP approach with b = 4 shows an uncoded BER
performance well close to that of the infinite-resolution WF precoding scheme, but with
a lower hardware complexity and power consumption, especially for the larger system
with (Nt, Nu) = (64, 8) where the performance loss due to using DACs with b = 4 bits
of resolution at BER = 10−3 is less than 0.8 dB. On the other hand, for the one-bit
quantized case, it can be seen that the proposed QSLP method with b = 1, outperforms
both the MSM and the SQUID one-bit precoders. The gain is around 1 dB in the
applicable range of SNR (i.e., 5-10 dB) for an uncoded QPSK signaling. Furthermore,
the QSLP approach performs superior to our naive precoding formulation RQSLP, which
exploits CI in the design but simply treats the one-bit constraints via convex relaxation.
From Fig. 8.5 (a), we can further observe that the one-bit precoders MSM, SQUID and
RQSLP all experience an error floor at high SNRs (i.e., above 15 dB). This indicates that
these one-bit precoders require more degree of freedoms (either more transmit antennas
or higher resolution bits) to perform well for the multiuser system with (Nt, Nu) =
(16, 4). Further, we plot, in Fig. 8.6, the BER performances of different precoding
schemes versus the number of transmit antennas Nt, with the number of UEs fixed as
Nu = 8. As can be seen from this figure, the BER (in logarithmic scale) decreases
linearly with increasing Nt for all the schemes, but with different slopes. In particular,
using the QSLP approach with higher resolution DACs results in a larger reduction slope
for the BER curve as a function of Nt. Moreover, in comparison with the MSM and the
SQUID one-bit precoders, the one-bit QSLP technique shows a larger reduction slope,
and hence, a better BER performance, as Nt increases. As an illustrative example, for
fixed Nu = 8, the MSM technique requires 5 more transmit antennas than that required
for the one-bit QSLP precoder to achieve BER = 10−3 at an SNR of 5 dB.

We saw from the results in Figs. 8.5 that the QSLP approach has a degraded BER per-
formance compared to the infinite-resolution WF scheme. This degraded performance,
however, is achieved using finite-resolution DACs with much lower power consumption.
In order to have a fair comparison, we introduce power efficiency as a figure of merit
that incorporates both aforementioned performance measures. More precisely, we define
the power efficiency ρ as the ratio between the number of successfully decoded bits at
the UEs and the amount of power consumption in Watts at the BS, i.e.,

ρ ,
(1− BER) log2(M)

PBS
, (8.42)

where M is the modulation order and PBS denotes the power consumption at the BS.
We consider the overall power dissipated by the BS’s RF front-end components as the
power consumption at the BS and adopt a simple model for this power as follows. The
transmit RF front-end of a multi-antenna system is commonly composed of one baseband
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(a) (b)

Figure 8.5: Average per-user BER versus transmit SNR for an MU-MIMO system with (a)
(Nt, Nu) = (16, 4); (b) (Nt, Nu) = (64, 8).

Figure 8.6: Average users’ BER versus the number of transmit antennas Nt for a fixed
number of users Nu = 8 at a transmit SNR of 5 dB.
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processor, several RF chains, each preceded by a pair of DACs (i.e., one DAC for each
I/Q channel), and power amplifiers (PA). Accordingly, the BS transmit architecture
requires 2Nt DACs, Nt RF chains and PAs, and therefore, its power consumption can
be modeled as

PFD = PBB +Nt(2PDAC + PRF + PPA), (8.43)

where PBB, PRF, PPA, and PDAC respectively denote the power consumption of the base-
band processor, one single RF chain, one single PA and one single DAC. Broadly speak-
ing, the power consumption of a DAC scales linearly in sampling rate and exponentially
in the number of bits per sample (i.e., resolution bits). For DACs of binary-weighted
current-steering type [214], the approximate power consumption of a single DAC is given
in [215] by

PDAC = 3
2
(
2b − 1

)
× 10−5 + 9

2 b Fs × 10−12, (8.44)

where Fs denotes the sampling frequency. In our simulations, we consider Fs = 1 GHz
and reference values of PRF =40 mW, PPA =20 mW, and PBB = PDAC, as in [203].

In Fig. 8.7, we plot the energy efficiency of the proposed QSLP approach with DACs
of different resolution bits b versus transmit SNR and the number of transmit antennas,
respectively. We further consider the WF scheme with moderate-resolution 8-bit DACS
as our benchmark for comparison. In Fig. 8.7, the power efficiency is plotted as a function
of the number of transmit antennas Nt for a fixed number of UEs, i.e., Nu = 8. The
proposed one-bit QSLP approach is shown to be the most power efficient scheme among
the others. Particularly, the gain in power efficiency compared to the WF scheme with
8-bit DACs is about 0.84 bit/Watt for Nt = 16. This is obviously due to the fact that a
much lower amount of power – about 9 mW according to (8.44) – is consumed by one-bit
DACs, as compared to a power consumption of around 76 mW for 8-bit DACs. It can
further be seen from the figure that for a larger transmit antenna array, a lower power
efficiency can be achieved. This can be verified via the definition of power efficiency in
(8.42) as a reciprocal function of the power consumption, with the power consumption
scaling linearly with Nt.

Following the analytic discussion on computational complexity in Section 8.4.1, we
numerically evaluate the complexity of the QSLP technique in Fig. 8.8 and 8.9. For
different values of DAC resolution b, the complexity in terms of the required number
of outer iterations (i.e., cycles) till convergence of the BCD algorithm solving (8.27),
is shown in Fig. 8.8 versus transmit SNR in linear scale, i.e., p/σ2. The complexity
analysis in Section 8.4.1 indicates that the number of cycles till convergence of the BCD
algorithm scales logarithmically with b and p, i.e., with orders O (ln(b)) and O (ln(p)),
respectively. This can be further verified from the numerical results in Fig. 8.8. Recall
that in our simulations, we consider σ2 = 1, and hence p/σ2 refers also to the transmit
power. For the special case of b = 1, the numbers of inner and outer iterations required
for a normalized squared error of 10−4 are separately plotted in Fig. 8.9. It can be seen
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Figure 8.7: Power efficiency as a function of Nt for a fixed number of users Nu = 8 at SNR
= 5 dB.

from the simulation results that all the iteration numbers grow logarithmically with
transmit power p, while the number of inner iterations to solve the sub-problem on t
shows a relatively faster growth with p. However, we remark that the update iterations
on t are of dimension 2Nu, whereas the dominant complexity order comes from the even
larger dimension 2Nt. For this reason, in our subsequent evaluation, only those 2Nt-
dimensional computations updating x are accounted for the complexity cost of the QSLP
approach. To evaluate the convergence behavior of the BCD algorithm solving (8.27)
as a function of system parameters, i.e., Nt and Nu, we report in Table 8.2 the average
number of required iterations for different values of p/σ2 within the effective range of
SNR associated with QPSK signaling. With reference to Table 8.2, the proposed QSLP
method offers a favorably fast convergence speed, in the order of tens of iterations,
even for large system parameters. For instance, at p/σ2 = 3.4 (≈ 5.4 dB), the QSLP
algorithm needs only ∼ 48 and ∼ 56 iterations on average to achieve those uncoded BER
performances as shown in Figs. 8.5 (a) and 8.5 (b). Table 8.2, on the other hand, indicates
that the complexity of QSLP (in terms of the number of iterations till convergence) scales
linearly with Nt, which is an attractive feature for implementation purposes.

8.7 Conclusions

We proposed a finite-alphabet symbol-level multiuser precoding scheme for massive MU-
MIMO downlink system equipped with finite-resolution DACs. To design the precoder,
we adopted a power-constrained max-min fair criterion with the aim of exploiting CI
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Figure 8.8: Average number of outer iterations of the QSLP method to reach a squared error
of 10−4 as a function of transmit SNR with (Nt, Nu) = (16, 4).

Figure 8.9: Average number of outer and inner iterations for the QSLP method to reach a
squared error of 10−4 as a function of transmit SNR in linear scale.
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Table 8.2: Average number of iterations with computations of dimension 2Nt till convergence
of the QSLP algorithm.

p/σ2 (Nt, Nu)

(8, 2) (16, 4) (64, 8) (128, 16)

3.4 (≈ 5.4 dB) 35.3 47.3 55.7 64.9

9.2 (≈ 9.6 dB) 48.8 65.8 75.7 87.2

at the users. The design problem of interest, in its original form, is a discrete linearly-
constrained quadratic programming whose solution requires a high computational com-
plexity. We dealt with this issue in several steps and reformulated the problem into
an equivalent continuous-domain form, which can efficiently be solved using a standard
block coordinate descent algorithm. We showed by simulation results that employ-
ing DACs with higher resolutions leads to lower BERs, but at the cost of reducing the
power efficiency. Focusing on the case with one-bit DACs, we observed that comparisons
between our proposed quantized symbol-level precoding (namely, QSLP) technique and
some other well-known one-bit precoding schemes shows a superior performance in terms
of uncoded BER, with up to 2 dB gain depending on the simulation setup. Furthermore,
our analytical and numerical analyses on complexity indicate that the proposed QSLP
algorithm converges in a few tens of iterations in practical massive MU-MIMO systems.

196



Chapter 9
Hybrid Symbol-Level Precoding for
mmWave MU-MIMO Systems

In this chapter, we address the SLP design problem for a millimeter wave (mmWave)
downlink MU-MIMO wireless system where the transmitter is equipped with a large-
scale antenna array. The high cost and power consumption associated with the massive
use of radio frequency (RF) chains prohibit fully-digital implementation of the precoder.
Therefore, we consider a hybrid analog-digital architecture where a small-sized baseband
precoder is followed by two successive networks of analog on-off switches and variable
phase shifters according to a fully-connected structure. Using the switching network al-
lows us to implement a phase shifter selection mechanism. We jointly optimize the digital
baseband precoder and the states of the switching network on a symbol-level basis, i.e.,
by exploiting both the CSI and the instantaneous data symbols. In contrast, the phase-
shifting network is designed only based on the CSI due to practical considerations. Our
approach to this joint optimization is to minimize the Euclidean distance between the
optimal fully-digital and the hybrid symbol-level precoders. The phase shifter selection
mechanism allows for significant power-savings in the analog precoder by switching some
of the phase shifters off according to the switches’ instantaneously optimized states. Our
numerical results indicate that up to 50 percent of the phase shifters can be switched
off, on average, in systems where the number of transmit antennas is much larger that
the number of RF chains and users. We provide an analysis of energy efficiency by
adopting appropriate power consumption models for the analog precoder. Accordingly,
we show that the energy efficiency of precoding can substantially be improved thanks to
the phase shifter selection approach, compared to the fully-digital and state-of-the-art
hybrid symbol-level schemes.
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9.1 Introduction

Millimeter wave (mmWave) communication has been widely accepted as a prime tech-
nology for the emerging outdoor/indoor wireless communication deployments, enabling
multi-gigabit-per-second data rates thanks to the enormously available unregulated spec-
trum resources within 30-300 GHz band [216–218]. Communication in the mmWave
band, however, suffers from an order-of-magnitude increase in the free-space path loss,
higher shadow fading, and more severe penetration losses compared to the legacy lower-
frequency systems [219]. On the other hand, the shorter wavelength of mmWave signals
makes it possible to pack a larger number of antenna elements in the same physical di-
mension, allowing for large-scale spatial multiplexing and highly directional beamform-
ing. Employing large antenna arrays, commonly known as massive MIMO, can further
provide considerable beamforming gain to compensate for severe propagation losses at
mmWave frequencies [197], which is indispensable to achieve high-quality communication
links in mmWave systems.

In traditional MIMO systems, the convention is to perform baseband precoding fully
in the digital domain, which enables modification of both the amplitudes and phases of
complex signals [3, 4]. This fully-digital signal processing, however, requires one dedi-
cated radio frequency (RF) chain per antenna element, which is challenging to imple-
ment in practical systems with large antenna arrays due to the prohibitive cost and high
power consumption of mixed-signal components, especially when operating at mmWave
frequencies [195]. Given mmWave massive MIMO practical constraints, the design of
cost-effective low-complexity precoding implementations has become an active line of
research. Various precoding schemes, mostly aimed at either simplification of or reduc-
ing the number of RF chains, have been proposed for both single-user and multiuser
MIMO systems, among which we refer to analog-only beamforming using RF phase
shifters [220–222], antenna (sub-set) selection [223, 224], quantized fully-digital precod-
ing via low-resolution (especially one-bit) digital-to-analog converters (DAC) [205,207],
and hybrid analog-digital beamforming [195,197,225–227].

Hybrid analog-digital precoding is a cost-effective alternative to enable both multi-
stream transmission and large beamforming gains via splitting the signal processing
operation between the digital and analog domains. In hybrid architectures, a small-
sized digital precoder is followed by a high-dimensional analog precoder which is usually
implemented using RF phase shifters and/or switches [225]. Such a setup allows for
employing fewer RF chains, scaling with the number of multiplexed data streams rather
than the number of antennas. Specifically, in multi-user mmWave systems, the digital
precoder is so designed to mitigate the inter-user interference, whereas the analog RF
precoder is used to improve the antenna array gain [228]. Nevertheless, while designing
the digital precoder is straightforward, the design and implementation of the analog
precoder are usually nontrivial.

For large-scale multiuser mmWave systems, the design of block-level hybrid schemes
where the precoding solution solely relies on the CSI, has been extensively addressed.
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However, symbol-level approaches to hybrid precoding are not yet well studied. Symbol-
level hybrid precoding design under mmWave hardware limitations has been addressed
in some recent work [80, 81, 83]. In [80], the authors adopt a disjoint sub-optimal ap-
proach to optimize the digital and analog precoders with a focus on the analog precoder
design, where different techniques are studied and compared. Power-efficient transmitter
architectures, including antenna selection and analog-only, are studied for symbol-level
precoding in [75], where it has been shown that the analog-only design can outperform
the other schemes especially when the transmit array size is much larger than the num-
ber of UEs. An even more cost-effective hybrid structure is considered in [81] where
the baseband digitally precoded signal is subject to one-bit quantization due to the use
of low-cost one-bit DACs for each RF chain. This excessive constraint, however, may
limit the potential gain of symbol-level baseband signal processing. The joint optimiza-
tion of digital and analog symbol-level precoders is addressed in [83], where the authors
exploit the symbol-based design of the phase-shifting network to achieve the perfor-
mance of the fully-digital precoder. In practice, the design needs to switch between the
phase states of the variable phase shifters at the symbol rate. Keeping in mind target
data rates of multi-Gbps in mmWave systems, such a high phase-switching speed re-
quirement might be prohibitive in two aspects: first, it significantly increases the power
consumption in the analog circuitry, and second yet, more importantly, it might be chal-
lenging from an implementation point of view considering the current RF semiconductor
technologies [229]. Among the aforementioned symbol-level precoding techniques, those
proposed in [81] and [83] are more related to the scope of this work, and therefore will
be considered in the chapter for comparison purposes.

Analog phase shifters and switches are two key components of the mmWave systems.
A wide variety of hybrid precoding architectures are essentially based on employing ei-
ther phase shifters or switches, or even a combination of both where the phase-shifting
network is controlled by a preceding network of switches; see, e.g., [225] and [203] where
several possible architectures are described. Employing the combination of phase-shifting
and switching networks in the analog RF precoder has a two-fold advantage. On the one
hand, it can provide additional degrees-of-freedom (DoF) brought by the switching net-
work when designing the analog precoder, and on the other hand, it allows for potential
power-savings through switching some of the phase shifters off. From a power consump-
tion perspective, one further needs to take into account the excessive power consumed
by the switching network. For this purpose, power consumption models such as those
introduced in [203] and [205] can be used. However, roughly speaking, the excessive
power consumption due to the operation of switches is relatively small compared to the
power reduction in the phase-shifting network. One reason is that, in general, switches
consume less power than phase shifters. Furthermore, recent advances in RF circuit de-
sign have enabled the implementation of low-power high-performance switches working
at mmWave frequencies, making the switching operation even more energy-efficient; see,
e.g., [230–232]. Therefore, the use of analog switches in combination with the phase-
shifting network is an attractive architecture for hybrid mmWave systems. In this line
of research, hybrid implementations with the so-called phase shifter selection, where a
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two-state on-off switch precedes each phase shifter, have been studied for conventional
block-level precoding; see [233–235]. For example, in [233], it has been shown that
the combination of phase shifters and switches offers noticeably higher energy efficiency
compared to phase shifter-only architectures, while the spectral efficiency is almost pre-
served. More specifically, significant power consumption reductions are possible without
sacrificing the spectral efficiency even when up to 50% of the phase shifters are turned
off [234]. To the best of authors’ knowledge, such an approach has not been investigated
so far for hybrid symbol-level precoding.

In this work, we consider a hybrid analog-digital architecture for symbol-level pre-
coder where the analog precoder is implemented using a network of variable phase shifters
preceded by an on-off switching network of the same dimension according to a fully-
connected structure. As for the analog precoder, the phase states of the phase-shifting
network are designed solely based on the instantaneous CSI, i.e., they stay unchanged
within the duration of one channel coherence block. On the other hand, the on-off states
of the switches as well as the baseband digital precoder are jointly optimized in our
design on a symbol-level basis. Our approach to this optimization is to minimize the
`2-norm distance between the outputs of hybrid and optimal fully-digital symbol-level
precoders. For the latter precoder, we adopt a power-constrained max-min SINR crite-
rion subject to user-specific CI constraints, where the CI constraints are assumed to be
distance-preserving, as characterized in [23]. Accordingly, the main contributions of this
chapter are as follows:

1. We exploit the notion of CI along with the phase shifter selection approach in
designing the hybrid precoder. The CI-based design can improve the symbol de-
tection performance at the receiver side, while the phase shifter selection approach
brings additional DoF to the design problem and further enables the reduction of
dissipated power in the phase-shifting network. The use of on-off switches, how-
ever, makes our design problem an NP-hard binary optimization. We deal with
this difficulty by transforming the original problem into a biconvex form using an
equivalent continuous-domain implication of the binary constraints. Efficient sub-
optimal solutions can then be obtained via a standard block coordinate descent
(BCD) algorithm.

2. We study the convergence of the proposed hybrid precoding algorithm, where it will
be shown that convergence to a stationary point is guaranteed. We further analyze
the required computational complexity in the large system limit. In our analysis,
we consider both the Newton complexity, i.e., the number of iterations required
till the BCD algorithm converges, and the per-iteration complexity. Moreover, we
show via simulation results that the BCD algorithm usually converges within a few
iterations for practical values of system parameters, i.e., array size, number of RF
chains, and users.

3. We provide an analysis of energy efficiency, incorporating both performance and
power consumption, to evaluate and compare different fully-digital/hybrid pre-
coding architectures. For this purpose, we adopt appropriate power consumption
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models to take into account the power dissipated by the transmitter’s RF circuitry.
According to this analysis, the phase shifter selection mechanism offers significant
improvements in the energy efficiency of precoding by switching off up to 50 percent
of the phase shifters.

4. Our design approach is independent of the phase-shifting precision; however, to
evaluate how this affects the ultimate precoding performance, in our simulations,
we consider two implementations using infinite and finite resolution phase shifters.
It will be shown that implementing the phase-shifter-selection-enabled analog pre-
coder using low-resolution phase shifters can lead to gains of tens of Mbps/Joule
per user in energy efficiency, compared to the case with infinite-resolution phase
shifters.

The rest of this chapter is organized as follows. In Section 9.2, we describe the
adopted system, signal, and channel model. We begin Section 9.3 by designing the
phase-shifting network. Then, we study the symbol-level precoding problem for fully-
digital architecture. This is followed by the derivation of the proposed hybrid precoding
algorithm and analyses of its convergence and computational complexity. In Section
9.4, we provide energy efficiency analysis and explain the power consumption model.
Simulation results are presented and discussed in Section 9.5. Finally, we conclude the
chapter in Section 9.6.

9.2 System, Signal and Channel Model

In this section, we describe the system and channel model considered in this chapter.

9.2.1 System and Signal Model

We consider a single-cell single-carrier mmWave multiuser MIMO system. The BS, which
is equipped with a large-scale antenna array of Nt elements and a (typically) much
smaller number of transmit RF chains, denoted by Nl, simultaneously communicates
independent data streams to Nu single-antenna users, each supporting single-stream
transmission. The maximum number of transmitted data streams (i.e., the maximum
number of users scheduled within a transmission block) is limited by the number of
available RF chains at the BS, which leads to the assumption Nu ≤ Nl < Nt. Due to
the limited number of transmit RF chains, the fully-digital implementation of multiuser
precoder is not possible, and therefore, a hybrid digital-analog architecture is employed
where the digital baseband precoder is followed by the RF chains and an analog RF
precoder, as shown in Fig. 9.1. It is worth noting that the baseband precoder is capable
of modifying both the amplitudes and phases of the input symbols while the RF precoder
adjusts only the phases of the upconverted RF signals.
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Digital baseband precoder

We consider a (non-linear) symbol-level baseband precoder that calculates the digi-
tal outputs specifically for every set of the users’ intended symbols. Accordingly, the
discrete-time complex-valued Nu × 1 modulated symbol vector s = [s1, s2, ..., sNu ]T,
where E{ssH} = I, is preprocessed in the digital domain using the symbol-level pre-
coder, resulting in the output baseband signal uBB ∈ CNl×1. In contrast to linear
precoding schemes, the nonlinear-precoded signal uBB is directly designed and may not
be uniquely decomposable as a linear combination of the users’ precoding vectors. The
baseband precoded signal uBB is then passed through the RF chains for upconversion to
the carrier frequency.

Analog RF precoder

We assume the analog precoder to be implemented following a fully-connected struc-
ture with two successive switching and phase-shifting networks of dimension Nl × Nt
that map Nl digital outputs to Nt precoded analog signals feeding the transmit anten-
nas; see [225, 234, 235] where similar hybrid architectures have been considered. To be
more specific, each RF chain upconverts a digitally precoded signal and feeds it to a
phased-array with Nt variable phase shifters, each preceded by a dedicated analog on-
off switch determining whether the corresponding phase shifter is active or deactivated.
The phase-shifting network outputs are then combined through Nt analog combiners
before being fed to the antenna elements. Let F ∈ CNt×Nl and T ∈ B represent the
phase-shifting network and the on-off states of the switching network, respectively, where
B ,

{
Y ∈ {0, 1}Nt×Nl |Y1 � 1,YT1 � 1

}
. Thereby, the entire RF precoder can be rep-

resented by F ◦T. Note that the set B is defined such that the selection matrix T has
no all-zero row and column, where the former case corresponds to an antenna selec-
tion scheme, and the latter case excludes an RF chain from the transmitter’s analog
circuitry; however, neither is of interest in this work. We further note that since F is
implemented using analog phase shifters, each element of F ∈ CNt×Nl is normalized such
that |fk,j | = 1/

√
Nt with |fk,j | denoting the magnitude of the element in the kth row

and jth column of F.
Under the described system model, the vector collecting the baseband received signals

for all Nu users is given by

r = √ρH (F ◦T) uBB + z, (9.1)

where r ∈ CNu×1 is the received signal vector, ρ is the instantaneous transmit power,
H ∈ CNu×Nt represents the mmWave multiuser channel, and z ∼ CN (0,Σ) is a circu-
larly symmetric complex Gaussian noise vector with Σ , diag(σ2

1, σ
2
2, ..., σ

2
Nu) where σ2

i

denotes the noise variance at the receiver of the ith user, for i = 1, 2, ..., Nu. The instan-
taneous total transmit power is constrained by ρ through enforcing ‖(F ◦T)uBB‖2 = 1.
It is further assumed that the BS has perfect knowledge of the instantaneous channel H.
In practical wireless systems, the CSI can be estimated at the receiver via, e.g., pilots
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Figure 9.1: Schematic diagram of the considered hybrid transmitter architecture with fully-
connected switching and phase-shifting networks.

or training sequences, and then fed back to the BS. Efficient mmWave channel estima-
tion techniques that exploit the geometric nature of mmWave channels are presented
in [236, 237]. At the receiver side, we assume that each user is capable of performing
optimal single-user detection of the received signal using, e.g., the maximum likelihood
(ML) detector.

9.2.2 Multiuser mmWave Channel Model

The mmWave propagation environment is known to feature limited multipath com-
ponents. To capture this sparse scattering nature, the narrowband clustered channel
modeling based on the Saleh-Valenzuela model is commonly used [238–240]. Under this
model, the channel vector corresponding to a single user is a summation over the contri-
butions of Nc scattering clusters, with each cluster contributing Np propagation paths
between the BS and the user. Assuming the same number of clusters and scatterers to
be seen by each user, the narrowband mmWave channel vector for the jth user can be
expressed as

hH
j =

√
Nt

NcNp

Nc∑
i=1

Np∑
l=1

αj,i,l aH(φj,i,l, θj,i,l), (9.2)

where hj ∈ CNt×1 such that H = [h1,h2, ...,hNu ]H. For the lth path in the ith scattering
cluster seen by the jth user, αj,i,l ∼ CN (0, 1) denotes the circularly symmetric complex
Gaussian gain of the path (i.e., the small-scale fading component), φj,i,l and θj,i,l are
respectively the azimuth and elevation angles of departure (AoD), and a(φj,i,l, θj,i,l)
represents the normalized transmit array response vector evaluated at specific azimuth
and elevation angles φj,i,l and θj,i,l. The array response vector further depends on the
array geometry. For uniform linear array (ULA), where the antenna elements are linearly
and equally spaced, the array response vector is independent of the elevation angles θj,i,l
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and follows the Vandermonde structure given by

a(φj,i,l)= 1√
Nt

[
1, ej 2π

λ
d sin(φj,i,l), ..., ej(Nt−1) 2π

λ
d sin(φj,i,l)

]T
, (9.3)

where λ and d respectively denote the signal wavelength and the inter-element antenna
spacing, and j =

√
−1. Note that the elevation angles θj,i,l appear in the array response

vector in case a uniform planar array (UPA) structure is employed [9]. The variance
of the path gains αj,i,l and the normalization constant

√
Nt/(NcNp) are set such that

E
{
‖H‖2F

}
= NtNu.

9.3 Hybrid Symbol-Level Precoding Design

We start by designing the analog phase-shifting network. The matrix F representing
the phase shifters’ angles is usually considered to be solely dependent on the aggregate
channel H. Here, we adopt an analog design based on the singular value decomposition
(SVD) of H, which can be expressed as

H = UΣVH, (9.4)

where Σ is an Nu × Nt rectangular diagonal matrix with the singular values on the
diagonal in a descending order, and U and V , [v1,v2, ...,vNt ] are respectively Nu×Nu
and Nt×Nt unitary matrices with the columns representing the left and the right singular
vectors. We align the angles of the phase-shifting network to those of the first Nl right
singular vectors of H, i.e., {v1, ...,vNl}, with an element-wise normalization due to the
constant modulus constraint of the phase shifters. Accordingly, we set

fk,j = 1√
Nt
ejϕk,j , k = 1, 2, ..., Nt, j = 1, 2, ..., Nl, (9.5)

where ϕk,j denotes the phase of the kth element in vj . Aligning the angles of the phase-
shifting network according to the first Nl right singular vectors of H enables the system
to achieve larger array gains. Note that similar aligning schemes based on the SVD
decomposition of the channel are used in, e.g., [81, 234]. Although infinite-resolution
phase shifters are required for an accurate implementation of this approach, in practice,
the use of finite-resolution phase shifters is preferred due to practical constraints of
variable phase shifters, particularly in systems with large-scale antenna arrays as the
number of phase shifters is proportional to the number of antenna elements. Therefore,
in a more realistic implementation with discrete phase shifters, the phase states are
quantized up to (typically) low bits of precision. We assume a quantization rule such
that the phase of each entry of F is mapped to the nearest phase value in the discrete
set {2mπ/2bPS : m = 0, 1, ..., 2bPS−1}. Accordingly, the quantized phase of fk,j , denoted
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by ϕ̂k,j , can be obtained as

ϕ̂k,j = 2m̂π
2bPS

, m̂ = argmin
m∈{0,1,...,2bPS−1}

∣∣∣∣ϕk,j − 2mπ
2bPS

∣∣∣∣ , (9.6)

with bPS denoting the number of phase shifter’s resolution bits. Although our design
process is independent of the precision of the entries of F, we investigate in Section 9.5
the performance of the proposed hybrid precoding scheme for both finite-resolution and
discrete phase shifters.

Accordingly, for a given symbol vector s, the channel matrix H and the phase-
shifting network matrix F, our design objective is to jointly and instantaneously (i.e., on
a symbol-level basis) optimize the digitally precoded signal u as well as the states of the
switching network, represented by T. In our design, we utilize a baseline fully-digital
precoding scheme and aim to optimize the hybrid precoder such that it performs as close
as possible to the baseline scheme. To this end, we first overview the SLP design for a
fully-digital architecture, which will be used as the baseline scheme in our subsequent
derivation of the proposed hybrid precoding approach.

Let consider a fully-digital transmitter architecture where a dedicated RF chain
drives each antenna element, i.e., Nu ≤ Nl = Nt. We assume that the symbol-level
precoder is designed via a power-constrained optimization problem with a max-min fair
objective subject to user-specific CI constraints. In such a scenario, we have shown in
Section 3.5 that the SLP design formulation can be expressed in a convex form as

max
ūFD ,d�0

min(d)

s.t. √ρ H̄ūFD = Σ̄s̄ + A−1Wd,
ūT

FDūFD ≤ 1,

(9.7)

which can efficiently be solved via several off-the-shelf algorithms [121]. The optimal
solution to (9.7) is, in fact, a performance upper bound that can be achieved by the
symbol-level precoder when the number of BS’s RF chains is equal to Nt. We use this
optimal yet impractical solution in developing our hybrid SLP algorithm and also as a
performance benchmark for comparisons in Section 9.5.

9.3.1 Hybrid Precoder with Phase Shifter Selection

We use the optimal fully-digital precoded signal to design the hybrid symbol-level pre-
coder. More specifically, denoting by u?FD the optimal solution to (9.7), we aim to find
the digital-domain precoded signal uBB and the selection matrix T such that the output
of the hybrid precoder, i.e., (F ◦ T)uBB has a minimum Euclidean distance from u?FD .
The corresponding optimization problem is therefore can be written as

min
uBB ,T∈B

∥∥∥(F ◦T)uBB − u?FD

∥∥∥2
s.t. ‖(F ◦T)uBB‖

2 = 1. (9.8)
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To proceed, by defining G , 2T − 1 and g , vec(G), we recast (9.8) in an equivalent
form which is more convenient for our later use, i.e.,

min
uBB ,g

∥∥∥(uT
BB ⊗ INt) diag(vec(F)) g + FuBB − 2 u?FD

∥∥∥2

s.t. 1
4‖(u

T
BB ⊗ INt) diag(vec(F)) g + FuBB‖

2 = 1,

g ∈
{
{−1,+1}NtNl×1 ∩ B̄

}
,

(9.9)

where

B̄ ,
{

y ∈ RNtNl×1 | 12 (1Nl×1 ⊗ INt)T (y + 1) � 1, 1
2 (1Nt×1 ⊗ INl)

T (y + 1) � 1
}
.

The new formulation (9.9) is derived using the well-known property vec(XYZ) = (ZT⊗
X)vec(Y) for given matrices X, Y, Z, along with the fact that T = (G + 1)/2. The
optimization problem (9.9) belongs to the class of minimization of quadratic forms over
binary vectors (i.e., the binary constraints on the elements of g), which is known to
be NP-hard in general [211]. To tackle this difficulty, we use an equivalent biconvex
implication of the binary constraints. According to Lemma 17, let e be a real-valued
slack vector of length NtNl. Given −1 � g � 1 and eTe ≤ NtNl, the constraint
gTe = NtNl implies that g ∈ {−1,+1}NtNl . Therefore, we can rewrite problem (9.9)
in an equivalent form where all the optimization variables are taken from continuous
domains, i.e.,

min
uBB ,−1�g�1,e

∥∥∥(uT
BB⊗INt)diag(vec(F)) g+FuBB−2 u?FD

∥∥∥2

s.t. 1
4‖(u

T
BB ⊗ INt) diag(vec(F)) g + FuBB‖

2 =1,

gTe = NtNl, eTe ≤ NtNl, g ∈ B̄,

(9.10)

where gTe=NtNl is often called the equilibrium constraint. Reformulation (9.10) is still
a non-convex problem due to the biconvex equilibrium constraint. We use a well known
approach, namely, the exact penalty method, to efficiently solve (9.10). The interested
readers are referred to [211] and [212] where studies on the accuracy and convergence
characteristics of the exact penalty method are provided.

Based on the exact penalty method, the biconvex equilibrium constraint gTe = NtNl
can be handled by adding the difference NtNl − gTe multiplied by µ > 0 as a penalty
function to the objective function, where the difference NtNl−gTe acts as a measure of
deviation from the equilibrium constraint. Accordingly, denoting the objective function
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of (9.10) by g(uBB , t), we can write

min
uBB ,−1�g�1,e

g(uBB ,g) + µ
(
NtNl − gTe

)
s.t. 1

4
∥∥∥(uT

BB ⊗ INt) diag(vec(F)) g + FuBB

∥∥∥2
=1,

eTe ≤ NtNl, g ∈ B̄,

(9.11)

which is our final formulation for the proposed hybrid SLP design. It is important to
note that, in general, problems (9.11) and (9.10) are not equivalent. However, by mono-
tonically increasing the penalty parameter µ in each iteration up to a certain threshold,
successive solutions of the penalized problem (9.10) eventually converge to the solution
of the original biconvex problem. On the other hand, for a given uBB , it can be shown
that if g(uBB ,g) is an L-Lipschitz continuous convex function on −1 � g � 1, problem
(9.11) has the same local and global minima as those of (9.10) for µ ≥ 2L, where L
denotes the Lipschitz constant of g(uBB ,g) with respect to g; see [211, Th. 1]. In the
following lemma, we show that function g(uBB ,g) is Lipschitz continuous on the domain
−1 � g � 1.

Lemma 20. Let uBB be given, then g(uBB ,g) is a Lipschitz continuous function on
−1 � g � 1 with Lipschitz constant

L = 2
√
NtNl

∥∥∥(uT
BB ⊗ INt) diag(vec(F))

∥∥∥2

F

+ 2
∥∥∥∥((uT

BB ⊗ INt) diag(vec(F))
)H (

FuBB − 2 u?FD

)∥∥∥∥ . (9.12)

Proof. See Appendix F.1.

Finally, we exploit the fact that the objective function of the minimization problem
(9.11), i.e., g(uBB ,g) + µ(NtNl − gTe) is a biconvex quadratic function in g and e, i.e.,
fixing either g or e gives a convex function in the other variable. As a result, we can use
a standard block coordinate descent (BCD) algorithm to find at least a locally optimal
solution to problem (9.10), where a coordinate block refers to either of the vectors uBB ,
g or e. To be more specific, the objective function g(uBB ,g) + µ(NtNl − gTe) can be
minimized over one of these vectors while the other two are fixed, and then, repeating the
same procedure for the other two blocks. The penalty multiplier µ should be increased
monotonically every N cycles, where the Lipschitz constant L provided in Lemma 20
determines the limit for increasing µ as a function of the other variables. Accordingly,
the BCD algorithm solving (9.11) performs the following steps within the nth iteration:

i. Updating g: Given u(n−1)
BB and e(n−1), the value of g in the nth iteration is

updated by solving the following LCQP:

g(n) = argmin
−1�g�1,g∈B̄

g
(
u(n−1)

BB ,g
)
+µ

(
NtNl − gTe(n−1)

)
, (9.13)
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ii. Updating e: The value of e(n) can be obtained as the solution to the following
problem:

e(n) = argmin
‖e‖2≤NtNl

− eTg(n), (9.14)

which is equivalent to a norm-constrained inner product maximization that admits
a simple closed-form solution given by

e(n) =
√
NtNl
‖g(n)‖

g(n). (9.15)

iii. Updating uBB: Given g(n) and e(n), the minimization problem (9.11) is equivalent
to

min
uBB

g
(
uBB ,g

(n)
)

s.t. 1
4
∥∥∥(uT

BB ⊗ INt) diag(vec(F)) g(n) + FuBB

∥∥∥2
= 1.

(9.16)
Using the method of Lagrange multipliers, it is straightforward to obtain the so-
lution to (9.16) which is used as the nth update of uBB and is given by

u(n)
BB =

2
((

F ◦G(n)
)

+ F
)†

u?FD∥∥∥((F ◦G(n))+ F
) ((

F ◦G(n))+ F
)† u?FD

∥∥∥ , (9.17)

where vec
(
G(n)

)
= g(n), and (·)† stands for the Moore-Penrose inverse.

iv. Updating λ: In every N cycles, the penalty parameter µ is updated as

µ(n) = min{2L(n), ϑ µ(n−1)}, (9.18)

where ϑ > 1 is a constant design parameter and L(n) is the nth update of the
Lipschitz constant L which is computed by substituting u(n)

BB in (9.12).

The pseudocode of the described BCD algorithm is presented in Algorithm 6. In
what follows, we analyze the convergence behavior of this algorithm.

9.3.2 Convergence Analysis

The BCD algorithm is a successive optimization approach in which a certain approximate
version of the objective function is optimized with respect to one block of variables at a
time, while fixing the rest of block variables [130]. Let h(uBB ,g, e) denote the objective
function of problem (9.11). As mentioned earlier in this section, by fixing two variables
among uBB , g and e, function h(uBB ,g, e) becomes convex in the other variable. More
precisely, the sub-problem (9.13) is a convex LCQP which can be solved for the optimal
solution. In addition, the two sub-problems (9.14) and (9.16) are amenable to closed-
form solutions, and therefore, can be solved for global optimality. This implies that, at
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Algorithm 6 BCD algorithm solving (9.11)
1: input: F,u?FD

2: output: uBB ,g
3: initialize: g(0) = e(0) ∈ RNtNl×1,u(0)

BB ∈ R
Nl×1, µ(0), n = 0

4: set: ϑ > 1
5: while the terminating condition is met do
6: n← n+ 1
7: compute g(n) by solving (9.13)
8: e(n) ←

√
NtNl g(n)/‖g(n)‖

9: compute u(n)
BB using (9.17)

10: obtain L(n) from (9.12)
11: µ(n) ← min{2L(n), ϑ µ(n−1)}
12: end while

the nth iteration, we have

h
(
u(n−1)

BB ,g(n), e(n−1)
)
≤ h

(
u(n−1)

BB ,g(n−1), e(n−1)
)
, (9.19)

where g(n) denotes the nth update of g, and u(n−1)
BB and e(n−1) denote the updates of

uBB and e obtained form iteration n− 1. Similarly, we can write

h
(
u(n−1)

BB ,g(n), e(n)
)
≤ h

(
u(n−1)

BB ,g(n), e(n−1)
)
, (9.20)

and
h
(
u(n)

BB ,g
(n), e(n)

)
≤ h

(
u(n−1)

BB ,g(n), e(n)
)
. (9.21)

As a result, the sequence of the objective function values after the update of each
block is monotonically non-increasing, and therefore, convergence of Algorithm 6 to a
stationary point (i.e., at least a local extremum) is guaranteed. We further note that
the terminating condition for Algorithm 6 can be considered as∣∣∣h (u(n)

BB ,g
(n), e(n)

)
− h

(
u(n−1)

BB ,g(n−1), e(n−1)
)∣∣∣ ≤ εo, (9.22)

where εo denotes the threshold for the desired accuracy. In Fig. 9.2, we illustrate the
convergence behavior of Algorithm 6 by plotting the value of the objective function
h(uBB ,g, e) versus the number of outer iterations (cycles) for phase shifters with different
precision bits bPS, where it is shown that the proposed algorithm converges at a favorable
rate. In particular, for a desired accuracy of εo = 10−2, it can be seen that, in all cases,
Algorithm 6 converges in no more than 10 iterations. It can further be seen that the
algorithm shows a higher residual error for lower values of bPS. This is due to the fact that
discretizing the states of the phase shifters with lower number of precision bits induces
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Figure 9.2: Convergence behavior of Algorithm 6 versus iteration number for µ = 10−4 and
ϑ = 1.1.

a greater discontinuity in the feasible region of the optimization problem, and therefore,
it may not be possible to reduce the Euclidean distance between the fully-digital and
the hybrid precoders beyond a certain limit.

9.3.3 Analysis of Computational Complexity

Using the four-step BCD approach summarized in Algorithm 6, the overall computation
cost of solving (9.11) in terms of the required number of arithmetic operations is com-
posed of two main parts. The first part involves inner iterations to solve the sub-problem
(9.13) over g and updating uBB using (9.17), and the second part refers to the outer
iterations (cycles) over coordinate blocks.

The computation cost of updating uBB via (9.17) is dominated by the arithmetic
complexity of performing the matrix pseudo-inversion ((F ◦G) + F)†, which is of order
O(NtN

2
l ) given the dimensions of F and G. Furthermore, to efficiently solve (9.13), one

may use the off-the-shelf algorithms such as (accelerated) projected/proximal gradient
methods [135], or quasi-Newton approaches, e.g., L-BFGS-B [213]. In particular, for a
Lipschitz smooth (not necessarily strongly) convex objective function as in (9.11), all
the aforementioned algorithms converge superlinearly at a rate of O(1/√εi) to reach
an εi-optimal solution. For example, using the accelerated projected gradient descent
algorithm, the per-iteration complexity associated with sub-problem (9.13) is dominated
by matrix multiplications of the limiting order N2

l N
2
t , as Nl, Nt →∞. Therefore, in the

limiting case, the total number of operations needed to be performed in order to solve the
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inner sub-problem (9.13) with an accuracy of εi is of order O(N2
l N

2
t )(1/√εi). Putting

this together with the complexity of computing uBB , every cycle of the BCD algorithm
has a dominating complexity of O(NtN

2
l ) +O(N2

l N
2
t )(1/√εi).

On the other hand, the reformulation (9.11), which is obtained based on the exact
penalty method, is guaranteed to converge to a first-order Karush-Kuhn-Tucker (KKT)
point with an accuracy of εo in no more than d

(
ln(2L

√
Nt)− ln(µ(0)εo)

)
/ ln(ϑ)e iter-

ations [211], where µ(0) is the initial value of the penalty parameter µ and d·e denotes
the ceiling operation. To have a complete analysis of the complexity, we further need to
evaluate the constant L. From (9.12), it is straightforward to show that

L ≤ 2
√
NlNt‖uBB‖

2‖F‖2F + 2 ‖uBB‖
2‖F‖2F + 4 ‖uBB‖‖F‖F‖u

?
FD‖

2

= 2Nl
√
NtNl ‖uBB‖

2 + 2Nl‖uBB‖
2 + 4

√
Nl‖uBB‖,

(9.23)

where the equality can be justified considering the definition of matrix F in (9.5), which
yields ‖F‖F =

√
Nl, along with the fact that ‖u?FD‖ = 1; see (9.7). It can further be

verified that in the large system limit where Nt →∞ with Nl � Nt, we have ‖uBB‖ → 1.
Therefore, one can write

L ≤ 2Nl
√
NtNl +O

(
Nl +

√
Nl
)
, (9.24)

As a result, in the limiting case with Nl →∞, we have

L ≤ Nl
√
NtNl .O(1). (9.25)

With the upper bound, given in (9.25), on the dominating order of L, the worst-case
computational complexity of Algorithm 6 solving the design problem (9.11) with accel-
erated inner gradient steps can be obtained as shown in Table 9.1. In practice, however,
the outer optimization usually converges in a few cycles, as we will see in Section 9.5.

For comparison purposes, the complexities of hybrid symbol-level precoding ap-
proaches proposed in [81] and [83] are reported in Table 9.1. For the hybrid scheme
in [81], the reported complexity order refers to the worst-case complexity of reaching an
εo-optimal solution to a linear program via the interior-point method; see [171].

9.4 Energy Efficiency Analysis

Hybrid precoding strategies predominantly focus on reducing hardware cost/complexity
and power consumption by delegating part of the signal processing burden to the analog
domain. In return, this may sacrifice the precoding performance, e.g., spectral efficiency,
with respect to fully-digital systems. On the other hand, various hybrid implementa-
tions may differ from one another in their complexity and power consumption. In order
to be able to compare different hybrid architectures and also to assess their efficiency
versus the fully-digital alternative, one needs to incorporate both performance and com-
plexity/power consumption aspects into one single figure of merit. A common choice
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Table 9.1: Complexity comparison of different hybrid SLP schemes.

Worst-case complexity

[81] (4Nl + 2Nu + 1)3/2(2Nl + 1)2(1/√εo) .O(1)

[83]
√
NtNu(N3

t N
2
u +N2

t N
3
u ) +Nt(Nl + 3)(1/√εo) .O(1)

Algorithm 6 NtN
2
l (1 +Nt(1/

√
εi))
⌈(

ln
(
2NtNl

√
Nl
)
− ln(µ(0) εo)

)
/ ln(ϑ)

⌉
.O(1)

Dominating order [as Nt, Nl, Nu →∞]

[81] N
7/2
l (1/√εo) .O(1)

[83]
√
NtNuN

3
t N

2
u (1/√εo) .O(1)

Algorithm 6 N2
l N

2
t ln

(
NtNl

√
Nl/εo

)
(1/√εi) .O(1)

is energy efficiency which can simply be expressed as the ratio between spectral effi-
ciency and power consumption. Due to the assumption of finite-alphabet signaling, we
measure the spectral efficiency in bits per symbol. Thereby, the energy efficiency of the
precoding scheme, in bits per Joule, is defined as the ratio between goodput and power
consumption, i.e.,

η ,
R (1− Pe)

P
, (9.26)

where Pe , 1 − (1/Nu)∑Nu
i=1 Pe,i is the average symbol error probability across all Nu

users with Pe,i denoting the symbol error probability for the ith user. The average
per-user spectral efficiency R and the power consumption P are defined as follows.

Spectral Efficiency

Using an uncoded transmission scheme with finite-alphabet signaling, the communica-
tion rate towards the jth user can be evaluated, in terms of bits per symbol per unit
bandwidth, through calculating the average mutual information between the target sym-
bol si and the received signal yi, i.e.,

I(si; yi) = Esi,yi,H

{
log2

Pryi|si,H(yi|si,H)
Pryi|H(yi|H)

}
. (9.27)

Assuming transmission with Nyquist rate over a double-sided bandwidth of W Hz, the
maximum allowable symbol rate is W symbols per second, which results in a bit rate of
W × I(si; yi) for the user i. Putting this together for all Nu users, the average per-user
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achievable rate of the downlink channel is given by

R = W

Nu

Nu∑
i=1

I(si; yi). (9.28)

It should be noted that deriving closed-form expressions for the conditional probability
mass functions in (9.27) is a cumbersome task. As an alternative, one can obtain exper-
imental probability distributions over sufficiently many independent realizations of the
channel and the users’ symbols to approximate the mutual information I(si; yi) for each
user i ∈ {1, 2, ..., Nu}.

Power Consumption

The power dissipated by the BS’s RF front-end components accounts for the power
consumption at the BS. In the sequel, we first adopt power consumption models for
typical components of an RF front-end and then specifically tailor the overall power
consumption model according to each precoding architecture, namely, fully-digital and
hybrid (with and without phase shifter selection). The transmit RF front-end of a multi-
antenna system is commonly composed of one baseband processor, several RF chains,
each preceded by a pair of DACs (i.e., one DAC for each I/Q channel), and power
amplifiers (PA). The use of analog components such as dividers, combiners, switches,
and/or phase shifters are limited to hybrid architectures.

As a rule of thumb, the power consumption of DAC scales linearly in sampling rate
and exponentially in the number of bits per sample (i.e., resolution bits). We assume the
DACs are of binary-weighted current-steering type [214], where its power consumption
is approximately given in [215] as

PDAC = 3
2
(
2bDAC − 1

)
× 10−5 + 9

2 bDACFs × 10−12, (9.29)

with bDAC and Fs respectively denoting the number of precision bits and the sampling
frequency.

A typical RF chain includes one mixer, one local oscillator, two low-pass filters and
a baseband amplifier. We respectively denote by PM, PLO, PLPF and PBBA, the power
dissipation of the RF chain components. Thereby, the power consumed by a single RF
chain is equal to

PRF = PM + 2PLO + PLPF + PBBA. (9.30)

In case all the RF streams are transmitted at the same frequency, it might be possible to
share a single local oscillator among all the chains and divide the power consumption PLO
accordingly [203]. Further, let PBB, PPA, PPS and PSW respectively denote the power
consumption of the baseband processor, a single PA, a single phase shifter and a single
analog switch. Note also that, in general, the power dissipation of the RF combining
network is very low [241], and thus is ignored in our modeling.
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The fully-digital BS architecture requires 2Nt DACs, and Nt RF chains and PAs,
and therefore its power consumption can be modeled as

PFD = PBB +Nt(2PDAC + PRF + PPA). (9.31)

On the other hand, the hybrid architecture with fully-connected phase-shifting network
can be implemented using 2Nl DACs, Nl RF chains, Nt PAs, and Nt×Nl phase shifters.
The resulting power dissipation is thus given by

PH = PBB +Nl(2PDAC + PRF) +NtNlPPS +NtPPA. (9.32)

To calculate the power consumption of the hybrid architecture with fully-connected
networks of phase shifters and switches, i.e., with phase shifter selection, we assume
the associated RF processes are turned off while a phase shifter is deactivated, and
further, the phase shifter has negligible static power dissipation. Under this assumption,
a deactivated phase shifter consumes no power. Denoting the average percentage of the
active phase shifters at a symbol instant by β, the power consumed by the entire phase-
shifting network is then βNtNlPPS. As illustrated in Fig. 9.1, the phase shifter selection
mechanism is implemented through a network of Nt×Nl switches. Therefore, the power
consumption of the hybrid precoder with phase shifter selection can be obtained as

PHPSS = PBB +Nl(2PDAC + PRF) +NtNl(βPPS + PSW) +NtPPA. (9.33)

Recall from Section 9.2 that the selection matrix T is constrained to has no all-zero row
(column), i.e., at least one phase shifter corresponding to a specific antenna element (RF
chain) must be active at a symbol instant. As a consequence, the number of active phase
shifters during any symbol period is never less than max{Nl, Nt} = Nt, from which it
follows that 1/Nl < β ≤ 1. Our simulation results in Section 9.5 further indicate that
β is usually smaller than 0.75 for the proposed hybrid symbol-level precoder in (9.11),
regardless of the phase-shifting precision. This may lead to significant reductions in
the power consumption of the analog phase-shifting network. It is also important to
note that by employing low-power yet efficient mmWave switches, the excessive power
consumption due to the switching operation can be made negligible compared with the
power reduction of the phase shifters.

Using the above power consumption models with appropriate parameter selection,
we will compare the power consumed by different fully-digital and hybrid architectures
in Section 9.5.

9.5 Simulation Results

In this section, we present some simulation results to evaluate the performance of the
proposed hybrid symbol-level precoding approach and to compare it with some other ex-
isting schemes. The simulation setup is as follows. We consider the hybrid analog-digital
precoding architecture depicted in Fig. 9.1 for a downlink mmWave massive multiuser
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MIMO system, performing an uncoded transmission with QPSK signaling and a carrier
frequency of 60 GHz over a bandwidth of 1 GHz. We assume unit noise variances at
the receivers of all the users, i.e., σ2

j = 1, ∀j = 1, 2, ..., Nu. As described in Section 9.2,
we adopt a geometric model for the mmWave propagation environment with Nc = 1
clusters and Np = 12 scatterers between the BS and each user. For all the propagation
paths, the azimuth angles of departure φj,i,l are drawn independently from a uniform
distribution over [0, 2π). To initialize Algorithm 6, we set N = 1 and ϑ = 1.1 to avoid
overshooting, and consider µ(0) = 10−4 to have a reasonable starting point.

We consider the fully-digital Wiener filter (WF) precoding [5], and the optimal fully-
digital symbol-level precoding (SLP) as our performance benchmarks, and further, pro-
vide comparisons with the block-level hybrid precoding technique PZF and its quantized
variant QPZF in [227], the block-level hybrid precoding with phase shifter selection
in [234], and the hybrid symbol-level precoders in [81] and [83]. Note that the appli-
cation of PZF and QPZF techniques is limited only to fully-loaded systems, i.e., when
Nu = Nl, and therefore, their performances have been evaluated only in the relevant
scenarios. We further note that the method in [81] performs a symbol-based optimiza-
tion of the digital baseband precoder subject to one-bit DACs, and adopts a CSI-only
design for the phase-shifting network. On the other hand, the hybrid scheme in [83]
jointly optimizes both the digital baseband precoder and the phase-shifting network on
a symbol-level basis. Accordingly, we refer to the methods in [81], [83], and the proposed
scheme in this work based on the adopted hybrid architecture and the precoder design
approach. To summarize, throughout this section, the hybrid precoding techniques of
interest are referred to as:

- Hybrid PZF: hybrid block-level precoding (BLP) based on ZF solution [227]

- Hybrid QPZF: quantized hybrid BLP based on ZF solution [227]

- Hybrid PSS BLP: hybrid BLP with phase shifter selection [234]

- Hybrid BB SLP: hybrid SLP with baseband precoder optimization [81]

- Hybrid BB+PS SLP: hybrid SLP with joint baseband precoder and phase-shifting
network optimization [83]

- Hybrid BB+SW SLP: hybrid SLP with joint baseband precoder and switching
network optimization (Algorithm 6)

- Hybrid BB+SW SLP-NOPSS: hybrid SLP with baseband precoder optimization
and no phase shifter selection

In our simulations, the power consumption is calculated according to the model in-
troduced in Section 9.4, in which we consider reference values of PRF =40 mW, PPA =20
mW, PPS = 30 mW, and PBB = PDAC, as in [203]. As for the power consumption of
switches, it is well known that nFET switches have zero static power dissipation. On
the other hand, silicon-germanium (SiGe) based switches are shown to be capable of
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Figure 9.3: Power consumption of different hybrid SLP schemes as a function of Nl at
SNR = −5 dB with Nt = 64 and Nu = 4.

achieving high performance while consuming powers of less than 1 mW [231]. There-
fore, based on the available technology for the implementation of RF switches, a fairly
conservative choice would be PSW = 1 mW. Moreover, the power consumption of DACs
is calculated via (9.29) assuming a sampling frequency of Fs = 1 GHz which should be
sufficient for mmWave systems. We further assume bDAC = 12 for those architectures
employing high-resolution DACs.

In Fig. 9.3, we compare the power consumption of various hybrid precoding imple-
mentations with that of the fully-digital architecture as a function of the number of BS’s
RF chains Nl, while fixing the number of transmit antennas and users to be Nt = 64 and
Nu = 4, respectively. As might be expected, the power consumption values associated
with the hybrid implementations increase with Nl, which is a consequence of requiring
more RF elements, phase shifters, and/or switches. This implies that increasing the
number of RF chains beyond a certain limit makes the hybrid implementation a more
power-consuming approach than the fully-digital architecture. Nevertheless, for Nl ≤ 10,
all the hybrid implementations consume less power than the fully-digital precoder. Re-
markably, the proposed hybrid precoder in this chapter, i.e., the hybrid BB+SW SLP, of-
fers smaller power consumption amounts, with either infinite-precision or discrete phase
shifters, among the other hybrid symbol-level precoding schemes in Fig. 9.3. This is
brought by the adopted phase shifter selection mechanism in implementing the hybrid
precoder. In particular, the proposed hybrid precoder has the smallest power consump-
tion with bPS = 1 due to the large percentage of deactivated phase shifters, as we will
see later in this section. Note also that the differences in power consumption of different
hybrid precoding schemes in Fig. 9.3 increase with Nl.
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Figure 9.4: Average percentage of deactivated phase shifters as a function of Nl at SNR = −5
dB with Nt = 64 and Nu = 4.

In a scenario with Nt = 64 and Nu = 4, the percentages of deactivated phase
shifters, i.e., (1−β)×100, for the proposed hybrid precoding approach are shown versus
the number of RF chains in Fig. 9.4 for different values of bPS . It follows from the
results that in the case of using low-resolution phase shifters, a higher percentage of
the phase shifters can be switched off, and hence more power-savings are possible. In
particular, in the case where Nl = 4, up to 55% of the phase shifters with bPS = 1 can be
turned off, which can be roughly translated to a power reduction of βNtNlPPS ≈ 4200
mW in the phase-shifting network. It can further be observed from Fig. 9.4 that the
percentage of deactivated phase shifters decreases with increasing Nl. One can justify
these observations by considering that increasing the number of phase-shifting precision
bits and the number of RF chains, respectively, reduces the discontinuity in the feasible
region of the optimization problem (9.11) and increases the design degrees of freedom. In
both cases, this enables the algorithm to achieve lower values for the objective function
by activating a larger ratio of the phase shifters. The former case can also be verified
from Fig. 9.2 where the residual error in the objective function is shown to be smaller
for phase shifters with higher resolution bits.

We plot the average users’ symbol error rate (SER) achieved by the precoding tech-
niques of interest with either fully-digital or hybrid architecture versus the transmit SNR
for a system with (Nt, Nl, Nu) = (64, 8, 8) in Fig. 9.5. The proposed hybrid symbol-level
precoder is evaluated for various implementations with infinite-precision and discrete
phase shifters, where in the latter case we assume bPS = 1 and bPS = 2 bits of precision.
It can be seen that, for the case with bPS = 2, both the hybrid BB+PS SLP and the
hybrid BB+SW SLP schemes are capable of performing well close to the fully-digital
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Figure 9.5: Average per-user symbol error rate versus transmit SNR with (Nt, Nl, Nu) =
(64, 8, 8).

Figure 9.6: Per-user spectral efficiency versus transmit SNR with (Nt, Nl, Nu) = (64, 8, 8).
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SLP, though requiring far less RF chains to process the transmitted signal. The corre-
sponding losses at SER = 10−2 are respectively around 0.1 dB and 0.5 dB. Using phase
shifters with bPS = 1, the hybrid BB+SW SLP scheme still offers a reasonable perfor-
mance with a loss smaller than 1 dB at SER = 10−2 compared with the fully-digital
SLP, as opposed to the hybrid BB+PS SLP scheme which shows a significantly deterio-
rated performance. It can further be seen from Fig. 9.5 that both hybrid BB+PS SLP
and hybrid BB+SW SLP approaches outperform the PZF technique, which is a result
of designing the precoded signal specifically for each instantaneous combination of the
users’ target symbols. Overall, from Fig. 9.5, it follows that the hybrid BB+PS SLP
scheme offers the best SER performance compared to the other hybrid SLP schemes
of interest. Nevertheless, as demonstrated in Fig. 9.3, this superior performance comes
with increased power consumption.

In Fig. 9.6, the average per-user spectral efficiencies of the precoding schemes of
interest are shown for the system parameter sets (Nt, Nl, Nu) = (64, 8, 8). As can be
seen, the spectral efficiency plot follows the same relative trend as that of the SER
plot. The hybrid BB+PS and BB+SW SLP schemes are more spectrally-efficient than
the PZF and QPZF techniques, which is a result of the CI-based positioning of the
received signals. Remarkably, the achievable spectral efficiencies by the hybrid BB+PS
SLP scheme with bPS = 2 and by the hybrid BB+SW SLP scheme with either bPS = 1,
bPS = 2 or bPS = ∞ are close to those of the fully-digital WF and SLP. The maximum
loss with respect to the fully-digital SLP corresponds to the Hybrid BB+SW SLP scheme
with bPS = 1, which is around 0.06 bps/symbol/Hz at SNR = 0 dB. On the other hand,
hybrid BB+PS SLP is shown in Fig. 9.6 to be the most spectrally-efficient approach
among the hybrid symbol-level precoders of interest.

Up until this point in the simulation results, we have seen that among the hybrid
symbol-level precoders of interest, one approach outperforms the other in terms of either
power consumption, symbol error rate, or spectral efficiency. To have an all-inclusive
comparison, we use the energy efficiency measure, as defined in Section 9.4, that in-
corporates all the aforementioned figures of merit in evaluating the overall precoding
performance. The results are shown in Fig. 9.7, where the energy efficiencies of different
fully-digital and hybrid multiuser precoders are plotted as a function of the transmit
SNR for a system with (Nt, Nl, Nu) = (64, 8, 8). As can be seen, almost all of the hybrid
symbol-level precoders are more energy-efficient than the fully-digital SLP, while the pro-
posed hybrid BB+SW SLP approach with phase shifter selection outperforms the other
schemes with either infinite or finite resolution phase shifters. The most energy-efficient
scheme is shown to be hybrid BB+SW SLP with bPS = 1, using which energy efficiency
gains of up to 75 Mbps/Joule per user can be achieved against the fully-digital SLP. In
contrast to the Hybrid BB+PS SLP scheme, employing phase shifters with lower preci-
sion bits improves the energy-efficiency of Hybrid BB+SW SLP. This is because more
phase shifters can be switched off using low-precision phase shifters, which leads to larger
reductions in power consumption. It is important to note that in our power consump-
tion model, we consider the same reference value for phase shifters with any number
of precision bits. This is rather a simplistic approach as, in practice, higher-resolution
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Figure 9.7: Energy efficiency versus transmit SNR with (Nt, Nl, Nu) = (64, 8, 8).

Figure 9.8: Energy efficiency at SNR = −5 dB as a function of Nl with Nt = 64 and Nu = 4.
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phase shifters consume more power. In such a case, the results for power consumption
and energy efficiency of the proposed hybrid precoder with low-resolution phase shifters
would show an even higher gain compared to the other schemes of interest. It can further
be seen from Fig. 9.7 that the proposed hybrid algorithm with bPS =∞ outperforms the
hybrid PSS BLP scheme, where both techniques employ a phase shifter selection mech-
anism via a switching network but on a symbol-level and block-level basis, respectively.
In particular, the hybrid BB+SW technique shows higher energy efficiency gains against
the hybrid PSS BLP scheme at low SNRs. We are further interested in the behavior of
energy efficiency as a function of the number of available RF chains Nl, which is plotted
in Fig. 9.8 for fixed numbers of transmit antennas Nt = 64 and users Nu = 4 at an SNR
of −5 dB. A common trend across all the hybrid symbol-level precoders is that their
energy efficiency becomes lower as Nl increases. This is in accordance with the power
consumption results in Fig. 9.3, indicating that for a fixed number of antennas, a hybrid
precoding implementation becomes less energy-efficient than its fully-digital counterpart
whenever the number of RF chains exceeds an upper limit. This upper limit is shown in
Fig. 9.8 to be larger for the proposed hybrid BB+SW SLP approach. On the other hand,
comparing the proposed hybrid symbol-level precoder with the case where all the phase
shifters are active, i.e., with no phase shifter selection, we can conclude that applying
the phase shifter selection mechanism can substantially improve the energy efficiency
of hybrid symbol-level precoding. The results in Fig. 9.8 shows that gains of up to 37
Mbps/Joule per user can be achieved using the hybrid BB+SW SLP method compared
to its counterpart scheme without phase shifter selection.

Following the analytic complexity analysis provided in Section 9.3, we numerically
evaluate the proposed hybrid SLP algorithm’s computational complexity in both sce-
narios with infinite-resolution and discrete phase shifters. The complexity results, in
terms of the required number of outer iterations (i.e., cycles) for convergence, is shown
in Fig. 9.9 as a function of the number of RF chains Nl. However, it is important to note
that the complexity of solving the inner sub-problem (9.13) is not of our interest since,
as mentioned earlier, this problem is a typical linearly-constrained quadratic program
which can efficiently be solved using many existing algorithms. As might be expected,
the number of outer iterations until convergence of the proposed hybrid SLP algorithm
increases with Nl in all the cases due to the corresponding growth in the problem size.
On the other hand, the computation cost increases by reducing the precision of the phase
shifters. Such an observation, however, is not surprising since having discrete possible
phase states causes a discontinuity in the feasible region of the optimization problem,
and consequently, more cycles are needed for convergence to a stationary point.

9.6 Conclusions

In this chapter, we proposed a hybrid analog-digital precoding scheme for large-scale
multiuser mmWave downlink systems. The multiuser precoding operation is split be-
tween the digital and analog domains, where processing in the analog domain is carried
out through fully-connected networks of switches and phase shifters. The use of on-off
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Figure 9.9: Average number of iterations till convergence of the proposed hybrid SLP algo-
rithm as a function of Nl with Nt = 64.

switches enables us to perform phase shifter selection in the analog precoder. We adopted
a CSI-only design approach for the phase-shifting network, whereas the digital baseband
precoder and the switching network are optimized in a symbol-level manner, i.e., by ex-
ploiting the instantaneous data symbols to enable CI at the receiver side. We formulated
our design problem to minimize the Euclidean distance between the hybrid symbol-level
precoder and its optimal fully-digital counterpart, where a power-constrained max-min
SINR design criterion subject to CI constraints was adopted. Our design approach led
us to an intractable binary optimization problem. We tackled this difficulty by trans-
forming the original problem to an equivalent continuous-domain biconvex form, which
can efficiently be solved for a sub-optimal solution via the standard block coordinate
descent (BCD) algorithm. We evaluated the computational complexity of the proposed
scheme, where numerical results showed that the adopted BCD algorithm needs only a
few (usually less than ten) cycles to converge. To assess and compare different fully-
digital/hybrid precoding schemes from both performance and power consumption points
of view, we analyzed the energy efficiency by considering appropriate models for the RF
elements’ power dissipation. Our simulation results indicated that applying the phase
shifter selection approach, up to half of the phase shifters can be switched off, allow-
ing for reductions of multi-Watts in analog circuitry power consumption. This power
consumption reduction can significantly improve precoding’s energy efficiency compared
to the fully-digital and state-of-the-art hybrid symbol-level techniques. Moreover, we
evaluated the proposed hybrid precoding scheme with both infinite and finite precision
phase shifters. It was shown that using phase shifters with lower precision bits, on
the one hand, degrades the spectral efficiency, but on the other hand, allows for more
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power-savings due to a larger number of deactivated phase shifters, and therefore, is
more energy-efficient.
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Chapter 10
Concluding Remarks and Future Work

This thesis addressed several challenges in designing an SLP scheme for an MU-MIMO
downlink system. In summary, we defined and formulated CI constraints for generic
modulation schemes, proposed computationally-efficient solutions to the corresponding
design problem, validated the design for real-time implementations, studied robust design
of the precoder in the presence of channel/design uncertainty, and revisited the problem
in quantized and hybrid analog-digital precoding architectures. Accordingly, the main
conclusions drawn from the work carried out in this thesis and possible extensions to
the current results are described in the subsequent sections.

10.1 Main Conclusions

First, we elaborated a systematic framework in Chapter 3 to describe optimal and re-
laxed CI restrictions as linear convex constraints which can be utilized in an SLP design
problem with different objectives and requirements. This framework generalizes the def-
inition of CIRs for modulation schemes with constellations of any given shape and order.
In particular, we defined the DPCIRs and showed that these regions are optimal when
the target SEP is not allowed to increase. In a more flexible setting, we considered
relaxed CIRs and guaranteed the target SEP using the union bound, which led us to
introduce the UBCIRs. We fully characterized the DPCIRs for a generic constellation
and derived some of their properties. Using the proposed systematic description for the
DPCIRs and UBCIRs, we formulated and discussed two well-known precoding optimiza-
tion problems in a downlink MU-MIMO unicast channel, namely, power optimization
and SINR balancing. The SINR-constrained SLP power minimization was formulated as
a convex problem and studied in a realistic scenario, where a feasibility condition was ob-
tained for this problem. Our results indicated that the DPCIR-based and UBCIR-based
SLP designs can reduce the transmit power consumption without imposing additional
complexity on the transmitter compared to the state-of-the-art schemes. For the more
challenging and generally non-convex problem of SLP SINR balancing with a max-min
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fair objective, the properties of DPCIRs helped us to reformulate the problem in a con-
vex form, which can be solved for a sub-optimal solution. To tackle this problem, we
proposed two different methods, namely, SDP formulation and BCD optimization. We
provided a detailed comparison of performance and complexity for the proposed meth-
ods, where it was shown that the BCD optimization based method can outperform the
SDP formulation one at the cost of higher computational complexity.

It is known that solving the SLP design problem for the exact solution may lead to
an impractical transmitter complexity due to high per-symbol computation cost. We
addressed this challenge in chapter 4, where two computationally-efficient methods are
proposed to approximately solve the SLP power minimization problem with CI and
SINR constraints. This was done by first simplifying the original formulation and refor-
mulating it as an NNLS design, and then discussing the simplified problem’s optimality
via the KKT conditions. The analyses helped us to derive two closed-form approximate
SLP designs, namely, CF-SLP and ICF-SLP. The CF-SLP design performs quite close to
the optimal SLP scheme in systems with a relatively small number of users, but shows a
poor performance with increasing the system size. The ICF-SLP solution, on the other
hand, substantially reduces the loss with respect to the optimal solution, particularly
in the large system regime. Furthermore, the ICF-SLP design showed competitive per-
formance compared to the SLP solution obtained from the iterative APGD algorithm,
but with reduced time complexity. In comparison with conventional block-level pre-
coding schemes, we showed that both CF-SLP and ICF-SLP methods outperform the
ZF precoder in all scenarios and the optimal power minimizer block-level precoder at
high target SINRs. We conclude that the CF-SLP and ICF-SLP designs can success-
fully relieve the prohibitive computation cost of the SLP design. Furthermore, they
are promising alternatives (with a comparable complexity) for the block-level precoding
schemes, especially in the high SINR regime.

To assess the potential advantages of the proposed low-complexity SLP designs in
a high-throughput downlink multiuser MISO system, in Chapter 5, we developed an
optimized FPGA design based on the CF-SLP solution. We further simplified this so-
lution by assuming mutually orthogonal channel vectors and proposed an approximate
low-complexity design algorithm that can operate in a real-time mode. We analyzed
the computational complexity of the proposed design and showed that it has the same
per-symbol complexity order as that of the ZF precoding. We then used the Xilinx
Vivado HLS tool to translate the design algorithm into an HDL code and also to opti-
mize the design in order to achieve a lower latency, and therefore, a higher throughput.
The synthesis results, including performance, timing and resource utilization estimates
verified the efficiency of our HDL design. The generated HDL core was evaluated in a
simulation environment within the LabVIEW software. The simulations showed that
the HDL design of our proposed algorithm is able to operate at a symbol rate of 100
Mega symbols per second per user when deployed on a specific Xilinx FPGA part, which
makes it attractive for real-time implementations. Using the MATLAB software, we fur-
ther evaluated the loss of our design algorithm with respect to the optimal SLP solution,
where the loss is shown to be less than 1 dB according to our numerical results. This
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loss is mainly due to the used approximation in deriving the algorithm and also due to
the adopted fixed-point arithmetic for the FPGA design. Furthermore, the simulation
results indicated that the proposed HDL implementation of SLP outperforms the ZF
scheme in terms of power efficiency, where an improvement of up to 50 percent can be
achieved.

In Chapter 6 and Chapter 7, we addressed the problem of designing a robust SLP
scheme in downlink MU-MIMO systems, respectively, under channel and design un-
certainties. Under channel uncertainties, we assumed imperfect bounded or stochastic
CSI error at the BS and considered a QoS-constrained design criterion in Chapter 6.
We developed robust CI constraints for each uncertainty model and provided the cor-
responding robust formulations for the SLP design problem. With bounded CSI errors,
we derived a worst-case robust formulation to guarantee the users’ requirements for
every possible realization of the CSI error within the uncertainty region. Under the
stochastic uncertainty model, we adopted a probabilistic approach to enforce the CI
constraints and derived two computationally tractable approximate convex restrictions
with different levels of conservatism. Our results showed that both the proposed robust
restrictions outperform the well-known sphere bounding method, while each of them is
superior to the other under different robustness settings. Compared with a conventional
block-level robust scheme, the proposed robust methods were shown to be more efficient
at moderate-to-high target SINR values. However, a more considerable advantage of
the proposed robust SLP approaches is their higher feasibility rate for wide ranges of
violation probability and uncertainty variance, which is indifferent to the target SINR.
We also showed through complexity analysis that the improved performances of the pro-
posed robust SLP designs come with an increased computational complexity by an order
of the number of users in the limiting case.

Under design uncertainties, in Chapter 7, we proposed a worst-case approach for
the QoS-constrained SLP problem in a scenario where the precoder’s output undergoes
linear distortion with bounded additive noise. We proposed a new problem formula-
tion which allowed us to cast the worst-case design of the distorted SLP as a min-max
problem by introducing relaxed CI constraints. We solved this problem using an iter-
ative block coordinate ascent-descent algorithm to obtain the robust precoded signal.
This algorithm iterates between finding the optimal precoded signal and the worst-case
additive distortion vector. Our simulation results showed that the proposed worst-case
approach can improve the SLP scheme’s performance under linear distortions in terms
of energy efficiency.

We revisited the SLP design problem for low-cost transmitter architectures in Chap-
ter 8 and Chapter 9, where practical limitations are given, respectively, on the resolution
of DACs or the number of RF chains. In Chapter 8, we proposed a finite-alphabet SLP
design for massive MU-MIMO downlink systems equipped with finite-resolution DACs.
We adopted a power-constrained max-min fair design criterion with the aim of exploiting
CI at the users. The design problem, in its original form, is a discrete linearly-constrained
quadratic programming whose solution requires a high computational complexity. We
dealt with this issue in several steps and reformulated the problem into an equivalent
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continuous-domain form, which can efficiently be solved using a standard block coordi-
nate descent algorithm that converges within a few iterations. Our results showed that
employing DACs with higher resolutions leads to lower BERs at the cost of reduced
power efficiency. We also investigated the case with one-bit DACs, where comparisons
between the proposed quantized SLP technique and some other well-known one-bit pre-
coding schemes showed a superior performance in terms of uncoded BER, with up to 2
dB gain depending on the system setup.

Finally, in Chapter 9, we proposed a hybrid analog-digital precoding scheme for large-
scale mmWave MU-MIMO downlink systems. The multiuser precoding operation was
split between the digital and analog domains, where processing in the analog domain is
carried out through fully-connected networks of switches and phase shifters. The use of
on-off switches enabled us to perform phase shifter selection in the analog precoder. We
adopted a CSI-only design approach for the phase-shifting network, whereas the digital
baseband precoder and the switching network are optimized in a symbol-level manner,
i.e., by exploiting the instantaneous data symbols to enable constructive interference at
the receiver side. We formulated our design problem to minimize the Euclidean distance
between the hybrid symbol-level precoder and its optimal fully-digital counterpart. To
assess and compare different fully-digital/hybrid precoding schemes from both perfor-
mance and power consumption points of view, we analyzed the energy efficiency by
considering appropriate models for the RF elements’ power dissipation. Our results in-
dicated that by applying the phase shifter selection mechanism, we can reduce the power
consumption of the analog circuitry through switching up to half of the phase shifters
off. This reduction can significantly improve precoding’s energy efficiency compared to
the fully-digital and state-of-the-art hybrid SLP techniques. Moreover, we evaluated the
proposed hybrid scheme with both infinite and finite precision phase shifters, where it
was shown that using phase shifters with lower precision bits, on the one hand, degrades
the spectral efficiency, but on the other hand, allows for more power-savings due to a
larger number of deactivated phase shifters, and therefore, is more energy-efficient.

10.2 Future Work

The work carried out in this thesis can be extended in several directions. Below, we
suggest some possible extensions to the current work.

1. The CI-based SLP design problem aims to find the precoded transmit signal that is
optimal with respect to the given constellation set. To achieve higher CI gains by
the SLP scheme, one may also optimize the constellation set while preserving the
users’ detection accuracy or maintaining it above a certain threshold depending
on the system requirements. One may reformulate or redefine the design problem
targeting mutual information while satisfying the CI and SINR constraints. In
doing so, it might be helpful to study the dependence of the SLP performance on
the signal constellation geometry.

2. The computationally-efficient SLP solutions of this work were proposed based on
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the NNLS formulation of the design problem. It might be possible to further
improve these solutions by exploiting the specific structure of the problem, e.g.,
the block diagonal structure of the normal matrix. In addition, these solutions were
proposed only for the case where perfect transmit CSI is available. Under imperfect
CSI knowledge, a possible future work could be to develop low-complexity solutions
for the proposed robust SLP techniques.

3. Some practical challenges need to be further addressed in design of the robust SLP
scheme under channel uncertainty, as listed below:

– Firstly, the stochastic robust optimization problem might be infeasible for
rather large CSI error variances or relatively small violation probabilities. In
such cases, a trivial alternative is to use the non-robust precoder’s solution;
however, a more sophisticated alternative may improve the robust design’s
reliability. For example, one can relax the violation probability and resolve
the robust optimization problem till a feasible solution is found.

– Secondly, the proposed robust SLP techniques in this work only support
single-level modulation schemes. To be more specific, they can guarantee
the CI constraints (with a certain probability, in the case of stochastic un-
certainty) only for outer constellation symbols, i.e., those symbols with un-
bounded Voronoi regions. It would be an interesting problem to extend the
current scheme to a more general case where the constellation includes some
inner symbols for which the DPCIRs are only the constellation symbol itself.
For such symbols, the probabilistic CI constraint always has an empty feasi-
ble region, so does the robust optimization problem. In order to generalize
the current scheme to the case with multi-level modulation schemes, one may
define a relaxed CI region by assuming a confidence region around each in-
ner symbol, allowing the noise-free received signal to lie within the relaxed
region. This relaxation may affect the users’ SER performance, but on the
other hand, it may result in lower transmission powers. Hence, one also needs
to carefully choose the relaxation parameter such that a certain performance
level is guaranteed. In general, this might be somewhat challenging, and
the design approach may need to be done analytically by taking the given
system/user requirements into account.

4. An interesting extension to the proposed low-complexity FPGA design of SLP
could be to estimate the amount of power consumed by the FPGA while running
the IP block and compare it with the saved power at the transmitter. Another
future work is to further optimize the HDL code and seek possible improvements in
the algorithm’s accuracy. The subsequent step is to conduct experimental valida-
tion of the proposed algorithm by deploying the HDL design on an actual FPGA.

5. It would be an interesting problem to consider a multi-carrier massive MU-MIMO
system and investigate how the proposed one-bit SLP scheme scales with frequency
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(i.e., with the number of subcarriers) in a wide-band system. It might be challeng-
ing to quantize several sub-carriers at the same time when using one-bit DACs.

6. The analysis on the energy efficiency of hybrid precoding schemes in this work
was performed by considering only static power losses at the transmitter, i.e., the
power dissipated by the analog, digital, or mixed signal components. An important
challenge concerning the energy efficiency of hybrid architectures is the dynamic
power losses in the system. This sort of loss refers to the power dissipated at
the combiners when phase shifters’ output signals are added with different phases.
Accordingly, a possible extension to this work is to take the dynamic losses into
account when designing the hybrid SLP scheme. On the other hand, the losses
in the switching and phase-shifting networks due to the network’s structure (i.e.,
partial or full connectivity) were not specifically modeled in our analysis; however,
such losses become of concern and have to be taken into account for large networks,
i.e., as the number of transmit antennas grows.
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Appendix A
Appendices for Chapter 3

A.1 Proof of Lemma 2

The intersection of a finite number of closed halfspaces is an unbounded polyhedron if
and only if the outward normals to the associated boundary hyperplanes lie on a single
closed halfspace [242, p. 20, Theorem 4]. Accordingly, for any xm ∈ X with unbounded
D(ML)
m , all the outward normal vectors −am,k for k ∈ Jm lie on a single halfspace. Since

the polyhedron D(DP)
m has the same set of outward normals −am,k for all k ∈ Jm, it is also

unbounded. An unbounded polyhedron is uniquely determined from its vertices and the
directions of its infinite edges [242, p. 31, Theorem 4]. Furthermore, it is straightforward
to check that xm is the unique solution of Amx = b(ML)

m + b(DP)
m , i.e., all the contributing

hyperplanes have a common intersection point xm. This means that D(DP)
m , which is given

by the solution set of Amx � b(ML)
m + b(DP)

m , has a single vertex at xm and two infinite
edges, i.e., a polyhedral angle. In addition, since any two neighboring points share a
common Voronoi edge, the two infinite edges of D(DP)

m correspond to the two neighboring
points of xm on bdX (i.e., Sm ∩ bdX ) with unbounded Voronoi regions. Each infinite
edge of D(DP)

m is then parallel to a hyperplane with normal vector am,k = xm−xk, where
xk ∈ Sm ∩ bdX ; therefore it is perpendicular to xm − xk. This completes the proof.

A.2 Proof of Lemma 3

To prove this lemma, we first state a well-known property of convex sets.

Property 2. vo is the minimum distance vector from the origin to the convex set V if
and only if for any vector v ∈ V we have vT

o v ≥ vT
o vo, with equality for v lying on the

hyperplane orthogonal to vo [243, p. 69, Theorem 1].

For any xm ∈ intX , Lemma 3 holds straightforwardly as D(DP)
m = xm. Therefore, in

what follows we only focus on the constellation points belonging to bdX .
Sufficiency: Having 0 ∈ convX , let further assume that 0 ∈ X . This assumption, as
mentioned earlier in section 3.4, does not have any impact on D(DP)

m for any xm ∈ bdX ,
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regardless of whether 0 ∈ bdX or 0 ∈ intX . By substituting xk = 0 in (3.28), for all
xm ∈ X we have ‖x‖ ≥ ‖xm‖ for all x ∈ D(DP)

m . This completes the proof of sufficiency.
Necessity: By contradiction, if 0 /∈ convX , let assume a new constellation set X̃
having all the points of X including the origin, i.e., X̃ = X ∪ {0}, hence convX ⊂
convX̃ . Clearly, 0 ∈ bdX̃ and according to Lemma 2, there always exist exactly
two constellation points on bdX̃ that 0 contributes to their DPCIRs. Let xl be one
of these points with D(DP)

l and D̃(DP)
l denoting its associated DPCIR in X and X̃ , re-

spectively. We further denote by S̃l the set of neighboring points of xl in X̃ . Let
H(O)
l =

{
x | x ∈ R2,xT

l x ≥ xT
l xl

}
be the distance preserving halfspace from 0 to xl.

Since 0 ∈ S̃l, we have D̃(DP)
l = H(O)

l ∩D
(DP)
l 6= D(DP)

l , i.e., the halfspace H(O)
l does not con-

tain D(DP)
l . Hence,

{
x | x ∈ R2,xT

l x = xT
l xl

}
is not a supporting hyperplane for D(DP)

l

at xl [121, p. 51]. This implies that there exist some x ∈ D(DP)
l for which xT

l x < xT
l xl.

According to Property 2 (which gives a necessary and sufficient condition), xl is not the
minimum distance vector from the origin in D(DP)

l . Consequently, ‖x‖ ≥ ‖xl‖ does not
hold for some x ∈ D(DP)

l which contradicts ‖x‖ ≥ ‖xl‖ for all x ∈ D(DP)
l .

A.3 Proof of Theorem 4

To prove this theorem, we need the following lemma.

Lemma 21. If 0 /∈ convX , there exists at least one constellation point xl ∈ X for which
for any x ∈ D(DP)

l , we have 0 /∈ convX̃xl,x, where X̃xl,x = X ∪ {x}.

Proof. If 0 /∈ convX , for any xm ∈ X and any x ∈ D(DP)
m with X̃xm,x = X ∪ {x}, we

define
Cm =

⋃
x∈D(DP)

m

convX̃xm,x.

Since convX ⊆ convX̃xm,x, it follows from the definition of convex hull that

convX =
⋂

xm∈X
Cm.

If 0 ∈ Cm for all xm ∈ X , then 0 ∈ convX , which contradicts our assumption. As a
result, there must exist at least one constellation point, say xl, for which Cl and therefore
none of convX̃xl,x for x ∈ D(DP)

l contains the origin, as required.

Now, we can start the proof of Theorem 4 as follows.
Sufficiency: Suppose 0 ∈ convX . Assuming a constellation point xm ∈ X and its
DPCIR D(DP)

m , let y1 and y2 be two points in D(DP)
m such that Amy1 = b(ML)

m +b(DP)
m +tm,1

and Amy2 = b(ML)
m +b(DP)

m +tm,2 with {tm,1, tm,2} ∈ RMm
+ and tm,1 ≺ tm,2. Let consider

a new constellation X̃ = X ∪ {y1}. It is clear that convX ⊆ convX̃ , and therefore
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0 ∈ convX̃ . The DPCIR of y1 can be described as

D(DP)
y1 =

{
x | x ∈ R2,Amx = b(ML)

m + b(DP)
m + tm,1 + t1, t1 ∈ RMm

+

}
.

Let t̄ = tm,2− tm,1, then Amy2 = b(ML)
m +b(DP)

m + tm,1 + t̄, where t̄ ∈ RMm
++ , which means

that y2 ∈ D(DP)
y1 . As a consequence, from Lemma 3, we have ‖y1‖ < ‖y2‖ and the proof

of sufficiency is complete.
Necessity: By contradiction, suppose 0 /∈ convX . Then, based on Lemma 21, there
exists a constellation point xl for which 0 /∈ convX̃xl,x for all x ∈ D(DP)

l . Let y1 ∈ D(DP)
l ,

then Aly1 = b(ML)
l +b(DP)

l +tl,1 with tl,1 ∈ RMl
+ . The DPCIR of y1 can then be expressed

as
D(DP)

y1 =
{
x | x ∈ R2,Alx = b(ML)

l + b(DP)
l + tl,1 + t1, t1 ∈ RMl

+

}
.

Since 0 /∈ convX̃xl,y1 , it follows from Lemma 3 and Property 2 that there exists y2 ∈
D(DP)

y1 such that Aly2 = b(ML)
l + b(DP)

l + tl,1 + t̄, t̄ ∈ RMl
++, for which ‖y2‖ < ‖y1‖. But

tl,1 + t̄ = tl,2 yields tl,2 � tl,1, which is a contradiction. This completes the proof.

A.4 Proof of Lemma 6

To verify the equivalence of problems (3.41) and (3.43), let consider two cases. If Nu =
Nt, then G is full rank with high probability, and hence G† = G−1. As a result,
the constraint Gū = ΣΓ(b(ML) + b(DP)) + t in (3.41) gives a unique solution for any
fixed t. In this case, there exists a bijection between t and ū, which implies that one
of them can be obtained as a one-to-one function of the other. Therefore, optimizing
t is equivalent to optimizing both ū and t. Otherwise, if Nu < Nt, the constraint
Gū = ΣΓ(b(ML) + b(DP)) + t may have more than one solution as G is full row rank in
this case. Thus, the LCQP in (3.41) can be written as

min
t

min
ū

ūTū

s.t. Gū = ΣΓ(b(ML) + b(DP)) + t,
ti = 0, ∀i /∈ I,
ti � 0, ∀i ∈ I,

(A.1)

for which the solution to the inner minimization is given by ū = G† (ΣΓ(b(ML) + b(DP)) + t),
which is the least-norm solution to the system of linear equations Gū = ΣΓ(b(ML) +
b(DP)) + t. In addition, we can impose the constraints ti = 0 for all i /∈ I, if any exist,
using a diagonal matrix W with a one element on the main diagonal if it corresponds
to a symbol i ∈ I, and zero otherwise. When computing u, such a matrix excludes
those elements of t that correspond to a symbol i /∈ I. Consequently, the optimal pre-
coded vector can be expressed as ū = G† (ΣΓ(b(ML) + b(DP)) + Wt) with t given by
Gū = ΣΓ(b(ML) + b(DP)) + Wt.

233



Appendices for Chapter 3

A.5 Proof of Lemma 5

Let t = 0, then the feasibility problem (3.39) reduces to

find ū
s.t. Gū = ΣΓ

(
b(ML) + b(DP)) ,

ūTū ≤ p.
(A.2)

Now suppose that ūo = G†ΣΓ (b(ML) + b(DP)) is a (not necessarily unique) solution to
the system of linear equations

Gū = ΣΓ
(
b(ML) + b(DP)) . (A.3)

In fact, ūo is equal to the solution of the zero-forcing (ZF) precoding [4] when identical
target SINRs are allocated to all the users. We argue the existence of ūo as follows. In
case Nu = Nt, due to the random channel matrices Hi for i = 1, ..., Nu, matrix G is full
rank with high probability. This means that the probability of (A.3) having more than
one solution is almost zero. On the other hand, for Nu < Nt, matrix G is full row rank
and (A.3) expresses an underdetermined system of linear equations for which ūo is the
least-norm solution. Having ūo as a solution to (A.3), if ūT

o ūo ≤ p, then ūo is a feasible
point for (A.2); this further implies the feasibility of problem (3.39) since this problem
is a relaxed version of (A.2). Therefore,

ūT
o ūo =

(
b(ML) + b(DP))T ΓΣ(GGT)†ΣΓ

(
b(ML) + b(DP)) ≤ p,

is a sufficient condition for the feasibility problem (3.39) to have at least one solution.
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B.1 Proof of Lemma 7

Sufficiency: It is clear from (4.6) that ū∗ equals the ZF solution if and only if t∗ = 0.
Given p � 0, let assume by contradiction that t∗ 6= 0, i.e., there exist some l such
that t∗l > 0, which gives pTt∗ ≥ 0. Let us rewrite the optimality condition (4.13) as
t∗TQt∗ + pTt∗ = 0. By definition, Q is symmetric and Q = (H†A−1)TH†A−1, where
H†A−1 has full column rank, with high probability, due to the random concatenated
channel H. Hence, Q is a positive definite matrix [119, Theorem 7.2.7], i.e., t∗TQt∗ > 0
for any t∗ 6= 0. This, however, yields t∗TQt∗ + pTt∗ > 0 which contradicts the KKT
condition (4.13). Therefore, having p � 0, it necessarily holds that t∗ = 0, as required.
Necessity: Assuming t∗ = 0, it immediately follows from (4.12) that p � 0. This
completes the proof.
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C.1 Proof of equality (b) in (6.26)

First, let Qi , E{vec(Ei)vec(Ei)T} denote the covariance matrix of vec(Ei) as given in
(6.24). It follows that

Qi = 1
2 ξ

2
i

[
INt ⊗ I2 INt ⊗ J2

INt ⊗ JT
2 INt ⊗ I2

]
, (C.1)

where we have used the facts that (INt ⊗ J2)T = INt ⊗ JT
2 and I2Nt = INt ⊗ I2. Now,

the desired equality to be proven can be written as

(ūT ⊗Ai) Qi(ū⊗AT
i ) = 1

2 ξ
2
i (ūT ⊗Ai)(ū⊗AT

i ), (C.2)

Using the property (ūT ⊗ Ai)(ū ⊗ AT
i ) = (ūTū) ⊗ (AiAT

i ), equivalently, it is desired
that

(ūT ⊗Ai) Qi(ū⊗AT
i ) = 1

2 ξ
2
i ‖ū‖2(AiAT

i ), (C.3)

We proceed by focusing on the left-hand side of (C.3). Let us denote (ūT ⊗Ai)Qi(ū⊗
AT
i ) , G = [gkj ]2×2 where j, k = 1, 2, and uR , Re(u) and uI , Im(u) such that

ūT = [uT
R,uT

I ]. Thus, considering Ai = [ai,1,ai,2]T, we have

G = 1
2 ξ

2
i

[
uT

R ⊗ aT
i,1 uI ⊗ aT

i,1
uT

R ⊗ aT
i,2 uI ⊗ aT

i,2

]
×
[

INt ⊗ I2 INt ⊗ J2

INt ⊗ JT
2 INt ⊗ I2

]
×
[
uR ⊗ ai,1 uR ⊗ ai,2
uI ⊗ ai,1 uI ⊗ ai,2

]
.

(C.4)
For the sake of simplicity, the term 1

2 ξ
2
i is omitted from the next equation, but it will

appear in the final derivation. The matrix multiplication in the right-hand side of (C.4)
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can be evaluated and simplified as

g11 =
(
uT

RuR + uT
I uI

)
aT
i,1ai,1 + 2 uT

RuI ⊗ aT
i,1J2ai,1, (C.5a)

g12 = g21 =
(
uT

RuR + uT
I uI

)
aT
i,1ai,2 + 2 uT

RuI ⊗
(
aT
i,1J2ai,2 + aT

i,1JT
2 ai,2

)
, (C.5b)

g22 =
(
uT

RuR + uT
I uI

)
aT
i,2ai,2 + 2 uT

RuI ⊗ aT
i,2J2ai,2, (C.5c)

where in simplifications, we have frequently used the fact that (X ⊗ Y)(W ⊗ Z) =
(XW ⊗ YZ), for any given matrices X,Y,W,Z with appropriate dimensions. It is
then easy to verify that aT

i,1J2ai,1 = aT
i,1JT

2 ai,1 = 0, and further aT
i,1J2ai,2 + aT

i,1JT
2 ai,2 =

aT
i,1(J2 + JT

2 )ai,2 = 0. Moreover, it directly follows from the definition of ū that uT
RuR +

uT
I uI = ūTū. Applying all these notes to (C.5a)-(C.5c), the entries of G are obtained

as

g11 = ‖ū‖2‖ai,1‖2, (C.6a)
g12 = g21 = ‖ū‖2 aT

i,1ai,2, (C.6b)
g22 = ‖ū‖2‖ai,2‖2. (C.6c)

Merging the results in (C.6) yields

G = 1
2 ξ

2
i ‖ū‖2(AiAT

i ), (C.7)

as required.

C.2 Derivation of an equivalent SOC formulation for safe
approximation II

The derivation is essentially based on Lemma 9. We denote

X ,

− w̄i,1
ψ(υ) 0
0 − w̄i,2

ψ(υ)

 , Y ,

[1 0 0 0
0 0 0 1

]
, Z ,


− w̄i,1
ψ(υ) 0 0 0
0 − w̄i,2

ψ(υ) 0 0
0 0 − w̄i,1

ψ(υ) 0
0 0 0 − w̄i,2

ψ(υ)

 .

Accordingly, the constraint (6.43) can be equivalently implied by the following two
semidefinite restrictions:

X � 0, (C.8a)
Z−YTX−1Y � 0. (C.8b)
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The second restriction in (C.8b), after doing the matrix products and some simple alge-
bra, can be written as

− w̄i,1
ψ(υ) + ψ(υ)

w̄i,1
0 0 0

0 − w̄i,1
ψ(υ) 0 0

0 0 − w̄i,2
ψ(υ) 0

0 0 0 − w̄i,2
ψ(υ) + ψ(υ)

w̄i,2

 � 0. (C.9)

from which it is clear that (C.8b) further implies the restriction X � 0, hence it is
necessary and sufficient for (6.43). We then rearrange (C.9) in a more convenient form
and decompose it into two semidefinite constraints as

−1
ψ(υ) Dw̄i � 0, (C.10a)

−1
ψ(υ) Dw̄i + ψ(υ) D−1

w̄i
� 0, (C.10b)

with Dw̄i , diag(w̄i). Note that the restriction (C.10a) is in fact equivalent to Dw̄i � 0
or w̄i � 0, which is implied by the constraint wi � 0; see Remark 1. Further, note that
erfc(·) is non-negative in the interval (0, 1], so is ψ(υ). Now, multiplying both sides of
(C.10b) by Dw̄i , and imposing the restriction (C.10a) which changes the direction of the
inequality, both of the constraints (C.10b) and (C.10a) can be simultaneously expressed
by

−1
ψ(υ) D2

w̄i
+ ψ(υ) I � 0. (C.11)

Since Dw̄i � 0 and diagonal, from (C.11) by taking square root, we obtain

1
ψ(υ) Dw̄i + I � 0, (C.12)

which can be written in the vector form as
−1
ψ(υ) w̄i � 1. (C.13)

Replacing w̄i with (
√

2/ξi‖ū‖)(AiAT
i )−1/2wi(ū), it is then routine to show that (C.13)

is equivalent to

‖ū‖1 � −
√

2
ψ(υ) ξi

(AiAT
i )−1/2wi(ū), (C.14)
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D.1 Proof of Lemma 14

Let QΛQT denote the spectral decomposition of HTH, where Λ = diag(λ1, λ2, ..., λ2Nt)
is a diagonal matrix containing the eigenvalues of HTH with λj ≥ 0 denoting the jth
eigenvalue for j = 1, 2, ..., 2Nt, and Q is a unitary matrix such that QTQ = QQT = I
with columns being the corresponding eigenvectors of HTH. It then immediately follows
that

P = HTH + 1
β

I

= Q
(

Λ + 1
β

I
)

QT

= QΛ̄QT,

(D.1)

where Λ̄ , Λ+ (1/β)I = (λ̄1, λ̄2, ..., λ̄2Nt). Replacing P with its spectral decomposition,
we can rewrite f(µ) as

f(µ) =
(
PḠū−HTΦ

)T
Q
(
Λ̄− µI

)−2
QT

(
PḠū−HTΦ

)
− ε2. (D.2)

Let y , QT
(
PḠū−HTΦ

)
, where y = [y1, y2, ..., y2Nt ]T. Therefore, function f(µ) can

be expressed as
f(µ) = yT(Λ̄− µI)−2y− ε2

=
2Nt∑
j=1

y2
j

(λ̄j − µ)2 − ε
2 (D.3)

Notice that f(−∞) = f(+∞) = −ε2. This, along with the fact limµ→λ̄j f(µ) = +∞ for
all j ∈ {1, 2, ..., 2Nt}, implies that function f(µ) has at least two roots µ1 < λ̄min and
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µ2 > λ̄max, where

λ̄min , λmin
(
HTH + (1/β)I

)
= λmin(HTH) + 1/β,

and
λ̄max , λmax

(
HTH + (1/β)I

)
= λmax(HTH) + 1/β,

respectively denote the minimum and the maximum eigenvalue of HTH + (1/β)I. Fur-
ther,

∂f

∂µ
, f ′(µ) =

2Nt∑
j=1

2y2
j

(λ̄j − µ)3 . (D.4)

It can simply be verified that f ′(µ) > 0 for all µ < λ̄min while f ′(µ) < 0 for µ >
λ̄max. As a consequence, f(µ) has exactly one root within each interval (−∞, λ̄min) and
(λ̄max,+∞). On the other hand, we have

∂2f

∂µ2 , f ′′(µ) =
2Nt∑
j=1

6y2
i

(λ̄j − µ)4 . (D.5)

It can simply be verified that f ′′(µ) ≥ 0, with f ′′(µ) = 0 only if y2
j = 0 for all i =

1, 2, ..., 2Nt, i.e., y = 0. However, we show that y 6= 0 always hold true as follows.
We have rank(QT) = rank(HT) = 2Nt, i.e., QT and HT are full column rank matrices
with high probability, and thus, QT

(
PḠū−HTΦ

)
= 0 only when PḠū −HTΦ = 0.

However, PḠū −HTΦ = 0 yields w∗ = 0 which contradicts the optimality condition
‖w∗‖ = ε, and hence, y 6= 0 always holds true at the optimum, and f ′′(µ) > 0. From
the definition of f(µ) in (D.2), it further follows that

lim
µ→λ̄+

j

f(µ) = lim
µ→λ̄−j

f(µ).

This means that f(µ) is shaped as a parabolic function in the interval between any
two consecutive λ̄j for all j = 1, 2, ..., 2Nt. Thus, f(µ) can have at most two roots
corresponding to each eigenvalue λ̄j . Putting all these together along with the fact
rank(HTH) = rank(H), we can deduce that f(µ) always has an even number of roots
bounded as 2 ≤ R ≤ 2 rank(H).

D.2 Proof of Theorem 15

The proof is composed of two parts. First, we show that w∗ is unique for the largest
positive root of f(µ), and then we obtain upper and lower bounds for this unique root.

Let R , {µl | l = 1, ..., 2rank(H)} denote the set of roots of f(µ), including µ1 and
µ2 such that µ1 < λ̄min, µ2 > λ̄max, and λ̄min < µl < λ̄max for l 6= 1, 2. Note that in
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scenarios with an equi-power channel where, no such µl exist. We further denote by

g(µ) , β ∆̄TP∆̄ + 2β ∆̄T(PḠū−HTΦ), (D.6)

those terms of the objective function (7.7) that depend on ∆̄. In order to obtain the
maximizer of (7.7), we need to evaluate and compare g(µ) among all µ ∈ R and opt for
the largest value of g(µ). For this purpose, by substituting the spectral decomposition
Qλ̄QT for P, replacing ∆̄ from (7.10) and ignoring the constant multiplier β, we rewrite
g(µ) as

g(µ) = yT
(
Λ̄− µI

)−2
Λ̄y− 2yT

(
Λ̄− µI

)−1
y, (D.7)

or equally,

g(µ) =
2Nt∑
j=1

(
λ̄jy

2
j

(λ̄j − µ)2 −
2y2
j

λ̄j − µ

)
, (D.8)

where y , QT
(
PḠū−HTΦ

)
, with y = [y1, y2..., y2Nt ]T. Using the fact that

2Nt∑
j=1

y2
j

(λ̄j − µ)2 = ε2, ∀µ ∈ R, (D.9)

we can evaluate g(µ) for µ ∈ R as

g(µ) =
2Nt∑
j=1

(
λ̄jy

2
j

(λ̄j − µ)2 −
2y2
j

λ̄j − µ

)

=
2Nt∑
j=1

(2µ− λ̄j)y2
j

(λ̄j − µ)2

= 2µε2 −
2Nt∑
j=1

λ̄jy
2
j

(λ̄j − µ)2 .

(D.10)

Since |λ̄j − µl| < |λ̄j − µ2| for all j = 1, 2, ..., 2Nt and µ2 ≥ µl for all µl ∈ R, it readily
follows from (D.10) that

g(µ2) ≥ g(µl), ∀µl ∈ R. (D.11)

On the other hand, considering µ1 < λ̄min, we obtain

g(µ1) = 2µ1ε
2 −

2Nt∑
j=1

λ̄jy
2
j

(λ̄j − µ1)2

< 2λ̄minε
2 − λ̄min

2Nt∑
j=1

y2
j

(λ̄j − µ1)2 = λ̄minε
2.

(D.12)
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Furthermore, evaluating g(µ) at µ2 yields

g(µ2) = 2µ2ε
2 −

2Nt∑
j=1

λ̄jy
2
j

(λ̄j − µ2)2

> 2λ̄maxε
2 − λ̄max

2Nt∑
j=1

y2
j

(λ̄j − µ2)2 = λ̄maxε
2.

(D.13)

As a consequence, it always holds true that

g(µ1) < λ̄minε
2 ≤ λ̄maxε

2 < g(µ2). (D.14)

Therefore, µ2 is the root of f(µ) that maximizes the objective function of (7.7). This
completes the proof of the first part.

Finally, we are interested in deriving lower and upper bounds on µ∗. Such bounds
would be of essential use when computing µ∗ through numerical methods, e.g., a bisection
search. A lower bound on µ2 = µ∗ is simply given by µ∗ > λ̄max. To obtain an upper
bound, recall that yT(Λ̄−µ∗I)−2y = ε2, from which by applying |λ̄max−µ∗| ≤ |λ̄j −µ∗|
for all j = 1, 2, ..., 2Nt, we obtain

ε2 ≤ yT(λ̄maxI− µ∗I)−2y = ‖y‖2

(λ̄max − µ∗)2 . (D.15)

Due to the unitary invariance property, we have ‖y‖ = ‖QT(PḠū−HTΦ)‖ = ‖PḠū−
HTΦ‖, and therefore, the inequality (D.15) yields the following upper bound:

µ∗ ≤ λ̄max + 1
ε

∥∥∥(PḠū−HTΦ
)∥∥∥

2
. (D.16)

Hence, the proof is complete.

D.3 Proof of Lemma 16

Given ū and Φ, using the upper bound

µ∗ ≤ λ̄max + 1
ε

∥∥∥PḠū−HTΦ
∥∥∥ , (D.17)

we can see that |µ∗−λ̄max| → ∞ as ε→ 0 with high probability. The increasing behavior
of |µ∗ − λ̄max| can also be verified as follows. The extremum point µ∗ always satisfies

ε2 =
2Nt∑
j=1

y2
j

(λ̄j − µ∗)2 . (D.18)
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In case ε → 0, since all the summands in (D.18) are positive, it necessarily holds true
that

lim
ε→0
|µ∗ − λ̄max| =∞, (D.19)

which yields µ∗ � λ̄max. Recall the equation to be solved to find µ∗, given by(
PḠū−HTΦ

)T
(P− µ∗I)−2

(
PḠū−HTΦ

)
= ε2, (D.20)

which can equivalently be written as( 1
µ∗

)2 (
PḠū−HTΦ

)T
(

I− 1
µ∗

P
)−2 (

PḠū−HTΦ
)

= ε2, (D.21)

As a consequence of µ∗ � λ̄max, the scalar 1/µ∗ is relatively small compared to the
eigenvalues of I and P. Hence, the approximation (I− (1/µ∗)P)−1 ≈ I + (1/µ∗)P might
be useful [244]. Accordingly, we can write(

I− 1
µ∗

P
)−2
≈
(

I + 1
µ∗

P
)2

= I +
( 1
µ∗

)2
P2 + 2

µ∗
P

≈ I + 2
µ∗

P,

(D.22)

where the last approximation is obtained by ignoring the second order term which follows
from µ∗ � λ̄max. Plugging the approximation (D.21) into (D.21), we obtain( 1

µ∗

)2 (
PḠū−HTΦ

)T
(

I + 2
µ∗

P
)(

PḠū−HTΦ
)

= ε2, (D.23)

By replacing the spectral decomposition P = QΛ̄QT and denoting y , QT
(
PḠū−HTΦ

)
,

after some straightforward algebraic steps, we can rewrite (D.23) as

ε2(µ∗)3 − µ∗yTy− 2yTΛ̄y = 0. (D.24)

The solution to this polynomial equation can be obtained via the following lemma.

Lemma 22. The solution to the third order polynomial equation ax3 + bx + c = 0 is
given by

x = 1
a

(
θ

18

) 1
3
−
( 2

3θ

) 1
3
b, (D.25)

where θ =
√

3
√

27a4c2 + 4a3b3 − 9a2c.
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Applying Lemma 22 to the polynomial equation (D.24), we obtain

µ∗ = 1
3

(
ε2

2yTΛ̄y

) 1
3

yTy + 2
(

ε2

yTΛ̄y

)− 1
3

. (D.26)

Under the assumption ε� 1, we can further approximate (D.26) by a simpler expression
as

µ∗ ≈ 2
(

yTΛ̄y
ε2

) 1
3

, (D.27)

or equally,

µ∗ ≈ 2


∥∥∥P (PḠū−HTΦ

)∥∥∥
ε


2
3

, (D.28)

as required.
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E.1 Proof of Lemma 17

First, we prove that xm ∈ {−1,+1}, for all m = 1, 2, ..., 2bNt. From −1 � x � 1,
or equally ‖x‖∞ ≤ 1, it is easy to verify that ‖x‖ ≤

√
‖x‖1, using which along with

yTy ≤ 2bNt and the Cauchy-Schwarz inequality, we can write the following chain of
inequalities:

2bNt = xTy ≤ ‖x‖‖y‖ ≤
√

2bNt‖x‖ ≤
√

2bNt‖x‖1. (E.1)

It follows from (E.1) that ‖x‖1 ≥ 2bNt. Putting ‖x‖∞ ≤ 1 and ‖x‖1 ≥ 2bNt together,
we conclude that xm ∈ {−1,+1}, for all m = 1, 2, ..., 2bNt. This further implies that
‖x‖2 = 2bNt. Finally, from xTy = 2bNt = ‖x‖2, it is straightforward to show that
x = y. Hence, the proof is complete.

E.2 Proof of Lemma 19

Given t, function f(x, t) consists of an `2-norm function plus a linear term in x, and
hence, is continuously differentiable everywhere. Let x1 ∈ R2bNt×1 and x2 ∈ R2bNt×1

be any two distinct vector inputs to the function f(x, t) such that −1 � x1 � 1 and
−1 � x2 � 1. Then, we can write

|f(x1, t)− f(x2, t)| =
∣∣∣∣qT

(
A−1Wt−√pHbx1

)
+
∥∥∥Q (√

pHbx1 −A−1Wt
)
− g

∥∥∥2

− qT
(
A−1Wt−√pHbx2

)
+
∥∥∥Q (√

pHbx2 −A−1Wt
)
− g

∥∥∥2
∣∣∣∣

=
∣∣∣∣√pqTHb(x2 − x1) + ‖√pQHbx1‖2 − ‖

√
pQHbx2‖2

+ 2√p
(
tTWTA−T + gT

)
QHb(x2 − x1)

∣∣∣∣.
(E.2)
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Using the matrix/vector operator norm inequality, the following chain of inequalities
holds true:

|f(x1, t)− f(x2, t)| ≤
∣∣∣∣ ‖√pQHbx1‖2 − ‖

√
pQHbx2‖2

+√p
(
2 tTWTA−TQ + 2 gTQ + qT

)
Hb(x2 − x1)

∣∣∣∣
(a)
≤
∣∣∣‖√pQHbx1‖2 − ‖

√
pQHbx2‖2

∣∣∣
+
∣∣∣√p (2 tTWTA−TQ + 2 gTQ + qT

)
Hb(x2 − x1)

∣∣∣
(b)
≤ ‖√pQHbx1 −

√
pQHbx2‖2

+ 2√p
∥∥∥∥HT

b

(
QTA−1Wt + QTg + 1

2q
)∥∥∥∥ ‖x1 − x2‖

≤ p ‖QHb‖2 ‖x1 − x2‖2

+ 2√p
∥∥∥∥HT

b

(
QA−1Wt + QΣs + 1

2q
)∥∥∥∥ ‖x1 − x2‖

(E.3)

where the inequalities (a) and (b) directly follow from the (reverse) triangle inequality.
Furthermore, in deriving the last inequality, we have used the facts that QTQ = QT = Q
and QTq = 0, and therefore, QTg = QΣs; these equalities can be verified using the
definitions of Q, q and g. On the other hand, since −1 � x1 � 1 and −1 � x2 � 1, we
always have

‖x1 − x2‖ ≤ 2
√

2bNt, (E.4)

where equality is achieved when either x1 or x2 is equal to 1 while the other equals −1.
Using (E.4), form the last inequality in (E.3), we obtain the following upper bound:

|f(x1, t)− f(x2, t)| ≤ 2p
√

2bNt ‖QHb‖2 ‖x1 − x2‖

+ 2√p
∥∥∥∥HT

b

(
QA−1Wt + QΣs + 1

2q
)∥∥∥∥ ‖x1 − x2‖

(E.5)

It immediately follows that |f(x1, t)− f(x2, t)| / ‖x1 − x2‖2 can be bounded from above
by

L , 2p
√

2bNt ‖QHb‖2 + 2√p
∥∥∥∥HT

b

(
QA−1Wt + QΣs + 1

2q
)∥∥∥∥ , (E.6)

where L is a positive real constant if QHb 6= 0 and/or HT
b
(
QA−1Wt + QΣs + q/2

)
6=

0, implying that f(x, t) is Lipschitz continuous on −1 � x � 1 with constant L.
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E.3 Derivation of an approximate upper bound on L

Let us begin from Lemma 19 where the exact value of L is provided. It then follows
from (8.28) that

L ≤ 2p
√

2bNt ‖Q‖2 ‖Hb‖2 + 2√p ‖Hb‖
∥∥∥∥QA−1Wt + QΣs + 1

2q
∥∥∥∥

= 2p
√

2bNt ‖Q‖2 ‖Hb‖2 +O (‖Hb‖) ,
(E.7)

where the equality holds considering the fact that in the second expression, only ‖Hb‖
scales with Nt while the other terms scale only with Nu. Thus, in the limiting case with
Nt →∞, we have

L . O
(
2p
√

2bNt ‖Q‖2 ‖Hb‖2
)

= O
(
2p
√

2bNt λmax
(
QQT

)
λmax

(
HbHT

b

))
= O

(
2p
√

2bNt λmax
(
HbHT

b

))
,

(E.8)

where λmax(·) denotes the maximum eigenvalue of a matrix, and the last equality holds
true since, by definition, Q is an idempotent symmetric matrix, i.e., QQT = Q2 = Q,
and hence we have λmax(Q) = 1. By substituting bT ⊗H for Hb and using some well
known properties of the Kronecker product, we can write HbHT

b = (bT⊗H)(bT⊗H)T =
(bT ⊗H)(b⊗HT) = bTb⊗HHT = ‖b‖2HHT. As a result, we obtain

L . O
(
2p
√

2bNt ‖b‖2λmax
(
HHT

))
. (E.9)

Recall that b = (∆/2)[1, ..., 2b−1]T with ∆ = 2/
(
(B − 1)

√
2Nt

)
, and therefore,

‖b‖2 = ∆2

4

b∑
n=1

22(n−1) = 1
2Nt(B − 1)2

b−1∑
n′=0

4n′ , (E.10)

where the last equality can simply be verified using the change of variable n − 1 → n′.
The sequence {4n′}∞n′=0 is a geometric series with common ration 4. For this series, the
summation of the first b terms, i.e., ∑b−1

n′=0 4n′ , is given by (4b − 1)/3. Replacing this in
(E.10) yields

|b‖2 = 2b + 1
6Nt(2b − 1) . (E.11)

Using (E.11), we can rewrite (E.9) as

L . O
(
p(2b + 1)

√
2b

3
√
Nt(2b − 1)

λmax
(
HHT

))
. (E.12)

Based on a fundamental result in random matrix theory, in the large system limit where
Nt → ∞ with Nt � Nu, we have λmax

(
HHT

)
→ 2Nt with probability one [245].

Therefore, in the large system limit, an approximate upper bound on L can be obtained
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as
L . O

(
2p(2b + 1)

√
2bNt

3(2b − 1)

)
= O

(
p
√
bNt

)
. (E.13)
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Appendices for Chapter 9

F.1 Proof of Lemma 20

Let uBB be given, then g(uBB ,g) is an `2-norm function of g, and therefore, it is contin-
uously differentiable everywhere on R. Suppose {g1,g2} ∈ RNtNl×1 are two inputs to
g(uBB ,g) such that −1 � {g1,g2} � 1. For brevity of notation, let us further denote
Θ , (uT

BB ⊗ INt) diag(vec(F)). We can write

|g(uBB ,g1)− g(uBB ,g2)| =
∣∣∣∣∥∥∥Θg1 + FuBB − 2 u?FD

∥∥∥2
−
∥∥∥Θg2 + FuBB − 2 u?FD

∥∥∥2
∣∣∣∣

=
∣∣∣‖Θg1‖2 − ‖Θg2‖2 +

(
2uH

BBFHΘ− 4 u?FD
HΘ

)
(g1 − g2)

∣∣∣ .
(F.1)

According to the matrix/vector operator norm inequality, the following chain of inequal-
ities holds true:

|g(uBB ,g1)− g(uBB ,g2)|
(a)
≤
∣∣∣‖Θg1‖2 − ‖Θg2‖2

∣∣∣+ ∣∣∣(2uH
BBFHΘ− 4u?FD

HΘ
)

(g1 − g2)
∣∣∣

(b)
≤ ‖Θg1 −Θg2‖2 +

∥∥∥2ΘHFuBB − 4ΘHu?FD

∥∥∥ ‖g1 − g2‖

≤ ‖Θ‖2F‖g1 − g2‖2 +
∥∥∥2ΘHFuBB − 4ΘHu?FD

∥∥∥ ‖g1 − g2‖,
(F.2)

where inequalities (a) and (b) follow from the (reverse) triangle inequality. As −1 �
{g1,g2} � 1, we always have

‖g1 − g2‖ ≤ 2
√
NtNl, (F.3)
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where equality is achieved in case either g1 or g2 is equal to 1 while the other equals
−1. Using (F.3), form the last inequality in (F.2), we obtain the following upper bound:

|g(uBB ,g1)− g(uBB ,g2)| ≤
(
2
√
NtNl‖Θ‖2F +

∥∥∥2ΘHFuBB − 4 ΘHu?FD

∥∥∥) ‖g1 − g2‖.
(F.4)

It immediately follows that

|g(uBB ,g1)− g(uBB ,g2)|
‖g1 − g2‖

≤ 2
√
NtNl‖Θ‖2F + 2

∥∥∥ΘH(FuBB − 2 u?FD)
∥∥∥ , L, (F.5)

where L is a positive real constant in case Θ 6= 0 and/or FuBB−2 u?FD 6= 0. This implies
the Lipschitz continuity property for the function g(uBB ,g) on −1 � g � 1.
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[203] R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, and R. W. Heath,
“Hybrid MIMO architectures for millimeter wave communications: Phase shifters
or switches?” Ieee Access, vol. 4, pp. 247–267, 2016.

[204] A. Mezghani, R. Ghiat, and J. A. Nossek, “Transmit processing with low resolution
D/A-converters,” in 2009 16th IEEE Int. Conf. Electronics, Circuits and Syst.
(ICECS), Dec. 2009, pp. 683–686.

[205] L. N. Ribeiro, S. Schwarz, M. Rupp, and A. L. F. de Almeida, “Energy efficiency
of mmWave massive MIMO precoding with low-resolution DACs,” IEEE J. Sel.
Topics in Signal Process., vol. 12, no. 2, pp. 298–312, May 2018.

[206] Y. Li, C. Tao, A. Lee Swindlehurst, A. Mezghani, and L. Liu, “Downlink achievable
rate analysis in massive MIMO systems with one-bit DACs,” IEEE Commun. Lett.,
vol. 21, no. 7, pp. 1669–1672, Jul. 2017.

[207] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized
precoding for massive MU-MIMO,” IEEE Trans. Commun., vol. 65, no. 11, pp.
4670–4684, Nov. 2017.

[208] F. Sohrabi, Y. Liu, and W. Yu, “One-bit precoding and constellation range design
for massive MIMO with QAM signaling,” IEEE J. Sel. Topics in Signal Process.,
vol. 12, no. 3, pp. 557–570, Jun. 2018.

269



Bibliography

[209] A. Swindlehurst, A. Saxena, A. Mezghani, and I. Fijalkow, “Minimum probability-
of-error perturbation precoding for the one-bit massive MIMO downlink,” in 2017
IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), Mar. 2017, pp.
6483–6487.

[210] O. B. Usman, H. Jedda, A. Mezghani, and J. A. Nossek, “MMSE precoder for
massive MU-MIMO using 1-bit quantization,” in IEEE Conf. Acoust., Speech and
Signal Process. (ICASSP), Mar. 2016, pp. 3381–3385.

[211] G. Yuan and B. Ghanem, “Binary optimization via mathematical programming
with equilibrium constraints,” arXiv preprint:1608.04425, 2016.

[212] X. Hu and D. Ralph, “Convergence of a penalty method for mathematical pro-
gramming with complementarity constraints,” Journal of Optimization Theory and
Applications, vol. 123, no. 2, pp. 365–390, 2004.

[213] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for
bound constrained optimization,” SIAM Journal on Scientific Computing, vol. 16,
no. 5, pp. 1190–1208, 1995.

[214] M. Gustavsson, J. J. Wikner, and N. Tan, CMOS data converters for communica-
tions. Springer Science & Business Media, 2000, vol. 543.

[215] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation optimiza-
tion,” IEEE Trans. Wirel. Commun., vol. 4, no. 5, pp. 2349–2360, 2005.

[216] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K.
Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for
5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

[217] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband sys-
tems,” IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, June 2011.

[218] S. K. Yong and C.-C. Chong, “An overview of multiGigabit wireless through mil-
limeter wave technology: Potentials and technical challenges,” EURASIP journal
on wireless communications and networking, vol. 1, no. 1, 2007.

[219] C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Aggoune,
H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technolo-
gies for 5G wireless communication networks,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 122–130, 2014.

[220] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, “Mil-
limeter wave beamforming for wireless backhaul and access in small cell networks,”
IEEE Trans. Commun., vol. 61, no. 10, pp. 4391–4403, 2013.

[221] A. M. Sayeed and V. Raghavan, “Maximizing MIMO capacity in sparse multipath
with reconfigurable antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 1,
no. 1, pp. 156–166, 2007.

270



Bibliography

[222] O. E. Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “The capacity
optimality of beam steering in large millimeter wave MIMO systems,” in IEEE
13th International Workshop on Signal Processing Advances in Wireless Commu-
nications (SPAWC), June 2012, pp. 100–104.

[223] X. Gao, O. Edfors, J. Liu, and F. Tufvesson, “Antenna selection in measured mas-
sive MIMO channels using convex optimization,” in IEEE GLOBECOM Work-
shops. IEEE, 2013, pp. 129–134.

[224] B. M. Lee, J. Choi, J. Bang, and B.-C. Kang, “An energy efficient antenna selec-
tion for large scale green MIMO systems,” in IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2013, pp. 950–953.

[225] S. S. Ioushua and Y. C. Eldar, “A family of hybrid analog–digital beamforming
methods for massive MIMO systems,” IEEE Trans. Signal Process., vol. 67, no. 12,
pp. 3243–3257, June 2019.

[226] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda,
“Hybrid beamforming for massive MIMO: A survey,” IEEE Communications Mag-
azine, vol. 55, no. 9, pp. 134–141, 2017.

[227] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive
multiuser MIMO systems,” IEEE Wirel. Commun. Lett., vol. 3, no. 6, pp. 653–
656, 2014.

[228] J.-C. Chen, “Hybrid beamforming with discrete phase shifters for millimeter-wave
massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7604–7608,
2017.

[229] L. A. Belov, S. M. Smolskiy, and V. N. Kochemasov, Handbook of RF, microwave,
and millimeter-wave components. Artech house, 2012.

[230] D. Liu, U. Pfeiffer, J. Grzyb, and B. Gaucher, Advanced millimeter-wave technolo-
gies: antennas, packaging and circuits. John Wiley & Sons, 2009.

[231] R. L. Schmid, P. Song, C. T. Coen, A. Ç. Ulusoy, and J. D. Cressler, “On the
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