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Abstract. In recent years, Ethereum gained tremendously in popular-
ity, growing from a daily transaction average of 10K in January 2016 to
an average of 500K in January 2020. Similarly, smart contracts began
to carry more value, making them appealing targets for attackers. As
a result, they started to become victims of attacks, costing millions of
dollars. In response to these attacks, both academia and industry pro-
posed a plethora of tools to scan smart contracts for vulnerabilities before
deploying them on the blockchain. However, most of these tools solely
focus on detecting vulnerabilities and not attacks, let alone quantifying
or tracing the number of stolen assets. In this paper, we present Horus,
a framework that empowers the automated detection and investigation
of smart contract attacks based on logic-driven and graph-driven anal-
ysis of transactions. Horus provides quick means to quantify and trace
the flow of stolen assets across the Ethereum blockchain. We perform
a large-scale analysis of all the smart contracts deployed on Ethereum
until May 2020. We identified 1,888 attacked smart contracts and 8,095
adversarial transactions in the wild. Our investigation shows that the
number of attacks did not necessarily decrease over the past few years,
but for some vulnerabilities remained constant. Finally, we also demon-
strate the practicality of our framework via an in-depth analysis on the
recent Uniswap and Lendf.me attacks.
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1 Introduction

As of today, Ethereum [47] revolutionized the way digital assets are traded by
being the first to introduce the concept of Turing-complete smart contracts on
the blockchain. These are programs that are executed and stored across the
blockchain. However, due to the tamper-resistant nature of blockchains, smart
contracts can no longer be modified once deployed. At the time of writing,
Ethereum has a market capitalization of over 42 billion USD, making it the
second most valuable cryptocurrency on the market [4]. As of writing, WETH,
the most valuable Ethereum smart contract holds more than 2 billion USD worth
of ether (Ethereum’s own cryptocurrency) [13]. Moreover, Ethereum grew in the
past 4 years from a daily transaction average of 10K in January 2016 to an av-
erage of 500K in January 2020 [12]. Such an increase in value and popularity
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attracts abuse and the lack of a governing authority has led to a “Wild West”-like
situation, where several attackers began to exploit vulnerable smart contracts to
steal their funds. In the past, several smart contracts hosting tens of millions of
USD were victims to attacks (e.g., [24, 50, 35]). Hence, over the past few years a
rich corpus of research works and tools have surfaced to identify smart contract
vulnerabilities (e.g., [26, 44, 15, 29, 43, 2, 18, 21, 23]). However, most of these tools
only focus on analyzing the bytecode of smart contracts and not their transac-
tions or activities. Only a small number leverages transactions to detect attacks
(e.g., [36, 3, 48]), whereas the majority either requires the Ethereum client to be
modified or large and complex attack detection scripts to be written. Moreover,
none of these tools allow to directly trace stolen assets after their detection.

In this work, we introduce Horus, a framework capable of automatically
detecting and analyzing smart contract attacks from historical blockchain data.
Besides detecting attacks, the framework also provides means to quantify and
trace the flow of stolen assets across Ethereum accounts. The framework replays
transactions without modifying the Ethereum client and encodes their execu-
tion as logical facts. Attacks are then detected using Datalog queries, making
the framework easily extendable to detect new attacks. Stolen funds are traced
by loading detected transactions into a graph database and performing trans-
action graph analysis. Using our framework, we conduct a longitudinal study
that spans the entire past Ethereum blockchain history, from August 2015 to
May 2020, consisting of over 3 million smart contracts. One of the fundamental
research questions we are investigating is whether these years of efforts have
yielded visibly fewer attacks in the wild. If the tools proposed herein are effec-
tive, one could argue that attacks should have declined over time. To quantify
the answer to this question, we start by investigating whether attacks occur con-
tinuously, or if they appear sporadically. While most well-known attacks carry
significant monetary value, we wonder whether smaller, but ongoing attacks may
occur more often and remain rather occluded.

Contributions. We present the design and implementation of Horus, a
framework that helps identifying smart contract attacks based on a sequence of
blockchain transactions using Datalog queries. In addition, the framework ex-
tracts the quantity of stolen funds, including ether as well as tokens, and traces
them across accounts to support behavioral studies of attackers. We provide a
longitudinal study on the security of Ethereum smart contracts of the past 4.5
years, and find 8,095 attacks in the wild, targeting a total of 1,888 vulnerable
contracts. Finally, we perform a forensic analysis of the recent Uniswap and
Lendf.me hacks.

The remainder of the paper is organized as follows. Section 2 introduces
background on smart contracts and the Ethereum virtual machine. Section 3
presents our framework. Our evaluation is discussed in Section 4. Section 5 ana-
lyzes our results and presents our forensic analysis on the Uniswap and Lendf.me
incidents. Finally, Section 6 and Section 7 discuss related work and conclude our
paper, respectively.
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2 Background

Smart Contracts. Although, the notion of smart contracts is not new [41],
the concept only became wide-spread with the release of Ethereum in 2015.
Ethereum smart contracts are fully-fledged programs that are different from
traditional programs in several ways. They are deterministic as they must be
executed across a network of mutually distrusting nodes. Once deployed, smart
contracts cannot be removed or updated, unless they have been explicitly de-
signed to do so. Furthermore, every smart contract has a balance that keeps track
of the amount of ether owned by the contract, and a value storage that allows to
keep state across executions. They are usually developed using a high-level pro-
gramming language, such as Solidity [46], that compiles into low-level bytecode.
This bytecode is interpreted by the Ethereum Virtual Machine (EVM).

Transactions. The deployment and execution of smart contracts occurs via
transactions. Smart contracts are identifiable via a unique 160-bit address that
is generated during deployment. Transactions may only be initiated by exter-
nally owned accounts3. Smart contract functions are triggered by encoding the
function signature and arguments in the data field of a transaction. A fallback
function is executed whenever the provided function name is not implemented.
Transactions may also contain a given amount of ether that shall be transferred
from one account to another. Smart contracts may call other smart contracts
during execution, thus, a single transaction may trigger further transactions,
so-called internal transactions.

Ethereum Virtual Machine. The EVM is a stack-based virtual machine
that supports a Turing-complete set of instructions allowing smart contracts to
store data and interact with the blockchain. The EVM uses a gas mechanism
to associate costs to the execution of instructions. This guarantees termination
and prevents denial-of-service attacks. The EVM holds a machine state µ =
(g, pc,m, i, s) during execution, where g is the gas available, pc is the program
counter, m represents the memory contents, i is the active number of words in
memory, and s is the content of the stack.

3 The Horus Framework

In this section, we provide details on the design and implementation of the Ho-
rus framework. Horus automates the process of conducting longitudinal studies
of attacks on Ethereum smart contracts. The framework has the capability to
detect and analyze smart contract attacks from historical data. Moreover, the
framework also provides means to trace the flow of stolen assets across Ethereum
accounts. The latter is particularly useful for studying the behavior of attackers.
Fig. 1 provides an overview on the architecture of Horus. The framework is
organized as an EAT (extract, analyse, and trace) pipeline consisting of three
different stages:

3 Externally owned accounts are accounts controlled via private keys that have no
associated code.
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Fig. 1: Architecture of Horus. Shaded boxes represent custom components,
whereas boxes highlighted in white represent off-the-shelf components.

(1) Extraction: The extraction stage takes as input a list of transactions from
which execution related information is extracted and stored as Datalog facts.

(2) Analysis: The analysis stage takes as input a set of Datalog relations and
queries, which together identify attacks on the extracted Datalog facts.

(3) Tracing: The tracing stage retrieves a list of attacker accounts obtained via
the analysis and fetches all transactions related to these accounts (including
normal transactions, internal transactions and token transfers). Afterwards,
a graph database is created, which captures the flow of funds (both ether and
tokens) from and to these accounts. Further, the database can be augmented
with a list of labeled accounts to enhance the tracing of stolen assets.

In the following, we describe each of the three pipeline stages in more detail.
The entire framework was written in Python using roughly 2,000 lines of code4.

3.1 Extraction

The role of the extractor is to request from the Ethereum client the execution
trace for a list of transactions and to convert them into logic relations that reflect
the semantics of their execution. An execution trace consists of an ordered list
of executed EVM instructions. Each record in that list contains information
such as the executed opcode, program counter, call stack depth, and current
stack values. Unfortunately, execution traces cannot be obtained directly from
historical blockchain data, they can only be recorded during contract execution.
Fortunately, the Go based Ethereum client (Geth) provides a debug functionality
via the debug traceTransaction and debug traceBlockByNumber functions,
which gives us the ability to replay the execution of any given past transaction or
block and retrieve its execution trace. Execution traces are requested via Remote
Procedure Call (RPC). Previous works [36, 34, 3, 49, 48], did not rely on RPC as
it is too slow. Instead, they modified Geth to speed up the process of retrieving
execution traces. However, this has the limitation that users cannot use Geth’s
default version, but are required to use a modified version, and changes will need
to be carried over every time a new version of Geth is released. Moreover, at

4 Code and data are publicly available at https://github.com/christoftorres/Horus.
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the time of writing, none of these works publicly disclosed their modified version
of Geth, which not only makes it difficult to reproduce their results, but also
to conduct future studies. Therefore, rather than modifying Geth, we decided
to improve the speed on the retrieval of execution traces via RPC. We noticed
that execution traces contain a number of information that is irrelevant for our
analysis. Fortunately, Geth allows us to inject our own execution tracer written
in JavaScript [42]. Through this mechanism, we are able to reduce the size of the
execution traces and improve execution speed, without actually modifying Geth.
For example, our JavaScript code removes the current program counter, the
remaining gas and the instruction’s gas cost from the execution trace. Moreover,
instead of returning a complete snapshot of the entire stack and memory for
every executed instruction, our code only returns stack elements and memory
slices that are relevant to the executed instruction.

.decl opcode(step:number, op:Opcode, tx_hash:symbol)

.decl data_flow(step1:number, step2:number, tx_hash:symbol)

.decl arithmetic(step:number, op:Opcode, operand1:Value, operand2:Value,

arithmetic_result:Value, evm_result:Value)

.decl storage(step:number, op:Opcode, tx_hash:symbol, caller:Address,

contract:Address, index:Value, value:Value, depth:number)

.decl condition(step:number, tx_hash:symbol)

.decl erc20_transfer(step:number, tx_hash:symbol, contract:Address, from:

Address, to:Address, value:Value)

.decl call(step:number, tx_hash:symbol, op:Opcode, caller:Address, callee

:Address, input:symbol, value:Value, depth:number, call_id:number,

call_branch:number, result:number)

.decl selfdestruct(step:number, tx_hash:symbol, caller:Address, contract:

Address, destination:Address, value:Value)

.decl block(block_number:number, gas_used:number, gas_limit:number,

timestamp:number)

.decl transaction(tx_hash:symbol, tx_index:number, block_number:number,

from:Address, to:Address, input:symbol, gas_used:number, gas_limit:

number, status:number)

Listing 1: List of Datalog facts extracted by Horus.

Listing 1 shows the list of Datalog facts that our extractor produces by iterat-
ing through each of the records of the execution traces and encoding relevant in-
formation. While most facts are related to low level EVM operations (e.g., call),
others are related to high level operations. For example, the erc20 transfer fact
refers to the ERC-20 token event “Transfer” that is emitted whenever tokens are
transferred, where contract denotes the address of the token contract, and from

and to, denote the sender and receiver of the tokens, respectively. It is impor-
tant to note that this list can easily be modified or extended to support different
studies from the one proposed in this paper by modifying the extractor, analyzer
and tracer. Besides using the default types number and symbol, we also define
our own three new types: Address for 160-bit values, Opcode for the set of EVM
opcodes, and Value for 256-bit stack values.
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Fig. 2: The example on the left depicts the propagation of taint via the ADD

instruction, where the result pushed onto stack s′ becomes tainted because the
second operand on stack s was tainted. The example on the right depicts the
propagation of taint via the SHA3 instruction, where the result pushed onto stack
s′ becomes tainted because the memory m was tainted.

Dynamic Taint Analysis. The extractor leverages dynamic taint analysis
to track the flow of data across instructions. Security experts can then use the
data flow fact to check if data flows from one instruction to another. Taint is in-
troduced via sources, then propagated across the execution and finally checked
if it flows into sinks. Sources represent instructions that might introduce un-
trusted data (e.g., CALLDATALOAD or CALLDATACOPY), whereas sinks represent
instructions that are sensitive locations (e.g., CALL or SSTORE). We implemented
our own dynamic taint analysis engine. The engine loops through every executed
instruction and checks whether the executed instruction is a source, for which
the engine then introduces taint by tagging the affected stack value, memory
region or storage location according to the semantics defined in [47]. We imple-
mented the stack using an array structure following LIFO logic. Memory and
storage are implemented using a Python dictionary that maps memory and stor-
age addresses to values. Taint propagation is performed at the byte level (see
examples in Fig. 2).

Execution Order. Attacks such as the Parity wallets hacks were com-
posed of two transactions being executed in a specific order. To detect such
multi-transactional attacks, our framework encodes a total order across multiple
transactions via the triplet o = (b, t, s), where b is the block number, t is the
transaction index, and s is the execution step. The execution step is a simple
counter that is reset at the beginning of the execution of a transaction and its
value is incremented after each executed instruction. An execution step is bound
to a transaction index, which is on the other hand bound to a block number.
As such, our framework is able to precisely identify the execution order of any
instruction across multiple transactions and the entire blockchain history.

3.2 Analysis

The second stage of our pipeline uses a Datalog engine to analyze whether a
given list of Datalog relations and queries match any of the previously extracted
Datalog facts. These Datalog queries identify adversarial transactions, i.e., mali-
cious transactions that successfully carried out a concrete attack against a smart
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contract by exploiting a given vulnerability. Our framework uses Soufflé as its
Datalog engine. Soufflé compiles Datalog relations and queries into a highly opti-
mized C++ executable [22]. In the following, we provide Datalog queries for de-
tecting reentrancy, Parity wallet hacks, integer overflows, unhandled exceptions
and short address attacks. Although, a number of smart contract vulnerabilities
exist [1], in this work we focus on those that are ranked by the NCC Group as
the top 10 smart contract vulnerabilities [30] and for which we can extract the
amount of ether or tokens that were either stolen or locked.

Reentrancy. Reentrancy occurs whenever a contract calls another contract,
and the called contract calls back the original contract (i.e., a re-entrant call)
before the state in the original contract has been updated appropriately. We
detect reentrancy by identifying cyclic calls originating from the same caller and
calling the same callee (see Listing 2). We check if two successful calls (i.e., re-
sult is 1), share the same transaction hash, caller, callee, id and branch,
where the second call has a higher call depth than the first call. Afterwards, we
check if there are two storage operations with the same call depth as the first
call, where the first operation is an SLOAD and occurs before the first call, and
the second operation is an SSTORE and occurs after the second call.

Reentrancy(hash, caller, callee, depth2, amount) :-

storage(step1, "SLOAD", hash, _, caller, index, _, depth1),

call(step2, hash, _, caller, callee, _, _, depth1, id, branch, 1),

call(step3, hash, _, caller, callee, _, amount, depth2, id, branch, 1),

storage(step4, "SSTORE", hash, _, caller, index, _, depth1),

depth1 < depth2, step1 < step2, step3 < step4, !match("0", amount).

Listing 2: Datalog query for detecting reentrancy attacks.

Parity Wallet Hacks. In this paper, we focus on detecting the two Parity
wallet hacks [50, 35]. Both hacks were due faulty access control implementa-
tions that allowed attackers to set themselves as owners, which allowed them
to perform critical actions such as the transfer of funds or the destruction of
contracts. We detect the first Parity wallet hack by checking if there exist two
transactions t1 and t2, both containing the same sender and receiver, where
the first 4 bytes of t1’s input match the function signature of the initWallet

function (i.e., e46dcfeb), and if the first 4 bytes of t2’s input match the function
signature of the execute function (i.e., b61d27f6) (see Listing 3). Afterwards,
we check whether there is a call, which is part of t2 and where t2 is executed
after t1 (i.e., block1 < block2; block1 = block2, index1 < index2).

ParityWalletHack1(hash1, hash2, caller, callee, amount) :-

transaction(hash1, index1, block1, from, to, input1, _, _, 1),

substr(input1, 0, 8) = "e46dcfeb",

transaction(hash2, index2, block2, from, to, input2, _, _, 1),

substr(input2, 0, 8) = "b61d27f6",

call(_, hash2, "CALL", caller, callee, _, amount, _, 1),

(block1 < block2; block1 = block2, index1 < index2).

Listing 3: Datalog query for detecting the first Parity wallet hack.
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We detect the second Parity wallet hack in a very similar way to the first one, ex-
cept that in this case we check if t2’s input matches the function signature of the
kill function (i.e., cbf0b0c0) and t2 contains a selfdestruct (see Listing 4).

ParityWalletHack2(hash1, hash2, contract, destination, amount) :-

transaction(hash1, index1, block1, from, to, input1, _, _, 1),

substr(input1, 0, 8) = "e46dcfeb",

transaction(hash2, index2, block2, from, to, input2, _, _, 1),

substr(input2, 0, 8) = "cbf0b0c0",

selfdestruct(_, hash2, _, contract, destination, amount),

(block1 < block2; block1 = block2, index1 < index2).

Listing 4: Datalog query for detecting the second Parity wallet hack.

Integer Overflows. We detect integer overflows by checking if data from
CALLDATALOAD or CALLDATACOPY opcodes flows into an arithmetic operation,
where the arithmetic result does not match the result returned by the EVM.
Afterwards, we check whether the result of the arithmetic operation flows into
an SSTORE storage operation and an erc20 transfer occurs, where the amount
is one of the two operands used in the arithmetic computation (see Listing 5).
Please note that in this work, we only focus on detecting integer overflows related
to ERC-20 tokens, since token smart contracts have been identified in the past
to be frequent victims of integer overflows [32, 33].

IntegerOverflow(hash, from, to, amount) :-

(opcode(step1, "CALLDATALOAD", hash);

opcode(step1, "CALLDATACOPY", hash)),

arithmetic(step2, _, operand1, operand2, arithmetic_res, evm_res),

arithmetic_res != evm_res, (operand1 = amount; operand2 = amount),

storage(step3, "SSTORE", hash, _, _, _, _, 1),

data_flow(step1, step2, hash), data_flow(step2, step3, hash),

erc20_transfer(_, hash, _, from, to, amount), !match("0", amount).

Listing 5: Datalog query for detecting integer overflow attacks.

Unhandled Exception. Inner calls executed by smart contracts may fail
and by default only the state changes caused by those failed calls are rolled
back. It is the responsibility of the developer to check the result of every call and
perform proper exception handling. However, many developers forget or decide
to ignore the handling of such exceptions, resulting in funds not being transferred
to their rightful owners. We detect an unhandled exception by checking whether
a call with opcode "CALL" failed (i.e., result is 0) with an amount larger than
zero and where the result was not used in a condition (see Listing 6).

UnhandledException(hash, caller, callee, amount) :-

call(step, hash, "CALL", caller, callee, _, amount, _, 0),

!match("0", amount), !used_in_condition(step, hash).

Listing 6: Datalog query for detecting unhandled exceptions.
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Short Address. The ERC-20 functions transfer and transferFrom take as
input a destination address and a given amount of tokens. During execution the
EVM will add trailing zeros to the end of the transaction input if the transaction
arguments are not correctly encoded as chunks of 32 bytes, thereby shifting the
input bytes to the left by a few zeros, and therefore unwillingly increase the num-
ber of tokens to be transferred. However, attackers can exploit this fact by gen-
erating addresses that end with trailing zeros and omit these zeros, to then trick
another party (e.g., web service) into making a call to transfer/transferFrom
containing the attacker’s malformed address. We detect a short address attack by
first checking if the first 4 bytes of a transaction’s input match either the func-
tion signature of transfer (i.e., a9059cbb) or transferFrom (i.e., 23b872dd).
Then, for the function transfer we check whether the length of the input is
smaller than 68 (i.e., 4 bytes function signature, 32 bytes destination address,
and 32 bytes amount), and for the function transferFrom we check whether the
length of the input is smaller than 100 (i.e., 4 bytes function signature, 32 bytes
from address, 32 bytes destination address, and 32 bytes amount), and finally
we check if an erc20 transfer occurred (see Listing 7).

ShortAddress(hash, from, to, amount) :-

transaction(hash, _, _, input, _, _, 1, _),

(substr(input, 0, 8) = "a9059cbb", strlen(input) / 2 < 68;

substr(input, 0, 8) = "23b872dd", strlen(input) / 2 < 100),

erc20_transfer(_, hash, _, from, to, amount), !match("0", amount).

Listing 7: Datalog query for detecting short address attacks.

3.3 Tracing

The final stage of our pipeline is the tracing of stolen assets, such as ether and
tokens, from attacker accounts to labeled accounts (e.g., exchanges). The tracer
starts by extracting sender addresses and timestamps from malicious transac-
tions that have been identified via the Datalog analysis. Sender addresses are
assumed to be accounts belonging to attackers. Afterwards, the tracer uses Ether-
scan’s API to retrieve for each sender address all its normal transactions, internal
transactions and token transfers, and loads them into a Neo4j graph database.
We rely on a third-party service such as Etherscan to retrieve normal trans-
actions, internal transactions and token transfers, because a default Ethereum
node does not provide this functionality out-of-the-box. Accounts are encoded
as vertices and transactions as directed edges between those vertices. We differ-
entiate between three types of accounts: attacker accounts, unlabeled accounts,
and labeled accounts. Every account type contains an address. Labeled accounts
contain a category (e.g., exchange) and a label (e.g., Kraken 1). We obtain cat-
egories and labels from Etherscan’s large collection of labeled accounts5. We
downloaded a total of 5,437 labels belonging to 204 categories. We differenti-
ate between three different types of transactions: normal transactions, internal

5 https://etherscan.io/labelcloud
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transactions, and token transactions. Each transaction type contains a transac-
tion value, transaction hash, and transaction date. Token transactions contain a
token name, token symbol and number of decimals. Transactions can be loaded
either backwards or forwards. Loading transactions forwards allows us to track
where attackers sent their stolen funds to, whereas loading transactions back-
wards allows us to track where attackers received their funds from. We start with
the attacker’s account when loading transactions and recursively load transac-
tions for neighboring accounts that are part of the same transaction for up to a
given number of hops. We do not load transactions for accounts with more than
1,000 transactions. This is to avoid bloating the graph database with transac-
tions from mixing services, exchanges or gambling smart contracts. Moreover,
when loading transactions backwards, we only load transactions that occurred
before the timestamp of the attack, whereas when loading transactions forwards,
we only load transactions that occurred after the timestamp of the attack. Fi-
nally, when all transactions are loaded, security experts can query the graph
database using Neo4j’s own graph query language called Cypher, to trace the
flow of stolen funds. Evidently, our tracing is only effective up to a certain point,
since mixing services and exchanges prevent further tracing. Nonetheless, our
tracing is still useful to study whether attackers send their funds to mixers or
exchanges and to identify which services are being used and to what extend.

4 Evaluation

In this section, we demonstrate the scalability and effectiveness of our framework
by performing a large-scale analysis of the Ethereum blockchain and comparing
our results to those presented in previous works.

Dataset. We used the Ethereum ETL framework [28] to retrieve a list of
transactions for every smart contract deployed up to block 10 M. We collected
a total of 697,373,206 transactions and 3,362,876 contracts. The deployment
timestamps of the collected contracts range from August 7, 2015, to May 4,
2020. We filtered out contracts without transactions and removed transactions
that have a gas limit of 21,000 (i.e., do not execute code). Moreover, similar
to [36], we skipped all the transactions that were part of the 2016 denial-of-
service attacks, as these incur high execution times [40]. After applying these
filters, we ended up with a final dataset of 1,234,197 smart contracts consisting of
371,419,070 transactions. During the extraction phase, Horus generated roughly
700GB of Datalog facts on the final dataset.

Experimental Setup. All experiments were conducted using a machine
with 64 GB of memory and an Intel(R) Core(TM) i7-8700 CPU with 12 cores
clocked at 3.2 GHz, running 64-bit Ubuntu 18.04.5 LTS. Moreover, we used Geth
version 1.9.9, Soufflé version 1.7.1, and Neo4j version 4.0.3.

4.1 Results

Table 1 summarizes our results: we found 1,888 attacked contracts and 8,095 ad-
versarial transactions. From these contracts, 46 were attacked using reentrancy,
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Table 1: Summary of detected vulnerable contracts and adversarial transactions.
Results Validation

Vulnerability Contracts Transactions TP FP p

Reentrancy 46 2,508 45 1 0.97
Parity Wallet Hacks 600 1,852 600 0 1.00

Parity Wallet Hack 1 596 1,632 596 0 1.00
Parity Wallet Hack 2 238 238 238 0 1.00

Integer Overflow 125 443 65 0 1.00
Overflow (Addition) 37 139 25 0 1.00
Overflow (Multiplication) 23 120 20 0 1.00
Underflow (Subtraction) 104 352 68 0 1.00

Unhandled Exception 1,068 3,100 100 0 1.00
Short Address 55 275 5 0 1.00

Total Unique 1,888 8,095

600 were attacked during the Parity wallet hacks, 125 were attacked via inte-
ger overflows, 1,068 suffered from unhandled exceptions, and 55 were victims
of short address attacks. For the Parity wallet hacks, we find that the majority
was attacked during the first hack. We also observe that most contracts that are
vulnerable to integer overflows, were attacked via an integer underflow.

4.2 Validation

We confirm our framework’s correctness, by comparing our findings to those
reported by previous works for which results were publicly available. Also, we
solely compare our finding to works that similarly to Horus, focus on detecting
attacks rather than vulnerable contracts. In cases where the results were not
publicly available, we manually inspected the source code and transactions of
flagged contracts using Etherscan. Table 1 summarizes the results of our vali-
dation in terms of true positives (TP), false positives (FP) and precision (p).
Overall our framework achieves a high precision of 99.54%.

Reentrancy. First, we compare our results to those of Sereum [36]. The
authors reported a total of 16 vulnerable contracts, where 14 are false posi-
tives. The true positives include the DAO [6] and the DSEthToken [8] con-
tract, which Horus has also identified. Horus has flagged none of the 14
false positives. Next, we compare our results to ÆGIS [14, 16]. Horus suc-
cessfully detected the 7 contracts that were reported by ÆGIS. Then, we com-
pare our results to SODA [3]. Horus identified 25 of the 26 contracts that
were flagged as true positives by SODA. We analyzed the remaining contract
(0x59abb8006b30d7357869760d21b4965475198d9d) and found that it is not
vulnerable to reentrancy, which is in line with what other previous works dis-
covered [48]. For the 5 false positives reported by SODA, we detected 3 of them,
where two (0xd4cd7c881f5ceece4917d856ce73f510d7d0769e and 0x72f60eca0

db6811274215694129661151f97982e) are actual true positives and have been
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misclassified by SODA. The other one (known as HODLWallet [9]) is indeed a
false positive. Afterwards, we compare our results with those of EthScope [48].
Horus detected 45 out of the 46 true positives reported by EthScope. The non-
reported contract is the DarkDAO [7], which did not suffer from a reentrancy
attack and is, therefore, a false positive. In terms of false positives, Horus only
has one in common with EthScope, namely the aforementioned HODLWallet
contract. The other two false positives that EthScope reported were correctly
identified as true negatives by Horus. Finally, we compare our results with those
of Zhou et al. [51]. Horus found 22 of the 26 contracts that have been reported
as true positives by Zhou et al. We inspected the remaining 4 contracts and
found that they are false positives.

Parity Wallet Hacks. For the first Parity wallet hack, we compared our
results to those reported by ÆGIS and Zhou et al. ÆGIS reported 3 contracts,
which have also been found by Horus. Next, Zhou et al. reported 622 contracts,
of which Horus found 596. We analyzed the remaining 26 contracts and found
that these are false positives. After analyzing their list of transactions, we could
not find evidence of the two exploiting transactions, namely initWallet and
execute. For the second Parity wallet hack, we compared our results to those of
ÆGIS. Horus found 238 contracts, of which 236 were also reported by ÆGIS.
The remaining two are true positives and have not been identified by ÆGIS.

Integer Overflow. We compared our findings to those of Zhou et al. The
authors found 50 contracts, whereas we found 125 contracts. Horus detected 49
of the 50 contracts reported by Zhou et al. We analyzed the undetected contract
(0xa9a8ec071ed0ed5be571396438a046a423a0c206) and found no evidence of
an integer overflow. Besides our comparison with Zhou et al., we also tried to
analyze manually the source code of the reported contracts. We were able to ob-
tain the source code for 65 of the 125 reported contracts. Our manual inspection
identified that all of the contracts are true positives. They either contained a
faulty arithmetic check or no arithmetic check at all.

Unhandled Exception. Since none of the previous works analyzed unhan-
dled exceptions, we manually analyzed the source code of the contracts reported
by Horus. However, we limited our validation to a random sample of 100 con-
tracts since manually analyzing 1,068 contracts is infeasible. We find that all of
the 100 contracts contained in their source code either a direct call or a function
call that did not check the return value. Therefore, we conclude that Horus
reports no false positives on the detection of unhandled exceptions.

Short Address. We compared our results to those reported by SODA.
SODA detected 726 contracts and 6,599 transactions, whereas Horus detected
55 contracts and 275 transactions. After further investigation, we found that the
contracts and transactions detected by Horus were also detected by SODA. We
also found that SODA reported transactions that failed or where the transferred
amount was zero, while Horus only reported transactions that were successful
and where an ERC-20 transfer event was successfully triggered with an amount
larger than zero. Moreover, we were able to obtain the source code for 5 of the



Spotting and Analyzing Attacks on Ethereum Smart Contracts 13

reported contracts and confirm that the transfer or transferFrom functions
contained inside those contracts do not validate the input length of parameters.

5 Analysis

In this section, we demonstrate the practicality of Horus in detecting and ana-
lyzing real-world smart contract attacks via an analysis of our evaluated results
and a case study on the recent Uniswap and Lendf.me incidents.

5.1 Volume and Frequency of Attacks
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Fig. 3: Weekly average of daily contract deployments and attacks over time.

Fig. 3 depicts the weekly average of daily attacks in comparison to the weekly
average of daily deployments. We state that the peak of weekly deployed con-
tracts was at the end of 2017, and that the largest volume of weekly attacks
occurred before this peak. Moreover, most attacks seem to occur in clusters of
the same day. We suspect that attackers scan the blockchain for similar vulner-
able contracts and exploit them at the same time. The first three spikes in the
attacks correspond to the DAO and Parity wallet hacks, whereas the last spike
corresponds to the recent Uniswap/Lendf.me hacks.

2016 2017 2018 2019 2020

Reentrancy
Mean: $2,208,220, Max: $94,812,885

Parity Wallet Hacks
Mean: $9,798,532, Max: $107,773,036

Integer Overflow

Unhandled Exception
Mean: $371,990, Max: $158,396,132

Short Address

DAO Hack

Parity Wallet Hack 1

Parity Wallet Hack 2

SpankChain Hack

Uniswap & Lendf.me Hacks

King of the Ether Throne

BeautyChain Hack

SMT Token Hack

$10
$100
$10,000
$100,000,000

Fig. 4: Volume and frequency of smart contract attacks over time.

Fig. 4 depicts the occurrences of adversarial transactions per vulnerability
type that we measured during our evaluation. While reentrancy attacks seem
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to occur more sporadically, other types of vulnerabilities such as unhandled ex-
ceptions are triggered rather continuously. Overall, we see that over time less
contracts became victims to short address attacks and integer overflows, sug-
gesting that smart contracts have become more secure over the past few years.
However, we also see that smart contracts still remain vulnerable to well-known
vulnerabilities such as reentrancy and unhandled exceptions, despite automated
security tools being available. Fig. 4 also illustrates for each adversarial trans-
action the amount of USD that was either stolen (reentrancy and Parity wallet
hack 1) or locked (unhandled exception and Parity wallet hack 2). The USD
amounts were calculated by multiplying the price of one ether at the time of
the attack times the ether extracted via our Datalog query. We do not provide
USD amounts for short address attacks and integer overflows, because these
attacks involve stolen ERC-20 tokens and we were not able to obtain the histor-
ical prices of these tokens. We can see that the DAO hack and the first Parity
wallet hack remain the two most devastating attacks in terms of ether stolen,
with ether worth 94,812,885 USD and 107,773,036 USD, respectively. We marked
well-known incidents such as the DAO hack, or the two Parity wallet hacks for
the reader’s convenience and to demonstrate that Horus is able to detect them.

5.2 Forensic Analysis on Uniswap and Lendf.me Incidents
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Fig. 5: Invested ETH and net profit made by Uniswap attackers over time.

Uniswap. On April 18, 2020, attackers were able to drain a large amount
of ether from Uniswap’s liquidity pool of ETH-imBTC [11]. They purposely
chose the imBTC token as it implements the ERC777 standard, which would
allow them to register a callback function and therefore perform a reentrancy
attack on Uniswap. The attackers would start by purchasing imBTC tokens
for ETH. Afterward, they would exchange half of the purchased imBTC tokens
within the same transaction back to ETH. However, the latter would trigger a
callback function that the attackers registered before the attack, allowing them
to take control and call back the Uniswap contract to exchange the remaining
half of imBTC tokens to ETH before the conversion rate was updated. Thus, the
attackers could trade the second batch of imBTC tokens at a more profitable
conversion rate. Interestingly, this vulnerability was known to Uniswap and was
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publicly disclosed precisely a year before the attack [5].
We used Horus to extract and analyze all the transactions mined on that day,

and identified a total of 525 transactions performing reentrancy attacks against
Uniswap with an accumulated profit of 1,278 ETH (232,239.46 USD). The attack
began at 00:58:19 UTC and ended roughly 3.5 hours later at 04:22:58 UTC. Fig. 5
depicts a timeline of the attack, showing the amount of ether that the attackers
invested and the net profit they made per transaction. We see that the net profit
goes down over time. The highest profit made for a single transaction was roughly
9.79 ETH (1,778.72 USD), while the lowest profit was 0.01 ETH (2.73 USD). The
attackers began their attack by purchasing tokens for roughly 80 ETH and went
over time down to 1 ETH. Moreover, we see that the profit was mostly tied to the
amount of ether that the attackers were investing (i.e., using to purchase imBTC
tokens). However, we also see that sometimes there were some fluctuations, where
the attackers were making more profit while they would invest the same amount
of ether. This is probably due to other participants trading imBTC on Uniswap
during the attack and therefore influencing the exchange rates. In the last step,
we traced the entire ether flow from the attackers account for up to 5 hops using
Horus’s tracing capabilities. Our transaction graph analysis reveals that the
attackers exchanged roughly 702 ETH (55% of the stolen funds) for tokens on
different exchanges: 589 ETH on Uniswap for WETH, DAI, USDC, BAT, and
MKR, 31 ETH on Compound, and 82 ETH on 1inch.exchange. The latter is of
particular interest for law enforcement agencies as 1inch.exchange keeps track
of IP addresses of transactions performed over their platform [37], which can be
useful in deanonymizing the attackers.
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Fig. 6: Deposited and borrowed tokens by Lendf.me attackers over time.

Lendf.me. On April 19, 2020, attackers were able to drain all of Lendf.me’s
liquidity pools [10]. Similar to the Uniswap hack, the attackers exploited the
fact that Lendf.me was trading imBTC and could register a callback function to
perform a reentrancy attack. The attackers would start by depositing x amount
of imBTC tokens into Lendf.me’s liquidity pool. Next, still within the same
transaction, they would deposit another amount y, however, this time trigger-
ing the callback function registered by the attackers, which would withdraw the
previously deposited x tokens from Lendf.me. By the end of the transaction,



16 C. Ferreira Torres et al.

the imBTC balance of the attackers on the imBTC token contract would be
x−y, but the imBTC balance on the Lendf.me contract would be x+y, thereby
increasing their imBTC balance on Lendf.me by x without actually depositing
it. Similar to Uniswap, the issue here is that the user’s balance is only updated
after the transfer of tokens, thus the update is based on data before the transfer
and therefore ignoring any updates made in between.

Using Horus, we extracted and analyzed all the transactions mined on
that day. We identified a total of 46 transactions performing reentrancy attacks
against Lendf.me, and 19 transactions using the stolen imBTC tokens to borrow
other tokens. Fig. 6 shows on the left the amount of imBTC tokens that the
attackers deposited during the attack and the amount of USD that the attackers
made by borrowing other tokens. The right-hand side of Fig. 6 depicts the num-
ber of tokens in USD that the attackers borrowed from Lendf.me. The attackers
borrowed from 12 different tokens, worth together 25,244,120.74 USD, where
10.31M USD are only from borrowing WETH. The attackers launched their at-
tack at 00:58:43 UTC and stopped 2 hours later at 02:12:11 UTC. They started
depositing low amounts of imBTC and increased their amounts over time up to
291.35 imBTC. The borrowing started at 01:22:27 UTC and ended at 03:30:42
UTC. Finally, we used Horus to trace the flow of tokens from the attackers
account for up to 3 hops. We found that the attackers initially traded some
parts of the stolen tokens for other tokens on ParaSwap, Compound, Aave, and
1inch.exchange. However, at 14:16:52 UTC, thus about 10 hours later, the at-
tackers started sending all the stolen tokens back to Lendf.me’s admin account
(0xa6a6783828ab3e4a9db54302bc01c4ca73f17efb). Lendf.me then moved all
the tokens into a recovery account (0xc88fcc12f400a0a2cebe87110dcde0dafd2
9f148) where users could then reclaim their tokens.

6 Related Work

Static Analysis. Researchers proposed a number of tools to detect smart
contract vulnerabilities via static analysis. Luu et al. [26] proposed Oyente, the
first symbolic execution tool for smart contracts. Other tools such as Osiris [15],
combine symbolic execution and taint analysis to detect integer bugs. Mythril
[29] uses a mix of symbolic execution and control-flow checking. Maian [31]
employs inter-procedural symbolic execution. teEther [25] automatically gen-
erates exploits for smart contracts. HoneyBadger [17] performs symbolic ex-
ecution to detect honeypots. However, symbolic execution is often unable to
explore all program states, making it generally unsound. Formal verification
tools were proposed [27, 45], together with a formal definition of the EVM [20].
EthBMC [18] uses bounded model checking to detect vulnerabilities, whereas
eThor [38] uses reachability analysis. Zeus [23] verifies the correctness of smart
contracts using abstract interpretation and model checking. SmartCheck [43]
checks Solidity source code against XPath patterns. VeriSmart [39] leverages
counter example-based inductive synthesis to detect arithmetic bugs. Secu-
rify [44] extracts semantic information from the dependency graph to check
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for compliance and violation patterns using Datalog. Vandal [2] converts EVM
bytecode to semantic logic relations and checks them against Datalog queries.
The main difference between these works and ours, is that they analyze the byte-
code of smart contracts, whereas we analyze the execution of transactions.

Dynamic Analysis. Although less apparent, a number of dynamic ap-
proaches have also been proposed. ECFChecker [19] enables the runtime detec-
tion of reentrancy attacks via a modified EVM. Sereum [36] proposes a modified
EVM to protect deployed smart contracts against reentrancy attacks. ÆGIS [14,
16] presents a smart contract and a DSL to protect against all kinds of runtime
attacks. SODA [3] uses a modified Ethereum client to inject custom modules
for the online detection of malicious transactions. Perez et al. [34] use Datalog
to study the transactions of vulnerable smart contracts that have been detected
by previous works. EthScope [48] loads historical data into an Elasticsearch
database and adds dynamic taint analysis to the client to analyze transactions.
Zhou et al. [51] study attacks and defenses by encoding transactional information
as action trees and result graphs. TxSpector [49] is a concurrent work to ours
and adopts the Datalog facts proposed by Vandal. However, these facts were
designed to analyze bytecode and do not allow to detect multi-transactional
attacks. In contrast to these works, our work does not modify the Ethereum
client. Instead, we dynamically inject our custom tracer into the client. We also
provide a new set of Datalog facts that allow to check for multi-transactional
attacks and describe data flows between instructions via dynamic taint analysis.
Finally, none of the aforementioned tools provide means to trace stolen assets
across the Ethereum blockchain.

7 Conclusion

A wealth of automated vulnerability detection tools for Ethereum smart con-
tracts were proposed over the past years. This raises the question whether the
security of smart contracts has improved. In this paper, we presented the design
and implementation of an extensible framework for carrying out longitudinal
studies on detecting, analyzing, and tracing of smart contract attacks. We ana-
lyzed transactions from August 2015 to May 2020 and identified 8,095 attacks as
well as 1,888 vulnerable contracts. Our analysis revealed that while the number
of attacks seems to have decreased for attacks such as integer overflows, unhan-
dled exceptions and reentrancy attacks still seem to remain present despite an
abundance of new smart contract security tools. Finally, we also presented an
in-depth analysis on the recent Uniswap and Lendf.me incidents.
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42. Szilágyi, P.: Go-Ethereum Management APIs - JavaScript-based tracing (jan 2020),
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#javascript-
based-tracing

43. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: Static analysis of ethereum smart contracts. In: 2018
IEEE/ACM 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB). pp. 9–16. IEEE (2018)

44. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 67–82.
ACM (2018)

45. Wang, Y., Lahiri, S., Chen, S., Pan, R., Dillig, I., Born, C., Naseer, I.: Formal
specification and verification of smart contracts for azure blockchain (April 2019),
https://www.microsoft.com/en-us/research/publication/formal-specification-and-
verification-of-smart-contracts-for-azure-blockchain

46. Wood, G.: Solidity 0.6.8 documentation (May 2020),
https://solidity.readthedocs.io/en/v0.6.8/

47. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

48. Wu, L., Wu, S., Zhou, Y., Li, R., Wang, Z., Luo, X., Wang, C., Ren, K.: Ethscope:
A transaction-centric security analytics framework to detect malicious smart con-
tracts on ethereum. arXiv preprint arXiv:2005.08278 (2020)

49. Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: TXSPECTOR: Uncovering attacks in
ethereum from transactions. In: 29th USENIX Security Symposium (USENIX Se-
curity 20). pp. 2775–2792. USENIX Association (Aug 2020)

50. Zhao, W.: $30 Million: Ether Reported Stolen Due to Parity Wallet Breach (jul
2017), https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-
breach

51. Zhou, S., Yang, Z., Xiang, J., Cao, Y., Yang, Z., Zhang, Y.: An ever-evolving game:
Evaluation of real-world attacks and defenses in ethereum ecosystem. In: 29th
USENIX Security Symposium (USENIX Security 20). pp. 2793–2810. USENIX
Association (Aug 2020)


